]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove the conflicting BUG_ON()
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0108a3ed 38static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 39static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
be72615b 55static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 56
31169714
CW
57static LIST_HEAD(shrink_list);
58static DEFINE_SPINLOCK(shrink_list_lock);
59
7d1c4804
CW
60static inline bool
61i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
62{
63 return obj_priv->gtt_space &&
64 !obj_priv->active &&
65 obj_priv->pin_count == 0;
66}
67
79e53945
JB
68int i915_gem_do_init(struct drm_device *dev, unsigned long start,
69 unsigned long end)
673a394b
EA
70{
71 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 72
79e53945
JB
73 if (start >= end ||
74 (start & (PAGE_SIZE - 1)) != 0 ||
75 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
76 return -EINVAL;
77 }
78
79e53945
JB
79 drm_mm_init(&dev_priv->mm.gtt_space, start,
80 end - start);
673a394b 81
79e53945
JB
82 dev->gtt_total = (uint32_t) (end - start);
83
84 return 0;
85}
673a394b 86
79e53945
JB
87int
88i915_gem_init_ioctl(struct drm_device *dev, void *data,
89 struct drm_file *file_priv)
90{
91 struct drm_i915_gem_init *args = data;
92 int ret;
93
94 mutex_lock(&dev->struct_mutex);
95 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
96 mutex_unlock(&dev->struct_mutex);
97
79e53945 98 return ret;
673a394b
EA
99}
100
5a125c3c
EA
101int
102i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
103 struct drm_file *file_priv)
104{
5a125c3c 105 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
106
107 if (!(dev->driver->driver_features & DRIVER_GEM))
108 return -ENODEV;
109
110 args->aper_size = dev->gtt_total;
2678d9d6
KP
111 args->aper_available_size = (args->aper_size -
112 atomic_read(&dev->pin_memory));
5a125c3c
EA
113
114 return 0;
115}
116
673a394b
EA
117
118/**
119 * Creates a new mm object and returns a handle to it.
120 */
121int
122i915_gem_create_ioctl(struct drm_device *dev, void *data,
123 struct drm_file *file_priv)
124{
125 struct drm_i915_gem_create *args = data;
126 struct drm_gem_object *obj;
a1a2d1d3
PP
127 int ret;
128 u32 handle;
673a394b
EA
129
130 args->size = roundup(args->size, PAGE_SIZE);
131
132 /* Allocate the new object */
ac52bc56 133 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
134 if (obj == NULL)
135 return -ENOMEM;
136
137 ret = drm_gem_handle_create(file_priv, obj, &handle);
86f100b1 138 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
139 if (ret)
140 return ret;
141
142 args->handle = handle;
143
144 return 0;
145}
146
eb01459f
EA
147static inline int
148fast_shmem_read(struct page **pages,
149 loff_t page_base, int page_offset,
150 char __user *data,
151 int length)
152{
153 char __iomem *vaddr;
2bc43b5c 154 int unwritten;
eb01459f
EA
155
156 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
157 if (vaddr == NULL)
158 return -ENOMEM;
2bc43b5c 159 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
160 kunmap_atomic(vaddr, KM_USER0);
161
2bc43b5c
FM
162 if (unwritten)
163 return -EFAULT;
164
165 return 0;
eb01459f
EA
166}
167
280b713b
EA
168static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
169{
170 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 171 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
172
173 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
174 obj_priv->tiling_mode != I915_TILING_NONE;
175}
176
99a03df5 177static inline void
40123c1f
EA
178slow_shmem_copy(struct page *dst_page,
179 int dst_offset,
180 struct page *src_page,
181 int src_offset,
182 int length)
183{
184 char *dst_vaddr, *src_vaddr;
185
99a03df5
CW
186 dst_vaddr = kmap(dst_page);
187 src_vaddr = kmap(src_page);
40123c1f
EA
188
189 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
99a03df5
CW
191 kunmap(src_page);
192 kunmap(dst_page);
40123c1f
EA
193}
194
99a03df5 195static inline void
280b713b
EA
196slow_shmem_bit17_copy(struct page *gpu_page,
197 int gpu_offset,
198 struct page *cpu_page,
199 int cpu_offset,
200 int length,
201 int is_read)
202{
203 char *gpu_vaddr, *cpu_vaddr;
204
205 /* Use the unswizzled path if this page isn't affected. */
206 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 if (is_read)
208 return slow_shmem_copy(cpu_page, cpu_offset,
209 gpu_page, gpu_offset, length);
210 else
211 return slow_shmem_copy(gpu_page, gpu_offset,
212 cpu_page, cpu_offset, length);
213 }
214
99a03df5
CW
215 gpu_vaddr = kmap(gpu_page);
216 cpu_vaddr = kmap(cpu_page);
280b713b
EA
217
218 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
219 * XORing with the other bits (A9 for Y, A9 and A10 for X)
220 */
221 while (length > 0) {
222 int cacheline_end = ALIGN(gpu_offset + 1, 64);
223 int this_length = min(cacheline_end - gpu_offset, length);
224 int swizzled_gpu_offset = gpu_offset ^ 64;
225
226 if (is_read) {
227 memcpy(cpu_vaddr + cpu_offset,
228 gpu_vaddr + swizzled_gpu_offset,
229 this_length);
230 } else {
231 memcpy(gpu_vaddr + swizzled_gpu_offset,
232 cpu_vaddr + cpu_offset,
233 this_length);
234 }
235 cpu_offset += this_length;
236 gpu_offset += this_length;
237 length -= this_length;
238 }
239
99a03df5
CW
240 kunmap(cpu_page);
241 kunmap(gpu_page);
280b713b
EA
242}
243
eb01459f
EA
244/**
245 * This is the fast shmem pread path, which attempts to copy_from_user directly
246 * from the backing pages of the object to the user's address space. On a
247 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
248 */
249static int
250i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pread *args,
252 struct drm_file *file_priv)
253{
23010e43 254 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
255 ssize_t remain;
256 loff_t offset, page_base;
257 char __user *user_data;
258 int page_offset, page_length;
259 int ret;
260
261 user_data = (char __user *) (uintptr_t) args->data_ptr;
262 remain = args->size;
263
264 mutex_lock(&dev->struct_mutex);
265
4bdadb97 266 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
267 if (ret != 0)
268 goto fail_unlock;
269
270 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
271 args->size);
272 if (ret != 0)
273 goto fail_put_pages;
274
23010e43 275 obj_priv = to_intel_bo(obj);
eb01459f
EA
276 offset = args->offset;
277
278 while (remain > 0) {
279 /* Operation in this page
280 *
281 * page_base = page offset within aperture
282 * page_offset = offset within page
283 * page_length = bytes to copy for this page
284 */
285 page_base = (offset & ~(PAGE_SIZE-1));
286 page_offset = offset & (PAGE_SIZE-1);
287 page_length = remain;
288 if ((page_offset + remain) > PAGE_SIZE)
289 page_length = PAGE_SIZE - page_offset;
290
291 ret = fast_shmem_read(obj_priv->pages,
292 page_base, page_offset,
293 user_data, page_length);
294 if (ret)
295 goto fail_put_pages;
296
297 remain -= page_length;
298 user_data += page_length;
299 offset += page_length;
300 }
301
302fail_put_pages:
303 i915_gem_object_put_pages(obj);
304fail_unlock:
305 mutex_unlock(&dev->struct_mutex);
306
307 return ret;
308}
309
07f73f69
CW
310static int
311i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
312{
313 int ret;
314
4bdadb97 315 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
316
317 /* If we've insufficient memory to map in the pages, attempt
318 * to make some space by throwing out some old buffers.
319 */
320 if (ret == -ENOMEM) {
321 struct drm_device *dev = obj->dev;
07f73f69 322
0108a3ed
DV
323 ret = i915_gem_evict_something(dev, obj->size,
324 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
325 if (ret)
326 return ret;
327
4bdadb97 328 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
329 }
330
331 return ret;
332}
333
eb01459f
EA
334/**
335 * This is the fallback shmem pread path, which allocates temporary storage
336 * in kernel space to copy_to_user into outside of the struct_mutex, so we
337 * can copy out of the object's backing pages while holding the struct mutex
338 * and not take page faults.
339 */
340static int
341i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
342 struct drm_i915_gem_pread *args,
343 struct drm_file *file_priv)
344{
23010e43 345 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
346 struct mm_struct *mm = current->mm;
347 struct page **user_pages;
348 ssize_t remain;
349 loff_t offset, pinned_pages, i;
350 loff_t first_data_page, last_data_page, num_pages;
351 int shmem_page_index, shmem_page_offset;
352 int data_page_index, data_page_offset;
353 int page_length;
354 int ret;
355 uint64_t data_ptr = args->data_ptr;
280b713b 356 int do_bit17_swizzling;
eb01459f
EA
357
358 remain = args->size;
359
360 /* Pin the user pages containing the data. We can't fault while
361 * holding the struct mutex, yet we want to hold it while
362 * dereferencing the user data.
363 */
364 first_data_page = data_ptr / PAGE_SIZE;
365 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
366 num_pages = last_data_page - first_data_page + 1;
367
8e7d2b2c 368 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
369 if (user_pages == NULL)
370 return -ENOMEM;
371
372 down_read(&mm->mmap_sem);
373 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 374 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
375 up_read(&mm->mmap_sem);
376 if (pinned_pages < num_pages) {
377 ret = -EFAULT;
378 goto fail_put_user_pages;
379 }
380
280b713b
EA
381 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
382
eb01459f
EA
383 mutex_lock(&dev->struct_mutex);
384
07f73f69
CW
385 ret = i915_gem_object_get_pages_or_evict(obj);
386 if (ret)
eb01459f
EA
387 goto fail_unlock;
388
389 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
390 args->size);
391 if (ret != 0)
392 goto fail_put_pages;
393
23010e43 394 obj_priv = to_intel_bo(obj);
eb01459f
EA
395 offset = args->offset;
396
397 while (remain > 0) {
398 /* Operation in this page
399 *
400 * shmem_page_index = page number within shmem file
401 * shmem_page_offset = offset within page in shmem file
402 * data_page_index = page number in get_user_pages return
403 * data_page_offset = offset with data_page_index page.
404 * page_length = bytes to copy for this page
405 */
406 shmem_page_index = offset / PAGE_SIZE;
407 shmem_page_offset = offset & ~PAGE_MASK;
408 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
409 data_page_offset = data_ptr & ~PAGE_MASK;
410
411 page_length = remain;
412 if ((shmem_page_offset + page_length) > PAGE_SIZE)
413 page_length = PAGE_SIZE - shmem_page_offset;
414 if ((data_page_offset + page_length) > PAGE_SIZE)
415 page_length = PAGE_SIZE - data_page_offset;
416
280b713b 417 if (do_bit17_swizzling) {
99a03df5 418 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 419 shmem_page_offset,
99a03df5
CW
420 user_pages[data_page_index],
421 data_page_offset,
422 page_length,
423 1);
424 } else {
425 slow_shmem_copy(user_pages[data_page_index],
426 data_page_offset,
427 obj_priv->pages[shmem_page_index],
428 shmem_page_offset,
429 page_length);
280b713b 430 }
eb01459f
EA
431
432 remain -= page_length;
433 data_ptr += page_length;
434 offset += page_length;
435 }
436
437fail_put_pages:
438 i915_gem_object_put_pages(obj);
439fail_unlock:
440 mutex_unlock(&dev->struct_mutex);
441fail_put_user_pages:
442 for (i = 0; i < pinned_pages; i++) {
443 SetPageDirty(user_pages[i]);
444 page_cache_release(user_pages[i]);
445 }
8e7d2b2c 446 drm_free_large(user_pages);
eb01459f
EA
447
448 return ret;
449}
450
673a394b
EA
451/**
452 * Reads data from the object referenced by handle.
453 *
454 * On error, the contents of *data are undefined.
455 */
456int
457i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 struct drm_file *file_priv)
459{
460 struct drm_i915_gem_pread *args = data;
461 struct drm_gem_object *obj;
462 struct drm_i915_gem_object *obj_priv;
673a394b
EA
463 int ret;
464
465 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
466 if (obj == NULL)
467 return -EBADF;
23010e43 468 obj_priv = to_intel_bo(obj);
673a394b
EA
469
470 /* Bounds check source.
471 *
472 * XXX: This could use review for overflow issues...
473 */
474 if (args->offset > obj->size || args->size > obj->size ||
475 args->offset + args->size > obj->size) {
bc9025bd 476 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
477 return -EINVAL;
478 }
479
280b713b 480 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 481 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
482 } else {
483 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
484 if (ret != 0)
485 ret = i915_gem_shmem_pread_slow(dev, obj, args,
486 file_priv);
487 }
673a394b 488
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b 490
eb01459f 491 return ret;
673a394b
EA
492}
493
0839ccb8
KP
494/* This is the fast write path which cannot handle
495 * page faults in the source data
9b7530cc 496 */
0839ccb8
KP
497
498static inline int
499fast_user_write(struct io_mapping *mapping,
500 loff_t page_base, int page_offset,
501 char __user *user_data,
502 int length)
9b7530cc 503{
9b7530cc 504 char *vaddr_atomic;
0839ccb8 505 unsigned long unwritten;
9b7530cc 506
fca3ec01 507 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
508 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
509 user_data, length);
fca3ec01 510 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
511 if (unwritten)
512 return -EFAULT;
513 return 0;
514}
515
516/* Here's the write path which can sleep for
517 * page faults
518 */
519
ab34c226 520static inline void
3de09aa3
EA
521slow_kernel_write(struct io_mapping *mapping,
522 loff_t gtt_base, int gtt_offset,
523 struct page *user_page, int user_offset,
524 int length)
0839ccb8 525{
ab34c226
CW
526 char __iomem *dst_vaddr;
527 char *src_vaddr;
0839ccb8 528
ab34c226
CW
529 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
530 src_vaddr = kmap(user_page);
531
532 memcpy_toio(dst_vaddr + gtt_offset,
533 src_vaddr + user_offset,
534 length);
535
536 kunmap(user_page);
537 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
538}
539
40123c1f
EA
540static inline int
541fast_shmem_write(struct page **pages,
542 loff_t page_base, int page_offset,
543 char __user *data,
544 int length)
545{
546 char __iomem *vaddr;
d0088775 547 unsigned long unwritten;
40123c1f
EA
548
549 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
550 if (vaddr == NULL)
551 return -ENOMEM;
d0088775 552 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
553 kunmap_atomic(vaddr, KM_USER0);
554
d0088775
DA
555 if (unwritten)
556 return -EFAULT;
40123c1f
EA
557 return 0;
558}
559
3de09aa3
EA
560/**
561 * This is the fast pwrite path, where we copy the data directly from the
562 * user into the GTT, uncached.
563 */
673a394b 564static int
3de09aa3
EA
565i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file_priv)
673a394b 568{
23010e43 569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 570 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 571 ssize_t remain;
0839ccb8 572 loff_t offset, page_base;
673a394b 573 char __user *user_data;
0839ccb8
KP
574 int page_offset, page_length;
575 int ret;
673a394b
EA
576
577 user_data = (char __user *) (uintptr_t) args->data_ptr;
578 remain = args->size;
579 if (!access_ok(VERIFY_READ, user_data, remain))
580 return -EFAULT;
581
582
583 mutex_lock(&dev->struct_mutex);
584 ret = i915_gem_object_pin(obj, 0);
585 if (ret) {
586 mutex_unlock(&dev->struct_mutex);
587 return ret;
588 }
2ef7eeaa 589 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
590 if (ret)
591 goto fail;
592
23010e43 593 obj_priv = to_intel_bo(obj);
673a394b 594 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
595
596 while (remain > 0) {
597 /* Operation in this page
598 *
0839ccb8
KP
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
673a394b 602 */
0839ccb8
KP
603 page_base = (offset & ~(PAGE_SIZE-1));
604 page_offset = offset & (PAGE_SIZE-1);
605 page_length = remain;
606 if ((page_offset + remain) > PAGE_SIZE)
607 page_length = PAGE_SIZE - page_offset;
608
609 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
610 page_offset, user_data, page_length);
611
612 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
613 * source page isn't available. Return the error and we'll
614 * retry in the slow path.
0839ccb8 615 */
3de09aa3
EA
616 if (ret)
617 goto fail;
673a394b 618
0839ccb8
KP
619 remain -= page_length;
620 user_data += page_length;
621 offset += page_length;
673a394b 622 }
673a394b
EA
623
624fail:
625 i915_gem_object_unpin(obj);
626 mutex_unlock(&dev->struct_mutex);
627
628 return ret;
629}
630
3de09aa3
EA
631/**
632 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
633 * the memory and maps it using kmap_atomic for copying.
634 *
635 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
636 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
637 */
3043c60c 638static int
3de09aa3
EA
639i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
640 struct drm_i915_gem_pwrite *args,
641 struct drm_file *file_priv)
673a394b 642{
23010e43 643 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
644 drm_i915_private_t *dev_priv = dev->dev_private;
645 ssize_t remain;
646 loff_t gtt_page_base, offset;
647 loff_t first_data_page, last_data_page, num_pages;
648 loff_t pinned_pages, i;
649 struct page **user_pages;
650 struct mm_struct *mm = current->mm;
651 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 652 int ret;
3de09aa3
EA
653 uint64_t data_ptr = args->data_ptr;
654
655 remain = args->size;
656
657 /* Pin the user pages containing the data. We can't fault while
658 * holding the struct mutex, and all of the pwrite implementations
659 * want to hold it while dereferencing the user data.
660 */
661 first_data_page = data_ptr / PAGE_SIZE;
662 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
663 num_pages = last_data_page - first_data_page + 1;
664
8e7d2b2c 665 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
666 if (user_pages == NULL)
667 return -ENOMEM;
668
669 down_read(&mm->mmap_sem);
670 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
671 num_pages, 0, 0, user_pages, NULL);
672 up_read(&mm->mmap_sem);
673 if (pinned_pages < num_pages) {
674 ret = -EFAULT;
675 goto out_unpin_pages;
676 }
673a394b
EA
677
678 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
679 ret = i915_gem_object_pin(obj, 0);
680 if (ret)
681 goto out_unlock;
682
683 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
684 if (ret)
685 goto out_unpin_object;
686
23010e43 687 obj_priv = to_intel_bo(obj);
3de09aa3
EA
688 offset = obj_priv->gtt_offset + args->offset;
689
690 while (remain > 0) {
691 /* Operation in this page
692 *
693 * gtt_page_base = page offset within aperture
694 * gtt_page_offset = offset within page in aperture
695 * data_page_index = page number in get_user_pages return
696 * data_page_offset = offset with data_page_index page.
