]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/kprobes.c
kprobes: Remove __dummy_buf
[net-next-2.6.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
da07ab03
MH
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
d6be29b8
MH
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kprobes.h>
44#include <linux/ptrace.h>
1da177e4
LT
45#include <linux/string.h>
46#include <linux/slab.h>
b506a9d0 47#include <linux/hardirq.h>
1da177e4 48#include <linux/preempt.h>
c28f8966 49#include <linux/module.h>
1eeb66a1 50#include <linux/kdebug.h>
b46b3d70 51#include <linux/kallsyms.h>
c0f7ac3a 52#include <linux/ftrace.h>
9ec4b1f3 53
8533bbe9
MH
54#include <asm/cacheflush.h>
55#include <asm/desc.h>
1da177e4 56#include <asm/pgtable.h>
c28f8966 57#include <asm/uaccess.h>
19d36ccd 58#include <asm/alternative.h>
b46b3d70 59#include <asm/insn.h>
62edab90 60#include <asm/debugreg.h>
1da177e4 61
1da177e4
LT
62void jprobe_return_end(void);
63
e7a510f9
AM
64DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 66
98272ed0 67#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
68
69#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
74 << (row % 32))
75 /*
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
78 */
79static const u32 twobyte_is_boostable[256 / 32] = {
80 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
81 /* ---------------------------------------------- */
82 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
83 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
84 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
85 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
86 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
87 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
88 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
89 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
90 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
91 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
92 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
93 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
94 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
95 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
96 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
97 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
98 /* ----------------------------------------------- */
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
100};
8533bbe9
MH
101#undef W
102
f438d914
MH
103struct kretprobe_blackpoint kretprobe_blacklist[] = {
104 {"__switch_to", }, /* This function switches only current task, but
105 doesn't switch kernel stack.*/
106 {NULL, NULL} /* Terminator */
107};
108const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
109
c0f7ac3a 110static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 111{
c0f7ac3a
MH
112 struct __arch_relative_insn {
113 u8 op;
aa470140 114 s32 raddr;
c0f7ac3a
MH
115 } __attribute__((packed)) *insn;
116
117 insn = (struct __arch_relative_insn *)from;
118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 insn->op = op;
120}
121
122/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123static void __kprobes synthesize_reljump(void *from, void *to)
124{
125 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140
MH
126}
127
9930927f 128/*
567a9fd8 129 * Skip the prefixes of the instruction.
9930927f 130 */
567a9fd8 131static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
9930927f 132{
567a9fd8
MH
133 insn_attr_t attr;
134
135 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
136 while (inat_is_legacy_prefix(attr)) {
137 insn++;
138 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
139 }
9930927f 140#ifdef CONFIG_X86_64
567a9fd8
MH
141 if (inat_is_rex_prefix(attr))
142 insn++;
9930927f 143#endif
567a9fd8 144 return insn;
9930927f
HH
145}
146
aa470140 147/*
d6be29b8
MH
148 * Returns non-zero if opcode is boostable.
149 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 150 */
e7b5e11e 151static int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 152{
aa470140
MH
153 kprobe_opcode_t opcode;
154 kprobe_opcode_t *orig_opcodes = opcodes;
155
cde5edbd 156 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
157 return 0; /* Page fault may occur on this address. */
158
aa470140
MH
159retry:
160 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
161 return 0;
162 opcode = *(opcodes++);
163
164 /* 2nd-byte opcode */
165 if (opcode == 0x0f) {
166 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
167 return 0;
8533bbe9
MH
168 return test_bit(*opcodes,
169 (unsigned long *)twobyte_is_boostable);
aa470140
MH
170 }
171
172 switch (opcode & 0xf0) {
d6be29b8 173#ifdef CONFIG_X86_64
aa470140
MH
174 case 0x40:
175 goto retry; /* REX prefix is boostable */
d6be29b8 176#endif
aa470140
MH
177 case 0x60:
178 if (0x63 < opcode && opcode < 0x67)
179 goto retry; /* prefixes */
180 /* can't boost Address-size override and bound */
181 return (opcode != 0x62 && opcode != 0x67);
182 case 0x70:
183 return 0; /* can't boost conditional jump */
184 case 0xc0:
185 /* can't boost software-interruptions */
186 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
187 case 0xd0:
188 /* can boost AA* and XLAT */
189 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
190 case 0xe0:
191 /* can boost in/out and absolute jmps */
192 return ((opcode & 0x04) || opcode == 0xea);
193 case 0xf0:
194 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
195 goto retry; /* lock/rep(ne) prefix */
196 /* clear and set flags are boostable */
197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 default:
199 /* segment override prefixes are boostable */
200 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
201 goto retry; /* prefixes */
202 /* CS override prefix and call are not boostable */
203 return (opcode != 0x2e && opcode != 0x9a);
204 }
205}
206
b46b3d70
MH
207/* Recover the probed instruction at addr for further analysis. */
208static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
209{
210 struct kprobe *kp;
211 kp = get_kprobe((void *)addr);
212 if (!kp)
213 return -EINVAL;
214
215 /*
216 * Basically, kp->ainsn.insn has an original instruction.
217 * However, RIP-relative instruction can not do single-stepping
c0f7ac3a 218 * at different place, __copy_instruction() tweaks the displacement of
b46b3d70
MH
219 * that instruction. In that case, we can't recover the instruction
220 * from the kp->ainsn.insn.
221 *
222 * On the other hand, kp->opcode has a copy of the first byte of
223 * the probed instruction, which is overwritten by int3. And
224 * the instruction at kp->addr is not modified by kprobes except
225 * for the first byte, we can recover the original instruction
226 * from it and kp->opcode.
