]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-sff.c
libata-sff: remove harmful BUG_ON from ata_bmdma_qc_issue
[net-next-2.6.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce
JG
37#include <linux/pci.h>
38#include <linux/libata.h>
624d5c51 39#include <linux/highmem.h>
1fdffbce
JG
40
41#include "libata.h"
42
c429137a
TH
43static struct workqueue_struct *ata_sff_wq;
44
624d5c51
TH
45const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
47
f47451c4 48 .qc_prep = ata_noop_qc_prep,
9363c382 49 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
51
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
0aa1113d 54 .prereset = ata_sff_prereset,
9363c382 55 .softreset = ata_sff_softreset,
57c9efdf 56 .hardreset = sata_sff_hardreset,
203c75b8 57 .postreset = ata_sff_postreset,
9363c382 58 .error_handler = ata_sff_error_handler,
9363c382 59
5682ed33
TH
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
8244cd05 66 .sff_drain_fifo = ata_sff_drain_fifo,
624d5c51 67
c96f1732 68 .lost_interrupt = ata_sff_lost_interrupt,
624d5c51 69};
0fe40ff8 70EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51 71
272f7884 72/**
9363c382 73 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
74 * @ap: port where the device is
75 *
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
9363c382 83u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
84{
85 return ioread8(ap->ioaddr.status_addr);
86}
0fe40ff8 87EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
88
89/**
9363c382 90 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
91 * @ap: port where the device is
92 *
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
95 *
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
a57c1bad 102static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 103{
5682ed33
TH
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
106
107 return ioread8(ap->ioaddr.altstatus_addr);
108}
109
a57c1bad
AC
110/**
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
113 *
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122static u8 ata_sff_irq_status(struct ata_port *ap)
123{
124 u8 status;
125
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
0fe40ff8 130 return status;
a57c1bad
AC
131 }
132 /* Clear INTRQ latch */
6311c90a 133 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
134 return status;
135}
136
137/**
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
140 *
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
144 *
145 * LOCKING:
146 * Inherited from caller.
147 */
148
149static void ata_sff_sync(struct ata_port *ap)
150{
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
155}
156
157/**
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
160 *
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
169void ata_sff_pause(struct ata_port *ap)
170{
171 ata_sff_sync(ap);
172 ndelay(400);
173}
0fe40ff8 174EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
175
176/**
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
179 *
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
182 */
0fe40ff8 183
a57c1bad
AC
184void ata_sff_dma_pause(struct ata_port *ap)
185{
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
191 }
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
196}
0fe40ff8 197EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 198
624d5c51 199/**
9363c382 200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 201 * @ap: port containing status register to be polled
341c2c95
TH
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
624d5c51
TH
204 *
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
207 *
208 * LOCKING:
209 * Kernel thread context (may sleep).
210 *
211 * RETURNS:
212 * 0 on success, -errno otherwise.
213 */
9363c382
TH
214int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
216{
217 unsigned long timer_start, timeout;
218 u8 status;
219
9363c382 220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 221 timer_start = jiffies;
341c2c95 222 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 msleep(50);
9363c382 226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
227 }
228
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
233
341c2c95 234 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 msleep(50);
5682ed33 238 status = ap->ops->sff_check_status(ap);
624d5c51
TH
239 }
240
241 if (status == 0xff)
242 return -ENODEV;
243
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
341c2c95 247 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
248 return -EBUSY;
249 }
250
251 return 0;
252}
0fe40ff8 253EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 254
aa2731ad
TH
255static int ata_sff_check_ready(struct ata_link *link)
256{
257 u8 status = link->ap->ops->sff_check_status(link->ap);
258
78ab88f0 259 return ata_check_ready(status);
aa2731ad
TH
260}
261
624d5c51 262/**
9363c382 263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 264 * @link: SFF link to wait ready status for
624d5c51
TH
265 * @deadline: deadline jiffies for the operation
266 *
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
269 *
270 * LOCKING:
271 * Kernel thread context (may sleep).
272 *
273 * RETURNS:
274 * 0 on success, -errno otherwise.
275 */
705e76be 276int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 277{
aa2731ad 278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 279}
0fe40ff8 280EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 281
41dec29b
SS
282/**
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
286 *
287 * Writes ATA taskfile device control register.
288 *
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
291 *
292 * LOCKING:
293 * Inherited from caller.
294 */
295static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296{
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
301}
302
624d5c51 303/**
9363c382 304 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
307 *
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
311 *
312 * May be used as the dev_select() entry in ata_port_operations.
313 *
314 * LOCKING:
315 * caller.
316 */
9363c382 317void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
318{
319 u8 tmp;
320
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
325
326 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 328}
0fe40ff8 329EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
330
331/**
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
337 *
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
341 *
9363c382
TH
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
624d5c51
TH
345 *
346 * LOCKING:
347 * caller.
348 */
c7a8209f 349static void ata_dev_select(struct ata_port *ap, unsigned int device,
624d5c51
TH
350 unsigned int wait, unsigned int can_sleep)
351{
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
355
356 if (wait)
357 ata_wait_idle(ap);
358
5682ed33 359 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
360
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 msleep(150);
364 ata_wait_idle(ap);
365 }
366}
367
368/**
9363c382 369 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
370 * @ap: Port on which interrupts are enabled.
371 *
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
374 *
e42a542b
SS
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
377 *
624d5c51
TH
378 * LOCKING:
379 * Inherited from caller.
380 */
e42a542b 381void ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
382{
383 struct ata_ioports *ioaddr = &ap->ioaddr;
e42a542b
SS
384
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
388 }
624d5c51
TH
389
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
392
e42a542b
SS
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
624d5c51 396
37f65b8b
TH
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
624d5c51 399}
0fe40ff8 400EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51 401
624d5c51 402/**
9363c382 403 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
406 *
407 * Outputs ATA taskfile to standard ATA host controller.
408 *
409 * LOCKING:
410 * Inherited from caller.
411 */
9363c382 412void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
413{
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
624d5c51
TH
421 }
422
423 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 424 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
425 iowrite8(tf->hob_feature, ioaddr->feature_addr);
426 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
427 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
428 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
429 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
431 tf->hob_feature,
432 tf->hob_nsect,
433 tf->hob_lbal,
434 tf->hob_lbam,
435 tf->hob_lbah);
436 }
437
438 if (is_addr) {
439 iowrite8(tf->feature, ioaddr->feature_addr);
440 iowrite8(tf->nsect, ioaddr->nsect_addr);
441 iowrite8(tf->lbal, ioaddr->lbal_addr);
442 iowrite8(tf->lbam, ioaddr->lbam_addr);
443 iowrite8(tf->lbah, ioaddr->lbah_addr);
444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
445 tf->feature,
446 tf->nsect,
447 tf->lbal,
448 tf->lbam,
449 tf->lbah);
450 }
451
452 if (tf->flags & ATA_TFLAG_DEVICE) {
453 iowrite8(tf->device, ioaddr->device_addr);
454 VPRINTK("device 0x%X\n", tf->device);
455 }
624d5c51 456}
0fe40ff8 457EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
458
459/**
9363c382 460 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
461 * @ap: Port from which input is read
462 * @tf: ATA taskfile register set for storing input
463 *
464 * Reads ATA taskfile registers for currently-selected device
465 * into @tf. Assumes the device has a fully SFF compliant task file
466 * layout and behaviour. If you device does not (eg has a different
467 * status method) then you will need to provide a replacement tf_read
468 *
469 * LOCKING:
470 * Inherited from caller.
471 */
9363c382 472void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
473{
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475
9363c382 476 tf->command = ata_sff_check_status(ap);
624d5c51
TH
477 tf->feature = ioread8(ioaddr->error_addr);
478 tf->nsect = ioread8(ioaddr->nsect_addr);
479 tf->lbal = ioread8(ioaddr->lbal_addr);
480 tf->lbam = ioread8(ioaddr->lbam_addr);
481 tf->lbah = ioread8(ioaddr->lbah_addr);
482 tf->device = ioread8(ioaddr->device_addr);
483
484 if (tf->flags & ATA_TFLAG_LBA48) {
485 if (likely(ioaddr->ctl_addr)) {
486 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
487 tf->hob_feature = ioread8(ioaddr->error_addr);
488 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
489 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
490 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
491 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
492 iowrite8(tf->ctl, ioaddr->ctl_addr);
493 ap->last_ctl = tf->ctl;
494 } else
efcb3cf7 495 WARN_ON_ONCE(1);
624d5c51
TH
496 }
497}
0fe40ff8 498EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
499
500/**
9363c382 501 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
502 * @ap: port to which command is being issued
503 * @tf: ATA taskfile register set
504 *
505 * Issues ATA command, with proper synchronization with interrupt
506 * handler / other threads.
507 *
508 * LOCKING:
509 * spin_lock_irqsave(host lock)
510 */
9363c382 511void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
512{
513 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
514
515 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 516 ata_sff_pause(ap);
624d5c51 517}
0fe40ff8 518EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
519
520/**
521 * ata_tf_to_host - issue ATA taskfile to host controller
522 * @ap: port to which command is being issued
523 * @tf: ATA taskfile register set
524 *
525 * Issues ATA taskfile register set to ATA host controller,
526 * with proper synchronization with interrupt handler and
527 * other threads.
528 *
529 * LOCKING:
530 * spin_lock_irqsave(host lock)
531 */
532static inline void ata_tf_to_host(struct ata_port *ap,
533 const struct ata_taskfile *tf)
534{
5682ed33
TH
535 ap->ops->sff_tf_load(ap, tf);
536 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
537}
538
539/**
9363c382 540 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
541 * @dev: device to target
542 * @buf: data buffer
543 * @buflen: buffer length
544 * @rw: read/write
545 *
546 * Transfer data from/to the device data register by PIO.
547 *
548 * LOCKING:
549 * Inherited from caller.
550 *
551 * RETURNS:
552 * Bytes consumed.
553 */
9363c382
TH
554unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
555 unsigned int buflen, int rw)
624d5c51
TH
556{
557 struct ata_port *ap = dev->link->ap;
558 void __iomem *data_addr = ap->ioaddr.data_addr;
559 unsigned int words = buflen >> 1;
560
561 /* Transfer multiple of 2 bytes */
562 if (rw == READ)
563 ioread16_rep(data_addr, buf, words);
564 else
565 iowrite16_rep(data_addr, buf, words);
566
2102d749 567 /* Transfer trailing byte, if any. */
624d5c51 568 if (unlikely(buflen & 0x01)) {
2102d749 569 unsigned char pad[2];
624d5c51 570
2102d749
SS
571 /* Point buf to the tail of buffer */
572 buf += buflen - 1;
573
574 /*
575 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 576 * swapping bytes to and from on the big endian machines...
2102d749 577 */
624d5c51 578 if (rw == READ) {
2102d749
SS
579 ioread16_rep(data_addr, pad, 1);
580 *buf = pad[0];
624d5c51 581 } else {
2102d749
SS
582 pad[0] = *buf;
583 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
584 }
585 words++;
586 }
587
588 return words << 1;
589}
0fe40ff8 590EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 591
871af121
AC
592/**
593 * ata_sff_data_xfer32 - Transfer data by PIO
594 * @dev: device to target
595 * @buf: data buffer
596 * @buflen: buffer length
597 * @rw: read/write
598 *
599 * Transfer data from/to the device data register by PIO using 32bit
600 * I/O operations.
601 *
602 * LOCKING:
603 * Inherited from caller.
604 *
605 * RETURNS:
606 * Bytes consumed.
