]> bbs.cooldavid.org Git - net-next-2.6.git/blame - Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
[ALSA] Documentation/sound/alsa/DocBook: typos
[net-next-2.6.git] / Documentation / sound / alsa / DocBook / writing-an-alsa-driver.tmpl
CommitLineData
1da177e4
LT
1<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
5fe76e4d
TI
21 <date>November 17, 2005</date>
22 <edition>0.3.6</edition>
1da177e4
LT
23
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
7c22f1aa 33 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
1da177e4
LT
34 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
01d25d46 374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
1da177e4
LT
375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
446ab5f5
TI
406 struct mychip {
407 struct snd_card *card;
1da177e4
LT
408 // rest of implementation will be in the section
409 // "PCI Resource Managements"
410 };
411
412 /* chip-specific destructor
413 * (see "PCI Resource Managements")
414 */
446ab5f5 415 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
416 {
417 .... // will be implemented later...
418 }
419
420 /* component-destructor
421 * (see "Management of Cards and Components")
422 */
446ab5f5 423 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 424 {
446ab5f5 425 return snd_mychip_free(device->device_data);
1da177e4
LT
426 }
427
428 /* chip-specific constructor
429 * (see "Management of Cards and Components")
430 */
446ab5f5 431 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 432 struct pci_dev *pci,
446ab5f5 433 struct mychip **rchip)
1da177e4 434 {
446ab5f5 435 struct mychip *chip;
1da177e4 436 int err;
446ab5f5 437 static struct snd_device_ops ops = {
1da177e4
LT
438 .dev_free = snd_mychip_dev_free,
439 };
440
441 *rchip = NULL;
442
443 // check PCI availability here
444 // (see "PCI Resource Managements")
445 ....
446
447 /* allocate a chip-specific data with zero filled */
561b220a 448 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
449 if (chip == NULL)
450 return -ENOMEM;
451
452 chip->card = card;
453
454 // rest of initialization here; will be implemented
455 // later, see "PCI Resource Managements"
456 ....
457
458 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
459 chip, &ops)) < 0) {
460 snd_mychip_free(chip);
461 return err;
462 }
463
464 snd_card_set_dev(card, &pci->dev);
465
466 *rchip = chip;
467 return 0;
468 }
469
470 /* constructor -- see "Constructor" sub-section */
471 static int __devinit snd_mychip_probe(struct pci_dev *pci,
472 const struct pci_device_id *pci_id)
473 {
474 static int dev;
446ab5f5
TI
475 struct snd_card *card;
476 struct mychip *chip;
1da177e4
LT
477 int err;
478
479 /* (1) */
480 if (dev >= SNDRV_CARDS)
481 return -ENODEV;
482 if (!enable[dev]) {
483 dev++;
484 return -ENOENT;
485 }
486
487 /* (2) */
488 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
489 if (card == NULL)
490 return -ENOMEM;
491
492 /* (3) */
493 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
494 snd_card_free(card);
495 return err;
496 }
497
498 /* (4) */
499 strcpy(card->driver, "My Chip");
500 strcpy(card->shortname, "My Own Chip 123");
501 sprintf(card->longname, "%s at 0x%lx irq %i",
502 card->shortname, chip->ioport, chip->irq);
503
504 /* (5) */
505 .... // implemented later
506
507 /* (6) */
508 if ((err = snd_card_register(card)) < 0) {
509 snd_card_free(card);
510 return err;
511 }
512
513 /* (7) */
514 pci_set_drvdata(pci, card);
515 dev++;
516 return 0;
517 }
518
519 /* destructor -- see "Destructor" sub-section */
520 static void __devexit snd_mychip_remove(struct pci_dev *pci)
521 {
522 snd_card_free(pci_get_drvdata(pci));
523 pci_set_drvdata(pci, NULL);
524 }
525]]>
526 </programlisting>
527 </example>
528 </para>
529 </section>
530
531 <section id="basic-flow-constructor">
532 <title>Constructor</title>
533 <para>
534 The real constructor of PCI drivers is probe callback. The
535 probe callback and other component-constructors which are called
536 from probe callback should be defined with
537 <parameter>__devinit</parameter> prefix. You
538 cannot use <parameter>__init</parameter> prefix for them,
539 because any PCI device could be a hotplug device.
540 </para>
541
542 <para>
543 In the probe callback, the following scheme is often used.
544 </para>
545
546 <section id="basic-flow-constructor-device-index">
547 <title>1) Check and increment the device index.</title>
548 <para>
549 <informalexample>
550 <programlisting>
551<![CDATA[
552 static int dev;
553 ....
554 if (dev >= SNDRV_CARDS)
555 return -ENODEV;
556 if (!enable[dev]) {
557 dev++;
558 return -ENOENT;
559 }
560]]>
561 </programlisting>
562 </informalexample>
563
564 where enable[dev] is the module option.
565 </para>
566
567 <para>
568 At each time probe callback is called, check the
569 availability of the device. If not available, simply increment
570 the device index and returns. dev will be incremented also
571 later (<link
572 linkend="basic-flow-constructor-set-pci"><citetitle>step
573 7</citetitle></link>).
574 </para>
575 </section>
576
577 <section id="basic-flow-constructor-create-card">
578 <title>2) Create a card instance</title>
579 <para>
580 <informalexample>
581 <programlisting>
582<![CDATA[
446ab5f5 583 struct snd_card *card;
1da177e4
LT
584 ....
585 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
586]]>
587 </programlisting>
588 </informalexample>
589 </para>
590
591 <para>
592 The detail will be explained in the section
593 <link linkend="card-management-card-instance"><citetitle>
594 Management of Cards and Components</citetitle></link>.
595 </para>
596 </section>
597
598 <section id="basic-flow-constructor-create-main">
599 <title>3) Create a main component</title>
600 <para>
601 In this part, the PCI resources are allocated.
602
603 <informalexample>
604 <programlisting>
605<![CDATA[
446ab5f5 606 struct mychip *chip;
1da177e4
LT
607 ....
608 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
609 snd_card_free(card);
610 return err;
611 }
612]]>
613 </programlisting>
614 </informalexample>
615
616 The detail will be explained in the section <link
617 linkend="pci-resource"><citetitle>PCI Resource
618 Managements</citetitle></link>.
619 </para>
620 </section>
621
622 <section id="basic-flow-constructor-main-component">
623 <title>4) Set the driver ID and name strings.</title>
624 <para>
625 <informalexample>
626 <programlisting>
627<![CDATA[
628 strcpy(card->driver, "My Chip");
629 strcpy(card->shortname, "My Own Chip 123");
630 sprintf(card->longname, "%s at 0x%lx irq %i",
631 card->shortname, chip->ioport, chip->irq);
632]]>
633 </programlisting>
634 </informalexample>
635
636 The driver field holds the minimal ID string of the
637 chip. This is referred by alsa-lib's configurator, so keep it
638 simple but unique.
639 Even the same driver can have different driver IDs to
640 distinguish the functionality of each chip type.
641 </para>
642
643 <para>
644 The shortname field is a string shown as more verbose
645 name. The longname field contains the information which is
646 shown in <filename>/proc/asound/cards</filename>.
647 </para>
648 </section>
649
650 <section id="basic-flow-constructor-create-other">
651 <title>5) Create other components, such as mixer, MIDI, etc.</title>
652 <para>
653 Here you define the basic components such as
654 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
655 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
656 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
657 and other interfaces.
658 Also, if you want a <link linkend="proc-interface"><citetitle>proc
659 file</citetitle></link>, define it here, too.
660 </para>
661 </section>
662
663 <section id="basic-flow-constructor-register-card">
664 <title>6) Register the card instance.</title>
665 <para>
666 <informalexample>
667 <programlisting>
668<![CDATA[
669 if ((err = snd_card_register(card)) < 0) {
670 snd_card_free(card);
671 return err;
672 }
673]]>
674 </programlisting>
675 </informalexample>
676 </para>
677
678 <para>
679 Will be explained in the section <link
680 linkend="card-management-registration"><citetitle>Management
681 of Cards and Components</citetitle></link>, too.
682 </para>
683 </section>
684
685 <section id="basic-flow-constructor-set-pci">
686 <title>7) Set the PCI driver data and return zero.</title>
687 <para>
688 <informalexample>
689 <programlisting>
690<![CDATA[
691 pci_set_drvdata(pci, card);
692 dev++;
693 return 0;
694]]>
695 </programlisting>
696 </informalexample>
697
698 In the above, the card record is stored. This pointer is
699 referred in the remove callback and power-management
700 callbacks, too.
701 </para>
702 </section>
703 </section>
704
705 <section id="basic-flow-destructor">
706 <title>Destructor</title>
707 <para>
708 The destructor, remove callback, simply releases the card
709 instance. Then the ALSA middle layer will release all the
710 attached components automatically.
711 </para>
712
713 <para>
714 It would be typically like the following:
715
716 <informalexample>
717 <programlisting>
718<![CDATA[
719 static void __devexit snd_mychip_remove(struct pci_dev *pci)
720 {
721 snd_card_free(pci_get_drvdata(pci));
722 pci_set_drvdata(pci, NULL);
723 }
724]]>
725 </programlisting>
726 </informalexample>
727
728 The above code assumes that the card pointer is set to the PCI
729 driver data.
730 </para>
731 </section>
732
733 <section id="basic-flow-header-files">
734 <title>Header Files</title>
735 <para>
736 For the above example, at least the following include files
737 are necessary.
738
739 <informalexample>
740 <programlisting>
741<![CDATA[
742 #include <sound/driver.h>
743 #include <linux/init.h>
744 #include <linux/pci.h>
745 #include <linux/slab.h>
746 #include <sound/core.h>
747 #include <sound/initval.h>
748]]>
749 </programlisting>
750 </informalexample>
751
752 where the last one is necessary only when module options are
753 defined in the source file. If the codes are split to several
754 files, the file without module options don't need them.
755 </para>
756
757 <para>
758 In addition to them, you'll need
759 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
760 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
761 access. If you use <function>mdelay()</function> or
762 <function>udelay()</function> functions, you'll need to include
763 <filename>&lt;linux/delay.h&gt;</filename>, too.
764 </para>
765
766 <para>
767 The ALSA interfaces like PCM or control API are defined in other
768 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
769 They have to be included after
770 <filename>&lt;sound/core.h&gt;</filename>.
771 </para>
772
773 </section>
774 </chapter>
775
776
777<!-- ****************************************************** -->
778<!-- Management of Cards and Components -->
779<!-- ****************************************************** -->
780 <chapter id="card-management">
781 <title>Management of Cards and Components</title>
782
783 <section id="card-management-card-instance">
784 <title>Card Instance</title>
785 <para>
786 For each soundcard, a <quote>card</quote> record must be allocated.
787 </para>
788
789 <para>
790 A card record is the headquarters of the soundcard. It manages
791 the list of whole devices (components) on the soundcard, such as
792 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
793 record holds the ID and the name strings of the card, manages
794 the root of proc files, and controls the power-management states
795 and hotplug disconnections. The component list on the card
796 record is used to manage the proper releases of resources at
797 destruction.
798 </para>
799
800 <para>
801 As mentioned above, to create a card instance, call
802 <function>snd_card_new()</function>.
803
804 <informalexample>
805 <programlisting>
806<![CDATA[
446ab5f5 807 struct snd_card *card;
1da177e4
LT
808 card = snd_card_new(index, id, module, extra_size);
809]]>
810 </programlisting>
811 </informalexample>
812 </para>
813
814 <para>
815 The function takes four arguments, the card-index number, the
816 id string, the module pointer (usually
817 <constant>THIS_MODULE</constant>),
818 and the size of extra-data space. The last argument is used to
819 allocate card-&gt;private_data for the
820 chip-specific data. Note that this data
821 <emphasis>is</emphasis> allocated by
822 <function>snd_card_new()</function>.