227 */
228 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
229 buf[0] = kp->opcode;
230 return 0;
231}
232
b46b3d70
MH
233/* Check if paddr is at an instruction boundary */
234static int __kprobes can_probe(unsigned long paddr)
235{
236 int ret;
237 unsigned long addr, offset = 0;
238 struct insn insn;
239 kprobe_opcode_t buf[MAX_INSN_SIZE];
240
6abded71 241 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
242 return 0;
243
244 /* Decode instructions */
245 addr = paddr - offset;
246 while (addr < paddr) {
247 kernel_insn_init(&insn, (void *)addr);
248 insn_get_opcode(&insn);
249
250 /*
251 * Check if the instruction has been modified by another
252 * kprobe, in which case we replace the breakpoint by the
253 * original instruction in our buffer.
254 */
255 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
256 ret = recover_probed_instruction(buf, addr);
257 if (ret)
258 /*
259 * Another debugging subsystem might insert
260 * this breakpoint. In that case, we can't
261 * recover it.
262 */
263 return 0;
264 kernel_insn_init(&insn, buf);
265 }
266 insn_get_length(&insn);
267 addr += insn.length;
268 }
269
270 return (addr == paddr);
271}
272
1da177e4 273/*
d6be29b8 274 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 275 */
8645419c 276static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 277{
567a9fd8
MH
278 /* Skip prefixes */
279 insn = skip_prefixes(insn);
280
1da177e4
LT
281 switch (*insn) {
282 case 0xfa: /* cli */
283 case 0xfb: /* sti */
284 case 0xcf: /* iret/iretd */
285 case 0x9d: /* popf/popfd */
286 return 1;
287 }
9930927f 288
1da177e4
LT
289 return 0;
290}
291
292/*
c0f7ac3a
MH
293 * Copy an instruction and adjust the displacement if the instruction
294 * uses the %rip-relative addressing mode.
aa470140 295 * If it does, Return the address of the 32-bit displacement word.
1da177e4 296 * If not, return null.
31f80e45 297 * Only applicable to 64-bit x86.
1da177e4 298 */
c0f7ac3a 299static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
1da177e4 300{
89ae465b 301 struct insn insn;
c0f7ac3a
MH
302 int ret;
303 kprobe_opcode_t buf[MAX_INSN_SIZE];
1da177e4 304
c0f7ac3a
MH
305 kernel_insn_init(&insn, src);
306 if (recover) {
307 insn_get_opcode(&insn);
308 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
309 ret = recover_probed_instruction(buf,
310 (unsigned long)src);
311 if (ret)
312 return 0;
313 kernel_insn_init(&insn, buf);
314 }
315 }
316 insn_get_length(&insn);
317 memcpy(dest, insn.kaddr, insn.length);
318
319#ifdef CONFIG_X86_64
89ae465b
MH
320 if (insn_rip_relative(&insn)) {
321 s64 newdisp;
322 u8 *disp;
c0f7ac3a 323 kernel_insn_init(&insn, dest);
89ae465b
MH
324 insn_get_displacement(&insn);
325 /*
326 * The copied instruction uses the %rip-relative addressing
327 * mode. Adjust the displacement for the difference between
328 * the original location of this instruction and the location
329 * of the copy that will actually be run. The tricky bit here
330 * is making sure that the sign extension happens correctly in
331 * this calculation, since we need a signed 32-bit result to
332 * be sign-extended to 64 bits when it's added to the %rip
333 * value and yield the same 64-bit result that the sign-
334 * extension of the original signed 32-bit displacement would
335 * have given.
336 */
c0f7ac3a
MH
337 newdisp = (u8 *) src + (s64) insn.displacement.value -
338 (u8 *) dest;
89ae465b 339 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
c0f7ac3a 340 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 341 *(s32 *) disp = (s32) newdisp;
1da177e4 342 }
d6be29b8 343#endif
c0f7ac3a 344 return insn.length;
31f80e45 345}
1da177e4 346
f709b122 347static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 348{
c0f7ac3a
MH
349 /*
350 * Copy an instruction without recovering int3, because it will be
351 * put by another subsystem.
352 */
353 __copy_instruction(p->ainsn.insn, p->addr, 0);
31f80e45 354
8533bbe9 355 if (can_boost(p->addr))
aa470140 356 p->ainsn.boostable = 0;
8533bbe9 357 else
aa470140 358 p->ainsn.boostable = -1;
8533bbe9 359
7e1048b1 360 p->opcode = *p->addr;
1da177e4
LT
361}
362
8533bbe9
MH
363int __kprobes arch_prepare_kprobe(struct kprobe *p)
364{
4554dbcb
MH
365 if (alternatives_text_reserved(p->addr, p->addr))
366 return -EINVAL;
367
b46b3d70
MH
368 if (!can_probe((unsigned long)p->addr))
369 return -EILSEQ;
8533bbe9
MH
370 /* insn: must be on special executable page on x86. */
371 p->ainsn.insn = get_insn_slot();
372 if (!p->ainsn.insn)
373 return -ENOMEM;
374 arch_copy_kprobe(p);
375 return 0;
376}
377
0f2fbdcb 378void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 379{
19d36ccd 380 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
381}
382
0f2fbdcb 383void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 384{
19d36ccd 385 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
386}
387
0498b635 388void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 389{
12941560
MH
390 if (p->ainsn.insn) {
391 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
392 p->ainsn.insn = NULL;
393 }
1da177e4
LT
394}
395
3b60211c 396static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 397{
e7a510f9
AM
398 kcb->prev_kprobe.kp = kprobe_running();
399 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
400 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
401 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
402}
403
3b60211c 404static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 405{
e7a510f9
AM
406 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
407 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
408 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
409 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
410}
411
3b60211c 412static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 413 struct kprobe_ctlblk *kcb)
aa3d7e3d 414{
e7a510f9 415 __get_cpu_var(current_kprobe) = p;
8533bbe9 416 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 417 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 418 if (is_IF_modifier(p->ainsn.insn))
053de044 419 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
420}
421
e7b5e11e 422static void __kprobes clear_btf(void)
1ecc798c 423{
ea8e61b7
PZ
424 if (test_thread_flag(TIF_BLOCKSTEP)) {
425 unsigned long debugctl = get_debugctlmsr();
426
427 debugctl &= ~DEBUGCTLMSR_BTF;
428 update_debugctlmsr(debugctl);
429 }
1ecc798c
RM
430}
431
e7b5e11e 432static void __kprobes restore_btf(void)
1ecc798c 433{
ea8e61b7
PZ
434 if (test_thread_flag(TIF_BLOCKSTEP)) {
435 unsigned long debugctl = get_debugctlmsr();
436
437 debugctl |= DEBUGCTLMSR_BTF;
438 update_debugctlmsr(debugctl);
439 }
1ecc798c
RM
440}
441
4c4308cb 442void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 443 struct pt_regs *regs)
73649dab 444{
8533bbe9 445 unsigned long *sara = stack_addr(regs);
ba8af12f 446
4c4308cb 447 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 448
4c4308cb
CH
449 /* Replace the return addr with trampoline addr */
450 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 451}
f315decb 452
c0f7ac3a
MH
453#ifdef CONFIG_OPTPROBES
454static int __kprobes setup_detour_execution(struct kprobe *p,
455 struct pt_regs *regs,
456 int reenter);
457#else
458#define setup_detour_execution(p, regs, reenter) (0)
459#endif
460
f315decb 461static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
0f94eb63 462 struct kprobe_ctlblk *kcb, int reenter)
f315decb 463{
c0f7ac3a
MH
464 if (setup_detour_execution(p, regs, reenter))
465 return;
466
615d0ebb 467#if !defined(CONFIG_PREEMPT)
f315decb
AS
468 if (p->ainsn.boostable == 1 && !p->post_handler) {
469 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
470 if (!reenter)
471 reset_current_kprobe();
472 /*
473 * Reentering boosted probe doesn't reset current_kprobe,
474 * nor set current_kprobe, because it doesn't use single
475 * stepping.