607 */
608
609unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
610 unsigned int buflen, int rw)
611{
612 struct ata_port *ap = dev->link->ap;
613 void __iomem *data_addr = ap->ioaddr.data_addr;
614 unsigned int words = buflen >> 2;
615 int slop = buflen & 3;
972b94ff 616
e3cf95dd
AC
617 if (!(ap->pflags & ATA_PFLAG_PIO32))
618 return ata_sff_data_xfer(dev, buf, buflen, rw);
871af121
AC
619
620 /* Transfer multiple of 4 bytes */
621 if (rw == READ)
622 ioread32_rep(data_addr, buf, words);
623 else
624 iowrite32_rep(data_addr, buf, words);
625
d1b3525b 626 /* Transfer trailing bytes, if any */
871af121 627 if (unlikely(slop)) {
d1b3525b
SS
628 unsigned char pad[4];
629
630 /* Point buf to the tail of buffer */
631 buf += buflen - slop;
632
633 /*
634 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 635 * swapping bytes to and from on the big endian machines...
d1b3525b 636 */
871af121 637 if (rw == READ) {
d1b3525b
SS
638 if (slop < 3)
639 ioread16_rep(data_addr, pad, 1);
640 else
641 ioread32_rep(data_addr, pad, 1);
642 memcpy(buf, pad, slop);
871af121 643 } else {
d1b3525b
SS
644 memcpy(pad, buf, slop);
645 if (slop < 3)
646 iowrite16_rep(data_addr, pad, 1);
647 else
648 iowrite32_rep(data_addr, pad, 1);
871af121 649 }
871af121 650 }
d1b3525b 651 return (buflen + 1) & ~1;
871af121
AC
652}
653EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
654
624d5c51 655/**
9363c382 656 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
657 * @dev: device to target
658 * @buf: data buffer
659 * @buflen: buffer length
660 * @rw: read/write
661 *
662 * Transfer data from/to the device data register by PIO. Do the
663 * transfer with interrupts disabled.
664 *
665 * LOCKING:
666 * Inherited from caller.
667 *
668 * RETURNS:
669 * Bytes consumed.
670 */
9363c382
TH
671unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
672 unsigned int buflen, int rw)
624d5c51
TH
673{
674 unsigned long flags;
675 unsigned int consumed;
676
677 local_irq_save(flags);
9363c382 678 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
679 local_irq_restore(flags);
680
681 return consumed;
682}
0fe40ff8 683EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
684
685/**
686 * ata_pio_sector - Transfer a sector of data.
687 * @qc: Command on going
688 *
689 * Transfer qc->sect_size bytes of data from/to the ATA device.
690 *
691 * LOCKING:
692 * Inherited from caller.
693 */
694static void ata_pio_sector(struct ata_queued_cmd *qc)
695{
696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
697 struct ata_port *ap = qc->ap;
698 struct page *page;
699 unsigned int offset;
700 unsigned char *buf;
701
702 if (qc->curbytes == qc->nbytes - qc->sect_size)
703 ap->hsm_task_state = HSM_ST_LAST;
704
705 page = sg_page(qc->cursg);
706 offset = qc->cursg->offset + qc->cursg_ofs;
707
708 /* get the current page and offset */
709 page = nth_page(page, (offset >> PAGE_SHIFT));
710 offset %= PAGE_SIZE;
711
712 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
713
714 if (PageHighMem(page)) {
715 unsigned long flags;
716
717 /* FIXME: use a bounce buffer */
718 local_irq_save(flags);
719 buf = kmap_atomic(page, KM_IRQ0);
720
721 /* do the actual data transfer */
5682ed33
TH
722 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
723 do_write);
624d5c51
TH
724
725 kunmap_atomic(buf, KM_IRQ0);
726 local_irq_restore(flags);
727 } else {
728 buf = page_address(page);
5682ed33
TH
729 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
730 do_write);
624d5c51
TH
731 }
732
3842e835 733 if (!do_write && !PageSlab(page))
2d68b7fe
CM
734 flush_dcache_page(page);
735
624d5c51
TH
736 qc->curbytes += qc->sect_size;
737 qc->cursg_ofs += qc->sect_size;
738
739 if (qc->cursg_ofs == qc->cursg->length) {
740 qc->cursg = sg_next(qc->cursg);
741 qc->cursg_ofs = 0;
742 }
743}
744
745/**
746 * ata_pio_sectors - Transfer one or many sectors.
747 * @qc: Command on going
748 *
749 * Transfer one or many sectors of data from/to the
750 * ATA device for the DRQ request.
751 *
752 * LOCKING:
753 * Inherited from caller.
754 */
755static void ata_pio_sectors(struct ata_queued_cmd *qc)
756{
757 if (is_multi_taskfile(&qc->tf)) {
758 /* READ/WRITE MULTIPLE */
759 unsigned int nsect;
760
efcb3cf7 761 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
762
763 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
764 qc->dev->multi_count);
765 while (nsect--)
766 ata_pio_sector(qc);
767 } else
768 ata_pio_sector(qc);
769
a57c1bad 770 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
771}
772
773/**
774 * atapi_send_cdb - Write CDB bytes to hardware
775 * @ap: Port to which ATAPI device is attached.
776 * @qc: Taskfile currently active
777 *
778 * When device has indicated its readiness to accept
779 * a CDB, this function is called. Send the CDB.
780 *
781 * LOCKING:
782 * caller.
783 */
784static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
785{
786 /* send SCSI cdb */
787 DPRINTK("send cdb\n");
efcb3cf7 788 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 789
5682ed33 790 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
791 ata_sff_sync(ap);
792 /* FIXME: If the CDB is for DMA do we need to do the transition delay
793 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
794 switch (qc->tf.protocol) {
795 case ATAPI_PROT_PIO:
796 ap->hsm_task_state = HSM_ST;
797 break;
798 case ATAPI_PROT_NODATA:
799 ap->hsm_task_state = HSM_ST_LAST;
800 break;
9a7780c9 801#ifdef CONFIG_ATA_BMDMA
624d5c51
TH
802 case ATAPI_PROT_DMA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 /* initiate bmdma */
805 ap->ops->bmdma_start(qc);
806 break;
9a7780c9
TH
807#endif /* CONFIG_ATA_BMDMA */
808 default:
809 BUG();
624d5c51
TH
810 }
811}
812
813/**
814 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
815 * @qc: Command on going
816 * @bytes: number of bytes
817 *
818 * Transfer Transfer data from/to the ATAPI device.
819 *
820 * LOCKING:
821 * Inherited from caller.
822 *
823 */
824static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
825{
826 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
827 struct ata_port *ap = qc->ap;
828 struct ata_device *dev = qc->dev;
829 struct ata_eh_info *ehi = &dev->link->eh_info;
830 struct scatterlist *sg;
831 struct page *page;
832 unsigned char *buf;
833 unsigned int offset, count, consumed;
834
835next_sg:
836 sg = qc->cursg;
837 if (unlikely(!sg)) {
838 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
839 "buf=%u cur=%u bytes=%u",
840 qc->nbytes, qc->curbytes, bytes);
841 return -1;
842 }
843
844 page = sg_page(sg);
845 offset = sg->offset + qc->cursg_ofs;
846
847 /* get the current page and offset */
848 page = nth_page(page, (offset >> PAGE_SHIFT));
849 offset %= PAGE_SIZE;
850
851 /* don't overrun current sg */
852 count = min(sg->length - qc->cursg_ofs, bytes);
853
854 /* don't cross page boundaries */
855 count = min(count, (unsigned int)PAGE_SIZE - offset);
856
857 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
858
859 if (PageHighMem(page)) {
860 unsigned long flags;
861
862 /* FIXME: use bounce buffer */
863 local_irq_save(flags);
864 buf = kmap_atomic(page, KM_IRQ0);
865
866 /* do the actual data transfer */
0fe40ff8
AC
867 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
868 count, rw);
624d5c51
TH
869
870 kunmap_atomic(buf, KM_IRQ0);
871 local_irq_restore(flags);
872 } else {
873 buf = page_address(page);
0fe40ff8
AC
874 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
875 count, rw);
624d5c51
TH
876 }
877
878 bytes -= min(bytes, consumed);
879 qc->curbytes += count;
880 qc->cursg_ofs += count;
881
882 if (qc->cursg_ofs == sg->length) {
883 qc->cursg = sg_next(qc->cursg);
884 qc->cursg_ofs = 0;
885 }
886
a0f79f7a
CB
887 /*
888 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
889 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
890 * check correctly as it doesn't know if it is the last request being
891 * made. Somebody should implement a proper sanity check.
892 */
624d5c51
TH
893 if (bytes)
894 goto next_sg;
895 return 0;
896}
897
898/**
899 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
900 * @qc: Command on going
901 *
902 * Transfer Transfer data from/to the ATAPI device.
903 *
904 * LOCKING:
905 * Inherited from caller.
906 */
907static void atapi_pio_bytes(struct ata_queued_cmd *qc)
908{
909 struct ata_port *ap = qc->ap;
910 struct ata_device *dev = qc->dev;
911 struct ata_eh_info *ehi = &dev->link->eh_info;
912 unsigned int ireason, bc_lo, bc_hi, bytes;
913 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
914
915 /* Abuse qc->result_tf for temp storage of intermediate TF
916 * here to save some kernel stack usage.
917 * For normal completion, qc->result_tf is not relevant. For
918 * error, qc->result_tf is later overwritten by ata_qc_complete().
919 * So, the correctness of qc->result_tf is not affected.
920 */
5682ed33 921 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
922 ireason = qc->result_tf.nsect;
923 bc_lo = qc->result_tf.lbam;
924 bc_hi = qc->result_tf.lbah;
925 bytes = (bc_hi << 8) | bc_lo;
926
927 /* shall be cleared to zero, indicating xfer of data */
928 if (unlikely(ireason & (1 << 0)))
929 goto atapi_check;
930
931 /* make sure transfer direction matches expected */
932 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
933 if (unlikely(do_write != i_write))
934 goto atapi_check;
935
936 if (unlikely(!bytes))
937 goto atapi_check;
938
939 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
940
941 if (unlikely(__atapi_pio_bytes(qc, bytes)))
942 goto err_out;
a57c1bad 943 ata_sff_sync(ap); /* flush */
624d5c51
TH
944
945 return;
946
947 atapi_check:
948 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
949 ireason, bytes);
950 err_out:
951 qc->err_mask |= AC_ERR_HSM;
952 ap->hsm_task_state = HSM_ST_ERR;
953}
954
955/**
956 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
957 * @ap: the target ata_port
958 * @qc: qc on going
959 *
960 * RETURNS:
961 * 1 if ok in workqueue, 0 otherwise.
962 */
0fe40ff8
AC
963static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
964 struct ata_queued_cmd *qc)
624d5c51
TH
965{
966 if (qc->tf.flags & ATA_TFLAG_POLLING)
967 return 1;
968
969 if (ap->hsm_task_state == HSM_ST_FIRST) {
970 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 971 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
972 return 1;
973
974 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 975 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
976 return 1;
977 }
978
979 return 0;
980}
981
982/**
983 * ata_hsm_qc_complete - finish a qc running on standard HSM
984 * @qc: Command to complete
985 * @in_wq: 1 if called from workqueue, 0 otherwise
986 *
987 * Finish @qc which is running on standard HSM.
988 *
989 * LOCKING:
990 * If @in_wq is zero, spin_lock_irqsave(host lock).
991 * Otherwise, none on entry and grabs host lock.
992 */
993static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
994{
995 struct ata_port *ap = qc->ap;
996 unsigned long flags;
997
998 if (ap->ops->error_handler) {
999 if (in_wq) {
1000 spin_lock_irqsave(ap->lock, flags);
1001
1002 /* EH might have kicked in while host lock is
1003 * released.
1004 */
1005 qc = ata_qc_from_tag(ap, qc->tag);
1006 if (qc) {
1007 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
e42a542b 1008 ata_sff_irq_on(ap);
624d5c51
TH
1009 ata_qc_complete(qc);
1010 } else
1011 ata_port_freeze(ap);
1012 }
1013
1014 spin_unlock_irqrestore(ap->lock, flags);
1015 } else {
1016 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 ata_qc_complete(qc);
1018 else
1019 ata_port_freeze(ap);
1020 }
1021 } else {
1022 if (in_wq) {
1023 spin_lock_irqsave(ap->lock, flags);
e42a542b 1024 ata_sff_irq_on(ap);
624d5c51
TH
1025 ata_qc_complete(qc);
1026 spin_unlock_irqrestore(ap->lock, flags);
1027 } else
1028 ata_qc_complete(qc);
1029 }
1030}
1031
1032/**
9363c382 1033 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1034 * @ap: the target ata_port
1035 * @qc: qc on going
1036 * @status: current device status
1037 * @in_wq: 1 if called from workqueue, 0 otherwise
1038 *
1039 * RETURNS:
1040 * 1 when poll next status needed, 0 otherwise.