823 </para>
824 </section>
825
826 <section id="card-management-component">
827 <title>Components</title>
828 <para>
829 After the card is created, you can attach the components
830 (devices) to the card instance. On ALSA driver, a component is
446ab5f5 831 represented as a struct <structname>snd_device</structname> object.
1da177e4
LT
832 A component can be a PCM instance, a control interface, a raw
833 MIDI interface, etc. Each of such instances has one component
834 entry.
835 </para>
836
837 <para>
838 A component can be created via
839 <function>snd_device_new()</function> function.
840
841 <informalexample>
842 <programlisting>
843<![CDATA[
844 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
845]]>
846 </programlisting>
847 </informalexample>
848 </para>
849
850 <para>
851 This takes the card pointer, the device-level
852 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
853 callback pointers (<parameter>&amp;ops</parameter>). The
854 device-level defines the type of components and the order of
855 registration and de-registration. For most of components, the
856 device-level is already defined. For a user-defined component,
857 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
858 </para>
859
860 <para>
861 This function itself doesn't allocate the data space. The data
862 must be allocated manually beforehand, and its pointer is passed
863 as the argument. This pointer is used as the identifier
864 (<parameter>chip</parameter> in the above example) for the
865 instance.
866 </para>
867
868 <para>
869 Each ALSA pre-defined component such as ac97 or pcm calls
870 <function>snd_device_new()</function> inside its
871 constructor. The destructor for each component is defined in the
872 callback pointers. Hence, you don't need to take care of
873 calling a destructor for such a component.
874 </para>
875
876 <para>
877 If you would like to create your own component, you need to
878 set the destructor function to dev_free callback in
879 <parameter>ops</parameter>, so that it can be released
880 automatically via <function>snd_card_free()</function>. The
881 example will be shown later as an implementation of a
882 chip-specific data.
883 </para>
884 </section>
885
886 <section id="card-management-chip-specific">
887 <title>Chip-Specific Data</title>
888 <para>
889 The chip-specific information, e.g. the i/o port address, its
890 resource pointer, or the irq number, is stored in the
891 chip-specific record.
1da177e4
LT
892
893 <informalexample>
894 <programlisting>
895<![CDATA[
446ab5f5 896 struct mychip {
1da177e4
LT
897 ....
898 };
899]]>
900 </programlisting>
901 </informalexample>
902 </para>
903
904 <para>
905 In general, there are two ways to allocate the chip record.
906 </para>
907
908 <section id="card-management-chip-specific-snd-card-new">
909 <title>1. Allocating via <function>snd_card_new()</function>.</title>
910 <para>
911 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
912
913 <informalexample>
914 <programlisting>
915<![CDATA[
446ab5f5 916 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
1da177e4
LT
917]]>
918 </programlisting>
919 </informalexample>
920
446ab5f5 921 whether struct <structname>mychip</structname> is the type of the chip record.
1da177e4
LT
922 </para>
923
924 <para>
925 In return, the allocated record can be accessed as
926
927 <informalexample>
928 <programlisting>
929<![CDATA[
437a5a46 930 struct mychip *chip = card->private_data;
1da177e4
LT
931]]>
932 </programlisting>
933 </informalexample>
934
935 With this method, you don't have to allocate twice.
936 The record is released together with the card instance.
937 </para>
938 </section>
939
940 <section id="card-management-chip-specific-allocate-extra">
941 <title>2. Allocating an extra device.</title>
942
943 <para>
944 After allocating a card instance via
945 <function>snd_card_new()</function> (with
946 <constant>NULL</constant> on the 4th arg), call
561b220a 947 <function>kzalloc()</function>.
1da177e4
LT
948
949 <informalexample>
950 <programlisting>
951<![CDATA[
446ab5f5
TI
952 struct snd_card *card;
953 struct mychip *chip;
1da177e4
LT
954 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
955 .....
561b220a 956 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
957]]>
958 </programlisting>
959 </informalexample>
960 </para>
961
962 <para>
963 The chip record should have the field to hold the card
964 pointer at least,
965
966 <informalexample>
967 <programlisting>
968<![CDATA[
446ab5f5
TI
969 struct mychip {
970 struct snd_card *card;
1da177e4
LT
971 ....
972 };
973]]>
974 </programlisting>
975 </informalexample>
976 </para>
977
978 <para>
979 Then, set the card pointer in the returned chip instance.
980
981 <informalexample>
982 <programlisting>
983<![CDATA[
984 chip->card = card;
985]]>
986 </programlisting>
987 </informalexample>
988 </para>
989
990 <para>
991 Next, initialize the fields, and register this chip
992 record as a low-level device with a specified
993 <parameter>ops</parameter>,
994
995 <informalexample>
996 <programlisting>
997<![CDATA[
446ab5f5 998 static struct snd_device_ops ops = {
1da177e4
LT
999 .dev_free = snd_mychip_dev_free,
1000 };
1001 ....
1002 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1003]]>
1004 </programlisting>
1005 </informalexample>
1006
1007 <function>snd_mychip_dev_free()</function> is the
1008 device-destructor function, which will call the real
1009 destructor.
1010 </para>
1011
1012 <para>
1013 <informalexample>
1014 <programlisting>
1015<![CDATA[
446ab5f5 1016 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 1017 {
446ab5f5 1018 return snd_mychip_free(device->device_data);
1da177e4
LT
1019 }
1020]]>
1021 </programlisting>
1022 </informalexample>
1023
1024 where <function>snd_mychip_free()</function> is the real destructor.
1025 </para>
1026 </section>
1027 </section>
1028
1029 <section id="card-management-registration">
1030 <title>Registration and Release</title>
1031 <para>
1032 After all components are assigned, register the card instance
1033 by calling <function>snd_card_register()</function>. The access
1034 to the device files are enabled at this point. That is, before
1035 <function>snd_card_register()</function> is called, the
1036 components are safely inaccessible from external side. If this
1037 call fails, exit the probe function after releasing the card via
1038 <function>snd_card_free()</function>.
1039 </para>
1040
1041 <para>
1042 For releasing the card instance, you can call simply
1043 <function>snd_card_free()</function>. As already mentioned, all
1044 components are released automatically by this call.
1045 </para>
1046
1047 <para>
1048 As further notes, the destructors (both
1049 <function>snd_mychip_dev_free</function> and
1050 <function>snd_mychip_free</function>) cannot be defined with
1051 <parameter>__devexit</parameter> prefix, because they may be
1052 called from the constructor, too, at the false path.
1053 </para>
1054
1055 <para>
1056 For a device which allows hotplugging, you can use
2b29b13c
TI
1057 <function>snd_card_free_when_closed</function>. This one will
1058 postpone the destruction until all devices are closed.
1da177e4
LT
1059 </para>
1060
1061 </section>
1062
1063 </chapter>
1064
1065
1066<!-- ****************************************************** -->
1067<!-- PCI Resource Managements -->
1068<!-- ****************************************************** -->
1069 <chapter id="pci-resource">
1070 <title>PCI Resource Managements</title>
1071
1072 <section id="pci-resource-example">
1073 <title>Full Code Example</title>
1074 <para>
1075 In this section, we'll finish the chip-specific constructor,
1076 destructor and PCI entries. The example code is shown first,
1077 below.
1078
1079 <example>
1080 <title>PCI Resource Managements Example</title>
1081 <programlisting>
1082<![CDATA[
446ab5f5
TI
1083 struct mychip {
1084 struct snd_card *card;
1da177e4
LT
1085 struct pci_dev *pci;
1086
1087 unsigned long port;
1088 int irq;
1089 };
1090
446ab5f5 1091 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1092 {
1093 /* disable hardware here if any */
1094 .... // (not implemented in this document)
1095
1096 /* release the irq */
1097 if (chip->irq >= 0)
437a5a46 1098 free_irq(chip->irq, chip);
1da177e4
LT
1099 /* release the i/o ports & memory */
1100 pci_release_regions(chip->pci);
1101 /* disable the PCI entry */
1102 pci_disable_device(chip->pci);
1103 /* release the data */
1104 kfree(chip);
1105 return 0;
1106 }
1107
1108 /* chip-specific constructor */
446ab5f5 1109 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 1110 struct pci_dev *pci,
446ab5f5 1111 struct mychip **rchip)
1da177e4 1112 {
446ab5f5 1113 struct mychip *chip;
1da177e4 1114 int err;
446ab5f5 1115 static struct snd_device_ops ops = {
1da177e4
LT
1116 .dev_free = snd_mychip_dev_free,
1117 };
1118
1119 *rchip = NULL;
1120
1121 /* initialize the PCI entry */
1122 if ((err = pci_enable_device(pci)) < 0)
1123 return err;
1124 /* check PCI availability (28bit DMA) */
56b146d3
TK
1125 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1126 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1da177e4
LT
1127 printk(KERN_ERR "error to set 28bit mask DMA\n");
1128 pci_disable_device(pci);
1129 return -ENXIO;
1130 }
1131
561b220a 1132 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
1133 if (chip == NULL) {
1134 pci_disable_device(pci);
1135 return -ENOMEM;
1136 }
1137
1138 /* initialize the stuff */
1139 chip->card = card;
1140 chip->pci = pci;
1141 chip->irq = -1;
1142
1143 /* (1) PCI resource allocation */
1144 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1145 kfree(chip);
1146 pci_disable_device(pci);
1147 return err;
1148 }
1149 chip->port = pci_resource_start(pci, 0);
1150 if (request_irq(pci->irq, snd_mychip_interrupt,
437a5a46 1151 IRQF_SHARED, "My Chip", chip)) {
1da177e4
LT
1152 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1153 snd_mychip_free(chip);
1154 return -EBUSY;
1155 }
1156 chip->irq = pci->irq;
1157
1158 /* (2) initialization of the chip hardware */
1159 .... // (not implemented in this document)
1160
1161 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1162 chip, &ops)) < 0) {
1163 snd_mychip_free(chip);
1164 return err;
1165 }
1166
1167 snd_card_set_dev(card, &pci->dev);
1168
1169 *rchip = chip;
1170 return 0;
1171 }
1172
1173 /* PCI IDs */
f40b6890 1174 static struct pci_device_id snd_mychip_ids[] = {
1da177e4
LT
1175 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1177 ....
1178 { 0, }
1179 };
1180 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1181
1182 /* pci_driver definition */
1183 static struct pci_driver driver = {
1184 .name = "My Own Chip",
1185 .id_table = snd_mychip_ids,
1186 .probe = snd_mychip_probe,
1187 .remove = __devexit_p(snd_mychip_remove),
1188 };
1189
1190 /* initialization of the module */
1191 static int __init alsa_card_mychip_init(void)
1192 {
01d25d46 1193 return pci_register_driver(&driver);
1da177e4
LT
1194 }
1195
1196 /* clean up the module */
1197 static void __exit alsa_card_mychip_exit(void)
1198 {
1199 pci_unregister_driver(&driver);
1200 }
1201
1202 module_init(alsa_card_mychip_init)
1203 module_exit(alsa_card_mychip_exit)
1204
1205 EXPORT_NO_SYMBOLS; /* for old kernels only */
1206]]>
1207 </programlisting>
1208 </example>
1209 </para>
1210 </section>
1211
1212 <section id="pci-resource-some-haftas">
1213 <title>Some Hafta's</title>
1214 <para>
1215 The allocation of PCI resources is done in the
1216 <function>probe()</function> function, and usually an extra
1217 <function>xxx_create()</function> function is written for this
56b146d3 1218 purpose.