476 */
f315decb
AS
477 regs->ip = (unsigned long)p->ainsn.insn;
478 preempt_enable_no_resched();
479 return;
480 }
481#endif
0f94eb63
MH
482 if (reenter) {
483 save_previous_kprobe(kcb);
484 set_current_kprobe(p, regs, kcb);
485 kcb->kprobe_status = KPROBE_REENTER;
486 } else
487 kcb->kprobe_status = KPROBE_HIT_SS;
488 /* Prepare real single stepping */
489 clear_btf();
490 regs->flags |= X86_EFLAGS_TF;
491 regs->flags &= ~X86_EFLAGS_IF;
492 /* single step inline if the instruction is an int3 */
493 if (p->opcode == BREAKPOINT_INSTRUCTION)
494 regs->ip = (unsigned long)p->addr;
495 else
496 regs->ip = (unsigned long)p->ainsn.insn;
f315decb
AS
497}
498
40102d4a
HH
499/*
500 * We have reentered the kprobe_handler(), since another probe was hit while
501 * within the handler. We save the original kprobes variables and just single
502 * step on the instruction of the new probe without calling any user handlers.
503 */
59e87cdc
MH
504static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
505 struct kprobe_ctlblk *kcb)
40102d4a 506{
f315decb
AS
507 switch (kcb->kprobe_status) {
508 case KPROBE_HIT_SSDONE:
f315decb 509 case KPROBE_HIT_ACTIVE:
fb8830e7 510 kprobes_inc_nmissed_count(p);
0f94eb63 511 setup_singlestep(p, regs, kcb, 1);
f315decb
AS
512 break;
513 case KPROBE_HIT_SS:
e9afe9e1
MH
514 /* A probe has been hit in the codepath leading up to, or just
515 * after, single-stepping of a probed instruction. This entire
516 * codepath should strictly reside in .kprobes.text section.
517 * Raise a BUG or we'll continue in an endless reentering loop
518 * and eventually a stack overflow.
519 */
520 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
521 p->addr);
522 dump_kprobe(p);
523 BUG();
f315decb
AS
524 default:
525 /* impossible cases */
526 WARN_ON(1);
fb8830e7 527 return 0;
59e87cdc 528 }
f315decb 529
59e87cdc 530 return 1;
40102d4a 531}
73649dab 532
8533bbe9
MH
533/*
534 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 535 * remain disabled throughout this function.
8533bbe9
MH
536 */
537static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4 538{
8533bbe9 539 kprobe_opcode_t *addr;
f315decb 540 struct kprobe *p;
d217d545
AM
541 struct kprobe_ctlblk *kcb;
542
8533bbe9 543 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
544 /*
545 * We don't want to be preempted for the entire
f315decb
AS
546 * duration of kprobe processing. We conditionally
547 * re-enable preemption at the end of this function,
548 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
549 */
550 preempt_disable();
1da177e4 551
f315decb 552 kcb = get_kprobe_ctlblk();
b9760156 553 p = get_kprobe(addr);
f315decb 554
b9760156 555 if (p) {
b9760156 556 if (kprobe_running()) {
f315decb
AS
557 if (reenter_kprobe(p, regs, kcb))
558 return 1;
1da177e4 559 } else {
b9760156
HH
560 set_current_kprobe(p, regs, kcb);
561 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 562
1da177e4 563 /*
f315decb
AS
564 * If we have no pre-handler or it returned 0, we
565 * continue with normal processing. If we have a
566 * pre-handler and it returned non-zero, it prepped
567 * for calling the break_handler below on re-entry
568 * for jprobe processing, so get out doing nothing
569 * more here.
1da177e4 570 */
f315decb 571 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 572 setup_singlestep(p, regs, kcb, 0);
f315decb 573 return 1;
b9760156 574 }
829e9245
MH
575 } else if (*addr != BREAKPOINT_INSTRUCTION) {
576 /*
577 * The breakpoint instruction was removed right
578 * after we hit it. Another cpu has removed
579 * either a probepoint or a debugger breakpoint
580 * at this address. In either case, no further
581 * handling of this interrupt is appropriate.
582 * Back up over the (now missing) int3 and run
583 * the original instruction.