1041 */
9363c382
TH
1042int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1043 u8 status, int in_wq)
624d5c51 1044{
a836d3e8 1045 struct ata_eh_info *ehi = &ap->link.eh_info;
624d5c51
TH
1046 unsigned long flags = 0;
1047 int poll_next;
1048
efcb3cf7 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1050
9363c382 1051 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 */
efcb3cf7 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1056
1057fsm_start:
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060
1061 switch (ap->hsm_task_state) {
1062 case HSM_ST_FIRST:
1063 /* Send first data block or PACKET CDB */
1064
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1068 */
1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070
1071 /* check device status */
1072 if (unlikely((status & ATA_DRQ) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status & (ATA_ERR | ATA_DF)))
1075 /* device stops HSM for abort/error */
1076 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1077 else {
624d5c51 1078 /* HSM violation. Let EH handle this */
a836d3e8
TH
1079 ata_ehi_push_desc(ehi,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1081 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1082 }
624d5c51
TH
1083
1084 ap->hsm_task_state = HSM_ST_ERR;
1085 goto fsm_start;
1086 }
1087
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1093 */
1094 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1098 * the CDB.
1099 */
1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1101 ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status);
624d5c51
TH
1104 qc->err_mask |= AC_ERR_HSM;
1105 ap->hsm_task_state = HSM_ST_ERR;
1106 goto fsm_start;
1107 }
1108 }
1109
1110 /* Send the CDB (atapi) or the first data block (ata pio out).
1111 * During the state transition, interrupt handler shouldn't
1112 * be invoked before the data transfer is complete and
1113 * hsm_task_state is changed. Hence, the following locking.
1114 */
1115 if (in_wq)
1116 spin_lock_irqsave(ap->lock, flags);
1117
1118 if (qc->tf.protocol == ATA_PROT_PIO) {
1119 /* PIO data out protocol.
1120 * send first data block.
1121 */
1122
1123 /* ata_pio_sectors() might change the state
1124 * to HSM_ST_LAST. so, the state is changed here
1125 * before ata_pio_sectors().
1126 */
1127 ap->hsm_task_state = HSM_ST;
1128 ata_pio_sectors(qc);
1129 } else
1130 /* send CDB */
1131 atapi_send_cdb(ap, qc);
1132
1133 if (in_wq)
1134 spin_unlock_irqrestore(ap->lock, flags);
1135
c429137a 1136 /* if polling, ata_sff_pio_task() handles the rest.
624d5c51
TH
1137 * otherwise, interrupt handler takes over from here.
1138 */
1139 break;
1140
1141 case HSM_ST:
1142 /* complete command or read/write the data register */
1143 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1144 /* ATAPI PIO protocol */
1145 if ((status & ATA_DRQ) == 0) {
1146 /* No more data to transfer or device error.
1147 * Device error will be tagged in HSM_ST_LAST.
1148 */
1149 ap->hsm_task_state = HSM_ST_LAST;
1150 goto fsm_start;
1151 }
1152
1153 /* Device should not ask for data transfer (DRQ=1)
1154 * when it finds something wrong.
1155 * We ignore DRQ here and stop the HSM by
1156 * changing hsm_task_state to HSM_ST_ERR and
1157 * let the EH abort the command or reset the device.
1158 */
1159 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1160 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1161 "DRQ=1 with device error, "
1162 "dev_stat 0x%X", status);
624d5c51
TH
1163 qc->err_mask |= AC_ERR_HSM;
1164 ap->hsm_task_state = HSM_ST_ERR;
1165 goto fsm_start;
1166 }
1167
1168 atapi_pio_bytes(qc);
1169
1170 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1171 /* bad ireason reported by device */
1172 goto fsm_start;
1173
1174 } else {
1175 /* ATA PIO protocol */
1176 if (unlikely((status & ATA_DRQ) == 0)) {
1177 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1178 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1179 /* device stops HSM for abort/error */
1180 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1181
1182 /* If diagnostic failed and this is
1183 * IDENTIFY, it's likely a phantom
1184 * device. Mark hint.
1185 */
1186 if (qc->dev->horkage &
1187 ATA_HORKAGE_DIAGNOSTIC)
1188 qc->err_mask |=
1189 AC_ERR_NODEV_HINT;
1190 } else {
624d5c51
TH
1191 /* HSM violation. Let EH handle this.
1192 * Phantom devices also trigger this
1193 * condition. Mark hint.
1194 */
a836d3e8 1195 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1196 "DRQ=0 without device error, "
a836d3e8 1197 "dev_stat 0x%X", status);
624d5c51
TH
1198 qc->err_mask |= AC_ERR_HSM |
1199 AC_ERR_NODEV_HINT;
a836d3e8 1200 }
624d5c51
TH
1201
1202 ap->hsm_task_state = HSM_ST_ERR;
1203 goto fsm_start;
1204 }
1205
1206 /* For PIO reads, some devices may ask for
1207 * data transfer (DRQ=1) alone with ERR=1.
1208 * We respect DRQ here and transfer one
1209 * block of junk data before changing the
1210 * hsm_task_state to HSM_ST_ERR.
1211 *
1212 * For PIO writes, ERR=1 DRQ=1 doesn't make
1213 * sense since the data block has been
1214 * transferred to the device.
1215 */
1216 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1217 /* data might be corrputed */
1218 qc->err_mask |= AC_ERR_DEV;
1219
1220 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1221 ata_pio_sectors(qc);
1222 status = ata_wait_idle(ap);
1223 }
1224
a836d3e8
TH
1225 if (status & (ATA_BUSY | ATA_DRQ)) {
1226 ata_ehi_push_desc(ehi, "ST-ATA: "
1227 "BUSY|DRQ persists on ERR|DF, "
1228 "dev_stat 0x%X", status);
624d5c51 1229 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1230 }
624d5c51 1231
b919930c
TH
1232 /* There are oddball controllers with
1233 * status register stuck at 0x7f and
1234 * lbal/m/h at zero which makes it
1235 * pass all other presence detection
1236 * mechanisms we have. Set NODEV_HINT
1237 * for it. Kernel bz#7241.
1238 */
1239 if (status == 0x7f)
1240 qc->err_mask |= AC_ERR_NODEV_HINT;
1241
624d5c51
TH
1242 /* ata_pio_sectors() might change the
1243 * state to HSM_ST_LAST. so, the state
1244 * is changed after ata_pio_sectors().
1245 */
1246 ap->hsm_task_state = HSM_ST_ERR;
1247 goto fsm_start;
1248 }
1249
1250 ata_pio_sectors(qc);
1251
1252 if (ap->hsm_task_state == HSM_ST_LAST &&
1253 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1254 /* all data read */
1255 status = ata_wait_idle(ap);
1256 goto fsm_start;
1257 }
1258 }
1259
1260 poll_next = 1;
1261 break;
1262
1263 case HSM_ST_LAST:
1264 if (unlikely(!ata_ok(status))) {
1265 qc->err_mask |= __ac_err_mask(status);
1266 ap->hsm_task_state = HSM_ST_ERR;
1267 goto fsm_start;
1268 }
1269
1270 /* no more data to transfer */
1271 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1272 ap->print_id, qc->dev->devno, status);
1273
efcb3cf7 1274 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1275
1276 ap->hsm_task_state = HSM_ST_IDLE;
1277
1278 /* complete taskfile transaction */
1279 ata_hsm_qc_complete(qc, in_wq);
1280
1281 poll_next = 0;
1282 break;
1283
1284 case HSM_ST_ERR:
624d5c51
TH
1285 ap->hsm_task_state = HSM_ST_IDLE;
1286
1287 /* complete taskfile transaction */
1288 ata_hsm_qc_complete(qc, in_wq);
1289
1290 poll_next = 0;
1291 break;
1292 default:
1293 poll_next = 0;
1294 BUG();
1295 }
1296
1297 return poll_next;
1298}
0fe40ff8 1299EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51 1300
c429137a
TH
1301void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1302{
1303 /* may fail if ata_sff_flush_pio_task() in progress */
1304 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1305 msecs_to_jiffies(delay));
1306}
1307EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1308
1309void ata_sff_flush_pio_task(struct ata_port *ap)
1310{
1311 DPRINTK("ENTER\n");
1312
1313 cancel_rearming_delayed_work(&ap->sff_pio_task);
1314 ap->hsm_task_state = HSM_ST_IDLE;
1315
1316 if (ata_msg_ctl(ap))
1317 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1318}
1319
1320static void ata_sff_pio_task(struct work_struct *work)
624d5c51
TH
1321{
1322 struct ata_port *ap =
c429137a
TH
1323 container_of(work, struct ata_port, sff_pio_task.work);
1324 struct ata_queued_cmd *qc;
624d5c51
TH
1325 u8 status;
1326 int poll_next;
1327
c429137a
TH
1328 /* qc can be NULL if timeout occurred */
1329 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1330 if (!qc)
1331 return;
1332
624d5c51 1333fsm_start:
efcb3cf7 1334 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1335
1336 /*
1337 * This is purely heuristic. This is a fast path.
1338 * Sometimes when we enter, BSY will be cleared in
1339 * a chk-status or two. If not, the drive is probably seeking
1340 * or something. Snooze for a couple msecs, then
1341 * chk-status again. If still busy, queue delayed work.
1342 */
9363c382 1343 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1344 if (status & ATA_BUSY) {
1345 msleep(2);
9363c382 1346 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51 1347 if (status & ATA_BUSY) {
c429137a 1348 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
624d5c51
TH
1349 return;
1350 }
1351 }
1352
1353 /* move the HSM */
9363c382 1354 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1355
1356 /* another command or interrupt handler
1357 * may be running at this point.
1358 */
1359 if (poll_next)
1360 goto fsm_start;
1361}
1362
1363/**
360ff783 1364 * ata_sff_qc_issue - issue taskfile to a SFF controller
624d5c51
TH
1365 * @qc: command to issue to device
1366 *
360ff783
TH
1367 * This function issues a PIO or NODATA command to a SFF
1368 * controller.
624d5c51
TH
1369 *
1370 * LOCKING:
1371 * spin_lock_irqsave(host lock)
1372 *
1373 * RETURNS:
1374 * Zero on success, AC_ERR_* mask on failure
1375 */
9363c382 1376unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1377{
1378 struct ata_port *ap = qc->ap;
1379
1380 /* Use polling pio if the LLD doesn't handle
1381 * interrupt driven pio and atapi CDB interrupt.
1382 */
360ff783
TH
1383 if (ap->flags & ATA_FLAG_PIO_POLLING)
1384 qc->tf.flags |= ATA_TFLAG_POLLING;
624d5c51
TH
1385
1386 /* select the device */
1387 ata_dev_select(ap, qc->dev->devno, 1, 0);
1388
1389 /* start the command */
1390 switch (qc->tf.protocol) {
1391 case ATA_PROT_NODATA:
1392 if (qc->tf.flags & ATA_TFLAG_POLLING)
1393 ata_qc_set_polling(qc);
1394
1395 ata_tf_to_host(ap, &qc->tf);
1396 ap->hsm_task_state = HSM_ST_LAST;
1397
1398 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1399 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1400
1401 break;
1402
624d5c51
TH
1403 case ATA_PROT_PIO:
1404 if (qc->tf.flags & ATA_TFLAG_POLLING)
1405 ata_qc_set_polling(qc);
1406
1407 ata_tf_to_host(ap, &qc->tf);
1408
1409 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1410 /* PIO data out protocol */
1411 ap->hsm_task_state = HSM_ST_FIRST;
c429137a 1412 ata_sff_queue_pio_task(ap, 0);
624d5c51 1413
c429137a
TH
1414 /* always send first data block using the
1415 * ata_sff_pio_task() codepath.
624d5c51
TH
1416 */
1417 } else {
1418 /* PIO data in protocol */
1419 ap->hsm_task_state = HSM_ST;
1420
1421 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1422 ata_sff_queue_pio_task(ap, 0);
624d5c51 1423
c429137a
TH
1424 /* if polling, ata_sff_pio_task() handles the
1425 * rest. otherwise, interrupt handler takes
1426 * over from here.
