]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/e1000e/82571.c
e1000e: 82574 intermittently fails to initialize with manageability f/w
[net-next-2.6.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
451152d9 4 Copyright(c) 1999 - 2010 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
ff10e13c
CW
55#define E1000_BASE1000T_STATUS 10
56#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
57#define E1000_RECEIVE_ERROR_COUNTER 21
58#define E1000_RECEIVE_ERROR_MAX 0xFFFF
bc7f75fa 59
4662e82b
BA
60#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61
bc7f75fa
AK
62static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 65static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
66static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67 u16 words, u16 *data);
68static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 72static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
73static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
74static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 75static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 76static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
1b98c2bb
BA
77static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
78static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
79static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
bc7f75fa
AK
80
81/**
82 * e1000_init_phy_params_82571 - Init PHY func ptrs.
83 * @hw: pointer to the HW structure
bc7f75fa
AK
84 **/
85static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
86{
87 struct e1000_phy_info *phy = &hw->phy;
88 s32 ret_val;
89
318a94d6 90 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
91 phy->type = e1000_phy_none;
92 return 0;
93 }
94
95 phy->addr = 1;
96 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
97 phy->reset_delay_us = 100;
98
17f208de
BA
99 phy->ops.power_up = e1000_power_up_phy_copper;
100 phy->ops.power_down = e1000_power_down_phy_copper_82571;
101
bc7f75fa
AK
102 switch (hw->mac.type) {
103 case e1000_82571:
104 case e1000_82572:
105 phy->type = e1000_phy_igp_2;
106 break;
107 case e1000_82573:
108 phy->type = e1000_phy_m88;
109 break;
4662e82b 110 case e1000_82574:
8c81c9c3 111 case e1000_82583:
4662e82b 112 phy->type = e1000_phy_bm;
1b98c2bb
BA
113 phy->ops.acquire = e1000_get_hw_semaphore_82574;
114 phy->ops.release = e1000_put_hw_semaphore_82574;
4662e82b 115 break;
bc7f75fa
AK
116 default:
117 return -E1000_ERR_PHY;
118 break;
119 }
120
121 /* This can only be done after all function pointers are setup. */
122 ret_val = e1000_get_phy_id_82571(hw);
123
124 /* Verify phy id */
125 switch (hw->mac.type) {
126 case e1000_82571:
127 case e1000_82572:
128 if (phy->id != IGP01E1000_I_PHY_ID)
129 return -E1000_ERR_PHY;
130 break;
131 case e1000_82573:
132 if (phy->id != M88E1111_I_PHY_ID)
133 return -E1000_ERR_PHY;
134 break;
4662e82b 135 case e1000_82574:
8c81c9c3 136 case e1000_82583:
4662e82b
BA
137 if (phy->id != BME1000_E_PHY_ID_R2)
138 return -E1000_ERR_PHY;
139 break;
bc7f75fa
AK
140 default:
141 return -E1000_ERR_PHY;
142 break;
143 }
144
145 return 0;
146}
147
148/**
149 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
150 * @hw: pointer to the HW structure
bc7f75fa
AK
151 **/
152static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
153{
154 struct e1000_nvm_info *nvm = &hw->nvm;
155 u32 eecd = er32(EECD);
156 u16 size;
157
158 nvm->opcode_bits = 8;
159 nvm->delay_usec = 1;
160 switch (nvm->override) {
161 case e1000_nvm_override_spi_large:
162 nvm->page_size = 32;
163 nvm->address_bits = 16;
164 break;
165 case e1000_nvm_override_spi_small:
166 nvm->page_size = 8;
167 nvm->address_bits = 8;
168 break;
169 default:
170 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
171 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
172 break;
173 }
174
175 switch (hw->mac.type) {
176 case e1000_82573:
4662e82b 177 case e1000_82574:
8c81c9c3 178 case e1000_82583:
bc7f75fa
AK
179 if (((eecd >> 15) & 0x3) == 0x3) {
180 nvm->type = e1000_nvm_flash_hw;
181 nvm->word_size = 2048;
ad68076e
BA
182 /*
183 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
184 * to Flash update issue.
185 */
186 eecd &= ~E1000_EECD_AUPDEN;
187 ew32(EECD, eecd);
188 break;
189 }
190 /* Fall Through */
191 default:
ad68076e 192 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
193 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
194 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
195 /*
196 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
197 * for setting word_size.
198 */
199 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
200
201 /* EEPROM access above 16k is unsupported */
202 if (size > 14)
203 size = 14;
bc7f75fa
AK
204 nvm->word_size = 1 << size;
205 break;
206 }
207
1b98c2bb
BA
208 /* Function Pointers */
209 switch (hw->mac.type) {
210 case e1000_82574:
211 case e1000_82583:
212 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
213 nvm->ops.release = e1000_put_hw_semaphore_82574;
214 break;
215 default:
216 break;
217 }
218
bc7f75fa
AK
219 return 0;
220}
221
222/**
223 * e1000_init_mac_params_82571 - Init MAC func ptrs.
224 * @hw: pointer to the HW structure
bc7f75fa
AK
225 **/
226static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
227{
228 struct e1000_hw *hw = &adapter->hw;
229 struct e1000_mac_info *mac = &hw->mac;
230 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
231 u32 swsm = 0;
232 u32 swsm2 = 0;
233 bool force_clear_smbi = false;
bc7f75fa
AK
234
235 /* Set media type */
236 switch (adapter->pdev->device) {
237 case E1000_DEV_ID_82571EB_FIBER:
238 case E1000_DEV_ID_82572EI_FIBER:
239 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 240 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
241 break;
242 case E1000_DEV_ID_82571EB_SERDES:
243 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
244 case E1000_DEV_ID_82571EB_SERDES_DUAL:
245 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 246 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
247 break;
248 default:
318a94d6 249 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
250 break;
251 }
252
253 /* Set mta register count */
254 mac->mta_reg_count = 128;
255 /* Set rar entry count */
256 mac->rar_entry_count = E1000_RAR_ENTRIES;
f464ba87
BA
257 /* Adaptive IFS supported */
258 mac->adaptive_ifs = true;
bc7f75fa
AK
259
260 /* check for link */
318a94d6 261 switch (hw->phy.media_type) {
bc7f75fa
AK
262 case e1000_media_type_copper:
263 func->setup_physical_interface = e1000_setup_copper_link_82571;
264 func->check_for_link = e1000e_check_for_copper_link;
265 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
266 break;
267 case e1000_media_type_fiber:
ad68076e
BA
268 func->setup_physical_interface =
269 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 270 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
271 func->get_link_up_info =
272 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
273 break;
274 case e1000_media_type_internal_serdes:
ad68076e
BA
275 func->setup_physical_interface =
276 e1000_setup_fiber_serdes_link_82571;
c9523379 277 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
278 func->get_link_up_info =
279 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
280 break;
281 default:
282 return -E1000_ERR_CONFIG;
283 break;
284 }
285
4662e82b 286 switch (hw->mac.type) {
f4d2dd4c
BA
287 case e1000_82573:
288 func->set_lan_id = e1000_set_lan_id_single_port;
289 func->check_mng_mode = e1000e_check_mng_mode_generic;
290 func->led_on = e1000e_led_on_generic;
a65a4a0d
BA
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid =
299 (er32(FWSM) & E1000_FWSM_MODE_MASK)
300 ? true : false;
f4d2dd4c 301 break;
4662e82b 302 case e1000_82574:
8c81c9c3 303 case e1000_82583:
f4d2dd4c 304 func->set_lan_id = e1000_set_lan_id_single_port;
4662e82b
BA
305 func->check_mng_mode = e1000_check_mng_mode_82574;
306 func->led_on = e1000_led_on_82574;
307 break;
308 default:
309 func->check_mng_mode = e1000e_check_mng_mode_generic;
310 func->led_on = e1000e_led_on_generic;
a65a4a0d
BA
311
312 /* FWSM register */
313 mac->has_fwsm = true;
4662e82b
BA
314 break;
315 }
316
23a2d1b2
DG
317 /*
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 * first NVM or PHY acess. This should be done for single-port
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
323 */
324 switch (hw->mac.type) {
325 case e1000_82571:
326 case e1000_82572:
327 swsm2 = er32(SWSM2);
328
329 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 /* Only do this for the first interface on this card */
331 ew32(SWSM2,
332 swsm2 | E1000_SWSM2_LOCK);
333 force_clear_smbi = true;
334 } else
335 force_clear_smbi = false;
336 break;
337 default:
338 force_clear_smbi = true;
339 break;
340 }
341
342 if (force_clear_smbi) {
343 /* Make sure SWSM.SMBI is clear */
344 swsm = er32(SWSM);
345 if (swsm & E1000_SWSM_SMBI) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
349 */
3bb99fe2 350 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
351 }
352 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 }
354
355 /*
2c73e1fe 356 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
357 * timeouts.
