]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/gem: handlecount isn't really a kref so don't make it one.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 40static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
43static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 49static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
50static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
de151cf6 52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
53static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
be72615b 56static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
7d1c4804
CW
61static inline bool
62i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
63{
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
67}
68
79e53945
JB
69int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
673a394b
EA
71{
72 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 73
79e53945
JB
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
77 return -EINVAL;
78 }
79
79e53945
JB
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
673a394b 82
79e53945
JB
83 dev->gtt_total = (uint32_t) (end - start);
84
85 return 0;
86}
673a394b 87
79e53945
JB
88int
89i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91{
92 struct drm_i915_gem_init *args = data;
93 int ret;
94
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
97 mutex_unlock(&dev->struct_mutex);
98
79e53945 99 return ret;
673a394b
EA
100}
101
5a125c3c
EA
102int
103i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
105{
5a125c3c 106 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
107
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
110
111 args->aper_size = dev->gtt_total;
2678d9d6
KP
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
5a125c3c
EA
114
115 return 0;
116}
117
673a394b
EA
118
119/**
120 * Creates a new mm object and returns a handle to it.
121 */
122int
123i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
125{
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
a1a2d1d3
PP
128 int ret;
129 u32 handle;
673a394b
EA
130
131 args->size = roundup(args->size, PAGE_SIZE);
132
133 /* Allocate the new object */
ac52bc56 134 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
135 if (obj == NULL)
136 return -ENOMEM;
137
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
29d08b3e
DA
139 /* drop reference from allocate - handle holds it now */
140 drm_gem_object_unreference_unlocked(obj);
1dfd9754 141 if (ret) {
673a394b 142 return ret;
1dfd9754 143 }
673a394b 144
1dfd9754 145 args->handle = handle;
673a394b
EA
146 return 0;
147}
148
eb01459f
EA
149static inline int
150fast_shmem_read(struct page **pages,
151 loff_t page_base, int page_offset,
152 char __user *data,
153 int length)
154{
155 char __iomem *vaddr;
2bc43b5c 156 int unwritten;
eb01459f
EA
157
158 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
159 if (vaddr == NULL)
160 return -ENOMEM;
2bc43b5c 161 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
162 kunmap_atomic(vaddr, KM_USER0);
163
2bc43b5c
FM
164 if (unwritten)
165 return -EFAULT;
166
167 return 0;
eb01459f
EA
168}
169
280b713b
EA
170static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
171{
172 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 173 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
174
175 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
176 obj_priv->tiling_mode != I915_TILING_NONE;
177}
178
99a03df5 179static inline void
40123c1f
EA
180slow_shmem_copy(struct page *dst_page,
181 int dst_offset,
182 struct page *src_page,
183 int src_offset,
184 int length)
185{
186 char *dst_vaddr, *src_vaddr;
187
99a03df5
CW
188 dst_vaddr = kmap(dst_page);
189 src_vaddr = kmap(src_page);
40123c1f
EA
190
191 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
192
99a03df5
CW
193 kunmap(src_page);
194 kunmap(dst_page);
40123c1f
EA
195}
196
99a03df5 197static inline void
280b713b
EA
198slow_shmem_bit17_copy(struct page *gpu_page,
199 int gpu_offset,
200 struct page *cpu_page,
201 int cpu_offset,
202 int length,
203 int is_read)
204{
205 char *gpu_vaddr, *cpu_vaddr;
206
207 /* Use the unswizzled path if this page isn't affected. */
208 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
209 if (is_read)
210 return slow_shmem_copy(cpu_page, cpu_offset,
211 gpu_page, gpu_offset, length);
212 else
213 return slow_shmem_copy(gpu_page, gpu_offset,
214 cpu_page, cpu_offset, length);
215 }
216
99a03df5
CW
217 gpu_vaddr = kmap(gpu_page);
218 cpu_vaddr = kmap(cpu_page);
280b713b
EA
219
220 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
221 * XORing with the other bits (A9 for Y, A9 and A10 for X)
222 */
223 while (length > 0) {
224 int cacheline_end = ALIGN(gpu_offset + 1, 64);
225 int this_length = min(cacheline_end - gpu_offset, length);
226 int swizzled_gpu_offset = gpu_offset ^ 64;
227
228 if (is_read) {
229 memcpy(cpu_vaddr + cpu_offset,
230 gpu_vaddr + swizzled_gpu_offset,
231 this_length);
232 } else {
233 memcpy(gpu_vaddr + swizzled_gpu_offset,
234 cpu_vaddr + cpu_offset,
235 this_length);
236 }
237 cpu_offset += this_length;
238 gpu_offset += this_length;
239 length -= this_length;
240 }
241
99a03df5
CW
242 kunmap(cpu_page);
243 kunmap(gpu_page);
280b713b
EA
244}
245
eb01459f
EA
246/**
247 * This is the fast shmem pread path, which attempts to copy_from_user directly
248 * from the backing pages of the object to the user's address space. On a
249 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
250 */
251static int
252i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
253 struct drm_i915_gem_pread *args,
254 struct drm_file *file_priv)
255{
23010e43 256 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
257 ssize_t remain;
258 loff_t offset, page_base;
259 char __user *user_data;
260 int page_offset, page_length;
261 int ret;
262
263 user_data = (char __user *) (uintptr_t) args->data_ptr;
264 remain = args->size;
265
266 mutex_lock(&dev->struct_mutex);
267
4bdadb97 268 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
269 if (ret != 0)
270 goto fail_unlock;
271
272 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
273 args->size);
274 if (ret != 0)
275 goto fail_put_pages;
276
23010e43 277 obj_priv = to_intel_bo(obj);
eb01459f
EA
278 offset = args->offset;
279
280 while (remain > 0) {
281 /* Operation in this page
282 *
283 * page_base = page offset within aperture
284 * page_offset = offset within page
285 * page_length = bytes to copy for this page
286 */
287 page_base = (offset & ~(PAGE_SIZE-1));
288 page_offset = offset & (PAGE_SIZE-1);
289 page_length = remain;
290 if ((page_offset + remain) > PAGE_SIZE)
291 page_length = PAGE_SIZE - page_offset;
292
293 ret = fast_shmem_read(obj_priv->pages,
294 page_base, page_offset,
295 user_data, page_length);
296 if (ret)
297 goto fail_put_pages;
298
299 remain -= page_length;
300 user_data += page_length;
301 offset += page_length;
302 }
303
304fail_put_pages:
305 i915_gem_object_put_pages(obj);
306fail_unlock:
307 mutex_unlock(&dev->struct_mutex);
308
309 return ret;
310}
311
07f73f69
CW
312static int
313i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
314{
315 int ret;
316
4bdadb97 317 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
318
319 /* If we've insufficient memory to map in the pages, attempt
320 * to make some space by throwing out some old buffers.
321 */
322 if (ret == -ENOMEM) {
323 struct drm_device *dev = obj->dev;
07f73f69 324
0108a3ed
DV
325 ret = i915_gem_evict_something(dev, obj->size,
326 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
327 if (ret)
328 return ret;
329
4bdadb97 330 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
331 }
332
333 return ret;
334}
335
eb01459f
EA
336/**
337 * This is the fallback shmem pread path, which allocates temporary storage
338 * in kernel space to copy_to_user into outside of the struct_mutex, so we
339 * can copy out of the object's backing pages while holding the struct mutex
340 * and not take page faults.
341 */
342static int
343i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
344 struct drm_i915_gem_pread *args,
345 struct drm_file *file_priv)
346{
23010e43 347 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
348 struct mm_struct *mm = current->mm;
349 struct page **user_pages;
350 ssize_t remain;
351 loff_t offset, pinned_pages, i;
352 loff_t first_data_page, last_data_page, num_pages;
353 int shmem_page_index, shmem_page_offset;
354 int data_page_index, data_page_offset;
355 int page_length;
356 int ret;
357 uint64_t data_ptr = args->data_ptr;
280b713b 358 int do_bit17_swizzling;
eb01459f
EA
359
360 remain = args->size;
361
362 /* Pin the user pages containing the data. We can't fault while
363 * holding the struct mutex, yet we want to hold it while
364 * dereferencing the user data.
365 */
366 first_data_page = data_ptr / PAGE_SIZE;
367 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
368 num_pages = last_data_page - first_data_page + 1;
369
8e7d2b2c 370 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
371 if (user_pages == NULL)
372 return -ENOMEM;
373
374 down_read(&mm->mmap_sem);
375 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 376 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
377 up_read(&mm->mmap_sem);
378 if (pinned_pages < num_pages) {
379 ret = -EFAULT;
380 goto fail_put_user_pages;
381 }
382
280b713b
EA
383 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
384
eb01459f
EA
385 mutex_lock(&dev->struct_mutex);
386
07f73f69
CW
387 ret = i915_gem_object_get_pages_or_evict(obj);
388 if (ret)
eb01459f
EA
389 goto fail_unlock;
390
391 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
392 args->size);
393 if (ret != 0)
394 goto fail_put_pages;
395
23010e43 396 obj_priv = to_intel_bo(obj);
eb01459f
EA
397 offset = args->offset;
398
399 while (remain > 0) {
400 /* Operation in this page
401 *
402 * shmem_page_index = page number within shmem file
403 * shmem_page_offset = offset within page in shmem file
404 * data_page_index = page number in get_user_pages return
405 * data_page_offset = offset with data_page_index page.
406 * page_length = bytes to copy for this page
407 */
408 shmem_page_index = offset / PAGE_SIZE;
409 shmem_page_offset = offset & ~PAGE_MASK;
410 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
411 data_page_offset = data_ptr & ~PAGE_MASK;
412
413 page_length = remain;
414 if ((shmem_page_offset + page_length) > PAGE_SIZE)
415 page_length = PAGE_SIZE - shmem_page_offset;
416 if ((data_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - data_page_offset;
418
280b713b 419 if (do_bit17_swizzling) {
99a03df5 420 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 421 shmem_page_offset,
99a03df5
CW
422 user_pages[data_page_index],
423 data_page_offset,
424 page_length,
425 1);
426 } else {
427 slow_shmem_copy(user_pages[data_page_index],
428 data_page_offset,
429 obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 page_length);
280b713b 432 }
eb01459f
EA
433
434 remain -= page_length;
435 data_ptr += page_length;
436 offset += page_length;
437 }
438
439fail_put_pages:
440 i915_gem_object_put_pages(obj);
441fail_unlock:
442 mutex_unlock(&dev->struct_mutex);
443fail_put_user_pages:
444 for (i = 0; i < pinned_pages; i++) {
445 SetPageDirty(user_pages[i]);
446 page_cache_release(user_pages[i]);
447 }
8e7d2b2c 448 drm_free_large(user_pages);
eb01459f
EA
449
450 return ret;
451}
452
673a394b
EA
453/**
454 * Reads data from the object referenced by handle.
455 *
456 * On error, the contents of *data are undefined.
457 */
458int
459i915_gem_pread_ioctl(struct drm_device *dev, void *data,
460 struct drm_file *file_priv)
461{
462 struct drm_i915_gem_pread *args = data;
463 struct drm_gem_object *obj;
464 struct drm_i915_gem_object *obj_priv;
673a394b
EA
465 int ret;
466
467 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
468 if (obj == NULL)
bf79cb91 469 return -ENOENT;
23010e43 470 obj_priv = to_intel_bo(obj);
673a394b
EA
471
472 /* Bounds check source.
473 *
474 * XXX: This could use review for overflow issues...
475 */
476 if (args->offset > obj->size || args->size > obj->size ||
477 args->offset + args->size > obj->size) {
bc9025bd 478 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
479 return -EINVAL;
480 }
481
280b713b 482 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 483 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
484 } else {
485 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
486 if (ret != 0)
487 ret = i915_gem_shmem_pread_slow(dev, obj, args,
488 file_priv);
489 }
673a394b 490
bc9025bd 491 drm_gem_object_unreference_unlocked(obj);
673a394b 492
eb01459f 493 return ret;
673a394b
EA
494}
495
0839ccb8
KP
496/* This is the fast write path which cannot handle
497 * page faults in the source data
9b7530cc 498 */
0839ccb8
KP
499
500static inline int
501fast_user_write(struct io_mapping *mapping,
502 loff_t page_base, int page_offset,
503 char __user *user_data,
504 int length)
9b7530cc 505{
9b7530cc 506 char *vaddr_atomic;
0839ccb8 507 unsigned long unwritten;
9b7530cc 508
fca3ec01 509 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
510 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
511 user_data, length);
fca3ec01 512 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
513 if (unwritten)
514 return -EFAULT;
515 return 0;
516}
517
518/* Here's the write path which can sleep for
519 * page faults
520 */
521
ab34c226 522static inline void
3de09aa3
EA
523slow_kernel_write(struct io_mapping *mapping,
524 loff_t gtt_base, int gtt_offset,
525 struct page *user_page, int user_offset,
526 int length)
0839ccb8 527{
ab34c226
CW
528 char __iomem *dst_vaddr;
529 char *src_vaddr;
0839ccb8 530
ab34c226
CW
531 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
532 src_vaddr = kmap(user_page);
533
534 memcpy_toio(dst_vaddr + gtt_offset,
535 src_vaddr + user_offset,
536 length);
537
538 kunmap(user_page);
539 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
540}
541
40123c1f
EA
542static inline int
543fast_shmem_write(struct page **pages,
544 loff_t page_base, int page_offset,
545 char __user *data,
546 int length)
547{
548 char __iomem *vaddr;
d0088775 549 unsigned long unwritten;
40123c1f
EA
550
551 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
552 if (vaddr == NULL)
553 return -ENOMEM;
d0088775 554 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
555 kunmap_atomic(vaddr, KM_USER0);
556
d0088775
DA
557 if (unwritten)
558 return -EFAULT;
40123c1f
EA
559 return 0;
560}
561
3de09aa3
EA
562/**
563 * This is the fast pwrite path, where we copy the data directly from the
564 * user into the GTT, uncached.
565 */
673a394b 566static int
3de09aa3
EA
567i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
568 struct drm_i915_gem_pwrite *args,
569 struct drm_file *file_priv)
673a394b 570{
23010e43 571 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 572 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 573 ssize_t remain;
0839ccb8 574 loff_t offset, page_base;
673a394b 575 char __user *user_data;
0839ccb8
KP
576 int page_offset, page_length;
577 int ret;
673a394b
EA
578
579 user_data = (char __user *) (uintptr_t) args->data_ptr;
580 remain = args->size;
581 if (!access_ok(VERIFY_READ, user_data, remain))
582 return -EFAULT;
583
584
585 mutex_lock(&dev->struct_mutex);
586 ret = i915_gem_object_pin(obj, 0);
587 if (ret) {
588 mutex_unlock(&dev->struct_mutex);
589 return ret;
590 }
2ef7eeaa 591 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
592 if (ret)
593 goto fail;
594
23010e43 595 obj_priv = to_intel_bo(obj);
673a394b 596 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
597
598 while (remain > 0) {
599 /* Operation in this page
600 *
0839ccb8
KP
601 * page_base = page offset within aperture
602 * page_offset = offset within page
603 * page_length = bytes to copy for this page
673a394b 604 */
0839ccb8
KP
605 page_base = (offset & ~(PAGE_SIZE-1));
606 page_offset = offset & (PAGE_SIZE-1);
607 page_length = remain;
608 if ((page_offset + remain) > PAGE_SIZE)
609 page_length = PAGE_SIZE - page_offset;
610
611 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
612 page_offset, user_data, page_length);
613
614 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
615 * source page isn't available. Return the error and we'll
616 * retry in the slow path.
0839ccb8 617 */
3de09aa3
EA
618 if (ret)
619 goto fail;
673a394b 620
0839ccb8
KP
621 remain -= page_length;
622 user_data += page_length;
623 offset += page_length;
673a394b 624 }
673a394b
EA
625
626fail:
627 i915_gem_object_unpin(obj);
628 mutex_unlock(&dev->struct_mutex);
629
630 return ret;
631}
632
3de09aa3
EA
633/**
634 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
635 * the memory and maps it using kmap_atomic for copying.
636 *
637 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
638 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
639 */
3043c60c 640static int
3de09aa3
EA
641i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
642 struct drm_i915_gem_pwrite *args,
643 struct drm_file *file_priv)
673a394b 644{
23010e43 645 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
646 drm_i915_private_t *dev_priv = dev->dev_private;
647 ssize_t remain;
648 loff_t gtt_page_base, offset;
649 loff_t first_data_page, last_data_page, num_pages;
650 loff_t pinned_pages, i;
651 struct page **user_pages;
652 struct mm_struct *mm = current->mm;
653 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 654 int ret;
3de09aa3
EA
655 uint64_t data_ptr = args->data_ptr;
656
657 remain = args->size;
658
659 /* Pin the user pages containing the data. We can't fault while
660 * holding the struct mutex, and all of the pwrite implementations
661 * want to hold it while dereferencing the user data.
662 */
663 first_data_page = data_ptr / PAGE_SIZE;
664 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
665 num_pages = last_data_page - first_data_page + 1;
666
8e7d2b2c 667 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
668 if (user_pages == NULL)
669 return -ENOMEM;
670
671 down_read(&mm->mmap_sem);
672 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
673 num_pages, 0, 0, user_pages, NULL);
674 up_read(&mm->mmap_sem);
675 if (pinned_pages < num_pages) {
676 ret = -EFAULT;
677 goto out_unpin_pages;
678 }
673a394b
EA
679
680 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
681 ret = i915_gem_object_pin(obj, 0);
682 if (ret)
683 goto out_unlock;
684
685 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
686 if (ret)
687 goto out_unpin_object;
688
23010e43 689 obj_priv = to_intel_bo(obj);
3de09aa3
EA
690 offset = obj_priv->gtt_offset + args->offset;
691
692 while (remain > 0) {
693 /* Operation in this page
694 *
695 * gtt_page_base = page offset within aperture
696 * gtt_page_offset = offset within page in aperture
697 * data_page_index = page number in get_user_pages return
698 * data_page_offset = offset with data_page_index page.
699 * page_length = bytes to copy for this page
700 */
701 gtt_page_base = offset & PAGE_MASK;
702 gtt_page_offset = offset & ~PAGE_MASK;
703 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
704 data_page_offset = data_ptr & ~PAGE_MASK;
705
706 page_length = remain;
707 if ((gtt_page_offset + page_length) > PAGE_SIZE)
708 page_length = PAGE_SIZE - gtt_page_offset;
709 if ((data_page_offset + page_length) > PAGE_SIZE)
710 page_length = PAGE_SIZE - data_page_offset;
711
ab34c226
CW
712 slow_kernel_write(dev_priv->mm.gtt_mapping,
713 gtt_page_base, gtt_page_offset,
714 user_pages[data_page_index],
715 data_page_offset,
716 page_length);
3de09aa3
EA
717
718 remain -= page_length;
719 offset += page_length;
720 data_ptr += page_length;
721 }
722
723out_unpin_object:
724 i915_gem_object_unpin(obj);
725out_unlock:
726 mutex_unlock(&dev->struct_mutex);
727out_unpin_pages:
728 for (i = 0; i < pinned_pages; i++)
729 page_cache_release(user_pages[i]);
8e7d2b2c 730 drm_free_large(user_pages);
3de09aa3
EA
731
732 return ret;
733}
734
40123c1f
EA
735/**
736 * This is the fast shmem pwrite path, which attempts to directly
737 * copy_from_user into the kmapped pages backing the object.