584 */
585 regs->ip = (unsigned long)addr;
586 preempt_enable_no_resched();
587 return 1;
f315decb
AS
588 } else if (kprobe_running()) {
589 p = __get_cpu_var(current_kprobe);
590 if (p->break_handler && p->break_handler(p, regs)) {
0f94eb63 591 setup_singlestep(p, regs, kcb, 0);
f315decb 592 return 1;
1da177e4 593 }
f315decb 594 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 595
d217d545 596 preempt_enable_no_resched();
f315decb 597 return 0;
1da177e4
LT
598}
599
f007ea26
MH
600#ifdef CONFIG_X86_64
601#define SAVE_REGS_STRING \
602 /* Skip cs, ip, orig_ax. */ \
603 " subq $24, %rsp\n" \
604 " pushq %rdi\n" \
605 " pushq %rsi\n" \
606 " pushq %rdx\n" \
607 " pushq %rcx\n" \
608 " pushq %rax\n" \
609 " pushq %r8\n" \
610 " pushq %r9\n" \
611 " pushq %r10\n" \
612 " pushq %r11\n" \
613 " pushq %rbx\n" \
614 " pushq %rbp\n" \
615 " pushq %r12\n" \
616 " pushq %r13\n" \
617 " pushq %r14\n" \
618 " pushq %r15\n"
619#define RESTORE_REGS_STRING \
620 " popq %r15\n" \
621 " popq %r14\n" \
622 " popq %r13\n" \
623 " popq %r12\n" \
624 " popq %rbp\n" \
625 " popq %rbx\n" \
626 " popq %r11\n" \
627 " popq %r10\n" \
628 " popq %r9\n" \
629 " popq %r8\n" \
630 " popq %rax\n" \
631 " popq %rcx\n" \
632 " popq %rdx\n" \
633 " popq %rsi\n" \
634 " popq %rdi\n" \
635 /* Skip orig_ax, ip, cs */ \
636 " addq $24, %rsp\n"
637#else
638#define SAVE_REGS_STRING \
639 /* Skip cs, ip, orig_ax and gs. */ \
640 " subl $16, %esp\n" \
641 " pushl %fs\n" \
f007ea26 642 " pushl %es\n" \
a1974798 643 " pushl %ds\n" \
f007ea26
MH
644 " pushl %eax\n" \
645 " pushl %ebp\n" \
646 " pushl %edi\n" \
647 " pushl %esi\n" \
648 " pushl %edx\n" \
649 " pushl %ecx\n" \
650 " pushl %ebx\n"
651#define RESTORE_REGS_STRING \
652 " popl %ebx\n" \
653 " popl %ecx\n" \
654 " popl %edx\n" \
655 " popl %esi\n" \
656 " popl %edi\n" \
657 " popl %ebp\n" \
658 " popl %eax\n" \
659 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
660 " addl $24, %esp\n"
661#endif
662
73649dab 663/*
da07ab03
MH
664 * When a retprobed function returns, this code saves registers and
665 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 666 */
f1452d42 667static void __used __kprobes kretprobe_trampoline_holder(void)
1017579a 668{
d6be29b8
MH
669 asm volatile (
670 ".global kretprobe_trampoline\n"
da07ab03 671 "kretprobe_trampoline: \n"
d6be29b8 672#ifdef CONFIG_X86_64
da07ab03
MH
673 /* We don't bother saving the ss register */
674 " pushq %rsp\n"
675 " pushfq\n"
f007ea26 676 SAVE_REGS_STRING
da07ab03
MH
677 " movq %rsp, %rdi\n"
678 " call trampoline_handler\n"
679 /* Replace saved sp with true return address. */
680 " movq %rax, 152(%rsp)\n"
f007ea26 681 RESTORE_REGS_STRING
da07ab03 682 " popfq\n"
d6be29b8
MH
683#else
684 " pushf\n"
f007ea26 685 SAVE_REGS_STRING
d6be29b8
MH
686 " movl %esp, %eax\n"
687 " call trampoline_handler\n"
688 /* Move flags to cs */
fee039a1
MH
689 " movl 56(%esp), %edx\n"
690 " movl %edx, 52(%esp)\n"
d6be29b8 691 /* Replace saved flags with true return address. */
fee039a1 692 " movl %eax, 56(%esp)\n"
f007ea26 693 RESTORE_REGS_STRING
d6be29b8
MH
694 " popf\n"
695#endif
da07ab03 696 " ret\n");
1017579a 697}
73649dab
RL
698
699/*
da07ab03 700 * Called from kretprobe_trampoline
73649dab 701 */
f1452d42 702static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
73649dab 703{
62c27be0 704 struct kretprobe_instance *ri = NULL;
99219a3f 705 struct hlist_head *head, empty_rp;
62c27be0 706 struct hlist_node *node, *tmp;
991a51d8 707 unsigned long flags, orig_ret_address = 0;
d6be29b8 708 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 709 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 710
99219a3f 711 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 712 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 713 /* fixup registers */
d6be29b8 714#ifdef CONFIG_X86_64
da07ab03 715 regs->cs = __KERNEL_CS;
d6be29b8
MH
716#else
717 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 718 regs->gs = 0;
d6be29b8 719#endif
da07ab03 720 regs->ip = trampoline_address;
8533bbe9 721 regs->orig_ax = ~0UL;
73649dab 722
ba8af12f
RL
723 /*
724 * It is possible to have multiple instances associated with a given
8533bbe9 725 * task either because multiple functions in the call path have
025dfdaf 726 * return probes installed on them, and/or more than one
ba8af12f
RL
727 * return probe was registered for a target function.