697 * page_length = bytes to copy for this page
698 */
699 gtt_page_base = offset & PAGE_MASK;
700 gtt_page_offset = offset & ~PAGE_MASK;
701 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
702 data_page_offset = data_ptr & ~PAGE_MASK;
703
704 page_length = remain;
705 if ((gtt_page_offset + page_length) > PAGE_SIZE)
706 page_length = PAGE_SIZE - gtt_page_offset;
707 if ((data_page_offset + page_length) > PAGE_SIZE)
708 page_length = PAGE_SIZE - data_page_offset;
709
ab34c226
CW
710 slow_kernel_write(dev_priv->mm.gtt_mapping,
711 gtt_page_base, gtt_page_offset,
712 user_pages[data_page_index],
713 data_page_offset,
714 page_length);
3de09aa3
EA
715
716 remain -= page_length;
717 offset += page_length;
718 data_ptr += page_length;
719 }
720
721out_unpin_object:
722 i915_gem_object_unpin(obj);
723out_unlock:
724 mutex_unlock(&dev->struct_mutex);
725out_unpin_pages:
726 for (i = 0; i < pinned_pages; i++)
727 page_cache_release(user_pages[i]);
8e7d2b2c 728 drm_free_large(user_pages);
3de09aa3
EA
729
730 return ret;
731}
732
40123c1f
EA
733/**
734 * This is the fast shmem pwrite path, which attempts to directly
735 * copy_from_user into the kmapped pages backing the object.
736 */
3043c60c 737static int
40123c1f
EA
738i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file_priv)
673a394b 741{
23010e43 742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length;
673a394b 747 int ret;
40123c1f
EA
748
749 user_data = (char __user *) (uintptr_t) args->data_ptr;
750 remain = args->size;
673a394b
EA
751
752 mutex_lock(&dev->struct_mutex);
753
4bdadb97 754 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
755 if (ret != 0)
756 goto fail_unlock;
673a394b 757
e47c68e9 758 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
759 if (ret != 0)
760 goto fail_put_pages;
761
23010e43 762 obj_priv = to_intel_bo(obj);
40123c1f
EA
763 offset = args->offset;
764 obj_priv->dirty = 1;
765
766 while (remain > 0) {
767 /* Operation in this page
768 *
769 * page_base = page offset within aperture
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
773 page_base = (offset & ~(PAGE_SIZE-1));
774 page_offset = offset & (PAGE_SIZE-1);
775 page_length = remain;
776 if ((page_offset + remain) > PAGE_SIZE)
777 page_length = PAGE_SIZE - page_offset;
778
779 ret = fast_shmem_write(obj_priv->pages,
780 page_base, page_offset,
781 user_data, page_length);
782 if (ret)
783 goto fail_put_pages;
784
785 remain -= page_length;
786 user_data += page_length;
787 offset += page_length;
788 }
789
790fail_put_pages:
791 i915_gem_object_put_pages(obj);
792fail_unlock:
793 mutex_unlock(&dev->struct_mutex);
794
795 return ret;
796}
797
798/**
799 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
800 * the memory and maps it using kmap_atomic for copying.
801 *
802 * This avoids taking mmap_sem for faulting on the user's address while the
803 * struct_mutex is held.
804 */
805static int
806i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
807 struct drm_i915_gem_pwrite *args,
808 struct drm_file *file_priv)
809{
23010e43 810 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
811 struct mm_struct *mm = current->mm;
812 struct page **user_pages;
813 ssize_t remain;
814 loff_t offset, pinned_pages, i;
815 loff_t first_data_page, last_data_page, num_pages;
816 int shmem_page_index, shmem_page_offset;
817 int data_page_index, data_page_offset;
818 int page_length;
819 int ret;
820 uint64_t data_ptr = args->data_ptr;
280b713b 821 int do_bit17_swizzling;
40123c1f
EA
822
823 remain = args->size;
824
825 /* Pin the user pages containing the data. We can't fault while
826 * holding the struct mutex, and all of the pwrite implementations
827 * want to hold it while dereferencing the user data.
828 */
829 first_data_page = data_ptr / PAGE_SIZE;
830 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
831 num_pages = last_data_page - first_data_page + 1;
832
8e7d2b2c 833 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
834 if (user_pages == NULL)
835 return -ENOMEM;
836
837 down_read(&mm->mmap_sem);
838 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
839 num_pages, 0, 0, user_pages, NULL);
840 up_read(&mm->mmap_sem);
841 if (pinned_pages < num_pages) {
842 ret = -EFAULT;
843 goto fail_put_user_pages;
673a394b
EA
844 }
845
280b713b
EA
846 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
847
40123c1f
EA
848 mutex_lock(&dev->struct_mutex);
849
07f73f69
CW
850 ret = i915_gem_object_get_pages_or_evict(obj);
851 if (ret)
40123c1f
EA
852 goto fail_unlock;
853
854 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
855 if (ret != 0)
856 goto fail_put_pages;
857
23010e43 858 obj_priv = to_intel_bo(obj);
673a394b 859 offset = args->offset;
40123c1f 860 obj_priv->dirty = 1;
673a394b 861
40123c1f
EA
862 while (remain > 0) {
863 /* Operation in this page
864 *
865 * shmem_page_index = page number within shmem file
866 * shmem_page_offset = offset within page in shmem file
867 * data_page_index = page number in get_user_pages return
868 * data_page_offset = offset with data_page_index page.
869 * page_length = bytes to copy for this page
870 */
871 shmem_page_index = offset / PAGE_SIZE;
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
280b713b 882 if (do_bit17_swizzling) {
99a03df5 883 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
99a03df5
CW
887 page_length,
888 0);
889 } else {
890 slow_shmem_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length);
280b713b 895 }
40123c1f
EA
896
897 remain -= page_length;
898 data_ptr += page_length;
899 offset += page_length;
673a394b
EA
900 }
901
40123c1f
EA
902fail_put_pages:
903 i915_gem_object_put_pages(obj);
904fail_unlock:
673a394b 905 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
906fail_put_user_pages:
907 for (i = 0; i < pinned_pages; i++)
908 page_cache_release(user_pages[i]);
8e7d2b2c 909 drm_free_large(user_pages);
673a394b 910
40123c1f 911 return ret;
673a394b
EA
912}
913
914/**
915 * Writes data to the object referenced by handle.
916 *
917 * On error, the contents of the buffer that were to be modified are undefined.
918 */
919int
920i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921 struct drm_file *file_priv)
922{
923 struct drm_i915_gem_pwrite *args = data;
924 struct drm_gem_object *obj;
925 struct drm_i915_gem_object *obj_priv;
926 int ret = 0;
927
928 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929 if (obj == NULL)
930 return -EBADF;
23010e43 931 obj_priv = to_intel_bo(obj);
673a394b
EA
932
933 /* Bounds check destination.
934 *
935 * XXX: This could use review for overflow issues...
936 */
937 if (args->offset > obj->size || args->size > obj->size ||
938 args->offset + args->size > obj->size) {
bc9025bd 939 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
940 return -EINVAL;
941 }
942
943 /* We can only do the GTT pwrite on untiled buffers, as otherwise
944 * it would end up going through the fenced access, and we'll get
945 * different detiling behavior between reading and writing.
946 * pread/pwrite currently are reading and writing from the CPU
947 * perspective, requiring manual detiling by the client.
948 */
71acb5eb
DA
949 if (obj_priv->phys_obj)
950 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
952 dev->gtt_total != 0 &&
953 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
954 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
280b713b
EA
959 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
961 } else {
962 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965 file_priv);
966 }
967 }
673a394b
EA
968
969#if WATCH_PWRITE
970 if (ret)
971 DRM_INFO("pwrite failed %d\n", ret);
972#endif
973
bc9025bd 974 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
975
976 return ret;
977}
978
979/**
2ef7eeaa
EA
980 * Called when user space prepares to use an object with the CPU, either
981 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
982 */
983int
984i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
985 struct drm_file *file_priv)
986{
a09ba7fa 987 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
988 struct drm_i915_gem_set_domain *args = data;
989 struct drm_gem_object *obj;
652c393a 990 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
991 uint32_t read_domains = args->read_domains;
992 uint32_t write_domain = args->write_domain;
673a394b
EA
993 int ret;
994
995 if (!(dev->driver->driver_features & DRIVER_GEM))
996 return -ENODEV;
997
2ef7eeaa 998 /* Only handle setting domains to types used by the CPU. */
21d509e3 999 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1000 return -EINVAL;
1001
21d509e3 1002 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1003 return -EINVAL;
1004
1005 /* Having something in the write domain implies it's in the read
1006 * domain, and only that read domain. Enforce that in the request.
1007 */
1008 if (write_domain != 0 && read_domains != write_domain)
1009 return -EINVAL;
1010
673a394b
EA
1011 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1012 if (obj == NULL)
1013 return -EBADF;
23010e43 1014 obj_priv = to_intel_bo(obj);
673a394b
EA
1015
1016 mutex_lock(&dev->struct_mutex);
652c393a
JB
1017
1018 intel_mark_busy(dev, obj);
1019
673a394b 1020#if WATCH_BUF
cfd43c02 1021 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1022 obj, obj->size, read_domains, write_domain);
673a394b 1023#endif
2ef7eeaa
EA
1024 if (read_domains & I915_GEM_DOMAIN_GTT) {
1025 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1026
a09ba7fa
EA
1027 /* Update the LRU on the fence for the CPU access that's
1028 * about to occur.
1029 */
1030 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1031 struct drm_i915_fence_reg *reg =
1032 &dev_priv->fence_regs[obj_priv->fence_reg];
1033 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1034 &dev_priv->mm.fence_list);
1035 }
1036
02354392
EA
1037 /* Silently promote "you're not bound, there was nothing to do"
1038 * to success, since the client was just asking us to
1039 * make sure everything was done.
1040 */
1041 if (ret == -EINVAL)
1042 ret = 0;
2ef7eeaa 1043 } else {
e47c68e9 1044 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1045 }
1046
7d1c4804
CW
1047
1048 /* Maintain LRU order of "inactive" objects */
1049 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1050 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1051
673a394b
EA
1052 drm_gem_object_unreference(obj);
1053 mutex_unlock(&dev->struct_mutex);
1054 return ret;
1055}
1056
1057/**
1058 * Called when user space has done writes to this buffer
1059 */
1060int
1061i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1062 struct drm_file *file_priv)
1063{
1064 struct drm_i915_gem_sw_finish *args = data;
1065 struct drm_gem_object *obj;
1066 struct drm_i915_gem_object *obj_priv;
1067 int ret = 0;
1068
1069 if (!(dev->driver->driver_features & DRIVER_GEM))
1070 return -ENODEV;
1071
1072 mutex_lock(&dev->struct_mutex);
1073 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1074 if (obj == NULL) {
1075 mutex_unlock(&dev->struct_mutex);
1076 return -EBADF;
1077 }
1078
1079#if WATCH_BUF
cfd43c02 1080 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1081 __func__, args->handle, obj, obj->size);
1082#endif
23010e43 1083 obj_priv = to_intel_bo(obj);
673a394b
EA
1084
1085 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1086 if (obj_priv->pin_count)
1087 i915_gem_object_flush_cpu_write_domain(obj);
1088
673a394b
EA
1089 drm_gem_object_unreference(obj);
1090 mutex_unlock(&dev->struct_mutex);
1091 return ret;
1092}
1093
1094/**
1095 * Maps the contents of an object, returning the address it is mapped
1096 * into.
1097 *
1098 * While the mapping holds a reference on the contents of the object, it doesn't
1099 * imply a ref on the object itself.
1100 */
1101int
1102i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1103 struct drm_file *file_priv)
1104{
1105 struct drm_i915_gem_mmap *args = data;
1106 struct drm_gem_object *obj;
1107 loff_t offset;
1108 unsigned long addr;
1109
1110 if (!(dev->driver->driver_features & DRIVER_GEM))
1111 return -ENODEV;
1112
1113 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1114 if (obj == NULL)
1115 return -EBADF;
1116
1117 offset = args->offset;
1118
1119 down_write(&current->mm->mmap_sem);
1120 addr = do_mmap(obj->filp, 0, args->size,
1121 PROT_READ | PROT_WRITE, MAP_SHARED,
1122 args->offset);
1123 up_write(&current->mm->mmap_sem);
bc9025bd 1124 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1125 if (IS_ERR((void *)addr))
1126 return addr;
1127
1128 args->addr_ptr = (uint64_t) addr;
1129
1130 return 0;
1131}
1132
de151cf6
JB
1133/**
1134 * i915_gem_fault - fault a page into the GTT
1135 * vma: VMA in question
1136 * vmf: fault info
1137 *
1138 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1139 * from userspace. The fault handler takes care of binding the object to
1140 * the GTT (if needed), allocating and programming a fence register (again,
1141 * only if needed based on whether the old reg is still valid or the object
1142 * is tiled) and inserting a new PTE into the faulting process.
1143 *
1144 * Note that the faulting process may involve evicting existing objects
1145 * from the GTT and/or fence registers to make room. So performance may
1146 * suffer if the GTT working set is large or there are few fence registers
1147 * left.
1148 */
1149int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1150{
1151 struct drm_gem_object *obj = vma->vm_private_data;
1152 struct drm_device *dev = obj->dev;
7d1c4804 1153 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1155 pgoff_t page_offset;
1156 unsigned long pfn;
1157 int ret = 0;
0f973f27 1158 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1159
1160 /* We don't use vmf->pgoff since that has the fake offset */
1161 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1162 PAGE_SHIFT;
1163
1164 /* Now bind it into the GTT if needed */
1165 mutex_lock(&dev->struct_mutex);
1166 if (!obj_priv->gtt_space) {
e67b8ce1 1167 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1168 if (ret)
1169 goto unlock;
07f4f3e8 1170
07f4f3e8 1171 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1172 if (ret)
1173 goto unlock;
de151cf6
JB
1174 }
1175
1176 /* Need a new fence register? */
a09ba7fa 1177 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1178 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1179 if (ret)
1180 goto unlock;
d9ddcb96 1181 }
de151cf6 1182
7d1c4804
CW
1183 if (i915_gem_object_is_inactive(obj_priv))
1184 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1185
de151cf6
JB
1186 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1187 page_offset;
1188
1189 /* Finally, remap it using the new GTT offset */
1190 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1191unlock:
de151cf6
JB
1192 mutex_unlock(&dev->struct_mutex);
1193
1194 switch (ret) {
c715089f
CW
1195 case 0:
1196 case -ERESTARTSYS:
1197 return VM_FAULT_NOPAGE;
de151cf6
JB
1198 case -ENOMEM:
1199 case -EAGAIN:
1200 return VM_FAULT_OOM;
de151cf6 1201 default:
c715089f 1202 return VM_FAULT_SIGBUS;
de151cf6
JB
1203 }
1204}
1205
1206/**
1207 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1208 * @obj: obj in question
1209 *
1210 * GEM memory mapping works by handing back to userspace a fake mmap offset
1211 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1212 * up the object based on the offset and sets up the various memory mapping
1213 * structures.
1214 *
1215 * This routine allocates and attaches a fake offset for @obj.
1216 */
1217static int
1218i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1219{
1220 struct drm_device *dev = obj->dev;
1221 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1223 struct drm_map_list *list;
f77d390c 1224 struct drm_local_map *map;
de151cf6
JB
1225 int ret = 0;
1226
1227 /* Set the object up for mmap'ing */
1228 list = &obj->map_list;
9a298b2a 1229 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1230 if (!list->map)
1231 return -ENOMEM;
1232
1233 map = list->map;
1234 map->type = _DRM_GEM;
1235 map->size = obj->size;
1236 map->handle = obj;
1237
1238 /* Get a DRM GEM mmap offset allocated... */
1239 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1240 obj->size / PAGE_SIZE, 0, 0);
1241 if (!list->file_offset_node) {
1242 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1243 ret = -ENOMEM;
1244 goto out_free_list;
1245 }
1246
1247 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1248 obj->size / PAGE_SIZE, 0);
1249 if (!list->file_offset_node) {
1250 ret = -ENOMEM;
1251 goto out_free_list;
1252 }
1253
1254 list->hash.key = list->file_offset_node->start;
1255 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1256 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1257 ret = -ENOMEM;
de151cf6
JB
1258 goto out_free_mm;
1259 }
1260
1261 /* By now we should be all set, any drm_mmap request on the offset
1262 * below will get to our mmap & fault handler */
1263 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1264
1265 return 0;
1266
1267out_free_mm:
1268 drm_mm_put_block(list->file_offset_node);
1269out_free_list:
9a298b2a 1270 kfree(list->map);
de151cf6
JB
1271
1272 return ret;
1273}
1274
901782b2
CW
1275/**
1276 * i915_gem_release_mmap - remove physical page mappings
1277 * @obj: obj in question
1278 *
af901ca1 1279 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1280 * relinquish ownership of the pages back to the system.
1281 *
1282 * It is vital that we remove the page mapping if we have mapped a tiled
1283 * object through the GTT and then lose the fence register due to
1284 * resource pressure. Similarly if the object has been moved out of the
1285 * aperture, than pages mapped into userspace must be revoked. Removing the
1286 * mapping will then trigger a page fault on the next user access, allowing
1287 * fixup by i915_gem_fault().
1288 */
d05ca301 1289void
901782b2
CW
1290i915_gem_release_mmap(struct drm_gem_object *obj)
1291{
1292 struct drm_device *dev = obj->dev;
23010e43 1293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1294
1295 if (dev->dev_mapping)
1296 unmap_mapping_range(dev->dev_mapping,
1297 obj_priv->mmap_offset, obj->size, 1);
1298}
1299
ab00b3e5
JB
1300static void
1301i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1302{
1303 struct drm_device *dev = obj->dev;
23010e43 1304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1305 struct drm_gem_mm *mm = dev->mm_private;
1306 struct drm_map_list *list;
1307
1308 list = &obj->map_list;
1309 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1310
1311 if (list->file_offset_node) {
1312 drm_mm_put_block(list->file_offset_node);
1313 list->file_offset_node = NULL;
1314 }
1315
1316 if (list->map) {
9a298b2a 1317 kfree(list->map);
ab00b3e5
JB
1318 list->map = NULL;
1319 }
1320
1321 obj_priv->mmap_offset = 0;
1322}
1323
de151cf6
JB
1324/**
1325 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1326 * @obj: object to check
1327 *
1328 * Return the required GTT alignment for an object, taking into account
1329 * potential fence register mapping if needed.
1330 */
1331static uint32_t
1332i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1333{
1334 struct drm_device *dev = obj->dev;
23010e43 1335 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1336 int start, i;
1337
1338 /*
1339 * Minimum alignment is 4k (GTT page size), but might be greater
1340 * if a fence register is needed for the object.
1341 */
1342 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1343 return 4096;
1344
1345 /*
1346 * Previous chips need to be aligned to the size of the smallest
1347 * fence register that can contain the object.
1348 */
1349 if (IS_I9XX(dev))
1350 start = 1024*1024;
1351 else
1352 start = 512*1024;
1353
1354 for (i = start; i < obj->size; i <<= 1)
1355 ;
1356
1357 return i;
1358}
1359
1360/**
1361 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1362 * @dev: DRM device
1363 * @data: GTT mapping ioctl data
1364 * @file_priv: GEM object info
1365 *
1366 * Simply returns the fake offset to userspace so it can mmap it.
1367 * The mmap call will end up in drm_gem_mmap(), which will set things
1368 * up so we can get faults in the handler above.
1369 *
1370 * The fault handler will take care of binding the object into the GTT
1371 * (since it may have been evicted to make room for something), allocating
1372 * a fence register, and mapping the appropriate aperture address into
1373 * userspace.