1da177e4
LT
1219 </para>
1220
1221 <para>
1222 In the case of PCI devices, you have to call at first
1223 <function>pci_enable_device()</function> function before
1224 allocating resources. Also, you need to set the proper PCI DMA
1225 mask to limit the accessed i/o range. In some cases, you might
1226 need to call <function>pci_set_master()</function> function,
56b146d3 1227 too.
1da177e4
LT
1228 </para>
1229
1230 <para>
1231 Suppose the 28bit mask, and the code to be added would be like:
1232
1233 <informalexample>
1234 <programlisting>
1235<![CDATA[
1236 if ((err = pci_enable_device(pci)) < 0)
1237 return err;
56b146d3
TK
1238 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1239 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1da177e4
LT
1240 printk(KERN_ERR "error to set 28bit mask DMA\n");
1241 pci_disable_device(pci);
1242 return -ENXIO;
1243 }
1244
1245]]>
1246 </programlisting>
1247 </informalexample>
1248 </para>
1249 </section>
1250
1251 <section id="pci-resource-resource-allocation">
1252 <title>Resource Allocation</title>
1253 <para>
1254 The allocation of I/O ports and irqs are done via standard kernel
1255 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1256 that. And these resources must be released in the destructor
1257 function (see below). Also, on ALSA 0.9.x, you don't need to
56b146d3 1258 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1da177e4
LT
1259 </para>
1260
1261 <para>
1262 Now assume that this PCI device has an I/O port with 8 bytes
446ab5f5 1263 and an interrupt. Then struct <structname>mychip</structname> will have the
56b146d3 1264 following fields:
1da177e4
LT
1265
1266 <informalexample>
1267 <programlisting>
1268<![CDATA[
446ab5f5
TI
1269 struct mychip {
1270 struct snd_card *card;
1da177e4
LT
1271
1272 unsigned long port;
1273 int irq;
1274 };
1275]]>
1276 </programlisting>
1277 </informalexample>
1278 </para>
1279
1280 <para>
1281 For an i/o port (and also a memory region), you need to have
1282 the resource pointer for the standard resource management. For
1283 an irq, you have to keep only the irq number (integer). But you
1284 need to initialize this number as -1 before actual allocation,
1285 since irq 0 is valid. The port address and its resource pointer
1286 can be initialized as null by
561b220a 1287 <function>kzalloc()</function> automatically, so you
1da177e4
LT
1288 don't have to take care of resetting them.
1289 </para>
1290
1291 <para>
1292 The allocation of an i/o port is done like this:
1293
1294 <informalexample>
1295 <programlisting>
1296<![CDATA[
1297 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1298 kfree(chip);
1299 pci_disable_device(pci);
1300 return err;
1301 }
1302 chip->port = pci_resource_start(pci, 0);
1303]]>
1304 </programlisting>
1305 </informalexample>
1306 </para>
1307
1308 <para>
1309 <!-- obsolete -->
1310 It will reserve the i/o port region of 8 bytes of the given
1311 PCI device. The returned value, chip-&gt;res_port, is allocated
1312 via <function>kmalloc()</function> by
1313 <function>request_region()</function>. The pointer must be
1314 released via <function>kfree()</function>, but there is some
1315 problem regarding this. This issue will be explained more below.
1316 </para>
1317
1318 <para>
1319 The allocation of an interrupt source is done like this:
1320
1321 <informalexample>
1322 <programlisting>
1323<![CDATA[
1324 if (request_irq(pci->irq, snd_mychip_interrupt,
6ce6c7fa 1325 IRQF_DISABLED|IRQF_SHARED, "My Chip", chip)) {
1da177e4
LT
1326 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1327 snd_mychip_free(chip);
1328 return -EBUSY;
1329 }
1330 chip->irq = pci->irq;
1331]]>
1332 </programlisting>
1333 </informalexample>
1334
1335 where <function>snd_mychip_interrupt()</function> is the
1336 interrupt handler defined <link
1337 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1338 Note that chip-&gt;irq should be defined
1339 only when <function>request_irq()</function> succeeded.
1340 </para>
1341
1342 <para>
1343 On the PCI bus, the interrupts can be shared. Thus,
6ce6c7fa 1344 <constant>IRQF_SHARED</constant> is given as the interrupt flag of
1da177e4
LT
1345 <function>request_irq()</function>.
1346 </para>
1347
1348 <para>
1349 The last argument of <function>request_irq()</function> is the
1350 data pointer passed to the interrupt handler. Usually, the
1351 chip-specific record is used for that, but you can use what you
1352 like, too.
1353 </para>
1354
1355 <para>
1356 I won't define the detail of the interrupt handler at this
1357 point, but at least its appearance can be explained now. The
1358 interrupt handler looks usually like the following:
1359
1360 <informalexample>
1361 <programlisting>
1362<![CDATA[
ad4d1dea 1363 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1da177e4 1364 {
446ab5f5 1365 struct mychip *chip = dev_id;
1da177e4
LT
1366 ....
1367 return IRQ_HANDLED;
1368 }
1369]]>
1370 </programlisting>
1371 </informalexample>
1372 </para>
1373
1374 <para>
1375 Now let's write the corresponding destructor for the resources
1376 above. The role of destructor is simple: disable the hardware
1377 (if already activated) and release the resources. So far, we
1378 have no hardware part, so the disabling is not written here.
1379 </para>
1380
1381 <para>
1382 For releasing the resources, <quote>check-and-release</quote>
1383 method is a safer way. For the interrupt, do like this:
1384
1385 <informalexample>
1386 <programlisting>
1387<![CDATA[
1388 if (chip->irq >= 0)
437a5a46 1389 free_irq(chip->irq, chip);
1da177e4
LT
1390]]>
1391 </programlisting>
1392 </informalexample>
1393
1394 Since the irq number can start from 0, you should initialize
1395 chip-&gt;irq with a negative value (e.g. -1), so that you can
1396 check the validity of the irq number as above.
1397 </para>
1398
1399 <para>
1400 When you requested I/O ports or memory regions via
1401 <function>pci_request_region()</function> or
1402 <function>pci_request_regions()</function> like this example,
1403 release the resource(s) using the corresponding function,
1404 <function>pci_release_region()</function> or
1405 <function>pci_release_regions()</function>.
1406
1407 <informalexample>
1408 <programlisting>
1409<![CDATA[
1410 pci_release_regions(chip->pci);
1411]]>
1412 </programlisting>
1413 </informalexample>
1414 </para>
1415
1416 <para>
1417 When you requested manually via <function>request_region()</function>
1418 or <function>request_mem_region</function>, you can release it via
1419 <function>release_resource()</function>. Suppose that you keep
1420 the resource pointer returned from <function>request_region()</function>
1421 in chip-&gt;res_port, the release procedure looks like below:
1422
1423 <informalexample>
1424 <programlisting>
1425<![CDATA[
b1d5776d 1426 release_and_free_resource(chip->res_port);
1da177e4
LT
1427]]>
1428 </programlisting>
1429 </informalexample>
1da177e4
LT
1430 </para>
1431
1432 <para>
1433 Don't forget to call <function>pci_disable_device()</function>
1434 before all finished.
1435 </para>
1436
1437 <para>
1438 And finally, release the chip-specific record.
1439
1440 <informalexample>
1441 <programlisting>
1442<![CDATA[
1443 kfree(chip);
1444]]>
1445 </programlisting>
1446 </informalexample>
1447 </para>
1448
1449 <para>
1450 Again, remember that you cannot
1451 set <parameter>__devexit</parameter> prefix for this destructor.
1452 </para>
1453
1454 <para>
1455 We didn't implement the hardware-disabling part in the above.
1456 If you need to do this, please note that the destructor may be
1457 called even before the initialization of the chip is completed.
1458 It would be better to have a flag to skip the hardware-disabling
1459 if the hardware was not initialized yet.
1460 </para>
1461
1462 <para>
1463 When the chip-data is assigned to the card using
1464 <function>snd_device_new()</function> with
1465 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1466 called at the last. That is, it is assured that all other
1467 components like PCMs and controls have been already released.
1468 You don't have to call stopping PCMs, etc. explicitly, but just
1469 stop the hardware in the low-level.
1470 </para>
1471
1472 <para>
1473 The management of a memory-mapped region is almost as same as
1474 the management of an i/o port. You'll need three fields like
1475 the following:
1476
1477 <informalexample>
1478 <programlisting>
1479<![CDATA[
446ab5f5 1480 struct mychip {
1da177e4
LT
1481 ....
1482 unsigned long iobase_phys;
1483 void __iomem *iobase_virt;
1484 };
1485]]>
1486 </programlisting>
1487 </informalexample>
1488
1489 and the allocation would be like below:
1490
1491 <informalexample>
1492 <programlisting>
1493<![CDATA[
1494 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1495 kfree(chip);
1496 return err;
1497 }
1498 chip->iobase_phys = pci_resource_start(pci, 0);
1499 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1500 pci_resource_len(pci, 0));
1501]]>
1502 </programlisting>
1503 </informalexample>
1504
1505 and the corresponding destructor would be:
1506
1507 <informalexample>
1508 <programlisting>
1509<![CDATA[
446ab5f5 1510 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1511 {
1512 ....
1513 if (chip->iobase_virt)
1514 iounmap(chip->iobase_virt);
1515 ....
1516 pci_release_regions(chip->pci);
1517 ....
1518 }
1519]]>
1520 </programlisting>
1521 </informalexample>
1522 </para>
1523
1524 </section>
1525
1526 <section id="pci-resource-device-struct">
1527 <title>Registration of Device Struct</title>
1528 <para>
1529 At some point, typically after calling <function>snd_device_new()</function>,
446ab5f5 1530 you need to register the struct <structname>device</structname> of the chip
1da177e4
LT
1531 you're handling for udev and co. ALSA provides a macro for compatibility with
1532 older kernels. Simply call like the following:
1533 <informalexample>
1534 <programlisting>
1535<![CDATA[
1536 snd_card_set_dev(card, &pci->dev);
1537]]>
1538 </programlisting>
1539 </informalexample>
1540 so that it stores the PCI's device pointer to the card. This will be
1541 referred by ALSA core functions later when the devices are registered.
1542 </para>
1543 <para>
1544 In the case of non-PCI, pass the proper device struct pointer of the BUS
1545 instead. (In the case of legacy ISA without PnP, you don't have to do
1546 anything.)
1547 </para>
1548 </section>
1549
1550 <section id="pci-resource-entries">
1551 <title>PCI Entries</title>
1552 <para>
1553 So far, so good. Let's finish the rest of missing PCI
1554 stuffs. At first, we need a
1555 <structname>pci_device_id</structname> table for this
1556 chipset. It's a table of PCI vendor/device ID number, and some
1557 masks.
1558 </para>
1559
1560 <para>
1561 For example,
1562
1563 <informalexample>
1564 <programlisting>
1565<![CDATA[
f40b6890 1566 static struct pci_device_id snd_mychip_ids[] = {
1da177e4
LT
1567 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1568 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1569 ....
1570 { 0, }
1571 };
1572 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1573]]>
1574 </programlisting>
1575 </informalexample>
1576 </para>
1577
1578 <para>
1579 The first and second fields of
1580 <structname>pci_device_id</structname> struct are the vendor and
1581 device IDs. If you have nothing special to filter the matching
1582 devices, you can use the rest of fields like above. The last
1583 field of <structname>pci_device_id</structname> struct is a
1584 private data for this entry. You can specify any value here, for
1585 example, to tell the type of different operations per each
1586 device IDs. Such an example is found in intel8x0 driver.