624d5c51
TH
1427 */
1428 }
1429
1430 break;
1431
1432 case ATAPI_PROT_PIO:
1433 case ATAPI_PROT_NODATA:
1434 if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 ata_qc_set_polling(qc);
1436
1437 ata_tf_to_host(ap, &qc->tf);
1438
1439 ap->hsm_task_state = HSM_ST_FIRST;
1440
1441 /* send cdb by polling if no cdb interrupt */
1442 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1443 (qc->tf.flags & ATA_TFLAG_POLLING))
c429137a 1444 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1445 break;
1446
624d5c51 1447 default:
efcb3cf7 1448 WARN_ON_ONCE(1);
624d5c51
TH
1449 return AC_ERR_SYSTEM;
1450 }
1451
1452 return 0;
1453}
0fe40ff8 1454EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1455
22183bf5
TH
1456/**
1457 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1458 * @qc: qc to fill result TF for
1459 *
1460 * @qc is finished and result TF needs to be filled. Fill it
1461 * using ->sff_tf_read.
1462 *
1463 * LOCKING:
1464 * spin_lock_irqsave(host lock)
1465 *
1466 * RETURNS:
1467 * true indicating that result TF is successfully filled.
1468 */
1469bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1470{
1471 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1472 return true;
1473}
0fe40ff8 1474EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1475
c3b28894 1476static unsigned int ata_sff_idle_irq(struct ata_port *ap)
624d5c51 1477{
c3b28894
TH
1478 ap->stats.idle_irq++;
1479
1480#ifdef ATA_IRQ_TRAP
1481 if ((ap->stats.idle_irq % 1000) == 0) {
1482 ap->ops->sff_check_status(ap);
1483 if (ap->ops->sff_irq_clear)
1484 ap->ops->sff_irq_clear(ap);
1485 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1486 return 1;
1487 }
1488#endif
1489 return 0; /* irq not handled */
1490}
1491
1492static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1493 struct ata_queued_cmd *qc,
1494 bool hsmv_on_idle)
1495{
1496 u8 status;
624d5c51
TH
1497
1498 VPRINTK("ata%u: protocol %d task_state %d\n",
1499 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1500
1501 /* Check whether we are expecting interrupt in this state */
1502 switch (ap->hsm_task_state) {
1503 case HSM_ST_FIRST:
1504 /* Some pre-ATAPI-4 devices assert INTRQ
1505 * at this state when ready to receive CDB.
1506 */
1507
1508 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1509 * The flag was turned on only for atapi devices. No
1510 * need to check ata_is_atapi(qc->tf.protocol) again.
1511 */
1512 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
c3b28894 1513 return ata_sff_idle_irq(ap);
624d5c51
TH
1514 break;
1515 case HSM_ST:
c3b28894 1516 case HSM_ST_LAST:
624d5c51
TH
1517 break;
1518 default:
c3b28894 1519 return ata_sff_idle_irq(ap);
624d5c51
TH
1520 }
1521
a57c1bad
AC
1522 /* check main status, clearing INTRQ if needed */
1523 status = ata_sff_irq_status(ap);
332ac7ff 1524 if (status & ATA_BUSY) {
c3b28894 1525 if (hsmv_on_idle) {
332ac7ff
TH
1526 /* BMDMA engine is already stopped, we're screwed */
1527 qc->err_mask |= AC_ERR_HSM;
1528 ap->hsm_task_state = HSM_ST_ERR;
1529 } else
c3b28894 1530 return ata_sff_idle_irq(ap);
332ac7ff 1531 }
624d5c51 1532
9f2f7210 1533 /* clear irq events */
37f65b8b
TH
1534 if (ap->ops->sff_irq_clear)
1535 ap->ops->sff_irq_clear(ap);
624d5c51 1536
9363c382 1537 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51 1538
624d5c51 1539 return 1; /* irq handled */
624d5c51
TH
1540}
1541
1542/**
c3b28894
TH
1543 * ata_sff_port_intr - Handle SFF port interrupt
1544 * @ap: Port on which interrupt arrived (possibly...)
1545 * @qc: Taskfile currently active in engine
624d5c51 1546 *
c3b28894 1547 * Handle port interrupt for given queued command.
624d5c51
TH
1548 *
1549 * LOCKING:
c3b28894 1550 * spin_lock_irqsave(host lock)
624d5c51
TH
1551 *
1552 * RETURNS:
c3b28894 1553 * One if interrupt was handled, zero if not (shared irq).
624d5c51 1554 */
c3b28894
TH
1555unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1556{
1557 return __ata_sff_port_intr(ap, qc, false);
1558}
1559EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1560
1561static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1562 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
624d5c51
TH
1563{
1564 struct ata_host *host = dev_instance;
332ac7ff 1565 bool retried = false;
624d5c51 1566 unsigned int i;
332ac7ff 1567 unsigned int handled, idle, polling;
624d5c51
TH
1568 unsigned long flags;
1569
1570 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1571 spin_lock_irqsave(&host->lock, flags);
1572
332ac7ff
TH
1573retry:
1574 handled = idle = polling = 0;
624d5c51 1575 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1576 struct ata_port *ap = host->ports[i];
1577 struct ata_queued_cmd *qc;
624d5c51 1578
d88ec2e5 1579 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1580 if (qc) {
1581 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
c3b28894 1582 handled |= port_intr(ap, qc);
27943620
TH
1583 else
1584 polling |= 1 << i;
332ac7ff
TH
1585 } else
1586 idle |= 1 << i;
27943620
TH
1587 }
1588
1589 /*
1590 * If no port was expecting IRQ but the controller is actually
1591 * asserting IRQ line, nobody cared will ensue. Check IRQ
1592 * pending status if available and clear spurious IRQ.
1593 */
332ac7ff
TH
1594 if (!handled && !retried) {
1595 bool retry = false;
1596
27943620
TH
1597 for (i = 0; i < host->n_ports; i++) {
1598 struct ata_port *ap = host->ports[i];
1599
1600 if (polling & (1 << i))
1601 continue;
1602
1603 if (!ap->ops->sff_irq_check ||
1604 !ap->ops->sff_irq_check(ap))
1605 continue;
1606
332ac7ff
TH
1607 if (idle & (1 << i)) {
1608 ap->ops->sff_check_status(ap);
37f65b8b
TH
1609 if (ap->ops->sff_irq_clear)
1610 ap->ops->sff_irq_clear(ap);
332ac7ff
TH
1611 } else {
1612 /* clear INTRQ and check if BUSY cleared */
1613 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1614 retry |= true;
1615 /*
1616 * With command in flight, we can't do
1617 * sff_irq_clear() w/o racing with completion.
1618 */
1619 }
1620 }
1621
1622 if (retry) {
1623 retried = true;
1624 goto retry;
27943620 1625 }
624d5c51
TH
1626 }
1627
1628 spin_unlock_irqrestore(&host->lock, flags);
1629
1630 return IRQ_RETVAL(handled);
1631}
c3b28894
TH
1632
1633/**
1634 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1635 * @irq: irq line (unused)
1636 * @dev_instance: pointer to our ata_host information structure
1637 *
1638 * Default interrupt handler for PCI IDE devices. Calls
1639 * ata_sff_port_intr() for each port that is not disabled.
1640 *
1641 * LOCKING:
1642 * Obtains host lock during operation.
1643 *
1644 * RETURNS:
1645 * IRQ_NONE or IRQ_HANDLED.
1646 */
1647irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1648{
1649 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1650}
0fe40ff8 1651EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1652
c96f1732
AC
1653/**
1654 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1655 * @ap: port that appears to have timed out
1656 *
1657 * Called from the libata error handlers when the core code suspects
1658 * an interrupt has been lost. If it has complete anything we can and
1659 * then return. Interface must support altstatus for this faster
1660 * recovery to occur.
1661 *
1662 * Locking:
1663 * Caller holds host lock
1664 */
1665
1666void ata_sff_lost_interrupt(struct ata_port *ap)
1667{
1668 u8 status;
1669 struct ata_queued_cmd *qc;
1670
1671 /* Only one outstanding command per SFF channel */
1672 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
1673 /* We cannot lose an interrupt on a non-existent or polled command */
1674 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
c96f1732
AC
1675 return;
1676 /* See if the controller thinks it is still busy - if so the command
1677 isn't a lost IRQ but is still in progress */
1678 status = ata_sff_altstatus(ap);
1679 if (status & ATA_BUSY)
1680 return;
1681
1682 /* There was a command running, we are no longer busy and we have
1683 no interrupt. */
1684 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1685 status);
1686 /* Run the host interrupt logic as if the interrupt had not been
1687 lost */
c3b28894 1688 ata_sff_port_intr(ap, qc);
c96f1732
AC
1689}
1690EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1691
624d5c51 1692/**
9363c382 1693 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1694 * @ap: port to freeze
1695 *
9f2f7210 1696 * Freeze SFF controller port.
624d5c51
TH
1697 *
1698 * LOCKING:
1699 * Inherited from caller.
1700 */
9363c382 1701void ata_sff_freeze(struct ata_port *ap)
624d5c51 1702{
624d5c51
TH
1703 ap->ctl |= ATA_NIEN;
1704 ap->last_ctl = ap->ctl;
1705
41dec29b
SS
1706 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1707 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1708
1709 /* Under certain circumstances, some controllers raise IRQ on
1710 * ATA_NIEN manipulation. Also, many controllers fail to mask
1711 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1712 */
5682ed33 1713 ap->ops->sff_check_status(ap);
624d5c51 1714
37f65b8b
TH
1715 if (ap->ops->sff_irq_clear)
1716 ap->ops->sff_irq_clear(ap);
624d5c51 1717}
0fe40ff8 1718EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1719
1720/**
9363c382 1721 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1722 * @ap: port to thaw
1723 *
9363c382 1724 * Thaw SFF controller port.
624d5c51
TH
1725 *
1726 * LOCKING:
1727 * Inherited from caller.
1728 */
9363c382 1729void ata_sff_thaw(struct ata_port *ap)
272f7884 1730{
624d5c51 1731 /* clear & re-enable interrupts */
5682ed33 1732 ap->ops->sff_check_status(ap);
37f65b8b
TH
1733 if (ap->ops->sff_irq_clear)
1734 ap->ops->sff_irq_clear(ap);
e42a542b 1735 ata_sff_irq_on(ap);
272f7884 1736}
0fe40ff8 1737EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1738
0aa1113d
TH
1739/**
1740 * ata_sff_prereset - prepare SFF link for reset
1741 * @link: SFF link to be reset
1742 * @deadline: deadline jiffies for the operation
1743 *
1744 * SFF link @link is about to be reset. Initialize it. It first
1745 * calls ata_std_prereset() and wait for !BSY if the port is
1746 * being softreset.
1747 *
1748 * LOCKING:
1749 * Kernel thread context (may sleep)
1750 *
1751 * RETURNS:
1752 * 0 on success, -errno otherwise.
1753 */
1754int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1755{
0aa1113d
TH
1756 struct ata_eh_context *ehc = &link->eh_context;
1757 int rc;
1758
1759 rc = ata_std_prereset(link, deadline);
1760 if (rc)
1761 return rc;
1762
1763 /* if we're about to do hardreset, nothing more to do */
1764 if (ehc->i.action & ATA_EH_HARDRESET)
1765 return 0;
1766
1767 /* wait for !BSY if we don't know that no device is attached */
1768 if (!ata_link_offline(link)) {
705e76be 1769 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1770 if (rc && rc != -ENODEV) {
1771 ata_link_printk(link, KERN_WARNING, "device not ready "
1772 "(errno=%d), forcing hardreset\n", rc);
1773 ehc->i.action |= ATA_EH_HARDRESET;
1774 }
1775 }
1776
1777 return 0;
1778}
0fe40ff8 1779EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1780
90088bb4 1781/**
624d5c51
TH
1782 * ata_devchk - PATA device presence detection
1783 * @ap: ATA channel to examine
1784 * @device: Device to examine (starting at zero)
90088bb4 1785 *
624d5c51
TH
1786 * This technique was originally described in
1787 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1788 * later found its way into the ATA/ATAPI spec.
1789 *
1790 * Write a pattern to the ATA shadow registers,
1791 * and if a device is present, it will respond by
1792 * correctly storing and echoing back the
1793 * ATA shadow register contents.
90088bb4
TH
1794 *
1795 * LOCKING:
624d5c51 1796 * caller.
