]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/md/raid1.c
Convert files to UTF-8 and some cleanups
[net-next-2.6.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
191ea9b2 34#include "dm-bio-list.h"
1da177e4 35#include <linux/raid/raid1.h>
191ea9b2
N
36#include <linux/raid/bitmap.h>
37
38#define DEBUG 0
39#if DEBUG
40#define PRINTK(x...) printk(x)
41#else
42#define PRINTK(x...)
43#endif
1da177e4
LT
44
45/*
46 * Number of guaranteed r1bios in case of extreme VM load:
47 */
48#define NR_RAID1_BIOS 256
49
1da177e4
LT
50
51static void unplug_slaves(mddev_t *mddev);
52
17999be4
N
53static void allow_barrier(conf_t *conf);
54static void lower_barrier(conf_t *conf);
1da177e4 55
dd0fc66f 56static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
57{
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
9ffae0cf
N
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
1da177e4
LT
65 unplug_slaves(pi->mddev);
66
67 return r1_bio;
68}
69
70static void r1bio_pool_free(void *r1_bio, void *data)
71{
72 kfree(r1_bio);
73}
74
75#define RESYNC_BLOCK_SIZE (64*1024)
76//#define RESYNC_BLOCK_SIZE PAGE_SIZE
77#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79#define RESYNC_WINDOW (2048*1024)
80
dd0fc66f 81static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
82{
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
88
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
93 }
94
95 /*
96 * Allocate bios : 1 for reading, n-1 for writing
97 */
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
103 }
104 /*
105 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
1da177e4 109 */
d11c171e
N
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
120
121 bio->bi_io_vec[i].bv_page = page;
122 }
123 }
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
130 }
131
132 r1_bio->master_bio = NULL;
133
134 return r1_bio;
135
136out_free_pages:
d11c171e
N
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
1345b1d8 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 140 j = -1;
1da177e4
LT
141out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
146}
147
148static void r1buf_pool_free(void *__r1_bio, void *data)
149{
150 struct pool_info *pi = data;
d11c171e 151 int i,j;
1da177e4 152 r1bio_t *r1bio = __r1_bio;
1da177e4 153
d11c171e
N
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 160 }
1da177e4
LT
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
163
164 r1bio_pool_free(r1bio, data);
165}
166
167static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168{
169 int i;
170
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
cf30a473 173 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
174 bio_put(*bio);
175 *bio = NULL;
176 }
177}
178
858119e1 179static void free_r1bio(r1bio_t *r1_bio)
1da177e4 180{
1da177e4
LT
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183 /*
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
186 */
17999be4 187 allow_barrier(conf);
1da177e4
LT
188
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
191}
192
858119e1 193static void put_buf(r1bio_t *r1_bio)
1da177e4
LT
194{
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
3e198f78
N
196 int i;
197
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 }
1da177e4
LT
203
204 mempool_free(r1_bio, conf->r1buf_pool);
205
17999be4 206 lower_barrier(conf);
1da177e4
LT
207}
208
209static void reschedule_retry(r1bio_t *r1_bio)
210{
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
214
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 217 conf->nr_queued ++;
1da177e4
LT
218 spin_unlock_irqrestore(&conf->device_lock, flags);
219
17999be4 220 wake_up(&conf->wait_barrier);
1da177e4
LT
221 md_wakeup_thread(mddev->thread);
222}
223
224/*
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
228 */
229static void raid_end_bio_io(r1bio_t *r1_bio)
230{
231 struct bio *bio = r1_bio->master_bio;
232
4b6d287f
N
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
240
6712ecf8 241 bio_endio(bio,
4b6d287f
N
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 }
1da177e4
LT
244 free_r1bio(r1_bio);
245}
246
247/*
248 * Update disk head position estimator based on IRQ completion info.
249 */
250static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251{
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
256}
257
6712ecf8 258static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
259{
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
1da177e4
LT
265 mirror = r1_bio->read_disk;
266 /*
267 * this branch is our 'one mirror IO has finished' event handler:
268 */
ddaf22ab
N
269 update_head_pos(mirror, r1_bio);
270
dd00a99e
N
271 if (uptodate)
272 set_bit(R1BIO_Uptodate, &r1_bio->state);
273 else {
274 /* If all other devices have failed, we want to return
275 * the error upwards rather than fail the last device.
276 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 277 */
dd00a99e
N
278 unsigned long flags;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 if (r1_bio->mddev->degraded == conf->raid_disks ||
281 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 uptodate = 1;
284 spin_unlock_irqrestore(&conf->device_lock, flags);
285 }
1da177e4 286
dd00a99e 287 if (uptodate)
1da177e4 288 raid_end_bio_io(r1_bio);
dd00a99e 289 else {
1da177e4
LT
290 /*
291 * oops, read error:
292 */
293 char b[BDEVNAME_SIZE];
294 if (printk_ratelimit())
295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 reschedule_retry(r1_bio);
298 }
299
300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
301}
302
6712ecf8 303static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
304{
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
a9701a30 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
1da177e4 308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
04b857f7 309 struct bio *to_put = NULL;
1da177e4 310
1da177e4
LT
311
312 for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 if (r1_bio->bios[mirror] == bio)
314 break;
315
bea27718 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
a9701a30
N
317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 r1_bio->mddev->barriers_work = 0;
5e7dd2ab 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */
a9701a30 321 } else {
1da177e4 322 /*
a9701a30 323 * this branch is our 'one mirror IO has finished' event handler:
1da177e4 324 */
a9701a30 325 r1_bio->bios[mirror] = NULL;
04b857f7 326 to_put = bio;
a9701a30
N
327 if (!uptodate) {
328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 /* an I/O failed, we can't clear the bitmap */
330 set_bit(R1BIO_Degraded, &r1_bio->state);
331 } else
332 /*
333 * Set R1BIO_Uptodate in our master bio, so that
334 * we will return a good error code for to the higher
335 * levels even if IO on some other mirrored buffer fails.
336 *
337 * The 'master' represents the composite IO operation to
338 * user-side. So if something waits for IO, then it will
339 * wait for the 'master' bio.
340 */
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
342
343 update_head_pos(mirror, r1_bio);
344
345 if (behind) {
346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 atomic_dec(&r1_bio->behind_remaining);
348
349 /* In behind mode, we ACK the master bio once the I/O has safely
350 * reached all non-writemostly disks. Setting the Returned bit
351 * ensures that this gets done only once -- we don't ever want to
352 * return -EIO here, instead we'll wait */
353
354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 /* Maybe we can return now */
357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 struct bio *mbio = r1_bio->master_bio;
359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 (unsigned long long) mbio->bi_sector,
361 (unsigned long long) mbio->bi_sector +
362 (mbio->bi_size >> 9) - 1);
6712ecf8 363 bio_endio(mbio, 0);
a9701a30 364 }
4b6d287f
N
365 }
366 }
5e7dd2ab 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
4b6d287f 368 }
1da177e4
LT
369 /*
370 *
371 * Let's see if all mirrored write operations have finished
372 * already.
373 */
374 if (atomic_dec_and_test(&r1_bio->remaining)) {
c70810b3 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
a9701a30 376 reschedule_retry(r1_bio);
c70810b3
N
377 else {
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 /* free extra copy of the data pages */
381 int i = bio->bi_vcnt;
382 while (i--)
383 safe_put_page(bio->bi_io_vec[i].bv_page);
384 }
385 /* clear the bitmap if all writes complete successfully */
386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 r1_bio->sectors,
388 !test_bit(R1BIO_Degraded, &r1_bio->state),
389 behind);
390 md_write_end(r1_bio->mddev);
391 raid_end_bio_io(r1_bio);
4b6d287f 392 }
1da177e4 393 }
c70810b3 394
04b857f7
N
395 if (to_put)
396 bio_put(to_put);
1da177e4
LT
397}
398
399
400/*
401 * This routine returns the disk from which the requested read should
402 * be done. There is a per-array 'next expected sequential IO' sector
403 * number - if this matches on the next IO then we use the last disk.
404 * There is also a per-disk 'last know head position' sector that is
405 * maintained from IRQ contexts, both the normal and the resync IO
406 * completion handlers update this position correctly. If there is no
407 * perfect sequential match then we pick the disk whose head is closest.
408 *
409 * If there are 2 mirrors in the same 2 devices, performance degrades
410 * because position is mirror, not device based.
411 *
412 * The rdev for the device selected will have nr_pending incremented.
413 */
414static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415{
416 const unsigned long this_sector = r1_bio->sector;
417 int new_disk = conf->last_used, disk = new_disk;
8ddf9efe 418 int wonly_disk = -1;
1da177e4
LT
419 const int sectors = r1_bio->sectors;
420 sector_t new_distance, current_distance;
8ddf9efe 421 mdk_rdev_t *rdev;
1da177e4
LT
422
423 rcu_read_lock();
424 /*
8ddf9efe 425 * Check if we can balance. We can balance on the whole
1da177e4
LT
426 * device if no resync is going on, or below the resync window.