358 */
359 hw->dev_spec.e82571.smb_counter = 0;
360
bc7f75fa
AK
361 return 0;
362}
363
69e3fd8c 364static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
365{
366 struct e1000_hw *hw = &adapter->hw;
367 static int global_quad_port_a; /* global port a indication */
368 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
369 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 s32 rc;
371
372 rc = e1000_init_mac_params_82571(adapter);
373 if (rc)
374 return rc;
375
376 rc = e1000_init_nvm_params_82571(hw);
377 if (rc)
378 return rc;
379
380 rc = e1000_init_phy_params_82571(hw);
381 if (rc)
382 return rc;
383
384 /* tag quad port adapters first, it's used below */
385 switch (pdev->device) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 389 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
390 adapter->flags |= FLAG_IS_QUAD_PORT;
391 /* mark the first port */
392 if (global_quad_port_a == 0)
393 adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a++;
396 if (global_quad_port_a == 4)
397 global_quad_port_a = 0;
398 break;
399 default:
400 break;
401 }
402
403 switch (adapter->hw.mac.type) {
404 case e1000_82571:
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 (is_port_b))
410 adapter->flags &= ~FLAG_HAS_WOL;
411 /* quad ports only support WoL on port A */
412 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 413 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 414 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
415 /* Does not support WoL on any port */
416 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 418 break;
bc7f75fa 419 case e1000_82573:
6f461f6c
BA
420 case e1000_82574:
421 case e1000_82583:
422 /* Disable ASPM L0s due to hardware errata */
423 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
424
bc7f75fa 425 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
426 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
427 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
428 }
429 break;
430 default:
431 break;
432 }
433
434 return 0;
435}
436
437/**
438 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
439 * @hw: pointer to the HW structure
440 *
441 * Reads the PHY registers and stores the PHY ID and possibly the PHY
442 * revision in the hardware structure.
443 **/
444static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
445{
446 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
447 s32 ret_val;
448 u16 phy_id = 0;
bc7f75fa
AK
449
450 switch (hw->mac.type) {
451 case e1000_82571:
452 case e1000_82572:
ad68076e
BA
453 /*
454 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
455 * In this case, we cannot access the PHY until the
456 * configuration is done. So we explicitly set the
ad68076e
BA
457 * PHY ID.
458 */
bc7f75fa
AK
459 phy->id = IGP01E1000_I_PHY_ID;
460 break;
461 case e1000_82573:
462 return e1000e_get_phy_id(hw);
463 break;
4662e82b 464 case e1000_82574:
8c81c9c3 465 case e1000_82583:
4662e82b
BA
466 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
467 if (ret_val)
468 return ret_val;
469
470 phy->id = (u32)(phy_id << 16);
471 udelay(20);
472 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
473 if (ret_val)
474 return ret_val;
475
476 phy->id |= (u32)(phy_id);
477 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
478 break;
bc7f75fa
AK
479 default:
480 return -E1000_ERR_PHY;
481 break;
482 }
483
484 return 0;
485}
486
487/**
488 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
489 * @hw: pointer to the HW structure
490 *
491 * Acquire the HW semaphore to access the PHY or NVM
492 **/
493static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
494{
495 u32 swsm;
23a2d1b2
DG
496 s32 sw_timeout = hw->nvm.word_size + 1;
497 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
498 s32 i = 0;
499
23a2d1b2
DG
500 /*
501 * If we have timedout 3 times on trying to acquire
502 * the inter-port SMBI semaphore, there is old code
503 * operating on the other port, and it is not
504 * releasing SMBI. Modify the number of times that
505 * we try for the semaphore to interwork with this
506 * older code.
507 */
508 if (hw->dev_spec.e82571.smb_counter > 2)
509 sw_timeout = 1;
510
511 /* Get the SW semaphore */
512 while (i < sw_timeout) {
513 swsm = er32(SWSM);
514 if (!(swsm & E1000_SWSM_SMBI))
515 break;
516
517 udelay(50);
518 i++;
519 }
520
521 if (i == sw_timeout) {
3bb99fe2 522 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
523 hw->dev_spec.e82571.smb_counter++;
524 }
bc7f75fa 525 /* Get the FW semaphore. */
23a2d1b2 526 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
527 swsm = er32(SWSM);
528 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
529
530 /* Semaphore acquired if bit latched */
531 if (er32(SWSM) & E1000_SWSM_SWESMBI)
532 break;
533
534 udelay(50);
535 }
536
23a2d1b2 537 if (i == fw_timeout) {
bc7f75fa 538 /* Release semaphores */
23a2d1b2 539 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 540 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
541 return -E1000_ERR_NVM;
542 }
543
544 return 0;
545}
546
547/**
548 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
549 * @hw: pointer to the HW structure
550 *
551 * Release hardware semaphore used to access the PHY or NVM
552 **/
553static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
554{
555 u32 swsm;
556
557 swsm = er32(SWSM);
23a2d1b2 558 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
559 ew32(SWSM, swsm);
560}
1b98c2bb
BA
561/**
562 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
563 * @hw: pointer to the HW structure
564 *
565 * Acquire the HW semaphore during reset.
566 *
567 **/
568static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
569{
570 u32 extcnf_ctrl;
571 s32 ret_val = 0;
572 s32 i = 0;
573
574 extcnf_ctrl = er32(EXTCNF_CTRL);
575 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
576 do {
577 ew32(EXTCNF_CTRL, extcnf_ctrl);
578 extcnf_ctrl = er32(EXTCNF_CTRL);
579
580 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
581 break;
582
583 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
584
585 msleep(2);
586 i++;
587 } while (i < MDIO_OWNERSHIP_TIMEOUT);
588
589 if (i == MDIO_OWNERSHIP_TIMEOUT) {
590 /* Release semaphores */
591 e1000_put_hw_semaphore_82573(hw);
592 e_dbg("Driver can't access the PHY\n");
593 ret_val = -E1000_ERR_PHY;
594 goto out;
595 }
596
597out:
598 return ret_val;
599}
600
601/**
602 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
603 * @hw: pointer to the HW structure
604 *
605 * Release hardware semaphore used during reset.