728 *
729 * We can handle this because:
8533bbe9 730 * - instances are always pushed into the head of the list
ba8af12f 731 * - when multiple return probes are registered for the same
8533bbe9
MH
732 * function, the (chronologically) first instance's ret_addr
733 * will be the real return address, and all the rest will
734 * point to kretprobe_trampoline.
ba8af12f
RL
735 */
736 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 737 if (ri->task != current)
ba8af12f 738 /* another task is sharing our hash bucket */
62c27be0 739 continue;
ba8af12f 740
737480a0
KS
741 orig_ret_address = (unsigned long)ri->ret_addr;
742
743 if (orig_ret_address != trampoline_address)
744 /*
745 * This is the real return address. Any other
746 * instances associated with this task are for
747 * other calls deeper on the call stack
748 */
749 break;
750 }
751
752 kretprobe_assert(ri, orig_ret_address, trampoline_address);
753
754 correct_ret_addr = ri->ret_addr;
755 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
756 if (ri->task != current)
757 /* another task is sharing our hash bucket */
758 continue;
759
760 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03
MH
761 if (ri->rp && ri->rp->handler) {
762 __get_cpu_var(current_kprobe) = &ri->rp->kp;
763 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 764 ri->ret_addr = correct_ret_addr;
ba8af12f 765 ri->rp->handler(ri, regs);
da07ab03
MH
766 __get_cpu_var(current_kprobe) = NULL;
767 }
ba8af12f 768
99219a3f 769 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
770
771 if (orig_ret_address != trampoline_address)
772 /*
773 * This is the real return address. Any other
774 * instances associated with this task are for
775 * other calls deeper on the call stack
776 */
777 break;
73649dab 778 }
ba8af12f 779
ef53d9c5 780 kretprobe_hash_unlock(current, &flags);
ba8af12f 781
99219a3f 782 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
783 hlist_del(&ri->hlist);
784 kfree(ri);
785 }
da07ab03 786 return (void *)orig_ret_address;
73649dab
RL
787}
788
1da177e4
LT
789/*
790 * Called after single-stepping. p->addr is the address of the
791 * instruction whose first byte has been replaced by the "int 3"
792 * instruction. To avoid the SMP problems that can occur when we
793 * temporarily put back the original opcode to single-step, we
794 * single-stepped a copy of the instruction. The address of this
795 * copy is p->ainsn.insn.
796 *
797 * This function prepares to return from the post-single-step
798 * interrupt. We have to fix up the stack as follows:
799 *
800 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 801 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
802 * it relative to the original instruction.
803 *
804 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 805 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
806 *
807 * 2) If the single-stepped instruction was a call, the return address
808 * that is atop the stack is the address following the copied instruction.
809 * We need to make it the address following the original instruction.
aa470140
MH
810 *
811 * If this is the first time we've single-stepped the instruction at
812 * this probepoint, and the instruction is boostable, boost it: add a
813 * jump instruction after the copied instruction, that jumps to the next
814 * instruction after the probepoint.
1da177e4 815 */
e7a510f9
AM
816static void __kprobes resume_execution(struct kprobe *p,
817 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 818{
8533bbe9
MH
819 unsigned long *tos = stack_addr(regs);
820 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
821 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
822 kprobe_opcode_t *insn = p->ainsn.insn;
823
567a9fd8
MH
824 /* Skip prefixes */
825 insn = skip_prefixes(insn);
1da177e4 826
053de044 827 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 828 switch (*insn) {
0b0122fa 829 case 0x9c: /* pushfl */
053de044 830 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 831 *tos |= kcb->kprobe_old_flags;
1da177e4 832 break;
0b0122fa
MH
833 case 0xc2: /* iret/ret/lret */
834 case 0xc3:
0b9e2cac 835 case 0xca:
0b0122fa
MH
836 case 0xcb:
837 case 0xcf:
838 case 0xea: /* jmp absolute -- ip is correct */
839 /* ip is already adjusted, no more changes required */
aa470140 840 p->ainsn.boostable = 1;
0b0122fa
MH
841 goto no_change;
842 case 0xe8: /* call relative - Fix return addr */
8533bbe9 843 *tos = orig_ip + (*tos - copy_ip);
1da177e4 844 break;
e7b5e11e 845#ifdef CONFIG_X86_32
d6be29b8
MH
846 case 0x9a: /* call absolute -- same as call absolute, indirect */
847 *tos = orig_ip + (*tos - copy_ip);
848 goto no_change;
849#endif
1da177e4 850 case 0xff:
dc49e344 851 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
852 /*
853 * call absolute, indirect
854 * Fix return addr; ip is correct.
855 * But this is not boostable
856 */
857 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 858 goto no_change;
8533bbe9
MH
859 } else if (((insn[1] & 0x31) == 0x20) ||
860 ((insn[1] & 0x31) == 0x21)) {
861 /*
862 * jmp near and far, absolute indirect
863 * ip is correct. And this is boostable
864 */
aa470140 865 p->ainsn.boostable = 1;
0b0122fa 866 goto no_change;
1da177e4 867 }
1da177e4
LT
868 default:
869 break;
870 }
871
aa470140 872 if (p->ainsn.boostable == 0) {
8533bbe9
MH
873 if ((regs->ip > copy_ip) &&
874 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
875 /*
876 * These instructions can be executed directly if it
877 * jumps back to correct address.
878 */
c0f7ac3a
MH
879 synthesize_reljump((void *)regs->ip,
880 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
881 p->ainsn.boostable = 1;
882 } else {
883 p->ainsn.boostable = -1;
884 }
885 }
886
8533bbe9 887 regs->ip += orig_ip - copy_ip;
65ea5b03 888
0b0122fa 889no_change:
1ecc798c 890 restore_btf();
1da177e4
LT
891}
892
8533bbe9
MH
893/*
894 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 895 * remain disabled throughout this function.
8533bbe9
MH
896 */
897static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 898{
e7a510f9
AM
899 struct kprobe *cur = kprobe_running();
900 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
901
902 if (!cur)
1da177e4
LT
903 return 0;
904
acb5b8a2
YL
905 resume_execution(cur, regs, kcb);
906 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 907
e7a510f9
AM
908 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
909 kcb->kprobe_status = KPROBE_HIT_SSDONE;
910 cur->post_handler(cur, regs, 0);
aa3d7e3d 911 }
1da177e4 912
8533bbe9 913 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
914 if (kcb->kprobe_status == KPROBE_REENTER) {
915 restore_previous_kprobe(kcb);
aa3d7e3d 916 goto out;
aa3d7e3d 917 }
e7a510f9 918 reset_current_kprobe();
aa3d7e3d 919out:
1da177e4
LT
920 preempt_enable_no_resched();
921
922 /*
65ea5b03 923 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
924 * will have TF set, in which case, continue the remaining processing
925 * of do_debug, as if this is not a probe hit.