427 * We take the first readable disk when above the resync window.
428 */
429 retry:
430 if (conf->mddev->recovery_cp < MaxSector &&
431 (this_sector + sectors >= conf->next_resync)) {
432 /* Choose the first operation device, for consistancy */
433 new_disk = 0;
434
d6065f7b 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 436 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 437 !rdev || !test_bit(In_sync, &rdev->flags)
8ddf9efe 438 || test_bit(WriteMostly, &rdev->flags);
d6065f7b 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
8ddf9efe 440
cf30a473
N
441 if (rdev && test_bit(In_sync, &rdev->flags) &&
442 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
443 wonly_disk = new_disk;
444
445 if (new_disk == conf->raid_disks - 1) {
446 new_disk = wonly_disk;
1da177e4
LT
447 break;
448 }
449 }
450 goto rb_out;
451 }
452
453
454 /* make sure the disk is operational */
d6065f7b 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 456 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 457 !rdev || !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 458 test_bit(WriteMostly, &rdev->flags);
d6065f7b 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
8ddf9efe 460
cf30a473
N
461 if (rdev && test_bit(In_sync, &rdev->flags) &&
462 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
463 wonly_disk = new_disk;
464
1da177e4
LT
465 if (new_disk <= 0)
466 new_disk = conf->raid_disks;
467 new_disk--;
468 if (new_disk == disk) {
8ddf9efe
N
469 new_disk = wonly_disk;
470 break;
1da177e4
LT
471 }
472 }
8ddf9efe
N
473
474 if (new_disk < 0)
475 goto rb_out;
476
1da177e4
LT
477 disk = new_disk;
478 /* now disk == new_disk == starting point for search */
479
480 /*
481 * Don't change to another disk for sequential reads:
482 */
483 if (conf->next_seq_sect == this_sector)
484 goto rb_out;
485 if (this_sector == conf->mirrors[new_disk].head_position)
486 goto rb_out;
487
488 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489
490 /* Find the disk whose head is closest */
491
492 do {
493 if (disk <= 0)
494 disk = conf->raid_disks;
495 disk--;
496
d6065f7b 497 rdev = rcu_dereference(conf->mirrors[disk].rdev);
8ddf9efe 498
cf30a473 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
b2d444d7 500 !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 501 test_bit(WriteMostly, &rdev->flags))
1da177e4
LT
502 continue;
503
504 if (!atomic_read(&rdev->nr_pending)) {
505 new_disk = disk;
1da177e4
LT
506 break;
507 }
508 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 if (new_distance < current_distance) {
510 current_distance = new_distance;
511 new_disk = disk;
1da177e4
LT
512 }
513 } while (disk != conf->last_used);
514
8ddf9efe 515 rb_out:
1da177e4
LT
516
517
518 if (new_disk >= 0) {
d6065f7b 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
8ddf9efe
N
520 if (!rdev)
521 goto retry;
522 atomic_inc(&rdev->nr_pending);
b2d444d7 523 if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
524 /* cannot risk returning a device that failed
525 * before we inc'ed nr_pending
526 */
03c902e1 527 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
528 goto retry;
529 }
8ddf9efe
N
530 conf->next_seq_sect = this_sector + sectors;
531 conf->last_used = new_disk;
1da177e4
LT
532 }
533 rcu_read_unlock();
534
535 return new_disk;
536}
537
538static void unplug_slaves(mddev_t *mddev)
539{
540 conf_t *conf = mddev_to_conf(mddev);
541 int i;
542
543 rcu_read_lock();
544 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
548
549 atomic_inc(&rdev->nr_pending);
550 rcu_read_unlock();
551
552 if (r_queue->unplug_fn)
553 r_queue->unplug_fn(r_queue);
554
555 rdev_dec_pending(rdev, mddev);
556 rcu_read_lock();
557 }
558 }
559 rcu_read_unlock();
560}
561
165125e1 562static void raid1_unplug(struct request_queue *q)
1da177e4 563{
191ea9b2
N
564 mddev_t *mddev = q->queuedata;
565
566 unplug_slaves(mddev);
567 md_wakeup_thread(mddev->thread);
1da177e4
LT
568}
569
0d129228
N
570static int raid1_congested(void *data, int bits)
571{
572 mddev_t *mddev = data;
573 conf_t *conf = mddev_to_conf(mddev);
574 int i, ret = 0;
575
576 rcu_read_lock();
577 for (i = 0; i < mddev->raid_disks; i++) {
578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 580 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
581
582 /* Note the '|| 1' - when read_balance prefers
583 * non-congested targets, it can be removed
584 */
585 if ((bits & (1<<BDI_write_congested)) || 1)
586 ret |= bdi_congested(&q->backing_dev_info, bits);
587 else
588 ret &= bdi_congested(&q->backing_dev_info, bits);
589 }
590 }
591 rcu_read_unlock();
592 return ret;
593}
594
595
17999be4
N
596/* Barriers....
597 * Sometimes we need to suspend IO while we do something else,
598 * either some resync/recovery, or reconfigure the array.
599 * To do this we raise a 'barrier'.
600 * The 'barrier' is a counter that can be raised multiple times
601 * to count how many activities are happening which preclude
602 * normal IO.
603 * We can only raise the barrier if there is no pending IO.
604 * i.e. if nr_pending == 0.
605 * We choose only to raise the barrier if no-one is waiting for the
606 * barrier to go down. This means that as soon as an IO request
607 * is ready, no other operations which require a barrier will start
608 * until the IO request has had a chance.
609 *
610 * So: regular IO calls 'wait_barrier'. When that returns there
611 * is no backgroup IO happening, It must arrange to call
612 * allow_barrier when it has finished its IO.
613 * backgroup IO calls must call raise_barrier. Once that returns
614 * there is no normal IO happeing. It must arrange to call
615 * lower_barrier when the particular background IO completes.
1da177e4
LT
616 */
617#define RESYNC_DEPTH 32
618
17999be4 619static void raise_barrier(conf_t *conf)
1da177e4
LT
620{
621 spin_lock_irq(&conf->resync_lock);
17999be4
N
622
623 /* Wait until no block IO is waiting */
624 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
625 conf->resync_lock,
626 raid1_unplug(conf->mddev->queue));
627
628 /* block any new IO from starting */
629 conf->barrier++;
630
631 /* No wait for all pending IO to complete */
632 wait_event_lock_irq(conf->wait_barrier,
633 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
634 conf->resync_lock,
635 raid1_unplug(conf->mddev->queue));
636
637 spin_unlock_irq(&conf->resync_lock);
638}
639
640static void lower_barrier(conf_t *conf)
641{
642 unsigned long flags;
643 spin_lock_irqsave(&conf->resync_lock, flags);
644 conf->barrier--;
645 spin_unlock_irqrestore(&conf->resync_lock, flags);
646 wake_up(&conf->wait_barrier);
647}
648
649static void wait_barrier(conf_t *conf)
650{
651 spin_lock_irq(&conf->resync_lock);
652 if (conf->barrier) {
653 conf->nr_waiting++;
654 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
655 conf->resync_lock,
656 raid1_unplug(conf->mddev->queue));
657 conf->nr_waiting--;
1da177e4 658 }
17999be4 659 conf->nr_pending++;
1da177e4
LT
660 spin_unlock_irq(&conf->resync_lock);
661}
662
17999be4
N
663static void allow_barrier(conf_t *conf)
664{
665 unsigned long flags;
666 spin_lock_irqsave(&conf->resync_lock, flags);
667 conf->nr_pending--;
668 spin_unlock_irqrestore(&conf->resync_lock, flags);
669 wake_up(&conf->wait_barrier);
670}
671
ddaf22ab
N
672static void freeze_array(conf_t *conf)
673{
674 /* stop syncio and normal IO and wait for everything to
675 * go quite.