1374 */
1375int
1376i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1377 struct drm_file *file_priv)
1378{
1379 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1380 struct drm_gem_object *obj;
1381 struct drm_i915_gem_object *obj_priv;
1382 int ret;
1383
1384 if (!(dev->driver->driver_features & DRIVER_GEM))
1385 return -ENODEV;
1386
1387 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1388 if (obj == NULL)
1389 return -EBADF;
1390
1391 mutex_lock(&dev->struct_mutex);
1392
23010e43 1393 obj_priv = to_intel_bo(obj);
de151cf6 1394
ab18282d
CW
1395 if (obj_priv->madv != I915_MADV_WILLNEED) {
1396 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1397 drm_gem_object_unreference(obj);
1398 mutex_unlock(&dev->struct_mutex);
1399 return -EINVAL;
1400 }
1401
1402
de151cf6
JB
1403 if (!obj_priv->mmap_offset) {
1404 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1405 if (ret) {
1406 drm_gem_object_unreference(obj);
1407 mutex_unlock(&dev->struct_mutex);
de151cf6 1408 return ret;
13af1062 1409 }
de151cf6
JB
1410 }
1411
1412 args->offset = obj_priv->mmap_offset;
1413
de151cf6
JB
1414 /*
1415 * Pull it into the GTT so that we have a page list (makes the
1416 * initial fault faster and any subsequent flushing possible).
1417 */
1418 if (!obj_priv->agp_mem) {
e67b8ce1 1419 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
de151cf6
JB
1425 }
1426
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429
1430 return 0;
1431}
1432
6911a9b8 1433void
856fa198 1434i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1435{
23010e43 1436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1437 int page_count = obj->size / PAGE_SIZE;
1438 int i;
1439
856fa198 1440 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1441 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1442
856fa198
EA
1443 if (--obj_priv->pages_refcount != 0)
1444 return;
673a394b 1445
280b713b
EA
1446 if (obj_priv->tiling_mode != I915_TILING_NONE)
1447 i915_gem_object_save_bit_17_swizzle(obj);
1448
3ef94daa 1449 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1450 obj_priv->dirty = 0;
3ef94daa
CW
1451
1452 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1453 if (obj_priv->dirty)
1454 set_page_dirty(obj_priv->pages[i]);
1455
1456 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1457 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1458
1459 page_cache_release(obj_priv->pages[i]);
1460 }
673a394b
EA
1461 obj_priv->dirty = 0;
1462
8e7d2b2c 1463 drm_free_large(obj_priv->pages);
856fa198 1464 obj_priv->pages = NULL;
673a394b
EA
1465}
1466
1467static void
852835f3
ZN
1468i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1469 struct intel_ring_buffer *ring)
673a394b
EA
1470{
1471 struct drm_device *dev = obj->dev;
1472 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1473 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1474 BUG_ON(ring == NULL);
1475 obj_priv->ring = ring;
673a394b
EA
1476
1477 /* Add a reference if we're newly entering the active list. */
1478 if (!obj_priv->active) {
1479 drm_gem_object_reference(obj);
1480 obj_priv->active = 1;
1481 }
1482 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1483 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1484 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1485 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1486 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1487}
1488
ce44b0ea
EA
1489static void
1490i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1491{
1492 struct drm_device *dev = obj->dev;
1493 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1494 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1495
1496 BUG_ON(!obj_priv->active);
1497 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1498 obj_priv->last_rendering_seqno = 0;
1499}
673a394b 1500
963b4836
CW
1501/* Immediately discard the backing storage */
1502static void
1503i915_gem_object_truncate(struct drm_gem_object *obj)
1504{
23010e43 1505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1506 struct inode *inode;
963b4836 1507
ae9fed6b
CW
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
1511 * backing pages, *now*. Here we mirror the actions taken
1512 * when by shmem_delete_inode() to release the backing store.
1513 */
bb6baf76 1514 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1515 truncate_inode_pages(inode->i_mapping, 0);
1516 if (inode->i_op->truncate_range)
1517 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1518
1519 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1520}
1521
1522static inline int
1523i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1524{
1525 return obj_priv->madv == I915_MADV_DONTNEED;
1526}
1527
673a394b
EA
1528static void
1529i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1530{
1531 struct drm_device *dev = obj->dev;
1532 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1533 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1534
1535 i915_verify_inactive(dev, __FILE__, __LINE__);
1536 if (obj_priv->pin_count != 0)
1537 list_del_init(&obj_priv->list);
1538 else
1539 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1540
99fcb766
DV
1541 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1542
ce44b0ea 1543 obj_priv->last_rendering_seqno = 0;
852835f3 1544 obj_priv->ring = NULL;
673a394b
EA
1545 if (obj_priv->active) {
1546 obj_priv->active = 0;
1547 drm_gem_object_unreference(obj);
1548 }
1549 i915_verify_inactive(dev, __FILE__, __LINE__);
1550}
1551
63560396
DV
1552static void
1553i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1554 uint32_t flush_domains, uint32_t seqno,
1555 struct intel_ring_buffer *ring)
63560396
DV
1556{
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558 struct drm_i915_gem_object *obj_priv, *next;
1559
1560 list_for_each_entry_safe(obj_priv, next,
1561 &dev_priv->mm.gpu_write_list,
1562 gpu_write_list) {
a8089e84 1563 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1564
1565 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1566 obj->write_domain &&
1567 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1568 uint32_t old_write_domain = obj->write_domain;
1569
1570 obj->write_domain = 0;
1571 list_del_init(&obj_priv->gpu_write_list);
852835f3 1572 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1573
1574 /* update the fence lru list */
007cc8ac
DV
1575 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1576 struct drm_i915_fence_reg *reg =
1577 &dev_priv->fence_regs[obj_priv->fence_reg];
1578 list_move_tail(&reg->lru_list,
63560396 1579 &dev_priv->mm.fence_list);
007cc8ac 1580 }
63560396
DV
1581
1582 trace_i915_gem_object_change_domain(obj,
1583 obj->read_domains,
1584 old_write_domain);
1585 }
1586 }
1587}
8187a2b7 1588
5a5a0c64 1589uint32_t
b962442e 1590i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1591 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1592{
1593 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1594 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1595 struct drm_i915_gem_request *request;
1596 uint32_t seqno;
1597 int was_empty;
673a394b 1598
b962442e
EA
1599 if (file_priv != NULL)
1600 i915_file_priv = file_priv->driver_priv;
1601
9a298b2a 1602 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1603 if (request == NULL)
1604 return 0;
1605
852835f3 1606 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1607
1608 request->seqno = seqno;
852835f3 1609 request->ring = ring;
673a394b 1610 request->emitted_jiffies = jiffies;
852835f3
ZN
1611 was_empty = list_empty(&ring->request_list);
1612 list_add_tail(&request->list, &ring->request_list);
1613
b962442e
EA
1614 if (i915_file_priv) {
1615 list_add_tail(&request->client_list,
1616 &i915_file_priv->mm.request_list);
1617 } else {
1618 INIT_LIST_HEAD(&request->client_list);
1619 }
673a394b 1620
ce44b0ea
EA
1621 /* Associate any objects on the flushing list matching the write
1622 * domain we're flushing with our flush.
1623 */
63560396 1624 if (flush_domains != 0)
852835f3 1625 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1626
f65d9421
BG
1627 if (!dev_priv->mm.suspended) {
1628 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1629 if (was_empty)
1630 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1631 }
673a394b
EA
1632 return seqno;
1633}
1634
1635/**
1636 * Command execution barrier
1637 *
1638 * Ensures that all commands in the ring are finished
1639 * before signalling the CPU
1640 */
3043c60c 1641static uint32_t
852835f3 1642i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1643{
673a394b 1644 uint32_t flush_domains = 0;
673a394b
EA
1645
1646 /* The sampler always gets flushed on i965 (sigh) */
1647 if (IS_I965G(dev))
1648 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1649
1650 ring->flush(dev, ring,
1651 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1652 return flush_domains;
1653}
1654
1655/**
1656 * Moves buffers associated only with the given active seqno from the active
1657 * to inactive list, potentially freeing them.
1658 */
1659static void
1660i915_gem_retire_request(struct drm_device *dev,
1661 struct drm_i915_gem_request *request)
1662{
1663 drm_i915_private_t *dev_priv = dev->dev_private;
1664
1c5d22f7
CW
1665 trace_i915_gem_request_retire(dev, request->seqno);
1666
673a394b
EA
1667 /* Move any buffers on the active list that are no longer referenced
1668 * by the ringbuffer to the flushing/inactive lists as appropriate.
1669 */
5e118f41 1670 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1671 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1672 struct drm_gem_object *obj;
1673 struct drm_i915_gem_object *obj_priv;
1674
852835f3 1675 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1676 struct drm_i915_gem_object,
1677 list);
a8089e84 1678 obj = &obj_priv->base;
673a394b
EA
1679
1680 /* If the seqno being retired doesn't match the oldest in the
1681 * list, then the oldest in the list must still be newer than
1682 * this seqno.
1683 */
1684 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1685 goto out;
de151cf6 1686
673a394b
EA
1687#if WATCH_LRU
1688 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1689 __func__, request->seqno, obj);
1690#endif
1691
ce44b0ea
EA
1692 if (obj->write_domain != 0)
1693 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1694 else {
1695 /* Take a reference on the object so it won't be
1696 * freed while the spinlock is held. The list
1697 * protection for this spinlock is safe when breaking
1698 * the lock like this since the next thing we do
1699 * is just get the head of the list again.
1700 */
1701 drm_gem_object_reference(obj);
673a394b 1702 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1703 spin_unlock(&dev_priv->mm.active_list_lock);
1704 drm_gem_object_unreference(obj);
1705 spin_lock(&dev_priv->mm.active_list_lock);
1706 }
673a394b 1707 }
5e118f41
CW
1708out:
1709 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1710}
1711
1712/**
1713 * Returns true if seq1 is later than seq2.
1714 */
22be1724 1715bool
673a394b
EA
1716i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1717{
1718 return (int32_t)(seq1 - seq2) >= 0;
1719}
1720
1721uint32_t
852835f3 1722i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1723 struct intel_ring_buffer *ring)
673a394b 1724{
852835f3 1725 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1726}
1727
1728/**
1729 * This function clears the request list as sequence numbers are passed.
1730 */
b09a1fec
CW
1731static void
1732i915_gem_retire_requests_ring(struct drm_device *dev,
1733 struct intel_ring_buffer *ring)
673a394b
EA
1734{
1735 drm_i915_private_t *dev_priv = dev->dev_private;
1736 uint32_t seqno;
1737
8187a2b7 1738 if (!ring->status_page.page_addr
852835f3 1739 || list_empty(&ring->request_list))
6c0594a3
KW
1740 return;
1741
852835f3 1742 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1743
852835f3 1744 while (!list_empty(&ring->request_list)) {
673a394b
EA
1745 struct drm_i915_gem_request *request;
1746 uint32_t retiring_seqno;
1747
852835f3 1748 request = list_first_entry(&ring->request_list,
673a394b
EA
1749 struct drm_i915_gem_request,
1750 list);
1751 retiring_seqno = request->seqno;
1752
1753 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1754 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1755 i915_gem_retire_request(dev, request);
1756
1757 list_del(&request->list);
b962442e 1758 list_del(&request->client_list);
9a298b2a 1759 kfree(request);
673a394b
EA
1760 } else
1761 break;
1762 }
9d34e5db
CW
1763
1764 if (unlikely (dev_priv->trace_irq_seqno &&
1765 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1766
1767 ring->user_irq_put(dev, ring);
9d34e5db
CW
1768 dev_priv->trace_irq_seqno = 0;
1769 }
673a394b
EA
1770}
1771
b09a1fec
CW
1772void
1773i915_gem_retire_requests(struct drm_device *dev)
1774{
1775 drm_i915_private_t *dev_priv = dev->dev_private;
1776
be72615b
CW
1777 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1778 struct drm_i915_gem_object *obj_priv, *tmp;
1779
1780 /* We must be careful that during unbind() we do not
1781 * accidentally infinitely recurse into retire requests.
1782 * Currently:
1783 * retire -> free -> unbind -> wait -> retire_ring
1784 */
1785 list_for_each_entry_safe(obj_priv, tmp,
1786 &dev_priv->mm.deferred_free_list,
1787 list)
1788 i915_gem_free_object_tail(&obj_priv->base);
1789 }
1790
b09a1fec
CW
1791 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1792 if (HAS_BSD(dev))
1793 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1794}
1795
673a394b
EA
1796void
1797i915_gem_retire_work_handler(struct work_struct *work)
1798{
1799 drm_i915_private_t *dev_priv;
1800 struct drm_device *dev;
1801
1802 dev_priv = container_of(work, drm_i915_private_t,
1803 mm.retire_work.work);
1804 dev = dev_priv->dev;
1805
1806 mutex_lock(&dev->struct_mutex);
b09a1fec 1807 i915_gem_retire_requests(dev);
d1b851fc 1808
6dbe2772 1809 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1810 (!list_empty(&dev_priv->render_ring.request_list) ||
1811 (HAS_BSD(dev) &&
1812 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1813 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1814 mutex_unlock(&dev->struct_mutex);
1815}
1816
5a5a0c64 1817int
852835f3
ZN
1818i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1819 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1820{
1821 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1822 u32 ier;
673a394b
EA
1823 int ret = 0;
1824
1825 BUG_ON(seqno == 0);
1826
ba1234d1 1827 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1828 return -EIO;
1829
852835f3 1830 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1831 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1832 ier = I915_READ(DEIER) | I915_READ(GTIER);
1833 else
1834 ier = I915_READ(IER);
802c7eb6
JB
1835 if (!ier) {
1836 DRM_ERROR("something (likely vbetool) disabled "
1837 "interrupts, re-enabling\n");
1838 i915_driver_irq_preinstall(dev);
1839 i915_driver_irq_postinstall(dev);
1840 }
1841
1c5d22f7
CW
1842 trace_i915_gem_request_wait_begin(dev, seqno);
1843
852835f3 1844 ring->waiting_gem_seqno = seqno;
8187a2b7 1845 ring->user_irq_get(dev, ring);
48764bf4 1846 if (interruptible)
852835f3
ZN
1847 ret = wait_event_interruptible(ring->irq_queue,
1848 i915_seqno_passed(
1849 ring->get_gem_seqno(dev, ring), seqno)
1850 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1851 else
852835f3
ZN
1852 wait_event(ring->irq_queue,
1853 i915_seqno_passed(
1854 ring->get_gem_seqno(dev, ring), seqno)
1855 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1856
8187a2b7 1857 ring->user_irq_put(dev, ring);
852835f3 1858 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1859
1860 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1861 }
ba1234d1 1862 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1863 ret = -EIO;
1864
1865 if (ret && ret != -ERESTARTSYS)
1866 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1867 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1868
1869 /* Directly dispatch request retiring. While we have the work queue
1870 * to handle this, the waiter on a request often wants an associated
1871 * buffer to have made it to the inactive list, and we would need
1872 * a separate wait queue to handle that.
1873 */
1874 if (ret == 0)
b09a1fec 1875 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1876
1877 return ret;
1878}
1879
48764bf4
DV
1880/**
1881 * Waits for a sequence number to be signaled, and cleans up the
1882 * request and object lists appropriately for that event.
1883 */
1884static int
852835f3
ZN
1885i915_wait_request(struct drm_device *dev, uint32_t seqno,
1886 struct intel_ring_buffer *ring)
48764bf4 1887{
852835f3 1888 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1889}
1890
8187a2b7
ZN
1891static void
1892i915_gem_flush(struct drm_device *dev,
1893 uint32_t invalidate_domains,
1894 uint32_t flush_domains)
1895{
1896 drm_i915_private_t *dev_priv = dev->dev_private;
1897 if (flush_domains & I915_GEM_DOMAIN_CPU)
1898 drm_agp_chipset_flush(dev);
1899 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1900 invalidate_domains,
1901 flush_domains);
d1b851fc
ZN
1902
1903 if (HAS_BSD(dev))
1904 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1905 invalidate_domains,
1906 flush_domains);
8187a2b7
ZN
1907}
1908
673a394b
EA
1909/**
1910 * Ensures that all rendering to the object has completed and the object is
1911 * safe to unbind from the GTT or access from the CPU.
1912 */
1913static int
1914i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1915{
1916 struct drm_device *dev = obj->dev;
23010e43 1917 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1918 int ret;
1919
e47c68e9
EA
1920 /* This function only exists to support waiting for existing rendering,
1921 * not for emitting required flushes.
673a394b 1922 */
e47c68e9 1923 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1924
1925 /* If there is rendering queued on the buffer being evicted, wait for
1926 * it.
1927 */
1928 if (obj_priv->active) {
1929#if WATCH_BUF
1930 DRM_INFO("%s: object %p wait for seqno %08x\n",
1931 __func__, obj, obj_priv->last_rendering_seqno);
1932#endif
852835f3
ZN
1933 ret = i915_wait_request(dev,
1934 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1935 if (ret != 0)
1936 return ret;
1937 }
1938
1939 return 0;
1940}
1941
1942/**
1943 * Unbinds an object from the GTT aperture.
1944 */
0f973f27 1945int
673a394b
EA
1946i915_gem_object_unbind(struct drm_gem_object *obj)
1947{
1948 struct drm_device *dev = obj->dev;
4a87b8ca 1949 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1950 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1951 int ret = 0;
1952
1953#if WATCH_BUF
1954 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1955 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1956#endif
1957 if (obj_priv->gtt_space == NULL)
1958 return 0;
1959
1960 if (obj_priv->pin_count != 0) {
1961 DRM_ERROR("Attempting to unbind pinned buffer\n");
1962 return -EINVAL;
1963 }
1964
5323fd04
EA
1965 /* blow away mappings if mapped through GTT */
1966 i915_gem_release_mmap(obj);
1967
673a394b
EA
1968 /* Move the object to the CPU domain to ensure that
1969 * any possible CPU writes while it's not in the GTT
1970 * are flushed when we go to remap it. This will
1971 * also ensure that all pending GPU writes are finished
1972 * before we unbind.
1973 */
e47c68e9 1974 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1975 if (ret == -ERESTARTSYS)
673a394b 1976 return ret;
8dc1775d
CW
1977 /* Continue on if we fail due to EIO, the GPU is hung so we
1978 * should be safe and we need to cleanup or else we might
1979 * cause memory corruption through use-after-free.