1587 </para>
1588
1589 <para>
1590 The last entry of this list is the terminator. You must
1591 specify this all-zero entry.
1592 </para>
1593
1594 <para>
1595 Then, prepare the <structname>pci_driver</structname> record:
1596
1597 <informalexample>
1598 <programlisting>
1599<![CDATA[
1600 static struct pci_driver driver = {
1601 .name = "My Own Chip",
1602 .id_table = snd_mychip_ids,
1603 .probe = snd_mychip_probe,
1604 .remove = __devexit_p(snd_mychip_remove),
1605 };
1606]]>
1607 </programlisting>
1608 </informalexample>
1609 </para>
1610
1611 <para>
1612 The <structfield>probe</structfield> and
1613 <structfield>remove</structfield> functions are what we already
1614 defined in
1615 the previous sections. The <structfield>remove</structfield> should
1616 be defined with
1617 <function>__devexit_p()</function> macro, so that it's not
1618 defined for built-in (and non-hot-pluggable) case. The
1619 <structfield>name</structfield>
1620 field is the name string of this device. Note that you must not
1621 use a slash <quote>/</quote> in this string.
1622 </para>
1623
1624 <para>
1625 And at last, the module entries:
1626
1627 <informalexample>
1628 <programlisting>
1629<![CDATA[
1630 static int __init alsa_card_mychip_init(void)
1631 {
01d25d46 1632 return pci_register_driver(&driver);
1da177e4
LT
1633 }
1634
1635 static void __exit alsa_card_mychip_exit(void)
1636 {
1637 pci_unregister_driver(&driver);
1638 }
1639
1640 module_init(alsa_card_mychip_init)
1641 module_exit(alsa_card_mychip_exit)
1642]]>
1643 </programlisting>
1644 </informalexample>
1645 </para>
1646
1647 <para>
1648 Note that these module entries are tagged with
1649 <parameter>__init</parameter> and
1650 <parameter>__exit</parameter> prefixes, not
1651 <parameter>__devinit</parameter> nor
1652 <parameter>__devexit</parameter>.
1653 </para>
1654
1655 <para>
1656 Oh, one thing was forgotten. If you have no exported symbols,
1657 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1658 it's not necessary, though).
1659
1660 <informalexample>
1661 <programlisting>
1662<![CDATA[
1663 EXPORT_NO_SYMBOLS;
1664]]>
1665 </programlisting>
1666 </informalexample>
1667
1668 That's all!
1669 </para>
1670 </section>
1671 </chapter>
1672
1673
1674<!-- ****************************************************** -->
1675<!-- PCM Interface -->
1676<!-- ****************************************************** -->
1677 <chapter id="pcm-interface">
1678 <title>PCM Interface</title>
1679
1680 <section id="pcm-interface-general">
1681 <title>General</title>
1682 <para>
1683 The PCM middle layer of ALSA is quite powerful and it is only
1684 necessary for each driver to implement the low-level functions
1685 to access its hardware.
1686 </para>
1687
1688 <para>
1689 For accessing to the PCM layer, you need to include
1690 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1691 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1692 if you access to some functions related with hw_param.
1693 </para>
1694
1695 <para>
1696 Each card device can have up to four pcm instances. A pcm
1697 instance corresponds to a pcm device file. The limitation of
1698 number of instances comes only from the available bit size of
1699 the linux's device number. Once when 64bit device number is
1700 used, we'll have more available pcm instances.
1701 </para>
1702
1703 <para>
1704 A pcm instance consists of pcm playback and capture streams,
1705 and each pcm stream consists of one or more pcm substreams. Some
1706 soundcard supports the multiple-playback function. For example,
1707 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1708 each open, a free substream is (usually) automatically chosen
1709 and opened. Meanwhile, when only one substream exists and it was
1710 already opened, the succeeding open will result in the blocking
1711 or the error with <constant>EAGAIN</constant> according to the
1712 file open mode. But you don't have to know the detail in your
1713 driver. The PCM middle layer will take all such jobs.
1714 </para>
1715 </section>
1716
1717 <section id="pcm-interface-example">
1718 <title>Full Code Example</title>
1719 <para>
1720 The example code below does not include any hardware access
1721 routines but shows only the skeleton, how to build up the PCM
1722 interfaces.
1723
1724 <example>
1725 <title>PCM Example Code</title>
1726 <programlisting>
1727<![CDATA[
1728 #include <sound/pcm.h>
1729 ....
1730
1731 /* hardware definition */
446ab5f5 1732 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
1733 .info = (SNDRV_PCM_INFO_MMAP |
1734 SNDRV_PCM_INFO_INTERLEAVED |
1735 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1736 SNDRV_PCM_INFO_MMAP_VALID),
1737 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1738 .rates = SNDRV_PCM_RATE_8000_48000,
1739 .rate_min = 8000,
1740 .rate_max = 48000,
1741 .channels_min = 2,
1742 .channels_max = 2,
1743 .buffer_bytes_max = 32768,
1744 .period_bytes_min = 4096,
1745 .period_bytes_max = 32768,
1746 .periods_min = 1,
1747 .periods_max = 1024,
1748 };
1749
1750 /* hardware definition */
446ab5f5 1751 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1da177e4
LT
1752 .info = (SNDRV_PCM_INFO_MMAP |
1753 SNDRV_PCM_INFO_INTERLEAVED |
1754 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1755 SNDRV_PCM_INFO_MMAP_VALID),
1756 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1757 .rates = SNDRV_PCM_RATE_8000_48000,
1758 .rate_min = 8000,
1759 .rate_max = 48000,
1760 .channels_min = 2,
1761 .channels_max = 2,
1762 .buffer_bytes_max = 32768,
1763 .period_bytes_min = 4096,
1764 .period_bytes_max = 32768,
1765 .periods_min = 1,
1766 .periods_max = 1024,
1767 };
1768
1769 /* open callback */
446ab5f5 1770 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1da177e4 1771 {
446ab5f5
TI
1772 struct mychip *chip = snd_pcm_substream_chip(substream);
1773 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1774
1775 runtime->hw = snd_mychip_playback_hw;
1776 // more hardware-initialization will be done here
1777 return 0;
1778 }
1779
1780 /* close callback */
446ab5f5 1781 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1da177e4 1782 {
446ab5f5 1783 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1784 // the hardware-specific codes will be here
1785 return 0;
1786
1787 }
1788
1789 /* open callback */
446ab5f5 1790 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1da177e4 1791 {
446ab5f5
TI
1792 struct mychip *chip = snd_pcm_substream_chip(substream);
1793 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1794
1795 runtime->hw = snd_mychip_capture_hw;
1796 // more hardware-initialization will be done here
1797 return 0;
1798 }
1799
1800 /* close callback */
446ab5f5 1801 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1da177e4 1802 {
446ab5f5 1803 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1804 // the hardware-specific codes will be here
1805 return 0;
1806
1807 }
1808
1809 /* hw_params callback */
446ab5f5
TI
1810 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1811 struct snd_pcm_hw_params *hw_params)
1da177e4
LT
1812 {
1813 return snd_pcm_lib_malloc_pages(substream,
1814 params_buffer_bytes(hw_params));
1815 }
1816
1817 /* hw_free callback */
446ab5f5 1818 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1da177e4
LT
1819 {
1820 return snd_pcm_lib_free_pages(substream);
1821 }
1822
1823 /* prepare callback */
446ab5f5 1824 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1da177e4 1825 {
446ab5f5
TI
1826 struct mychip *chip = snd_pcm_substream_chip(substream);
1827 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1828
1829 /* set up the hardware with the current configuration
1830 * for example...
1831 */
1832 mychip_set_sample_format(chip, runtime->format);
1833 mychip_set_sample_rate(chip, runtime->rate);
1834 mychip_set_channels(chip, runtime->channels);
0b7bed4e 1835 mychip_set_dma_setup(chip, runtime->dma_addr,
1da177e4
LT
1836 chip->buffer_size,
1837 chip->period_size);
1838 return 0;
1839 }
1840
1841 /* trigger callback */
446ab5f5 1842 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1da177e4
LT
1843 int cmd)
1844 {
1845 switch (cmd) {
1846 case SNDRV_PCM_TRIGGER_START:
1847 // do something to start the PCM engine
1848 break;
1849 case SNDRV_PCM_TRIGGER_STOP:
1850 // do something to stop the PCM engine
1851 break;
1852 default:
1853 return -EINVAL;
1854 }
1855 }
1856
1857 /* pointer callback */
1858 static snd_pcm_uframes_t
446ab5f5 1859 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1da177e4 1860 {
446ab5f5 1861 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1862 unsigned int current_ptr;
1863
1864 /* get the current hardware pointer */
1865 current_ptr = mychip_get_hw_pointer(chip);
1866 return current_ptr;
1867 }
1868
1869 /* operators */
446ab5f5 1870 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
1871 .open = snd_mychip_playback_open,
1872 .close = snd_mychip_playback_close,
1873 .ioctl = snd_pcm_lib_ioctl,
1874 .hw_params = snd_mychip_pcm_hw_params,
1875 .hw_free = snd_mychip_pcm_hw_free,
1876 .prepare = snd_mychip_pcm_prepare,
1877 .trigger = snd_mychip_pcm_trigger,
1878 .pointer = snd_mychip_pcm_pointer,
1879 };
1880
1881 /* operators */
446ab5f5 1882 static struct snd_pcm_ops snd_mychip_capture_ops = {
1da177e4
LT
1883 .open = snd_mychip_capture_open,
1884 .close = snd_mychip_capture_close,
1885 .ioctl = snd_pcm_lib_ioctl,
1886 .hw_params = snd_mychip_pcm_hw_params,
1887 .hw_free = snd_mychip_pcm_hw_free,
1888 .prepare = snd_mychip_pcm_prepare,
1889 .trigger = snd_mychip_pcm_trigger,
1890 .pointer = snd_mychip_pcm_pointer,
1891 };
1892
1893 /*
1894 * definitions of capture are omitted here...
1895 */
1896
1897 /* create a pcm device */
446ab5f5 1898 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1899 {
446ab5f5 1900 struct snd_pcm *pcm;
1da177e4
LT
1901 int err;
1902
1903 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1904 &pcm)) < 0)
1905 return err;
1906 pcm->private_data = chip;
1907 strcpy(pcm->name, "My Chip");
1908 chip->pcm = pcm;
1909 /* set operators */
1910 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1911 &snd_mychip_playback_ops);
1912 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1913 &snd_mychip_capture_ops);
1914 /* pre-allocation of buffers */
1915 /* NOTE: this may fail */
1916 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1917 snd_dma_pci_data(chip->pci),
1918 64*1024, 64*1024);
1919 return 0;
1920 }
1921]]>
1922 </programlisting>
1923 </example>
1924 </para>
1925 </section>
1926
1927 <section id="pcm-interface-constructor">
1928 <title>Constructor</title>
1929 <para>
1930 A pcm instance is allocated by <function>snd_pcm_new()</function>
1931 function. It would be better to create a constructor for pcm,
1932 namely,
1933
1934 <informalexample>
1935 <programlisting>
1936<![CDATA[
446ab5f5 1937 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1938 {
446ab5f5 1939 struct snd_pcm *pcm;
1da177e4
LT
1940 int err;
1941
1942 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1943 &pcm)) < 0)
1944 return err;
1945 pcm->private_data = chip;
1946 strcpy(pcm->name, "My Chip");
1947 chip->pcm = pcm;
1948 ....