926 */
053de044 927 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
928 return 0;
929
930 return 1;
931}
932
0f2fbdcb 933int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 934{
e7a510f9
AM
935 struct kprobe *cur = kprobe_running();
936 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
937
d6be29b8 938 switch (kcb->kprobe_status) {
c28f8966
PP
939 case KPROBE_HIT_SS:
940 case KPROBE_REENTER:
941 /*
942 * We are here because the instruction being single
943 * stepped caused a page fault. We reset the current
65ea5b03 944 * kprobe and the ip points back to the probe address
c28f8966
PP
945 * and allow the page fault handler to continue as a
946 * normal page fault.
947 */
65ea5b03 948 regs->ip = (unsigned long)cur->addr;
8533bbe9 949 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
950 if (kcb->kprobe_status == KPROBE_REENTER)
951 restore_previous_kprobe(kcb);
952 else
953 reset_current_kprobe();
1da177e4 954 preempt_enable_no_resched();
c28f8966
PP
955 break;
956 case KPROBE_HIT_ACTIVE:
957 case KPROBE_HIT_SSDONE:
958 /*
959 * We increment the nmissed count for accounting,
8533bbe9 960 * we can also use npre/npostfault count for accounting
c28f8966
PP
961 * these specific fault cases.
962 */
963 kprobes_inc_nmissed_count(cur);
964
965 /*
966 * We come here because instructions in the pre/post
967 * handler caused the page_fault, this could happen
968 * if handler tries to access user space by
969 * copy_from_user(), get_user() etc. Let the
970 * user-specified handler try to fix it first.
971 */
972 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
973 return 1;
974
975 /*
976 * In case the user-specified fault handler returned
977 * zero, try to fix up.
978 */
d6be29b8
MH
979 if (fixup_exception(regs))
980 return 1;
6d48583b 981
c28f8966 982 /*
8533bbe9 983 * fixup routine could not handle it,
c28f8966
PP
984 * Let do_page_fault() fix it.
985 */
986 break;
987 default:
988 break;
1da177e4
LT
989 }
990 return 0;
991}
992
993/*
994 * Wrapper routine for handling exceptions.
995 */
0f2fbdcb
PP
996int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
997 unsigned long val, void *data)
1da177e4 998{
ade1af77 999 struct die_args *args = data;
66ff2d06
AM
1000 int ret = NOTIFY_DONE;
1001
8533bbe9 1002 if (args->regs && user_mode_vm(args->regs))
2326c770 1003 return ret;
1004
1da177e4
LT
1005 switch (val) {
1006 case DIE_INT3:
1007 if (kprobe_handler(args->regs))
66ff2d06 1008 ret = NOTIFY_STOP;
1da177e4
LT
1009 break;
1010 case DIE_DEBUG:
62edab90
P
1011 if (post_kprobe_handler(args->regs)) {
1012 /*
1013 * Reset the BS bit in dr6 (pointed by args->err) to
1014 * denote completion of processing
1015 */
1016 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
66ff2d06 1017 ret = NOTIFY_STOP;
62edab90 1018 }
1da177e4
LT
1019 break;
1020 case DIE_GPF:
b506a9d0
QB
1021 /*
1022 * To be potentially processing a kprobe fault and to
1023 * trust the result from kprobe_running(), we have
1024 * be non-preemptible.
1025 */
1026 if (!preemptible() && kprobe_running() &&
1da177e4 1027 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1028 ret = NOTIFY_STOP;
1da177e4
LT
1029 break;
1030 default:
1031 break;
1032 }
66ff2d06 1033 return ret;
1da177e4
LT
1034}
1035
0f2fbdcb 1036int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1037{
1038 struct jprobe *jp = container_of(p, struct jprobe, kp);
1039 unsigned long addr;
e7a510f9 1040 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1041
e7a510f9 1042 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1043 kcb->jprobe_saved_sp = stack_addr(regs);
1044 addr = (unsigned long)(kcb->jprobe_saved_sp);
1045
1da177e4
LT
1046 /*
1047 * As Linus pointed out, gcc assumes that the callee
1048 * owns the argument space and could overwrite it, e.g.
1049 * tailcall optimization. So, to be absolutely safe
1050 * we also save and restore enough stack bytes to cover
1051 * the argument area.