1980 */
673a394b 1981
96b47b65
DV
1982 /* release the fence reg _after_ flushing */
1983 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1984 i915_gem_clear_fence_reg(obj);
1985
673a394b
EA
1986 if (obj_priv->agp_mem != NULL) {
1987 drm_unbind_agp(obj_priv->agp_mem);
1988 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1989 obj_priv->agp_mem = NULL;
1990 }
1991
856fa198 1992 i915_gem_object_put_pages(obj);
a32808c0 1993 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1994
1995 if (obj_priv->gtt_space) {
1996 atomic_dec(&dev->gtt_count);
1997 atomic_sub(obj->size, &dev->gtt_memory);
1998
1999 drm_mm_put_block(obj_priv->gtt_space);
2000 obj_priv->gtt_space = NULL;
2001 }
2002
2003 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2004 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2005 if (!list_empty(&obj_priv->list))
2006 list_del_init(&obj_priv->list);
4a87b8ca 2007 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2008
963b4836
CW
2009 if (i915_gem_object_is_purgeable(obj_priv))
2010 i915_gem_object_truncate(obj);
2011
1c5d22f7
CW
2012 trace_i915_gem_object_unbind(obj);
2013
8dc1775d 2014 return ret;
673a394b
EA
2015}
2016
b47eb4a2 2017int
4df2faf4
DV
2018i915_gpu_idle(struct drm_device *dev)
2019{
2020 drm_i915_private_t *dev_priv = dev->dev_private;
2021 bool lists_empty;
d1b851fc 2022 uint32_t seqno1, seqno2;
852835f3 2023 int ret;
4df2faf4
DV
2024
2025 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2026 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2027 list_empty(&dev_priv->render_ring.active_list) &&
2028 (!HAS_BSD(dev) ||
2029 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2030 spin_unlock(&dev_priv->mm.active_list_lock);
2031
2032 if (lists_empty)
2033 return 0;
2034
2035 /* Flush everything onto the inactive list. */
2036 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2037 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2038 &dev_priv->render_ring);
d1b851fc 2039 if (seqno1 == 0)
4df2faf4 2040 return -ENOMEM;
d1b851fc
ZN
2041 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2042
2043 if (HAS_BSD(dev)) {
2044 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2045 &dev_priv->bsd_ring);
2046 if (seqno2 == 0)
2047 return -ENOMEM;
2048
2049 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2050 if (ret)
2051 return ret;
2052 }
2053
4df2faf4 2054
852835f3 2055 return ret;
4df2faf4
DV
2056}
2057
6911a9b8 2058int
4bdadb97
CW
2059i915_gem_object_get_pages(struct drm_gem_object *obj,
2060 gfp_t gfpmask)
673a394b 2061{
23010e43 2062 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2063 int page_count, i;
2064 struct address_space *mapping;
2065 struct inode *inode;
2066 struct page *page;
673a394b 2067
778c3544
DV
2068 BUG_ON(obj_priv->pages_refcount
2069 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2070
856fa198 2071 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2072 return 0;
2073
2074 /* Get the list of pages out of our struct file. They'll be pinned
2075 * at this point until we release them.
2076 */
2077 page_count = obj->size / PAGE_SIZE;
856fa198 2078 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2079 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2080 if (obj_priv->pages == NULL) {
856fa198 2081 obj_priv->pages_refcount--;
673a394b
EA
2082 return -ENOMEM;
2083 }
2084
2085 inode = obj->filp->f_path.dentry->d_inode;
2086 mapping = inode->i_mapping;
2087 for (i = 0; i < page_count; i++) {
4bdadb97 2088 page = read_cache_page_gfp(mapping, i,
985b823b 2089 GFP_HIGHUSER |
4bdadb97 2090 __GFP_COLD |
cd9f040d 2091 __GFP_RECLAIMABLE |
4bdadb97 2092 gfpmask);
1f2b1013
CW
2093 if (IS_ERR(page))
2094 goto err_pages;
2095
856fa198 2096 obj_priv->pages[i] = page;
673a394b 2097 }
280b713b
EA
2098
2099 if (obj_priv->tiling_mode != I915_TILING_NONE)
2100 i915_gem_object_do_bit_17_swizzle(obj);
2101
673a394b 2102 return 0;
1f2b1013
CW
2103
2104err_pages:
2105 while (i--)
2106 page_cache_release(obj_priv->pages[i]);
2107
2108 drm_free_large(obj_priv->pages);
2109 obj_priv->pages = NULL;
2110 obj_priv->pages_refcount--;
2111 return PTR_ERR(page);
673a394b
EA
2112}
2113
4e901fdc
EA
2114static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2115{
2116 struct drm_gem_object *obj = reg->obj;
2117 struct drm_device *dev = obj->dev;
2118 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2119 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2120 int regnum = obj_priv->fence_reg;
2121 uint64_t val;
2122
2123 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2124 0xfffff000) << 32;
2125 val |= obj_priv->gtt_offset & 0xfffff000;
2126 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2127 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2128
2129 if (obj_priv->tiling_mode == I915_TILING_Y)
2130 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2131 val |= I965_FENCE_REG_VALID;
2132
2133 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2134}
2135
de151cf6
JB
2136static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2137{
2138 struct drm_gem_object *obj = reg->obj;
2139 struct drm_device *dev = obj->dev;
2140 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2142 int regnum = obj_priv->fence_reg;
2143 uint64_t val;
2144
2145 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2146 0xfffff000) << 32;
2147 val |= obj_priv->gtt_offset & 0xfffff000;
2148 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2149 if (obj_priv->tiling_mode == I915_TILING_Y)
2150 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2151 val |= I965_FENCE_REG_VALID;
2152
2153 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2154}
2155
2156static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2157{
2158 struct drm_gem_object *obj = reg->obj;
2159 struct drm_device *dev = obj->dev;
2160 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2162 int regnum = obj_priv->fence_reg;
0f973f27 2163 int tile_width;
dc529a4f 2164 uint32_t fence_reg, val;
de151cf6
JB
2165 uint32_t pitch_val;
2166
2167 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2168 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2169 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2170 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2171 return;
2172 }
2173
0f973f27
JB
2174 if (obj_priv->tiling_mode == I915_TILING_Y &&
2175 HAS_128_BYTE_Y_TILING(dev))
2176 tile_width = 128;
de151cf6 2177 else
0f973f27
JB
2178 tile_width = 512;
2179
2180 /* Note: pitch better be a power of two tile widths */
2181 pitch_val = obj_priv->stride / tile_width;
2182 pitch_val = ffs(pitch_val) - 1;
de151cf6 2183
c36a2a6d
DV
2184 if (obj_priv->tiling_mode == I915_TILING_Y &&
2185 HAS_128_BYTE_Y_TILING(dev))
2186 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2187 else
2188 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2189
de151cf6
JB
2190 val = obj_priv->gtt_offset;
2191 if (obj_priv->tiling_mode == I915_TILING_Y)
2192 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2193 val |= I915_FENCE_SIZE_BITS(obj->size);
2194 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2195 val |= I830_FENCE_REG_VALID;
2196
dc529a4f
EA
2197 if (regnum < 8)
2198 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2199 else
2200 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2201 I915_WRITE(fence_reg, val);
de151cf6
JB
2202}
2203
2204static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2205{
2206 struct drm_gem_object *obj = reg->obj;
2207 struct drm_device *dev = obj->dev;
2208 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2209 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2210 int regnum = obj_priv->fence_reg;
2211 uint32_t val;
2212 uint32_t pitch_val;
8d7773a3 2213 uint32_t fence_size_bits;
de151cf6 2214
8d7773a3 2215 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2216 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2217 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2218 __func__, obj_priv->gtt_offset);
de151cf6
JB
2219 return;
2220 }
2221
e76a16de
EA
2222 pitch_val = obj_priv->stride / 128;
2223 pitch_val = ffs(pitch_val) - 1;
2224 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2225
de151cf6
JB
2226 val = obj_priv->gtt_offset;
2227 if (obj_priv->tiling_mode == I915_TILING_Y)
2228 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2229 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2230 WARN_ON(fence_size_bits & ~0x00000f00);
2231 val |= fence_size_bits;
de151cf6
JB
2232 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2233 val |= I830_FENCE_REG_VALID;
2234
2235 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2236}
2237
ae3db24a
DV
2238static int i915_find_fence_reg(struct drm_device *dev)
2239{
2240 struct drm_i915_fence_reg *reg = NULL;
2241 struct drm_i915_gem_object *obj_priv = NULL;
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 struct drm_gem_object *obj = NULL;
2244 int i, avail, ret;
2245
2246 /* First try to find a free reg */
2247 avail = 0;
2248 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2249 reg = &dev_priv->fence_regs[i];
2250 if (!reg->obj)
2251 return i;
2252
23010e43 2253 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2254 if (!obj_priv->pin_count)
2255 avail++;
2256 }
2257
2258 if (avail == 0)
2259 return -ENOSPC;
2260
2261 /* None available, try to steal one or wait for a user to finish */
2262 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2263 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2264 lru_list) {
2265 obj = reg->obj;
2266 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2267
2268 if (obj_priv->pin_count)
2269 continue;
2270
2271 /* found one! */
2272 i = obj_priv->fence_reg;
2273 break;
2274 }
2275
2276 BUG_ON(i == I915_FENCE_REG_NONE);
2277
2278 /* We only have a reference on obj from the active list. put_fence_reg
2279 * might drop that one, causing a use-after-free in it. So hold a
2280 * private reference to obj like the other callers of put_fence_reg
2281 * (set_tiling ioctl) do. */
2282 drm_gem_object_reference(obj);
2283 ret = i915_gem_object_put_fence_reg(obj);
2284 drm_gem_object_unreference(obj);
2285 if (ret != 0)
2286 return ret;
2287
2288 return i;
2289}
2290
de151cf6
JB
2291/**
2292 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2293 * @obj: object to map through a fence reg
2294 *
2295 * When mapping objects through the GTT, userspace wants to be able to write
2296 * to them without having to worry about swizzling if the object is tiled.
2297 *
2298 * This function walks the fence regs looking for a free one for @obj,
2299 * stealing one if it can't find any.
2300 *
2301 * It then sets up the reg based on the object's properties: address, pitch
2302 * and tiling format.
2303 */
8c4b8c3f
CW
2304int
2305i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2306{
2307 struct drm_device *dev = obj->dev;
79e53945 2308 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2309 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2310 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2311 int ret;
de151cf6 2312
a09ba7fa
EA
2313 /* Just update our place in the LRU if our fence is getting used. */
2314 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2315 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2316 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2317 return 0;
2318 }
2319
de151cf6
JB
2320 switch (obj_priv->tiling_mode) {
2321 case I915_TILING_NONE:
2322 WARN(1, "allocating a fence for non-tiled object?\n");
2323 break;
2324 case I915_TILING_X:
0f973f27
JB
2325 if (!obj_priv->stride)
2326 return -EINVAL;
2327 WARN((obj_priv->stride & (512 - 1)),
2328 "object 0x%08x is X tiled but has non-512B pitch\n",
2329 obj_priv->gtt_offset);
de151cf6
JB
2330 break;
2331 case I915_TILING_Y:
0f973f27
JB
2332 if (!obj_priv->stride)
2333 return -EINVAL;
2334 WARN((obj_priv->stride & (128 - 1)),
2335 "object 0x%08x is Y tiled but has non-128B pitch\n",
2336 obj_priv->gtt_offset);
de151cf6
JB
2337 break;
2338 }
2339
ae3db24a
DV
2340 ret = i915_find_fence_reg(dev);
2341 if (ret < 0)
2342 return ret;
de151cf6 2343
ae3db24a
DV
2344 obj_priv->fence_reg = ret;
2345 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2346 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2347
de151cf6
JB
2348 reg->obj = obj;
2349
4e901fdc
EA
2350 if (IS_GEN6(dev))
2351 sandybridge_write_fence_reg(reg);
2352 else if (IS_I965G(dev))
de151cf6
JB
2353 i965_write_fence_reg(reg);
2354 else if (IS_I9XX(dev))
2355 i915_write_fence_reg(reg);
2356 else
2357 i830_write_fence_reg(reg);
d9ddcb96 2358
ae3db24a
DV
2359 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2360 obj_priv->tiling_mode);
1c5d22f7 2361
d9ddcb96 2362 return 0;
de151cf6
JB
2363}
2364
2365/**
2366 * i915_gem_clear_fence_reg - clear out fence register info
2367 * @obj: object to clear
2368 *
2369 * Zeroes out the fence register itself and clears out the associated
2370 * data structures in dev_priv and obj_priv.
2371 */
2372static void
2373i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2374{
2375 struct drm_device *dev = obj->dev;
79e53945 2376 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2377 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2378 struct drm_i915_fence_reg *reg =
2379 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2380
4e901fdc
EA
2381 if (IS_GEN6(dev)) {
2382 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2383 (obj_priv->fence_reg * 8), 0);
2384 } else if (IS_I965G(dev)) {
de151cf6 2385 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2386 } else {
dc529a4f
EA
2387 uint32_t fence_reg;
2388
2389 if (obj_priv->fence_reg < 8)
2390 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2391 else
2392 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2393 8) * 4;
2394
2395 I915_WRITE(fence_reg, 0);
2396 }
de151cf6 2397
007cc8ac 2398 reg->obj = NULL;
de151cf6 2399 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2400 list_del_init(&reg->lru_list);
de151cf6
JB
2401}
2402
52dc7d32
CW
2403/**
2404 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2405 * to the buffer to finish, and then resets the fence register.
2406 * @obj: tiled object holding a fence register.
2407 *
2408 * Zeroes out the fence register itself and clears out the associated
2409 * data structures in dev_priv and obj_priv.
2410 */
2411int
2412i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2413{
2414 struct drm_device *dev = obj->dev;
23010e43 2415 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2416
2417 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2418 return 0;
2419
10ae9bd2
DV
2420 /* If we've changed tiling, GTT-mappings of the object
2421 * need to re-fault to ensure that the correct fence register
2422 * setup is in place.
2423 */
2424 i915_gem_release_mmap(obj);
2425
52dc7d32
CW
2426 /* On the i915, GPU access to tiled buffers is via a fence,
2427 * therefore we must wait for any outstanding access to complete
2428 * before clearing the fence.
2429 */
2430 if (!IS_I965G(dev)) {
2431 int ret;
2432
2dafb1e0
CW
2433 ret = i915_gem_object_flush_gpu_write_domain(obj);
2434 if (ret != 0)
2435 return ret;
2436
52dc7d32
CW
2437 ret = i915_gem_object_wait_rendering(obj);
2438 if (ret != 0)
2439 return ret;
2440 }
2441
4a726612 2442 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2443 i915_gem_clear_fence_reg (obj);
2444
2445 return 0;
2446}
2447
673a394b
EA
2448/**
2449 * Finds free space in the GTT aperture and binds the object there.
2450 */
2451static int
2452i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2453{
2454 struct drm_device *dev = obj->dev;
2455 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2456 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2457 struct drm_mm_node *free_space;
4bdadb97 2458 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2459 int ret;
673a394b 2460
bb6baf76 2461 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2462 DRM_ERROR("Attempting to bind a purgeable object\n");
2463 return -EINVAL;
2464 }
2465
673a394b 2466 if (alignment == 0)
0f973f27 2467 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2468 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2469 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2470 return -EINVAL;
2471 }
2472
654fc607
CW
2473 /* If the object is bigger than the entire aperture, reject it early
2474 * before evicting everything in a vain attempt to find space.
2475 */
2476 if (obj->size > dev->gtt_total) {
2477 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2478 return -E2BIG;
2479 }
2480
673a394b
EA
2481 search_free:
2482 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2483 obj->size, alignment, 0);
2484 if (free_space != NULL) {
2485 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2486 alignment);
db3307a9 2487 if (obj_priv->gtt_space != NULL)
673a394b 2488 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2489 }
2490 if (obj_priv->gtt_space == NULL) {
2491 /* If the gtt is empty and we're still having trouble
2492 * fitting our object in, we're out of memory.
2493 */
2494#if WATCH_LRU
2495 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2496#endif
0108a3ed 2497 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2498 if (ret)
673a394b 2499 return ret;
9731129c 2500
673a394b
EA
2501 goto search_free;
2502 }
2503
2504#if WATCH_BUF
cfd43c02 2505 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2506 obj->size, obj_priv->gtt_offset);
2507#endif
4bdadb97 2508 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2509 if (ret) {
2510 drm_mm_put_block(obj_priv->gtt_space);
2511 obj_priv->gtt_space = NULL;
07f73f69
CW
2512
2513 if (ret == -ENOMEM) {
2514 /* first try to clear up some space from the GTT */
0108a3ed
DV
2515 ret = i915_gem_evict_something(dev, obj->size,
2516 alignment);
07f73f69 2517 if (ret) {
07f73f69 2518 /* now try to shrink everyone else */
4bdadb97
CW
2519 if (gfpmask) {
2520 gfpmask = 0;
2521 goto search_free;
07f73f69
CW
2522 }
2523
2524 return ret;
2525 }
2526
2527 goto search_free;
2528 }
2529
673a394b
EA
2530 return ret;
2531 }
2532
673a394b
EA
2533 /* Create an AGP memory structure pointing at our pages, and bind it
2534 * into the GTT.
2535 */
2536 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2537 obj_priv->pages,
07f73f69 2538 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2539 obj_priv->gtt_offset,
2540 obj_priv->agp_type);
673a394b 2541 if (obj_priv->agp_mem == NULL) {
856fa198 2542 i915_gem_object_put_pages(obj);
673a394b
EA
2543 drm_mm_put_block(obj_priv->gtt_space);
2544 obj_priv->gtt_space = NULL;
07f73f69 2545
0108a3ed 2546 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2547 if (ret)
07f73f69 2548 return ret;
07f73f69
CW
2549
2550 goto search_free;
673a394b
EA
2551 }
2552 atomic_inc(&dev->gtt_count);
2553 atomic_add(obj->size, &dev->gtt_memory);
2554
bf1a1092
CW
2555 /* keep track of bounds object by adding it to the inactive list */
2556 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2557
673a394b
EA
2558 /* Assert that the object is not currently in any GPU domain. As it
2559 * wasn't in the GTT, there shouldn't be any way it could have been in
2560 * a GPU cache
2561 */
21d509e3
CW
2562 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2563 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2564
1c5d22f7
CW
2565 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2566
673a394b
EA
2567 return 0;
2568}
2569
2570void
2571i915_gem_clflush_object(struct drm_gem_object *obj)
2572{
23010e43 2573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2574
2575 /* If we don't have a page list set up, then we're not pinned
2576 * to GPU, and we can ignore the cache flush because it'll happen
2577 * again at bind time.
2578 */
856fa198 2579 if (obj_priv->pages == NULL)
673a394b
EA
2580 return;
2581
1c5d22f7 2582 trace_i915_gem_object_clflush(obj);
cfa16a0d 2583
856fa198 2584 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2585}
2586
e47c68e9 2587/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2588static int
e47c68e9
EA
2589i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2590{
2591 struct drm_device *dev = obj->dev;
1c5d22f7 2592 uint32_t old_write_domain;
852835f3 2593 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2594
2595 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2596 return 0;
e47c68e9
EA
2597
2598 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2599 old_write_domain = obj->write_domain;
e47c68e9 2600 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2601 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2602 return -ENOMEM;
1c5d22f7
CW
2603
2604 trace_i915_gem_object_change_domain(obj,
2605 obj->read_domains,
2606 old_write_domain);
2dafb1e0 2607 return 0;
e47c68e9
EA
2608}
2609
2610/** Flushes the GTT write domain for the object if it's dirty. */
2611static void
2612i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2613{
1c5d22f7
CW
2614 uint32_t old_write_domain;
2615
e47c68e9
EA
2616 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2617 return;
2618
2619 /* No actual flushing is required for the GTT write domain. Writes
2620 * to it immediately go to main memory as far as we know, so there's
2621 * no chipset flush. It also doesn't land in render cache.