738 */
3043c60c 739static int
40123c1f
EA
740i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
741 struct drm_i915_gem_pwrite *args,
742 struct drm_file *file_priv)
673a394b 743{
23010e43 744 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
745 ssize_t remain;
746 loff_t offset, page_base;
747 char __user *user_data;
748 int page_offset, page_length;
673a394b 749 int ret;
40123c1f
EA
750
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
673a394b
EA
753
754 mutex_lock(&dev->struct_mutex);
755
4bdadb97 756 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
757 if (ret != 0)
758 goto fail_unlock;
673a394b 759
e47c68e9 760 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
761 if (ret != 0)
762 goto fail_put_pages;
763
23010e43 764 obj_priv = to_intel_bo(obj);
40123c1f
EA
765 offset = args->offset;
766 obj_priv->dirty = 1;
767
768 while (remain > 0) {
769 /* Operation in this page
770 *
771 * page_base = page offset within aperture
772 * page_offset = offset within page
773 * page_length = bytes to copy for this page
774 */
775 page_base = (offset & ~(PAGE_SIZE-1));
776 page_offset = offset & (PAGE_SIZE-1);
777 page_length = remain;
778 if ((page_offset + remain) > PAGE_SIZE)
779 page_length = PAGE_SIZE - page_offset;
780
781 ret = fast_shmem_write(obj_priv->pages,
782 page_base, page_offset,
783 user_data, page_length);
784 if (ret)
785 goto fail_put_pages;
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792fail_put_pages:
793 i915_gem_object_put_pages(obj);
794fail_unlock:
795 mutex_unlock(&dev->struct_mutex);
796
797 return ret;
798}
799
800/**
801 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
802 * the memory and maps it using kmap_atomic for copying.
803 *
804 * This avoids taking mmap_sem for faulting on the user's address while the
805 * struct_mutex is held.
806 */
807static int
808i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
809 struct drm_i915_gem_pwrite *args,
810 struct drm_file *file_priv)
811{
23010e43 812 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
813 struct mm_struct *mm = current->mm;
814 struct page **user_pages;
815 ssize_t remain;
816 loff_t offset, pinned_pages, i;
817 loff_t first_data_page, last_data_page, num_pages;
818 int shmem_page_index, shmem_page_offset;
819 int data_page_index, data_page_offset;
820 int page_length;
821 int ret;
822 uint64_t data_ptr = args->data_ptr;
280b713b 823 int do_bit17_swizzling;
40123c1f
EA
824
825 remain = args->size;
826
827 /* Pin the user pages containing the data. We can't fault while
828 * holding the struct mutex, and all of the pwrite implementations
829 * want to hold it while dereferencing the user data.
830 */
831 first_data_page = data_ptr / PAGE_SIZE;
832 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
833 num_pages = last_data_page - first_data_page + 1;
834
8e7d2b2c 835 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
836 if (user_pages == NULL)
837 return -ENOMEM;
838
839 down_read(&mm->mmap_sem);
840 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
841 num_pages, 0, 0, user_pages, NULL);
842 up_read(&mm->mmap_sem);
843 if (pinned_pages < num_pages) {
844 ret = -EFAULT;
845 goto fail_put_user_pages;
673a394b
EA
846 }
847
280b713b
EA
848 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
849
40123c1f
EA
850 mutex_lock(&dev->struct_mutex);
851
07f73f69
CW
852 ret = i915_gem_object_get_pages_or_evict(obj);
853 if (ret)
40123c1f
EA
854 goto fail_unlock;
855
856 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
857 if (ret != 0)
858 goto fail_put_pages;
859
23010e43 860 obj_priv = to_intel_bo(obj);
673a394b 861 offset = args->offset;
40123c1f 862 obj_priv->dirty = 1;
673a394b 863
40123c1f
EA
864 while (remain > 0) {
865 /* Operation in this page
866 *
867 * shmem_page_index = page number within shmem file
868 * shmem_page_offset = offset within page in shmem file
869 * data_page_index = page number in get_user_pages return
870 * data_page_offset = offset with data_page_index page.
871 * page_length = bytes to copy for this page
872 */
873 shmem_page_index = offset / PAGE_SIZE;
874 shmem_page_offset = offset & ~PAGE_MASK;
875 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
876 data_page_offset = data_ptr & ~PAGE_MASK;
877
878 page_length = remain;
879 if ((shmem_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - shmem_page_offset;
881 if ((data_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - data_page_offset;
883
280b713b 884 if (do_bit17_swizzling) {
99a03df5 885 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
886 shmem_page_offset,
887 user_pages[data_page_index],
888 data_page_offset,
99a03df5
CW
889 page_length,
890 0);
891 } else {
892 slow_shmem_copy(obj_priv->pages[shmem_page_index],
893 shmem_page_offset,
894 user_pages[data_page_index],
895 data_page_offset,
896 page_length);
280b713b 897 }
40123c1f
EA
898
899 remain -= page_length;
900 data_ptr += page_length;
901 offset += page_length;
673a394b
EA
902 }
903
40123c1f
EA
904fail_put_pages:
905 i915_gem_object_put_pages(obj);
906fail_unlock:
673a394b 907 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
908fail_put_user_pages:
909 for (i = 0; i < pinned_pages; i++)
910 page_cache_release(user_pages[i]);
8e7d2b2c 911 drm_free_large(user_pages);
673a394b 912
40123c1f 913 return ret;
673a394b
EA
914}
915
916/**
917 * Writes data to the object referenced by handle.
918 *
919 * On error, the contents of the buffer that were to be modified are undefined.
920 */
921int
922i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
923 struct drm_file *file_priv)
924{
925 struct drm_i915_gem_pwrite *args = data;
926 struct drm_gem_object *obj;
927 struct drm_i915_gem_object *obj_priv;
928 int ret = 0;
929
930 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
931 if (obj == NULL)
bf79cb91 932 return -ENOENT;
23010e43 933 obj_priv = to_intel_bo(obj);
673a394b
EA
934
935 /* Bounds check destination.
936 *
937 * XXX: This could use review for overflow issues...
938 */
939 if (args->offset > obj->size || args->size > obj->size ||
940 args->offset + args->size > obj->size) {
bc9025bd 941 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
942 return -EINVAL;
943 }
944
945 /* We can only do the GTT pwrite on untiled buffers, as otherwise
946 * it would end up going through the fenced access, and we'll get
947 * different detiling behavior between reading and writing.
948 * pread/pwrite currently are reading and writing from the CPU
949 * perspective, requiring manual detiling by the client.
950 */
71acb5eb
DA
951 if (obj_priv->phys_obj)
952 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
953 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
954 dev->gtt_total != 0 &&
955 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
956 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
959 file_priv);
960 }
280b713b
EA
961 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
962 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
963 } else {
964 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
965 if (ret == -EFAULT) {
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
967 file_priv);
968 }
969 }
673a394b
EA
970
971#if WATCH_PWRITE
972 if (ret)
973 DRM_INFO("pwrite failed %d\n", ret);
974#endif
975
bc9025bd 976 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
977
978 return ret;
979}
980
981/**
2ef7eeaa
EA
982 * Called when user space prepares to use an object with the CPU, either
983 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
984 */
985int
986i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
987 struct drm_file *file_priv)
988{
a09ba7fa 989 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
990 struct drm_i915_gem_set_domain *args = data;
991 struct drm_gem_object *obj;
652c393a 992 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
993 uint32_t read_domains = args->read_domains;
994 uint32_t write_domain = args->write_domain;
673a394b
EA
995 int ret;
996
997 if (!(dev->driver->driver_features & DRIVER_GEM))
998 return -ENODEV;
999
2ef7eeaa 1000 /* Only handle setting domains to types used by the CPU. */
21d509e3 1001 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1002 return -EINVAL;
1003
21d509e3 1004 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1005 return -EINVAL;
1006
1007 /* Having something in the write domain implies it's in the read
1008 * domain, and only that read domain. Enforce that in the request.
1009 */
1010 if (write_domain != 0 && read_domains != write_domain)
1011 return -EINVAL;
1012
673a394b
EA
1013 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1014 if (obj == NULL)
bf79cb91 1015 return -ENOENT;
23010e43 1016 obj_priv = to_intel_bo(obj);
673a394b
EA
1017
1018 mutex_lock(&dev->struct_mutex);
652c393a
JB
1019
1020 intel_mark_busy(dev, obj);
1021
673a394b 1022#if WATCH_BUF
cfd43c02 1023 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1024 obj, obj->size, read_domains, write_domain);
673a394b 1025#endif
2ef7eeaa
EA
1026 if (read_domains & I915_GEM_DOMAIN_GTT) {
1027 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1028
a09ba7fa
EA
1029 /* Update the LRU on the fence for the CPU access that's
1030 * about to occur.
1031 */
1032 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1033 struct drm_i915_fence_reg *reg =
1034 &dev_priv->fence_regs[obj_priv->fence_reg];
1035 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1036 &dev_priv->mm.fence_list);
1037 }
1038
02354392
EA
1039 /* Silently promote "you're not bound, there was nothing to do"
1040 * to success, since the client was just asking us to
1041 * make sure everything was done.
1042 */
1043 if (ret == -EINVAL)
1044 ret = 0;
2ef7eeaa 1045 } else {
e47c68e9 1046 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1047 }
1048
7d1c4804
CW
1049
1050 /* Maintain LRU order of "inactive" objects */
1051 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1052 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1053
673a394b
EA
1054 drm_gem_object_unreference(obj);
1055 mutex_unlock(&dev->struct_mutex);
1056 return ret;
1057}
1058
1059/**
1060 * Called when user space has done writes to this buffer
1061 */
1062int
1063i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065{
1066 struct drm_i915_gem_sw_finish *args = data;
1067 struct drm_gem_object *obj;
1068 struct drm_i915_gem_object *obj_priv;
1069 int ret = 0;
1070
1071 if (!(dev->driver->driver_features & DRIVER_GEM))
1072 return -ENODEV;
1073
1074 mutex_lock(&dev->struct_mutex);
1075 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1076 if (obj == NULL) {
1077 mutex_unlock(&dev->struct_mutex);
bf79cb91 1078 return -ENOENT;
673a394b
EA
1079 }
1080
1081#if WATCH_BUF
cfd43c02 1082 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1083 __func__, args->handle, obj, obj->size);
1084#endif
23010e43 1085 obj_priv = to_intel_bo(obj);
673a394b
EA
1086
1087 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1088 if (obj_priv->pin_count)
1089 i915_gem_object_flush_cpu_write_domain(obj);
1090
673a394b
EA
1091 drm_gem_object_unreference(obj);
1092 mutex_unlock(&dev->struct_mutex);
1093 return ret;
1094}
1095
1096/**
1097 * Maps the contents of an object, returning the address it is mapped
1098 * into.
1099 *
1100 * While the mapping holds a reference on the contents of the object, it doesn't
1101 * imply a ref on the object itself.
1102 */
1103int
1104i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1105 struct drm_file *file_priv)
1106{
1107 struct drm_i915_gem_mmap *args = data;
1108 struct drm_gem_object *obj;
1109 loff_t offset;
1110 unsigned long addr;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
1115 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1116 if (obj == NULL)
bf79cb91 1117 return -ENOENT;
673a394b
EA
1118
1119 offset = args->offset;
1120
1121 down_write(&current->mm->mmap_sem);
1122 addr = do_mmap(obj->filp, 0, args->size,
1123 PROT_READ | PROT_WRITE, MAP_SHARED,
1124 args->offset);
1125 up_write(&current->mm->mmap_sem);
bc9025bd 1126 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1127 if (IS_ERR((void *)addr))
1128 return addr;
1129
1130 args->addr_ptr = (uint64_t) addr;
1131
1132 return 0;
1133}
1134
de151cf6
JB
1135/**
1136 * i915_gem_fault - fault a page into the GTT
1137 * vma: VMA in question
1138 * vmf: fault info
1139 *
1140 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1141 * from userspace. The fault handler takes care of binding the object to
1142 * the GTT (if needed), allocating and programming a fence register (again,
1143 * only if needed based on whether the old reg is still valid or the object
1144 * is tiled) and inserting a new PTE into the faulting process.
1145 *
1146 * Note that the faulting process may involve evicting existing objects
1147 * from the GTT and/or fence registers to make room. So performance may
1148 * suffer if the GTT working set is large or there are few fence registers
1149 * left.
1150 */
1151int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1152{
1153 struct drm_gem_object *obj = vma->vm_private_data;
1154 struct drm_device *dev = obj->dev;
7d1c4804 1155 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1156 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1157 pgoff_t page_offset;
1158 unsigned long pfn;
1159 int ret = 0;
0f973f27 1160 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1161
1162 /* We don't use vmf->pgoff since that has the fake offset */
1163 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1164 PAGE_SHIFT;
1165
1166 /* Now bind it into the GTT if needed */
1167 mutex_lock(&dev->struct_mutex);
1168 if (!obj_priv->gtt_space) {
e67b8ce1 1169 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1170 if (ret)
1171 goto unlock;
07f4f3e8 1172
07f4f3e8 1173 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1174 if (ret)
1175 goto unlock;
de151cf6
JB
1176 }
1177
1178 /* Need a new fence register? */
a09ba7fa 1179 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1180 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1181 if (ret)
1182 goto unlock;
d9ddcb96 1183 }
de151cf6 1184
7d1c4804
CW
1185 if (i915_gem_object_is_inactive(obj_priv))
1186 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
de151cf6
JB
1188 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1189 page_offset;
1190
1191 /* Finally, remap it using the new GTT offset */
1192 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1193unlock:
de151cf6
JB
1194 mutex_unlock(&dev->struct_mutex);
1195
1196 switch (ret) {
c715089f
CW
1197 case 0:
1198 case -ERESTARTSYS:
1199 return VM_FAULT_NOPAGE;
de151cf6
JB
1200 case -ENOMEM:
1201 case -EAGAIN:
1202 return VM_FAULT_OOM;
de151cf6 1203 default:
c715089f 1204 return VM_FAULT_SIGBUS;
de151cf6
JB
1205 }
1206}
1207
1208/**
1209 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1210 * @obj: obj in question
1211 *
1212 * GEM memory mapping works by handing back to userspace a fake mmap offset
1213 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1214 * up the object based on the offset and sets up the various memory mapping
1215 * structures.
1216 *
1217 * This routine allocates and attaches a fake offset for @obj.
1218 */
1219static int
1220i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1221{
1222 struct drm_device *dev = obj->dev;
1223 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1224 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1225 struct drm_map_list *list;
f77d390c 1226 struct drm_local_map *map;
de151cf6
JB
1227 int ret = 0;
1228
1229 /* Set the object up for mmap'ing */
1230 list = &obj->map_list;
9a298b2a 1231 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1232 if (!list->map)
1233 return -ENOMEM;
1234
1235 map = list->map;
1236 map->type = _DRM_GEM;
1237 map->size = obj->size;
1238 map->handle = obj;
1239
1240 /* Get a DRM GEM mmap offset allocated... */
1241 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1242 obj->size / PAGE_SIZE, 0, 0);
1243 if (!list->file_offset_node) {
1244 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1245 ret = -ENOMEM;
1246 goto out_free_list;
1247 }
1248
1249 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1250 obj->size / PAGE_SIZE, 0);
1251 if (!list->file_offset_node) {
1252 ret = -ENOMEM;
1253 goto out_free_list;
1254 }
1255
1256 list->hash.key = list->file_offset_node->start;
1257 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1258 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1259 ret = -ENOMEM;
de151cf6
JB
1260 goto out_free_mm;
1261 }
1262
1263 /* By now we should be all set, any drm_mmap request on the offset
1264 * below will get to our mmap & fault handler */
1265 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1266
1267 return 0;
1268
1269out_free_mm:
1270 drm_mm_put_block(list->file_offset_node);
1271out_free_list:
9a298b2a 1272 kfree(list->map);
de151cf6
JB
1273
1274 return ret;
1275}
1276
901782b2
CW
1277/**
1278 * i915_gem_release_mmap - remove physical page mappings
1279 * @obj: obj in question
1280 *
af901ca1 1281 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1282 * relinquish ownership of the pages back to the system.
1283 *
1284 * It is vital that we remove the page mapping if we have mapped a tiled
1285 * object through the GTT and then lose the fence register due to
1286 * resource pressure. Similarly if the object has been moved out of the
1287 * aperture, than pages mapped into userspace must be revoked. Removing the
1288 * mapping will then trigger a page fault on the next user access, allowing
1289 * fixup by i915_gem_fault().
1290 */
d05ca301 1291void
901782b2
CW
1292i915_gem_release_mmap(struct drm_gem_object *obj)
1293{
1294 struct drm_device *dev = obj->dev;
23010e43 1295 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1296
1297 if (dev->dev_mapping)
1298 unmap_mapping_range(dev->dev_mapping,
1299 obj_priv->mmap_offset, obj->size, 1);
1300}
1301
ab00b3e5
JB
1302static void
1303i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1304{
1305 struct drm_device *dev = obj->dev;
23010e43 1306 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1307 struct drm_gem_mm *mm = dev->mm_private;
1308 struct drm_map_list *list;
1309
1310 list = &obj->map_list;
1311 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1312
1313 if (list->file_offset_node) {
1314 drm_mm_put_block(list->file_offset_node);
1315 list->file_offset_node = NULL;
1316 }
1317
1318 if (list->map) {
9a298b2a 1319 kfree(list->map);
ab00b3e5
JB
1320 list->map = NULL;
1321 }
1322
1323 obj_priv->mmap_offset = 0;
1324}
1325
de151cf6
JB
1326/**
1327 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1328 * @obj: object to check
1329 *
1330 * Return the required GTT alignment for an object, taking into account
1331 * potential fence register mapping if needed.
1332 */
1333static uint32_t
1334i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1335{
1336 struct drm_device *dev = obj->dev;
23010e43 1337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1338 int start, i;
1339
1340 /*
1341 * Minimum alignment is 4k (GTT page size), but might be greater
1342 * if a fence register is needed for the object.
1343 */
1344 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1345 return 4096;
1346
1347 /*
1348 * Previous chips need to be aligned to the size of the smallest
1349 * fence register that can contain the object.
1350 */
1351 if (IS_I9XX(dev))
1352 start = 1024*1024;
1353 else
1354 start = 512*1024;
1355
1356 for (i = start; i < obj->size; i <<= 1)
1357 ;
1358
1359 return i;
1360}
1361
1362/**
1363 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1364 * @dev: DRM device
1365 * @data: GTT mapping ioctl data
1366 * @file_priv: GEM object info
1367 *
1368 * Simply returns the fake offset to userspace so it can mmap it.
1369 * The mmap call will end up in drm_gem_mmap(), which will set things
1370 * up so we can get faults in the handler above.
1371 *
1372 * The fault handler will take care of binding the object into the GTT
1373 * (since it may have been evicted to make room for something), allocating
1374 * a fence register, and mapping the appropriate aperture address into
1375 * userspace.