676 * We increment barrier and nr_waiting, and then
677 * wait until barrier+nr_pending match nr_queued+2
678 */
679 spin_lock_irq(&conf->resync_lock);
680 conf->barrier++;
681 conf->nr_waiting++;
682 wait_event_lock_irq(conf->wait_barrier,
683 conf->barrier+conf->nr_pending == conf->nr_queued+2,
684 conf->resync_lock,
685 raid1_unplug(conf->mddev->queue));
686 spin_unlock_irq(&conf->resync_lock);
687}
688static void unfreeze_array(conf_t *conf)
689{
690 /* reverse the effect of the freeze */
691 spin_lock_irq(&conf->resync_lock);
692 conf->barrier--;
693 conf->nr_waiting--;
694 wake_up(&conf->wait_barrier);
695 spin_unlock_irq(&conf->resync_lock);
696}
697
17999be4 698
4b6d287f
N
699/* duplicate the data pages for behind I/O */
700static struct page **alloc_behind_pages(struct bio *bio)
701{
702 int i;
703 struct bio_vec *bvec;
9ffae0cf 704 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
4b6d287f
N
705 GFP_NOIO);
706 if (unlikely(!pages))
707 goto do_sync_io;
708
4b6d287f
N
709 bio_for_each_segment(bvec, bio, i) {
710 pages[i] = alloc_page(GFP_NOIO);
711 if (unlikely(!pages[i]))
712 goto do_sync_io;
713 memcpy(kmap(pages[i]) + bvec->bv_offset,
714 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
715 kunmap(pages[i]);
716 kunmap(bvec->bv_page);
717 }
718
719 return pages;
720
721do_sync_io:
722 if (pages)
723 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
2d1f3b5d 724 put_page(pages[i]);
4b6d287f
N
725 kfree(pages);
726 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
727 return NULL;
728}
729
165125e1 730static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
731{
732 mddev_t *mddev = q->queuedata;
733 conf_t *conf = mddev_to_conf(mddev);
734 mirror_info_t *mirror;
735 r1bio_t *r1_bio;
736 struct bio *read_bio;
191ea9b2 737 int i, targets = 0, disks;
1da177e4 738 mdk_rdev_t *rdev;
191ea9b2
N
739 struct bitmap *bitmap = mddev->bitmap;
740 unsigned long flags;
741 struct bio_list bl;
4b6d287f 742 struct page **behind_pages = NULL;
a362357b 743 const int rw = bio_data_dir(bio);
e3881a68 744 const int do_sync = bio_sync(bio);
a9701a30 745 int do_barriers;
191ea9b2 746
1da177e4
LT
747 /*
748 * Register the new request and wait if the reconstruction
749 * thread has put up a bar for new requests.
750 * Continue immediately if no resync is active currently.
62de608d
N
751 * We test barriers_work *after* md_write_start as md_write_start
752 * may cause the first superblock write, and that will check out
753 * if barriers work.
1da177e4 754 */
62de608d 755
3d310eb7
N
756 md_write_start(mddev, bio); /* wait on superblock update early */
757
62de608d
N
758 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
759 if (rw == WRITE)
760 md_write_end(mddev);
6712ecf8 761 bio_endio(bio, -EOPNOTSUPP);
62de608d
N
762 return 0;
763 }
764
17999be4 765 wait_barrier(conf);
1da177e4 766
a362357b
JA
767 disk_stat_inc(mddev->gendisk, ios[rw]);
768 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
1da177e4
LT
769
770 /*
771 * make_request() can abort the operation when READA is being
772 * used and no empty request is available.
773 *
774 */
775 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
776
777 r1_bio->master_bio = bio;
778 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 779 r1_bio->state = 0;
1da177e4
LT
780 r1_bio->mddev = mddev;
781 r1_bio->sector = bio->bi_sector;
782
a362357b 783 if (rw == READ) {
1da177e4
LT
784 /*
785 * read balancing logic:
786 */
787 int rdisk = read_balance(conf, r1_bio);
788
789 if (rdisk < 0) {
790 /* couldn't find anywhere to read from */
791 raid_end_bio_io(r1_bio);
792 return 0;
793 }
794 mirror = conf->mirrors + rdisk;
795
796 r1_bio->read_disk = rdisk;
797
798 read_bio = bio_clone(bio, GFP_NOIO);
799
800 r1_bio->bios[rdisk] = read_bio;
801
802 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
803 read_bio->bi_bdev = mirror->rdev->bdev;
804 read_bio->bi_end_io = raid1_end_read_request;
e3881a68 805 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
806 read_bio->bi_private = r1_bio;
807
808 generic_make_request(read_bio);
809 return 0;
810 }
811
812 /*
813 * WRITE:
814 */
815 /* first select target devices under spinlock and
816 * inc refcount on their rdev. Record them by setting
817 * bios[x] to bio
818 */
819 disks = conf->raid_disks;
191ea9b2
N
820#if 0
821 { static int first=1;
822 if (first) printk("First Write sector %llu disks %d\n",
823 (unsigned long long)r1_bio->sector, disks);
824 first = 0;
825 }
826#endif
1da177e4
LT
827 rcu_read_lock();
828 for (i = 0; i < disks; i++) {
d6065f7b 829 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
b2d444d7 830 !test_bit(Faulty, &rdev->flags)) {
1da177e4 831 atomic_inc(&rdev->nr_pending);
b2d444d7 832 if (test_bit(Faulty, &rdev->flags)) {
03c902e1 833 rdev_dec_pending(rdev, mddev);
1da177e4
LT
834 r1_bio->bios[i] = NULL;
835 } else
836 r1_bio->bios[i] = bio;
191ea9b2 837 targets++;
1da177e4
LT
838 } else
839 r1_bio->bios[i] = NULL;
840 }
841 rcu_read_unlock();
842
4b6d287f
N
843 BUG_ON(targets == 0); /* we never fail the last device */
844
191ea9b2
N
845 if (targets < conf->raid_disks) {
846 /* array is degraded, we will not clear the bitmap
847 * on I/O completion (see raid1_end_write_request) */
848 set_bit(R1BIO_Degraded, &r1_bio->state);
849 }
850
4b6d287f
N
851 /* do behind I/O ? */
852 if (bitmap &&
853 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
854 (behind_pages = alloc_behind_pages(bio)) != NULL)
855 set_bit(R1BIO_BehindIO, &r1_bio->state);
856
191ea9b2 857 atomic_set(&r1_bio->remaining, 0);
4b6d287f 858 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 859
04b857f7 860 do_barriers = bio_barrier(bio);
a9701a30
N
861 if (do_barriers)
862 set_bit(R1BIO_Barrier, &r1_bio->state);
863
191ea9b2 864 bio_list_init(&bl);
1da177e4
LT
865 for (i = 0; i < disks; i++) {
866 struct bio *mbio;
867 if (!r1_bio->bios[i])
868 continue;
869
870 mbio = bio_clone(bio, GFP_NOIO);
871 r1_bio->bios[i] = mbio;
872
873 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
874 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
875 mbio->bi_end_io = raid1_end_write_request;
e3881a68 876 mbio->bi_rw = WRITE | do_barriers | do_sync;
1da177e4
LT
877 mbio->bi_private = r1_bio;
878
4b6d287f
N
879 if (behind_pages) {
880 struct bio_vec *bvec;
881 int j;
882
883 /* Yes, I really want the '__' version so that
884 * we clear any unused pointer in the io_vec, rather
885 * than leave them unchanged. This is important
886 * because when we come to free the pages, we won't
887 * know the originial bi_idx, so we just free
888 * them all
889 */
890 __bio_for_each_segment(bvec, mbio, j, 0)
891 bvec->bv_page = behind_pages[j];
892 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
893 atomic_inc(&r1_bio->behind_remaining);
894 }
895
1da177e4 896 atomic_inc(&r1_bio->remaining);
1da177e4 897
191ea9b2 898 bio_list_add(&bl, mbio);
1da177e4 899 }
4b6d287f 900 kfree(behind_pages); /* the behind pages are attached to the bios now */
1da177e4 901
4b6d287f
N
902 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
903 test_bit(R1BIO_BehindIO, &r1_bio->state));
191ea9b2
N
904 spin_lock_irqsave(&conf->device_lock, flags);
905 bio_list_merge(&conf->pending_bio_list, &bl);
906 bio_list_init(&bl);
907
908 blk_plug_device(mddev->queue);
909 spin_unlock_irqrestore(&conf->device_lock, flags);
910
e3881a68
LE
911 if (do_sync)
912 md_wakeup_thread(mddev->thread);
191ea9b2
N
913#if 0
914 while ((bio = bio_list_pop(&bl)) != NULL)
915 generic_make_request(bio);
916#endif
917
1da177e4
LT
918 return 0;
919}
920
921static void status(struct seq_file *seq, mddev_t *mddev)
922{
923 conf_t *conf = mddev_to_conf(mddev);
924 int i;
925
926 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 927 conf->raid_disks - mddev->degraded);
ddac7c7e
N
928 rcu_read_lock();
929 for (i = 0; i < conf->raid_disks; i++) {
930 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 931 seq_printf(seq, "%s",
ddac7c7e
N
932 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
933 }
934 rcu_read_unlock();
1da177e4
LT
935 seq_printf(seq, "]");
936}
937
938
939static void error(mddev_t *mddev, mdk_rdev_t *rdev)
940{
941 char b[BDEVNAME_SIZE];
942 conf_t *conf = mddev_to_conf(mddev);
943
944 /*
945 * If it is not operational, then we have already marked it as dead
946 * else if it is the last working disks, ignore the error, let the
947 * next level up know.