606 *
607 **/
608static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
609{
610 u32 extcnf_ctrl;
611
612 extcnf_ctrl = er32(EXTCNF_CTRL);
613 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
614 ew32(EXTCNF_CTRL, extcnf_ctrl);
615}
616
617static DEFINE_MUTEX(swflag_mutex);
618
619/**
620 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
621 * @hw: pointer to the HW structure
622 *
623 * Acquire the HW semaphore to access the PHY or NVM.
624 *
625 **/
626static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
627{
628 s32 ret_val;
629
630 mutex_lock(&swflag_mutex);
631 ret_val = e1000_get_hw_semaphore_82573(hw);
632 if (ret_val)
633 mutex_unlock(&swflag_mutex);
634 return ret_val;
635}
636
637/**
638 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
639 * @hw: pointer to the HW structure
640 *
641 * Release hardware semaphore used to access the PHY or NVM
642 *
643 **/
644static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
645{
646 e1000_put_hw_semaphore_82573(hw);
647 mutex_unlock(&swflag_mutex);
648}
bc7f75fa
AK
649
650/**
651 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
652 * @hw: pointer to the HW structure
653 *
654 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
655 * Then for non-82573 hardware, set the EEPROM access request bit and wait
656 * for EEPROM access grant bit. If the access grant bit is not set, release
657 * hardware semaphore.
658 **/
659static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
660{
661 s32 ret_val;
662
663 ret_val = e1000_get_hw_semaphore_82571(hw);
664 if (ret_val)
665 return ret_val;
666
8c81c9c3
AD
667 switch (hw->mac.type) {
668 case e1000_82573:
8c81c9c3
AD
669 break;
670 default:
bc7f75fa 671 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
672 break;
673 }
bc7f75fa
AK
674
675 if (ret_val)
676 e1000_put_hw_semaphore_82571(hw);
677
678 return ret_val;
679}
680
681/**
682 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
683 * @hw: pointer to the HW structure
684 *
685 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
686 **/
687static void e1000_release_nvm_82571(struct e1000_hw *hw)
688{
689 e1000e_release_nvm(hw);
690 e1000_put_hw_semaphore_82571(hw);
691}
692
693/**
694 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
695 * @hw: pointer to the HW structure
696 * @offset: offset within the EEPROM to be written to
697 * @words: number of words to write
698 * @data: 16 bit word(s) to be written to the EEPROM
699 *
700 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
701 *
702 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 703 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
704 **/
705static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
706 u16 *data)
707{
708 s32 ret_val;
709
710 switch (hw->mac.type) {
711 case e1000_82573:
4662e82b 712 case e1000_82574:
8c81c9c3 713 case e1000_82583:
bc7f75fa
AK
714 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
715 break;
716 case e1000_82571:
717 case e1000_82572:
718 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
719 break;
720 default:
721 ret_val = -E1000_ERR_NVM;
722 break;
723 }
724
725 return ret_val;
726}
727
728/**
729 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
730 * @hw: pointer to the HW structure
731 *
732 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
733 * up to the checksum. Then calculates the EEPROM checksum and writes the
734 * value to the EEPROM.
735 **/
736static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
737{
738 u32 eecd;
739 s32 ret_val;
740 u16 i;
741
742 ret_val = e1000e_update_nvm_checksum_generic(hw);
743 if (ret_val)
744 return ret_val;
745
ad68076e
BA
746 /*
747 * If our nvm is an EEPROM, then we're done
748 * otherwise, commit the checksum to the flash NVM.
749 */
bc7f75fa
AK
750 if (hw->nvm.type != e1000_nvm_flash_hw)
751 return ret_val;
752
753 /* Check for pending operations. */
754 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
755 msleep(1);
756 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
757 break;
758 }
759
760 if (i == E1000_FLASH_UPDATES)
761 return -E1000_ERR_NVM;
762
763 /* Reset the firmware if using STM opcode. */
764 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
765 /*
766 * The enabling of and the actual reset must be done
bc7f75fa
AK
767 * in two write cycles.
768 */
769 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
770 e1e_flush();
771 ew32(HICR, E1000_HICR_FW_RESET);
772 }
773
774 /* Commit the write to flash */
775 eecd = er32(EECD) | E1000_EECD_FLUPD;
776 ew32(EECD, eecd);
777
778 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
779 msleep(1);
780 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
781 break;
782 }
783
784 if (i == E1000_FLASH_UPDATES)
785 return -E1000_ERR_NVM;
786
787 return 0;
788}
789
790/**
791 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
792 * @hw: pointer to the HW structure
793 *
794 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
795 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
796 **/
797static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
798{
799 if (hw->nvm.type == e1000_nvm_flash_hw)
800 e1000_fix_nvm_checksum_82571(hw);
801
802 return e1000e_validate_nvm_checksum_generic(hw);
803}
804
805/**
806 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
807 * @hw: pointer to the HW structure
808 * @offset: offset within the EEPROM to be written to
809 * @words: number of words to write
810 * @data: 16 bit word(s) to be written to the EEPROM
811 *
812 * After checking for invalid values, poll the EEPROM to ensure the previous
813 * command has completed before trying to write the next word. After write
814 * poll for completion.
815 *
816 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 817 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
818 **/
819static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
820 u16 words, u16 *data)
821{
822 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 823 u32 i, eewr = 0;
bc7f75fa
AK
824 s32 ret_val = 0;
825
ad68076e
BA
826 /*
827 * A check for invalid values: offset too large, too many words,
828 * and not enough words.
829 */
bc7f75fa
AK
830 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
831 (words == 0)) {
3bb99fe2 832 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
833 return -E1000_ERR_NVM;
834 }
835
836 for (i = 0; i < words; i++) {
837 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
838 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
839 E1000_NVM_RW_REG_START;
840
841 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
842 if (ret_val)
843 break;
844
845 ew32(EEWR, eewr);
846
847 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
848 if (ret_val)
849 break;
850 }
851
852 return ret_val;
853}
854
855/**
856 * e1000_get_cfg_done_82571 - Poll for configuration done
857 * @hw: pointer to the HW structure
858 *
859 * Reads the management control register for the config done bit to be set.
860 **/
861static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
862{
863 s32 timeout = PHY_CFG_TIMEOUT;
864
865 while (timeout) {
866 if (er32(EEMNGCTL) &
867 E1000_NVM_CFG_DONE_PORT_0)
868 break;
869 msleep(1);
870 timeout--;
871 }
872 if (!timeout) {
3bb99fe2 873 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
874 return -E1000_ERR_RESET;
875 }
876
877 return 0;
878}
879
880/**
881 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
882 * @hw: pointer to the HW structure
564ea9bb 883 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
884 *
885 * Sets the LPLU D0 state according to the active flag. When activating LPLU
886 * this function also disables smart speed and vice versa. LPLU will not be
887 * activated unless the device autonegotiation advertisement meets standards
888 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
889 * pointer entry point only called by PHY setup routines.