1052 */
e7a510f9 1053 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1054 MIN_STACK_SIZE(addr));
053de044 1055 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1056 trace_hardirqs_off();
65ea5b03 1057 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
1058 return 1;
1059}
1060
0f2fbdcb 1061void __kprobes jprobe_return(void)
1da177e4 1062{
e7a510f9
AM
1063 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1064
d6be29b8
MH
1065 asm volatile (
1066#ifdef CONFIG_X86_64
1067 " xchg %%rbx,%%rsp \n"
1068#else
1069 " xchgl %%ebx,%%esp \n"
1070#endif
1071 " int3 \n"
1072 " .globl jprobe_return_end\n"
1073 " jprobe_return_end: \n"
1074 " nop \n"::"b"
1075 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1076}
1077
0f2fbdcb 1078int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1079{
e7a510f9 1080 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1081 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1082 struct jprobe *jp = container_of(p, struct jprobe, kp);
1083
d6be29b8
MH
1084 if ((addr > (u8 *) jprobe_return) &&
1085 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1086 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1087 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1088 printk(KERN_ERR
1089 "current sp %p does not match saved sp %p\n",
8533bbe9 1090 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1091 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1da177e4 1092 show_registers(saved_regs);
d6be29b8 1093 printk(KERN_ERR "Current registers\n");
1da177e4
LT
1094 show_registers(regs);
1095 BUG();
1096 }
e7a510f9 1097 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1098 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1099 kcb->jprobes_stack,
1100 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1101 preempt_enable_no_resched();
1da177e4
LT
1102 return 1;
1103 }
1104 return 0;
1105}
ba8af12f 1106
c0f7ac3a
MH
1107
1108#ifdef CONFIG_OPTPROBES
1109
1110/* Insert a call instruction at address 'from', which calls address 'to'.*/
1111static void __kprobes synthesize_relcall(void *from, void *to)
1112{
1113 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1114}
1115
1116/* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1117static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1118 unsigned long val)
1119{
1120#ifdef CONFIG_X86_64
1121 *addr++ = 0x48;
1122 *addr++ = 0xbf;
1123#else
1124 *addr++ = 0xb8;
1125#endif
1126 *(unsigned long *)addr = val;
1127}
1128
6376b229 1129static void __used __kprobes kprobes_optinsn_template_holder(void)
c0f7ac3a
MH
1130{
1131 asm volatile (
1132 ".global optprobe_template_entry\n"
1133 "optprobe_template_entry: \n"
1134#ifdef CONFIG_X86_64
1135 /* We don't bother saving the ss register */
1136 " pushq %rsp\n"
1137 " pushfq\n"
1138 SAVE_REGS_STRING
1139 " movq %rsp, %rsi\n"
1140 ".global optprobe_template_val\n"
1141 "optprobe_template_val: \n"
1142 ASM_NOP5
1143 ASM_NOP5
1144 ".global optprobe_template_call\n"
1145 "optprobe_template_call: \n"
1146 ASM_NOP5
1147 /* Move flags to rsp */
1148 " movq 144(%rsp), %rdx\n"
1149 " movq %rdx, 152(%rsp)\n"
1150 RESTORE_REGS_STRING
1151 /* Skip flags entry */
1152 " addq $8, %rsp\n"
1153 " popfq\n"
1154#else /* CONFIG_X86_32 */
1155 " pushf\n"
1156 SAVE_REGS_STRING
1157 " movl %esp, %edx\n"
1158 ".global optprobe_template_val\n"
1159 "optprobe_template_val: \n"
1160 ASM_NOP5
1161 ".global optprobe_template_call\n"
1162 "optprobe_template_call: \n"
1163 ASM_NOP5
1164 RESTORE_REGS_STRING
1165 " addl $4, %esp\n" /* skip cs */
1166 " popf\n"
1167#endif
1168 ".global optprobe_template_end\n"
1169 "optprobe_template_end: \n");
1170}
1171
1172#define TMPL_MOVE_IDX \
1173 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1174#define TMPL_CALL_IDX \
1175 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1176#define TMPL_END_IDX \
1177 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1178
1179#define INT3_SIZE sizeof(kprobe_opcode_t)
1180
1181/* Optimized kprobe call back function: called from optinsn */
1182static void __kprobes optimized_callback(struct optimized_kprobe *op,
1183 struct pt_regs *regs)
1184{
1185 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1186
1187 preempt_disable();
1188 if (kprobe_running()) {
1189 kprobes_inc_nmissed_count(&op->kp);
1190 } else {
1191 /* Save skipped registers */
1192#ifdef CONFIG_X86_64
1193 regs->cs = __KERNEL_CS;
1194#else
1195 regs->cs = __KERNEL_CS | get_kernel_rpl();
1196 regs->gs = 0;
1197#endif
1198 regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1199 regs->orig_ax = ~0UL;
1200
1201 __get_cpu_var(current_kprobe) = &op->kp;
1202 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1203 opt_pre_handler(&op->kp, regs);
1204 __get_cpu_var(current_kprobe) = NULL;
1205 }
1206 preempt_enable_no_resched();
1207}
1208
1209static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1210{
1211 int len = 0, ret;
1212
1213 while (len < RELATIVEJUMP_SIZE) {
1214 ret = __copy_instruction(dest + len, src + len, 1);
1215 if (!ret || !can_boost(dest + len))
1216 return -EINVAL;
1217 len += ret;
1218 }
1219 /* Check whether the address range is reserved */
1220 if (ftrace_text_reserved(src, src + len - 1) ||
1221 alternatives_text_reserved(src, src + len - 1))
1222 return -EBUSY;
1223
1224 return len;
1225}
1226
1227/* Check whether insn is indirect jump */
1228static int __kprobes insn_is_indirect_jump(struct insn *insn)
1229{
1230 return ((insn->opcode.bytes[0] == 0xff &&
1231 (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1232 insn->opcode.bytes[0] == 0xea); /* Segment based jump */
1233}
1234
1235/* Check whether insn jumps into specified address range */
1236static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1237{
1238 unsigned long target = 0;
1239
1240 switch (insn->opcode.bytes[0]) {
1241 case 0xe0: /* loopne */
1242 case 0xe1: /* loope */
1243 case 0xe2: /* loop */
1244 case 0xe3: /* jcxz */
1245 case 0xe9: /* near relative jump */
1246 case 0xeb: /* short relative jump */
1247 break;
1248 case 0x0f:
1249 if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1250 break;
1251 return 0;
1252 default:
1253 if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1254 break;
1255 return 0;
1256 }
1257 target = (unsigned long)insn->next_byte + insn->immediate.value;
1258
1259 return (start <= target && target <= start + len);
1260}
1261
1262/* Decode whole function to ensure any instructions don't jump into target */
1263static int __kprobes can_optimize(unsigned long paddr)
1264{
1265 int ret;
1266 unsigned long addr, size = 0, offset = 0;
1267 struct insn insn;
1268 kprobe_opcode_t buf[MAX_INSN_SIZE];
c0f7ac3a
MH
1269
1270 /* Lookup symbol including addr */
6abded71 1271 if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
c0f7ac3a
MH
1272 return 0;
1273
1274 /* Check there is enough space for a relative jump. */
1275 if (size - offset < RELATIVEJUMP_SIZE)
1276 return 0;
1277
1278 /* Decode instructions */
1279 addr = paddr - offset;
1280 while (addr < paddr - offset + size) { /* Decode until function end */
1281 if (search_exception_tables(addr))
1282 /*
1283 * Since some fixup code will jumps into this function,
1284 * we can't optimize kprobe in this function.