948 * else mark the drive as failed
949 */
b2d444d7 950 if (test_bit(In_sync, &rdev->flags)
11ce99e6 951 && (conf->raid_disks - mddev->degraded) == 1)
1da177e4
LT
952 /*
953 * Don't fail the drive, act as though we were just a
954 * normal single drive
955 */
956 return;
c04be0aa
N
957 if (test_and_clear_bit(In_sync, &rdev->flags)) {
958 unsigned long flags;
959 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 960 mddev->degraded++;
dd00a99e 961 set_bit(Faulty, &rdev->flags);
c04be0aa 962 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
963 /*
964 * if recovery is running, make sure it aborts.
965 */
966 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
dd00a99e
N
967 } else
968 set_bit(Faulty, &rdev->flags);
850b2b42 969 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1da177e4
LT
970 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
971 " Operation continuing on %d devices\n",
11ce99e6 972 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
973}
974
975static void print_conf(conf_t *conf)
976{
977 int i;
1da177e4
LT
978
979 printk("RAID1 conf printout:\n");
980 if (!conf) {
981 printk("(!conf)\n");
982 return;
983 }
11ce99e6 984 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
985 conf->raid_disks);
986
ddac7c7e 987 rcu_read_lock();
1da177e4
LT
988 for (i = 0; i < conf->raid_disks; i++) {
989 char b[BDEVNAME_SIZE];
ddac7c7e
N
990 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
991 if (rdev)
1da177e4 992 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
993 i, !test_bit(In_sync, &rdev->flags),
994 !test_bit(Faulty, &rdev->flags),
995 bdevname(rdev->bdev,b));
1da177e4 996 }
ddac7c7e 997 rcu_read_unlock();
1da177e4
LT
998}
999
1000static void close_sync(conf_t *conf)
1001{
17999be4
N
1002 wait_barrier(conf);
1003 allow_barrier(conf);
1da177e4
LT
1004
1005 mempool_destroy(conf->r1buf_pool);
1006 conf->r1buf_pool = NULL;
1007}
1008
1009static int raid1_spare_active(mddev_t *mddev)
1010{
1011 int i;
1012 conf_t *conf = mddev->private;
1da177e4
LT
1013
1014 /*
1015 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1016 * and mark them readable.
1017 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1018 */
1019 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1020 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1021 if (rdev
1022 && !test_bit(Faulty, &rdev->flags)
c04be0aa
N
1023 && !test_and_set_bit(In_sync, &rdev->flags)) {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1026 mddev->degraded--;
c04be0aa 1027 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1028 }
1029 }
1030
1031 print_conf(conf);
1032 return 0;
1033}
1034
1035
1036static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1037{
1038 conf_t *conf = mddev->private;
1039 int found = 0;
41158c7e 1040 int mirror = 0;
1da177e4
LT
1041 mirror_info_t *p;
1042
1043 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1044 if ( !(p=conf->mirrors+mirror)->rdev) {
1045
1046 blk_queue_stack_limits(mddev->queue,
1047 rdev->bdev->bd_disk->queue);
1048 /* as we don't honour merge_bvec_fn, we must never risk
1049 * violating it, so limit ->max_sector to one PAGE, as
1050 * a one page request is never in violation.
1051 */
1052 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1053 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1054 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1055
1056 p->head_position = 0;
1057 rdev->raid_disk = mirror;
1058 found = 1;
6aea114a
N
1059 /* As all devices are equivalent, we don't need a full recovery
1060 * if this was recently any drive of the array
1061 */
1062 if (rdev->saved_raid_disk < 0)
41158c7e 1063 conf->fullsync = 1;
d6065f7b 1064 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1065 break;
1066 }
1067
1068 print_conf(conf);
1069 return found;
1070}
1071
1072static int raid1_remove_disk(mddev_t *mddev, int number)
1073{
1074 conf_t *conf = mddev->private;
1075 int err = 0;
1076 mdk_rdev_t *rdev;
1077 mirror_info_t *p = conf->mirrors+ number;
1078
1079 print_conf(conf);
1080 rdev = p->rdev;
1081 if (rdev) {
b2d444d7 1082 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1083 atomic_read(&rdev->nr_pending)) {
1084 err = -EBUSY;
1085 goto abort;
1086 }
1087 p->rdev = NULL;
fbd568a3 1088 synchronize_rcu();
1da177e4
LT
1089 if (atomic_read(&rdev->nr_pending)) {
1090 /* lost the race, try later */
1091 err = -EBUSY;
1092 p->rdev = rdev;
1093 }
1094 }
1095abort:
1096
1097 print_conf(conf);
1098 return err;
1099}
1100
1101
6712ecf8 1102static void end_sync_read(struct bio *bio, int error)
1da177e4 1103{
1da177e4 1104 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
d11c171e 1105 int i;
1da177e4 1106
d11c171e
N
1107 for (i=r1_bio->mddev->raid_disks; i--; )
1108 if (r1_bio->bios[i] == bio)
1109 break;
1110 BUG_ON(i < 0);
1111 update_head_pos(i, r1_bio);
1da177e4
LT
1112 /*
1113 * we have read a block, now it needs to be re-written,
1114 * or re-read if the read failed.
1115 * We don't do much here, just schedule handling by raid1d
1116 */
69382e85 1117 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1118 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1119
1120 if (atomic_dec_and_test(&r1_bio->remaining))
1121 reschedule_retry(r1_bio);
1da177e4
LT
1122}
1123
6712ecf8 1124static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1125{
1126 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1127 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1128 mddev_t *mddev = r1_bio->mddev;
1129 conf_t *conf = mddev_to_conf(mddev);
1130 int i;
1131 int mirror=0;
1132
1da177e4
LT
1133 for (i = 0; i < conf->raid_disks; i++)
1134 if (r1_bio->bios[i] == bio) {
1135 mirror = i;
1136 break;
1137 }
6b1117d5
N
1138 if (!uptodate) {
1139 int sync_blocks = 0;
1140 sector_t s = r1_bio->sector;
1141 long sectors_to_go = r1_bio->sectors;
1142 /* make sure these bits doesn't get cleared. */
1143 do {
5e3db645 1144 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1145 &sync_blocks, 1);
1146 s += sync_blocks;
1147 sectors_to_go -= sync_blocks;
1148 } while (sectors_to_go > 0);
1da177e4 1149 md_error(mddev, conf->mirrors[mirror].rdev);
6b1117d5 1150 }
e3b9703e 1151
1da177e4
LT
1152 update_head_pos(mirror, r1_bio);
1153
1154 if (atomic_dec_and_test(&r1_bio->remaining)) {
1155 md_done_sync(mddev, r1_bio->sectors, uptodate);
1156 put_buf(r1_bio);
1157 }
1da177e4
LT
1158}
1159
1160static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1161{
1162 conf_t *conf = mddev_to_conf(mddev);
1163 int i;
1164 int disks = conf->raid_disks;
1165 struct bio *bio, *wbio;
1166
1167 bio = r1_bio->bios[r1_bio->read_disk];
1168
69382e85 1169
d11c171e
N
1170 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1171 /* We have read all readable devices. If we haven't
1172 * got the block, then there is no hope left.
1173 * If we have, then we want to do a comparison
1174 * and skip the write if everything is the same.
1175 * If any blocks failed to read, then we need to
1176 * attempt an over-write
1177 */
1178 int primary;
1179 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1180 for (i=0; i<mddev->raid_disks; i++)
1181 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1182 md_error(mddev, conf->mirrors[i].rdev);
1183
1184 md_done_sync(mddev, r1_bio->sectors, 1);
1185 put_buf(r1_bio);
1186 return;
1187 }
1188 for (primary=0; primary<mddev->raid_disks; primary++)
1189 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1190 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1191 r1_bio->bios[primary]->bi_end_io = NULL;
03c902e1 1192 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
d11c171e
N
1193 break;
1194 }
1195 r1_bio->read_disk = primary;
1196 for (i=0; i<mddev->raid_disks; i++)
ed456662 1197 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
d11c171e
N
1198 int j;
1199 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1200 struct bio *pbio = r1_bio->bios[primary];
1201 struct bio *sbio = r1_bio->bios[i];
ed456662
MA
1202
1203 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1204 for (j = vcnt; j-- ; ) {
1205 struct page *p, *s;
1206 p = pbio->bi_io_vec[j].bv_page;
1207 s = sbio->bi_io_vec[j].bv_page;
1208 if (memcmp(page_address(p),
1209 page_address(s),
1210 PAGE_SIZE))
1211 break;
1212 }
1213 } else
1214 j = 0;
d11c171e
N
1215 if (j >= 0)
1216 mddev->resync_mismatches += r1_bio->sectors;
cf7a4416
N
1217 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1218 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
d11c171e 1219 sbio->bi_end_io = NULL;
03c902e1
N
1220 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1221 } else {
d11c171e
N
1222 /* fixup the bio for reuse */
1223 sbio->bi_vcnt = vcnt;
1224 sbio->bi_size = r1_bio->sectors << 9;
1225 sbio->bi_idx = 0;
1226 sbio->bi_phys_segments = 0;
1227 sbio->bi_hw_segments = 0;
1228 sbio->bi_hw_front_size = 0;
1229 sbio->bi_hw_back_size = 0;
1230 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1231 sbio->bi_flags |= 1 << BIO_UPTODATE;
1232 sbio->bi_next = NULL;
1233 sbio->bi_sector = r1_bio->sector +
1234 conf->mirrors[i].rdev->data_offset;
1235 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
3eda22d1
N
1236 for (j = 0; j < vcnt ; j++)
1237 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1238 page_address(pbio->bi_io_vec[j].bv_page),
1239 PAGE_SIZE);
1240
d11c171e
N
1241 }
1242 }
1243 }
1da177e4 1244 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
69382e85
N
1245 /* ouch - failed to read all of that.