890 **/
891static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
892{
893 struct e1000_phy_info *phy = &hw->phy;
894 s32 ret_val;
895 u16 data;
896
897 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
898 if (ret_val)
899 return ret_val;
900
901 if (active) {
902 data |= IGP02E1000_PM_D0_LPLU;
903 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
904 if (ret_val)
905 return ret_val;
906
907 /* When LPLU is enabled, we should disable SmartSpeed */
908 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
909 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
910 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
911 if (ret_val)
912 return ret_val;
913 } else {
914 data &= ~IGP02E1000_PM_D0_LPLU;
915 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
916 /*
917 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
918 * during Dx states where the power conservation is most
919 * important. During driver activity we should enable
ad68076e
BA
920 * SmartSpeed, so performance is maintained.
921 */
bc7f75fa
AK
922 if (phy->smart_speed == e1000_smart_speed_on) {
923 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 924 &data);
bc7f75fa
AK
925 if (ret_val)
926 return ret_val;
927
928 data |= IGP01E1000_PSCFR_SMART_SPEED;
929 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 930 data);
bc7f75fa
AK
931 if (ret_val)
932 return ret_val;
933 } else if (phy->smart_speed == e1000_smart_speed_off) {
934 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 935 &data);
bc7f75fa
AK
936 if (ret_val)
937 return ret_val;
938
939 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
940 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 941 data);
bc7f75fa
AK
942 if (ret_val)
943 return ret_val;
944 }
945 }
946
947 return 0;
948}
949
950/**
951 * e1000_reset_hw_82571 - Reset hardware
952 * @hw: pointer to the HW structure
953 *
fe401674 954 * This resets the hardware into a known state.
bc7f75fa
AK
955 **/
956static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
957{
1b98c2bb 958 u32 ctrl, ctrl_ext, icr;
bc7f75fa 959 s32 ret_val;
bc7f75fa 960
ad68076e
BA
961 /*
962 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
963 * on the last TLP read/write transaction when MAC is reset.
964 */
965 ret_val = e1000e_disable_pcie_master(hw);
966 if (ret_val)
3bb99fe2 967 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 968
3bb99fe2 969 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
970 ew32(IMC, 0xffffffff);
971
972 ew32(RCTL, 0);
973 ew32(TCTL, E1000_TCTL_PSP);
974 e1e_flush();
975
976 msleep(10);
977
ad68076e
BA
978 /*
979 * Must acquire the MDIO ownership before MAC reset.
980 * Ownership defaults to firmware after a reset.
981 */
8c81c9c3
AD
982 switch (hw->mac.type) {
983 case e1000_82573:
1b98c2bb
BA
984 ret_val = e1000_get_hw_semaphore_82573(hw);
985 break;
8c81c9c3
AD
986 case e1000_82574:
987 case e1000_82583:
1b98c2bb 988 ret_val = e1000_get_hw_semaphore_82574(hw);
8c81c9c3
AD
989 break;
990 default:
991 break;
bc7f75fa 992 }
1b98c2bb
BA
993 if (ret_val)
994 e_dbg("Cannot acquire MDIO ownership\n");
bc7f75fa
AK
995
996 ctrl = er32(CTRL);
997
3bb99fe2 998 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
999 ew32(CTRL, ctrl | E1000_CTRL_RST);
1000
1b98c2bb
BA
1001 /* Must release MDIO ownership and mutex after MAC reset. */
1002 switch (hw->mac.type) {
1003 case e1000_82574:
1004 case e1000_82583:
1005 e1000_put_hw_semaphore_82574(hw);
1006 break;
1007 default:
1008 break;
1009 }
1010
bc7f75fa
AK
1011 if (hw->nvm.type == e1000_nvm_flash_hw) {
1012 udelay(10);
1013 ctrl_ext = er32(CTRL_EXT);
1014 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1015 ew32(CTRL_EXT, ctrl_ext);
1016 e1e_flush();
1017 }
1018
1019 ret_val = e1000e_get_auto_rd_done(hw);
1020 if (ret_val)
1021 /* We don't want to continue accessing MAC registers. */
1022 return ret_val;
1023
ad68076e
BA
1024 /*
1025 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
1026 * Need to wait for Phy configuration completion before accessing
1027 * NVM and Phy.
1028 */
8c81c9c3
AD
1029
1030 switch (hw->mac.type) {
1031 case e1000_82573:
1032 case e1000_82574:
1033 case e1000_82583:
bc7f75fa 1034 msleep(25);
8c81c9c3
AD
1035 break;
1036 default:
1037 break;
1038 }
bc7f75fa
AK
1039
1040 /* Clear any pending interrupt events. */
1041 ew32(IMC, 0xffffffff);
1042 icr = er32(ICR);
1043
1aef70ef
BA
1044 if (hw->mac.type == e1000_82571) {
1045 /* Install any alternate MAC address into RAR0 */
1046 ret_val = e1000_check_alt_mac_addr_generic(hw);
1047 if (ret_val)
1048 return ret_val;
608f8a0d 1049
1aef70ef
BA
1050 e1000e_set_laa_state_82571(hw, true);
1051 }
93ca1610 1052
c9523379 1053 /* Reinitialize the 82571 serdes link state machine */
1054 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1055 hw->mac.serdes_link_state = e1000_serdes_link_down;
1056
bc7f75fa
AK
1057 return 0;
1058}
1059
1060/**
1061 * e1000_init_hw_82571 - Initialize hardware
1062 * @hw: pointer to the HW structure
1063 *
1064 * This inits the hardware readying it for operation.
1065 **/
1066static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1067{
1068 struct e1000_mac_info *mac = &hw->mac;
1069 u32 reg_data;
1070 s32 ret_val;
a708dd88 1071 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
1072
1073 e1000_initialize_hw_bits_82571(hw);
1074
1075 /* Initialize identification LED */
1076 ret_val = e1000e_id_led_init(hw);
de39b752 1077 if (ret_val)
3bb99fe2 1078 e_dbg("Error initializing identification LED\n");
de39b752 1079 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
1080
1081 /* Disabling VLAN filtering */
3bb99fe2 1082 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 1083 mac->ops.clear_vfta(hw);
bc7f75fa
AK
1084
1085 /* Setup the receive address. */
ad68076e
BA
1086 /*
1087 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
1088 * 82571, we must reserve a RAR for it to work around an issue where
1089 * resetting one port will reload the MAC on the other port.
1090 */
1091 if (e1000e_get_laa_state_82571(hw))
1092 rar_count--;
1093 e1000e_init_rx_addrs(hw, rar_count);
1094
1095 /* Zero out the Multicast HASH table */
3bb99fe2 1096 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
1097 for (i = 0; i < mac->mta_reg_count; i++)
1098 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1099
1100 /* Setup link and flow control */
1101 ret_val = e1000_setup_link_82571(hw);
1102
1103 /* Set the transmit descriptor write-back policy */
e9ec2c0f 1104 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
1105 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1106 E1000_TXDCTL_FULL_TX_DESC_WB |
1107 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1108 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
1109
1110 /* ...for both queues. */
8c81c9c3
AD
1111 switch (mac->type) {
1112 case e1000_82573:
a65a4a0d
BA
1113 e1000e_enable_tx_pkt_filtering(hw);
1114 /* fall through */
8c81c9c3
AD
1115 case e1000_82574:
1116 case e1000_82583:
8c81c9c3
AD
1117 reg_data = er32(GCR);
1118 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1119 ew32(GCR, reg_data);
1120 break;
1121 default:
e9ec2c0f 1122 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1123 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1124 E1000_TXDCTL_FULL_TX_DESC_WB |
1125 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1126 ew32(TXDCTL(1), reg_data);
8c81c9c3 1127 break;
bc7f75fa
AK
1128 }
1129
ad68076e
BA
1130 /*
1131 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1132 * important that we do this after we have tried to establish link
1133 * because the symbol error count will increment wildly if there
1134 * is no link.