1949 return 0;
1950 }
1951]]>
1952 </programlisting>
1953 </informalexample>
1954 </para>
1955
1956 <para>
1957 The <function>snd_pcm_new()</function> function takes the four
1958 arguments. The first argument is the card pointer to which this
1959 pcm is assigned, and the second is the ID string.
1960 </para>
1961
1962 <para>
1963 The third argument (<parameter>index</parameter>, 0 in the
1964 above) is the index of this new pcm. It begins from zero. When
1965 you will create more than one pcm instances, specify the
1966 different numbers in this argument. For example,
1967 <parameter>index</parameter> = 1 for the second PCM device.
1968 </para>
1969
1970 <para>
1971 The fourth and fifth arguments are the number of substreams
1972 for playback and capture, respectively. Here both 1 are given in
1973 the above example. When no playback or no capture is available,
1974 pass 0 to the corresponding argument.
1975 </para>
1976
1977 <para>
1978 If a chip supports multiple playbacks or captures, you can
1979 specify more numbers, but they must be handled properly in
1980 open/close, etc. callbacks. When you need to know which
1981 substream you are referring to, then it can be obtained from
446ab5f5 1982 struct <structname>snd_pcm_substream</structname> data passed to each callback
1da177e4
LT
1983 as follows:
1984
1985 <informalexample>
1986 <programlisting>
1987<![CDATA[
446ab5f5 1988 struct snd_pcm_substream *substream;
1da177e4
LT
1989 int index = substream->number;
1990]]>
1991 </programlisting>
1992 </informalexample>
1993 </para>
1994
1995 <para>
1996 After the pcm is created, you need to set operators for each
1997 pcm stream.
1998
1999 <informalexample>
2000 <programlisting>
2001<![CDATA[
2002 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2003 &snd_mychip_playback_ops);
2004 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2005 &snd_mychip_capture_ops);
2006]]>
2007 </programlisting>
2008 </informalexample>
2009 </para>
2010
2011 <para>
2012 The operators are defined typically like this:
2013
2014 <informalexample>
2015 <programlisting>
2016<![CDATA[
446ab5f5 2017 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
2018 .open = snd_mychip_pcm_open,
2019 .close = snd_mychip_pcm_close,
2020 .ioctl = snd_pcm_lib_ioctl,
2021 .hw_params = snd_mychip_pcm_hw_params,
2022 .hw_free = snd_mychip_pcm_hw_free,
2023 .prepare = snd_mychip_pcm_prepare,
2024 .trigger = snd_mychip_pcm_trigger,
2025 .pointer = snd_mychip_pcm_pointer,
2026 };
2027]]>
2028 </programlisting>
2029 </informalexample>
2030
2031 Each of callbacks is explained in the subsection
2032 <link linkend="pcm-interface-operators"><citetitle>
2033 Operators</citetitle></link>.
2034 </para>
2035
2036 <para>
2037 After setting the operators, most likely you'd like to
2038 pre-allocate the buffer. For the pre-allocation, simply call
2039 the following:
2040
2041 <informalexample>
2042 <programlisting>
2043<![CDATA[
2044 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2045 snd_dma_pci_data(chip->pci),
2046 64*1024, 64*1024);
2047]]>
2048 </programlisting>
2049 </informalexample>
2050
2051 It will allocate up to 64kB buffer as default. The details of
2052 buffer management will be described in the later section <link
2053 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2054 Management</citetitle></link>.
2055 </para>
2056
2057 <para>
2058 Additionally, you can set some extra information for this pcm
2059 in pcm-&gt;info_flags.
2060 The available values are defined as
2061 <constant>SNDRV_PCM_INFO_XXX</constant> in
2062 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2063 the hardware definition (described later). When your soundchip
2064 supports only half-duplex, specify like this:
2065
2066 <informalexample>
2067 <programlisting>
2068<![CDATA[
2069 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2070]]>
2071 </programlisting>
2072 </informalexample>
2073 </para>
2074 </section>
2075
2076 <section id="pcm-interface-destructor">
2077 <title>... And the Destructor?</title>
2078 <para>
2079 The destructor for a pcm instance is not always
2080 necessary. Since the pcm device will be released by the middle
2081 layer code automatically, you don't have to call destructor
2082 explicitly.
2083 </para>
2084
2085 <para>
2086 The destructor would be necessary when you created some
2087 special records internally and need to release them. In such a
2088 case, set the destructor function to
2089 pcm-&gt;private_free:
2090
2091 <example>
2092 <title>PCM Instance with a Destructor</title>
2093 <programlisting>
2094<![CDATA[
446ab5f5 2095 static void mychip_pcm_free(struct snd_pcm *pcm)
1da177e4 2096 {
446ab5f5 2097 struct mychip *chip = snd_pcm_chip(pcm);
1da177e4
LT
2098 /* free your own data */
2099 kfree(chip->my_private_pcm_data);
2100 // do what you like else
2101 ....
2102 }
2103
446ab5f5 2104 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 2105 {
446ab5f5 2106 struct snd_pcm *pcm;
1da177e4
LT
2107 ....
2108 /* allocate your own data */
2109 chip->my_private_pcm_data = kmalloc(...);
2110 /* set the destructor */
2111 pcm->private_data = chip;
2112 pcm->private_free = mychip_pcm_free;
2113 ....
2114 }
2115]]>
2116 </programlisting>
2117 </example>
2118 </para>
2119 </section>
2120
2121 <section id="pcm-interface-runtime">
2122 <title>Runtime Pointer - The Chest of PCM Information</title>
2123 <para>
2124 When the PCM substream is opened, a PCM runtime instance is
2125 allocated and assigned to the substream. This pointer is
2126 accessible via <constant>substream-&gt;runtime</constant>.
2127 This runtime pointer holds the various information; it holds
2128 the copy of hw_params and sw_params configurations, the buffer
5bda9fa1 2129 pointers, mmap records, spinlocks, etc. Almost everything you
1da177e4
LT
2130 need for controlling the PCM can be found there.
2131 </para>
2132
2133 <para>
2134 The definition of runtime instance is found in
2135 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2136 copy from the file.
2137 <informalexample>
2138 <programlisting>
2139<![CDATA[
2140struct _snd_pcm_runtime {
2141 /* -- Status -- */
446ab5f5 2142 struct snd_pcm_substream *trigger_master;
1da177e4
LT
2143 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2144 int overrange;
2145 snd_pcm_uframes_t avail_max;
2146 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2147 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2148
2149 /* -- HW params -- */
2150 snd_pcm_access_t access; /* access mode */
2151 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2152 snd_pcm_subformat_t subformat; /* subformat */
2153 unsigned int rate; /* rate in Hz */
2154 unsigned int channels; /* channels */
2155 snd_pcm_uframes_t period_size; /* period size */
2156 unsigned int periods; /* periods */
2157 snd_pcm_uframes_t buffer_size; /* buffer size */
2158 unsigned int tick_time; /* tick time */
2159 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2160 size_t byte_align;
2161 unsigned int frame_bits;
2162 unsigned int sample_bits;
2163 unsigned int info;
2164 unsigned int rate_num;
2165 unsigned int rate_den;
2166
2167 /* -- SW params -- */
07799e75 2168 struct timespec tstamp_mode; /* mmap timestamp is updated */
1da177e4
LT
2169 unsigned int period_step;
2170 unsigned int sleep_min; /* min ticks to sleep */
2171 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2172 snd_pcm_uframes_t start_threshold;
2173 snd_pcm_uframes_t stop_threshold;
2174 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2175 noise is nearest than this */
2176 snd_pcm_uframes_t silence_size; /* Silence filling size */
2177 snd_pcm_uframes_t boundary; /* pointers wrap point */
2178
2179 snd_pcm_uframes_t silenced_start;
2180 snd_pcm_uframes_t silenced_size;
2181
2182 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2183
2184 /* -- mmap -- */
446ab5f5
TI
2185 volatile struct snd_pcm_mmap_status *status;
2186 volatile struct snd_pcm_mmap_control *control;
1da177e4
LT
2187 atomic_t mmap_count;
2188
2189 /* -- locking / scheduling -- */
2190 spinlock_t lock;
2191 wait_queue_head_t sleep;
2192 struct timer_list tick_timer;
2193 struct fasync_struct *fasync;
2194
2195 /* -- private section -- */
2196 void *private_data;
446ab5f5 2197 void (*private_free)(struct snd_pcm_runtime *runtime);
1da177e4
LT
2198
2199 /* -- hardware description -- */
446ab5f5
TI
2200 struct snd_pcm_hardware hw;
2201 struct snd_pcm_hw_constraints hw_constraints;
1da177e4
LT
2202
2203 /* -- interrupt callbacks -- */
446ab5f5
TI
2204 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2205 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
1da177e4
LT
2206
2207 /* -- timer -- */
2208 unsigned int timer_resolution; /* timer resolution */
2209
2210 /* -- DMA -- */
2211 unsigned char *dma_area; /* DMA area */
2212 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2213 size_t dma_bytes; /* size of DMA area */
2214
2215 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2216
2217#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2218 /* -- OSS things -- */
446ab5f5 2219 struct snd_pcm_oss_runtime oss;
1da177e4
LT
2220#endif
2221};
2222]]>
2223 </programlisting>
2224 </informalexample>
2225 </para>
2226
2227 <para>
2228 For the operators (callbacks) of each sound driver, most of
2229 these records are supposed to be read-only. Only the PCM
2230 middle-layer changes / updates these info. The exceptions are
2231 the hardware description (hw), interrupt callbacks
2232 (transfer_ack_xxx), DMA buffer information, and the private
2233 data. Besides, if you use the standard buffer allocation
2234 method via <function>snd_pcm_lib_malloc_pages()</function>,
2235 you don't need to set the DMA buffer information by yourself.
2236 </para>
2237
2238 <para>
2239 In the sections below, important records are explained.
2240 </para>
2241
2242 <section id="pcm-interface-runtime-hw">
2243 <title>Hardware Description</title>
2244 <para>
446ab5f5 2245 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
1da177e4
LT
2246 contains the definitions of the fundamental hardware
2247 configuration. Above all, you'll need to define this in
2248 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2249 the open callback</citetitle></link>.
2250 Note that the runtime instance holds the copy of the
2251 descriptor, not the pointer to the existing descriptor. That
2252 is, in the open callback, you can modify the copied descriptor
2253 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2254 number of channels is 1 only on some chip models, you can
2255 still use the same hardware descriptor and change the
2256 channels_max later:
2257 <informalexample>
2258 <programlisting>
2259<![CDATA[
446ab5f5 2260 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2261 ...
2262 runtime->hw = snd_mychip_playback_hw; /* common definition */
2263 if (chip->model == VERY_OLD_ONE)
2264 runtime->hw.channels_max = 1;
2265]]>
2266 </programlisting>
2267 </informalexample>
2268 </para>
2269
2270 <para>
2271 Typically, you'll have a hardware descriptor like below:
2272 <informalexample>
2273 <programlisting>
2274<![CDATA[
446ab5f5 2275 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
2276 .info = (SNDRV_PCM_INFO_MMAP |
2277 SNDRV_PCM_INFO_INTERLEAVED |
2278 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2279 SNDRV_PCM_INFO_MMAP_VALID),
2280 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2281 .rates = SNDRV_PCM_RATE_8000_48000,
2282 .rate_min = 8000,
2283 .rate_max = 48000,
2284 .channels_min = 2,
2285 .channels_max = 2,
2286 .buffer_bytes_max = 32768,
2287 .period_bytes_min = 4096,
2288 .period_bytes_max = 32768,
2289 .periods_min = 1,
2290 .periods_max = 1024,
2291 };
2292]]>
2293 </programlisting>
2294 </informalexample>
2295 </para>
2296
2297 <para>
2298 <itemizedlist>
2299 <listitem><para>
2300 The <structfield>info</structfield> field contains the type and
2301 capabilities of this pcm. The bit flags are defined in
2302 <filename>&lt;sound/asound.h&gt;</filename> as
2303 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2304 have to specify whether the mmap is supported and which
2305 interleaved format is supported.