1246 * Try some synchronous reads of other devices to get
1247 * good data, much like with normal read errors. Only
ddac7c7e 1248 * read into the pages we already have so we don't
69382e85
N
1249 * need to re-issue the read request.
1250 * We don't need to freeze the array, because being in an
1251 * active sync request, there is no normal IO, and
1252 * no overlapping syncs.
1da177e4 1253 */
69382e85
N
1254 sector_t sect = r1_bio->sector;
1255 int sectors = r1_bio->sectors;
1256 int idx = 0;
1257
1258 while(sectors) {
1259 int s = sectors;
1260 int d = r1_bio->read_disk;
1261 int success = 0;
1262 mdk_rdev_t *rdev;
1263
1264 if (s > (PAGE_SIZE>>9))
1265 s = PAGE_SIZE >> 9;
1266 do {
1267 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
ddac7c7e
N
1268 /* No rcu protection needed here devices
1269 * can only be removed when no resync is
1270 * active, and resync is currently active
1271 */
69382e85
N
1272 rdev = conf->mirrors[d].rdev;
1273 if (sync_page_io(rdev->bdev,
1274 sect + rdev->data_offset,
1275 s<<9,
1276 bio->bi_io_vec[idx].bv_page,
1277 READ)) {
1278 success = 1;
1279 break;
1280 }
1281 }
1282 d++;
1283 if (d == conf->raid_disks)
1284 d = 0;
1285 } while (!success && d != r1_bio->read_disk);
1286
1287 if (success) {
097426f6 1288 int start = d;
69382e85
N
1289 /* write it back and re-read */
1290 set_bit(R1BIO_Uptodate, &r1_bio->state);
1291 while (d != r1_bio->read_disk) {
1292 if (d == 0)
1293 d = conf->raid_disks;
1294 d--;
1295 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1296 continue;
1297 rdev = conf->mirrors[d].rdev;
4dbcdc75 1298 atomic_add(s, &rdev->corrected_errors);
69382e85
N
1299 if (sync_page_io(rdev->bdev,
1300 sect + rdev->data_offset,
1301 s<<9,
1302 bio->bi_io_vec[idx].bv_page,
097426f6
N
1303 WRITE) == 0)
1304 md_error(mddev, rdev);
1305 }
1306 d = start;
1307 while (d != r1_bio->read_disk) {
1308 if (d == 0)
1309 d = conf->raid_disks;
1310 d--;
1311 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1312 continue;
1313 rdev = conf->mirrors[d].rdev;
1314 if (sync_page_io(rdev->bdev,
69382e85
N
1315 sect + rdev->data_offset,
1316 s<<9,
1317 bio->bi_io_vec[idx].bv_page,
097426f6 1318 READ) == 0)
69382e85 1319 md_error(mddev, rdev);
69382e85
N
1320 }
1321 } else {
1322 char b[BDEVNAME_SIZE];
1323 /* Cannot read from anywhere, array is toast */
1324 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1325 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1326 " for block %llu\n",
1327 bdevname(bio->bi_bdev,b),
1328 (unsigned long long)r1_bio->sector);
1329 md_done_sync(mddev, r1_bio->sectors, 0);
1330 put_buf(r1_bio);
1331 return;
1332 }
1333 sectors -= s;
1334 sect += s;
1335 idx ++;
1336 }
1da177e4 1337 }
d11c171e
N
1338
1339 /*
1340 * schedule writes
1341 */
1da177e4
LT
1342 atomic_set(&r1_bio->remaining, 1);
1343 for (i = 0; i < disks ; i++) {
1344 wbio = r1_bio->bios[i];
3e198f78
N
1345 if (wbio->bi_end_io == NULL ||
1346 (wbio->bi_end_io == end_sync_read &&
1347 (i == r1_bio->read_disk ||
1348 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1349 continue;
1350
3e198f78
N
1351 wbio->bi_rw = WRITE;
1352 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1353 atomic_inc(&r1_bio->remaining);
1354 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1355
1da177e4
LT
1356 generic_make_request(wbio);
1357 }
1358
1359 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1360 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1361 md_done_sync(mddev, r1_bio->sectors, 1);
1362 put_buf(r1_bio);
1363 }
1364}
1365
1366/*
1367 * This is a kernel thread which:
1368 *
1369 * 1. Retries failed read operations on working mirrors.
1370 * 2. Updates the raid superblock when problems encounter.
1371 * 3. Performs writes following reads for array syncronising.
1372 */
1373
867868fb
N
1374static void fix_read_error(conf_t *conf, int read_disk,
1375 sector_t sect, int sectors)
1376{
1377 mddev_t *mddev = conf->mddev;
1378 while(sectors) {
1379 int s = sectors;
1380 int d = read_disk;
1381 int success = 0;
1382 int start;
1383 mdk_rdev_t *rdev;
1384
1385 if (s > (PAGE_SIZE>>9))
1386 s = PAGE_SIZE >> 9;
1387
1388 do {
1389 /* Note: no rcu protection needed here
1390 * as this is synchronous in the raid1d thread
1391 * which is the thread that might remove
1392 * a device. If raid1d ever becomes multi-threaded....
1393 */
1394 rdev = conf->mirrors[d].rdev;
1395 if (rdev &&
1396 test_bit(In_sync, &rdev->flags) &&
1397 sync_page_io(rdev->bdev,
1398 sect + rdev->data_offset,
1399 s<<9,
1400 conf->tmppage, READ))
1401 success = 1;
1402 else {
1403 d++;
1404 if (d == conf->raid_disks)
1405 d = 0;
1406 }
1407 } while (!success && d != read_disk);
1408
1409 if (!success) {
1410 /* Cannot read from anywhere -- bye bye array */
1411 md_error(mddev, conf->mirrors[read_disk].rdev);
1412 break;
1413 }
1414 /* write it back and re-read */
1415 start = d;
1416 while (d != read_disk) {
1417 if (d==0)
1418 d = conf->raid_disks;
1419 d--;
1420 rdev = conf->mirrors[d].rdev;
1421 if (rdev &&
1422 test_bit(In_sync, &rdev->flags)) {
1423 if (sync_page_io(rdev->bdev,
1424 sect + rdev->data_offset,
1425 s<<9, conf->tmppage, WRITE)
1426 == 0)
1427 /* Well, this device is dead */
1428 md_error(mddev, rdev);
1429 }
1430 }
1431 d = start;
1432 while (d != read_disk) {
1433 char b[BDEVNAME_SIZE];
1434 if (d==0)
1435 d = conf->raid_disks;
1436 d--;
1437 rdev = conf->mirrors[d].rdev;
1438 if (rdev &&
1439 test_bit(In_sync, &rdev->flags)) {
1440 if (sync_page_io(rdev->bdev,
1441 sect + rdev->data_offset,
1442 s<<9, conf->tmppage, READ)
1443 == 0)
1444 /* Well, this device is dead */
1445 md_error(mddev, rdev);
1446 else {
1447 atomic_add(s, &rdev->corrected_errors);
1448 printk(KERN_INFO
1449 "raid1:%s: read error corrected "
1450 "(%d sectors at %llu on %s)\n",
1451 mdname(mddev), s,
969b755a
RD
1452 (unsigned long long)(sect +
1453 rdev->data_offset),
867868fb
N
1454 bdevname(rdev->bdev, b));
1455 }
1456 }
1457 }
1458 sectors -= s;
1459 sect += s;
1460 }
1461}
1462
1da177e4
LT
1463static void raid1d(mddev_t *mddev)
1464{
1465 r1bio_t *r1_bio;
1466 struct bio *bio;
1467 unsigned long flags;
1468 conf_t *conf = mddev_to_conf(mddev);
1469 struct list_head *head = &conf->retry_list;
1470 int unplug=0;
1471 mdk_rdev_t *rdev;
1472
1473 md_check_recovery(mddev);
1da177e4
LT
1474
1475 for (;;) {
1476 char b[BDEVNAME_SIZE];
1477 spin_lock_irqsave(&conf->device_lock, flags);
191ea9b2
N
1478
1479 if (conf->pending_bio_list.head) {
1480 bio = bio_list_get(&conf->pending_bio_list);
1481 blk_remove_plug(mddev->queue);
1482 spin_unlock_irqrestore(&conf->device_lock, flags);
1483 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
4ad13663 1484 bitmap_unplug(mddev->bitmap);
191ea9b2
N
1485
1486 while (bio) { /* submit pending writes */
1487 struct bio *next = bio->bi_next;
1488 bio->bi_next = NULL;
1489 generic_make_request(bio);
1490 bio = next;
1491 }
1492 unplug = 1;
1493
1494 continue;
1495 }
1496
1da177e4
LT
1497 if (list_empty(head))
1498 break;
1499 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1500 list_del(head->prev);
ddaf22ab 1501 conf->nr_queued--;
1da177e4
LT
1502 spin_unlock_irqrestore(&conf->device_lock, flags);
1503
1504 mddev = r1_bio->mddev;
1505 conf = mddev_to_conf(mddev);
1506 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1507 sync_request_write(mddev, r1_bio);
1508 unplug = 1;
a9701a30
N
1509 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1510 /* some requests in the r1bio were BIO_RW_BARRIER
bea27718 1511 * requests which failed with -EOPNOTSUPP. Hohumm..