2622 */
1c5d22f7 2623 old_write_domain = obj->write_domain;
e47c68e9 2624 obj->write_domain = 0;
1c5d22f7
CW
2625
2626 trace_i915_gem_object_change_domain(obj,
2627 obj->read_domains,
2628 old_write_domain);
e47c68e9
EA
2629}
2630
2631/** Flushes the CPU write domain for the object if it's dirty. */
2632static void
2633i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2634{
2635 struct drm_device *dev = obj->dev;
1c5d22f7 2636 uint32_t old_write_domain;
e47c68e9
EA
2637
2638 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2639 return;
2640
2641 i915_gem_clflush_object(obj);
2642 drm_agp_chipset_flush(dev);
1c5d22f7 2643 old_write_domain = obj->write_domain;
e47c68e9 2644 obj->write_domain = 0;
1c5d22f7
CW
2645
2646 trace_i915_gem_object_change_domain(obj,
2647 obj->read_domains,
2648 old_write_domain);
e47c68e9
EA
2649}
2650
2dafb1e0 2651int
6b95a207
KH
2652i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2653{
2dafb1e0
CW
2654 int ret = 0;
2655
6b95a207
KH
2656 switch (obj->write_domain) {
2657 case I915_GEM_DOMAIN_GTT:
2658 i915_gem_object_flush_gtt_write_domain(obj);
2659 break;
2660 case I915_GEM_DOMAIN_CPU:
2661 i915_gem_object_flush_cpu_write_domain(obj);
2662 break;
2663 default:
2dafb1e0 2664 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2665 break;
2666 }
2dafb1e0
CW
2667
2668 return ret;
6b95a207
KH
2669}
2670
2ef7eeaa
EA
2671/**
2672 * Moves a single object to the GTT read, and possibly write domain.
2673 *
2674 * This function returns when the move is complete, including waiting on
2675 * flushes to occur.
2676 */
79e53945 2677int
2ef7eeaa
EA
2678i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2679{
23010e43 2680 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2681 uint32_t old_write_domain, old_read_domains;
e47c68e9 2682 int ret;
2ef7eeaa 2683
02354392
EA
2684 /* Not valid to be called on unbound objects. */
2685 if (obj_priv->gtt_space == NULL)
2686 return -EINVAL;
2687
2dafb1e0
CW
2688 ret = i915_gem_object_flush_gpu_write_domain(obj);
2689 if (ret != 0)
2690 return ret;
2691
e47c68e9
EA
2692 /* Wait on any GPU rendering and flushing to occur. */
2693 ret = i915_gem_object_wait_rendering(obj);
2694 if (ret != 0)
2695 return ret;
2696
1c5d22f7
CW
2697 old_write_domain = obj->write_domain;
2698 old_read_domains = obj->read_domains;
2699
e47c68e9
EA
2700 /* If we're writing through the GTT domain, then CPU and GPU caches
2701 * will need to be invalidated at next use.
2ef7eeaa 2702 */
e47c68e9
EA
2703 if (write)
2704 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2705
e47c68e9 2706 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2707
e47c68e9
EA
2708 /* It should now be out of any other write domains, and we can update
2709 * the domain values for our changes.
2710 */
2711 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2712 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2713 if (write) {
2714 obj->write_domain = I915_GEM_DOMAIN_GTT;
2715 obj_priv->dirty = 1;
2ef7eeaa
EA
2716 }
2717
1c5d22f7
CW
2718 trace_i915_gem_object_change_domain(obj,
2719 old_read_domains,
2720 old_write_domain);
2721
e47c68e9
EA
2722 return 0;
2723}
2724
b9241ea3
ZW
2725/*
2726 * Prepare buffer for display plane. Use uninterruptible for possible flush
2727 * wait, as in modesetting process we're not supposed to be interrupted.
2728 */
2729int
2730i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2731{
2732 struct drm_device *dev = obj->dev;
23010e43 2733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2734 uint32_t old_write_domain, old_read_domains;
2735 int ret;
2736
2737 /* Not valid to be called on unbound objects. */
2738 if (obj_priv->gtt_space == NULL)
2739 return -EINVAL;
2740
2dafb1e0
CW
2741 ret = i915_gem_object_flush_gpu_write_domain(obj);
2742 if (ret)
2743 return ret;
b9241ea3
ZW
2744
2745 /* Wait on any GPU rendering and flushing to occur. */
2746 if (obj_priv->active) {
2747#if WATCH_BUF
2748 DRM_INFO("%s: object %p wait for seqno %08x\n",
2749 __func__, obj, obj_priv->last_rendering_seqno);
2750#endif
852835f3
ZN
2751 ret = i915_do_wait_request(dev,
2752 obj_priv->last_rendering_seqno,
2753 0,
2754 obj_priv->ring);
b9241ea3
ZW
2755 if (ret != 0)
2756 return ret;
2757 }
2758
b118c1e3
CW
2759 i915_gem_object_flush_cpu_write_domain(obj);
2760
b9241ea3
ZW
2761 old_write_domain = obj->write_domain;
2762 old_read_domains = obj->read_domains;
2763
b9241ea3
ZW
2764 /* It should now be out of any other write domains, and we can update
2765 * the domain values for our changes.
2766 */
2767 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2768 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2769 obj->write_domain = I915_GEM_DOMAIN_GTT;
2770 obj_priv->dirty = 1;
2771
2772 trace_i915_gem_object_change_domain(obj,
2773 old_read_domains,
2774 old_write_domain);
2775
2776 return 0;
2777}
2778
e47c68e9
EA
2779/**
2780 * Moves a single object to the CPU read, and possibly write domain.
2781 *
2782 * This function returns when the move is complete, including waiting on
2783 * flushes to occur.
2784 */
2785static int
2786i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2787{
1c5d22f7 2788 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2789 int ret;
2790
2dafb1e0
CW
2791 ret = i915_gem_object_flush_gpu_write_domain(obj);
2792 if (ret)
2793 return ret;
2794
2ef7eeaa 2795 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2796 ret = i915_gem_object_wait_rendering(obj);
2797 if (ret != 0)
2798 return ret;
2ef7eeaa 2799
e47c68e9 2800 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2801
e47c68e9
EA
2802 /* If we have a partially-valid cache of the object in the CPU,
2803 * finish invalidating it and free the per-page flags.
2ef7eeaa 2804 */
e47c68e9 2805 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2806
1c5d22f7
CW
2807 old_write_domain = obj->write_domain;
2808 old_read_domains = obj->read_domains;
2809
e47c68e9
EA
2810 /* Flush the CPU cache if it's still invalid. */
2811 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2812 i915_gem_clflush_object(obj);
2ef7eeaa 2813
e47c68e9 2814 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2815 }
2816
2817 /* It should now be out of any other write domains, and we can update
2818 * the domain values for our changes.
2819 */
e47c68e9
EA
2820 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2821
2822 /* If we're writing through the CPU, then the GPU read domains will
2823 * need to be invalidated at next use.
2824 */
2825 if (write) {
2826 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2827 obj->write_domain = I915_GEM_DOMAIN_CPU;
2828 }
2ef7eeaa 2829
1c5d22f7
CW
2830 trace_i915_gem_object_change_domain(obj,
2831 old_read_domains,
2832 old_write_domain);
2833
2ef7eeaa
EA
2834 return 0;
2835}
2836
673a394b
EA
2837/*
2838 * Set the next domain for the specified object. This
2839 * may not actually perform the necessary flushing/invaliding though,
2840 * as that may want to be batched with other set_domain operations
2841 *
2842 * This is (we hope) the only really tricky part of gem. The goal
2843 * is fairly simple -- track which caches hold bits of the object
2844 * and make sure they remain coherent. A few concrete examples may
2845 * help to explain how it works. For shorthand, we use the notation
2846 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2847 * a pair of read and write domain masks.
2848 *
2849 * Case 1: the batch buffer
2850 *
2851 * 1. Allocated
2852 * 2. Written by CPU
2853 * 3. Mapped to GTT
2854 * 4. Read by GPU
2855 * 5. Unmapped from GTT
2856 * 6. Freed
2857 *
2858 * Let's take these a step at a time
2859 *
2860 * 1. Allocated
2861 * Pages allocated from the kernel may still have
2862 * cache contents, so we set them to (CPU, CPU) always.
2863 * 2. Written by CPU (using pwrite)
2864 * The pwrite function calls set_domain (CPU, CPU) and
2865 * this function does nothing (as nothing changes)
2866 * 3. Mapped by GTT
2867 * This function asserts that the object is not
2868 * currently in any GPU-based read or write domains
2869 * 4. Read by GPU
2870 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2871 * As write_domain is zero, this function adds in the
2872 * current read domains (CPU+COMMAND, 0).
2873 * flush_domains is set to CPU.
2874 * invalidate_domains is set to COMMAND
2875 * clflush is run to get data out of the CPU caches
2876 * then i915_dev_set_domain calls i915_gem_flush to
2877 * emit an MI_FLUSH and drm_agp_chipset_flush
2878 * 5. Unmapped from GTT
2879 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2880 * flush_domains and invalidate_domains end up both zero
2881 * so no flushing/invalidating happens
2882 * 6. Freed
2883 * yay, done
2884 *
2885 * Case 2: The shared render buffer
2886 *
2887 * 1. Allocated
2888 * 2. Mapped to GTT
2889 * 3. Read/written by GPU
2890 * 4. set_domain to (CPU,CPU)
2891 * 5. Read/written by CPU
2892 * 6. Read/written by GPU
2893 *
2894 * 1. Allocated
2895 * Same as last example, (CPU, CPU)
2896 * 2. Mapped to GTT
2897 * Nothing changes (assertions find that it is not in the GPU)
2898 * 3. Read/written by GPU
2899 * execbuffer calls set_domain (RENDER, RENDER)
2900 * flush_domains gets CPU
2901 * invalidate_domains gets GPU
2902 * clflush (obj)
2903 * MI_FLUSH and drm_agp_chipset_flush
2904 * 4. set_domain (CPU, CPU)
2905 * flush_domains gets GPU
2906 * invalidate_domains gets CPU
2907 * wait_rendering (obj) to make sure all drawing is complete.
2908 * This will include an MI_FLUSH to get the data from GPU
2909 * to memory
2910 * clflush (obj) to invalidate the CPU cache
2911 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2912 * 5. Read/written by CPU
2913 * cache lines are loaded and dirtied
2914 * 6. Read written by GPU
2915 * Same as last GPU access
2916 *
2917 * Case 3: The constant buffer
2918 *
2919 * 1. Allocated
2920 * 2. Written by CPU
2921 * 3. Read by GPU
2922 * 4. Updated (written) by CPU again
2923 * 5. Read by GPU
2924 *
2925 * 1. Allocated
2926 * (CPU, CPU)
2927 * 2. Written by CPU
2928 * (CPU, CPU)
2929 * 3. Read by GPU
2930 * (CPU+RENDER, 0)
2931 * flush_domains = CPU
2932 * invalidate_domains = RENDER
2933 * clflush (obj)
2934 * MI_FLUSH
2935 * drm_agp_chipset_flush
2936 * 4. Updated (written) by CPU again
2937 * (CPU, CPU)
2938 * flush_domains = 0 (no previous write domain)
2939 * invalidate_domains = 0 (no new read domains)
2940 * 5. Read by GPU
2941 * (CPU+RENDER, 0)
2942 * flush_domains = CPU
2943 * invalidate_domains = RENDER
2944 * clflush (obj)
2945 * MI_FLUSH
2946 * drm_agp_chipset_flush
2947 */
c0d90829 2948static void
8b0e378a 2949i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2950{
2951 struct drm_device *dev = obj->dev;
88f356b7 2952 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2953 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2954 uint32_t invalidate_domains = 0;
2955 uint32_t flush_domains = 0;
1c5d22f7 2956 uint32_t old_read_domains;
e47c68e9 2957
8b0e378a
EA
2958 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2959 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2960
652c393a
JB
2961 intel_mark_busy(dev, obj);
2962
673a394b
EA
2963#if WATCH_BUF
2964 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2965 __func__, obj,
8b0e378a
EA
2966 obj->read_domains, obj->pending_read_domains,
2967 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2968#endif
2969 /*
2970 * If the object isn't moving to a new write domain,
2971 * let the object stay in multiple read domains
2972 */
8b0e378a
EA
2973 if (obj->pending_write_domain == 0)
2974 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2975 else
2976 obj_priv->dirty = 1;
2977
2978 /*
2979 * Flush the current write domain if
2980 * the new read domains don't match. Invalidate
2981 * any read domains which differ from the old
2982 * write domain
2983 */
8b0e378a
EA
2984 if (obj->write_domain &&
2985 obj->write_domain != obj->pending_read_domains) {
673a394b 2986 flush_domains |= obj->write_domain;
8b0e378a
EA
2987 invalidate_domains |=
2988 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2989 }
2990 /*
2991 * Invalidate any read caches which may have
2992 * stale data. That is, any new read domains.
2993 */
8b0e378a 2994 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2995 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2996#if WATCH_BUF
2997 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2998 __func__, flush_domains, invalidate_domains);
2999#endif
673a394b
EA
3000 i915_gem_clflush_object(obj);
3001 }
3002
1c5d22f7
CW
3003 old_read_domains = obj->read_domains;
3004
efbeed96
EA
3005 /* The actual obj->write_domain will be updated with
3006 * pending_write_domain after we emit the accumulated flush for all
3007 * of our domain changes in execbuffers (which clears objects'
3008 * write_domains). So if we have a current write domain that we
3009 * aren't changing, set pending_write_domain to that.
3010 */
3011 if (flush_domains == 0 && obj->pending_write_domain == 0)
3012 obj->pending_write_domain = obj->write_domain;
8b0e378a 3013 obj->read_domains = obj->pending_read_domains;
673a394b 3014
88f356b7
CW
3015 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3016 if (obj_priv->ring == &dev_priv->render_ring)
3017 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3018 else if (obj_priv->ring == &dev_priv->bsd_ring)
3019 dev_priv->flush_rings |= FLUSH_BSD_RING;
3020 }
3021
673a394b
EA
3022 dev->invalidate_domains |= invalidate_domains;
3023 dev->flush_domains |= flush_domains;
3024#if WATCH_BUF
3025 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3026 __func__,
3027 obj->read_domains, obj->write_domain,
3028 dev->invalidate_domains, dev->flush_domains);
3029#endif
1c5d22f7
CW
3030
3031 trace_i915_gem_object_change_domain(obj,
3032 old_read_domains,
3033 obj->write_domain);
673a394b
EA
3034}
3035
3036/**
e47c68e9 3037 * Moves the object from a partially CPU read to a full one.
673a394b 3038 *
e47c68e9
EA
3039 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3040 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3041 */
e47c68e9
EA
3042static void
3043i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3044{
23010e43 3045 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3046
e47c68e9
EA
3047 if (!obj_priv->page_cpu_valid)
3048 return;
3049
3050 /* If we're partially in the CPU read domain, finish moving it in.
3051 */
3052 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3053 int i;
3054
3055 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3056 if (obj_priv->page_cpu_valid[i])
3057 continue;
856fa198 3058 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3059 }
e47c68e9
EA
3060 }
3061
3062 /* Free the page_cpu_valid mappings which are now stale, whether
3063 * or not we've got I915_GEM_DOMAIN_CPU.
3064 */
9a298b2a 3065 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3066 obj_priv->page_cpu_valid = NULL;
3067}
3068
3069/**
3070 * Set the CPU read domain on a range of the object.
3071 *
3072 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3073 * not entirely valid. The page_cpu_valid member of the object flags which
3074 * pages have been flushed, and will be respected by
3075 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3076 * of the whole object.
3077 *
3078 * This function returns when the move is complete, including waiting on
3079 * flushes to occur.
3080 */
3081static int
3082i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3083 uint64_t offset, uint64_t size)
3084{
23010e43 3085 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3086 uint32_t old_read_domains;
e47c68e9 3087 int i, ret;
673a394b 3088
e47c68e9
EA
3089 if (offset == 0 && size == obj->size)
3090 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3091
2dafb1e0
CW
3092 ret = i915_gem_object_flush_gpu_write_domain(obj);
3093 if (ret)
3094 return ret;
3095
e47c68e9 3096 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3097 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3098 if (ret != 0)
6a47baa6 3099 return ret;
e47c68e9
EA
3100 i915_gem_object_flush_gtt_write_domain(obj);
3101
3102 /* If we're already fully in the CPU read domain, we're done. */
3103 if (obj_priv->page_cpu_valid == NULL &&
3104 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3105 return 0;
673a394b 3106
e47c68e9
EA
3107 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3108 * newly adding I915_GEM_DOMAIN_CPU
3109 */
673a394b 3110 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3111 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3112 GFP_KERNEL);
e47c68e9
EA
3113 if (obj_priv->page_cpu_valid == NULL)
3114 return -ENOMEM;
3115 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3116 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3117
3118 /* Flush the cache on any pages that are still invalid from the CPU's
3119 * perspective.
3120 */
e47c68e9
EA
3121 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3122 i++) {
673a394b
EA
3123 if (obj_priv->page_cpu_valid[i])
3124 continue;
3125
856fa198 3126 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3127
3128 obj_priv->page_cpu_valid[i] = 1;
3129 }
3130
e47c68e9
EA
3131 /* It should now be out of any other write domains, and we can update
3132 * the domain values for our changes.
3133 */
3134 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3135
1c5d22f7 3136 old_read_domains = obj->read_domains;
e47c68e9
EA
3137 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3138
1c5d22f7
CW
3139 trace_i915_gem_object_change_domain(obj,
3140 old_read_domains,
3141 obj->write_domain);
3142
673a394b
EA
3143 return 0;
3144}
3145
673a394b
EA
3146/**
3147 * Pin an object to the GTT and evaluate the relocations landing in it.
3148 */
3149static int
3150i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3151 struct drm_file *file_priv,
76446cac 3152 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3153 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3154{
3155 struct drm_device *dev = obj->dev;
0839ccb8 3156 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3158 int i, ret;
0839ccb8 3159 void __iomem *reloc_page;
76446cac
JB
3160 bool need_fence;
3161
3162 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3163 obj_priv->tiling_mode != I915_TILING_NONE;
3164
3165 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3166 if (need_fence &&
3167 !i915_gem_object_fence_offset_ok(obj,
3168 obj_priv->tiling_mode)) {
3169 ret = i915_gem_object_unbind(obj);
3170 if (ret)
3171 return ret;
3172 }
673a394b
EA
3173
3174 /* Choose the GTT offset for our buffer and put it there. */
3175 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3176 if (ret)
3177 return ret;
3178
76446cac
JB
3179 /*
3180 * Pre-965 chips need a fence register set up in order to
3181 * properly handle blits to/from tiled surfaces.
3182 */
3183 if (need_fence) {
3184 ret = i915_gem_object_get_fence_reg(obj);
3185 if (ret != 0) {
76446cac
JB
3186 i915_gem_object_unpin(obj);
3187 return ret;
3188 }
3189 }
3190
673a394b
EA
3191 entry->offset = obj_priv->gtt_offset;
3192
673a394b
EA
3193 /* Apply the relocations, using the GTT aperture to avoid cache
3194 * flushing requirements.