2306 When the mmap is supported, add
2307 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2308 hardware supports the interleaved or the non-interleaved
2309 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2310 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2311 be set, respectively. If both are supported, you can set both,
2312 too.
2313 </para>
2314
2315 <para>
2316 In the above example, <constant>MMAP_VALID</constant> and
2317 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2318 mode. Usually both are set. Of course,
2319 <constant>MMAP_VALID</constant> is set only if the mmap is
2320 really supported.
2321 </para>
2322
2323 <para>
2324 The other possible flags are
2325 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2326 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2327 <constant>PAUSE</constant> bit means that the pcm supports the
2328 <quote>pause</quote> operation, while the
2329 <constant>RESUME</constant> bit means that the pcm supports
5fe76e4d
TI
2330 the full <quote>suspend/resume</quote> operation.
2331 If <constant>PAUSE</constant> flag is set,
2332 the <structfield>trigger</structfield> callback below
2333 must handle the corresponding (pause push/release) commands.
2334 The suspend/resume trigger commands can be defined even without
2335 <constant>RESUME</constant> flag. See <link
2336 linkend="power-management"><citetitle>
2337 Power Management</citetitle></link> section for details.
1da177e4
LT
2338 </para>
2339
2340 <para>
2341 When the PCM substreams can be synchronized (typically,
5bda9fa1 2342 synchronized start/stop of a playback and a capture streams),
1da177e4
LT
2343 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2344 too. In this case, you'll need to check the linked-list of
2345 PCM substreams in the trigger callback. This will be
2346 described in the later section.
2347 </para>
2348 </listitem>
2349
2350 <listitem>
2351 <para>
2352 <structfield>formats</structfield> field contains the bit-flags
2353 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2354 If the hardware supports more than one format, give all or'ed
2355 bits. In the example above, the signed 16bit little-endian
2356 format is specified.
2357 </para>
2358 </listitem>
2359
2360 <listitem>
2361 <para>
2362 <structfield>rates</structfield> field contains the bit-flags of
2363 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2364 When the chip supports continuous rates, pass
2365 <constant>CONTINUOUS</constant> bit additionally.
2366 The pre-defined rate bits are provided only for typical
2367 rates. If your chip supports unconventional rates, you need to add
2368 <constant>KNOT</constant> bit and set up the hardware
2369 constraint manually (explained later).
2370 </para>
2371 </listitem>
2372
2373 <listitem>
2374 <para>
2375 <structfield>rate_min</structfield> and
2376 <structfield>rate_max</structfield> define the minimal and
2377 maximal sample rate. This should correspond somehow to
2378 <structfield>rates</structfield> bits.
2379 </para>
2380 </listitem>
2381
2382 <listitem>
2383 <para>
2384 <structfield>channel_min</structfield> and
2385 <structfield>channel_max</structfield>
2386 define, as you might already expected, the minimal and maximal
2387 number of channels.
2388 </para>
2389 </listitem>
2390
2391 <listitem>
2392 <para>
2393 <structfield>buffer_bytes_max</structfield> defines the
2394 maximal buffer size in bytes. There is no
2395 <structfield>buffer_bytes_min</structfield> field, since
2396 it can be calculated from the minimal period size and the
2397 minimal number of periods.
2398 Meanwhile, <structfield>period_bytes_min</structfield> and
2399 define the minimal and maximal size of the period in bytes.
2400 <structfield>periods_max</structfield> and
2401 <structfield>periods_min</structfield> define the maximal and
2402 minimal number of periods in the buffer.
2403 </para>
2404
2405 <para>
2406 The <quote>period</quote> is a term, that corresponds to
2407 fragment in the OSS world. The period defines the size at
2408 which the PCM interrupt is generated. This size strongly
2409 depends on the hardware.
2410 Generally, the smaller period size will give you more
2411 interrupts, that is, more controls.
2412 In the case of capture, this size defines the input latency.
2413 On the other hand, the whole buffer size defines the
2414 output latency for the playback direction.
2415 </para>
2416 </listitem>
2417
2418 <listitem>
2419 <para>
2420 There is also a field <structfield>fifo_size</structfield>.
2421 This specifies the size of the hardware FIFO, but it's not
2422 used currently in the driver nor in the alsa-lib. So, you
2423 can ignore this field.
2424 </para>
2425 </listitem>
2426 </itemizedlist>
2427 </para>
2428 </section>
2429
2430 <section id="pcm-interface-runtime-config">
2431 <title>PCM Configurations</title>
2432 <para>
2433 Ok, let's go back again to the PCM runtime records.
2434 The most frequently referred records in the runtime instance are
2435 the PCM configurations.
2436 The PCM configurations are stored on runtime instance
2437 after the application sends <type>hw_params</type> data via
2438 alsa-lib. There are many fields copied from hw_params and
2439 sw_params structs. For example,
2440 <structfield>format</structfield> holds the format type
2441 chosen by the application. This field contains the enum value
2442 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2443 </para>
2444
2445 <para>
2446 One thing to be noted is that the configured buffer and period
2447 sizes are stored in <quote>frames</quote> in the runtime
2448 In the ALSA world, 1 frame = channels * samples-size.
2449 For conversion between frames and bytes, you can use the
2450 helper functions, <function>frames_to_bytes()</function> and
2451 <function>bytes_to_frames()</function>.
2452 <informalexample>
2453 <programlisting>
2454<![CDATA[
2455 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2456]]>
2457 </programlisting>
2458 </informalexample>
2459 </para>
2460
2461 <para>
2462 Also, many software parameters (sw_params) are
2463 stored in frames, too. Please check the type of the field.
2464 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2465 integer while <type>snd_pcm_sframes_t</type> is for the frames
2466 as signed integer.
2467 </para>
2468 </section>
2469
2470 <section id="pcm-interface-runtime-dma">
2471 <title>DMA Buffer Information</title>
2472 <para>
2473 The DMA buffer is defined by the following four fields,
2474 <structfield>dma_area</structfield>,
2475 <structfield>dma_addr</structfield>,
2476 <structfield>dma_bytes</structfield> and
2477 <structfield>dma_private</structfield>.
2478 The <structfield>dma_area</structfield> holds the buffer
2479 pointer (the logical address). You can call
2480 <function>memcpy</function> from/to
2481 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2482 holds the physical address of the buffer. This field is
2483 specified only when the buffer is a linear buffer.
2484 <structfield>dma_bytes</structfield> holds the size of buffer
2485 in bytes. <structfield>dma_private</structfield> is used for
2486 the ALSA DMA allocator.
2487 </para>
2488
2489 <para>
2490 If you use a standard ALSA function,
2491 <function>snd_pcm_lib_malloc_pages()</function>, for
2492 allocating the buffer, these fields are set by the ALSA middle
2493 layer, and you should <emphasis>not</emphasis> change them by
2494 yourself. You can read them but not write them.
2495 On the other hand, if you want to allocate the buffer by
2496 yourself, you'll need to manage it in hw_params callback.
2497 At least, <structfield>dma_bytes</structfield> is mandatory.
2498 <structfield>dma_area</structfield> is necessary when the
2499 buffer is mmapped. If your driver doesn't support mmap, this
2500 field is not necessary. <structfield>dma_addr</structfield>
2501 is also not mandatory. You can use
2502 <structfield>dma_private</structfield> as you like, too.
2503 </para>
2504 </section>
2505
2506 <section id="pcm-interface-runtime-status">
2507 <title>Running Status</title>
2508 <para>
2509 The running status can be referred via <constant>runtime-&gt;status</constant>.
446ab5f5 2510 This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
1da177e4
LT
2511 record. For example, you can get the current DMA hardware
2512 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2513 </para>
2514
2515 <para>
2516 The DMA application pointer can be referred via
2517 <constant>runtime-&gt;control</constant>, which points
446ab5f5 2518 struct <structname>snd_pcm_mmap_control</structname> record.
1da177e4
LT
2519 However, accessing directly to this value is not recommended.
2520 </para>
2521 </section>
2522
2523 <section id="pcm-interface-runtime-private">
2524 <title>Private Data</title>
2525 <para>
2526 You can allocate a record for the substream and store it in
2527 <constant>runtime-&gt;private_data</constant>. Usually, this
2528 done in
2529 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2530 the open callback</citetitle></link>.
2531 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2532 The <constant>pcm-&gt;private_data</constant> usually points the
2533 chip instance assigned statically at the creation of PCM, while the
2534 <constant>runtime-&gt;private_data</constant> points a dynamic
2535 data created at the PCM open callback.
2536
2537 <informalexample>
2538 <programlisting>
2539<![CDATA[
446ab5f5 2540 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2541 {
446ab5f5 2542 struct my_pcm_data *data;
1da177e4
LT
2543 ....
2544 data = kmalloc(sizeof(*data), GFP_KERNEL);
2545 substream->runtime->private_data = data;
2546 ....
2547 }
2548]]>
2549 </programlisting>
2550 </informalexample>
2551 </para>
2552
2553 <para>
2554 The allocated object must be released in
2555 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2556 the close callback</citetitle></link>.
2557 </para>
2558 </section>
2559
2560 <section id="pcm-interface-runtime-intr">
2561 <title>Interrupt Callbacks</title>
2562 <para>
2563 The field <structfield>transfer_ack_begin</structfield> and
2564 <structfield>transfer_ack_end</structfield> are called at
2565 the beginning and the end of
2566 <function>snd_pcm_period_elapsed()</function>, respectively.
2567 </para>
2568 </section>
2569
2570 </section>
2571
2572 <section id="pcm-interface-operators">
2573 <title>Operators</title>
2574 <para>
2575 OK, now let me explain the detail of each pcm callback
2576 (<parameter>ops</parameter>). In general, every callback must
2577 return 0 if successful, or a negative number with the error
2578 number such as <constant>-EINVAL</constant> at any
2579 error.
2580 </para>
2581
2582 <para>
2583 The callback function takes at least the argument with
446ab5f5 2584 <structname>snd_pcm_substream</structname> pointer. For retrieving the
1da177e4
LT
2585 chip record from the given substream instance, you can use the
2586 following macro.
2587
2588 <informalexample>
2589 <programlisting>
2590<![CDATA[
2591 int xxx() {
446ab5f5 2592 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
2593 ....
2594 }
2595]]>
2596 </programlisting>
2597 </informalexample>
2598
2599 The macro reads <constant>substream-&gt;private_data</constant>,
2600 which is a copy of <constant>pcm-&gt;private_data</constant>.
2601 You can override the former if you need to assign different data
2602 records per PCM substream. For example, cmi8330 driver assigns
2603 different private_data for playback and capture directions,
2604 because it uses two different codecs (SB- and AD-compatible) for
2605 different directions.