1135 */
1136 e1000_clear_hw_cntrs_82571(hw);
1137
1138 return ret_val;
1139}
1140
1141/**
1142 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1143 * @hw: pointer to the HW structure
1144 *
1145 * Initializes required hardware-dependent bits needed for normal operation.
1146 **/
1147static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1148{
1149 u32 reg;
1150
1151 /* Transmit Descriptor Control 0 */
e9ec2c0f 1152 reg = er32(TXDCTL(0));
bc7f75fa 1153 reg |= (1 << 22);
e9ec2c0f 1154 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1155
1156 /* Transmit Descriptor Control 1 */
e9ec2c0f 1157 reg = er32(TXDCTL(1));
bc7f75fa 1158 reg |= (1 << 22);
e9ec2c0f 1159 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1160
1161 /* Transmit Arbitration Control 0 */
e9ec2c0f 1162 reg = er32(TARC(0));
bc7f75fa
AK
1163 reg &= ~(0xF << 27); /* 30:27 */
1164 switch (hw->mac.type) {
1165 case e1000_82571:
1166 case e1000_82572:
1167 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1168 break;
1169 default:
1170 break;
1171 }
e9ec2c0f 1172 ew32(TARC(0), reg);
bc7f75fa
AK
1173
1174 /* Transmit Arbitration Control 1 */
e9ec2c0f 1175 reg = er32(TARC(1));
bc7f75fa
AK
1176 switch (hw->mac.type) {
1177 case e1000_82571:
1178 case e1000_82572:
1179 reg &= ~((1 << 29) | (1 << 30));
1180 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1181 if (er32(TCTL) & E1000_TCTL_MULR)
1182 reg &= ~(1 << 28);
1183 else
1184 reg |= (1 << 28);
e9ec2c0f 1185 ew32(TARC(1), reg);
bc7f75fa
AK
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 /* Device Control */
8c81c9c3
AD
1192 switch (hw->mac.type) {
1193 case e1000_82573:
1194 case e1000_82574:
1195 case e1000_82583:
bc7f75fa
AK
1196 reg = er32(CTRL);
1197 reg &= ~(1 << 29);
1198 ew32(CTRL, reg);
8c81c9c3
AD
1199 break;
1200 default:
1201 break;
bc7f75fa
AK
1202 }
1203
1204 /* Extended Device Control */
8c81c9c3
AD
1205 switch (hw->mac.type) {
1206 case e1000_82573:
1207 case e1000_82574:
1208 case e1000_82583:
bc7f75fa
AK
1209 reg = er32(CTRL_EXT);
1210 reg &= ~(1 << 23);
1211 reg |= (1 << 22);
1212 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1213 break;
1214 default:
1215 break;
bc7f75fa 1216 }
4662e82b 1217
6ea7ae1d
AD
1218 if (hw->mac.type == e1000_82571) {
1219 reg = er32(PBA_ECC);
1220 reg |= E1000_PBA_ECC_CORR_EN;
1221 ew32(PBA_ECC, reg);
1222 }
5df3f0ea 1223 /*
1224 * Workaround for hardware errata.
1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 */
1227
1228 if ((hw->mac.type == e1000_82571) ||
1229 (hw->mac.type == e1000_82572)) {
1230 reg = er32(CTRL_EXT);
1231 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1232 ew32(CTRL_EXT, reg);
1233 }
1234
6ea7ae1d 1235
78272bba 1236 /* PCI-Ex Control Registers */
8c81c9c3
AD
1237 switch (hw->mac.type) {
1238 case e1000_82574:
1239 case e1000_82583:
4662e82b
BA
1240 reg = er32(GCR);
1241 reg |= (1 << 22);
1242 ew32(GCR, reg);
78272bba 1243
84efb7b9
BA
1244 /*
1245 * Workaround for hardware errata.
1246 * apply workaround for hardware errata documented in errata
1247 * docs Fixes issue where some error prone or unreliable PCIe
1248 * completions are occurring, particularly with ASPM enabled.
1249 * Without fix, issue can cause tx timeouts.
1250 */
78272bba
JB
1251 reg = er32(GCR2);
1252 reg |= 1;
1253 ew32(GCR2, reg);
8c81c9c3
AD
1254 break;
1255 default:
1256 break;
4662e82b 1257 }
bc7f75fa
AK
1258}
1259
1260/**
caaddaf8 1261 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1262 * @hw: pointer to the HW structure
1263 *
1264 * Clears the register array which contains the VLAN filter table by
1265 * setting all the values to 0.
1266 **/
caaddaf8 1267static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1268{
1269 u32 offset;
1270 u32 vfta_value = 0;
1271 u32 vfta_offset = 0;
1272 u32 vfta_bit_in_reg = 0;
1273
8c81c9c3
AD
1274 switch (hw->mac.type) {
1275 case e1000_82573:
1276 case e1000_82574:
1277 case e1000_82583:
bc7f75fa 1278 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1279 /*
1280 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1281 * a single VLAN ID. The following operations
1282 * determine which 32b entry (i.e. offset) into the
1283 * array we want to set the VLAN ID (i.e. bit) of
1284 * the manageability unit.
1285 */
1286 vfta_offset = (hw->mng_cookie.vlan_id >>
1287 E1000_VFTA_ENTRY_SHIFT) &
1288 E1000_VFTA_ENTRY_MASK;
1289 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1290 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1291 }
8c81c9c3
AD
1292 break;
1293 default:
1294 break;
bc7f75fa
AK
1295 }
1296 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1297 /*
1298 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1299 * manageability VLAN ID, then clear all bits except that of
1300 * the manageability unit.
1301 */
1302 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1303 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1304 e1e_flush();
1305 }
1306}
1307
4662e82b
BA
1308/**
1309 * e1000_check_mng_mode_82574 - Check manageability is enabled
1310 * @hw: pointer to the HW structure
1311 *
1312 * Reads the NVM Initialization Control Word 2 and returns true
1313 * (>0) if any manageability is enabled, else false (0).
1314 **/
1315static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1316{
1317 u16 data;
1318
1319 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1320 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1321}
1322
1323/**
1324 * e1000_led_on_82574 - Turn LED on
1325 * @hw: pointer to the HW structure
1326 *
1327 * Turn LED on.
1328 **/
1329static s32 e1000_led_on_82574(struct e1000_hw *hw)
1330{
1331 u32 ctrl;
1332 u32 i;
1333
1334 ctrl = hw->mac.ledctl_mode2;
1335 if (!(E1000_STATUS_LU & er32(STATUS))) {
1336 /*
1337 * If no link, then turn LED on by setting the invert bit
1338 * for each LED that's "on" (0x0E) in ledctl_mode2.