90088bb4 1797 */
624d5c51 1798static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1799{
1800 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1801 u8 nsect, lbal;
90088bb4 1802
5682ed33 1803 ap->ops->sff_dev_select(ap, device);
90088bb4 1804
624d5c51
TH
1805 iowrite8(0x55, ioaddr->nsect_addr);
1806 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1807
624d5c51
TH
1808 iowrite8(0xaa, ioaddr->nsect_addr);
1809 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1810
624d5c51
TH
1811 iowrite8(0x55, ioaddr->nsect_addr);
1812 iowrite8(0xaa, ioaddr->lbal_addr);
1813
1814 nsect = ioread8(ioaddr->nsect_addr);
1815 lbal = ioread8(ioaddr->lbal_addr);
1816
1817 if ((nsect == 0x55) && (lbal == 0xaa))
1818 return 1; /* we found a device */
1819
1820 return 0; /* nothing found */
90088bb4
TH
1821}
1822
272f7884 1823/**
9363c382 1824 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1825 * @dev: ATA device to classify (starting at zero)
1826 * @present: device seems present
1827 * @r_err: Value of error register on completion
272f7884 1828 *
624d5c51
TH
1829 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1830 * an ATA/ATAPI-defined set of values is placed in the ATA
1831 * shadow registers, indicating the results of device detection
1832 * and diagnostics.
272f7884 1833 *
624d5c51
TH
1834 * Select the ATA device, and read the values from the ATA shadow
1835 * registers. Then parse according to the Error register value,
1836 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1837 *
1838 * LOCKING:
624d5c51
TH
1839 * caller.
1840 *
1841 * RETURNS:
1842 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1843 */
9363c382 1844unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1845 u8 *r_err)
272f7884 1846{
624d5c51
TH
1847 struct ata_port *ap = dev->link->ap;
1848 struct ata_taskfile tf;
1849 unsigned int class;
1850 u8 err;
1851
5682ed33 1852 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1853
1854 memset(&tf, 0, sizeof(tf));
1855
5682ed33 1856 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1857 err = tf.feature;
1858 if (r_err)
1859 *r_err = err;
1860
1861 /* see if device passed diags: continue and warn later */
1862 if (err == 0)
1863 /* diagnostic fail : do nothing _YET_ */
1864 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1865 else if (err == 1)
1866 /* do nothing */ ;
1867 else if ((dev->devno == 0) && (err == 0x81))
1868 /* do nothing */ ;
1869 else
1870 return ATA_DEV_NONE;
272f7884 1871
624d5c51
TH
1872 /* determine if device is ATA or ATAPI */
1873 class = ata_dev_classify(&tf);
272f7884 1874
624d5c51
TH
1875 if (class == ATA_DEV_UNKNOWN) {
1876 /* If the device failed diagnostic, it's likely to
1877 * have reported incorrect device signature too.
1878 * Assume ATA device if the device seems present but
1879 * device signature is invalid with diagnostic
1880 * failure.
1881 */
1882 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1883 class = ATA_DEV_ATA;
1884 else
1885 class = ATA_DEV_NONE;
5682ed33
TH
1886 } else if ((class == ATA_DEV_ATA) &&
1887 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1888 class = ATA_DEV_NONE;
1889
1890 return class;
272f7884 1891}
0fe40ff8 1892EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 1893
705e76be
TH
1894/**
1895 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1896 * @link: SFF link which is just reset
1897 * @devmask: mask of present devices
1898 * @deadline: deadline jiffies for the operation
1899 *
1900 * Wait devices attached to SFF @link to become ready after
1901 * reset. It contains preceding 150ms wait to avoid accessing TF
1902 * status register too early.
1903 *
1904 * LOCKING:
1905 * Kernel thread context (may sleep).
1906 *
1907 * RETURNS:
1908 * 0 on success, -ENODEV if some or all of devices in @devmask
1909 * don't seem to exist. -errno on other errors.
1910 */
1911int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1912 unsigned long deadline)
1fdffbce 1913{
705e76be 1914 struct ata_port *ap = link->ap;
1fdffbce 1915 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1916 unsigned int dev0 = devmask & (1 << 0);
1917 unsigned int dev1 = devmask & (1 << 1);
1918 int rc, ret = 0;
1fdffbce 1919
341c2c95 1920 msleep(ATA_WAIT_AFTER_RESET);
705e76be
TH
1921
1922 /* always check readiness of the master device */
1923 rc = ata_sff_wait_ready(link, deadline);
1924 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1925 * and TF status is 0xff, bail out on it too.
624d5c51 1926 */
705e76be
TH
1927 if (rc)
1928 return rc;
1fdffbce 1929
624d5c51
TH
1930 /* if device 1 was found in ata_devchk, wait for register
1931 * access briefly, then wait for BSY to clear.
1932 */
1933 if (dev1) {
1934 int i;
1fdffbce 1935
5682ed33 1936 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1937
624d5c51
TH
1938 /* Wait for register access. Some ATAPI devices fail
1939 * to set nsect/lbal after reset, so don't waste too
1940 * much time on it. We're gonna wait for !BSY anyway.
1941 */
1942 for (i = 0; i < 2; i++) {
1943 u8 nsect, lbal;
1944
1945 nsect = ioread8(ioaddr->nsect_addr);
1946 lbal = ioread8(ioaddr->lbal_addr);
1947 if ((nsect == 1) && (lbal == 1))
1948 break;
1949 msleep(50); /* give drive a breather */
1950 }
1951
705e76be 1952 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1953 if (rc) {
1954 if (rc != -ENODEV)
1955 return rc;
1956 ret = rc;
1957 }
1fdffbce
JG
1958 }
1959
624d5c51 1960 /* is all this really necessary? */
5682ed33 1961 ap->ops->sff_dev_select(ap, 0);
624d5c51 1962 if (dev1)
5682ed33 1963 ap->ops->sff_dev_select(ap, 1);
624d5c51 1964 if (dev0)
5682ed33 1965 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1966
1967 return ret;
1fdffbce 1968}
0fe40ff8 1969EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 1970
624d5c51
TH
1971static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1972 unsigned long deadline)
2cc432ee 1973{
624d5c51 1974 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 1975
624d5c51
TH
1976 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1977
1978 /* software reset. causes dev0 to be selected */
1979 iowrite8(ap->ctl, ioaddr->ctl_addr);
1980 udelay(20); /* FIXME: flush */
1981 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1982 udelay(20); /* FIXME: flush */
1983 iowrite8(ap->ctl, ioaddr->ctl_addr);
e3e4385f 1984 ap->last_ctl = ap->ctl;
624d5c51 1985
705e76be
TH
1986 /* wait the port to become ready */
1987 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
1988}
1989
6d97dbd7 1990/**
9363c382 1991 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
1992 * @link: ATA link to reset
1993 * @classes: resulting classes of attached devices
1994 * @deadline: deadline jiffies for the operation
6d97dbd7 1995 *
624d5c51 1996 * Reset host port using ATA SRST.
6d97dbd7
TH
1997 *
1998 * LOCKING:
624d5c51
TH
1999 * Kernel thread context (may sleep)
2000 *
2001 * RETURNS:
2002 * 0 on success, -errno otherwise.
6d97dbd7 2003 */
9363c382 2004int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2005 unsigned long deadline)
6d97dbd7 2006{
624d5c51
TH
2007 struct ata_port *ap = link->ap;
2008 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2009 unsigned int devmask = 0;
2010 int rc;
2011 u8 err;
6d97dbd7 2012
624d5c51 2013 DPRINTK("ENTER\n");
6d97dbd7 2014
624d5c51
TH
2015 /* determine if device 0/1 are present */
2016 if (ata_devchk(ap, 0))
2017 devmask |= (1 << 0);
2018 if (slave_possible && ata_devchk(ap, 1))
2019 devmask |= (1 << 1);
2020
2021 /* select device 0 again */
5682ed33 2022 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2023
2024 /* issue bus reset */
2025 DPRINTK("about to softreset, devmask=%x\n", devmask);
2026 rc = ata_bus_softreset(ap, devmask, deadline);
2027 /* if link is occupied, -ENODEV too is an error */
2028 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2029 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2030 return rc;
2031 }
0f0a3ad3 2032
624d5c51 2033 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2034 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2035 devmask & (1 << 0), &err);
2036 if (slave_possible && err != 0x81)
9363c382 2037 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2038 devmask & (1 << 1), &err);
2039
624d5c51
TH
2040 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2041 return 0;
6d97dbd7 2042}
0fe40ff8 2043EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2044
2045/**
9363c382 2046 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2047 * @link: link to reset
2048 * @class: resulting class of attached device
2049 * @deadline: deadline jiffies for the operation
6d97dbd7 2050 *
624d5c51
TH
2051 * SATA phy-reset host port using DET bits of SControl register,
2052 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2053 *
2054 * LOCKING:
624d5c51
TH
2055 * Kernel thread context (may sleep)
2056 *
2057 * RETURNS:
2058 * 0 on success, -errno otherwise.
6d97dbd7 2059 */
9363c382 2060int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2061 unsigned long deadline)
6d97dbd7 2062{
9dadd45b
TH
2063 struct ata_eh_context *ehc = &link->eh_context;
2064 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2065 bool online;
624d5c51
TH
2066 int rc;
2067
9dadd45b
TH
2068 rc = sata_link_hardreset(link, timing, deadline, &online,
2069 ata_sff_check_ready);
9dadd45b
TH
2070 if (online)
2071 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2072
2073 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2074 return rc;
6d97dbd7 2075}
0fe40ff8 2076EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2077
203c75b8
TH
2078/**
2079 * ata_sff_postreset - SFF postreset callback
2080 * @link: the target SFF ata_link
2081 * @classes: classes of attached devices
2082 *
2083 * This function is invoked after a successful reset. It first
2084 * calls ata_std_postreset() and performs SFF specific postreset
2085 * processing.
2086 *
2087 * LOCKING:
2088 * Kernel thread context (may sleep)
2089 */
2090void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2091{
2092 struct ata_port *ap = link->ap;
2093
2094 ata_std_postreset(link, classes);
2095
2096 /* is double-select really necessary? */
2097 if (classes[0] != ATA_DEV_NONE)
2098 ap->ops->sff_dev_select(ap, 1);
2099 if (classes[1] != ATA_DEV_NONE)
2100 ap->ops->sff_dev_select(ap, 0);
2101
2102 /* bail out if no device is present */
2103 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2104 DPRINTK("EXIT, no device\n");
2105 return;
2106 }
2107
2108 /* set up device control */
41dec29b
SS
2109 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2110 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2111 ap->last_ctl = ap->ctl;
2112 }
203c75b8 2113}
0fe40ff8 2114EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2115
3d47aa8e
AC
2116/**
2117 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2118 * @qc: command
2119 *
2120 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2121 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2122 * reset will recover the device.
2123 *
2124 */
2125
2126void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2127{
2128 int count;
2129 struct ata_port *ap;
2130
2131 /* We only need to flush incoming data when a command was running */
2132 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2133 return;
2134
2135 ap = qc->ap;
2136 /* Drain up to 64K of data before we give up this recovery method */
2137 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2138 && count < 65536; count += 2)
3d47aa8e
AC
2139 ioread16(ap->ioaddr.data_addr);
2140
2141 /* Can become DEBUG later */
2142 if (count)
2143 ata_port_printk(ap, KERN_DEBUG,
2144 "drained %d bytes to clear DRQ.\n", count);
2145
2146}
2147EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2148
6d97dbd7 2149/**
fe06e5f9 2150 * ata_sff_error_handler - Stock error handler for SFF controller
6d97dbd7 2151 * @ap: port to handle error for
6d97dbd7 2152 *
9363c382 2153 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2154 * PATA and SATA controllers. Many controllers should be able to
2155 * use this EH as-is or with some added handling before and
2156 * after.