2606 </para>
2607
2608 <section id="pcm-interface-operators-open-callback">
2609 <title>open callback</title>
2610 <para>
2611 <informalexample>
2612 <programlisting>
2613<![CDATA[
446ab5f5 2614 static int snd_xxx_open(struct snd_pcm_substream *substream);
1da177e4
LT
2615]]>
2616 </programlisting>
2617 </informalexample>
2618
2619 This is called when a pcm substream is opened.
2620 </para>
2621
2622 <para>
2623 At least, here you have to initialize the runtime-&gt;hw
2624 record. Typically, this is done by like this:
2625
2626 <informalexample>
2627 <programlisting>
2628<![CDATA[
446ab5f5 2629 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2630 {
446ab5f5
TI
2631 struct mychip *chip = snd_pcm_substream_chip(substream);
2632 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2633
2634 runtime->hw = snd_mychip_playback_hw;
2635 return 0;
2636 }
2637]]>
2638 </programlisting>
2639 </informalexample>
2640
2641 where <parameter>snd_mychip_playback_hw</parameter> is the
2642 pre-defined hardware description.
2643 </para>
2644
2645 <para>
2646 You can allocate a private data in this callback, as described
2647 in <link linkend="pcm-interface-runtime-private"><citetitle>
2648 Private Data</citetitle></link> section.
2649 </para>
2650
2651 <para>
2652 If the hardware configuration needs more constraints, set the
2653 hardware constraints here, too.
2654 See <link linkend="pcm-interface-constraints"><citetitle>
2655 Constraints</citetitle></link> for more details.
2656 </para>
2657 </section>
2658
2659 <section id="pcm-interface-operators-close-callback">
2660 <title>close callback</title>
2661 <para>
2662 <informalexample>
2663 <programlisting>
2664<![CDATA[
446ab5f5 2665 static int snd_xxx_close(struct snd_pcm_substream *substream);
1da177e4
LT
2666]]>
2667 </programlisting>
2668 </informalexample>
2669
2670 Obviously, this is called when a pcm substream is closed.
2671 </para>
2672
2673 <para>
2674 Any private instance for a pcm substream allocated in the
2675 open callback will be released here.
2676
2677 <informalexample>
2678 <programlisting>
2679<![CDATA[
446ab5f5 2680 static int snd_xxx_close(struct snd_pcm_substream *substream)
1da177e4
LT
2681 {
2682 ....
2683 kfree(substream->runtime->private_data);
2684 ....
2685 }
2686]]>
2687 </programlisting>
2688 </informalexample>
2689 </para>
2690 </section>
2691
2692 <section id="pcm-interface-operators-ioctl-callback">
2693 <title>ioctl callback</title>
2694 <para>
2695 This is used for any special action to pcm ioctls. But
2696 usually you can pass a generic ioctl callback,
2697 <function>snd_pcm_lib_ioctl</function>.
2698 </para>
2699 </section>
2700
2701 <section id="pcm-interface-operators-hw-params-callback">
2702 <title>hw_params callback</title>
2703 <para>
2704 <informalexample>
2705 <programlisting>
2706<![CDATA[
446ab5f5
TI
2707 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2708 struct snd_pcm_hw_params *hw_params);
1da177e4
LT
2709]]>
2710 </programlisting>
2711 </informalexample>
2712
2713 This and <structfield>hw_free</structfield> callbacks exist
2714 only on ALSA 0.9.x.
2715 </para>
2716
2717 <para>
2718 This is called when the hardware parameter
2719 (<structfield>hw_params</structfield>) is set
2720 up by the application,
2721 that is, once when the buffer size, the period size, the
2722 format, etc. are defined for the pcm substream.
2723 </para>
2724
2725 <para>
2726 Many hardware set-up should be done in this callback,
2727 including the allocation of buffers.
2728 </para>
2729
2730 <para>
2731 Parameters to be initialized are retrieved by
2732 <function>params_xxx()</function> macros. For allocating a
2733 buffer, you can call a helper function,
2734
2735 <informalexample>
2736 <programlisting>
2737<![CDATA[
2738 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2739]]>
2740 </programlisting>
2741 </informalexample>
2742
2743 <function>snd_pcm_lib_malloc_pages()</function> is available
2744 only when the DMA buffers have been pre-allocated.
2745 See the section <link
2746 linkend="buffer-and-memory-buffer-types"><citetitle>
2747 Buffer Types</citetitle></link> for more details.
2748 </para>
2749
2750 <para>
2751 Note that this and <structfield>prepare</structfield> callbacks
2752 may be called multiple times per initialization.
2753 For example, the OSS emulation may
2754 call these callbacks at each change via its ioctl.
2755 </para>
2756
2757 <para>
2758 Thus, you need to take care not to allocate the same buffers
2759 many times, which will lead to memory leak! Calling the
2760 helper function above many times is OK. It will release the
2761 previous buffer automatically when it was already allocated.
2762 </para>
2763
2764 <para>
2765 Another note is that this callback is non-atomic
2766 (schedulable). This is important, because the
2767 <structfield>trigger</structfield> callback
2768 is atomic (non-schedulable). That is, mutex or any
2769 schedule-related functions are not available in
2770 <structfield>trigger</structfield> callback.
2771 Please see the subsection
2772 <link linkend="pcm-interface-atomicity"><citetitle>
2773 Atomicity</citetitle></link> for details.
2774 </para>
2775 </section>
2776
2777 <section id="pcm-interface-operators-hw-free-callback">
2778 <title>hw_free callback</title>
2779 <para>
2780 <informalexample>
2781 <programlisting>
2782<![CDATA[
446ab5f5 2783 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1da177e4
LT
2784]]>
2785 </programlisting>
2786 </informalexample>
2787 </para>
2788
2789 <para>
2790 This is called to release the resources allocated via
2791 <structfield>hw_params</structfield>. For example, releasing the
2792 buffer via
2793 <function>snd_pcm_lib_malloc_pages()</function> is done by
2794 calling the following:
2795
2796 <informalexample>
2797 <programlisting>
2798<![CDATA[
2799 snd_pcm_lib_free_pages(substream);
2800]]>
2801 </programlisting>
2802 </informalexample>
2803 </para>
2804
2805 <para>
2806 This function is always called before the close callback is called.
2807 Also, the callback may be called multiple times, too.
2808 Keep track whether the resource was already released.
2809 </para>
2810 </section>
2811
2812 <section id="pcm-interface-operators-prepare-callback">
2813 <title>prepare callback</title>
2814 <para>
2815 <informalexample>
2816 <programlisting>
2817<![CDATA[
446ab5f5 2818 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1da177e4
LT
2819]]>
2820 </programlisting>
2821 </informalexample>
2822 </para>
2823
2824 <para>
2825 This callback is called when the pcm is
2826 <quote>prepared</quote>. You can set the format type, sample
2827 rate, etc. here. The difference from
2828 <structfield>hw_params</structfield> is that the
2829 <structfield>prepare</structfield> callback will be called at each
2830 time
2831 <function>snd_pcm_prepare()</function> is called, i.e. when
2832 recovered after underruns, etc.
2833 </para>
2834
2835 <para>
2836 Note that this callback became non-atomic since the recent version.
0b28002f 2837 You can use schedule-related functions safely in this callback now.
1da177e4
LT
2838 </para>
2839
2840 <para>
2841 In this and the following callbacks, you can refer to the
2842 values via the runtime record,
2843 substream-&gt;runtime.
2844 For example, to get the current
2845 rate, format or channels, access to
2846 runtime-&gt;rate,
2847 runtime-&gt;format or
2848 runtime-&gt;channels, respectively.
2849 The physical address of the allocated buffer is set to
2850 runtime-&gt;dma_area. The buffer and period sizes are
2851 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2852 respectively.
2853 </para>
2854
2855 <para>
2856 Be careful that this callback will be called many times at
2857 each set up, too.
2858 </para>
2859 </section>
2860
2861 <section id="pcm-interface-operators-trigger-callback">
2862 <title>trigger callback</title>
2863 <para>
2864 <informalexample>
2865 <programlisting>
2866<![CDATA[
446ab5f5 2867 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
1da177e4
LT
2868]]>
2869 </programlisting>
2870 </informalexample>
2871
2872 This is called when the pcm is started, stopped or paused.
2873 </para>
2874
2875 <para>
2876 Which action is specified in the second argument,
2877 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2878 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2879 <constant>START</constant> and <constant>STOP</constant>
2880 commands must be defined in this callback.
2881
2882 <informalexample>
2883 <programlisting>
2884<![CDATA[
2885 switch (cmd) {
2886 case SNDRV_PCM_TRIGGER_START:
2887 // do something to start the PCM engine
2888 break;
2889 case SNDRV_PCM_TRIGGER_STOP:
2890 // do something to stop the PCM engine
2891 break;
2892 default:
2893 return -EINVAL;
2894 }
2895]]>
2896 </programlisting>
2897 </informalexample>
2898 </para>
2899
2900 <para>
2901 When the pcm supports the pause operation (given in info
2902 field of the hardware table), <constant>PAUSE_PUSE</constant>
2903 and <constant>PAUSE_RELEASE</constant> commands must be
2904 handled here, too. The former is the command to pause the pcm,
2905 and the latter to restart the pcm again.
2906 </para>
2907
2908 <para>
5fe76e4d
TI
2909 When the pcm supports the suspend/resume operation,
2910 regardless of full or partial suspend/resume support,
1da177e4
LT
2911 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2912 commands must be handled, too.
2913 These commands are issued when the power-management status is
2914 changed. Obviously, the <constant>SUSPEND</constant> and
2915 <constant>RESUME</constant>
2916 do suspend and resume of the pcm substream, and usually, they
2917 are identical with <constant>STOP</constant> and
2918 <constant>START</constant> commands, respectively.
5fe76e4d
TI
2919 See <link linkend="power-management"><citetitle>
2920 Power Management</citetitle></link> section for details.
1da177e4
LT
2921 </para>
2922
2923 <para>
2924 As mentioned, this callback is atomic. You cannot call
2925 the function going to sleep.
2926 The trigger callback should be as minimal as possible,
2927 just really triggering the DMA. The other stuff should be
2928 initialized hw_params and prepare callbacks properly
2929 beforehand.
2930 </para>
2931 </section>
2932
2933 <section id="pcm-interface-operators-pointer-callback">
2934 <title>pointer callback</title>
2935 <para>
2936 <informalexample>
2937 <programlisting>
2938<![CDATA[
446ab5f5 2939 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
1da177e4
LT
2940]]>
2941 </programlisting>
2942 </informalexample>
2943
2944 This callback is called when the PCM middle layer inquires
2945 the current hardware position on the buffer. The position must
2946 be returned in frames (which was in bytes on ALSA 0.5.x),
2947 ranged from 0 to buffer_size - 1.
2948 </para>
2949
2950 <para>
2951 This is called usually from the buffer-update routine in the
2952 pcm middle layer, which is invoked when
2953 <function>snd_pcm_period_elapsed()</function> is called in the
2954 interrupt routine. Then the pcm middle layer updates the
2955 position and calculates the available space, and wakes up the
2956 sleeping poll threads, etc.
2957 </para>
2958
2959 <para>
2960 This callback is also atomic.
2961 </para>
2962 </section>
2963
2964 <section id="pcm-interface-operators-copy-silence">
2965 <title>copy and silence callbacks</title>
2966 <para>
2967 These callbacks are not mandatory, and can be omitted in
2968 most cases. These callbacks are used when the hardware buffer
2969 cannot be on the normal memory space. Some chips have their
2970 own buffer on the hardware which is not mappable. In such a
2971 case, you have to transfer the data manually from the memory
2972 buffer to the hardware buffer. Or, if the buffer is
2973 non-contiguous on both physical and virtual memory spaces,
2974 these callbacks must be defined, too.