1339 */
1340 for (i = 0; i < 4; i++)
1341 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1342 E1000_LEDCTL_MODE_LED_ON)
1343 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1344 }
1345 ew32(LEDCTL, ctrl);
1346
1347 return 0;
1348}
1349
ff10e13c
CW
1350/**
1351 * e1000_check_phy_82574 - check 82574 phy hung state
1352 * @hw: pointer to the HW structure
1353 *
1354 * Returns whether phy is hung or not
1355 **/
1356bool e1000_check_phy_82574(struct e1000_hw *hw)
1357{
1358 u16 status_1kbt = 0;
1359 u16 receive_errors = 0;
1360 bool phy_hung = false;
1361 s32 ret_val = 0;
1362
1363 /*
1364 * Read PHY Receive Error counter first, if its is max - all F's then
1365 * read the Base1000T status register If both are max then PHY is hung.
1366 */
1367 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1368
1369 if (ret_val)
1370 goto out;
1371 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373 if (ret_val)
1374 goto out;
1375 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376 E1000_IDLE_ERROR_COUNT_MASK)
1377 phy_hung = true;
1378 }
1379out:
1380 return phy_hung;
1381}
1382
bc7f75fa
AK
1383/**
1384 * e1000_setup_link_82571 - Setup flow control and link settings
1385 * @hw: pointer to the HW structure
1386 *
1387 * Determines which flow control settings to use, then configures flow
1388 * control. Calls the appropriate media-specific link configuration
1389 * function. Assuming the adapter has a valid link partner, a valid link
1390 * should be established. Assumes the hardware has previously been reset
1391 * and the transmitter and receiver are not enabled.
1392 **/
1393static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394{
ad68076e
BA
1395 /*
1396 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1397 * the default flow control setting, so we explicitly
1398 * set it to full.
1399 */
8c81c9c3
AD
1400 switch (hw->mac.type) {
1401 case e1000_82573:
1402 case e1000_82574:
1403 case e1000_82583:
1404 if (hw->fc.requested_mode == e1000_fc_default)
1405 hw->fc.requested_mode = e1000_fc_full;
1406 break;
1407 default:
1408 break;
1409 }
bc7f75fa
AK
1410
1411 return e1000e_setup_link(hw);
1412}
1413
1414/**
1415 * e1000_setup_copper_link_82571 - Configure copper link settings
1416 * @hw: pointer to the HW structure
1417 *
1418 * Configures the link for auto-neg or forced speed and duplex. Then we check
1419 * for link, once link is established calls to configure collision distance
1420 * and flow control are called.
1421 **/
1422static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1423{
1424 u32 ctrl;
bc7f75fa
AK
1425 s32 ret_val;
1426
1427 ctrl = er32(CTRL);
1428 ctrl |= E1000_CTRL_SLU;
1429 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1430 ew32(CTRL, ctrl);
1431
1432 switch (hw->phy.type) {
1433 case e1000_phy_m88:
4662e82b 1434 case e1000_phy_bm:
bc7f75fa
AK
1435 ret_val = e1000e_copper_link_setup_m88(hw);
1436 break;
1437 case e1000_phy_igp_2:
1438 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1439 break;
1440 default:
1441 return -E1000_ERR_PHY;
1442 break;
1443 }
1444
1445 if (ret_val)
1446 return ret_val;
1447
1448 ret_val = e1000e_setup_copper_link(hw);
1449
1450 return ret_val;
1451}
1452
1453/**
1454 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1455 * @hw: pointer to the HW structure
1456 *
1457 * Configures collision distance and flow control for fiber and serdes links.
1458 * Upon successful setup, poll for link.
1459 **/
1460static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1461{
1462 switch (hw->mac.type) {
1463 case e1000_82571:
1464 case e1000_82572:
ad68076e
BA
1465 /*
1466 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1467 * of reset to take the adapter out of that mode. So we
1468 * have to explicitly take the adapter out of loopback
489815ce 1469 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1470 * if another tool failed to take it out of loopback mode.
1471 */
ad68076e 1472 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1473 break;
1474 default:
1475 break;
1476 }
1477
1478 return e1000e_setup_fiber_serdes_link(hw);
1479}
1480
c9523379 1481/**
1482 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1483 * @hw: pointer to the HW structure
1484 *
1a40d5c1
BA
1485 * Reports the link state as up or down.
1486 *
1487 * If autonegotiation is supported by the link partner, the link state is
1488 * determined by the result of autonegotiation. This is the most likely case.
1489 * If autonegotiation is not supported by the link partner, and the link
1490 * has a valid signal, force the link up.
1491 *
1492 * The link state is represented internally here by 4 states:
1493 *
1494 * 1) down
1495 * 2) autoneg_progress
3ad2f3fb 1496 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1497 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1498 *
c9523379 1499 **/
f6370117 1500static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1501{
1502 struct e1000_mac_info *mac = &hw->mac;
1503 u32 rxcw;
1504 u32 ctrl;
1505 u32 status;
1506 s32 ret_val = 0;
1507
1508 ctrl = er32(CTRL);
1509 status = er32(STATUS);
1510 rxcw = er32(RXCW);
1511
1512 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513
1514 /* Receiver is synchronized with no invalid bits. */
1515 switch (mac->serdes_link_state) {
1516 case e1000_serdes_link_autoneg_complete:
1517 if (!(status & E1000_STATUS_LU)) {
1518 /*
1519 * We have lost link, retry autoneg before
1520 * reporting link failure
1521 */
1522 mac->serdes_link_state =
1523 e1000_serdes_link_autoneg_progress;
1a40d5c1 1524 mac->serdes_has_link = false;
3bb99fe2 1525 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1526 }
1527 break;
1528
1529 case e1000_serdes_link_forced_up:
1530 /*
1531 * If we are receiving /C/ ordered sets, re-enable
1532 * auto-negotiation in the TXCW register and disable
1533 * forced link in the Device Control register in an
1534 * attempt to auto-negotiate with our link partner.
d478eb44
BA
1535 * If the partner code word is null, stop forcing
1536 * and restart auto negotiation.
c9523379 1537 */
d478eb44 1538 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
c9523379 1539 /* Enable autoneg, and unforce link up */
1540 ew32(TXCW, mac->txcw);
1a40d5c1 1541 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1542 mac->serdes_link_state =
1543 e1000_serdes_link_autoneg_progress;
1a40d5c1 1544 mac->serdes_has_link = false;
3bb99fe2 1545 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1546 }
1547 break;
1548
1549 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1550 if (rxcw & E1000_RXCW_C) {
1551 /*
1552 * We received /C/ ordered sets, meaning the
1553 * link partner has autonegotiated, and we can
1554 * trust the Link Up (LU) status bit.
1555 */
1556 if (status & E1000_STATUS_LU) {
1557 mac->serdes_link_state =
1558 e1000_serdes_link_autoneg_complete;
1559 e_dbg("AN_PROG -> AN_UP\n");
1560 mac->serdes_has_link = true;
1561 } else {
1562 /* Autoneg completed, but failed. */
1563 mac->serdes_link_state =
1564 e1000_serdes_link_down;
1565 e_dbg("AN_PROG -> DOWN\n");
1566 }
c9523379 1567 } else {
1568 /*
1a40d5c1
BA
1569 * The link partner did not autoneg.