a9701a30
N
1512 * Better resubmit without the barrier.
1513 * We know which devices to resubmit for, because
1514 * all others have had their bios[] entry cleared.
5e7dd2ab 1515 * We already have a nr_pending reference on these rdevs.
a9701a30
N
1516 */
1517 int i;
e3881a68 1518 const int do_sync = bio_sync(r1_bio->master_bio);
a9701a30
N
1519 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1520 clear_bit(R1BIO_Barrier, &r1_bio->state);
2f889129
N
1521 for (i=0; i < conf->raid_disks; i++)
1522 if (r1_bio->bios[i])
1523 atomic_inc(&r1_bio->remaining);
a9701a30
N
1524 for (i=0; i < conf->raid_disks; i++)
1525 if (r1_bio->bios[i]) {
1526 struct bio_vec *bvec;
1527 int j;
1528
1529 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1530 /* copy pages from the failed bio, as
1531 * this might be a write-behind device */
1532 __bio_for_each_segment(bvec, bio, j, 0)
1533 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1534 bio_put(r1_bio->bios[i]);
1535 bio->bi_sector = r1_bio->sector +
1536 conf->mirrors[i].rdev->data_offset;
1537 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1538 bio->bi_end_io = raid1_end_write_request;
e3881a68 1539 bio->bi_rw = WRITE | do_sync;
a9701a30
N
1540 bio->bi_private = r1_bio;
1541 r1_bio->bios[i] = bio;
1542 generic_make_request(bio);
1543 }
1da177e4
LT
1544 } else {
1545 int disk;
ddaf22ab
N
1546
1547 /* we got a read error. Maybe the drive is bad. Maybe just
1548 * the block and we can fix it.
1549 * We freeze all other IO, and try reading the block from
1550 * other devices. When we find one, we re-write
1551 * and check it that fixes the read error.
1552 * This is all done synchronously while the array is
1553 * frozen
1554 */
867868fb
N
1555 if (mddev->ro == 0) {
1556 freeze_array(conf);
1557 fix_read_error(conf, r1_bio->read_disk,
1558 r1_bio->sector,
1559 r1_bio->sectors);
1560 unfreeze_array(conf);
ddaf22ab
N
1561 }
1562
1da177e4
LT
1563 bio = r1_bio->bios[r1_bio->read_disk];
1564 if ((disk=read_balance(conf, r1_bio)) == -1) {
1565 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1566 " read error for block %llu\n",
1567 bdevname(bio->bi_bdev,b),
1568 (unsigned long long)r1_bio->sector);
1569 raid_end_bio_io(r1_bio);
1570 } else {
e3881a68 1571 const int do_sync = bio_sync(r1_bio->master_bio);
cf30a473
N
1572 r1_bio->bios[r1_bio->read_disk] =
1573 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1574 r1_bio->read_disk = disk;
1575 bio_put(bio);
1576 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1577 r1_bio->bios[r1_bio->read_disk] = bio;
1578 rdev = conf->mirrors[disk].rdev;
1579 if (printk_ratelimit())
1580 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1581 " another mirror\n",
1582 bdevname(rdev->bdev,b),
1583 (unsigned long long)r1_bio->sector);
1584 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1585 bio->bi_bdev = rdev->bdev;
1586 bio->bi_end_io = raid1_end_read_request;
e3881a68 1587 bio->bi_rw = READ | do_sync;
1da177e4
LT
1588 bio->bi_private = r1_bio;
1589 unplug = 1;
1590 generic_make_request(bio);
1591 }
1592 }
1593 }
1594 spin_unlock_irqrestore(&conf->device_lock, flags);
1595 if (unplug)
1596 unplug_slaves(mddev);
1597}
1598
1599
1600static int init_resync(conf_t *conf)
1601{
1602 int buffs;
1603
1604 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 1605 BUG_ON(conf->r1buf_pool);
1da177e4
LT
1606 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1607 conf->poolinfo);
1608 if (!conf->r1buf_pool)
1609 return -ENOMEM;
1610 conf->next_resync = 0;
1611 return 0;
1612}
1613
1614/*
1615 * perform a "sync" on one "block"
1616 *
1617 * We need to make sure that no normal I/O request - particularly write
1618 * requests - conflict with active sync requests.
1619 *
1620 * This is achieved by tracking pending requests and a 'barrier' concept
1621 * that can be installed to exclude normal IO requests.
1622 */
1623
57afd89f 1624static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1625{
1626 conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
1627 r1bio_t *r1_bio;
1628 struct bio *bio;
1629 sector_t max_sector, nr_sectors;
3e198f78 1630 int disk = -1;
1da177e4 1631 int i;
3e198f78
N
1632 int wonly = -1;
1633 int write_targets = 0, read_targets = 0;
191ea9b2 1634 int sync_blocks;
e3b9703e 1635 int still_degraded = 0;
1da177e4
LT
1636
1637 if (!conf->r1buf_pool)
191ea9b2
N
1638 {
1639/*
1640 printk("sync start - bitmap %p\n", mddev->bitmap);
1641*/
1da177e4 1642 if (init_resync(conf))
57afd89f 1643 return 0;
191ea9b2 1644 }
1da177e4
LT
1645
1646 max_sector = mddev->size << 1;
1647 if (sector_nr >= max_sector) {
191ea9b2
N
1648 /* If we aborted, we need to abort the
1649 * sync on the 'current' bitmap chunk (there will
1650 * only be one in raid1 resync.
1651 * We can find the current addess in mddev->curr_resync
1652 */
6a806c51
N
1653 if (mddev->curr_resync < max_sector) /* aborted */
1654 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 1655 &sync_blocks, 1);
6a806c51 1656 else /* completed sync */
191ea9b2 1657 conf->fullsync = 0;
6a806c51
N
1658
1659 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
1660 close_sync(conf);
1661 return 0;
1662 }
1663
07d84d10
N
1664 if (mddev->bitmap == NULL &&
1665 mddev->recovery_cp == MaxSector &&
6394cca5 1666 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
1667 conf->fullsync == 0) {
1668 *skipped = 1;
1669 return max_sector - sector_nr;
1670 }
6394cca5
N
1671 /* before building a request, check if we can skip these blocks..
1672 * This call the bitmap_start_sync doesn't actually record anything
1673 */
e3b9703e 1674 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 1675 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
1676 /* We can skip this block, and probably several more */
1677 *skipped = 1;
1678 return sync_blocks;
1679 }
1da177e4 1680 /*
17999be4
N
1681 * If there is non-resync activity waiting for a turn,
1682 * and resync is going fast enough,
1683 * then let it though before starting on this new sync request.
1da177e4 1684 */
17999be4 1685 if (!go_faster && conf->nr_waiting)
1da177e4 1686 msleep_interruptible(1000);
17999be4
N
1687
1688 raise_barrier(conf);
1689
1690 conf->next_resync = sector_nr;
1da177e4 1691
3e198f78
N
1692 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1693 rcu_read_lock();
1da177e4 1694 /*
3e198f78
N
1695 * If we get a correctably read error during resync or recovery,
1696 * we might want to read from a different device. So we
1697 * flag all drives that could conceivably be read from for READ,
1698 * and any others (which will be non-In_sync devices) for WRITE.
1699 * If a read fails, we try reading from something else for which READ
1700 * is OK.