1376 */
1377int
1378i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1379 struct drm_file *file_priv)
1380{
1381 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1382 struct drm_gem_object *obj;
1383 struct drm_i915_gem_object *obj_priv;
1384 int ret;
1385
1386 if (!(dev->driver->driver_features & DRIVER_GEM))
1387 return -ENODEV;
1388
1389 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1390 if (obj == NULL)
bf79cb91 1391 return -ENOENT;
de151cf6
JB
1392
1393 mutex_lock(&dev->struct_mutex);
1394
23010e43 1395 obj_priv = to_intel_bo(obj);
de151cf6 1396
ab18282d
CW
1397 if (obj_priv->madv != I915_MADV_WILLNEED) {
1398 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1399 drm_gem_object_unreference(obj);
1400 mutex_unlock(&dev->struct_mutex);
1401 return -EINVAL;
1402 }
1403
1404
de151cf6
JB
1405 if (!obj_priv->mmap_offset) {
1406 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1407 if (ret) {
1408 drm_gem_object_unreference(obj);
1409 mutex_unlock(&dev->struct_mutex);
de151cf6 1410 return ret;
13af1062 1411 }
de151cf6
JB
1412 }
1413
1414 args->offset = obj_priv->mmap_offset;
1415
de151cf6
JB
1416 /*
1417 * Pull it into the GTT so that we have a page list (makes the
1418 * initial fault faster and any subsequent flushing possible).
1419 */
1420 if (!obj_priv->agp_mem) {
e67b8ce1 1421 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1422 if (ret) {
1423 drm_gem_object_unreference(obj);
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426 }
de151cf6
JB
1427 }
1428
1429 drm_gem_object_unreference(obj);
1430 mutex_unlock(&dev->struct_mutex);
1431
1432 return 0;
1433}
1434
6911a9b8 1435void
856fa198 1436i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1437{
23010e43 1438 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1439 int page_count = obj->size / PAGE_SIZE;
1440 int i;
1441
856fa198 1442 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1443 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1444
856fa198
EA
1445 if (--obj_priv->pages_refcount != 0)
1446 return;
673a394b 1447
280b713b
EA
1448 if (obj_priv->tiling_mode != I915_TILING_NONE)
1449 i915_gem_object_save_bit_17_swizzle(obj);
1450
3ef94daa 1451 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1452 obj_priv->dirty = 0;
3ef94daa
CW
1453
1454 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1455 if (obj_priv->dirty)
1456 set_page_dirty(obj_priv->pages[i]);
1457
1458 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1459 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1460
1461 page_cache_release(obj_priv->pages[i]);
1462 }
673a394b
EA
1463 obj_priv->dirty = 0;
1464
8e7d2b2c 1465 drm_free_large(obj_priv->pages);
856fa198 1466 obj_priv->pages = NULL;
673a394b
EA
1467}
1468
1469static void
852835f3
ZN
1470i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1471 struct intel_ring_buffer *ring)
673a394b
EA
1472{
1473 struct drm_device *dev = obj->dev;
1474 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1475 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1476 BUG_ON(ring == NULL);
1477 obj_priv->ring = ring;
673a394b
EA
1478
1479 /* Add a reference if we're newly entering the active list. */
1480 if (!obj_priv->active) {
1481 drm_gem_object_reference(obj);
1482 obj_priv->active = 1;
1483 }
1484 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1485 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1486 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1487 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1488 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1489}
1490
ce44b0ea
EA
1491static void
1492i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1493{
1494 struct drm_device *dev = obj->dev;
1495 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1496 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1497
1498 BUG_ON(!obj_priv->active);
1499 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1500 obj_priv->last_rendering_seqno = 0;
1501}
673a394b 1502
963b4836
CW
1503/* Immediately discard the backing storage */
1504static void
1505i915_gem_object_truncate(struct drm_gem_object *obj)
1506{
23010e43 1507 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1508 struct inode *inode;
963b4836 1509
ae9fed6b
CW
1510 /* Our goal here is to return as much of the memory as
1511 * is possible back to the system as we are called from OOM.
1512 * To do this we must instruct the shmfs to drop all of its
1513 * backing pages, *now*. Here we mirror the actions taken
1514 * when by shmem_delete_inode() to release the backing store.
1515 */
bb6baf76 1516 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1517 truncate_inode_pages(inode->i_mapping, 0);
1518 if (inode->i_op->truncate_range)
1519 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1520
1521 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1522}
1523
1524static inline int
1525i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1526{
1527 return obj_priv->madv == I915_MADV_DONTNEED;
1528}
1529
673a394b
EA
1530static void
1531i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1532{
1533 struct drm_device *dev = obj->dev;
1534 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1535 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1536
1537 i915_verify_inactive(dev, __FILE__, __LINE__);
1538 if (obj_priv->pin_count != 0)
1539 list_del_init(&obj_priv->list);
1540 else
1541 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1542
99fcb766
DV
1543 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1544
ce44b0ea 1545 obj_priv->last_rendering_seqno = 0;
852835f3 1546 obj_priv->ring = NULL;
673a394b
EA
1547 if (obj_priv->active) {
1548 obj_priv->active = 0;
1549 drm_gem_object_unreference(obj);
1550 }
1551 i915_verify_inactive(dev, __FILE__, __LINE__);
1552}
1553
63560396
DV
1554static void
1555i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1556 uint32_t flush_domains, uint32_t seqno,
1557 struct intel_ring_buffer *ring)
63560396
DV
1558{
1559 drm_i915_private_t *dev_priv = dev->dev_private;
1560 struct drm_i915_gem_object *obj_priv, *next;
1561
1562 list_for_each_entry_safe(obj_priv, next,
1563 &dev_priv->mm.gpu_write_list,
1564 gpu_write_list) {
a8089e84 1565 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1566
1567 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1568 obj->write_domain &&
1569 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1570 uint32_t old_write_domain = obj->write_domain;
1571
1572 obj->write_domain = 0;
1573 list_del_init(&obj_priv->gpu_write_list);
852835f3 1574 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1575
1576 /* update the fence lru list */
007cc8ac
DV
1577 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1578 struct drm_i915_fence_reg *reg =
1579 &dev_priv->fence_regs[obj_priv->fence_reg];
1580 list_move_tail(&reg->lru_list,
63560396 1581 &dev_priv->mm.fence_list);
007cc8ac 1582 }
63560396
DV
1583
1584 trace_i915_gem_object_change_domain(obj,
1585 obj->read_domains,
1586 old_write_domain);
1587 }
1588 }
1589}
8187a2b7 1590
5a5a0c64 1591uint32_t
b962442e 1592i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1593 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1594{
1595 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1596 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1597 struct drm_i915_gem_request *request;
1598 uint32_t seqno;
1599 int was_empty;
673a394b 1600
b962442e
EA
1601 if (file_priv != NULL)
1602 i915_file_priv = file_priv->driver_priv;
1603
9a298b2a 1604 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1605 if (request == NULL)
1606 return 0;
1607
852835f3 1608 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1609
1610 request->seqno = seqno;
852835f3 1611 request->ring = ring;
673a394b 1612 request->emitted_jiffies = jiffies;
852835f3
ZN
1613 was_empty = list_empty(&ring->request_list);
1614 list_add_tail(&request->list, &ring->request_list);
1615
b962442e
EA
1616 if (i915_file_priv) {
1617 list_add_tail(&request->client_list,
1618 &i915_file_priv->mm.request_list);
1619 } else {
1620 INIT_LIST_HEAD(&request->client_list);
1621 }
673a394b 1622
ce44b0ea
EA
1623 /* Associate any objects on the flushing list matching the write
1624 * domain we're flushing with our flush.
1625 */
63560396 1626 if (flush_domains != 0)
852835f3 1627 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1628
f65d9421
BG
1629 if (!dev_priv->mm.suspended) {
1630 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1631 if (was_empty)
1632 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1633 }
673a394b
EA
1634 return seqno;
1635}
1636
1637/**
1638 * Command execution barrier
1639 *
1640 * Ensures that all commands in the ring are finished
1641 * before signalling the CPU
1642 */
3043c60c 1643static uint32_t
852835f3 1644i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1645{
673a394b 1646 uint32_t flush_domains = 0;
673a394b
EA
1647
1648 /* The sampler always gets flushed on i965 (sigh) */
1649 if (IS_I965G(dev))
1650 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1651
1652 ring->flush(dev, ring,
1653 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1654 return flush_domains;
1655}
1656
1657/**
1658 * Moves buffers associated only with the given active seqno from the active
1659 * to inactive list, potentially freeing them.
1660 */
1661static void
1662i915_gem_retire_request(struct drm_device *dev,
1663 struct drm_i915_gem_request *request)
1664{
1665 drm_i915_private_t *dev_priv = dev->dev_private;
1666
1c5d22f7
CW
1667 trace_i915_gem_request_retire(dev, request->seqno);
1668
673a394b
EA
1669 /* Move any buffers on the active list that are no longer referenced
1670 * by the ringbuffer to the flushing/inactive lists as appropriate.
1671 */
5e118f41 1672 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1673 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1674 struct drm_gem_object *obj;
1675 struct drm_i915_gem_object *obj_priv;
1676
852835f3 1677 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1678 struct drm_i915_gem_object,
1679 list);
a8089e84 1680 obj = &obj_priv->base;
673a394b
EA
1681
1682 /* If the seqno being retired doesn't match the oldest in the
1683 * list, then the oldest in the list must still be newer than
1684 * this seqno.
1685 */
1686 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1687 goto out;
de151cf6 1688
673a394b
EA
1689#if WATCH_LRU
1690 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1691 __func__, request->seqno, obj);
1692#endif
1693
ce44b0ea
EA
1694 if (obj->write_domain != 0)
1695 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1696 else {
1697 /* Take a reference on the object so it won't be
1698 * freed while the spinlock is held. The list
1699 * protection for this spinlock is safe when breaking
1700 * the lock like this since the next thing we do
1701 * is just get the head of the list again.
1702 */
1703 drm_gem_object_reference(obj);
673a394b 1704 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1705 spin_unlock(&dev_priv->mm.active_list_lock);
1706 drm_gem_object_unreference(obj);
1707 spin_lock(&dev_priv->mm.active_list_lock);
1708 }
673a394b 1709 }
5e118f41
CW
1710out:
1711 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1712}
1713
1714/**
1715 * Returns true if seq1 is later than seq2.
1716 */
22be1724 1717bool
673a394b
EA
1718i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1719{
1720 return (int32_t)(seq1 - seq2) >= 0;
1721}
1722
1723uint32_t
852835f3 1724i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1725 struct intel_ring_buffer *ring)
673a394b 1726{
852835f3 1727 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1728}
1729
1730/**
1731 * This function clears the request list as sequence numbers are passed.
1732 */
b09a1fec
CW
1733static void
1734i915_gem_retire_requests_ring(struct drm_device *dev,
1735 struct intel_ring_buffer *ring)
673a394b
EA
1736{
1737 drm_i915_private_t *dev_priv = dev->dev_private;
1738 uint32_t seqno;
1739
8187a2b7 1740 if (!ring->status_page.page_addr
852835f3 1741 || list_empty(&ring->request_list))
6c0594a3
KW
1742 return;
1743
852835f3 1744 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1745
852835f3 1746 while (!list_empty(&ring->request_list)) {
673a394b
EA
1747 struct drm_i915_gem_request *request;
1748 uint32_t retiring_seqno;
1749
852835f3 1750 request = list_first_entry(&ring->request_list,
673a394b
EA
1751 struct drm_i915_gem_request,
1752 list);
1753 retiring_seqno = request->seqno;
1754
1755 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1756 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1757 i915_gem_retire_request(dev, request);
1758
1759 list_del(&request->list);
b962442e 1760 list_del(&request->client_list);
9a298b2a 1761 kfree(request);
673a394b
EA
1762 } else
1763 break;
1764 }
9d34e5db
CW
1765
1766 if (unlikely (dev_priv->trace_irq_seqno &&
1767 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1768
1769 ring->user_irq_put(dev, ring);
9d34e5db
CW
1770 dev_priv->trace_irq_seqno = 0;
1771 }
673a394b
EA
1772}
1773
b09a1fec
CW
1774void
1775i915_gem_retire_requests(struct drm_device *dev)
1776{
1777 drm_i915_private_t *dev_priv = dev->dev_private;
1778
be72615b
CW
1779 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1780 struct drm_i915_gem_object *obj_priv, *tmp;
1781
1782 /* We must be careful that during unbind() we do not
1783 * accidentally infinitely recurse into retire requests.
1784 * Currently:
1785 * retire -> free -> unbind -> wait -> retire_ring
1786 */
1787 list_for_each_entry_safe(obj_priv, tmp,
1788 &dev_priv->mm.deferred_free_list,
1789 list)
1790 i915_gem_free_object_tail(&obj_priv->base);
1791 }
1792
b09a1fec
CW
1793 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1794 if (HAS_BSD(dev))
1795 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1796}
1797
673a394b
EA
1798void
1799i915_gem_retire_work_handler(struct work_struct *work)
1800{
1801 drm_i915_private_t *dev_priv;
1802 struct drm_device *dev;
1803
1804 dev_priv = container_of(work, drm_i915_private_t,
1805 mm.retire_work.work);
1806 dev = dev_priv->dev;
1807
1808 mutex_lock(&dev->struct_mutex);
b09a1fec 1809 i915_gem_retire_requests(dev);
d1b851fc 1810
6dbe2772 1811 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1812 (!list_empty(&dev_priv->render_ring.request_list) ||
1813 (HAS_BSD(dev) &&
1814 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1815 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1816 mutex_unlock(&dev->struct_mutex);
1817}
1818
5a5a0c64 1819int
852835f3
ZN
1820i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1821 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1822{
1823 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1824 u32 ier;
673a394b
EA
1825 int ret = 0;
1826
1827 BUG_ON(seqno == 0);
1828
ba1234d1 1829 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1830 return -EIO;
1831
852835f3 1832 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1833 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1834 ier = I915_READ(DEIER) | I915_READ(GTIER);
1835 else
1836 ier = I915_READ(IER);
802c7eb6
JB
1837 if (!ier) {
1838 DRM_ERROR("something (likely vbetool) disabled "
1839 "interrupts, re-enabling\n");
1840 i915_driver_irq_preinstall(dev);
1841 i915_driver_irq_postinstall(dev);
1842 }
1843
1c5d22f7
CW
1844 trace_i915_gem_request_wait_begin(dev, seqno);
1845
852835f3 1846 ring->waiting_gem_seqno = seqno;
8187a2b7 1847 ring->user_irq_get(dev, ring);
48764bf4 1848 if (interruptible)
852835f3
ZN
1849 ret = wait_event_interruptible(ring->irq_queue,
1850 i915_seqno_passed(
1851 ring->get_gem_seqno(dev, ring), seqno)
1852 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1853 else
852835f3
ZN
1854 wait_event(ring->irq_queue,
1855 i915_seqno_passed(
1856 ring->get_gem_seqno(dev, ring), seqno)
1857 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1858
8187a2b7 1859 ring->user_irq_put(dev, ring);
852835f3 1860 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1861
1862 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1863 }
ba1234d1 1864 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1865 ret = -EIO;
1866
1867 if (ret && ret != -ERESTARTSYS)
1868 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1869 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1870
1871 /* Directly dispatch request retiring. While we have the work queue
1872 * to handle this, the waiter on a request often wants an associated
1873 * buffer to have made it to the inactive list, and we would need
1874 * a separate wait queue to handle that.
1875 */
1876 if (ret == 0)
b09a1fec 1877 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1878
1879 return ret;
1880}
1881
48764bf4
DV
1882/**
1883 * Waits for a sequence number to be signaled, and cleans up the
1884 * request and object lists appropriately for that event.
1885 */
1886static int
852835f3
ZN
1887i915_wait_request(struct drm_device *dev, uint32_t seqno,
1888 struct intel_ring_buffer *ring)
48764bf4 1889{
852835f3 1890 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1891}
1892
8187a2b7
ZN
1893static void
1894i915_gem_flush(struct drm_device *dev,
1895 uint32_t invalidate_domains,
1896 uint32_t flush_domains)
1897{
1898 drm_i915_private_t *dev_priv = dev->dev_private;
1899 if (flush_domains & I915_GEM_DOMAIN_CPU)
1900 drm_agp_chipset_flush(dev);
1901 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1902 invalidate_domains,
1903 flush_domains);
d1b851fc
ZN
1904
1905 if (HAS_BSD(dev))
1906 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1907 invalidate_domains,
1908 flush_domains);
8187a2b7
ZN
1909}
1910
673a394b
EA
1911/**
1912 * Ensures that all rendering to the object has completed and the object is
1913 * safe to unbind from the GTT or access from the CPU.
1914 */
1915static int
1916i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1917{
1918 struct drm_device *dev = obj->dev;
23010e43 1919 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1920 int ret;
1921
e47c68e9
EA
1922 /* This function only exists to support waiting for existing rendering,
1923 * not for emitting required flushes.
673a394b 1924 */
e47c68e9 1925 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1926
1927 /* If there is rendering queued on the buffer being evicted, wait for
1928 * it.
1929 */
1930 if (obj_priv->active) {
1931#if WATCH_BUF
1932 DRM_INFO("%s: object %p wait for seqno %08x\n",
1933 __func__, obj, obj_priv->last_rendering_seqno);
1934#endif
852835f3
ZN
1935 ret = i915_wait_request(dev,
1936 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1937 if (ret != 0)
1938 return ret;
1939 }
1940
1941 return 0;
1942}
1943
1944/**
1945 * Unbinds an object from the GTT aperture.
1946 */
0f973f27 1947int
673a394b
EA
1948i915_gem_object_unbind(struct drm_gem_object *obj)
1949{
1950 struct drm_device *dev = obj->dev;
4a87b8ca 1951 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1952 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1953 int ret = 0;
1954
1955#if WATCH_BUF
1956 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1957 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1958#endif
1959 if (obj_priv->gtt_space == NULL)
1960 return 0;
1961
1962 if (obj_priv->pin_count != 0) {
1963 DRM_ERROR("Attempting to unbind pinned buffer\n");
1964 return -EINVAL;
1965 }
1966
5323fd04
EA
1967 /* blow away mappings if mapped through GTT */
1968 i915_gem_release_mmap(obj);
1969
673a394b
EA
1970 /* Move the object to the CPU domain to ensure that
1971 * any possible CPU writes while it's not in the GTT
1972 * are flushed when we go to remap it. This will
1973 * also ensure that all pending GPU writes are finished
1974 * before we unbind.
1975 */
e47c68e9 1976 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1977 if (ret == -ERESTARTSYS)
673a394b 1978 return ret;
8dc1775d
CW
1979 /* Continue on if we fail due to EIO, the GPU is hung so we
1980 * should be safe and we need to cleanup or else we might
1981 * cause memory corruption through use-after-free.