2157 *
6d97dbd7
TH
2158 * LOCKING:
2159 * Kernel thread context (may sleep)
2160 */
9363c382 2161void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2162{
a1efdaba
TH
2163 ata_reset_fn_t softreset = ap->ops->softreset;
2164 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2165 struct ata_queued_cmd *qc;
2166 unsigned long flags;
6d97dbd7 2167
9af5c9c9 2168 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2169 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2170 qc = NULL;
2171
ba6a1308 2172 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2173
fe06e5f9
TH
2174 /*
2175 * We *MUST* do FIFO draining before we issue a reset as
2176 * several devices helpfully clear their internal state and
2177 * will lock solid if we touch the data port post reset. Pass
2178 * qc in case anyone wants to do different PIO/DMA recovery or
2179 * has per command fixups
3d47aa8e 2180 */
8244cd05
TH
2181 if (ap->ops->sff_drain_fifo)
2182 ap->ops->sff_drain_fifo(qc);
6d97dbd7 2183
ba6a1308 2184 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2185
fe06e5f9 2186 /* ignore ata_sff_softreset if ctl isn't accessible */
9363c382 2187 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2188 softreset = NULL;
fe06e5f9
TH
2189
2190 /* ignore built-in hardresets if SCR access is not available */
2191 if ((hardreset == sata_std_hardreset ||
2192 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2193 hardreset = NULL;
6d97dbd7 2194
a1efdaba
TH
2195 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2196 ap->ops->postreset);
6d97dbd7 2197}
0fe40ff8 2198EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7 2199
624d5c51 2200/**
9363c382 2201 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2202 * @ioaddr: IO address structure to be initialized
2203 *
2204 * Utility function which initializes data_addr, error_addr,
2205 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2206 * device_addr, status_addr, and command_addr to standard offsets
2207 * relative to cmd_addr.
2208 *
2209 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2210 */
9363c382 2211void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2212{
2213 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2214 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2215 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2216 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2217 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2218 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2219 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2220 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2221 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2222 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2223}
0fe40ff8 2224EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2225
1fdffbce 2226#ifdef CONFIG_PCI
4112e16a 2227
272f7884
TH
2228static int ata_resources_present(struct pci_dev *pdev, int port)
2229{
2230 int i;
2231
2232 /* Check the PCI resources for this channel are enabled */
2233 port = port * 2;
0fe40ff8 2234 for (i = 0; i < 2; i++) {
272f7884
TH
2235 if (pci_resource_start(pdev, port + i) == 0 ||
2236 pci_resource_len(pdev, port + i) == 0)
2237 return 0;
2238 }
2239 return 1;
2240}
2241
d491b27b 2242/**
9363c382 2243 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2244 * @host: target ATA host
d491b27b 2245 *
1626aeb8
TH
2246 * Acquire native PCI ATA resources for @host and initialize the
2247 * first two ports of @host accordingly. Ports marked dummy are
2248 * skipped and allocation failure makes the port dummy.
d491b27b 2249 *
d583bc18
TH
2250 * Note that native PCI resources are valid even for legacy hosts
2251 * as we fix up pdev resources array early in boot, so this
2252 * function can be used for both native and legacy SFF hosts.
2253 *
d491b27b
TH
2254 * LOCKING:
2255 * Inherited from calling layer (may sleep).
2256 *
2257 * RETURNS:
1626aeb8
TH
2258 * 0 if at least one port is initialized, -ENODEV if no port is
2259 * available.
d491b27b 2260 */
9363c382 2261int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2262{
2263 struct device *gdev = host->dev;
2264 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2265 unsigned int mask = 0;
d491b27b
TH
2266 int i, rc;
2267
d491b27b
TH
2268 /* request, iomap BARs and init port addresses accordingly */
2269 for (i = 0; i < 2; i++) {
2270 struct ata_port *ap = host->ports[i];
2271 int base = i * 2;
2272 void __iomem * const *iomap;
2273
1626aeb8
TH
2274 if (ata_port_is_dummy(ap))
2275 continue;
2276
2277 /* Discard disabled ports. Some controllers show
2278 * their unused channels this way. Disabled ports are
2279 * made dummy.
2280 */
2281 if (!ata_resources_present(pdev, i)) {
2282 ap->ops = &ata_dummy_port_ops;
d491b27b 2283 continue;
1626aeb8 2284 }
d491b27b 2285
35a10a80
TH
2286 rc = pcim_iomap_regions(pdev, 0x3 << base,
2287 dev_driver_string(gdev));
d491b27b 2288 if (rc) {
1626aeb8
TH
2289 dev_printk(KERN_WARNING, gdev,
2290 "failed to request/iomap BARs for port %d "
2291 "(errno=%d)\n", i, rc);
d491b27b
TH
2292 if (rc == -EBUSY)
2293 pcim_pin_device(pdev);
1626aeb8
TH
2294 ap->ops = &ata_dummy_port_ops;
2295 continue;
d491b27b
TH
2296 }
2297 host->iomap = iomap = pcim_iomap_table(pdev);
2298
2299 ap->ioaddr.cmd_addr = iomap[base];
2300 ap->ioaddr.altstatus_addr =
2301 ap->ioaddr.ctl_addr = (void __iomem *)
2302 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2303 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2304
cbcdd875
TH
2305 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2306 (unsigned long long)pci_resource_start(pdev, base),
2307 (unsigned long long)pci_resource_start(pdev, base + 1));
2308
1626aeb8
TH
2309 mask |= 1 << i;
2310 }
2311
2312 if (!mask) {
2313 dev_printk(KERN_ERR, gdev, "no available native port\n");
2314 return -ENODEV;
d491b27b
TH
2315 }
2316
2317 return 0;
2318}
0fe40ff8 2319EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2320
21b0ad4f 2321/**
1c5afdf7 2322 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
21b0ad4f 2323 * @pdev: target PCI device
1626aeb8 2324 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2325 * @r_host: out argument for the initialized ATA host
2326 *
1c5afdf7
TH
2327 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2328 * all PCI resources and initialize it accordingly in one go.
21b0ad4f
TH
2329 *
2330 * LOCKING:
2331 * Inherited from calling layer (may sleep).
2332 *
2333 * RETURNS:
2334 * 0 on success, -errno otherwise.
2335 */
9363c382 2336int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2337 const struct ata_port_info * const *ppi,
d583bc18 2338 struct ata_host **r_host)
21b0ad4f
TH
2339{
2340 struct ata_host *host;
21b0ad4f
TH
2341 int rc;
2342
2343 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2344 return -ENOMEM;
2345
2346 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2347 if (!host) {
2348 dev_printk(KERN_ERR, &pdev->dev,
2349 "failed to allocate ATA host\n");
2350 rc = -ENOMEM;
2351 goto err_out;
2352 }
2353
9363c382 2354 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2355 if (rc)
2356 goto err_out;
2357
21b0ad4f
TH
2358 devres_remove_group(&pdev->dev, NULL);
2359 *r_host = host;
2360 return 0;
2361
0fe40ff8 2362err_out:
21b0ad4f
TH
2363 devres_release_group(&pdev->dev, NULL);
2364 return rc;
2365}
0fe40ff8 2366EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2367
4e6b79fa 2368/**
9363c382 2369 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2370 * @host: target SFF ATA host
2371 * @irq_handler: irq_handler used when requesting IRQ(s)
2372 * @sht: scsi_host_template to use when registering the host
2373 *
2374 * This is the counterpart of ata_host_activate() for SFF ATA
2375 * hosts. This separate helper is necessary because SFF hosts
2376 * use two separate interrupts in legacy mode.
2377 *
2378 * LOCKING:
2379 * Inherited from calling layer (may sleep).
2380 *
2381 * RETURNS:
2382 * 0 on success, -errno otherwise.
2383 */
9363c382 2384int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2385 irq_handler_t irq_handler,
2386 struct scsi_host_template *sht)
2387{
2388 struct device *dev = host->dev;
2389 struct pci_dev *pdev = to_pci_dev(dev);
2390 const char *drv_name = dev_driver_string(host->dev);
2391 int legacy_mode = 0, rc;
2392
2393 rc = ata_host_start(host);
2394 if (rc)
2395 return rc;
2396
2397 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2398 u8 tmp8, mask;
2399
2400 /* TODO: What if one channel is in native mode ... */
2401 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2402 mask = (1 << 2) | (1 << 0);
2403 if ((tmp8 & mask) != mask)
2404 legacy_mode = 1;
2405#if defined(CONFIG_NO_ATA_LEGACY)
2406 /* Some platforms with PCI limits cannot address compat
2407 port space. In that case we punt if their firmware has
2408 left a device in compatibility mode */
2409 if (legacy_mode) {
2410 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2411 return -EOPNOTSUPP;
2412 }
2413#endif
2414 }
2415
2416 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2417 return -ENOMEM;
2418
2419 if (!legacy_mode && pdev->irq) {
2420 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2421 IRQF_SHARED, drv_name, host);
2422 if (rc)
2423 goto out;
2424
2425 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2426 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2427 } else if (legacy_mode) {
2428 if (!ata_port_is_dummy(host->ports[0])) {
2429 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2430 irq_handler, IRQF_SHARED,
2431 drv_name, host);
2432 if (rc)
2433 goto out;
2434
2435 ata_port_desc(host->ports[0], "irq %d",
2436 ATA_PRIMARY_IRQ(pdev));
2437 }
2438
2439 if (!ata_port_is_dummy(host->ports[1])) {
2440 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2441 irq_handler, IRQF_SHARED,
2442 drv_name, host);
2443 if (rc)
2444 goto out;
2445
2446 ata_port_desc(host->ports[1], "irq %d",
2447 ATA_SECONDARY_IRQ(pdev));
2448 }
2449 }
2450
2451 rc = ata_host_register(host, sht);
0fe40ff8 2452out:
4e6b79fa
TH
2453 if (rc == 0)
2454 devres_remove_group(dev, NULL);
2455 else
2456 devres_release_group(dev, NULL);
2457
2458 return rc;
2459}
0fe40ff8 2460EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2461
1c5afdf7
TH
2462static const struct ata_port_info *ata_sff_find_valid_pi(
2463 const struct ata_port_info * const *ppi)
2464{
2465 int i;
2466
2467 /* look up the first valid port_info */
2468 for (i = 0; i < 2 && ppi[i]; i++)
2469 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2470 return ppi[i];
2471
2472 return NULL;
2473}
2474
1fdffbce 2475/**
1c5afdf7 2476 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
1fdffbce 2477 * @pdev: Controller to be initialized
1626aeb8 2478 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2479 * @sht: scsi_host_template to use when registering the host
887125e3 2480 * @host_priv: host private_data
16ea0fc9 2481 * @hflag: host flags
1fdffbce
JG
2482 *
2483 * This is a helper function which can be called from a driver's
2484 * xxx_init_one() probe function if the hardware uses traditional
1c5afdf7 2485 * IDE taskfile registers and is PIO only.
1fdffbce 2486 *
2ec7df04
AC
2487 * ASSUMPTION:
2488 * Nobody makes a single channel controller that appears solely as
2489 * the secondary legacy port on PCI.
2490 *
1fdffbce
JG
2491 * LOCKING:
2492 * Inherited from PCI layer (may sleep).
2493 *
2494 * RETURNS:
2495 * Zero on success, negative on errno-based value on error.