1570 * Force link up and full duplex, and change
1571 * state to forced.
c9523379 1572 */
1a40d5c1 1573 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1574 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1575 ew32(CTRL, ctrl);
1576
1577 /* Configure Flow Control after link up. */
1a40d5c1 1578 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1579 if (ret_val) {
3bb99fe2 1580 e_dbg("Error config flow control\n");
c9523379 1581 break;
1582 }
1583 mac->serdes_link_state =
1584 e1000_serdes_link_forced_up;
1a40d5c1 1585 mac->serdes_has_link = true;
3bb99fe2 1586 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1587 }
c9523379 1588 break;
1589
1590 case e1000_serdes_link_down:
1591 default:
1a40d5c1
BA
1592 /*
1593 * The link was down but the receiver has now gained
c9523379 1594 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1595 * up.
1596 */
c9523379 1597 ew32(TXCW, mac->txcw);
1a40d5c1 1598 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1599 mac->serdes_link_state =
1600 e1000_serdes_link_autoneg_progress;
3bb99fe2 1601 e_dbg("DOWN -> AN_PROG\n");
c9523379 1602 break;
1603 }
1604 } else {
1605 if (!(rxcw & E1000_RXCW_SYNCH)) {
1606 mac->serdes_has_link = false;
1607 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1608 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1609 } else {
1610 /*
1a40d5c1
BA
1611 * We have sync, and can tolerate one invalid (IV)
1612 * codeword before declaring link down, so reread
1613 * to look again.
c9523379 1614 */
1615 udelay(10);
1616 rxcw = er32(RXCW);
1617 if (rxcw & E1000_RXCW_IV) {
1618 mac->serdes_link_state = e1000_serdes_link_down;
1619 mac->serdes_has_link = false;
3bb99fe2 1620 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1621 }
1622 }
1623 }
1624
1625 return ret_val;
1626}
1627
bc7f75fa
AK
1628/**
1629 * e1000_valid_led_default_82571 - Verify a valid default LED config
1630 * @hw: pointer to the HW structure
1631 * @data: pointer to the NVM (EEPROM)
1632 *
1633 * Read the EEPROM for the current default LED configuration. If the
1634 * LED configuration is not valid, set to a valid LED configuration.
1635 **/
1636static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1637{
1638 s32 ret_val;
1639
1640 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1641 if (ret_val) {
3bb99fe2 1642 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1643 return ret_val;
1644 }
1645
8c81c9c3
AD
1646 switch (hw->mac.type) {
1647 case e1000_82573:
1648 case e1000_82574:
1649 case e1000_82583:
1650 if (*data == ID_LED_RESERVED_F746)
1651 *data = ID_LED_DEFAULT_82573;
1652 break;
1653 default:
1654 if (*data == ID_LED_RESERVED_0000 ||
1655 *data == ID_LED_RESERVED_FFFF)
1656 *data = ID_LED_DEFAULT;
1657 break;
1658 }
bc7f75fa
AK
1659
1660 return 0;
1661}
1662
1663/**
1664 * e1000e_get_laa_state_82571 - Get locally administered address state
1665 * @hw: pointer to the HW structure
1666 *
489815ce 1667 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1668 **/
1669bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1670{
1671 if (hw->mac.type != e1000_82571)
564ea9bb 1672 return false;
bc7f75fa
AK
1673
1674 return hw->dev_spec.e82571.laa_is_present;
1675}
1676
1677/**
1678 * e1000e_set_laa_state_82571 - Set locally administered address state
1679 * @hw: pointer to the HW structure
1680 * @state: enable/disable locally administered address
1681 *
5ff5b664 1682 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1683 **/
1684void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1685{
1686 if (hw->mac.type != e1000_82571)
1687 return;
1688
1689 hw->dev_spec.e82571.laa_is_present = state;
1690
1691 /* If workaround is activated... */
1692 if (state)
ad68076e
BA
1693 /*
1694 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1695 * between the time RAR[0] gets clobbered and the time it
1696 * gets fixed, the actual LAA is in one of the RARs and no
1697 * incoming packets directed to this port are dropped.
1698 * Eventually the LAA will be in RAR[0] and RAR[14].
1699 */
1700 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1701}
1702
1703/**
1704 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1705 * @hw: pointer to the HW structure
1706 *
1707 * Verifies that the EEPROM has completed the update. After updating the
1708 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1709 * the checksum fix is not implemented, we need to set the bit and update
1710 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1711 * we need to return bad checksum.
1712 **/
1713static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1714{
1715 struct e1000_nvm_info *nvm = &hw->nvm;
1716 s32 ret_val;
1717 u16 data;
1718
1719 if (nvm->type != e1000_nvm_flash_hw)
1720 return 0;
1721
ad68076e
BA
1722 /*
1723 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1724 * 10h-12h. Checksum may need to be fixed.
1725 */
1726 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1727 if (ret_val)
1728 return ret_val;
1729
1730 if (!(data & 0x10)) {
ad68076e
BA
1731 /*
1732 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1733 * when the checksum has already been fixed. If
1734 * the checksum is still wrong and this bit is a
1735 * 1, we need to return bad checksum. Otherwise,
1736 * we need to set this bit to a 1 and update the
1737 * checksum.
1738 */
1739 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1740 if (ret_val)
1741 return ret_val;
1742
1743 if (!(data & 0x8000)) {
1744 data |= 0x8000;
1745 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1746 if (ret_val)
1747 return ret_val;
1748 ret_val = e1000e_update_nvm_checksum(hw);
1749 }
1750 }
1751
1752 return 0;
1753}
1754
608f8a0d
BA
1755/**
1756 * e1000_read_mac_addr_82571 - Read device MAC address
1757 * @hw: pointer to the HW structure
1758 **/
1759static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1760{
1761 s32 ret_val = 0;
1762
1aef70ef
BA
1763 if (hw->mac.type == e1000_82571) {
1764 /*
1765 * If there's an alternate MAC address place it in RAR0
1766 * so that it will override the Si installed default perm
1767 * address.
1768 */
1769 ret_val = e1000_check_alt_mac_addr_generic(hw);
1770 if (ret_val)
1771 goto out;
1772 }
608f8a0d
BA
1773
1774 ret_val = e1000_read_mac_addr_generic(hw);
1775
1776out:
1777 return ret_val;
1778}
1779
17f208de
BA
1780/**
1781 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1782 * @hw: pointer to the HW structure
1783 *
1784 * In the case of a PHY power down to save power, or to turn off link during a
1785 * driver unload, or wake on lan is not enabled, remove the link.
1786 **/
1787static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1788{
1789 struct e1000_phy_info *phy = &hw->phy;
1790 struct e1000_mac_info *mac = &hw->mac;
1791
1792 if (!(phy->ops.check_reset_block))
1793 return;
1794
1795 /* If the management interface is not enabled, then power down */
1796 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1797 e1000_power_down_phy_copper(hw);
17f208de
BA
1798}
1799
bc7f75fa
AK
1800/**
1801 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1802 * @hw: pointer to the HW structure
1803 *
1804 * Clears the hardware counters by reading the counter registers.