1da177e4 1701 */
1da177e4 1702
1da177e4
LT
1703 r1_bio->mddev = mddev;
1704 r1_bio->sector = sector_nr;
191ea9b2 1705 r1_bio->state = 0;
1da177e4 1706 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
1707
1708 for (i=0; i < conf->raid_disks; i++) {
3e198f78 1709 mdk_rdev_t *rdev;
1da177e4
LT
1710 bio = r1_bio->bios[i];
1711
1712 /* take from bio_init */
1713 bio->bi_next = NULL;
1714 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 1715 bio->bi_rw = READ;
1da177e4
LT
1716 bio->bi_vcnt = 0;
1717 bio->bi_idx = 0;
1718 bio->bi_phys_segments = 0;
1719 bio->bi_hw_segments = 0;
1720 bio->bi_size = 0;
1721 bio->bi_end_io = NULL;
1722 bio->bi_private = NULL;
1723
3e198f78
N
1724 rdev = rcu_dereference(conf->mirrors[i].rdev);
1725 if (rdev == NULL ||
1726 test_bit(Faulty, &rdev->flags)) {
e3b9703e
N
1727 still_degraded = 1;
1728 continue;
3e198f78 1729 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
1730 bio->bi_rw = WRITE;
1731 bio->bi_end_io = end_sync_write;
1732 write_targets ++;
3e198f78
N
1733 } else {
1734 /* may need to read from here */
1735 bio->bi_rw = READ;
1736 bio->bi_end_io = end_sync_read;
1737 if (test_bit(WriteMostly, &rdev->flags)) {
1738 if (wonly < 0)
1739 wonly = i;
1740 } else {
1741 if (disk < 0)
1742 disk = i;
1743 }
1744 read_targets++;
1745 }
1746 atomic_inc(&rdev->nr_pending);
1747 bio->bi_sector = sector_nr + rdev->data_offset;
1748 bio->bi_bdev = rdev->bdev;
1da177e4
LT
1749 bio->bi_private = r1_bio;
1750 }
3e198f78
N
1751 rcu_read_unlock();
1752 if (disk < 0)
1753 disk = wonly;
1754 r1_bio->read_disk = disk;
191ea9b2 1755
3e198f78
N
1756 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1757 /* extra read targets are also write targets */
1758 write_targets += read_targets-1;
1759
1760 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
1761 /* There is nowhere to write, so all non-sync
1762 * drives must be failed - so we are finished
1763 */
57afd89f
N
1764 sector_t rv = max_sector - sector_nr;
1765 *skipped = 1;
1da177e4 1766 put_buf(r1_bio);
1da177e4
LT
1767 return rv;
1768 }
1769
1770 nr_sectors = 0;
289e99e8 1771 sync_blocks = 0;
1da177e4
LT
1772 do {
1773 struct page *page;
1774 int len = PAGE_SIZE;
1775 if (sector_nr + (len>>9) > max_sector)
1776 len = (max_sector - sector_nr) << 9;
1777 if (len == 0)
1778 break;
6a806c51
N
1779 if (sync_blocks == 0) {
1780 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
1781 &sync_blocks, still_degraded) &&
1782 !conf->fullsync &&
1783 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 1784 break;
9e77c485 1785 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
6a806c51
N
1786 if (len > (sync_blocks<<9))
1787 len = sync_blocks<<9;
ab7a30c7 1788 }
191ea9b2 1789
1da177e4
LT
1790 for (i=0 ; i < conf->raid_disks; i++) {
1791 bio = r1_bio->bios[i];
1792 if (bio->bi_end_io) {
d11c171e 1793 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
1794 if (bio_add_page(bio, page, len, 0) == 0) {
1795 /* stop here */
d11c171e 1796 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
1797 while (i > 0) {
1798 i--;
1799 bio = r1_bio->bios[i];
6a806c51
N
1800 if (bio->bi_end_io==NULL)
1801 continue;
1da177e4
LT
1802 /* remove last page from this bio */
1803 bio->bi_vcnt--;
1804 bio->bi_size -= len;
1805 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1806 }
1807 goto bio_full;
1808 }
1809 }
1810 }
1811 nr_sectors += len>>9;
1812 sector_nr += len>>9;
191ea9b2 1813 sync_blocks -= (len>>9);
1da177e4
LT
1814 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1815 bio_full:
1da177e4
LT
1816 r1_bio->sectors = nr_sectors;
1817
d11c171e
N
1818 /* For a user-requested sync, we read all readable devices and do a
1819 * compare
1820 */
1821 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1822 atomic_set(&r1_bio->remaining, read_targets);
1823 for (i=0; i<conf->raid_disks; i++) {
1824 bio = r1_bio->bios[i];
1825 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 1826 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
1827 generic_make_request(bio);
1828 }
1829 }
1830 } else {
1831 atomic_set(&r1_bio->remaining, 1);
1832 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 1833 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 1834 generic_make_request(bio);
1da177e4 1835
d11c171e 1836 }
1da177e4
LT
1837 return nr_sectors;
1838}
1839
1840static int run(mddev_t *mddev)
1841{
1842 conf_t *conf;
1843 int i, j, disk_idx;
1844 mirror_info_t *disk;
1845 mdk_rdev_t *rdev;
1846 struct list_head *tmp;
1847
1848 if (mddev->level != 1) {
1849 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1850 mdname(mddev), mddev->level);
1851 goto out;
1852 }
f6705578
N
1853 if (mddev->reshape_position != MaxSector) {
1854 printk("raid1: %s: reshape_position set but not supported\n",
1855 mdname(mddev));
1856 goto out;
1857 }
1da177e4
LT
1858 /*
1859 * copy the already verified devices into our private RAID1
1860 * bookkeeping area. [whatever we allocate in run(),
1861 * should be freed in stop()]
1862 */
9ffae0cf 1863 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
1864 mddev->private = conf;
1865 if (!conf)
1866 goto out_no_mem;
1867
9ffae0cf 1868 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1869 GFP_KERNEL);
1870 if (!conf->mirrors)
1871 goto out_no_mem;
1872
ddaf22ab
N
1873 conf->tmppage = alloc_page(GFP_KERNEL);
1874 if (!conf->tmppage)
1875 goto out_no_mem;
1876
1da177e4
LT
1877 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1878 if (!conf->poolinfo)
1879 goto out_no_mem;
1880 conf->poolinfo->mddev = mddev;
1881 conf->poolinfo->raid_disks = mddev->raid_disks;
1882 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1883 r1bio_pool_free,
1884 conf->poolinfo);
1885 if (!conf->r1bio_pool)
1886 goto out_no_mem;
1887
1da177e4
LT
1888 ITERATE_RDEV(mddev, rdev, tmp) {
1889 disk_idx = rdev->raid_disk;
1890 if (disk_idx >= mddev->raid_disks
1891 || disk_idx < 0)
1892 continue;
1893 disk = conf->mirrors + disk_idx;
1894
1895 disk->rdev = rdev;
1896
1897 blk_queue_stack_limits(mddev->queue,
1898 rdev->bdev->bd_disk->queue);
1899 /* as we don't honour merge_bvec_fn, we must never risk
1900 * violating it, so limit ->max_sector to one PAGE, as
1901 * a one page request is never in violation.
1902 */
1903 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1904 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1905 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1906
1907 disk->head_position = 0;
1da177e4
LT
1908 }
1909 conf->raid_disks = mddev->raid_disks;
1910 conf->mddev = mddev;
1911 spin_lock_init(&conf->device_lock);
1912 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
1913
1914 spin_lock_init(&conf->resync_lock);
17999be4 1915 init_waitqueue_head(&conf->wait_barrier);
1da177e4 1916
191ea9b2
N
1917 bio_list_init(&conf->pending_bio_list);
1918 bio_list_init(&conf->flushing_bio_list);
1919
1da177e4
LT
1920
1921 mddev->degraded = 0;
1922 for (i = 0; i < conf->raid_disks; i++) {
1923
1924 disk = conf->mirrors + i;
1925
5fd6c1dc
N
1926 if (!disk->rdev ||
1927 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
1928 disk->head_position = 0;
1929 mddev->degraded++;
918f0238
N
1930 if (disk->rdev)
1931 conf->fullsync = 1;
1da177e4
LT
1932 }
1933 }
11ce99e6
N
1934 if (mddev->degraded == conf->raid_disks) {
1935 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1936 mdname(mddev));
1937 goto out_free_conf;
1938 }
1939 if (conf->raid_disks - mddev->degraded == 1)
1940 mddev->recovery_cp = MaxSector;
1da177e4
LT
1941
1942 /*
1943 * find the first working one and use it as a starting point
1944 * to read balancing.