1982 */
673a394b 1983
96b47b65
DV
1984 /* release the fence reg _after_ flushing */
1985 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1986 i915_gem_clear_fence_reg(obj);
1987
673a394b
EA
1988 if (obj_priv->agp_mem != NULL) {
1989 drm_unbind_agp(obj_priv->agp_mem);
1990 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1991 obj_priv->agp_mem = NULL;
1992 }
1993
856fa198 1994 i915_gem_object_put_pages(obj);
a32808c0 1995 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1996
1997 if (obj_priv->gtt_space) {
1998 atomic_dec(&dev->gtt_count);
1999 atomic_sub(obj->size, &dev->gtt_memory);
2000
2001 drm_mm_put_block(obj_priv->gtt_space);
2002 obj_priv->gtt_space = NULL;
2003 }
2004
2005 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2006 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2007 if (!list_empty(&obj_priv->list))
2008 list_del_init(&obj_priv->list);
4a87b8ca 2009 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2010
963b4836
CW
2011 if (i915_gem_object_is_purgeable(obj_priv))
2012 i915_gem_object_truncate(obj);
2013
1c5d22f7
CW
2014 trace_i915_gem_object_unbind(obj);
2015
8dc1775d 2016 return ret;
673a394b
EA
2017}
2018
b47eb4a2 2019int
4df2faf4
DV
2020i915_gpu_idle(struct drm_device *dev)
2021{
2022 drm_i915_private_t *dev_priv = dev->dev_private;
2023 bool lists_empty;
d1b851fc 2024 uint32_t seqno1, seqno2;
852835f3 2025 int ret;
4df2faf4
DV
2026
2027 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2028 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2029 list_empty(&dev_priv->render_ring.active_list) &&
2030 (!HAS_BSD(dev) ||
2031 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2032 spin_unlock(&dev_priv->mm.active_list_lock);
2033
2034 if (lists_empty)
2035 return 0;
2036
2037 /* Flush everything onto the inactive list. */
2038 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2039 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2040 &dev_priv->render_ring);
d1b851fc 2041 if (seqno1 == 0)
4df2faf4 2042 return -ENOMEM;
d1b851fc
ZN
2043 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2044
2045 if (HAS_BSD(dev)) {
2046 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2047 &dev_priv->bsd_ring);
2048 if (seqno2 == 0)
2049 return -ENOMEM;
2050
2051 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2052 if (ret)
2053 return ret;
2054 }
2055
4df2faf4 2056
852835f3 2057 return ret;
4df2faf4
DV
2058}
2059
6911a9b8 2060int
4bdadb97
CW
2061i915_gem_object_get_pages(struct drm_gem_object *obj,
2062 gfp_t gfpmask)
673a394b 2063{
23010e43 2064 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2065 int page_count, i;
2066 struct address_space *mapping;
2067 struct inode *inode;
2068 struct page *page;
673a394b 2069
778c3544
DV
2070 BUG_ON(obj_priv->pages_refcount
2071 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2072
856fa198 2073 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2074 return 0;
2075
2076 /* Get the list of pages out of our struct file. They'll be pinned
2077 * at this point until we release them.
2078 */
2079 page_count = obj->size / PAGE_SIZE;
856fa198 2080 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2081 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2082 if (obj_priv->pages == NULL) {
856fa198 2083 obj_priv->pages_refcount--;
673a394b
EA
2084 return -ENOMEM;
2085 }
2086
2087 inode = obj->filp->f_path.dentry->d_inode;
2088 mapping = inode->i_mapping;
2089 for (i = 0; i < page_count; i++) {
4bdadb97 2090 page = read_cache_page_gfp(mapping, i,
985b823b 2091 GFP_HIGHUSER |
4bdadb97 2092 __GFP_COLD |
cd9f040d 2093 __GFP_RECLAIMABLE |
4bdadb97 2094 gfpmask);
1f2b1013
CW
2095 if (IS_ERR(page))
2096 goto err_pages;
2097
856fa198 2098 obj_priv->pages[i] = page;
673a394b 2099 }
280b713b
EA
2100
2101 if (obj_priv->tiling_mode != I915_TILING_NONE)
2102 i915_gem_object_do_bit_17_swizzle(obj);
2103
673a394b 2104 return 0;
1f2b1013
CW
2105
2106err_pages:
2107 while (i--)
2108 page_cache_release(obj_priv->pages[i]);
2109
2110 drm_free_large(obj_priv->pages);
2111 obj_priv->pages = NULL;
2112 obj_priv->pages_refcount--;
2113 return PTR_ERR(page);
673a394b
EA
2114}
2115
4e901fdc
EA
2116static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2117{
2118 struct drm_gem_object *obj = reg->obj;
2119 struct drm_device *dev = obj->dev;
2120 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2121 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2122 int regnum = obj_priv->fence_reg;
2123 uint64_t val;
2124
2125 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2126 0xfffff000) << 32;
2127 val |= obj_priv->gtt_offset & 0xfffff000;
2128 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2129 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2130
2131 if (obj_priv->tiling_mode == I915_TILING_Y)
2132 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2133 val |= I965_FENCE_REG_VALID;
2134
2135 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2136}
2137
de151cf6
JB
2138static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2139{
2140 struct drm_gem_object *obj = reg->obj;
2141 struct drm_device *dev = obj->dev;
2142 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2144 int regnum = obj_priv->fence_reg;
2145 uint64_t val;
2146
2147 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2148 0xfffff000) << 32;
2149 val |= obj_priv->gtt_offset & 0xfffff000;
2150 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2153 val |= I965_FENCE_REG_VALID;
2154
2155 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2156}
2157
2158static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2159{
2160 struct drm_gem_object *obj = reg->obj;
2161 struct drm_device *dev = obj->dev;
2162 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2163 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2164 int regnum = obj_priv->fence_reg;
0f973f27 2165 int tile_width;
dc529a4f 2166 uint32_t fence_reg, val;
de151cf6
JB
2167 uint32_t pitch_val;
2168
2169 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2170 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2171 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2172 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2173 return;
2174 }
2175
0f973f27
JB
2176 if (obj_priv->tiling_mode == I915_TILING_Y &&
2177 HAS_128_BYTE_Y_TILING(dev))
2178 tile_width = 128;
de151cf6 2179 else
0f973f27
JB
2180 tile_width = 512;
2181
2182 /* Note: pitch better be a power of two tile widths */
2183 pitch_val = obj_priv->stride / tile_width;
2184 pitch_val = ffs(pitch_val) - 1;
de151cf6 2185
c36a2a6d
DV
2186 if (obj_priv->tiling_mode == I915_TILING_Y &&
2187 HAS_128_BYTE_Y_TILING(dev))
2188 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2189 else
2190 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2191
de151cf6
JB
2192 val = obj_priv->gtt_offset;
2193 if (obj_priv->tiling_mode == I915_TILING_Y)
2194 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2195 val |= I915_FENCE_SIZE_BITS(obj->size);
2196 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2197 val |= I830_FENCE_REG_VALID;
2198
dc529a4f
EA
2199 if (regnum < 8)
2200 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2201 else
2202 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2203 I915_WRITE(fence_reg, val);
de151cf6
JB
2204}
2205
2206static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2207{
2208 struct drm_gem_object *obj = reg->obj;
2209 struct drm_device *dev = obj->dev;
2210 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2211 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2212 int regnum = obj_priv->fence_reg;
2213 uint32_t val;
2214 uint32_t pitch_val;
8d7773a3 2215 uint32_t fence_size_bits;
de151cf6 2216
8d7773a3 2217 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2218 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2219 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2220 __func__, obj_priv->gtt_offset);
de151cf6
JB
2221 return;
2222 }
2223
e76a16de
EA
2224 pitch_val = obj_priv->stride / 128;
2225 pitch_val = ffs(pitch_val) - 1;
2226 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227
de151cf6
JB
2228 val = obj_priv->gtt_offset;
2229 if (obj_priv->tiling_mode == I915_TILING_Y)
2230 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2231 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2232 WARN_ON(fence_size_bits & ~0x00000f00);
2233 val |= fence_size_bits;
de151cf6
JB
2234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235 val |= I830_FENCE_REG_VALID;
2236
2237 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2238}
2239
ae3db24a
DV
2240static int i915_find_fence_reg(struct drm_device *dev)
2241{
2242 struct drm_i915_fence_reg *reg = NULL;
2243 struct drm_i915_gem_object *obj_priv = NULL;
2244 struct drm_i915_private *dev_priv = dev->dev_private;
2245 struct drm_gem_object *obj = NULL;
2246 int i, avail, ret;
2247
2248 /* First try to find a free reg */
2249 avail = 0;
2250 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2251 reg = &dev_priv->fence_regs[i];
2252 if (!reg->obj)
2253 return i;
2254
23010e43 2255 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2256 if (!obj_priv->pin_count)
2257 avail++;
2258 }
2259
2260 if (avail == 0)
2261 return -ENOSPC;
2262
2263 /* None available, try to steal one or wait for a user to finish */
2264 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2265 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2266 lru_list) {
2267 obj = reg->obj;
2268 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2269
2270 if (obj_priv->pin_count)
2271 continue;
2272
2273 /* found one! */
2274 i = obj_priv->fence_reg;
2275 break;
2276 }
2277
2278 BUG_ON(i == I915_FENCE_REG_NONE);
2279
2280 /* We only have a reference on obj from the active list. put_fence_reg
2281 * might drop that one, causing a use-after-free in it. So hold a
2282 * private reference to obj like the other callers of put_fence_reg
2283 * (set_tiling ioctl) do. */
2284 drm_gem_object_reference(obj);
2285 ret = i915_gem_object_put_fence_reg(obj);
2286 drm_gem_object_unreference(obj);
2287 if (ret != 0)
2288 return ret;
2289
2290 return i;
2291}
2292
de151cf6
JB
2293/**
2294 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2295 * @obj: object to map through a fence reg
2296 *
2297 * When mapping objects through the GTT, userspace wants to be able to write
2298 * to them without having to worry about swizzling if the object is tiled.
2299 *
2300 * This function walks the fence regs looking for a free one for @obj,
2301 * stealing one if it can't find any.
2302 *
2303 * It then sets up the reg based on the object's properties: address, pitch
2304 * and tiling format.
2305 */
8c4b8c3f
CW
2306int
2307i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2308{
2309 struct drm_device *dev = obj->dev;
79e53945 2310 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2311 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2312 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2313 int ret;
de151cf6 2314
a09ba7fa
EA
2315 /* Just update our place in the LRU if our fence is getting used. */
2316 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2317 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2318 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2319 return 0;
2320 }
2321
de151cf6
JB
2322 switch (obj_priv->tiling_mode) {
2323 case I915_TILING_NONE:
2324 WARN(1, "allocating a fence for non-tiled object?\n");
2325 break;
2326 case I915_TILING_X:
0f973f27
JB
2327 if (!obj_priv->stride)
2328 return -EINVAL;
2329 WARN((obj_priv->stride & (512 - 1)),
2330 "object 0x%08x is X tiled but has non-512B pitch\n",
2331 obj_priv->gtt_offset);
de151cf6
JB
2332 break;
2333 case I915_TILING_Y:
0f973f27
JB
2334 if (!obj_priv->stride)
2335 return -EINVAL;
2336 WARN((obj_priv->stride & (128 - 1)),
2337 "object 0x%08x is Y tiled but has non-128B pitch\n",
2338 obj_priv->gtt_offset);
de151cf6
JB
2339 break;
2340 }
2341
ae3db24a
DV
2342 ret = i915_find_fence_reg(dev);
2343 if (ret < 0)
2344 return ret;
de151cf6 2345
ae3db24a
DV
2346 obj_priv->fence_reg = ret;
2347 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2348 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2349
de151cf6
JB
2350 reg->obj = obj;
2351
e259befd
CW
2352 switch (INTEL_INFO(dev)->gen) {
2353 case 6:
4e901fdc 2354 sandybridge_write_fence_reg(reg);
e259befd
CW
2355 break;
2356 case 5:
2357 case 4:
de151cf6 2358 i965_write_fence_reg(reg);
e259befd
CW
2359 break;
2360 case 3:
de151cf6 2361 i915_write_fence_reg(reg);
e259befd
CW
2362 break;
2363 case 2:
de151cf6 2364 i830_write_fence_reg(reg);
e259befd
CW
2365 break;
2366 }
d9ddcb96 2367
ae3db24a
DV
2368 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2369 obj_priv->tiling_mode);
1c5d22f7 2370
d9ddcb96 2371 return 0;
de151cf6
JB
2372}
2373
2374/**
2375 * i915_gem_clear_fence_reg - clear out fence register info
2376 * @obj: object to clear
2377 *
2378 * Zeroes out the fence register itself and clears out the associated
2379 * data structures in dev_priv and obj_priv.
2380 */
2381static void
2382i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2383{
2384 struct drm_device *dev = obj->dev;
79e53945 2385 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2386 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2387 struct drm_i915_fence_reg *reg =
2388 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2389 uint32_t fence_reg;
de151cf6 2390
e259befd
CW
2391 switch (INTEL_INFO(dev)->gen) {
2392 case 6:
4e901fdc
EA
2393 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2394 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2395 break;
2396 case 5:
2397 case 4:
de151cf6 2398 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2399 break;
2400 case 3:
2401 if (obj_priv->fence_reg > 8)
2402 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2403 else
e259befd
CW
2404 case 2:
2405 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2406
2407 I915_WRITE(fence_reg, 0);
e259befd 2408 break;
dc529a4f 2409 }
de151cf6 2410
007cc8ac 2411 reg->obj = NULL;
de151cf6 2412 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2413 list_del_init(&reg->lru_list);
de151cf6
JB
2414}
2415
52dc7d32
CW
2416/**
2417 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2418 * to the buffer to finish, and then resets the fence register.
2419 * @obj: tiled object holding a fence register.
2420 *
2421 * Zeroes out the fence register itself and clears out the associated
2422 * data structures in dev_priv and obj_priv.
2423 */
2424int
2425i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2426{
2427 struct drm_device *dev = obj->dev;
23010e43 2428 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2429
2430 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2431 return 0;
2432
10ae9bd2
DV
2433 /* If we've changed tiling, GTT-mappings of the object
2434 * need to re-fault to ensure that the correct fence register
2435 * setup is in place.
2436 */
2437 i915_gem_release_mmap(obj);
2438
52dc7d32
CW
2439 /* On the i915, GPU access to tiled buffers is via a fence,
2440 * therefore we must wait for any outstanding access to complete
2441 * before clearing the fence.
2442 */
2443 if (!IS_I965G(dev)) {
2444 int ret;
2445
2dafb1e0
CW
2446 ret = i915_gem_object_flush_gpu_write_domain(obj);
2447 if (ret != 0)
2448 return ret;
2449
52dc7d32
CW
2450 ret = i915_gem_object_wait_rendering(obj);
2451 if (ret != 0)
2452 return ret;
2453 }
2454
4a726612 2455 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2456 i915_gem_clear_fence_reg (obj);
2457
2458 return 0;
2459}
2460
673a394b
EA
2461/**
2462 * Finds free space in the GTT aperture and binds the object there.
2463 */
2464static int
2465i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2466{
2467 struct drm_device *dev = obj->dev;
2468 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2469 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2470 struct drm_mm_node *free_space;
4bdadb97 2471 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2472 int ret;
673a394b 2473
bb6baf76 2474 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2475 DRM_ERROR("Attempting to bind a purgeable object\n");
2476 return -EINVAL;
2477 }
2478
673a394b 2479 if (alignment == 0)
0f973f27 2480 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2481 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2482 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2483 return -EINVAL;
2484 }
2485
654fc607
CW
2486 /* If the object is bigger than the entire aperture, reject it early
2487 * before evicting everything in a vain attempt to find space.
2488 */
2489 if (obj->size > dev->gtt_total) {
2490 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2491 return -E2BIG;
2492 }
2493
673a394b
EA
2494 search_free:
2495 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2496 obj->size, alignment, 0);
2497 if (free_space != NULL) {
2498 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2499 alignment);
db3307a9 2500 if (obj_priv->gtt_space != NULL)
673a394b 2501 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2502 }
2503 if (obj_priv->gtt_space == NULL) {
2504 /* If the gtt is empty and we're still having trouble
2505 * fitting our object in, we're out of memory.
2506 */
2507#if WATCH_LRU
2508 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2509#endif
0108a3ed 2510 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2511 if (ret)
673a394b 2512 return ret;
9731129c 2513
673a394b
EA
2514 goto search_free;
2515 }
2516
2517#if WATCH_BUF
cfd43c02 2518 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2519 obj->size, obj_priv->gtt_offset);
2520#endif
4bdadb97 2521 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2522 if (ret) {
2523 drm_mm_put_block(obj_priv->gtt_space);
2524 obj_priv->gtt_space = NULL;
07f73f69
CW
2525
2526 if (ret == -ENOMEM) {
2527 /* first try to clear up some space from the GTT */
0108a3ed
DV
2528 ret = i915_gem_evict_something(dev, obj->size,
2529 alignment);
07f73f69 2530 if (ret) {
07f73f69 2531 /* now try to shrink everyone else */
4bdadb97
CW
2532 if (gfpmask) {
2533 gfpmask = 0;
2534 goto search_free;
07f73f69
CW
2535 }
2536
2537 return ret;
2538 }
2539
2540 goto search_free;
2541 }
2542
673a394b
EA
2543 return ret;
2544 }
2545
673a394b
EA
2546 /* Create an AGP memory structure pointing at our pages, and bind it
2547 * into the GTT.
2548 */
2549 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2550 obj_priv->pages,
07f73f69 2551 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2552 obj_priv->gtt_offset,
2553 obj_priv->agp_type);
673a394b 2554 if (obj_priv->agp_mem == NULL) {
856fa198 2555 i915_gem_object_put_pages(obj);
673a394b
EA
2556 drm_mm_put_block(obj_priv->gtt_space);
2557 obj_priv->gtt_space = NULL;
07f73f69 2558
0108a3ed 2559 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2560 if (ret)
07f73f69 2561 return ret;
07f73f69
CW
2562
2563 goto search_free;
673a394b
EA
2564 }
2565 atomic_inc(&dev->gtt_count);
2566 atomic_add(obj->size, &dev->gtt_memory);
2567
bf1a1092
CW
2568 /* keep track of bounds object by adding it to the inactive list */
2569 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2570
673a394b
EA
2571 /* Assert that the object is not currently in any GPU domain. As it
2572 * wasn't in the GTT, there shouldn't be any way it could have been in
2573 * a GPU cache
2574 */
21d509e3
CW
2575 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2576 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2577
1c5d22f7
CW
2578 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2579
673a394b
EA
2580 return 0;
2581}
2582
2583void
2584i915_gem_clflush_object(struct drm_gem_object *obj)
2585{
23010e43 2586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2587
2588 /* If we don't have a page list set up, then we're not pinned
2589 * to GPU, and we can ignore the cache flush because it'll happen
2590 * again at bind time.
2591 */
856fa198 2592 if (obj_priv->pages == NULL)
673a394b
EA
2593 return;
2594
1c5d22f7 2595 trace_i915_gem_object_clflush(obj);
cfa16a0d 2596
856fa198 2597 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2598}
2599
e47c68e9 2600/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2601static int
e47c68e9
EA
2602i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2603{
2604 struct drm_device *dev = obj->dev;
1c5d22f7 2605 uint32_t old_write_domain;
852835f3 2606 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2607
2608 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2609 return 0;
e47c68e9
EA
2610
2611 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2612 old_write_domain = obj->write_domain;
e47c68e9 2613 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2614 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2615 return -ENOMEM;
1c5d22f7
CW
2616
2617 trace_i915_gem_object_change_domain(obj,
2618 obj->read_domains,
2619 old_write_domain);
2dafb1e0 2620 return 0;
e47c68e9
EA
2621}
2622
2623/** Flushes the GTT write domain for the object if it's dirty. */
2624static void
2625i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2626{
1c5d22f7
CW
2627 uint32_t old_write_domain;
2628
e47c68e9
EA
2629 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2630 return;
2631
2632 /* No actual flushing is required for the GTT write domain. Writes
2633 * to it immediately go to main memory as far as we know, so there's
2634 * no chipset flush. It also doesn't land in render cache.