2496 */
9363c382 2497int ata_pci_sff_init_one(struct pci_dev *pdev,
16ea0fc9
AC
2498 const struct ata_port_info * const *ppi,
2499 struct scsi_host_template *sht, void *host_priv, int hflag)
1fdffbce 2500{
f0d36efd 2501 struct device *dev = &pdev->dev;
1c5afdf7 2502 const struct ata_port_info *pi;
0f834de3 2503 struct ata_host *host = NULL;
1c5afdf7 2504 int rc;
1fdffbce
JG
2505
2506 DPRINTK("ENTER\n");
2507
1c5afdf7 2508 pi = ata_sff_find_valid_pi(ppi);
1626aeb8
TH
2509 if (!pi) {
2510 dev_printk(KERN_ERR, &pdev->dev,
2511 "no valid port_info specified\n");
2512 return -EINVAL;
2513 }
c791c306 2514
1626aeb8
TH
2515 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2516 return -ENOMEM;
1fdffbce 2517
f0d36efd 2518 rc = pcim_enable_device(pdev);
1fdffbce 2519 if (rc)
4e6b79fa 2520 goto out;
1fdffbce 2521
4e6b79fa 2522 /* prepare and activate SFF host */
9363c382 2523 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2524 if (rc)
4e6b79fa 2525 goto out;
887125e3 2526 host->private_data = host_priv;
16ea0fc9 2527 host->flags |= hflag;
d491b27b 2528
1c5afdf7 2529 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 2530out:
4e6b79fa
TH
2531 if (rc == 0)
2532 devres_remove_group(&pdev->dev, NULL);
2533 else
2534 devres_release_group(&pdev->dev, NULL);
d491b27b 2535
1fdffbce
JG
2536 return rc;
2537}
0fe40ff8 2538EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
2539
2540#endif /* CONFIG_PCI */
9f2f7210 2541
9a7780c9
TH
2542/*
2543 * BMDMA support
2544 */
2545
2546#ifdef CONFIG_ATA_BMDMA
2547
9f2f7210
TH
2548const struct ata_port_operations ata_bmdma_port_ops = {
2549 .inherits = &ata_sff_port_ops,
2550
fe06e5f9
TH
2551 .error_handler = ata_bmdma_error_handler,
2552 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2553
f47451c4 2554 .qc_prep = ata_bmdma_qc_prep,
360ff783 2555 .qc_issue = ata_bmdma_qc_issue,
f47451c4 2556
37f65b8b 2557 .sff_irq_clear = ata_bmdma_irq_clear,
9f2f7210
TH
2558 .bmdma_setup = ata_bmdma_setup,
2559 .bmdma_start = ata_bmdma_start,
2560 .bmdma_stop = ata_bmdma_stop,
2561 .bmdma_status = ata_bmdma_status,
c7087652
TH
2562
2563 .port_start = ata_bmdma_port_start,
9f2f7210
TH
2564};
2565EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2566
2567const struct ata_port_operations ata_bmdma32_port_ops = {
2568 .inherits = &ata_bmdma_port_ops,
2569
2570 .sff_data_xfer = ata_sff_data_xfer32,
c7087652 2571 .port_start = ata_bmdma_port_start32,
9f2f7210
TH
2572};
2573EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2574
f47451c4
TH
2575/**
2576 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2577 * @qc: Metadata associated with taskfile to be transferred
2578 *
2579 * Fill PCI IDE PRD (scatter-gather) table with segments
2580 * associated with the current disk command.
2581 *
2582 * LOCKING:
2583 * spin_lock_irqsave(host lock)
2584 *
2585 */
2586static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2587{
2588 struct ata_port *ap = qc->ap;
f60d7011 2589 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2590 struct scatterlist *sg;
2591 unsigned int si, pi;
2592
2593 pi = 0;
2594 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2595 u32 addr, offset;
2596 u32 sg_len, len;
2597
2598 /* determine if physical DMA addr spans 64K boundary.
2599 * Note h/w doesn't support 64-bit, so we unconditionally
2600 * truncate dma_addr_t to u32.
2601 */
2602 addr = (u32) sg_dma_address(sg);
2603 sg_len = sg_dma_len(sg);
2604
2605 while (sg_len) {
2606 offset = addr & 0xffff;
2607 len = sg_len;
2608 if ((offset + sg_len) > 0x10000)
2609 len = 0x10000 - offset;
2610
f60d7011
TH
2611 prd[pi].addr = cpu_to_le32(addr);
2612 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
f47451c4
TH
2613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2614
2615 pi++;
2616 sg_len -= len;
2617 addr += len;
2618 }
2619 }
2620
f60d7011 2621 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2622}
2623
2624/**
2625 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2626 * @qc: Metadata associated with taskfile to be transferred
2627 *
2628 * Fill PCI IDE PRD (scatter-gather) table with segments
2629 * associated with the current disk command. Perform the fill
2630 * so that we avoid writing any length 64K records for
2631 * controllers that don't follow the spec.
2632 *
2633 * LOCKING:
2634 * spin_lock_irqsave(host lock)
2635 *
2636 */
2637static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2638{
2639 struct ata_port *ap = qc->ap;
f60d7011 2640 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2641 struct scatterlist *sg;
2642 unsigned int si, pi;
2643
2644 pi = 0;
2645 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2646 u32 addr, offset;
2647 u32 sg_len, len, blen;
2648
2649 /* determine if physical DMA addr spans 64K boundary.
2650 * Note h/w doesn't support 64-bit, so we unconditionally
2651 * truncate dma_addr_t to u32.
2652 */
2653 addr = (u32) sg_dma_address(sg);
2654 sg_len = sg_dma_len(sg);
2655
2656 while (sg_len) {
2657 offset = addr & 0xffff;
2658 len = sg_len;
2659 if ((offset + sg_len) > 0x10000)
2660 len = 0x10000 - offset;
2661
2662 blen = len & 0xffff;
f60d7011 2663 prd[pi].addr = cpu_to_le32(addr);
f47451c4
TH
2664 if (blen == 0) {
2665 /* Some PATA chipsets like the CS5530 can't
2666 cope with 0x0000 meaning 64K as the spec
2667 says */
f60d7011 2668 prd[pi].flags_len = cpu_to_le32(0x8000);
f47451c4 2669 blen = 0x8000;
f60d7011 2670 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
f47451c4 2671 }
f60d7011 2672 prd[pi].flags_len = cpu_to_le32(blen);
f47451c4
TH
2673 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2674
2675 pi++;
2676 sg_len -= len;
2677 addr += len;
2678 }
2679 }
2680
f60d7011 2681 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2682}
2683
2684/**
2685 * ata_bmdma_qc_prep - Prepare taskfile for submission
2686 * @qc: Metadata associated with taskfile to be prepared
2687 *
2688 * Prepare ATA taskfile for submission.
2689 *
2690 * LOCKING:
2691 * spin_lock_irqsave(host lock)
2692 */
2693void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2694{
2695 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2696 return;
2697
2698 ata_bmdma_fill_sg(qc);
2699}
2700EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2701
2702/**
2703 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2704 * @qc: Metadata associated with taskfile to be prepared
2705 *
2706 * Prepare ATA taskfile for submission.
2707 *
2708 * LOCKING:
2709 * spin_lock_irqsave(host lock)
2710 */
2711void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2712{
2713 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2714 return;
2715
2716 ata_bmdma_fill_sg_dumb(qc);
2717}
2718EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2719
360ff783
TH
2720/**
2721 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2722 * @qc: command to issue to device
2723 *
2724 * This function issues a PIO, NODATA or DMA command to a
2725 * SFF/BMDMA controller. PIO and NODATA are handled by
2726 * ata_sff_qc_issue().
2727 *
2728 * LOCKING:
2729 * spin_lock_irqsave(host lock)
2730 *
2731 * RETURNS:
2732 * Zero on success, AC_ERR_* mask on failure
2733 */
2734unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2735{
2736 struct ata_port *ap = qc->ap;
2737
360ff783
TH
2738 /* defer PIO handling to sff_qc_issue */
2739 if (!ata_is_dma(qc->tf.protocol))
2740 return ata_sff_qc_issue(qc);
2741
2742 /* select the device */
2743 ata_dev_select(ap, qc->dev->devno, 1, 0);
2744
2745 /* start the command */
2746 switch (qc->tf.protocol) {
2747 case ATA_PROT_DMA:
2748 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2749
2750 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2751 ap->ops->bmdma_setup(qc); /* set up bmdma */
2752 ap->ops->bmdma_start(qc); /* initiate bmdma */
2753 ap->hsm_task_state = HSM_ST_LAST;
2754 break;
2755
2756 case ATAPI_PROT_DMA:
2757 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2758
2759 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2760 ap->ops->bmdma_setup(qc); /* set up bmdma */
2761 ap->hsm_task_state = HSM_ST_FIRST;
2762
2763 /* send cdb by polling if no cdb interrupt */
2764 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2765 ata_sff_queue_pio_task(ap, 0);
2766 break;
2767
2768 default:
2769 WARN_ON(1);
2770 return AC_ERR_SYSTEM;
2771 }
2772
2773 return 0;
2774}
2775EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2776
c3b28894
TH
2777/**
2778 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2779 * @ap: Port on which interrupt arrived (possibly...)
2780 * @qc: Taskfile currently active in engine
2781 *
2782 * Handle port interrupt for given queued command.
2783 *
2784 * LOCKING:
2785 * spin_lock_irqsave(host lock)
2786 *
2787 * RETURNS:
2788 * One if interrupt was handled, zero if not (shared irq).
2789 */
2790unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2791{
2792 struct ata_eh_info *ehi = &ap->link.eh_info;
2793 u8 host_stat = 0;
2794 bool bmdma_stopped = false;
2795 unsigned int handled;
2796
2797 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2798 /* check status of DMA engine */
2799 host_stat = ap->ops->bmdma_status(ap);
2800 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2801
2802 /* if it's not our irq... */
2803 if (!(host_stat & ATA_DMA_INTR))
2804 return ata_sff_idle_irq(ap);
2805
2806 /* before we do anything else, clear DMA-Start bit */
2807 ap->ops->bmdma_stop(qc);
2808 bmdma_stopped = true;
2809
2810 if (unlikely(host_stat & ATA_DMA_ERR)) {
2811 /* error when transfering data to/from memory */
2812 qc->err_mask |= AC_ERR_HOST_BUS;
2813 ap->hsm_task_state = HSM_ST_ERR;
2814 }
2815 }
2816
2817 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2818
2819 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2820 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2821
2822 return handled;
2823}
2824EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2825
2826/**
2827 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2828 * @irq: irq line (unused)
2829 * @dev_instance: pointer to our ata_host information structure
2830 *
2831 * Default interrupt handler for PCI IDE devices. Calls
2832 * ata_bmdma_port_intr() for each port that is not disabled.
2833 *
2834 * LOCKING:
2835 * Obtains host lock during operation.
2836 *
2837 * RETURNS:
2838 * IRQ_NONE or IRQ_HANDLED.
2839 */
2840irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2841{
2842 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2843}
2844EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2845
fe06e5f9
TH
2846/**
2847 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2848 * @ap: port to handle error for
2849 *
2850 * Stock error handler for BMDMA controller. It can handle both
2851 * PATA and SATA controllers. Most BMDMA controllers should be
2852 * able to use this EH as-is or with some added handling before
2853 * and after.
2854 *
2855 * LOCKING:
2856 * Kernel thread context (may sleep)
2857 */
2858void ata_bmdma_error_handler(struct ata_port *ap)
2859{
2860 struct ata_queued_cmd *qc;
2861 unsigned long flags;
2862 bool thaw = false;
2863
2864 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2865 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2866 qc = NULL;
2867
2868 /* reset PIO HSM and stop DMA engine */
2869 spin_lock_irqsave(ap->lock, flags);
2870
2871 if (qc && ata_is_dma(qc->tf.protocol)) {
2872 u8 host_stat;
2873
2874 host_stat = ap->ops->bmdma_status(ap);
2875
2876 /* BMDMA controllers indicate host bus error by
2877 * setting DMA_ERR bit and timing out. As it wasn't
2878 * really a timeout event, adjust error mask and
2879 * cancel frozen state.
2880 */
2881 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2882 qc->err_mask = AC_ERR_HOST_BUS;
2883 thaw = true;
2884 }
2885
2886 ap->ops->bmdma_stop(qc);
2887
2888 /* if we're gonna thaw, make sure IRQ is clear */
2889 if (thaw) {
2890 ap->ops->sff_check_status(ap);
37f65b8b
TH
2891 if (ap->ops->sff_irq_clear)
2892 ap->ops->sff_irq_clear(ap);
fe06e5f9
TH
2893 }
2894 }
2895
2896 spin_unlock_irqrestore(ap->lock, flags);
2897
2898 if (thaw)
2899 ata_eh_thaw_port(ap);
2900
2901 ata_sff_error_handler(ap);
2902}
2903EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2904
2905/**
2906 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2907 * @qc: internal command to clean up
2908 *
2909 * LOCKING:
2910 * Kernel thread context (may sleep)
2911 */
2912void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2913{
2914 struct ata_port *ap = qc->ap;
2915 unsigned long flags;
2916
2917 if (ata_is_dma(qc->tf.protocol)) {
2918 spin_lock_irqsave(ap->lock, flags);
2919 ap->ops->bmdma_stop(qc);
2920 spin_unlock_irqrestore(ap->lock, flags);
2921 }
2922}
2923EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2924
37f65b8b
TH
2925/**
2926 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2927 * @ap: Port associated with this ATA transaction.