3195 */
3196 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3197 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3198 struct drm_gem_object *target_obj;
3199 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3200 uint32_t reloc_val, reloc_offset;
3201 uint32_t __iomem *reloc_entry;
673a394b 3202
673a394b 3203 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3204 reloc->target_handle);
673a394b
EA
3205 if (target_obj == NULL) {
3206 i915_gem_object_unpin(obj);
3207 return -EBADF;
3208 }
23010e43 3209 target_obj_priv = to_intel_bo(target_obj);
673a394b 3210
8542a0bb
CW
3211#if WATCH_RELOC
3212 DRM_INFO("%s: obj %p offset %08x target %d "
3213 "read %08x write %08x gtt %08x "
3214 "presumed %08x delta %08x\n",
3215 __func__,
3216 obj,
3217 (int) reloc->offset,
3218 (int) reloc->target_handle,
3219 (int) reloc->read_domains,
3220 (int) reloc->write_domain,
3221 (int) target_obj_priv->gtt_offset,
3222 (int) reloc->presumed_offset,
3223 reloc->delta);
3224#endif
3225
673a394b
EA
3226 /* The target buffer should have appeared before us in the
3227 * exec_object list, so it should have a GTT space bound by now.
3228 */
3229 if (target_obj_priv->gtt_space == NULL) {
3230 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3231 reloc->target_handle);
673a394b
EA
3232 drm_gem_object_unreference(target_obj);
3233 i915_gem_object_unpin(obj);
3234 return -EINVAL;
3235 }
3236
8542a0bb 3237 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3238 if (reloc->write_domain & (reloc->write_domain - 1)) {
3239 DRM_ERROR("reloc with multiple write domains: "
3240 "obj %p target %d offset %d "
3241 "read %08x write %08x",
3242 obj, reloc->target_handle,
3243 (int) reloc->offset,
3244 reloc->read_domains,
3245 reloc->write_domain);
3246 return -EINVAL;
3247 }
40a5f0de
EA
3248 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3249 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3250 DRM_ERROR("reloc with read/write CPU domains: "
3251 "obj %p target %d offset %d "
3252 "read %08x write %08x",
40a5f0de
EA
3253 obj, reloc->target_handle,
3254 (int) reloc->offset,
3255 reloc->read_domains,
3256 reloc->write_domain);
491152b8
CW
3257 drm_gem_object_unreference(target_obj);
3258 i915_gem_object_unpin(obj);
e47c68e9
EA
3259 return -EINVAL;
3260 }
40a5f0de
EA
3261 if (reloc->write_domain && target_obj->pending_write_domain &&
3262 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3263 DRM_ERROR("Write domain conflict: "
3264 "obj %p target %d offset %d "
3265 "new %08x old %08x\n",
40a5f0de
EA
3266 obj, reloc->target_handle,
3267 (int) reloc->offset,
3268 reloc->write_domain,
673a394b
EA
3269 target_obj->pending_write_domain);
3270 drm_gem_object_unreference(target_obj);
3271 i915_gem_object_unpin(obj);
3272 return -EINVAL;
3273 }
3274
40a5f0de
EA
3275 target_obj->pending_read_domains |= reloc->read_domains;
3276 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3277
3278 /* If the relocation already has the right value in it, no
3279 * more work needs to be done.
3280 */
40a5f0de 3281 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3282 drm_gem_object_unreference(target_obj);
3283 continue;
3284 }
3285
8542a0bb
CW
3286 /* Check that the relocation address is valid... */
3287 if (reloc->offset > obj->size - 4) {
3288 DRM_ERROR("Relocation beyond object bounds: "
3289 "obj %p target %d offset %d size %d.\n",
3290 obj, reloc->target_handle,
3291 (int) reloc->offset, (int) obj->size);
3292 drm_gem_object_unreference(target_obj);
3293 i915_gem_object_unpin(obj);
3294 return -EINVAL;
3295 }
3296 if (reloc->offset & 3) {
3297 DRM_ERROR("Relocation not 4-byte aligned: "
3298 "obj %p target %d offset %d.\n",
3299 obj, reloc->target_handle,
3300 (int) reloc->offset);
3301 drm_gem_object_unreference(target_obj);
3302 i915_gem_object_unpin(obj);
3303 return -EINVAL;
3304 }
3305
3306 /* and points to somewhere within the target object. */
3307 if (reloc->delta >= target_obj->size) {
3308 DRM_ERROR("Relocation beyond target object bounds: "
3309 "obj %p target %d delta %d size %d.\n",
3310 obj, reloc->target_handle,
3311 (int) reloc->delta, (int) target_obj->size);
3312 drm_gem_object_unreference(target_obj);
3313 i915_gem_object_unpin(obj);
3314 return -EINVAL;
3315 }
3316
2ef7eeaa
EA
3317 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3318 if (ret != 0) {
3319 drm_gem_object_unreference(target_obj);
3320 i915_gem_object_unpin(obj);
3321 return -EINVAL;
673a394b
EA
3322 }
3323
3324 /* Map the page containing the relocation we're going to
3325 * perform.
3326 */
40a5f0de 3327 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3328 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3329 (reloc_offset &
fca3ec01
CW
3330 ~(PAGE_SIZE - 1)),
3331 KM_USER0);
3043c60c 3332 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3333 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3334 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3335
3336#if WATCH_BUF
3337 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3338 obj, (unsigned int) reloc->offset,
673a394b
EA
3339 readl(reloc_entry), reloc_val);
3340#endif
3341 writel(reloc_val, reloc_entry);
fca3ec01 3342 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3343
40a5f0de
EA
3344 /* The updated presumed offset for this entry will be
3345 * copied back out to the user.
673a394b 3346 */
40a5f0de 3347 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3348
3349 drm_gem_object_unreference(target_obj);
3350 }
3351
673a394b
EA
3352#if WATCH_BUF
3353 if (0)
3354 i915_gem_dump_object(obj, 128, __func__, ~0);
3355#endif
3356 return 0;
3357}
3358
673a394b
EA
3359/* Throttle our rendering by waiting until the ring has completed our requests
3360 * emitted over 20 msec ago.
3361 *
b962442e
EA
3362 * Note that if we were to use the current jiffies each time around the loop,
3363 * we wouldn't escape the function with any frames outstanding if the time to
3364 * render a frame was over 20ms.
3365 *
673a394b
EA
3366 * This should get us reasonable parallelism between CPU and GPU but also
3367 * relatively low latency when blocking on a particular request to finish.
3368 */
3369static int
3370i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3371{
3372 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3373 int ret = 0;
b962442e 3374 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3375
3376 mutex_lock(&dev->struct_mutex);
b962442e
EA
3377 while (!list_empty(&i915_file_priv->mm.request_list)) {
3378 struct drm_i915_gem_request *request;
3379
3380 request = list_first_entry(&i915_file_priv->mm.request_list,
3381 struct drm_i915_gem_request,
3382 client_list);
3383
3384 if (time_after_eq(request->emitted_jiffies, recent_enough))
3385 break;
3386
852835f3 3387 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3388 if (ret != 0)
3389 break;
3390 }
673a394b 3391 mutex_unlock(&dev->struct_mutex);
b962442e 3392
673a394b
EA
3393 return ret;
3394}
3395
40a5f0de 3396static int
76446cac 3397i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3398 uint32_t buffer_count,
3399 struct drm_i915_gem_relocation_entry **relocs)
3400{
3401 uint32_t reloc_count = 0, reloc_index = 0, i;
3402 int ret;
3403
3404 *relocs = NULL;
3405 for (i = 0; i < buffer_count; i++) {
3406 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3407 return -EINVAL;
3408 reloc_count += exec_list[i].relocation_count;
3409 }
3410
8e7d2b2c 3411 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3412 if (*relocs == NULL) {
3413 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3414 return -ENOMEM;
76446cac 3415 }
40a5f0de
EA
3416
3417 for (i = 0; i < buffer_count; i++) {
3418 struct drm_i915_gem_relocation_entry __user *user_relocs;
3419
3420 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3421
3422 ret = copy_from_user(&(*relocs)[reloc_index],
3423 user_relocs,
3424 exec_list[i].relocation_count *
3425 sizeof(**relocs));
3426 if (ret != 0) {
8e7d2b2c 3427 drm_free_large(*relocs);
40a5f0de 3428 *relocs = NULL;
2bc43b5c 3429 return -EFAULT;
40a5f0de
EA
3430 }
3431
3432 reloc_index += exec_list[i].relocation_count;
3433 }
3434
2bc43b5c 3435 return 0;
40a5f0de
EA
3436}
3437
3438static int
76446cac 3439i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3440 uint32_t buffer_count,
3441 struct drm_i915_gem_relocation_entry *relocs)
3442{
3443 uint32_t reloc_count = 0, i;
2bc43b5c 3444 int ret = 0;
40a5f0de 3445
93533c29
CW
3446 if (relocs == NULL)
3447 return 0;
3448
40a5f0de
EA
3449 for (i = 0; i < buffer_count; i++) {
3450 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3451 int unwritten;
40a5f0de
EA
3452
3453 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3454
2bc43b5c
FM
3455 unwritten = copy_to_user(user_relocs,
3456 &relocs[reloc_count],
3457 exec_list[i].relocation_count *
3458 sizeof(*relocs));
3459
3460 if (unwritten) {
3461 ret = -EFAULT;
3462 goto err;
40a5f0de
EA
3463 }
3464
3465 reloc_count += exec_list[i].relocation_count;
3466 }
3467
2bc43b5c 3468err:
8e7d2b2c 3469 drm_free_large(relocs);
40a5f0de
EA
3470
3471 return ret;
3472}
3473
83d60795 3474static int
76446cac 3475i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3476 uint64_t exec_offset)
3477{
3478 uint32_t exec_start, exec_len;
3479
3480 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3481 exec_len = (uint32_t) exec->batch_len;
3482
3483 if ((exec_start | exec_len) & 0x7)
3484 return -EINVAL;
3485
3486 if (!exec_start)
3487 return -EINVAL;
3488
3489 return 0;
3490}
3491
6b95a207
KH
3492static int
3493i915_gem_wait_for_pending_flip(struct drm_device *dev,
3494 struct drm_gem_object **object_list,
3495 int count)
3496{
3497 drm_i915_private_t *dev_priv = dev->dev_private;
3498 struct drm_i915_gem_object *obj_priv;
3499 DEFINE_WAIT(wait);
3500 int i, ret = 0;
3501
3502 for (;;) {
3503 prepare_to_wait(&dev_priv->pending_flip_queue,
3504 &wait, TASK_INTERRUPTIBLE);
3505 for (i = 0; i < count; i++) {
23010e43 3506 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3507 if (atomic_read(&obj_priv->pending_flip) > 0)
3508 break;
3509 }
3510 if (i == count)
3511 break;
3512
3513 if (!signal_pending(current)) {
3514 mutex_unlock(&dev->struct_mutex);
3515 schedule();
3516 mutex_lock(&dev->struct_mutex);
3517 continue;
3518 }
3519 ret = -ERESTARTSYS;
3520 break;
3521 }
3522 finish_wait(&dev_priv->pending_flip_queue, &wait);
3523
3524 return ret;
3525}
3526
43b27f40 3527
673a394b 3528int
76446cac
JB
3529i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3530 struct drm_file *file_priv,
3531 struct drm_i915_gem_execbuffer2 *args,
3532 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3533{
3534 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3535 struct drm_gem_object **object_list = NULL;
3536 struct drm_gem_object *batch_obj;
b70d11da 3537 struct drm_i915_gem_object *obj_priv;
201361a5 3538 struct drm_clip_rect *cliprects = NULL;
93533c29 3539 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3540 int ret = 0, ret2, i, pinned = 0;
673a394b 3541 uint64_t exec_offset;
40a5f0de 3542 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3543 int pin_tries, flips;
673a394b 3544
852835f3
ZN
3545 struct intel_ring_buffer *ring = NULL;
3546
673a394b
EA
3547#if WATCH_EXEC
3548 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3549 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3550#endif
d1b851fc
ZN
3551 if (args->flags & I915_EXEC_BSD) {
3552 if (!HAS_BSD(dev)) {
3553 DRM_ERROR("execbuf with wrong flag\n");
3554 return -EINVAL;
3555 }
3556 ring = &dev_priv->bsd_ring;
3557 } else {
3558 ring = &dev_priv->render_ring;
3559 }
3560
4f481ed2
EA
3561 if (args->buffer_count < 1) {
3562 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3563 return -EINVAL;
3564 }
c8e0f93a 3565 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3566 if (object_list == NULL) {
3567 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3568 args->buffer_count);
3569 ret = -ENOMEM;
3570 goto pre_mutex_err;
3571 }
673a394b 3572
201361a5 3573 if (args->num_cliprects != 0) {
9a298b2a
EA
3574 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3575 GFP_KERNEL);
a40e8d31
OA
3576 if (cliprects == NULL) {
3577 ret = -ENOMEM;
201361a5 3578 goto pre_mutex_err;
a40e8d31 3579 }
201361a5
EA
3580
3581 ret = copy_from_user(cliprects,
3582 (struct drm_clip_rect __user *)
3583 (uintptr_t) args->cliprects_ptr,
3584 sizeof(*cliprects) * args->num_cliprects);
3585 if (ret != 0) {
3586 DRM_ERROR("copy %d cliprects failed: %d\n",
3587 args->num_cliprects, ret);
3588 goto pre_mutex_err;
3589 }
3590 }
3591
40a5f0de
EA
3592 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3593 &relocs);
3594 if (ret != 0)
3595 goto pre_mutex_err;
3596
673a394b
EA
3597 mutex_lock(&dev->struct_mutex);
3598
3599 i915_verify_inactive(dev, __FILE__, __LINE__);
3600
ba1234d1 3601 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3602 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3603 ret = -EIO;
3604 goto pre_mutex_err;
673a394b
EA
3605 }
3606
3607 if (dev_priv->mm.suspended) {
673a394b 3608 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3609 ret = -EBUSY;
3610 goto pre_mutex_err;
673a394b
EA
3611 }
3612
ac94a962 3613 /* Look up object handles */
6b95a207 3614 flips = 0;
673a394b
EA
3615 for (i = 0; i < args->buffer_count; i++) {
3616 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3617 exec_list[i].handle);
3618 if (object_list[i] == NULL) {
3619 DRM_ERROR("Invalid object handle %d at index %d\n",
3620 exec_list[i].handle, i);
0ce907f8
CW
3621 /* prevent error path from reading uninitialized data */
3622 args->buffer_count = i + 1;
673a394b
EA
3623 ret = -EBADF;
3624 goto err;
3625 }
b70d11da 3626
23010e43 3627 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3628 if (obj_priv->in_execbuffer) {
3629 DRM_ERROR("Object %p appears more than once in object list\n",
3630 object_list[i]);
0ce907f8
CW
3631 /* prevent error path from reading uninitialized data */
3632 args->buffer_count = i + 1;
b70d11da
KH
3633 ret = -EBADF;
3634 goto err;
3635 }
3636 obj_priv->in_execbuffer = true;
6b95a207
KH
3637 flips += atomic_read(&obj_priv->pending_flip);
3638 }
3639
3640 if (flips > 0) {
3641 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3642 args->buffer_count);
3643 if (ret)
3644 goto err;
ac94a962 3645 }
673a394b 3646
ac94a962
KP
3647 /* Pin and relocate */
3648 for (pin_tries = 0; ; pin_tries++) {
3649 ret = 0;
40a5f0de
EA
3650 reloc_index = 0;
3651
ac94a962
KP
3652 for (i = 0; i < args->buffer_count; i++) {
3653 object_list[i]->pending_read_domains = 0;
3654 object_list[i]->pending_write_domain = 0;
3655 ret = i915_gem_object_pin_and_relocate(object_list[i],
3656 file_priv,
40a5f0de
EA
3657 &exec_list[i],
3658 &relocs[reloc_index]);
ac94a962
KP
3659 if (ret)
3660 break;
3661 pinned = i + 1;
40a5f0de 3662 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3663 }
3664 /* success */
3665 if (ret == 0)
3666 break;
3667
3668 /* error other than GTT full, or we've already tried again */
2939e1f5 3669 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3670 if (ret != -ERESTARTSYS) {
3671 unsigned long long total_size = 0;
3d1cc470
CW
3672 int num_fences = 0;
3673 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3674 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3675
07f73f69 3676 total_size += object_list[i]->size;
3d1cc470
CW
3677 num_fences +=
3678 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3679 obj_priv->tiling_mode != I915_TILING_NONE;
3680 }
3681 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3682 pinned+1, args->buffer_count,
3d1cc470
CW
3683 total_size, num_fences,
3684 ret);
07f73f69
CW
3685 DRM_ERROR("%d objects [%d pinned], "
3686 "%d object bytes [%d pinned], "
3687 "%d/%d gtt bytes\n",
3688 atomic_read(&dev->object_count),
3689 atomic_read(&dev->pin_count),
3690 atomic_read(&dev->object_memory),
3691 atomic_read(&dev->pin_memory),
3692 atomic_read(&dev->gtt_memory),
3693 dev->gtt_total);
3694 }
673a394b
EA
3695 goto err;
3696 }
ac94a962
KP
3697
3698 /* unpin all of our buffers */
3699 for (i = 0; i < pinned; i++)
3700 i915_gem_object_unpin(object_list[i]);
b1177636 3701 pinned = 0;
ac94a962
KP
3702
3703 /* evict everyone we can from the aperture */
3704 ret = i915_gem_evict_everything(dev);
07f73f69 3705 if (ret && ret != -ENOSPC)
ac94a962 3706 goto err;
673a394b
EA
3707 }
3708
3709 /* Set the pending read domains for the batch buffer to COMMAND */
3710 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3711 if (batch_obj->pending_write_domain) {
3712 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3713 ret = -EINVAL;
3714 goto err;
3715 }
3716 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3717
83d60795
CW
3718 /* Sanity check the batch buffer, prior to moving objects */
3719 exec_offset = exec_list[args->buffer_count - 1].offset;
3720 ret = i915_gem_check_execbuffer (args, exec_offset);
3721 if (ret != 0) {
3722 DRM_ERROR("execbuf with invalid offset/length\n");
3723 goto err;
3724 }
3725
673a394b
EA
3726 i915_verify_inactive(dev, __FILE__, __LINE__);
3727
646f0f6e
KP
3728 /* Zero the global flush/invalidate flags. These
3729 * will be modified as new domains are computed
3730 * for each object
3731 */
3732 dev->invalidate_domains = 0;
3733 dev->flush_domains = 0;
88f356b7 3734 dev_priv->flush_rings = 0;
646f0f6e 3735
673a394b
EA
3736 for (i = 0; i < args->buffer_count; i++) {
3737 struct drm_gem_object *obj = object_list[i];
673a394b 3738
646f0f6e 3739 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3740 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3741 }
3742
3743 i915_verify_inactive(dev, __FILE__, __LINE__);
3744
646f0f6e
KP
3745 if (dev->invalidate_domains | dev->flush_domains) {
3746#if WATCH_EXEC
3747 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3748 __func__,
3749 dev->invalidate_domains,
3750 dev->flush_domains);
3751#endif
3752 i915_gem_flush(dev,
3753 dev->invalidate_domains,
3754 dev->flush_domains);
88f356b7 3755 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3756 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3757 dev->flush_domains,
3758 &dev_priv->render_ring);
3759 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3760 (void)i915_add_request(dev, file_priv,
3761 dev->flush_domains,
3762 &dev_priv->bsd_ring);
646f0f6e 3763 }
673a394b 3764
efbeed96
EA
3765 for (i = 0; i < args->buffer_count; i++) {
3766 struct drm_gem_object *obj = object_list[i];
23010e43 3767 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3768 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3769
3770 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3771 if (obj->write_domain)
3772 list_move_tail(&obj_priv->gpu_write_list,
3773 &dev_priv->mm.gpu_write_list);
3774 else
3775 list_del_init(&obj_priv->gpu_write_list);
3776
1c5d22f7
CW
3777 trace_i915_gem_object_change_domain(obj,
3778 obj->read_domains,
3779 old_write_domain);
efbeed96
EA
3780 }
3781
673a394b
EA
3782 i915_verify_inactive(dev, __FILE__, __LINE__);
3783
3784#if WATCH_COHERENCY
3785 for (i = 0; i < args->buffer_count; i++) {
3786 i915_gem_object_check_coherency(object_list[i],
3787 exec_list[i].handle);
3788 }
3789#endif
3790
673a394b 3791#if WATCH_EXEC
6911a9b8 3792 i915_gem_dump_object(batch_obj,
673a394b
EA
3793 args->batch_len,
3794 __func__,
3795 ~0);
3796#endif
3797
673a394b 3798 /* Exec the batchbuffer */
852835f3
ZN
3799 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3800 cliprects, exec_offset);
673a394b
EA
3801 if (ret) {
3802 DRM_ERROR("dispatch failed %d\n", ret);
3803 goto err;
3804 }
3805
3806 /*
3807 * Ensure that the commands in the batch buffer are
3808 * finished before the interrupt fires
3809 */
852835f3 3810 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3811
3812 i915_verify_inactive(dev, __FILE__, __LINE__);
3813
3814 /*
3815 * Get a seqno representing the execution of the current buffer,
3816 * which we can wait on. We would like to mitigate these interrupts,
3817 * likely by only creating seqnos occasionally (so that we have
3818 * *some* interrupts representing completion of buffers that we can
3819 * wait on when trying to clear up gtt space).