2635 */
1c5d22f7 2636 old_write_domain = obj->write_domain;
e47c68e9 2637 obj->write_domain = 0;
1c5d22f7
CW
2638
2639 trace_i915_gem_object_change_domain(obj,
2640 obj->read_domains,
2641 old_write_domain);
e47c68e9
EA
2642}
2643
2644/** Flushes the CPU write domain for the object if it's dirty. */
2645static void
2646i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2647{
2648 struct drm_device *dev = obj->dev;
1c5d22f7 2649 uint32_t old_write_domain;
e47c68e9
EA
2650
2651 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2652 return;
2653
2654 i915_gem_clflush_object(obj);
2655 drm_agp_chipset_flush(dev);
1c5d22f7 2656 old_write_domain = obj->write_domain;
e47c68e9 2657 obj->write_domain = 0;
1c5d22f7
CW
2658
2659 trace_i915_gem_object_change_domain(obj,
2660 obj->read_domains,
2661 old_write_domain);
e47c68e9
EA
2662}
2663
2dafb1e0 2664int
6b95a207
KH
2665i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2666{
2dafb1e0
CW
2667 int ret = 0;
2668
6b95a207
KH
2669 switch (obj->write_domain) {
2670 case I915_GEM_DOMAIN_GTT:
2671 i915_gem_object_flush_gtt_write_domain(obj);
2672 break;
2673 case I915_GEM_DOMAIN_CPU:
2674 i915_gem_object_flush_cpu_write_domain(obj);
2675 break;
2676 default:
2dafb1e0 2677 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2678 break;
2679 }
2dafb1e0
CW
2680
2681 return ret;
6b95a207
KH
2682}
2683
2ef7eeaa
EA
2684/**
2685 * Moves a single object to the GTT read, and possibly write domain.
2686 *
2687 * This function returns when the move is complete, including waiting on
2688 * flushes to occur.
2689 */
79e53945 2690int
2ef7eeaa
EA
2691i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2692{
23010e43 2693 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2694 uint32_t old_write_domain, old_read_domains;
e47c68e9 2695 int ret;
2ef7eeaa 2696
02354392
EA
2697 /* Not valid to be called on unbound objects. */
2698 if (obj_priv->gtt_space == NULL)
2699 return -EINVAL;
2700
2dafb1e0
CW
2701 ret = i915_gem_object_flush_gpu_write_domain(obj);
2702 if (ret != 0)
2703 return ret;
2704
e47c68e9
EA
2705 /* Wait on any GPU rendering and flushing to occur. */
2706 ret = i915_gem_object_wait_rendering(obj);
2707 if (ret != 0)
2708 return ret;
2709
1c5d22f7
CW
2710 old_write_domain = obj->write_domain;
2711 old_read_domains = obj->read_domains;
2712
e47c68e9
EA
2713 /* If we're writing through the GTT domain, then CPU and GPU caches
2714 * will need to be invalidated at next use.
2ef7eeaa 2715 */
e47c68e9
EA
2716 if (write)
2717 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2718
e47c68e9 2719 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2720
e47c68e9
EA
2721 /* It should now be out of any other write domains, and we can update
2722 * the domain values for our changes.
2723 */
2724 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2725 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2726 if (write) {
2727 obj->write_domain = I915_GEM_DOMAIN_GTT;
2728 obj_priv->dirty = 1;
2ef7eeaa
EA
2729 }
2730
1c5d22f7
CW
2731 trace_i915_gem_object_change_domain(obj,
2732 old_read_domains,
2733 old_write_domain);
2734
e47c68e9
EA
2735 return 0;
2736}
2737
b9241ea3
ZW
2738/*
2739 * Prepare buffer for display plane. Use uninterruptible for possible flush
2740 * wait, as in modesetting process we're not supposed to be interrupted.
2741 */
2742int
2743i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2744{
2745 struct drm_device *dev = obj->dev;
23010e43 2746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2747 uint32_t old_write_domain, old_read_domains;
2748 int ret;
2749
2750 /* Not valid to be called on unbound objects. */
2751 if (obj_priv->gtt_space == NULL)
2752 return -EINVAL;
2753
2dafb1e0
CW
2754 ret = i915_gem_object_flush_gpu_write_domain(obj);
2755 if (ret)
2756 return ret;
b9241ea3
ZW
2757
2758 /* Wait on any GPU rendering and flushing to occur. */
2759 if (obj_priv->active) {
2760#if WATCH_BUF
2761 DRM_INFO("%s: object %p wait for seqno %08x\n",
2762 __func__, obj, obj_priv->last_rendering_seqno);
2763#endif
852835f3
ZN
2764 ret = i915_do_wait_request(dev,
2765 obj_priv->last_rendering_seqno,
2766 0,
2767 obj_priv->ring);
b9241ea3
ZW
2768 if (ret != 0)
2769 return ret;
2770 }
2771
b118c1e3
CW
2772 i915_gem_object_flush_cpu_write_domain(obj);
2773
b9241ea3
ZW
2774 old_write_domain = obj->write_domain;
2775 old_read_domains = obj->read_domains;
2776
b9241ea3
ZW
2777 /* It should now be out of any other write domains, and we can update
2778 * the domain values for our changes.
2779 */
2780 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2781 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2782 obj->write_domain = I915_GEM_DOMAIN_GTT;
2783 obj_priv->dirty = 1;
2784
2785 trace_i915_gem_object_change_domain(obj,
2786 old_read_domains,
2787 old_write_domain);
2788
2789 return 0;
2790}
2791
e47c68e9
EA
2792/**
2793 * Moves a single object to the CPU read, and possibly write domain.
2794 *
2795 * This function returns when the move is complete, including waiting on
2796 * flushes to occur.
2797 */
2798static int
2799i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2800{
1c5d22f7 2801 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2802 int ret;
2803
2dafb1e0
CW
2804 ret = i915_gem_object_flush_gpu_write_domain(obj);
2805 if (ret)
2806 return ret;
2807
2ef7eeaa 2808 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2809 ret = i915_gem_object_wait_rendering(obj);
2810 if (ret != 0)
2811 return ret;
2ef7eeaa 2812
e47c68e9 2813 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2814
e47c68e9
EA
2815 /* If we have a partially-valid cache of the object in the CPU,
2816 * finish invalidating it and free the per-page flags.
2ef7eeaa 2817 */
e47c68e9 2818 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2819
1c5d22f7
CW
2820 old_write_domain = obj->write_domain;
2821 old_read_domains = obj->read_domains;
2822
e47c68e9
EA
2823 /* Flush the CPU cache if it's still invalid. */
2824 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2825 i915_gem_clflush_object(obj);
2ef7eeaa 2826
e47c68e9 2827 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2828 }
2829
2830 /* It should now be out of any other write domains, and we can update
2831 * the domain values for our changes.
2832 */
e47c68e9
EA
2833 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2834
2835 /* If we're writing through the CPU, then the GPU read domains will
2836 * need to be invalidated at next use.
2837 */
2838 if (write) {
2839 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2840 obj->write_domain = I915_GEM_DOMAIN_CPU;
2841 }
2ef7eeaa 2842
1c5d22f7
CW
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846
2ef7eeaa
EA
2847 return 0;
2848}
2849
673a394b
EA
2850/*
2851 * Set the next domain for the specified object. This
2852 * may not actually perform the necessary flushing/invaliding though,
2853 * as that may want to be batched with other set_domain operations
2854 *
2855 * This is (we hope) the only really tricky part of gem. The goal
2856 * is fairly simple -- track which caches hold bits of the object
2857 * and make sure they remain coherent. A few concrete examples may
2858 * help to explain how it works. For shorthand, we use the notation
2859 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2860 * a pair of read and write domain masks.
2861 *
2862 * Case 1: the batch buffer
2863 *
2864 * 1. Allocated
2865 * 2. Written by CPU
2866 * 3. Mapped to GTT
2867 * 4. Read by GPU
2868 * 5. Unmapped from GTT
2869 * 6. Freed
2870 *
2871 * Let's take these a step at a time
2872 *
2873 * 1. Allocated
2874 * Pages allocated from the kernel may still have
2875 * cache contents, so we set them to (CPU, CPU) always.
2876 * 2. Written by CPU (using pwrite)
2877 * The pwrite function calls set_domain (CPU, CPU) and
2878 * this function does nothing (as nothing changes)
2879 * 3. Mapped by GTT
2880 * This function asserts that the object is not
2881 * currently in any GPU-based read or write domains
2882 * 4. Read by GPU
2883 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2884 * As write_domain is zero, this function adds in the
2885 * current read domains (CPU+COMMAND, 0).
2886 * flush_domains is set to CPU.
2887 * invalidate_domains is set to COMMAND
2888 * clflush is run to get data out of the CPU caches
2889 * then i915_dev_set_domain calls i915_gem_flush to
2890 * emit an MI_FLUSH and drm_agp_chipset_flush
2891 * 5. Unmapped from GTT
2892 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2893 * flush_domains and invalidate_domains end up both zero
2894 * so no flushing/invalidating happens
2895 * 6. Freed
2896 * yay, done
2897 *
2898 * Case 2: The shared render buffer
2899 *
2900 * 1. Allocated
2901 * 2. Mapped to GTT
2902 * 3. Read/written by GPU
2903 * 4. set_domain to (CPU,CPU)
2904 * 5. Read/written by CPU
2905 * 6. Read/written by GPU
2906 *
2907 * 1. Allocated
2908 * Same as last example, (CPU, CPU)
2909 * 2. Mapped to GTT
2910 * Nothing changes (assertions find that it is not in the GPU)
2911 * 3. Read/written by GPU
2912 * execbuffer calls set_domain (RENDER, RENDER)
2913 * flush_domains gets CPU
2914 * invalidate_domains gets GPU
2915 * clflush (obj)
2916 * MI_FLUSH and drm_agp_chipset_flush
2917 * 4. set_domain (CPU, CPU)
2918 * flush_domains gets GPU
2919 * invalidate_domains gets CPU
2920 * wait_rendering (obj) to make sure all drawing is complete.
2921 * This will include an MI_FLUSH to get the data from GPU
2922 * to memory
2923 * clflush (obj) to invalidate the CPU cache
2924 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2925 * 5. Read/written by CPU
2926 * cache lines are loaded and dirtied
2927 * 6. Read written by GPU
2928 * Same as last GPU access
2929 *
2930 * Case 3: The constant buffer
2931 *
2932 * 1. Allocated
2933 * 2. Written by CPU
2934 * 3. Read by GPU
2935 * 4. Updated (written) by CPU again
2936 * 5. Read by GPU
2937 *
2938 * 1. Allocated
2939 * (CPU, CPU)
2940 * 2. Written by CPU
2941 * (CPU, CPU)
2942 * 3. Read by GPU
2943 * (CPU+RENDER, 0)
2944 * flush_domains = CPU
2945 * invalidate_domains = RENDER
2946 * clflush (obj)
2947 * MI_FLUSH
2948 * drm_agp_chipset_flush
2949 * 4. Updated (written) by CPU again
2950 * (CPU, CPU)
2951 * flush_domains = 0 (no previous write domain)
2952 * invalidate_domains = 0 (no new read domains)
2953 * 5. Read by GPU
2954 * (CPU+RENDER, 0)
2955 * flush_domains = CPU
2956 * invalidate_domains = RENDER
2957 * clflush (obj)
2958 * MI_FLUSH
2959 * drm_agp_chipset_flush
2960 */
c0d90829 2961static void
8b0e378a 2962i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2963{
2964 struct drm_device *dev = obj->dev;
88f356b7 2965 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2966 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2967 uint32_t invalidate_domains = 0;
2968 uint32_t flush_domains = 0;
1c5d22f7 2969 uint32_t old_read_domains;
e47c68e9 2970
8b0e378a
EA
2971 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2972 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2973
652c393a
JB
2974 intel_mark_busy(dev, obj);
2975
673a394b
EA
2976#if WATCH_BUF
2977 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2978 __func__, obj,
8b0e378a
EA
2979 obj->read_domains, obj->pending_read_domains,
2980 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2981#endif
2982 /*
2983 * If the object isn't moving to a new write domain,
2984 * let the object stay in multiple read domains
2985 */
8b0e378a
EA
2986 if (obj->pending_write_domain == 0)
2987 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2988 else
2989 obj_priv->dirty = 1;
2990
2991 /*
2992 * Flush the current write domain if
2993 * the new read domains don't match. Invalidate
2994 * any read domains which differ from the old
2995 * write domain
2996 */
8b0e378a
EA
2997 if (obj->write_domain &&
2998 obj->write_domain != obj->pending_read_domains) {
673a394b 2999 flush_domains |= obj->write_domain;
8b0e378a
EA
3000 invalidate_domains |=
3001 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3002 }
3003 /*
3004 * Invalidate any read caches which may have
3005 * stale data. That is, any new read domains.
3006 */
8b0e378a 3007 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3008 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3009#if WATCH_BUF
3010 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3011 __func__, flush_domains, invalidate_domains);
3012#endif
673a394b
EA
3013 i915_gem_clflush_object(obj);
3014 }
3015
1c5d22f7
CW
3016 old_read_domains = obj->read_domains;
3017
efbeed96
EA
3018 /* The actual obj->write_domain will be updated with
3019 * pending_write_domain after we emit the accumulated flush for all
3020 * of our domain changes in execbuffers (which clears objects'
3021 * write_domains). So if we have a current write domain that we
3022 * aren't changing, set pending_write_domain to that.
3023 */
3024 if (flush_domains == 0 && obj->pending_write_domain == 0)
3025 obj->pending_write_domain = obj->write_domain;
8b0e378a 3026 obj->read_domains = obj->pending_read_domains;
673a394b 3027
88f356b7
CW
3028 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3029 if (obj_priv->ring == &dev_priv->render_ring)
3030 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3031 else if (obj_priv->ring == &dev_priv->bsd_ring)
3032 dev_priv->flush_rings |= FLUSH_BSD_RING;
3033 }
3034
673a394b
EA
3035 dev->invalidate_domains |= invalidate_domains;
3036 dev->flush_domains |= flush_domains;
3037#if WATCH_BUF
3038 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3039 __func__,
3040 obj->read_domains, obj->write_domain,
3041 dev->invalidate_domains, dev->flush_domains);
3042#endif
1c5d22f7
CW
3043
3044 trace_i915_gem_object_change_domain(obj,
3045 old_read_domains,
3046 obj->write_domain);
673a394b
EA
3047}
3048
3049/**
e47c68e9 3050 * Moves the object from a partially CPU read to a full one.
673a394b 3051 *
e47c68e9
EA
3052 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3053 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3054 */
e47c68e9
EA
3055static void
3056i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3057{
23010e43 3058 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3059
e47c68e9
EA
3060 if (!obj_priv->page_cpu_valid)
3061 return;
3062
3063 /* If we're partially in the CPU read domain, finish moving it in.
3064 */
3065 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3066 int i;
3067
3068 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3069 if (obj_priv->page_cpu_valid[i])
3070 continue;
856fa198 3071 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3072 }
e47c68e9
EA
3073 }
3074
3075 /* Free the page_cpu_valid mappings which are now stale, whether
3076 * or not we've got I915_GEM_DOMAIN_CPU.
3077 */
9a298b2a 3078 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3079 obj_priv->page_cpu_valid = NULL;
3080}
3081
3082/**
3083 * Set the CPU read domain on a range of the object.
3084 *
3085 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3086 * not entirely valid. The page_cpu_valid member of the object flags which
3087 * pages have been flushed, and will be respected by
3088 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3089 * of the whole object.
3090 *
3091 * This function returns when the move is complete, including waiting on
3092 * flushes to occur.
3093 */
3094static int
3095i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3096 uint64_t offset, uint64_t size)
3097{
23010e43 3098 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3099 uint32_t old_read_domains;
e47c68e9 3100 int i, ret;
673a394b 3101
e47c68e9
EA
3102 if (offset == 0 && size == obj->size)
3103 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3104
2dafb1e0
CW
3105 ret = i915_gem_object_flush_gpu_write_domain(obj);
3106 if (ret)
3107 return ret;
3108
e47c68e9 3109 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3110 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3111 if (ret != 0)
6a47baa6 3112 return ret;
e47c68e9
EA
3113 i915_gem_object_flush_gtt_write_domain(obj);
3114
3115 /* If we're already fully in the CPU read domain, we're done. */
3116 if (obj_priv->page_cpu_valid == NULL &&
3117 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3118 return 0;
673a394b 3119
e47c68e9
EA
3120 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3121 * newly adding I915_GEM_DOMAIN_CPU
3122 */
673a394b 3123 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3124 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3125 GFP_KERNEL);
e47c68e9
EA
3126 if (obj_priv->page_cpu_valid == NULL)
3127 return -ENOMEM;
3128 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3129 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3130
3131 /* Flush the cache on any pages that are still invalid from the CPU's
3132 * perspective.
3133 */
e47c68e9
EA
3134 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3135 i++) {
673a394b
EA
3136 if (obj_priv->page_cpu_valid[i])
3137 continue;
3138
856fa198 3139 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3140
3141 obj_priv->page_cpu_valid[i] = 1;
3142 }
3143
e47c68e9
EA
3144 /* It should now be out of any other write domains, and we can update
3145 * the domain values for our changes.
3146 */
3147 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3148
1c5d22f7 3149 old_read_domains = obj->read_domains;
e47c68e9
EA
3150 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3151
1c5d22f7
CW
3152 trace_i915_gem_object_change_domain(obj,
3153 old_read_domains,
3154 obj->write_domain);
3155
673a394b
EA
3156 return 0;
3157}
3158
673a394b
EA
3159/**
3160 * Pin an object to the GTT and evaluate the relocations landing in it.
3161 */
3162static int
3163i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3164 struct drm_file *file_priv,
76446cac 3165 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3166 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3167{
3168 struct drm_device *dev = obj->dev;
0839ccb8 3169 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3170 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3171 int i, ret;
0839ccb8 3172 void __iomem *reloc_page;
76446cac
JB
3173 bool need_fence;
3174
3175 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3176 obj_priv->tiling_mode != I915_TILING_NONE;
3177
3178 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3179 if (need_fence &&
3180 !i915_gem_object_fence_offset_ok(obj,
3181 obj_priv->tiling_mode)) {
3182 ret = i915_gem_object_unbind(obj);
3183 if (ret)
3184 return ret;
3185 }
673a394b
EA
3186
3187 /* Choose the GTT offset for our buffer and put it there. */
3188 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3189 if (ret)
3190 return ret;
3191
76446cac
JB
3192 /*
3193 * Pre-965 chips need a fence register set up in order to
3194 * properly handle blits to/from tiled surfaces.
3195 */
3196 if (need_fence) {
3197 ret = i915_gem_object_get_fence_reg(obj);
3198 if (ret != 0) {
76446cac
JB
3199 i915_gem_object_unpin(obj);
3200 return ret;
3201 }
3202 }
3203
673a394b
EA
3204 entry->offset = obj_priv->gtt_offset;
3205
673a394b
EA
3206 /* Apply the relocations, using the GTT aperture to avoid cache
3207 * flushing requirements.