2928 *
2929 * Clear interrupt and error flags in DMA status register.
2930 *
2931 * May be used as the irq_clear() entry in ata_port_operations.
2932 *
2933 * LOCKING:
2934 * spin_lock_irqsave(host lock)
2935 */
2936void ata_bmdma_irq_clear(struct ata_port *ap)
2937{
2938 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2939
2940 if (!mmio)
2941 return;
2942
2943 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2944}
2945EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2946
9f2f7210
TH
2947/**
2948 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2949 * @qc: Info associated with this ATA transaction.
2950 *
2951 * LOCKING:
2952 * spin_lock_irqsave(host lock)
2953 */
2954void ata_bmdma_setup(struct ata_queued_cmd *qc)
2955{
2956 struct ata_port *ap = qc->ap;
2957 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2958 u8 dmactl;
2959
2960 /* load PRD table addr. */
2961 mb(); /* make sure PRD table writes are visible to controller */
f60d7011 2962 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
9f2f7210
TH
2963
2964 /* specify data direction, triple-check start bit is clear */
2965 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2966 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2967 if (!rw)
2968 dmactl |= ATA_DMA_WR;
2969 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2970
2971 /* issue r/w command */
2972 ap->ops->sff_exec_command(ap, &qc->tf);
2973}
2974EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2975
2976/**
2977 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2978 * @qc: Info associated with this ATA transaction.
2979 *
2980 * LOCKING:
2981 * spin_lock_irqsave(host lock)
2982 */
2983void ata_bmdma_start(struct ata_queued_cmd *qc)
2984{
2985 struct ata_port *ap = qc->ap;
2986 u8 dmactl;
2987
2988 /* start host DMA transaction */
2989 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2990 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2991
2992 /* Strictly, one may wish to issue an ioread8() here, to
2993 * flush the mmio write. However, control also passes
2994 * to the hardware at this point, and it will interrupt
2995 * us when we are to resume control. So, in effect,
2996 * we don't care when the mmio write flushes.
2997 * Further, a read of the DMA status register _immediately_
2998 * following the write may not be what certain flaky hardware
2999 * is expected, so I think it is best to not add a readb()
3000 * without first all the MMIO ATA cards/mobos.
3001 * Or maybe I'm just being paranoid.
3002 *
3003 * FIXME: The posting of this write means I/O starts are
3004 * unneccessarily delayed for MMIO
3005 */
3006}
3007EXPORT_SYMBOL_GPL(ata_bmdma_start);
3008
3009/**
3010 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3011 * @qc: Command we are ending DMA for
3012 *
3013 * Clears the ATA_DMA_START flag in the dma control register
3014 *
3015 * May be used as the bmdma_stop() entry in ata_port_operations.
3016 *
3017 * LOCKING:
3018 * spin_lock_irqsave(host lock)
3019 */
3020void ata_bmdma_stop(struct ata_queued_cmd *qc)
3021{
3022 struct ata_port *ap = qc->ap;
3023 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3024
3025 /* clear start/stop bit */
3026 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3027 mmio + ATA_DMA_CMD);
3028
3029 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3030 ata_sff_dma_pause(ap);
3031}
3032EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3033
3034/**
3035 * ata_bmdma_status - Read PCI IDE BMDMA status
3036 * @ap: Port associated with this ATA transaction.
3037 *
3038 * Read and return BMDMA status register.
3039 *
3040 * May be used as the bmdma_status() entry in ata_port_operations.
3041 *
3042 * LOCKING:
3043 * spin_lock_irqsave(host lock)
3044 */
3045u8 ata_bmdma_status(struct ata_port *ap)
3046{
3047 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3048}
3049EXPORT_SYMBOL_GPL(ata_bmdma_status);
3050
c7087652
TH
3051
3052/**
3053 * ata_bmdma_port_start - Set port up for bmdma.
3054 * @ap: Port to initialize
3055 *
3056 * Called just after data structures for each port are
3057 * initialized. Allocates space for PRD table.
3058 *
3059 * May be used as the port_start() entry in ata_port_operations.
3060 *
3061 * LOCKING:
3062 * Inherited from caller.
3063 */
3064int ata_bmdma_port_start(struct ata_port *ap)
3065{
3066 if (ap->mwdma_mask || ap->udma_mask) {
f60d7011
TH
3067 ap->bmdma_prd =
3068 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3069 &ap->bmdma_prd_dma, GFP_KERNEL);
3070 if (!ap->bmdma_prd)
c7087652
TH
3071 return -ENOMEM;
3072 }
3073
3074 return 0;
3075}
3076EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3077
3078/**
3079 * ata_bmdma_port_start32 - Set port up for dma.
3080 * @ap: Port to initialize
3081 *
3082 * Called just after data structures for each port are
3083 * initialized. Enables 32bit PIO and allocates space for PRD
3084 * table.
3085 *
3086 * May be used as the port_start() entry in ata_port_operations for
3087 * devices that are capable of 32bit PIO.
3088 *
3089 * LOCKING:
3090 * Inherited from caller.
3091 */
3092int ata_bmdma_port_start32(struct ata_port *ap)
3093{
3094 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3095 return ata_bmdma_port_start(ap);
3096}
3097EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3098
9f2f7210
TH
3099#ifdef CONFIG_PCI
3100
3101/**
3102 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3103 * @pdev: PCI device
3104 *
3105 * Some PCI ATA devices report simplex mode but in fact can be told to
3106 * enter non simplex mode. This implements the necessary logic to
3107 * perform the task on such devices. Calling it on other devices will
3108 * have -undefined- behaviour.
3109 */
3110int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3111{
3112 unsigned long bmdma = pci_resource_start(pdev, 4);
3113 u8 simplex;
3114
3115 if (bmdma == 0)
3116 return -ENOENT;
3117
3118 simplex = inb(bmdma + 0x02);
3119 outb(simplex & 0x60, bmdma + 0x02);
3120 simplex = inb(bmdma + 0x02);
3121 if (simplex & 0x80)
3122 return -EOPNOTSUPP;
3123 return 0;
3124}
3125EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3126
c7087652
TH
3127static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3128{
3129 int i;
3130
3131 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3132 reason);
3133
3134 for (i = 0; i < 2; i++) {
3135 host->ports[i]->mwdma_mask = 0;
3136 host->ports[i]->udma_mask = 0;
3137 }
3138}
3139
9f2f7210
TH
3140/**
3141 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3142 * @host: target ATA host
3143 *
3144 * Acquire PCI BMDMA resources and initialize @host accordingly.
3145 *
3146 * LOCKING:
3147 * Inherited from calling layer (may sleep).
9f2f7210 3148 */
c7087652 3149void ata_pci_bmdma_init(struct ata_host *host)
9f2f7210
TH
3150{
3151 struct device *gdev = host->dev;
3152 struct pci_dev *pdev = to_pci_dev(gdev);
3153 int i, rc;
3154
3155 /* No BAR4 allocation: No DMA */
c7087652
TH
3156 if (pci_resource_start(pdev, 4) == 0) {
3157 ata_bmdma_nodma(host, "BAR4 is zero");
3158 return;
3159 }
9f2f7210 3160
c7087652
TH
3161 /*
3162 * Some controllers require BMDMA region to be initialized
3163 * even if DMA is not in use to clear IRQ status via
3164 * ->sff_irq_clear method. Try to initialize bmdma_addr
3165 * regardless of dma masks.
3166 */
9f2f7210
TH
3167 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3168 if (rc)
c7087652
TH
3169 ata_bmdma_nodma(host, "failed to set dma mask");
3170 if (!rc) {
3171 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3172 if (rc)
3173 ata_bmdma_nodma(host,
3174 "failed to set consistent dma mask");
3175 }
9f2f7210
TH
3176
3177 /* request and iomap DMA region */
3178 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3179 if (rc) {
c7087652
TH
3180 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3181 return;
9f2f7210
TH
3182 }
3183 host->iomap = pcim_iomap_table(pdev);
3184
3185 for (i = 0; i < 2; i++) {
3186 struct ata_port *ap = host->ports[i];
3187 void __iomem *bmdma = host->iomap[4] + 8 * i;
3188
3189 if (ata_port_is_dummy(ap))
3190 continue;
3191
3192 ap->ioaddr.bmdma_addr = bmdma;
3193 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3194 (ioread8(bmdma + 2) & 0x80))
3195 host->flags |= ATA_HOST_SIMPLEX;
3196
3197 ata_port_desc(ap, "bmdma 0x%llx",
3198 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3199 }
9f2f7210
TH
3200}
3201EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3202
1c5afdf7
TH
3203/**
3204 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3205 * @pdev: target PCI device
3206 * @ppi: array of port_info, must be enough for two ports
3207 * @r_host: out argument for the initialized ATA host
3208 *
3209 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3210 * resources and initialize it accordingly in one go.
3211 *
3212 * LOCKING:
3213 * Inherited from calling layer (may sleep).
3214 *
3215 * RETURNS:
3216 * 0 on success, -errno otherwise.
3217 */
3218int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3219 const struct ata_port_info * const * ppi,
3220 struct ata_host **r_host)
3221{
3222 int rc;
3223
3224 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3225 if (rc)
3226 return rc;
3227
3228 ata_pci_bmdma_init(*r_host);
3229 return 0;
3230}
3231EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3232
3233/**
3234 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3235 * @pdev: Controller to be initialized
3236 * @ppi: array of port_info, must be enough for two ports
3237 * @sht: scsi_host_template to use when registering the host
3238 * @host_priv: host private_data
3239 * @hflags: host flags
3240 *
3241 * This function is similar to ata_pci_sff_init_one() but also
3242 * takes care of BMDMA initialization.
3243 *
3244 * LOCKING:
3245 * Inherited from PCI layer (may sleep).
3246 *
3247 * RETURNS:
3248 * Zero on success, negative on errno-based value on error.
3249 */
3250int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3251 const struct ata_port_info * const * ppi,
3252 struct scsi_host_template *sht, void *host_priv,
3253 int hflags)
3254{
3255 struct device *dev = &pdev->dev;
3256 const struct ata_port_info *pi;
3257 struct ata_host *host = NULL;
3258 int rc;
3259
3260 DPRINTK("ENTER\n");
3261
3262 pi = ata_sff_find_valid_pi(ppi);
3263 if (!pi) {
3264 dev_printk(KERN_ERR, &pdev->dev,
3265 "no valid port_info specified\n");
3266 return -EINVAL;
3267 }
3268
3269 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3270 return -ENOMEM;
3271
3272 rc = pcim_enable_device(pdev);
3273 if (rc)
3274 goto out;
3275
3276 /* prepare and activate BMDMA host */
3277 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3278 if (rc)
3279 goto out;
3280 host->private_data = host_priv;
3281 host->flags |= hflags;
3282
3283 pci_set_master(pdev);
3284 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3285 out:
3286 if (rc == 0)
3287 devres_remove_group(&pdev->dev, NULL);
3288 else
3289 devres_release_group(&pdev->dev, NULL);
3290
3291 return rc;
3292}
3293EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3294
9f2f7210 3295#endif /* CONFIG_PCI */
9a7780c9 3296#endif /* CONFIG_ATA_BMDMA */
270390e1
TH
3297
3298/**
3299 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3300 * @ap: Port to initialize
3301 *
3302 * Called on port allocation to initialize SFF/BMDMA specific
3303 * fields.
3304 *
3305 * LOCKING:
3306 * None.
3307 */
3308void ata_sff_port_init(struct ata_port *ap)
3309{
c429137a 3310 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
5fe7454a
TH
3311 ap->ctl = ATA_DEVCTL_OBS;
3312 ap->last_ctl = 0xFF;
270390e1
TH
3313}
3314
3315int __init ata_sff_init(void)
3316{
ad72cf98 3317 ata_sff_wq = alloc_workqueue("ata_sff", WQ_RESCUER, WQ_MAX_ACTIVE);
c429137a
TH
3318 if (!ata_sff_wq)
3319 return -ENOMEM;
3320
270390e1
TH
3321 return 0;
3322}
3323
3324void __exit ata_sff_exit(void)
3325{
c429137a 3326 destroy_workqueue(ata_sff_wq);
270390e1 3327}