3820 */
852835f3 3821 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3822 BUG_ON(seqno == 0);
673a394b
EA
3823 for (i = 0; i < args->buffer_count; i++) {
3824 struct drm_gem_object *obj = object_list[i];
852835f3 3825 obj_priv = to_intel_bo(obj);
673a394b 3826
852835f3 3827 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3828#if WATCH_LRU
3829 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3830#endif
3831 }
3832#if WATCH_LRU
3833 i915_dump_lru(dev, __func__);
3834#endif
3835
3836 i915_verify_inactive(dev, __FILE__, __LINE__);
3837
673a394b 3838err:
aad87dff
JL
3839 for (i = 0; i < pinned; i++)
3840 i915_gem_object_unpin(object_list[i]);
3841
b70d11da
KH
3842 for (i = 0; i < args->buffer_count; i++) {
3843 if (object_list[i]) {
23010e43 3844 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3845 obj_priv->in_execbuffer = false;
3846 }
aad87dff 3847 drm_gem_object_unreference(object_list[i]);
b70d11da 3848 }
673a394b 3849
673a394b
EA
3850 mutex_unlock(&dev->struct_mutex);
3851
93533c29 3852pre_mutex_err:
40a5f0de
EA
3853 /* Copy the updated relocations out regardless of current error
3854 * state. Failure to update the relocs would mean that the next
3855 * time userland calls execbuf, it would do so with presumed offset
3856 * state that didn't match the actual object state.
3857 */
3858 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3859 relocs);
3860 if (ret2 != 0) {
3861 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3862
3863 if (ret == 0)
3864 ret = ret2;
3865 }
3866
8e7d2b2c 3867 drm_free_large(object_list);
9a298b2a 3868 kfree(cliprects);
673a394b
EA
3869
3870 return ret;
3871}
3872
76446cac
JB
3873/*
3874 * Legacy execbuffer just creates an exec2 list from the original exec object
3875 * list array and passes it to the real function.
3876 */
3877int
3878i915_gem_execbuffer(struct drm_device *dev, void *data,
3879 struct drm_file *file_priv)
3880{
3881 struct drm_i915_gem_execbuffer *args = data;
3882 struct drm_i915_gem_execbuffer2 exec2;
3883 struct drm_i915_gem_exec_object *exec_list = NULL;
3884 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3885 int ret, i;
3886
3887#if WATCH_EXEC
3888 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3889 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3890#endif
3891
3892 if (args->buffer_count < 1) {
3893 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3894 return -EINVAL;
3895 }
3896
3897 /* Copy in the exec list from userland */
3898 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3899 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3900 if (exec_list == NULL || exec2_list == NULL) {
3901 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3902 args->buffer_count);
3903 drm_free_large(exec_list);
3904 drm_free_large(exec2_list);
3905 return -ENOMEM;
3906 }
3907 ret = copy_from_user(exec_list,
3908 (struct drm_i915_relocation_entry __user *)
3909 (uintptr_t) args->buffers_ptr,
3910 sizeof(*exec_list) * args->buffer_count);
3911 if (ret != 0) {
3912 DRM_ERROR("copy %d exec entries failed %d\n",
3913 args->buffer_count, ret);
3914 drm_free_large(exec_list);
3915 drm_free_large(exec2_list);
3916 return -EFAULT;
3917 }
3918
3919 for (i = 0; i < args->buffer_count; i++) {
3920 exec2_list[i].handle = exec_list[i].handle;
3921 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3922 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3923 exec2_list[i].alignment = exec_list[i].alignment;
3924 exec2_list[i].offset = exec_list[i].offset;
3925 if (!IS_I965G(dev))
3926 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3927 else
3928 exec2_list[i].flags = 0;
3929 }
3930
3931 exec2.buffers_ptr = args->buffers_ptr;
3932 exec2.buffer_count = args->buffer_count;
3933 exec2.batch_start_offset = args->batch_start_offset;
3934 exec2.batch_len = args->batch_len;
3935 exec2.DR1 = args->DR1;
3936 exec2.DR4 = args->DR4;
3937 exec2.num_cliprects = args->num_cliprects;
3938 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3939 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3940
3941 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3942 if (!ret) {
3943 /* Copy the new buffer offsets back to the user's exec list. */
3944 for (i = 0; i < args->buffer_count; i++)
3945 exec_list[i].offset = exec2_list[i].offset;
3946 /* ... and back out to userspace */
3947 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3948 (uintptr_t) args->buffers_ptr,
3949 exec_list,
3950 sizeof(*exec_list) * args->buffer_count);
3951 if (ret) {
3952 ret = -EFAULT;
3953 DRM_ERROR("failed to copy %d exec entries "
3954 "back to user (%d)\n",
3955 args->buffer_count, ret);
3956 }
76446cac
JB
3957 }
3958
3959 drm_free_large(exec_list);
3960 drm_free_large(exec2_list);
3961 return ret;
3962}
3963
3964int
3965i915_gem_execbuffer2(struct drm_device *dev, void *data,
3966 struct drm_file *file_priv)
3967{
3968 struct drm_i915_gem_execbuffer2 *args = data;
3969 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3970 int ret;
3971
3972#if WATCH_EXEC
3973 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3974 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3975#endif
3976
3977 if (args->buffer_count < 1) {
3978 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3979 return -EINVAL;
3980 }
3981
3982 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3983 if (exec2_list == NULL) {
3984 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3985 args->buffer_count);
3986 return -ENOMEM;
3987 }
3988 ret = copy_from_user(exec2_list,
3989 (struct drm_i915_relocation_entry __user *)
3990 (uintptr_t) args->buffers_ptr,
3991 sizeof(*exec2_list) * args->buffer_count);
3992 if (ret != 0) {
3993 DRM_ERROR("copy %d exec entries failed %d\n",
3994 args->buffer_count, ret);
3995 drm_free_large(exec2_list);
3996 return -EFAULT;
3997 }
3998
3999 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4000 if (!ret) {
4001 /* Copy the new buffer offsets back to the user's exec list. */
4002 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4003 (uintptr_t) args->buffers_ptr,
4004 exec2_list,
4005 sizeof(*exec2_list) * args->buffer_count);
4006 if (ret) {
4007 ret = -EFAULT;
4008 DRM_ERROR("failed to copy %d exec entries "
4009 "back to user (%d)\n",
4010 args->buffer_count, ret);
4011 }
4012 }
4013
4014 drm_free_large(exec2_list);
4015 return ret;
4016}
4017
673a394b
EA
4018int
4019i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4020{
4021 struct drm_device *dev = obj->dev;
23010e43 4022 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4023 int ret;
4024
778c3544
DV
4025 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4026
673a394b 4027 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4028
4029 if (obj_priv->gtt_space != NULL) {
4030 if (alignment == 0)
4031 alignment = i915_gem_get_gtt_alignment(obj);
4032 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4033 WARN(obj_priv->pin_count,
4034 "bo is already pinned with incorrect alignment:"
4035 " offset=%x, req.alignment=%x\n",
4036 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4037 ret = i915_gem_object_unbind(obj);
4038 if (ret)
4039 return ret;
4040 }
4041 }
4042
673a394b
EA
4043 if (obj_priv->gtt_space == NULL) {
4044 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4045 if (ret)
673a394b 4046 return ret;
22c344e9 4047 }
76446cac 4048
673a394b
EA
4049 obj_priv->pin_count++;
4050
4051 /* If the object is not active and not pending a flush,
4052 * remove it from the inactive list
4053 */
4054 if (obj_priv->pin_count == 1) {
4055 atomic_inc(&dev->pin_count);
4056 atomic_add(obj->size, &dev->pin_memory);
4057 if (!obj_priv->active &&
bf1a1092 4058 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4059 list_del_init(&obj_priv->list);
4060 }
4061 i915_verify_inactive(dev, __FILE__, __LINE__);
4062
4063 return 0;
4064}
4065
4066void
4067i915_gem_object_unpin(struct drm_gem_object *obj)
4068{
4069 struct drm_device *dev = obj->dev;
4070 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4071 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4072
4073 i915_verify_inactive(dev, __FILE__, __LINE__);
4074 obj_priv->pin_count--;
4075 BUG_ON(obj_priv->pin_count < 0);
4076 BUG_ON(obj_priv->gtt_space == NULL);
4077
4078 /* If the object is no longer pinned, and is
4079 * neither active nor being flushed, then stick it on
4080 * the inactive list
4081 */
4082 if (obj_priv->pin_count == 0) {
4083 if (!obj_priv->active &&
21d509e3 4084 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4085 list_move_tail(&obj_priv->list,
4086 &dev_priv->mm.inactive_list);
4087 atomic_dec(&dev->pin_count);
4088 atomic_sub(obj->size, &dev->pin_memory);
4089 }
4090 i915_verify_inactive(dev, __FILE__, __LINE__);
4091}
4092
4093int
4094i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4095 struct drm_file *file_priv)
4096{
4097 struct drm_i915_gem_pin *args = data;
4098 struct drm_gem_object *obj;
4099 struct drm_i915_gem_object *obj_priv;
4100 int ret;
4101
4102 mutex_lock(&dev->struct_mutex);
4103
4104 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4105 if (obj == NULL) {
4106 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4107 args->handle);
4108 mutex_unlock(&dev->struct_mutex);
4109 return -EBADF;
4110 }
23010e43 4111 obj_priv = to_intel_bo(obj);
673a394b 4112
bb6baf76
CW
4113 if (obj_priv->madv != I915_MADV_WILLNEED) {
4114 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4115 drm_gem_object_unreference(obj);
4116 mutex_unlock(&dev->struct_mutex);
4117 return -EINVAL;
4118 }
4119
79e53945
JB
4120 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4121 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4122 args->handle);
96dec61d 4123 drm_gem_object_unreference(obj);
673a394b 4124 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4125 return -EINVAL;
4126 }
4127
4128 obj_priv->user_pin_count++;
4129 obj_priv->pin_filp = file_priv;
4130 if (obj_priv->user_pin_count == 1) {
4131 ret = i915_gem_object_pin(obj, args->alignment);
4132 if (ret != 0) {
4133 drm_gem_object_unreference(obj);
4134 mutex_unlock(&dev->struct_mutex);
4135 return ret;
4136 }
673a394b
EA
4137 }
4138
4139 /* XXX - flush the CPU caches for pinned objects
4140 * as the X server doesn't manage domains yet
4141 */
e47c68e9 4142 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4143 args->offset = obj_priv->gtt_offset;
4144 drm_gem_object_unreference(obj);
4145 mutex_unlock(&dev->struct_mutex);
4146
4147 return 0;
4148}
4149
4150int
4151i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153{
4154 struct drm_i915_gem_pin *args = data;
4155 struct drm_gem_object *obj;
79e53945 4156 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4157
4158 mutex_lock(&dev->struct_mutex);
4159
4160 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4161 if (obj == NULL) {
4162 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4163 args->handle);
4164 mutex_unlock(&dev->struct_mutex);
4165 return -EBADF;
4166 }
4167
23010e43 4168 obj_priv = to_intel_bo(obj);
79e53945
JB
4169 if (obj_priv->pin_filp != file_priv) {
4170 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4171 args->handle);
4172 drm_gem_object_unreference(obj);
4173 mutex_unlock(&dev->struct_mutex);
4174 return -EINVAL;
4175 }
4176 obj_priv->user_pin_count--;
4177 if (obj_priv->user_pin_count == 0) {
4178 obj_priv->pin_filp = NULL;
4179 i915_gem_object_unpin(obj);
4180 }
673a394b
EA
4181
4182 drm_gem_object_unreference(obj);
4183 mutex_unlock(&dev->struct_mutex);
4184 return 0;
4185}
4186
4187int
4188i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4189 struct drm_file *file_priv)
4190{
4191 struct drm_i915_gem_busy *args = data;
4192 struct drm_gem_object *obj;
4193 struct drm_i915_gem_object *obj_priv;
4194
673a394b
EA
4195 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4196 if (obj == NULL) {
4197 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4198 args->handle);
673a394b
EA
4199 return -EBADF;
4200 }
4201
b1ce786c 4202 mutex_lock(&dev->struct_mutex);
d1b851fc 4203
0be555b6
CW
4204 /* Count all active objects as busy, even if they are currently not used
4205 * by the gpu. Users of this interface expect objects to eventually
4206 * become non-busy without any further actions, therefore emit any
4207 * necessary flushes here.
c4de0a5d 4208 */
0be555b6
CW
4209 obj_priv = to_intel_bo(obj);
4210 args->busy = obj_priv->active;
4211 if (args->busy) {
4212 /* Unconditionally flush objects, even when the gpu still uses this
4213 * object. Userspace calling this function indicates that it wants to
4214 * use this buffer rather sooner than later, so issuing the required
4215 * flush earlier is beneficial.
4216 */
4217 if (obj->write_domain) {
4218 i915_gem_flush(dev, 0, obj->write_domain);
4219 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4220 }
4221
4222 /* Update the active list for the hardware's current position.
4223 * Otherwise this only updates on a delayed timer or when irqs
4224 * are actually unmasked, and our working set ends up being
4225 * larger than required.
4226 */
4227 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4228
4229 args->busy = obj_priv->active;
4230 }
673a394b
EA
4231
4232 drm_gem_object_unreference(obj);
4233 mutex_unlock(&dev->struct_mutex);
4234 return 0;
4235}
4236
4237int
4238i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4239 struct drm_file *file_priv)
4240{
4241 return i915_gem_ring_throttle(dev, file_priv);
4242}
4243
3ef94daa
CW
4244int
4245i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file_priv)
4247{
4248 struct drm_i915_gem_madvise *args = data;
4249 struct drm_gem_object *obj;
4250 struct drm_i915_gem_object *obj_priv;
4251
4252 switch (args->madv) {
4253 case I915_MADV_DONTNEED:
4254 case I915_MADV_WILLNEED:
4255 break;
4256 default:
4257 return -EINVAL;
4258 }
4259
4260 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4261 if (obj == NULL) {
4262 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4263 args->handle);
4264 return -EBADF;
4265 }
4266
4267 mutex_lock(&dev->struct_mutex);
23010e43 4268 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4269
4270 if (obj_priv->pin_count) {
4271 drm_gem_object_unreference(obj);
4272 mutex_unlock(&dev->struct_mutex);
4273
4274 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4275 return -EINVAL;
4276 }
4277
bb6baf76
CW
4278 if (obj_priv->madv != __I915_MADV_PURGED)
4279 obj_priv->madv = args->madv;
3ef94daa 4280
2d7ef395
CW
4281 /* if the object is no longer bound, discard its backing storage */
4282 if (i915_gem_object_is_purgeable(obj_priv) &&
4283 obj_priv->gtt_space == NULL)
4284 i915_gem_object_truncate(obj);
4285
bb6baf76
CW
4286 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4287
3ef94daa
CW
4288 drm_gem_object_unreference(obj);
4289 mutex_unlock(&dev->struct_mutex);
4290
4291 return 0;
4292}
4293
ac52bc56
DV
4294struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4295 size_t size)
4296{
c397b908 4297 struct drm_i915_gem_object *obj;
ac52bc56 4298
c397b908
DV
4299 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4300 if (obj == NULL)
4301 return NULL;
673a394b 4302
c397b908
DV
4303 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4304 kfree(obj);
4305 return NULL;
4306 }
673a394b 4307
c397b908
DV
4308 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4309 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4310
c397b908 4311 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4312 obj->base.driver_private = NULL;
c397b908
DV
4313 obj->fence_reg = I915_FENCE_REG_NONE;
4314 INIT_LIST_HEAD(&obj->list);
4315 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4316 obj->madv = I915_MADV_WILLNEED;
de151cf6 4317
c397b908
DV
4318 trace_i915_gem_object_create(&obj->base);
4319
4320 return &obj->base;
4321}
4322
4323int i915_gem_init_object(struct drm_gem_object *obj)
4324{
4325 BUG();
de151cf6 4326
673a394b
EA
4327 return 0;
4328}
4329
be72615b 4330static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4331{
de151cf6 4332 struct drm_device *dev = obj->dev;
be72615b 4333 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4334 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4335 int ret;
673a394b 4336
be72615b
CW
4337 ret = i915_gem_object_unbind(obj);
4338 if (ret == -ERESTARTSYS) {
4339 list_move(&obj_priv->list,
4340 &dev_priv->mm.deferred_free_list);
4341 return;
4342 }
673a394b 4343
7e616158
CW
4344 if (obj_priv->mmap_offset)
4345 i915_gem_free_mmap_offset(obj);
de151cf6 4346
c397b908
DV
4347 drm_gem_object_release(obj);
4348
9a298b2a 4349 kfree(obj_priv->page_cpu_valid);
280b713b 4350 kfree(obj_priv->bit_17);
c397b908 4351 kfree(obj_priv);
673a394b
EA
4352}
4353
be72615b
CW
4354void i915_gem_free_object(struct drm_gem_object *obj)
4355{
4356 struct drm_device *dev = obj->dev;
4357 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4358
4359 trace_i915_gem_object_destroy(obj);
4360
4361 while (obj_priv->pin_count > 0)
4362 i915_gem_object_unpin(obj);
4363
4364 if (obj_priv->phys_obj)
4365 i915_gem_detach_phys_object(dev, obj);
4366
4367 i915_gem_free_object_tail(obj);
4368}
4369
29105ccc
CW
4370int
4371i915_gem_idle(struct drm_device *dev)
4372{
4373 drm_i915_private_t *dev_priv = dev->dev_private;
4374 int ret;
28dfe52a 4375
29105ccc 4376 mutex_lock(&dev->struct_mutex);
1c5d22f7 4377
8187a2b7 4378 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4379 (dev_priv->render_ring.gem_object == NULL) ||
4380 (HAS_BSD(dev) &&
4381 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4382 mutex_unlock(&dev->struct_mutex);
4383 return 0;
28dfe52a
EA
4384 }
4385
29105ccc 4386 ret = i915_gpu_idle(dev);
6dbe2772
KP
4387 if (ret) {
4388 mutex_unlock(&dev->struct_mutex);
673a394b 4389 return ret;
6dbe2772 4390 }
673a394b 4391
29105ccc
CW
4392 /* Under UMS, be paranoid and evict. */
4393 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4394 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4395 if (ret) {
4396 mutex_unlock(&dev->struct_mutex);
4397 return ret;
4398 }
4399 }
4400
4401 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4402 * We need to replace this with a semaphore, or something.