3208 */
3209 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3210 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3211 struct drm_gem_object *target_obj;
3212 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3213 uint32_t reloc_val, reloc_offset;
3214 uint32_t __iomem *reloc_entry;
673a394b 3215
673a394b 3216 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3217 reloc->target_handle);
673a394b
EA
3218 if (target_obj == NULL) {
3219 i915_gem_object_unpin(obj);
bf79cb91 3220 return -ENOENT;
673a394b 3221 }
23010e43 3222 target_obj_priv = to_intel_bo(target_obj);
673a394b 3223
8542a0bb
CW
3224#if WATCH_RELOC
3225 DRM_INFO("%s: obj %p offset %08x target %d "
3226 "read %08x write %08x gtt %08x "
3227 "presumed %08x delta %08x\n",
3228 __func__,
3229 obj,
3230 (int) reloc->offset,
3231 (int) reloc->target_handle,
3232 (int) reloc->read_domains,
3233 (int) reloc->write_domain,
3234 (int) target_obj_priv->gtt_offset,
3235 (int) reloc->presumed_offset,
3236 reloc->delta);
3237#endif
3238
673a394b
EA
3239 /* The target buffer should have appeared before us in the
3240 * exec_object list, so it should have a GTT space bound by now.
3241 */
3242 if (target_obj_priv->gtt_space == NULL) {
3243 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3244 reloc->target_handle);
673a394b
EA
3245 drm_gem_object_unreference(target_obj);
3246 i915_gem_object_unpin(obj);
3247 return -EINVAL;
3248 }
3249
8542a0bb 3250 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3251 if (reloc->write_domain & (reloc->write_domain - 1)) {
3252 DRM_ERROR("reloc with multiple write domains: "
3253 "obj %p target %d offset %d "
3254 "read %08x write %08x",
3255 obj, reloc->target_handle,
3256 (int) reloc->offset,
3257 reloc->read_domains,
3258 reloc->write_domain);
3259 return -EINVAL;
3260 }
40a5f0de
EA
3261 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3262 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3263 DRM_ERROR("reloc with read/write CPU domains: "
3264 "obj %p target %d offset %d "
3265 "read %08x write %08x",
40a5f0de
EA
3266 obj, reloc->target_handle,
3267 (int) reloc->offset,
3268 reloc->read_domains,
3269 reloc->write_domain);
491152b8
CW
3270 drm_gem_object_unreference(target_obj);
3271 i915_gem_object_unpin(obj);
e47c68e9
EA
3272 return -EINVAL;
3273 }
40a5f0de
EA
3274 if (reloc->write_domain && target_obj->pending_write_domain &&
3275 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3276 DRM_ERROR("Write domain conflict: "
3277 "obj %p target %d offset %d "
3278 "new %08x old %08x\n",
40a5f0de
EA
3279 obj, reloc->target_handle,
3280 (int) reloc->offset,
3281 reloc->write_domain,
673a394b
EA
3282 target_obj->pending_write_domain);
3283 drm_gem_object_unreference(target_obj);
3284 i915_gem_object_unpin(obj);
3285 return -EINVAL;
3286 }
3287
40a5f0de
EA
3288 target_obj->pending_read_domains |= reloc->read_domains;
3289 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3290
3291 /* If the relocation already has the right value in it, no
3292 * more work needs to be done.
3293 */
40a5f0de 3294 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3295 drm_gem_object_unreference(target_obj);
3296 continue;
3297 }
3298
8542a0bb
CW
3299 /* Check that the relocation address is valid... */
3300 if (reloc->offset > obj->size - 4) {
3301 DRM_ERROR("Relocation beyond object bounds: "
3302 "obj %p target %d offset %d size %d.\n",
3303 obj, reloc->target_handle,
3304 (int) reloc->offset, (int) obj->size);
3305 drm_gem_object_unreference(target_obj);
3306 i915_gem_object_unpin(obj);
3307 return -EINVAL;
3308 }
3309 if (reloc->offset & 3) {
3310 DRM_ERROR("Relocation not 4-byte aligned: "
3311 "obj %p target %d offset %d.\n",
3312 obj, reloc->target_handle,
3313 (int) reloc->offset);
3314 drm_gem_object_unreference(target_obj);
3315 i915_gem_object_unpin(obj);
3316 return -EINVAL;
3317 }
3318
3319 /* and points to somewhere within the target object. */
3320 if (reloc->delta >= target_obj->size) {
3321 DRM_ERROR("Relocation beyond target object bounds: "
3322 "obj %p target %d delta %d size %d.\n",
3323 obj, reloc->target_handle,
3324 (int) reloc->delta, (int) target_obj->size);
3325 drm_gem_object_unreference(target_obj);
3326 i915_gem_object_unpin(obj);
3327 return -EINVAL;
3328 }
3329
2ef7eeaa
EA
3330 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3331 if (ret != 0) {
3332 drm_gem_object_unreference(target_obj);
3333 i915_gem_object_unpin(obj);
3334 return -EINVAL;
673a394b
EA
3335 }
3336
3337 /* Map the page containing the relocation we're going to
3338 * perform.
3339 */
40a5f0de 3340 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3341 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3342 (reloc_offset &
fca3ec01
CW
3343 ~(PAGE_SIZE - 1)),
3344 KM_USER0);
3043c60c 3345 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3346 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3347 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3348
3349#if WATCH_BUF
3350 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3351 obj, (unsigned int) reloc->offset,
673a394b
EA
3352 readl(reloc_entry), reloc_val);
3353#endif
3354 writel(reloc_val, reloc_entry);
fca3ec01 3355 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3356
40a5f0de
EA
3357 /* The updated presumed offset for this entry will be
3358 * copied back out to the user.
673a394b 3359 */
40a5f0de 3360 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3361
3362 drm_gem_object_unreference(target_obj);
3363 }
3364
673a394b
EA
3365#if WATCH_BUF
3366 if (0)
3367 i915_gem_dump_object(obj, 128, __func__, ~0);
3368#endif
3369 return 0;
3370}
3371
673a394b
EA
3372/* Throttle our rendering by waiting until the ring has completed our requests
3373 * emitted over 20 msec ago.
3374 *
b962442e
EA
3375 * Note that if we were to use the current jiffies each time around the loop,
3376 * we wouldn't escape the function with any frames outstanding if the time to
3377 * render a frame was over 20ms.
3378 *
673a394b
EA
3379 * This should get us reasonable parallelism between CPU and GPU but also
3380 * relatively low latency when blocking on a particular request to finish.
3381 */
3382static int
3383i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3384{
3385 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3386 int ret = 0;
b962442e 3387 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3388
3389 mutex_lock(&dev->struct_mutex);
b962442e
EA
3390 while (!list_empty(&i915_file_priv->mm.request_list)) {
3391 struct drm_i915_gem_request *request;
3392
3393 request = list_first_entry(&i915_file_priv->mm.request_list,
3394 struct drm_i915_gem_request,
3395 client_list);
3396
3397 if (time_after_eq(request->emitted_jiffies, recent_enough))
3398 break;
3399
852835f3 3400 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3401 if (ret != 0)
3402 break;
3403 }
673a394b 3404 mutex_unlock(&dev->struct_mutex);
b962442e 3405
673a394b
EA
3406 return ret;
3407}
3408
40a5f0de 3409static int
76446cac 3410i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3411 uint32_t buffer_count,
3412 struct drm_i915_gem_relocation_entry **relocs)
3413{
3414 uint32_t reloc_count = 0, reloc_index = 0, i;
3415 int ret;
3416
3417 *relocs = NULL;
3418 for (i = 0; i < buffer_count; i++) {
3419 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3420 return -EINVAL;
3421 reloc_count += exec_list[i].relocation_count;
3422 }
3423
8e7d2b2c 3424 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3425 if (*relocs == NULL) {
3426 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3427 return -ENOMEM;
76446cac 3428 }
40a5f0de
EA
3429
3430 for (i = 0; i < buffer_count; i++) {
3431 struct drm_i915_gem_relocation_entry __user *user_relocs;
3432
3433 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3434
3435 ret = copy_from_user(&(*relocs)[reloc_index],
3436 user_relocs,
3437 exec_list[i].relocation_count *
3438 sizeof(**relocs));
3439 if (ret != 0) {
8e7d2b2c 3440 drm_free_large(*relocs);
40a5f0de 3441 *relocs = NULL;
2bc43b5c 3442 return -EFAULT;
40a5f0de
EA
3443 }
3444
3445 reloc_index += exec_list[i].relocation_count;
3446 }
3447
2bc43b5c 3448 return 0;
40a5f0de
EA
3449}
3450
3451static int
76446cac 3452i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3453 uint32_t buffer_count,
3454 struct drm_i915_gem_relocation_entry *relocs)
3455{
3456 uint32_t reloc_count = 0, i;
2bc43b5c 3457 int ret = 0;
40a5f0de 3458
93533c29
CW
3459 if (relocs == NULL)
3460 return 0;
3461
40a5f0de
EA
3462 for (i = 0; i < buffer_count; i++) {
3463 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3464 int unwritten;
40a5f0de
EA
3465
3466 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3467
2bc43b5c
FM
3468 unwritten = copy_to_user(user_relocs,
3469 &relocs[reloc_count],
3470 exec_list[i].relocation_count *
3471 sizeof(*relocs));
3472
3473 if (unwritten) {
3474 ret = -EFAULT;
3475 goto err;
40a5f0de
EA
3476 }
3477
3478 reloc_count += exec_list[i].relocation_count;
3479 }
3480
2bc43b5c 3481err:
8e7d2b2c 3482 drm_free_large(relocs);
40a5f0de
EA
3483
3484 return ret;
3485}
3486
83d60795 3487static int
76446cac 3488i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3489 uint64_t exec_offset)
3490{
3491 uint32_t exec_start, exec_len;
3492
3493 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3494 exec_len = (uint32_t) exec->batch_len;
3495
3496 if ((exec_start | exec_len) & 0x7)
3497 return -EINVAL;
3498
3499 if (!exec_start)
3500 return -EINVAL;
3501
3502 return 0;
3503}
3504
6b95a207
KH
3505static int
3506i915_gem_wait_for_pending_flip(struct drm_device *dev,
3507 struct drm_gem_object **object_list,
3508 int count)
3509{
3510 drm_i915_private_t *dev_priv = dev->dev_private;
3511 struct drm_i915_gem_object *obj_priv;
3512 DEFINE_WAIT(wait);
3513 int i, ret = 0;
3514
3515 for (;;) {
3516 prepare_to_wait(&dev_priv->pending_flip_queue,
3517 &wait, TASK_INTERRUPTIBLE);
3518 for (i = 0; i < count; i++) {
23010e43 3519 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3520 if (atomic_read(&obj_priv->pending_flip) > 0)
3521 break;
3522 }
3523 if (i == count)
3524 break;
3525
3526 if (!signal_pending(current)) {
3527 mutex_unlock(&dev->struct_mutex);
3528 schedule();
3529 mutex_lock(&dev->struct_mutex);
3530 continue;
3531 }
3532 ret = -ERESTARTSYS;
3533 break;
3534 }
3535 finish_wait(&dev_priv->pending_flip_queue, &wait);
3536
3537 return ret;
3538}
3539
43b27f40 3540
673a394b 3541int
76446cac
JB
3542i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3543 struct drm_file *file_priv,
3544 struct drm_i915_gem_execbuffer2 *args,
3545 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3546{
3547 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3548 struct drm_gem_object **object_list = NULL;
3549 struct drm_gem_object *batch_obj;
b70d11da 3550 struct drm_i915_gem_object *obj_priv;
201361a5 3551 struct drm_clip_rect *cliprects = NULL;
93533c29 3552 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3553 int ret = 0, ret2, i, pinned = 0;
673a394b 3554 uint64_t exec_offset;
40a5f0de 3555 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3556 int pin_tries, flips;
673a394b 3557
852835f3
ZN
3558 struct intel_ring_buffer *ring = NULL;
3559
673a394b
EA
3560#if WATCH_EXEC
3561 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3562 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3563#endif
d1b851fc
ZN
3564 if (args->flags & I915_EXEC_BSD) {
3565 if (!HAS_BSD(dev)) {
3566 DRM_ERROR("execbuf with wrong flag\n");
3567 return -EINVAL;
3568 }
3569 ring = &dev_priv->bsd_ring;
3570 } else {
3571 ring = &dev_priv->render_ring;
3572 }
3573
4f481ed2
EA
3574 if (args->buffer_count < 1) {
3575 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3576 return -EINVAL;
3577 }
c8e0f93a 3578 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3579 if (object_list == NULL) {
3580 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3581 args->buffer_count);
3582 ret = -ENOMEM;
3583 goto pre_mutex_err;
3584 }
673a394b 3585
201361a5 3586 if (args->num_cliprects != 0) {
9a298b2a
EA
3587 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3588 GFP_KERNEL);
a40e8d31
OA
3589 if (cliprects == NULL) {
3590 ret = -ENOMEM;
201361a5 3591 goto pre_mutex_err;
a40e8d31 3592 }
201361a5
EA
3593
3594 ret = copy_from_user(cliprects,
3595 (struct drm_clip_rect __user *)
3596 (uintptr_t) args->cliprects_ptr,
3597 sizeof(*cliprects) * args->num_cliprects);
3598 if (ret != 0) {
3599 DRM_ERROR("copy %d cliprects failed: %d\n",
3600 args->num_cliprects, ret);
c877cdce 3601 ret = -EFAULT;
201361a5
EA
3602 goto pre_mutex_err;
3603 }
3604 }
3605
40a5f0de
EA
3606 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3607 &relocs);
3608 if (ret != 0)
3609 goto pre_mutex_err;
3610
673a394b
EA
3611 mutex_lock(&dev->struct_mutex);
3612
3613 i915_verify_inactive(dev, __FILE__, __LINE__);
3614
ba1234d1 3615 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3616 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3617 ret = -EIO;
3618 goto pre_mutex_err;
673a394b
EA
3619 }
3620
3621 if (dev_priv->mm.suspended) {
673a394b 3622 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3623 ret = -EBUSY;
3624 goto pre_mutex_err;
673a394b
EA
3625 }
3626
ac94a962 3627 /* Look up object handles */
6b95a207 3628 flips = 0;
673a394b
EA
3629 for (i = 0; i < args->buffer_count; i++) {
3630 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3631 exec_list[i].handle);
3632 if (object_list[i] == NULL) {
3633 DRM_ERROR("Invalid object handle %d at index %d\n",
3634 exec_list[i].handle, i);
0ce907f8
CW
3635 /* prevent error path from reading uninitialized data */
3636 args->buffer_count = i + 1;
bf79cb91 3637 ret = -ENOENT;
673a394b
EA
3638 goto err;
3639 }
b70d11da 3640
23010e43 3641 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3642 if (obj_priv->in_execbuffer) {
3643 DRM_ERROR("Object %p appears more than once in object list\n",
3644 object_list[i]);
0ce907f8
CW
3645 /* prevent error path from reading uninitialized data */
3646 args->buffer_count = i + 1;
bf79cb91 3647 ret = -EINVAL;
b70d11da
KH
3648 goto err;
3649 }
3650 obj_priv->in_execbuffer = true;
6b95a207
KH
3651 flips += atomic_read(&obj_priv->pending_flip);
3652 }
3653
3654 if (flips > 0) {
3655 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3656 args->buffer_count);
3657 if (ret)
3658 goto err;
ac94a962 3659 }
673a394b 3660
ac94a962
KP
3661 /* Pin and relocate */
3662 for (pin_tries = 0; ; pin_tries++) {
3663 ret = 0;
40a5f0de
EA
3664 reloc_index = 0;
3665
ac94a962
KP
3666 for (i = 0; i < args->buffer_count; i++) {
3667 object_list[i]->pending_read_domains = 0;
3668 object_list[i]->pending_write_domain = 0;
3669 ret = i915_gem_object_pin_and_relocate(object_list[i],
3670 file_priv,
40a5f0de
EA
3671 &exec_list[i],
3672 &relocs[reloc_index]);
ac94a962
KP
3673 if (ret)
3674 break;
3675 pinned = i + 1;
40a5f0de 3676 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3677 }
3678 /* success */
3679 if (ret == 0)
3680 break;
3681
3682 /* error other than GTT full, or we've already tried again */
2939e1f5 3683 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3684 if (ret != -ERESTARTSYS) {
3685 unsigned long long total_size = 0;
3d1cc470
CW
3686 int num_fences = 0;
3687 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3688 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3689
07f73f69 3690 total_size += object_list[i]->size;
3d1cc470
CW
3691 num_fences +=
3692 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3693 obj_priv->tiling_mode != I915_TILING_NONE;
3694 }
3695 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3696 pinned+1, args->buffer_count,
3d1cc470
CW
3697 total_size, num_fences,
3698 ret);
07f73f69
CW
3699 DRM_ERROR("%d objects [%d pinned], "
3700 "%d object bytes [%d pinned], "
3701 "%d/%d gtt bytes\n",
3702 atomic_read(&dev->object_count),
3703 atomic_read(&dev->pin_count),
3704 atomic_read(&dev->object_memory),
3705 atomic_read(&dev->pin_memory),
3706 atomic_read(&dev->gtt_memory),
3707 dev->gtt_total);
3708 }
673a394b
EA
3709 goto err;
3710 }
ac94a962
KP
3711
3712 /* unpin all of our buffers */
3713 for (i = 0; i < pinned; i++)
3714 i915_gem_object_unpin(object_list[i]);
b1177636 3715 pinned = 0;
ac94a962
KP
3716
3717 /* evict everyone we can from the aperture */
3718 ret = i915_gem_evict_everything(dev);
07f73f69 3719 if (ret && ret != -ENOSPC)
ac94a962 3720 goto err;
673a394b
EA
3721 }
3722
3723 /* Set the pending read domains for the batch buffer to COMMAND */
3724 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3725 if (batch_obj->pending_write_domain) {
3726 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3727 ret = -EINVAL;
3728 goto err;
3729 }
3730 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3731
83d60795
CW
3732 /* Sanity check the batch buffer, prior to moving objects */
3733 exec_offset = exec_list[args->buffer_count - 1].offset;
3734 ret = i915_gem_check_execbuffer (args, exec_offset);
3735 if (ret != 0) {
3736 DRM_ERROR("execbuf with invalid offset/length\n");
3737 goto err;
3738 }
3739
673a394b
EA
3740 i915_verify_inactive(dev, __FILE__, __LINE__);
3741
646f0f6e
KP
3742 /* Zero the global flush/invalidate flags. These
3743 * will be modified as new domains are computed
3744 * for each object
3745 */
3746 dev->invalidate_domains = 0;
3747 dev->flush_domains = 0;
88f356b7 3748 dev_priv->flush_rings = 0;
646f0f6e 3749
673a394b
EA
3750 for (i = 0; i < args->buffer_count; i++) {
3751 struct drm_gem_object *obj = object_list[i];
673a394b 3752
646f0f6e 3753 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3754 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3755 }
3756
3757 i915_verify_inactive(dev, __FILE__, __LINE__);
3758
646f0f6e
KP
3759 if (dev->invalidate_domains | dev->flush_domains) {
3760#if WATCH_EXEC
3761 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3762 __func__,
3763 dev->invalidate_domains,
3764 dev->flush_domains);
3765#endif
3766 i915_gem_flush(dev,
3767 dev->invalidate_domains,
3768 dev->flush_domains);
88f356b7 3769 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3770 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3771 dev->flush_domains,
3772 &dev_priv->render_ring);
3773 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3774 (void)i915_add_request(dev, file_priv,
3775 dev->flush_domains,
3776 &dev_priv->bsd_ring);
646f0f6e 3777 }
673a394b 3778
efbeed96
EA
3779 for (i = 0; i < args->buffer_count; i++) {
3780 struct drm_gem_object *obj = object_list[i];
23010e43 3781 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3782 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3783
3784 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3785 if (obj->write_domain)
3786 list_move_tail(&obj_priv->gpu_write_list,
3787 &dev_priv->mm.gpu_write_list);
3788 else
3789 list_del_init(&obj_priv->gpu_write_list);
3790
1c5d22f7
CW
3791 trace_i915_gem_object_change_domain(obj,
3792 obj->read_domains,
3793 old_write_domain);
efbeed96
EA
3794 }
3795
673a394b
EA
3796 i915_verify_inactive(dev, __FILE__, __LINE__);
3797
3798#if WATCH_COHERENCY
3799 for (i = 0; i < args->buffer_count; i++) {
3800 i915_gem_object_check_coherency(object_list[i],
3801 exec_list[i].handle);
3802 }
3803#endif
3804
673a394b 3805#if WATCH_EXEC
6911a9b8 3806 i915_gem_dump_object(batch_obj,
673a394b
EA
3807 args->batch_len,
3808 __func__,
3809 ~0);
3810#endif
3811
673a394b 3812 /* Exec the batchbuffer */
852835f3
ZN
3813 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3814 cliprects, exec_offset);
673a394b
EA
3815 if (ret) {
3816 DRM_ERROR("dispatch failed %d\n", ret);
3817 goto err;
3818 }
3819
3820 /*
3821 * Ensure that the commands in the batch buffer are
3822 * finished before the interrupt fires
3823 */
852835f3 3824 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3825
3826 i915_verify_inactive(dev, __FILE__, __LINE__);
3827
3828 /*
3829 * Get a seqno representing the execution of the current buffer,
3830 * which we can wait on. We would like to mitigate these interrupts,
3831 * likely by only creating seqnos occasionally (so that we have
3832 * *some* interrupts representing completion of buffers that we can
3833 * wait on when trying to clear up gtt space).