1805 **/
1806static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1807{
bc7f75fa
AK
1808 e1000e_clear_hw_cntrs_base(hw);
1809
99673d9b
BA
1810 er32(PRC64);
1811 er32(PRC127);
1812 er32(PRC255);
1813 er32(PRC511);
1814 er32(PRC1023);
1815 er32(PRC1522);
1816 er32(PTC64);
1817 er32(PTC127);
1818 er32(PTC255);
1819 er32(PTC511);
1820 er32(PTC1023);
1821 er32(PTC1522);
1822
1823 er32(ALGNERRC);
1824 er32(RXERRC);
1825 er32(TNCRS);
1826 er32(CEXTERR);
1827 er32(TSCTC);
1828 er32(TSCTFC);
1829
1830 er32(MGTPRC);
1831 er32(MGTPDC);
1832 er32(MGTPTC);
1833
1834 er32(IAC);
1835 er32(ICRXOC);
1836
1837 er32(ICRXPTC);
1838 er32(ICRXATC);
1839 er32(ICTXPTC);
1840 er32(ICTXATC);
1841 er32(ICTXQEC);
1842 er32(ICTXQMTC);
1843 er32(ICRXDMTC);
bc7f75fa
AK
1844}
1845
1846static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1847 /* .check_mng_mode: mac type dependent */
bc7f75fa 1848 /* .check_for_link: media type dependent */
a4f58f54 1849 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1850 .cleanup_led = e1000e_cleanup_led_generic,
1851 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1852 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1853 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1854 /* .get_link_up_info: media type dependent */
4662e82b 1855 /* .led_on: mac type dependent */
bc7f75fa 1856 .led_off = e1000e_led_off_generic,
ab8932f3 1857 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1858 .write_vfta = e1000_write_vfta_generic,
1859 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1860 .reset_hw = e1000_reset_hw_82571,
1861 .init_hw = e1000_init_hw_82571,
1862 .setup_link = e1000_setup_link_82571,
1863 /* .setup_physical_interface: media type dependent */
a4f58f54 1864 .setup_led = e1000e_setup_led_generic,
608f8a0d 1865 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1866};
1867
1868static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1869 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1870 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1871 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1872 .commit = NULL,
bc7f75fa
AK
1873 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1874 .get_cfg_done = e1000_get_cfg_done_82571,
1875 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1876 .get_info = e1000e_get_phy_info_igp,
1877 .read_reg = e1000e_read_phy_reg_igp,
1878 .release = e1000_put_hw_semaphore_82571,
1879 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1880 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1881 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1882 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1883 .cfg_on_link_up = NULL,
bc7f75fa
AK
1884};
1885
1886static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1887 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1888 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1889 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1890 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1891 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1892 .get_cfg_done = e1000e_get_cfg_done,
1893 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1894 .get_info = e1000e_get_phy_info_m88,
1895 .read_reg = e1000e_read_phy_reg_m88,
1896 .release = e1000_put_hw_semaphore_82571,
1897 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1898 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1899 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1900 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1901 .cfg_on_link_up = NULL,
bc7f75fa
AK
1902};
1903
4662e82b 1904static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1905 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1906 .check_polarity = e1000_check_polarity_m88,
4662e82b 1907 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1908 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1909 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1910 .get_cfg_done = e1000e_get_cfg_done,
1911 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1912 .get_info = e1000e_get_phy_info_m88,
1913 .read_reg = e1000e_read_phy_reg_bm2,
1914 .release = e1000_put_hw_semaphore_82571,
1915 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1916 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1917 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1918 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1919 .cfg_on_link_up = NULL,
4662e82b
BA
1920};
1921
bc7f75fa 1922static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1923 .acquire = e1000_acquire_nvm_82571,
1924 .read = e1000e_read_nvm_eerd,
1925 .release = e1000_release_nvm_82571,
1926 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1927 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1928 .validate = e1000_validate_nvm_checksum_82571,
1929 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1930};
1931
1932struct e1000_info e1000_82571_info = {
1933 .mac = e1000_82571,
1934 .flags = FLAG_HAS_HW_VLAN_FILTER
1935 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1936 | FLAG_HAS_WOL
1937 | FLAG_APME_IN_CTRL3
1938 | FLAG_RX_CSUM_ENABLED
1939 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1940 | FLAG_HAS_SMART_POWER_DOWN
1941 | FLAG_RESET_OVERWRITES_LAA /* errata */
1942 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1943 | FLAG_APME_CHECK_PORT_B,
3a3b7586
JB
1944 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1945 | FLAG2_DMA_BURST,
bc7f75fa 1946 .pba = 38,
2adc55c9 1947 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1948 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1949 .mac_ops = &e82571_mac_ops,
1950 .phy_ops = &e82_phy_ops_igp,
1951 .nvm_ops = &e82571_nvm_ops,
1952};
1953
1954struct e1000_info e1000_82572_info = {
1955 .mac = e1000_82572,
1956 .flags = FLAG_HAS_HW_VLAN_FILTER
1957 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1958 | FLAG_HAS_WOL
1959 | FLAG_APME_IN_CTRL3
1960 | FLAG_RX_CSUM_ENABLED
1961 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 1962 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
3a3b7586
JB
1963 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1964 | FLAG2_DMA_BURST,
bc7f75fa 1965 .pba = 38,
2adc55c9 1966 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1967 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1968 .mac_ops = &e82571_mac_ops,
1969 .phy_ops = &e82_phy_ops_igp,
1970 .nvm_ops = &e82571_nvm_ops,
1971};
1972
1973struct e1000_info e1000_82573_info = {
1974 .mac = e1000_82573,
1975 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
1976 | FLAG_HAS_WOL
1977 | FLAG_APME_IN_CTRL3
1978 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1979 | FLAG_HAS_SMART_POWER_DOWN
1980 | FLAG_HAS_AMT
bc7f75fa 1981 | FLAG_HAS_SWSM_ON_LOAD,
19833b5d 1982 .flags2 = FLAG2_DISABLE_ASPM_L1,
bc7f75fa 1983 .pba = 20,
2adc55c9 1984 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1985 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1986 .mac_ops = &e82571_mac_ops,
1987 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1988 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1989};
1990
4662e82b
BA
1991struct e1000_info e1000_82574_info = {
1992 .mac = e1000_82574,
1993 .flags = FLAG_HAS_HW_VLAN_FILTER
1994 | FLAG_HAS_MSIX
1995 | FLAG_HAS_JUMBO_FRAMES
1996 | FLAG_HAS_WOL
1997 | FLAG_APME_IN_CTRL3
1998 | FLAG_RX_CSUM_ENABLED
1999 | FLAG_HAS_SMART_POWER_DOWN
2000 | FLAG_HAS_AMT
2001 | FLAG_HAS_CTRLEXT_ON_LOAD,
ff10e13c 2002 .flags2 = FLAG2_CHECK_PHY_HANG,
edf15c17 2003 .pba = 36,
a825e00c 2004 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
2005 .get_variants = e1000_get_variants_82571,
2006 .mac_ops = &e82571_mac_ops,
2007 .phy_ops = &e82_phy_ops_bm,
2008 .nvm_ops = &e82571_nvm_ops,
2009};
2010
8c81c9c3
AD
2011struct e1000_info e1000_82583_info = {
2012 .mac = e1000_82583,
2013 .flags = FLAG_HAS_HW_VLAN_FILTER
2014 | FLAG_HAS_WOL
2015 | FLAG_APME_IN_CTRL3
2016 | FLAG_RX_CSUM_ENABLED
2017 | FLAG_HAS_SMART_POWER_DOWN
2018 | FLAG_HAS_AMT
2019 | FLAG_HAS_CTRLEXT_ON_LOAD,
edf15c17 2020 .pba = 36,
a825e00c 2021 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
2022 .get_variants = e1000_get_variants_82571,
2023 .mac_ops = &e82571_mac_ops,
2024 .phy_ops = &e82_phy_ops_bm,
2025 .nvm_ops = &e82571_nvm_ops,
2026};
2027