4403 * And not confound mm.suspended!
4404 */
4405 dev_priv->mm.suspended = 1;
4406 del_timer(&dev_priv->hangcheck_timer);
4407
4408 i915_kernel_lost_context(dev);
6dbe2772 4409 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4410
6dbe2772
KP
4411 mutex_unlock(&dev->struct_mutex);
4412
29105ccc
CW
4413 /* Cancel the retire work handler, which should be idle now. */
4414 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4415
673a394b
EA
4416 return 0;
4417}
4418
e552eb70
JB
4419/*
4420 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4421 * over cache flushing.
4422 */
8187a2b7 4423static int
e552eb70
JB
4424i915_gem_init_pipe_control(struct drm_device *dev)
4425{
4426 drm_i915_private_t *dev_priv = dev->dev_private;
4427 struct drm_gem_object *obj;
4428 struct drm_i915_gem_object *obj_priv;
4429 int ret;
4430
34dc4d44 4431 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4432 if (obj == NULL) {
4433 DRM_ERROR("Failed to allocate seqno page\n");
4434 ret = -ENOMEM;
4435 goto err;
4436 }
4437 obj_priv = to_intel_bo(obj);
4438 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4439
4440 ret = i915_gem_object_pin(obj, 4096);
4441 if (ret)
4442 goto err_unref;
4443
4444 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4445 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4446 if (dev_priv->seqno_page == NULL)
4447 goto err_unpin;
4448
4449 dev_priv->seqno_obj = obj;
4450 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4451
4452 return 0;
4453
4454err_unpin:
4455 i915_gem_object_unpin(obj);
4456err_unref:
4457 drm_gem_object_unreference(obj);
4458err:
4459 return ret;
4460}
4461
8187a2b7
ZN
4462
4463static void
e552eb70
JB
4464i915_gem_cleanup_pipe_control(struct drm_device *dev)
4465{
4466 drm_i915_private_t *dev_priv = dev->dev_private;
4467 struct drm_gem_object *obj;
4468 struct drm_i915_gem_object *obj_priv;
4469
4470 obj = dev_priv->seqno_obj;
4471 obj_priv = to_intel_bo(obj);
4472 kunmap(obj_priv->pages[0]);
4473 i915_gem_object_unpin(obj);
4474 drm_gem_object_unreference(obj);
4475 dev_priv->seqno_obj = NULL;
4476
4477 dev_priv->seqno_page = NULL;
673a394b
EA
4478}
4479
8187a2b7
ZN
4480int
4481i915_gem_init_ringbuffer(struct drm_device *dev)
4482{
4483 drm_i915_private_t *dev_priv = dev->dev_private;
4484 int ret;
68f95ba9 4485
8187a2b7 4486 dev_priv->render_ring = render_ring;
68f95ba9 4487
8187a2b7
ZN
4488 if (!I915_NEED_GFX_HWS(dev)) {
4489 dev_priv->render_ring.status_page.page_addr
4490 = dev_priv->status_page_dmah->vaddr;
4491 memset(dev_priv->render_ring.status_page.page_addr,
4492 0, PAGE_SIZE);
4493 }
68f95ba9 4494
8187a2b7
ZN
4495 if (HAS_PIPE_CONTROL(dev)) {
4496 ret = i915_gem_init_pipe_control(dev);
4497 if (ret)
4498 return ret;
4499 }
68f95ba9 4500
8187a2b7 4501 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4502 if (ret)
4503 goto cleanup_pipe_control;
4504
4505 if (HAS_BSD(dev)) {
d1b851fc
ZN
4506 dev_priv->bsd_ring = bsd_ring;
4507 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4508 if (ret)
4509 goto cleanup_render_ring;
d1b851fc 4510 }
68f95ba9 4511
6f392d54
CW
4512 dev_priv->next_seqno = 1;
4513
68f95ba9
CW
4514 return 0;
4515
4516cleanup_render_ring:
4517 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4518cleanup_pipe_control:
4519 if (HAS_PIPE_CONTROL(dev))
4520 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4521 return ret;
4522}
4523
4524void
4525i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4526{
4527 drm_i915_private_t *dev_priv = dev->dev_private;
4528
4529 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4530 if (HAS_BSD(dev))
4531 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4532 if (HAS_PIPE_CONTROL(dev))
4533 i915_gem_cleanup_pipe_control(dev);
4534}
4535
673a394b
EA
4536int
4537i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4538 struct drm_file *file_priv)
4539{
4540 drm_i915_private_t *dev_priv = dev->dev_private;
4541 int ret;
4542
79e53945
JB
4543 if (drm_core_check_feature(dev, DRIVER_MODESET))
4544 return 0;
4545
ba1234d1 4546 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4547 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4548 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4549 }
4550
673a394b 4551 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4552 dev_priv->mm.suspended = 0;
4553
4554 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4555 if (ret != 0) {
4556 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4557 return ret;
d816f6ac 4558 }
9bb2d6f9 4559
5e118f41 4560 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4561 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4562 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4563 spin_unlock(&dev_priv->mm.active_list_lock);
4564
673a394b
EA
4565 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4566 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4567 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4568 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4569 mutex_unlock(&dev->struct_mutex);
dbb19d30 4570
5f35308b
CW
4571 ret = drm_irq_install(dev);
4572 if (ret)
4573 goto cleanup_ringbuffer;
dbb19d30 4574
673a394b 4575 return 0;
5f35308b
CW
4576
4577cleanup_ringbuffer:
4578 mutex_lock(&dev->struct_mutex);
4579 i915_gem_cleanup_ringbuffer(dev);
4580 dev_priv->mm.suspended = 1;
4581 mutex_unlock(&dev->struct_mutex);
4582
4583 return ret;
673a394b
EA
4584}
4585
4586int
4587i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4588 struct drm_file *file_priv)
4589{
79e53945
JB
4590 if (drm_core_check_feature(dev, DRIVER_MODESET))
4591 return 0;
4592
dbb19d30 4593 drm_irq_uninstall(dev);
e6890f6f 4594 return i915_gem_idle(dev);
673a394b
EA
4595}
4596
4597void
4598i915_gem_lastclose(struct drm_device *dev)
4599{
4600 int ret;
673a394b 4601
e806b495
EA
4602 if (drm_core_check_feature(dev, DRIVER_MODESET))
4603 return;
4604
6dbe2772
KP
4605 ret = i915_gem_idle(dev);
4606 if (ret)
4607 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4608}
4609
4610void
4611i915_gem_load(struct drm_device *dev)
4612{
b5aa8a0f 4613 int i;
673a394b
EA
4614 drm_i915_private_t *dev_priv = dev->dev_private;
4615
5e118f41 4616 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4617 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4618 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4619 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4620 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4621 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4622 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4623 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4624 if (HAS_BSD(dev)) {
4625 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4626 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4627 }
007cc8ac
DV
4628 for (i = 0; i < 16; i++)
4629 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4630 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4631 i915_gem_retire_work_handler);
31169714
CW
4632 spin_lock(&shrink_list_lock);
4633 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4634 spin_unlock(&shrink_list_lock);
4635
94400120
DA
4636 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4637 if (IS_GEN3(dev)) {
4638 u32 tmp = I915_READ(MI_ARB_STATE);
4639 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4640 /* arb state is a masked write, so set bit + bit in mask */
4641 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4642 I915_WRITE(MI_ARB_STATE, tmp);
4643 }
4644 }
4645
de151cf6 4646 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4647 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4648 dev_priv->fence_reg_start = 3;
de151cf6 4649
0f973f27 4650 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4651 dev_priv->num_fence_regs = 16;
4652 else
4653 dev_priv->num_fence_regs = 8;
4654
b5aa8a0f
GH
4655 /* Initialize fence registers to zero */
4656 if (IS_I965G(dev)) {
4657 for (i = 0; i < 16; i++)
4658 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4659 } else {
4660 for (i = 0; i < 8; i++)
4661 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4662 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4663 for (i = 0; i < 8; i++)
4664 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4665 }
673a394b 4666 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4667 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4668}
71acb5eb
DA
4669
4670/*
4671 * Create a physically contiguous memory object for this object
4672 * e.g. for cursor + overlay regs
4673 */
4674int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4675 int id, int size, int align)
71acb5eb
DA
4676{
4677 drm_i915_private_t *dev_priv = dev->dev_private;
4678 struct drm_i915_gem_phys_object *phys_obj;
4679 int ret;
4680
4681 if (dev_priv->mm.phys_objs[id - 1] || !size)
4682 return 0;
4683
9a298b2a 4684 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4685 if (!phys_obj)
4686 return -ENOMEM;
4687
4688 phys_obj->id = id;
4689
6eeefaf3 4690 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4691 if (!phys_obj->handle) {
4692 ret = -ENOMEM;
4693 goto kfree_obj;
4694 }
4695#ifdef CONFIG_X86
4696 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4697#endif
4698
4699 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4700
4701 return 0;
4702kfree_obj:
9a298b2a 4703 kfree(phys_obj);
71acb5eb
DA
4704 return ret;
4705}
4706
4707void i915_gem_free_phys_object(struct drm_device *dev, int id)
4708{
4709 drm_i915_private_t *dev_priv = dev->dev_private;
4710 struct drm_i915_gem_phys_object *phys_obj;
4711
4712 if (!dev_priv->mm.phys_objs[id - 1])
4713 return;
4714
4715 phys_obj = dev_priv->mm.phys_objs[id - 1];
4716 if (phys_obj->cur_obj) {
4717 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4718 }
4719
4720#ifdef CONFIG_X86
4721 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4722#endif
4723 drm_pci_free(dev, phys_obj->handle);
4724 kfree(phys_obj);
4725 dev_priv->mm.phys_objs[id - 1] = NULL;
4726}
4727
4728void i915_gem_free_all_phys_object(struct drm_device *dev)
4729{
4730 int i;
4731
260883c8 4732 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4733 i915_gem_free_phys_object(dev, i);
4734}
4735
4736void i915_gem_detach_phys_object(struct drm_device *dev,
4737 struct drm_gem_object *obj)
4738{
4739 struct drm_i915_gem_object *obj_priv;
4740 int i;
4741 int ret;
4742 int page_count;
4743
23010e43 4744 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4745 if (!obj_priv->phys_obj)
4746 return;
4747
4bdadb97 4748 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4749 if (ret)
4750 goto out;
4751
4752 page_count = obj->size / PAGE_SIZE;
4753
4754 for (i = 0; i < page_count; i++) {
856fa198 4755 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4756 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4757
4758 memcpy(dst, src, PAGE_SIZE);
4759 kunmap_atomic(dst, KM_USER0);
4760 }
856fa198 4761 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4762 drm_agp_chipset_flush(dev);
d78b47b9
CW
4763
4764 i915_gem_object_put_pages(obj);
71acb5eb
DA
4765out:
4766 obj_priv->phys_obj->cur_obj = NULL;
4767 obj_priv->phys_obj = NULL;
4768}
4769
4770int
4771i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4772 struct drm_gem_object *obj,
4773 int id,
4774 int align)
71acb5eb
DA
4775{
4776 drm_i915_private_t *dev_priv = dev->dev_private;
4777 struct drm_i915_gem_object *obj_priv;
4778 int ret = 0;
4779 int page_count;
4780 int i;
4781
4782 if (id > I915_MAX_PHYS_OBJECT)
4783 return -EINVAL;
4784
23010e43 4785 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4786
4787 if (obj_priv->phys_obj) {
4788 if (obj_priv->phys_obj->id == id)
4789 return 0;
4790 i915_gem_detach_phys_object(dev, obj);
4791 }
4792
71acb5eb
DA
4793 /* create a new object */
4794 if (!dev_priv->mm.phys_objs[id - 1]) {
4795 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4796 obj->size, align);
71acb5eb 4797 if (ret) {
aeb565df 4798 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4799 goto out;
4800 }
4801 }
4802
4803 /* bind to the object */
4804 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4805 obj_priv->phys_obj->cur_obj = obj;
4806
4bdadb97 4807 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4808 if (ret) {
4809 DRM_ERROR("failed to get page list\n");
4810 goto out;
4811 }
4812
4813 page_count = obj->size / PAGE_SIZE;
4814
4815 for (i = 0; i < page_count; i++) {
856fa198 4816 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4817 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4818
4819 memcpy(dst, src, PAGE_SIZE);
4820 kunmap_atomic(src, KM_USER0);
4821 }
4822
d78b47b9
CW
4823 i915_gem_object_put_pages(obj);
4824
71acb5eb
DA
4825 return 0;
4826out:
4827 return ret;
4828}
4829
4830static int
4831i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4832 struct drm_i915_gem_pwrite *args,
4833 struct drm_file *file_priv)
4834{
23010e43 4835 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4836 void *obj_addr;
4837 int ret;
4838 char __user *user_data;
4839
4840 user_data = (char __user *) (uintptr_t) args->data_ptr;
4841 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4842
44d98a61 4843 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4844 ret = copy_from_user(obj_addr, user_data, args->size);
4845 if (ret)
4846 return -EFAULT;
4847
4848 drm_agp_chipset_flush(dev);
4849 return 0;
4850}
b962442e
EA
4851
4852void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4853{
4854 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4855
4856 /* Clean up our request list when the client is going away, so that
4857 * later retire_requests won't dereference our soon-to-be-gone
4858 * file_priv.
4859 */
4860 mutex_lock(&dev->struct_mutex);
4861 while (!list_empty(&i915_file_priv->mm.request_list))
4862 list_del_init(i915_file_priv->mm.request_list.next);
4863 mutex_unlock(&dev->struct_mutex);
4864}
31169714 4865
1637ef41
CW
4866static int
4867i915_gpu_is_active(struct drm_device *dev)
4868{
4869 drm_i915_private_t *dev_priv = dev->dev_private;
4870 int lists_empty;
4871
4872 spin_lock(&dev_priv->mm.active_list_lock);
4873 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4874 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4875 if (HAS_BSD(dev))
4876 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4877 spin_unlock(&dev_priv->mm.active_list_lock);
4878
4879 return !lists_empty;
4880}
4881
31169714 4882static int
7f8275d0 4883i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4884{
4885 drm_i915_private_t *dev_priv, *next_dev;
4886 struct drm_i915_gem_object *obj_priv, *next_obj;
4887 int cnt = 0;
4888 int would_deadlock = 1;
4889
4890 /* "fast-path" to count number of available objects */
4891 if (nr_to_scan == 0) {
4892 spin_lock(&shrink_list_lock);
4893 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4894 struct drm_device *dev = dev_priv->dev;
4895
4896 if (mutex_trylock(&dev->struct_mutex)) {
4897 list_for_each_entry(obj_priv,
4898 &dev_priv->mm.inactive_list,
4899 list)
4900 cnt++;
4901 mutex_unlock(&dev->struct_mutex);
4902 }
4903 }
4904 spin_unlock(&shrink_list_lock);
4905
4906 return (cnt / 100) * sysctl_vfs_cache_pressure;
4907 }
4908
4909 spin_lock(&shrink_list_lock);
4910
1637ef41 4911rescan:
31169714
CW
4912 /* first scan for clean buffers */
4913 list_for_each_entry_safe(dev_priv, next_dev,
4914 &shrink_list, mm.shrink_list) {
4915 struct drm_device *dev = dev_priv->dev;
4916
4917 if (! mutex_trylock(&dev->struct_mutex))
4918 continue;
4919
4920 spin_unlock(&shrink_list_lock);
b09a1fec 4921 i915_gem_retire_requests(dev);
31169714
CW
4922
4923 list_for_each_entry_safe(obj_priv, next_obj,
4924 &dev_priv->mm.inactive_list,
4925 list) {
4926 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4927 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4928 if (--nr_to_scan <= 0)
4929 break;
4930 }
4931 }
4932
4933 spin_lock(&shrink_list_lock);
4934 mutex_unlock(&dev->struct_mutex);
4935
963b4836
CW
4936 would_deadlock = 0;
4937
31169714
CW
4938 if (nr_to_scan <= 0)
4939 break;
4940 }
4941
4942 /* second pass, evict/count anything still on the inactive list */
4943 list_for_each_entry_safe(dev_priv, next_dev,
4944 &shrink_list, mm.shrink_list) {
4945 struct drm_device *dev = dev_priv->dev;
4946
4947 if (! mutex_trylock(&dev->struct_mutex))
4948 continue;
4949
4950 spin_unlock(&shrink_list_lock);
4951
4952 list_for_each_entry_safe(obj_priv, next_obj,
4953 &dev_priv->mm.inactive_list,
4954 list) {
4955 if (nr_to_scan > 0) {
a8089e84 4956 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4957 nr_to_scan--;
4958 } else
4959 cnt++;
4960 }
4961
4962 spin_lock(&shrink_list_lock);
4963 mutex_unlock(&dev->struct_mutex);
4964
4965 would_deadlock = 0;
4966 }
4967
1637ef41
CW
4968 if (nr_to_scan) {
4969 int active = 0;
4970
4971 /*
4972 * We are desperate for pages, so as a last resort, wait
4973 * for the GPU to finish and discard whatever we can.
4974 * This has a dramatic impact to reduce the number of
4975 * OOM-killer events whilst running the GPU aggressively.
4976 */
4977 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4978 struct drm_device *dev = dev_priv->dev;
4979
4980 if (!mutex_trylock(&dev->struct_mutex))
4981 continue;
4982
4983 spin_unlock(&shrink_list_lock);
4984
4985 if (i915_gpu_is_active(dev)) {
4986 i915_gpu_idle(dev);
4987 active++;
4988 }
4989
4990 spin_lock(&shrink_list_lock);
4991 mutex_unlock(&dev->struct_mutex);
4992 }
4993
4994 if (active)
4995 goto rescan;
4996 }
4997
31169714
CW
4998 spin_unlock(&shrink_list_lock);
4999
5000 if (would_deadlock)
5001 return -1;
5002 else if (cnt > 0)
5003 return (cnt / 100) * sysctl_vfs_cache_pressure;
5004 else
5005 return 0;
5006}
5007
5008static struct shrinker shrinker = {
5009 .shrink = i915_gem_shrink,
5010 .seeks = DEFAULT_SEEKS,
5011};
5012
5013__init void
5014i915_gem_shrinker_init(void)
5015{
5016 register_shrinker(&shrinker);
5017}
5018
5019__exit void
5020i915_gem_shrinker_exit(void)
5021{
5022 unregister_shrinker(&shrinker);
5023}