3834 */
852835f3 3835 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3836 BUG_ON(seqno == 0);
673a394b
EA
3837 for (i = 0; i < args->buffer_count; i++) {
3838 struct drm_gem_object *obj = object_list[i];
852835f3 3839 obj_priv = to_intel_bo(obj);
673a394b 3840
852835f3 3841 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3842#if WATCH_LRU
3843 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3844#endif
3845 }
3846#if WATCH_LRU
3847 i915_dump_lru(dev, __func__);
3848#endif
3849
3850 i915_verify_inactive(dev, __FILE__, __LINE__);
3851
673a394b 3852err:
aad87dff
JL
3853 for (i = 0; i < pinned; i++)
3854 i915_gem_object_unpin(object_list[i]);
3855
b70d11da
KH
3856 for (i = 0; i < args->buffer_count; i++) {
3857 if (object_list[i]) {
23010e43 3858 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3859 obj_priv->in_execbuffer = false;
3860 }
aad87dff 3861 drm_gem_object_unreference(object_list[i]);
b70d11da 3862 }
673a394b 3863
673a394b
EA
3864 mutex_unlock(&dev->struct_mutex);
3865
93533c29 3866pre_mutex_err:
40a5f0de
EA
3867 /* Copy the updated relocations out regardless of current error
3868 * state. Failure to update the relocs would mean that the next
3869 * time userland calls execbuf, it would do so with presumed offset
3870 * state that didn't match the actual object state.
3871 */
3872 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3873 relocs);
3874 if (ret2 != 0) {
3875 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3876
3877 if (ret == 0)
3878 ret = ret2;
3879 }
3880
8e7d2b2c 3881 drm_free_large(object_list);
9a298b2a 3882 kfree(cliprects);
673a394b
EA
3883
3884 return ret;
3885}
3886
76446cac
JB
3887/*
3888 * Legacy execbuffer just creates an exec2 list from the original exec object
3889 * list array and passes it to the real function.
3890 */
3891int
3892i915_gem_execbuffer(struct drm_device *dev, void *data,
3893 struct drm_file *file_priv)
3894{
3895 struct drm_i915_gem_execbuffer *args = data;
3896 struct drm_i915_gem_execbuffer2 exec2;
3897 struct drm_i915_gem_exec_object *exec_list = NULL;
3898 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3899 int ret, i;
3900
3901#if WATCH_EXEC
3902 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3903 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3904#endif
3905
3906 if (args->buffer_count < 1) {
3907 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3908 return -EINVAL;
3909 }
3910
3911 /* Copy in the exec list from userland */
3912 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3913 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3914 if (exec_list == NULL || exec2_list == NULL) {
3915 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3916 args->buffer_count);
3917 drm_free_large(exec_list);
3918 drm_free_large(exec2_list);
3919 return -ENOMEM;
3920 }
3921 ret = copy_from_user(exec_list,
3922 (struct drm_i915_relocation_entry __user *)
3923 (uintptr_t) args->buffers_ptr,
3924 sizeof(*exec_list) * args->buffer_count);
3925 if (ret != 0) {
3926 DRM_ERROR("copy %d exec entries failed %d\n",
3927 args->buffer_count, ret);
3928 drm_free_large(exec_list);
3929 drm_free_large(exec2_list);
3930 return -EFAULT;
3931 }
3932
3933 for (i = 0; i < args->buffer_count; i++) {
3934 exec2_list[i].handle = exec_list[i].handle;
3935 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3936 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3937 exec2_list[i].alignment = exec_list[i].alignment;
3938 exec2_list[i].offset = exec_list[i].offset;
3939 if (!IS_I965G(dev))
3940 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3941 else
3942 exec2_list[i].flags = 0;
3943 }
3944
3945 exec2.buffers_ptr = args->buffers_ptr;
3946 exec2.buffer_count = args->buffer_count;
3947 exec2.batch_start_offset = args->batch_start_offset;
3948 exec2.batch_len = args->batch_len;
3949 exec2.DR1 = args->DR1;
3950 exec2.DR4 = args->DR4;
3951 exec2.num_cliprects = args->num_cliprects;
3952 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3953 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3954
3955 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3956 if (!ret) {
3957 /* Copy the new buffer offsets back to the user's exec list. */
3958 for (i = 0; i < args->buffer_count; i++)
3959 exec_list[i].offset = exec2_list[i].offset;
3960 /* ... and back out to userspace */
3961 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3962 (uintptr_t) args->buffers_ptr,
3963 exec_list,
3964 sizeof(*exec_list) * args->buffer_count);
3965 if (ret) {
3966 ret = -EFAULT;
3967 DRM_ERROR("failed to copy %d exec entries "
3968 "back to user (%d)\n",
3969 args->buffer_count, ret);
3970 }
76446cac
JB
3971 }
3972
3973 drm_free_large(exec_list);
3974 drm_free_large(exec2_list);
3975 return ret;
3976}
3977
3978int
3979i915_gem_execbuffer2(struct drm_device *dev, void *data,
3980 struct drm_file *file_priv)
3981{
3982 struct drm_i915_gem_execbuffer2 *args = data;
3983 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3984 int ret;
3985
3986#if WATCH_EXEC
3987 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3988 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3989#endif
3990
3991 if (args->buffer_count < 1) {
3992 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3993 return -EINVAL;
3994 }
3995
3996 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3997 if (exec2_list == NULL) {
3998 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3999 args->buffer_count);
4000 return -ENOMEM;
4001 }
4002 ret = copy_from_user(exec2_list,
4003 (struct drm_i915_relocation_entry __user *)
4004 (uintptr_t) args->buffers_ptr,
4005 sizeof(*exec2_list) * args->buffer_count);
4006 if (ret != 0) {
4007 DRM_ERROR("copy %d exec entries failed %d\n",
4008 args->buffer_count, ret);
4009 drm_free_large(exec2_list);
4010 return -EFAULT;
4011 }
4012
4013 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4014 if (!ret) {
4015 /* Copy the new buffer offsets back to the user's exec list. */
4016 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4017 (uintptr_t) args->buffers_ptr,
4018 exec2_list,
4019 sizeof(*exec2_list) * args->buffer_count);
4020 if (ret) {
4021 ret = -EFAULT;
4022 DRM_ERROR("failed to copy %d exec entries "
4023 "back to user (%d)\n",
4024 args->buffer_count, ret);
4025 }
4026 }
4027
4028 drm_free_large(exec2_list);
4029 return ret;
4030}
4031
673a394b
EA
4032int
4033i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4034{
4035 struct drm_device *dev = obj->dev;
23010e43 4036 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4037 int ret;
4038
778c3544
DV
4039 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4040
673a394b 4041 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4042
4043 if (obj_priv->gtt_space != NULL) {
4044 if (alignment == 0)
4045 alignment = i915_gem_get_gtt_alignment(obj);
4046 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4047 WARN(obj_priv->pin_count,
4048 "bo is already pinned with incorrect alignment:"
4049 " offset=%x, req.alignment=%x\n",
4050 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4051 ret = i915_gem_object_unbind(obj);
4052 if (ret)
4053 return ret;
4054 }
4055 }
4056
673a394b
EA
4057 if (obj_priv->gtt_space == NULL) {
4058 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4059 if (ret)
673a394b 4060 return ret;
22c344e9 4061 }
76446cac 4062
673a394b
EA
4063 obj_priv->pin_count++;
4064
4065 /* If the object is not active and not pending a flush,
4066 * remove it from the inactive list
4067 */
4068 if (obj_priv->pin_count == 1) {
4069 atomic_inc(&dev->pin_count);
4070 atomic_add(obj->size, &dev->pin_memory);
4071 if (!obj_priv->active &&
bf1a1092 4072 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4073 list_del_init(&obj_priv->list);
4074 }
4075 i915_verify_inactive(dev, __FILE__, __LINE__);
4076
4077 return 0;
4078}
4079
4080void
4081i915_gem_object_unpin(struct drm_gem_object *obj)
4082{
4083 struct drm_device *dev = obj->dev;
4084 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4085 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4086
4087 i915_verify_inactive(dev, __FILE__, __LINE__);
4088 obj_priv->pin_count--;
4089 BUG_ON(obj_priv->pin_count < 0);
4090 BUG_ON(obj_priv->gtt_space == NULL);
4091
4092 /* If the object is no longer pinned, and is
4093 * neither active nor being flushed, then stick it on
4094 * the inactive list
4095 */
4096 if (obj_priv->pin_count == 0) {
4097 if (!obj_priv->active &&
21d509e3 4098 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4099 list_move_tail(&obj_priv->list,
4100 &dev_priv->mm.inactive_list);
4101 atomic_dec(&dev->pin_count);
4102 atomic_sub(obj->size, &dev->pin_memory);
4103 }
4104 i915_verify_inactive(dev, __FILE__, __LINE__);
4105}
4106
4107int
4108i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4109 struct drm_file *file_priv)
4110{
4111 struct drm_i915_gem_pin *args = data;
4112 struct drm_gem_object *obj;
4113 struct drm_i915_gem_object *obj_priv;
4114 int ret;
4115
4116 mutex_lock(&dev->struct_mutex);
4117
4118 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4119 if (obj == NULL) {
4120 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4121 args->handle);
4122 mutex_unlock(&dev->struct_mutex);
bf79cb91 4123 return -ENOENT;
673a394b 4124 }
23010e43 4125 obj_priv = to_intel_bo(obj);
673a394b 4126
bb6baf76
CW
4127 if (obj_priv->madv != I915_MADV_WILLNEED) {
4128 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4129 drm_gem_object_unreference(obj);
4130 mutex_unlock(&dev->struct_mutex);
4131 return -EINVAL;
4132 }
4133
79e53945
JB
4134 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4135 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4136 args->handle);
96dec61d 4137 drm_gem_object_unreference(obj);
673a394b 4138 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4139 return -EINVAL;
4140 }
4141
4142 obj_priv->user_pin_count++;
4143 obj_priv->pin_filp = file_priv;
4144 if (obj_priv->user_pin_count == 1) {
4145 ret = i915_gem_object_pin(obj, args->alignment);
4146 if (ret != 0) {
4147 drm_gem_object_unreference(obj);
4148 mutex_unlock(&dev->struct_mutex);
4149 return ret;
4150 }
673a394b
EA
4151 }
4152
4153 /* XXX - flush the CPU caches for pinned objects
4154 * as the X server doesn't manage domains yet
4155 */
e47c68e9 4156 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4157 args->offset = obj_priv->gtt_offset;
4158 drm_gem_object_unreference(obj);
4159 mutex_unlock(&dev->struct_mutex);
4160
4161 return 0;
4162}
4163
4164int
4165i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4166 struct drm_file *file_priv)
4167{
4168 struct drm_i915_gem_pin *args = data;
4169 struct drm_gem_object *obj;
79e53945 4170 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4171
4172 mutex_lock(&dev->struct_mutex);
4173
4174 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4175 if (obj == NULL) {
4176 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4177 args->handle);
4178 mutex_unlock(&dev->struct_mutex);
bf79cb91 4179 return -ENOENT;
673a394b
EA
4180 }
4181
23010e43 4182 obj_priv = to_intel_bo(obj);
79e53945
JB
4183 if (obj_priv->pin_filp != file_priv) {
4184 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4185 args->handle);
4186 drm_gem_object_unreference(obj);
4187 mutex_unlock(&dev->struct_mutex);
4188 return -EINVAL;
4189 }
4190 obj_priv->user_pin_count--;
4191 if (obj_priv->user_pin_count == 0) {
4192 obj_priv->pin_filp = NULL;
4193 i915_gem_object_unpin(obj);
4194 }
673a394b
EA
4195
4196 drm_gem_object_unreference(obj);
4197 mutex_unlock(&dev->struct_mutex);
4198 return 0;
4199}
4200
4201int
4202i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4203 struct drm_file *file_priv)
4204{
4205 struct drm_i915_gem_busy *args = data;
4206 struct drm_gem_object *obj;
4207 struct drm_i915_gem_object *obj_priv;
4208
673a394b
EA
4209 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4210 if (obj == NULL) {
4211 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4212 args->handle);
bf79cb91 4213 return -ENOENT;
673a394b
EA
4214 }
4215
b1ce786c 4216 mutex_lock(&dev->struct_mutex);
d1b851fc 4217
0be555b6
CW
4218 /* Count all active objects as busy, even if they are currently not used
4219 * by the gpu. Users of this interface expect objects to eventually
4220 * become non-busy without any further actions, therefore emit any
4221 * necessary flushes here.
c4de0a5d 4222 */
0be555b6
CW
4223 obj_priv = to_intel_bo(obj);
4224 args->busy = obj_priv->active;
4225 if (args->busy) {
4226 /* Unconditionally flush objects, even when the gpu still uses this
4227 * object. Userspace calling this function indicates that it wants to
4228 * use this buffer rather sooner than later, so issuing the required
4229 * flush earlier is beneficial.
4230 */
4231 if (obj->write_domain) {
4232 i915_gem_flush(dev, 0, obj->write_domain);
4233 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4234 }
4235
4236 /* Update the active list for the hardware's current position.
4237 * Otherwise this only updates on a delayed timer or when irqs
4238 * are actually unmasked, and our working set ends up being
4239 * larger than required.
4240 */
4241 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4242
4243 args->busy = obj_priv->active;
4244 }
673a394b
EA
4245
4246 drm_gem_object_unreference(obj);
4247 mutex_unlock(&dev->struct_mutex);
4248 return 0;
4249}
4250
4251int
4252i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file_priv)
4254{
4255 return i915_gem_ring_throttle(dev, file_priv);
4256}
4257
3ef94daa
CW
4258int
4259i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
4262 struct drm_i915_gem_madvise *args = data;
4263 struct drm_gem_object *obj;
4264 struct drm_i915_gem_object *obj_priv;
4265
4266 switch (args->madv) {
4267 case I915_MADV_DONTNEED:
4268 case I915_MADV_WILLNEED:
4269 break;
4270 default:
4271 return -EINVAL;
4272 }
4273
4274 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4275 if (obj == NULL) {
4276 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4277 args->handle);
bf79cb91 4278 return -ENOENT;
3ef94daa
CW
4279 }
4280
4281 mutex_lock(&dev->struct_mutex);
23010e43 4282 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4283
4284 if (obj_priv->pin_count) {
4285 drm_gem_object_unreference(obj);
4286 mutex_unlock(&dev->struct_mutex);
4287
4288 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4289 return -EINVAL;
4290 }
4291
bb6baf76
CW
4292 if (obj_priv->madv != __I915_MADV_PURGED)
4293 obj_priv->madv = args->madv;
3ef94daa 4294
2d7ef395
CW
4295 /* if the object is no longer bound, discard its backing storage */
4296 if (i915_gem_object_is_purgeable(obj_priv) &&
4297 obj_priv->gtt_space == NULL)
4298 i915_gem_object_truncate(obj);
4299
bb6baf76
CW
4300 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4301
3ef94daa
CW
4302 drm_gem_object_unreference(obj);
4303 mutex_unlock(&dev->struct_mutex);
4304
4305 return 0;
4306}
4307
ac52bc56
DV
4308struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4309 size_t size)
4310{
c397b908 4311 struct drm_i915_gem_object *obj;
ac52bc56 4312
c397b908
DV
4313 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4314 if (obj == NULL)
4315 return NULL;
673a394b 4316
c397b908
DV
4317 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4318 kfree(obj);
4319 return NULL;
4320 }
673a394b 4321
c397b908
DV
4322 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4323 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4324
c397b908 4325 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4326 obj->base.driver_private = NULL;
c397b908
DV
4327 obj->fence_reg = I915_FENCE_REG_NONE;
4328 INIT_LIST_HEAD(&obj->list);
4329 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4330 obj->madv = I915_MADV_WILLNEED;
de151cf6 4331
c397b908
DV
4332 trace_i915_gem_object_create(&obj->base);
4333
4334 return &obj->base;
4335}
4336
4337int i915_gem_init_object(struct drm_gem_object *obj)
4338{
4339 BUG();
de151cf6 4340
673a394b
EA
4341 return 0;
4342}
4343
be72615b 4344static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4345{
de151cf6 4346 struct drm_device *dev = obj->dev;
be72615b 4347 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4348 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4349 int ret;
673a394b 4350
be72615b
CW
4351 ret = i915_gem_object_unbind(obj);
4352 if (ret == -ERESTARTSYS) {
4353 list_move(&obj_priv->list,
4354 &dev_priv->mm.deferred_free_list);
4355 return;
4356 }
673a394b 4357
7e616158
CW
4358 if (obj_priv->mmap_offset)
4359 i915_gem_free_mmap_offset(obj);
de151cf6 4360
c397b908
DV
4361 drm_gem_object_release(obj);
4362
9a298b2a 4363 kfree(obj_priv->page_cpu_valid);
280b713b 4364 kfree(obj_priv->bit_17);
c397b908 4365 kfree(obj_priv);
673a394b
EA
4366}
4367
be72615b
CW
4368void i915_gem_free_object(struct drm_gem_object *obj)
4369{
4370 struct drm_device *dev = obj->dev;
4371 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4372
4373 trace_i915_gem_object_destroy(obj);
4374
4375 while (obj_priv->pin_count > 0)
4376 i915_gem_object_unpin(obj);
4377
4378 if (obj_priv->phys_obj)
4379 i915_gem_detach_phys_object(dev, obj);
4380
4381 i915_gem_free_object_tail(obj);
4382}
4383
29105ccc
CW
4384int
4385i915_gem_idle(struct drm_device *dev)
4386{
4387 drm_i915_private_t *dev_priv = dev->dev_private;
4388 int ret;
28dfe52a 4389
29105ccc 4390 mutex_lock(&dev->struct_mutex);
1c5d22f7 4391
8187a2b7 4392 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4393 (dev_priv->render_ring.gem_object == NULL) ||
4394 (HAS_BSD(dev) &&
4395 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4396 mutex_unlock(&dev->struct_mutex);
4397 return 0;
28dfe52a
EA
4398 }
4399
29105ccc 4400 ret = i915_gpu_idle(dev);
6dbe2772
KP
4401 if (ret) {
4402 mutex_unlock(&dev->struct_mutex);
673a394b 4403 return ret;
6dbe2772 4404 }
673a394b 4405
29105ccc
CW
4406 /* Under UMS, be paranoid and evict. */
4407 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4408 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4409 if (ret) {
4410 mutex_unlock(&dev->struct_mutex);
4411 return ret;
4412 }
4413 }
4414
4415 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4416 * We need to replace this with a semaphore, or something.