1945 */
1946 for (j = 0; j < conf->raid_disks &&
1947 (!conf->mirrors[j].rdev ||
b2d444d7 1948 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1da177e4
LT
1949 /* nothing */;
1950 conf->last_used = j;
1951
1952
191ea9b2
N
1953 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1954 if (!mddev->thread) {
1955 printk(KERN_ERR
1956 "raid1: couldn't allocate thread for %s\n",
1957 mdname(mddev));
1958 goto out_free_conf;
1da177e4 1959 }
191ea9b2 1960
1da177e4
LT
1961 printk(KERN_INFO
1962 "raid1: raid set %s active with %d out of %d mirrors\n",
1963 mdname(mddev), mddev->raid_disks - mddev->degraded,
1964 mddev->raid_disks);
1965 /*
1966 * Ok, everything is just fine now
1967 */
1968 mddev->array_size = mddev->size;
1969
7a5febe9 1970 mddev->queue->unplug_fn = raid1_unplug;
0d129228
N
1971 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1972 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 1973
1da177e4
LT
1974 return 0;
1975
1976out_no_mem:
1977 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1978 mdname(mddev));
1979
1980out_free_conf:
1981 if (conf) {
1982 if (conf->r1bio_pool)
1983 mempool_destroy(conf->r1bio_pool);
990a8baf 1984 kfree(conf->mirrors);
1345b1d8 1985 safe_put_page(conf->tmppage);
990a8baf 1986 kfree(conf->poolinfo);
1da177e4
LT
1987 kfree(conf);
1988 mddev->private = NULL;
1989 }
1990out:
1991 return -EIO;
1992}
1993
1994static int stop(mddev_t *mddev)
1995{
1996 conf_t *conf = mddev_to_conf(mddev);
4b6d287f
N
1997 struct bitmap *bitmap = mddev->bitmap;
1998 int behind_wait = 0;
1999
2000 /* wait for behind writes to complete */
2001 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2002 behind_wait++;
2003 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2004 set_current_state(TASK_UNINTERRUPTIBLE);
2005 schedule_timeout(HZ); /* wait a second */
2006 /* need to kick something here to make sure I/O goes? */
2007 }
1da177e4
LT
2008
2009 md_unregister_thread(mddev->thread);
2010 mddev->thread = NULL;
2011 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2012 if (conf->r1bio_pool)
2013 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2014 kfree(conf->mirrors);
2015 kfree(conf->poolinfo);
1da177e4
LT
2016 kfree(conf);
2017 mddev->private = NULL;
2018 return 0;
2019}
2020
2021static int raid1_resize(mddev_t *mddev, sector_t sectors)
2022{
2023 /* no resync is happening, and there is enough space
2024 * on all devices, so we can resize.
2025 * We need to make sure resync covers any new space.
2026 * If the array is shrinking we should possibly wait until
2027 * any io in the removed space completes, but it hardly seems
2028 * worth it.
2029 */
2030 mddev->array_size = sectors>>1;
2031 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 2032 mddev->changed = 1;
1da177e4
LT
2033 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2034 mddev->recovery_cp = mddev->size << 1;
2035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2036 }
2037 mddev->size = mddev->array_size;
4b5c7ae8 2038 mddev->resync_max_sectors = sectors;
1da177e4
LT
2039 return 0;
2040}
2041
63c70c4f 2042static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2043{
2044 /* We need to:
2045 * 1/ resize the r1bio_pool
2046 * 2/ resize conf->mirrors
2047 *
2048 * We allocate a new r1bio_pool if we can.
2049 * Then raise a device barrier and wait until all IO stops.
2050 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2051 *
2052 * At the same time, we "pack" the devices so that all the missing
2053 * devices have the higher raid_disk numbers.
1da177e4
LT
2054 */
2055 mempool_t *newpool, *oldpool;
2056 struct pool_info *newpoolinfo;
2057 mirror_info_t *newmirrors;
2058 conf_t *conf = mddev_to_conf(mddev);
63c70c4f 2059 int cnt, raid_disks;
c04be0aa 2060 unsigned long flags;
6ea9c07c 2061 int d, d2;
1da177e4 2062
63c70c4f
N
2063 /* Cannot change chunk_size, layout, or level */
2064 if (mddev->chunk_size != mddev->new_chunk ||
2065 mddev->layout != mddev->new_layout ||
2066 mddev->level != mddev->new_level) {
2067 mddev->new_chunk = mddev->chunk_size;
2068 mddev->new_layout = mddev->layout;
2069 mddev->new_level = mddev->level;
2070 return -EINVAL;
2071 }
2072
2a2275d6
N
2073 md_allow_write(mddev);
2074
63c70c4f
N
2075 raid_disks = mddev->raid_disks + mddev->delta_disks;
2076
6ea9c07c
N
2077 if (raid_disks < conf->raid_disks) {
2078 cnt=0;
2079 for (d= 0; d < conf->raid_disks; d++)
2080 if (conf->mirrors[d].rdev)
2081 cnt++;
2082 if (cnt > raid_disks)
1da177e4 2083 return -EBUSY;
6ea9c07c 2084 }
1da177e4
LT
2085
2086 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2087 if (!newpoolinfo)
2088 return -ENOMEM;
2089 newpoolinfo->mddev = mddev;
2090 newpoolinfo->raid_disks = raid_disks;
2091
2092 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2093 r1bio_pool_free, newpoolinfo);
2094 if (!newpool) {
2095 kfree(newpoolinfo);
2096 return -ENOMEM;
2097 }
9ffae0cf 2098 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2099 if (!newmirrors) {
2100 kfree(newpoolinfo);
2101 mempool_destroy(newpool);
2102 return -ENOMEM;
2103 }
1da177e4 2104
17999be4 2105 raise_barrier(conf);
1da177e4
LT
2106
2107 /* ok, everything is stopped */
2108 oldpool = conf->r1bio_pool;
2109 conf->r1bio_pool = newpool;
6ea9c07c 2110
a88aa786
N
2111 for (d = d2 = 0; d < conf->raid_disks; d++) {
2112 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2113 if (rdev && rdev->raid_disk != d2) {
2114 char nm[20];
2115 sprintf(nm, "rd%d", rdev->raid_disk);
2116 sysfs_remove_link(&mddev->kobj, nm);
2117 rdev->raid_disk = d2;
2118 sprintf(nm, "rd%d", rdev->raid_disk);
2119 sysfs_remove_link(&mddev->kobj, nm);
2120 if (sysfs_create_link(&mddev->kobj,
2121 &rdev->kobj, nm))
2122 printk(KERN_WARNING
2123 "md/raid1: cannot register "
2124 "%s for %s\n",
2125 nm, mdname(mddev));
6ea9c07c 2126 }
a88aa786
N
2127 if (rdev)
2128 newmirrors[d2++].rdev = rdev;
2129 }
1da177e4
LT
2130 kfree(conf->mirrors);
2131 conf->mirrors = newmirrors;
2132 kfree(conf->poolinfo);
2133 conf->poolinfo = newpoolinfo;
2134
c04be0aa 2135 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2136 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2137 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2138 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2139 mddev->delta_disks = 0;
1da177e4 2140
6ea9c07c 2141 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2142 lower_barrier(conf);
1da177e4
LT
2143
2144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2145 md_wakeup_thread(mddev->thread);
2146
2147 mempool_destroy(oldpool);
2148 return 0;
2149}
2150
500af87a 2151static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063
N
2152{
2153 conf_t *conf = mddev_to_conf(mddev);
2154
2155 switch(state) {
9e6603da 2156 case 1:
17999be4 2157 raise_barrier(conf);
36fa3063 2158 break;
9e6603da 2159 case 0:
17999be4 2160 lower_barrier(conf);
36fa3063
N
2161 break;
2162 }
36fa3063
N
2163}
2164
1da177e4 2165
2604b703 2166static struct mdk_personality raid1_personality =
1da177e4
LT
2167{
2168 .name = "raid1",
2604b703 2169 .level = 1,
1da177e4
LT
2170 .owner = THIS_MODULE,
2171 .make_request = make_request,
2172 .run = run,
2173 .stop = stop,
2174 .status = status,
2175 .error_handler = error,
2176 .hot_add_disk = raid1_add_disk,
2177 .hot_remove_disk= raid1_remove_disk,
2178 .spare_active = raid1_spare_active,
2179 .sync_request = sync_request,
2180 .resize = raid1_resize,
63c70c4f 2181 .check_reshape = raid1_reshape,
36fa3063 2182 .quiesce = raid1_quiesce,
1da177e4
LT
2183};
2184
2185static int __init raid_init(void)
2186{
2604b703 2187 return register_md_personality(&raid1_personality);
1da177e4
LT
2188}
2189
2190static void raid_exit(void)
2191{
2604b703 2192 unregister_md_personality(&raid1_personality);
1da177e4
LT
2193}
2194
2195module_init(raid_init);
2196module_exit(raid_exit);
2197MODULE_LICENSE("GPL");
2198MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2199MODULE_ALIAS("md-raid1");
2604b703 2200MODULE_ALIAS("md-level-1");