1285 */
1286 return 0;
1287 kernel_insn_init(&insn, (void *)addr);
1288 insn_get_opcode(&insn);
1289 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1290 ret = recover_probed_instruction(buf, addr);
1291 if (ret)
1292 return 0;
1293 kernel_insn_init(&insn, buf);
1294 }
1295 insn_get_length(&insn);
1296 /* Recover address */
1297 insn.kaddr = (void *)addr;
1298 insn.next_byte = (void *)(addr + insn.length);
1299 /* Check any instructions don't jump into target */
1300 if (insn_is_indirect_jump(&insn) ||
1301 insn_jump_into_range(&insn, paddr + INT3_SIZE,
1302 RELATIVE_ADDR_SIZE))
1303 return 0;
1304 addr += insn.length;
1305 }
1306
1307 return 1;
1308}
1309
1310/* Check optimized_kprobe can actually be optimized. */
1311int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1312{
1313 int i;
1314 struct kprobe *p;
1315
1316 for (i = 1; i < op->optinsn.size; i++) {
1317 p = get_kprobe(op->kp.addr + i);
1318 if (p && !kprobe_disabled(p))
1319 return -EEXIST;
1320 }
1321
1322 return 0;
1323}
1324
1325/* Check the addr is within the optimized instructions. */
1326int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1327 unsigned long addr)
1328{
1329 return ((unsigned long)op->kp.addr <= addr &&
1330 (unsigned long)op->kp.addr + op->optinsn.size > addr);
1331}
1332
1333/* Free optimized instruction slot */
1334static __kprobes
1335void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1336{
1337 if (op->optinsn.insn) {
1338 free_optinsn_slot(op->optinsn.insn, dirty);
1339 op->optinsn.insn = NULL;
1340 op->optinsn.size = 0;
1341 }
1342}
1343
1344void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1345{
1346 __arch_remove_optimized_kprobe(op, 1);
1347}
1348
1349/*
1350 * Copy replacing target instructions
1351 * Target instructions MUST be relocatable (checked inside)
1352 */
1353int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1354{
1355 u8 *buf;
1356 int ret;
1357 long rel;
1358
1359 if (!can_optimize((unsigned long)op->kp.addr))
1360 return -EILSEQ;
1361
1362 op->optinsn.insn = get_optinsn_slot();
1363 if (!op->optinsn.insn)
1364 return -ENOMEM;
1365
1366 /*
1367 * Verify if the address gap is in 2GB range, because this uses
1368 * a relative jump.
1369 */
1370 rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1371 if (abs(rel) > 0x7fffffff)
1372 return -ERANGE;
1373
1374 buf = (u8 *)op->optinsn.insn;
1375
1376 /* Copy instructions into the out-of-line buffer */
1377 ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1378 if (ret < 0) {
1379 __arch_remove_optimized_kprobe(op, 0);
1380 return ret;
1381 }
1382 op->optinsn.size = ret;
1383
1384 /* Copy arch-dep-instance from template */
1385 memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1386
1387 /* Set probe information */
1388 synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1389
1390 /* Set probe function call */
1391 synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1392
1393 /* Set returning jmp instruction at the tail of out-of-line buffer */
1394 synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1395 (u8 *)op->kp.addr + op->optinsn.size);
1396
1397 flush_icache_range((unsigned long) buf,
1398 (unsigned long) buf + TMPL_END_IDX +
1399 op->optinsn.size + RELATIVEJUMP_SIZE);
1400 return 0;
1401}
1402
1403/* Replace a breakpoint (int3) with a relative jump. */
1404int __kprobes arch_optimize_kprobe(struct optimized_kprobe *op)
1405{
1406 unsigned char jmp_code[RELATIVEJUMP_SIZE];
1407 s32 rel = (s32)((long)op->optinsn.insn -
1408 ((long)op->kp.addr + RELATIVEJUMP_SIZE));
1409
1410 /* Backup instructions which will be replaced by jump address */
1411 memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1412 RELATIVE_ADDR_SIZE);
1413
1414 jmp_code[0] = RELATIVEJUMP_OPCODE;
1415 *(s32 *)(&jmp_code[1]) = rel;
1416
1417 /*
1418 * text_poke_smp doesn't support NMI/MCE code modifying.
1419 * However, since kprobes itself also doesn't support NMI/MCE
1420 * code probing, it's not a problem.
1421 */
1422 text_poke_smp(op->kp.addr, jmp_code, RELATIVEJUMP_SIZE);
1423 return 0;
1424}
1425
1426/* Replace a relative jump with a breakpoint (int3). */
1427void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1428{
1429 u8 buf[RELATIVEJUMP_SIZE];
1430
1431 /* Set int3 to first byte for kprobes */
1432 buf[0] = BREAKPOINT_INSTRUCTION;
1433 memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1434 text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1435}
1436
1437static int __kprobes setup_detour_execution(struct kprobe *p,
1438 struct pt_regs *regs,
1439 int reenter)
1440{
1441 struct optimized_kprobe *op;
1442
1443 if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1444 /* This kprobe is really able to run optimized path. */
1445 op = container_of(p, struct optimized_kprobe, kp);
1446 /* Detour through copied instructions */
1447 regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1448 if (!reenter)
1449 reset_current_kprobe();
1450 preempt_enable_no_resched();
1451 return 1;
1452 }
1453 return 0;
1454}
1455#endif
1456
6772926b 1457int __init arch_init_kprobes(void)
ba8af12f 1458{
da07ab03 1459 return 0;
ba8af12f 1460}
bf8f6e5b
AM
1461
1462int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1463{
bf8f6e5b
AM
1464 return 0;
1465}