4417 * And not confound mm.suspended!
4418 */
4419 dev_priv->mm.suspended = 1;
4420 del_timer(&dev_priv->hangcheck_timer);
4421
4422 i915_kernel_lost_context(dev);
6dbe2772 4423 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4424
6dbe2772
KP
4425 mutex_unlock(&dev->struct_mutex);
4426
29105ccc
CW
4427 /* Cancel the retire work handler, which should be idle now. */
4428 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4429
673a394b
EA
4430 return 0;
4431}
4432
e552eb70
JB
4433/*
4434 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4435 * over cache flushing.
4436 */
8187a2b7 4437static int
e552eb70
JB
4438i915_gem_init_pipe_control(struct drm_device *dev)
4439{
4440 drm_i915_private_t *dev_priv = dev->dev_private;
4441 struct drm_gem_object *obj;
4442 struct drm_i915_gem_object *obj_priv;
4443 int ret;
4444
34dc4d44 4445 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4446 if (obj == NULL) {
4447 DRM_ERROR("Failed to allocate seqno page\n");
4448 ret = -ENOMEM;
4449 goto err;
4450 }
4451 obj_priv = to_intel_bo(obj);
4452 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4453
4454 ret = i915_gem_object_pin(obj, 4096);
4455 if (ret)
4456 goto err_unref;
4457
4458 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4459 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4460 if (dev_priv->seqno_page == NULL)
4461 goto err_unpin;
4462
4463 dev_priv->seqno_obj = obj;
4464 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4465
4466 return 0;
4467
4468err_unpin:
4469 i915_gem_object_unpin(obj);
4470err_unref:
4471 drm_gem_object_unreference(obj);
4472err:
4473 return ret;
4474}
4475
8187a2b7
ZN
4476
4477static void
e552eb70
JB
4478i915_gem_cleanup_pipe_control(struct drm_device *dev)
4479{
4480 drm_i915_private_t *dev_priv = dev->dev_private;
4481 struct drm_gem_object *obj;
4482 struct drm_i915_gem_object *obj_priv;
4483
4484 obj = dev_priv->seqno_obj;
4485 obj_priv = to_intel_bo(obj);
4486 kunmap(obj_priv->pages[0]);
4487 i915_gem_object_unpin(obj);
4488 drm_gem_object_unreference(obj);
4489 dev_priv->seqno_obj = NULL;
4490
4491 dev_priv->seqno_page = NULL;
673a394b
EA
4492}
4493
8187a2b7
ZN
4494int
4495i915_gem_init_ringbuffer(struct drm_device *dev)
4496{
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498 int ret;
68f95ba9 4499
8187a2b7 4500 dev_priv->render_ring = render_ring;
68f95ba9 4501
8187a2b7
ZN
4502 if (!I915_NEED_GFX_HWS(dev)) {
4503 dev_priv->render_ring.status_page.page_addr
4504 = dev_priv->status_page_dmah->vaddr;
4505 memset(dev_priv->render_ring.status_page.page_addr,
4506 0, PAGE_SIZE);
4507 }
68f95ba9 4508
8187a2b7
ZN
4509 if (HAS_PIPE_CONTROL(dev)) {
4510 ret = i915_gem_init_pipe_control(dev);
4511 if (ret)
4512 return ret;
4513 }
68f95ba9 4514
8187a2b7 4515 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4516 if (ret)
4517 goto cleanup_pipe_control;
4518
4519 if (HAS_BSD(dev)) {
d1b851fc
ZN
4520 dev_priv->bsd_ring = bsd_ring;
4521 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4522 if (ret)
4523 goto cleanup_render_ring;
d1b851fc 4524 }
68f95ba9 4525
6f392d54
CW
4526 dev_priv->next_seqno = 1;
4527
68f95ba9
CW
4528 return 0;
4529
4530cleanup_render_ring:
4531 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4532cleanup_pipe_control:
4533 if (HAS_PIPE_CONTROL(dev))
4534 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4535 return ret;
4536}
4537
4538void
4539i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4540{
4541 drm_i915_private_t *dev_priv = dev->dev_private;
4542
4543 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4544 if (HAS_BSD(dev))
4545 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4546 if (HAS_PIPE_CONTROL(dev))
4547 i915_gem_cleanup_pipe_control(dev);
4548}
4549
673a394b
EA
4550int
4551i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4552 struct drm_file *file_priv)
4553{
4554 drm_i915_private_t *dev_priv = dev->dev_private;
4555 int ret;
4556
79e53945
JB
4557 if (drm_core_check_feature(dev, DRIVER_MODESET))
4558 return 0;
4559
ba1234d1 4560 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4561 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4562 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4563 }
4564
673a394b 4565 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4566 dev_priv->mm.suspended = 0;
4567
4568 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4569 if (ret != 0) {
4570 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4571 return ret;
d816f6ac 4572 }
9bb2d6f9 4573
5e118f41 4574 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4575 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4576 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4577 spin_unlock(&dev_priv->mm.active_list_lock);
4578
673a394b
EA
4579 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4580 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4581 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4582 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4583 mutex_unlock(&dev->struct_mutex);
dbb19d30 4584
5f35308b
CW
4585 ret = drm_irq_install(dev);
4586 if (ret)
4587 goto cleanup_ringbuffer;
dbb19d30 4588
673a394b 4589 return 0;
5f35308b
CW
4590
4591cleanup_ringbuffer:
4592 mutex_lock(&dev->struct_mutex);
4593 i915_gem_cleanup_ringbuffer(dev);
4594 dev_priv->mm.suspended = 1;
4595 mutex_unlock(&dev->struct_mutex);
4596
4597 return ret;
673a394b
EA
4598}
4599
4600int
4601i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4602 struct drm_file *file_priv)
4603{
79e53945
JB
4604 if (drm_core_check_feature(dev, DRIVER_MODESET))
4605 return 0;
4606
dbb19d30 4607 drm_irq_uninstall(dev);
e6890f6f 4608 return i915_gem_idle(dev);
673a394b
EA
4609}
4610
4611void
4612i915_gem_lastclose(struct drm_device *dev)
4613{
4614 int ret;
673a394b 4615
e806b495
EA
4616 if (drm_core_check_feature(dev, DRIVER_MODESET))
4617 return;
4618
6dbe2772
KP
4619 ret = i915_gem_idle(dev);
4620 if (ret)
4621 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4622}
4623
4624void
4625i915_gem_load(struct drm_device *dev)
4626{
b5aa8a0f 4627 int i;
673a394b
EA
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629
5e118f41 4630 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4631 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4632 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4633 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4635 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4636 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4637 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4638 if (HAS_BSD(dev)) {
4639 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4640 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4641 }
007cc8ac
DV
4642 for (i = 0; i < 16; i++)
4643 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4644 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4645 i915_gem_retire_work_handler);
31169714
CW
4646 spin_lock(&shrink_list_lock);
4647 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4648 spin_unlock(&shrink_list_lock);
4649
94400120
DA
4650 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4651 if (IS_GEN3(dev)) {
4652 u32 tmp = I915_READ(MI_ARB_STATE);
4653 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4654 /* arb state is a masked write, so set bit + bit in mask */
4655 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4656 I915_WRITE(MI_ARB_STATE, tmp);
4657 }
4658 }
4659
de151cf6 4660 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4661 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4662 dev_priv->fence_reg_start = 3;
de151cf6 4663
0f973f27 4664 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4665 dev_priv->num_fence_regs = 16;
4666 else
4667 dev_priv->num_fence_regs = 8;
4668
b5aa8a0f
GH
4669 /* Initialize fence registers to zero */
4670 if (IS_I965G(dev)) {
4671 for (i = 0; i < 16; i++)
4672 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4673 } else {
4674 for (i = 0; i < 8; i++)
4675 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4676 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4677 for (i = 0; i < 8; i++)
4678 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4679 }
673a394b 4680 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4681 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4682}
71acb5eb
DA
4683
4684/*
4685 * Create a physically contiguous memory object for this object
4686 * e.g. for cursor + overlay regs
4687 */
4688int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4689 int id, int size, int align)
71acb5eb
DA
4690{
4691 drm_i915_private_t *dev_priv = dev->dev_private;
4692 struct drm_i915_gem_phys_object *phys_obj;
4693 int ret;
4694
4695 if (dev_priv->mm.phys_objs[id - 1] || !size)
4696 return 0;
4697
9a298b2a 4698 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4699 if (!phys_obj)
4700 return -ENOMEM;
4701
4702 phys_obj->id = id;
4703
6eeefaf3 4704 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4705 if (!phys_obj->handle) {
4706 ret = -ENOMEM;
4707 goto kfree_obj;
4708 }
4709#ifdef CONFIG_X86
4710 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4711#endif
4712
4713 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4714
4715 return 0;
4716kfree_obj:
9a298b2a 4717 kfree(phys_obj);
71acb5eb
DA
4718 return ret;
4719}
4720
4721void i915_gem_free_phys_object(struct drm_device *dev, int id)
4722{
4723 drm_i915_private_t *dev_priv = dev->dev_private;
4724 struct drm_i915_gem_phys_object *phys_obj;
4725
4726 if (!dev_priv->mm.phys_objs[id - 1])
4727 return;
4728
4729 phys_obj = dev_priv->mm.phys_objs[id - 1];
4730 if (phys_obj->cur_obj) {
4731 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4732 }
4733
4734#ifdef CONFIG_X86
4735 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4736#endif
4737 drm_pci_free(dev, phys_obj->handle);
4738 kfree(phys_obj);
4739 dev_priv->mm.phys_objs[id - 1] = NULL;
4740}
4741
4742void i915_gem_free_all_phys_object(struct drm_device *dev)
4743{
4744 int i;
4745
260883c8 4746 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4747 i915_gem_free_phys_object(dev, i);
4748}
4749
4750void i915_gem_detach_phys_object(struct drm_device *dev,
4751 struct drm_gem_object *obj)
4752{
4753 struct drm_i915_gem_object *obj_priv;
4754 int i;
4755 int ret;
4756 int page_count;
4757
23010e43 4758 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4759 if (!obj_priv->phys_obj)
4760 return;
4761
4bdadb97 4762 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4763 if (ret)
4764 goto out;
4765
4766 page_count = obj->size / PAGE_SIZE;
4767
4768 for (i = 0; i < page_count; i++) {
856fa198 4769 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4770 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4771
4772 memcpy(dst, src, PAGE_SIZE);
4773 kunmap_atomic(dst, KM_USER0);
4774 }
856fa198 4775 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4776 drm_agp_chipset_flush(dev);
d78b47b9
CW
4777
4778 i915_gem_object_put_pages(obj);
71acb5eb
DA
4779out:
4780 obj_priv->phys_obj->cur_obj = NULL;
4781 obj_priv->phys_obj = NULL;
4782}
4783
4784int
4785i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4786 struct drm_gem_object *obj,
4787 int id,
4788 int align)
71acb5eb
DA
4789{
4790 drm_i915_private_t *dev_priv = dev->dev_private;
4791 struct drm_i915_gem_object *obj_priv;
4792 int ret = 0;
4793 int page_count;
4794 int i;
4795
4796 if (id > I915_MAX_PHYS_OBJECT)
4797 return -EINVAL;
4798
23010e43 4799 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4800
4801 if (obj_priv->phys_obj) {
4802 if (obj_priv->phys_obj->id == id)
4803 return 0;
4804 i915_gem_detach_phys_object(dev, obj);
4805 }
4806
71acb5eb
DA
4807 /* create a new object */
4808 if (!dev_priv->mm.phys_objs[id - 1]) {
4809 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4810 obj->size, align);
71acb5eb 4811 if (ret) {
aeb565df 4812 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4813 goto out;
4814 }
4815 }
4816
4817 /* bind to the object */
4818 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4819 obj_priv->phys_obj->cur_obj = obj;
4820
4bdadb97 4821 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4822 if (ret) {
4823 DRM_ERROR("failed to get page list\n");
4824 goto out;
4825 }
4826
4827 page_count = obj->size / PAGE_SIZE;
4828
4829 for (i = 0; i < page_count; i++) {
856fa198 4830 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4831 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4832
4833 memcpy(dst, src, PAGE_SIZE);
4834 kunmap_atomic(src, KM_USER0);
4835 }
4836
d78b47b9
CW
4837 i915_gem_object_put_pages(obj);
4838
71acb5eb
DA
4839 return 0;
4840out:
4841 return ret;
4842}
4843
4844static int
4845i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4846 struct drm_i915_gem_pwrite *args,
4847 struct drm_file *file_priv)
4848{
23010e43 4849 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4850 void *obj_addr;
4851 int ret;
4852 char __user *user_data;
4853
4854 user_data = (char __user *) (uintptr_t) args->data_ptr;
4855 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4856
44d98a61 4857 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4858 ret = copy_from_user(obj_addr, user_data, args->size);
4859 if (ret)
4860 return -EFAULT;
4861
4862 drm_agp_chipset_flush(dev);
4863 return 0;
4864}
b962442e
EA
4865
4866void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4867{
4868 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4869
4870 /* Clean up our request list when the client is going away, so that
4871 * later retire_requests won't dereference our soon-to-be-gone
4872 * file_priv.
4873 */
4874 mutex_lock(&dev->struct_mutex);
4875 while (!list_empty(&i915_file_priv->mm.request_list))
4876 list_del_init(i915_file_priv->mm.request_list.next);
4877 mutex_unlock(&dev->struct_mutex);
4878}
31169714 4879
1637ef41
CW
4880static int
4881i915_gpu_is_active(struct drm_device *dev)
4882{
4883 drm_i915_private_t *dev_priv = dev->dev_private;
4884 int lists_empty;
4885
4886 spin_lock(&dev_priv->mm.active_list_lock);
4887 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4888 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4889 if (HAS_BSD(dev))
4890 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4891 spin_unlock(&dev_priv->mm.active_list_lock);
4892
4893 return !lists_empty;
4894}
4895
31169714 4896static int
7f8275d0 4897i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4898{
4899 drm_i915_private_t *dev_priv, *next_dev;
4900 struct drm_i915_gem_object *obj_priv, *next_obj;
4901 int cnt = 0;
4902 int would_deadlock = 1;
4903
4904 /* "fast-path" to count number of available objects */
4905 if (nr_to_scan == 0) {
4906 spin_lock(&shrink_list_lock);
4907 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4908 struct drm_device *dev = dev_priv->dev;
4909
4910 if (mutex_trylock(&dev->struct_mutex)) {
4911 list_for_each_entry(obj_priv,
4912 &dev_priv->mm.inactive_list,
4913 list)
4914 cnt++;
4915 mutex_unlock(&dev->struct_mutex);
4916 }
4917 }
4918 spin_unlock(&shrink_list_lock);
4919
4920 return (cnt / 100) * sysctl_vfs_cache_pressure;
4921 }
4922
4923 spin_lock(&shrink_list_lock);
4924
1637ef41 4925rescan:
31169714
CW
4926 /* first scan for clean buffers */
4927 list_for_each_entry_safe(dev_priv, next_dev,
4928 &shrink_list, mm.shrink_list) {
4929 struct drm_device *dev = dev_priv->dev;
4930
4931 if (! mutex_trylock(&dev->struct_mutex))
4932 continue;
4933
4934 spin_unlock(&shrink_list_lock);
b09a1fec 4935 i915_gem_retire_requests(dev);
31169714
CW
4936
4937 list_for_each_entry_safe(obj_priv, next_obj,
4938 &dev_priv->mm.inactive_list,
4939 list) {
4940 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4941 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4942 if (--nr_to_scan <= 0)
4943 break;
4944 }
4945 }
4946
4947 spin_lock(&shrink_list_lock);
4948 mutex_unlock(&dev->struct_mutex);
4949
963b4836
CW
4950 would_deadlock = 0;
4951
31169714
CW
4952 if (nr_to_scan <= 0)
4953 break;
4954 }
4955
4956 /* second pass, evict/count anything still on the inactive list */
4957 list_for_each_entry_safe(dev_priv, next_dev,
4958 &shrink_list, mm.shrink_list) {
4959 struct drm_device *dev = dev_priv->dev;
4960
4961 if (! mutex_trylock(&dev->struct_mutex))
4962 continue;
4963
4964 spin_unlock(&shrink_list_lock);
4965
4966 list_for_each_entry_safe(obj_priv, next_obj,
4967 &dev_priv->mm.inactive_list,
4968 list) {
4969 if (nr_to_scan > 0) {
a8089e84 4970 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4971 nr_to_scan--;
4972 } else
4973 cnt++;
4974 }
4975
4976 spin_lock(&shrink_list_lock);
4977 mutex_unlock(&dev->struct_mutex);
4978
4979 would_deadlock = 0;
4980 }
4981
1637ef41
CW
4982 if (nr_to_scan) {
4983 int active = 0;
4984
4985 /*
4986 * We are desperate for pages, so as a last resort, wait
4987 * for the GPU to finish and discard whatever we can.
4988 * This has a dramatic impact to reduce the number of
4989 * OOM-killer events whilst running the GPU aggressively.
4990 */
4991 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4992 struct drm_device *dev = dev_priv->dev;
4993
4994 if (!mutex_trylock(&dev->struct_mutex))
4995 continue;
4996
4997 spin_unlock(&shrink_list_lock);
4998
4999 if (i915_gpu_is_active(dev)) {
5000 i915_gpu_idle(dev);
5001 active++;
5002 }
5003
5004 spin_lock(&shrink_list_lock);
5005 mutex_unlock(&dev->struct_mutex);
5006 }
5007
5008 if (active)
5009 goto rescan;
5010 }
5011
31169714
CW
5012 spin_unlock(&shrink_list_lock);
5013
5014 if (would_deadlock)
5015 return -1;
5016 else if (cnt > 0)
5017 return (cnt / 100) * sysctl_vfs_cache_pressure;
5018 else
5019 return 0;
5020}
5021
5022static struct shrinker shrinker = {
5023 .shrink = i915_gem_shrink,
5024 .seeks = DEFAULT_SEEKS,
5025};
5026
5027__init void
5028i915_gem_shrinker_init(void)
5029{
5030 register_shrinker(&shrinker);
5031}
5032
5033__exit void
5034i915_gem_shrinker_exit(void)
5035{
5036 unregister_shrinker(&shrinker);
5037}