2975 </para>
2976
2977 <para>
2978 If these two callbacks are defined, copy and set-silence
2979 operations are done by them. The detailed will be described in
2980 the later section <link
2981 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2982 Management</citetitle></link>.
2983 </para>
2984 </section>
2985
2986 <section id="pcm-interface-operators-ack">
2987 <title>ack callback</title>
2988 <para>
2989 This callback is also not mandatory. This callback is called
2990 when the appl_ptr is updated in read or write operations.
2991 Some drivers like emu10k1-fx and cs46xx need to track the
2992 current appl_ptr for the internal buffer, and this callback
2993 is useful only for such a purpose.
2994 </para>
2995 <para>
2996 This callback is atomic.
2997 </para>
2998 </section>
2999
3000 <section id="pcm-interface-operators-page-callback">
3001 <title>page callback</title>
3002
3003 <para>
3004 This callback is also not mandatory. This callback is used
3005 mainly for the non-contiguous buffer. The mmap calls this
3006 callback to get the page address. Some examples will be
3007 explained in the later section <link
3008 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3009 Management</citetitle></link>, too.
3010 </para>
3011 </section>
3012 </section>
3013
3014 <section id="pcm-interface-interrupt-handler">
3015 <title>Interrupt Handler</title>
3016 <para>
3017 The rest of pcm stuff is the PCM interrupt handler. The
3018 role of PCM interrupt handler in the sound driver is to update
3019 the buffer position and to tell the PCM middle layer when the
3020 buffer position goes across the prescribed period size. To
3021 inform this, call <function>snd_pcm_period_elapsed()</function>
3022 function.
3023 </para>
3024
3025 <para>
3026 There are several types of sound chips to generate the interrupts.
3027 </para>
3028
3029 <section id="pcm-interface-interrupt-handler-boundary">
3030 <title>Interrupts at the period (fragment) boundary</title>
3031 <para>
3032 This is the most frequently found type: the hardware
3033 generates an interrupt at each period boundary.
3034 In this case, you can call
3035 <function>snd_pcm_period_elapsed()</function> at each
3036 interrupt.
3037 </para>
3038
3039 <para>
3040 <function>snd_pcm_period_elapsed()</function> takes the
3041 substream pointer as its argument. Thus, you need to keep the
3042 substream pointer accessible from the chip instance. For
3043 example, define substream field in the chip record to hold the
3044 current running substream pointer, and set the pointer value
3045 at open callback (and reset at close callback).
3046 </para>
3047
3048 <para>
0418726b 3049 If you acquire a spinlock in the interrupt handler, and the
1da177e4
LT
3050 lock is used in other pcm callbacks, too, then you have to
3051 release the lock before calling
3052 <function>snd_pcm_period_elapsed()</function>, because
3053 <function>snd_pcm_period_elapsed()</function> calls other pcm
3054 callbacks inside.
3055 </para>
3056
3057 <para>
3058 A typical coding would be like:
3059
3060 <example>
3061 <title>Interrupt Handler Case #1</title>
3062 <programlisting>
3063<![CDATA[
ad4d1dea 3064 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1da177e4 3065 {
446ab5f5 3066 struct mychip *chip = dev_id;
1da177e4
LT
3067 spin_lock(&chip->lock);
3068 ....
3069 if (pcm_irq_invoked(chip)) {
3070 /* call updater, unlock before it */
3071 spin_unlock(&chip->lock);
3072 snd_pcm_period_elapsed(chip->substream);
3073 spin_lock(&chip->lock);
3074 // acknowledge the interrupt if necessary
3075 }
3076 ....
3077 spin_unlock(&chip->lock);
3078 return IRQ_HANDLED;
3079 }
3080]]>
3081 </programlisting>
3082 </example>
3083 </para>
3084 </section>
3085
3086 <section id="pcm-interface-interrupt-handler-timer">
3087 <title>High-frequent timer interrupts</title>
3088 <para>
3089 This is the case when the hardware doesn't generate interrupts
3090 at the period boundary but do timer-interrupts at the fixed
3091 timer rate (e.g. es1968 or ymfpci drivers).
3092 In this case, you need to check the current hardware
3093 position and accumulates the processed sample length at each
3094 interrupt. When the accumulated size overcomes the period
3095 size, call
3096 <function>snd_pcm_period_elapsed()</function> and reset the
3097 accumulator.
3098 </para>
3099
3100 <para>
3101 A typical coding would be like the following.
3102
3103 <example>
3104 <title>Interrupt Handler Case #2</title>
3105 <programlisting>
3106<![CDATA[
ad4d1dea 3107 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1da177e4 3108 {
446ab5f5 3109 struct mychip *chip = dev_id;
1da177e4
LT
3110 spin_lock(&chip->lock);
3111 ....
3112 if (pcm_irq_invoked(chip)) {
3113 unsigned int last_ptr, size;
3114 /* get the current hardware pointer (in frames) */
3115 last_ptr = get_hw_ptr(chip);
3116 /* calculate the processed frames since the
3117 * last update
3118 */
3119 if (last_ptr < chip->last_ptr)
3120 size = runtime->buffer_size + last_ptr
3121 - chip->last_ptr;
3122 else
3123 size = last_ptr - chip->last_ptr;
3124 /* remember the last updated point */
3125 chip->last_ptr = last_ptr;
3126 /* accumulate the size */
3127 chip->size += size;
3128 /* over the period boundary? */
3129 if (chip->size >= runtime->period_size) {
3130 /* reset the accumulator */
3131 chip->size %= runtime->period_size;
3132 /* call updater */
3133 spin_unlock(&chip->lock);
3134 snd_pcm_period_elapsed(substream);
3135 spin_lock(&chip->lock);
3136 }
3137 // acknowledge the interrupt if necessary
3138 }
3139 ....
3140 spin_unlock(&chip->lock);
3141 return IRQ_HANDLED;
3142 }
3143]]>
3144 </programlisting>
3145 </example>
3146 </para>
3147 </section>
3148
3149 <section id="pcm-interface-interrupt-handler-both">
3150 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3151 <para>
3152 In both cases, even if more than one period are elapsed, you
3153 don't have to call
3154 <function>snd_pcm_period_elapsed()</function> many times. Call
3155 only once. And the pcm layer will check the current hardware
3156 pointer and update to the latest status.
3157 </para>
3158 </section>
3159 </section>
3160
3161 <section id="pcm-interface-atomicity">
3162 <title>Atomicity</title>
3163 <para>
3164 One of the most important (and thus difficult to debug) problem
3165 on the kernel programming is the race condition.
3166 On linux kernel, usually it's solved via spin-locks or
3167 semaphores. In general, if the race condition may
3168 happen in the interrupt handler, it's handled as atomic, and you
3169 have to use spinlock for protecting the critical session. If it
3170 never happens in the interrupt and it may take relatively long
3171 time, you should use semaphore.
3172 </para>
3173
3174 <para>
3175 As already seen, some pcm callbacks are atomic and some are
3176 not. For example, <parameter>hw_params</parameter> callback is
3177 non-atomic, while <parameter>trigger</parameter> callback is
3178 atomic. This means, the latter is called already in a spinlock
3179 held by the PCM middle layer. Please take this atomicity into
3180 account when you use a spinlock or a semaphore in the callbacks.
3181 </para>
3182
3183 <para>
3184 In the atomic callbacks, you cannot use functions which may call
3185 <function>schedule</function> or go to
3186 <function>sleep</function>. The semaphore and mutex do sleep,
3187 and hence they cannot be used inside the atomic callbacks
3188 (e.g. <parameter>trigger</parameter> callback).
3189 For taking a certain delay in such a callback, please use
3190 <function>udelay()</function> or <function>mdelay()</function>.
3191 </para>
3192
3193 <para>
3194 All three atomic callbacks (trigger, pointer, and ack) are
3195 called with local interrupts disabled.
3196 </para>
3197
3198 </section>
3199 <section id="pcm-interface-constraints">
3200 <title>Constraints</title>
3201 <para>
3202 If your chip supports unconventional sample rates, or only the
3203 limited samples, you need to set a constraint for the
3204 condition.
3205 </para>
3206
3207 <para>
3208 For example, in order to restrict the sample rates in the some
3209 supported values, use
3210 <function>snd_pcm_hw_constraint_list()</function>.
3211 You need to call this function in the open callback.
3212
3213 <example>
3214 <title>Example of Hardware Constraints</title>
3215 <programlisting>
3216<![CDATA[
3217 static unsigned int rates[] =
3218 {4000, 10000, 22050, 44100};
446ab5f5 3219 static struct snd_pcm_hw_constraint_list constraints_rates = {
1da177e4
LT
3220 .count = ARRAY_SIZE(rates),
3221 .list = rates,
3222 .mask = 0,
3223 };
3224
446ab5f5 3225 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
1da177e4
LT
3226 {
3227 int err;
3228 ....
3229 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3230 SNDRV_PCM_HW_PARAM_RATE,
3231 &constraints_rates);
3232 if (err < 0)
3233 return err;
3234 ....
3235 }
3236]]>
3237 </programlisting>
3238 </example>
3239 </para>
3240
3241 <para>
3242 There are many different constraints.
3243 Look in <filename>sound/pcm.h</filename> for a complete list.
3244 You can even define your own constraint rules.
3245 For example, let's suppose my_chip can manage a substream of 1 channel
3246 if and only if the format is S16_LE, otherwise it supports any format
5bda9fa1 3247 specified in the <structname>snd_pcm_hardware</structname> structure (or in any
1da177e4
LT
3248 other constraint_list). You can build a rule like this:
3249
3250 <example>
3251 <title>Example of Hardware Constraints for Channels</title>
3252 <programlisting>
3253<![CDATA[
446ab5f5
TI
3254 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3255 struct snd_pcm_hw_rule *rule)
1da177e4 3256 {
446ab5f5
TI
3257 struct snd_interval *c = hw_param_interval(params,
3258 SNDRV_PCM_HW_PARAM_CHANNELS);
3259 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3260 struct snd_mask fmt;
1da177e4
LT
3261
3262 snd_mask_any(&fmt); /* Init the struct */
3263 if (c->min < 2) {
3264 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3265 return snd_mask_refine(f, &fmt);
3266 }
3267 return 0;
3268 }
3269]]>
3270 </programlisting>
3271 </example>
3272 </para>
3273
3274 <para>
3275 Then you need to call this function to add your rule:
3276
3277 <informalexample>
3278 <programlisting>
3279<![CDATA[
3280 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3281 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3282 -1);
3283]]>
3284 </programlisting>
3285 </informalexample>
3286 </para>
3287
3288 <para>
3289 The rule function is called when an application sets the number of
3290 channels. But an application can set the format before the number of
3291 channels. Thus you also need to define the inverse rule:
3292
3293 <example>
3294 <title>Example of Hardware Constraints for Channels</title>
3295 <programlisting>
3296<![CDATA[
446ab5f5
TI
3297 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3298 struct snd_pcm_hw_rule *rule)
1da177e4 3299 {
446ab5f5
TI
3300 struct snd_interval *c = hw_param_interval(params,
3301 SNDRV_PCM_HW_PARAM_CHANNELS);
3302 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3303 struct snd_interval ch;
1da177e4
LT
3304
3305 snd_interval_any(&ch);
3306 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3307 ch.min = ch.max = 1;
3308 ch.integer = 1;
3309 return snd_interval_refine(c, &ch);
3310 }
3311 return 0;
3312 }
3313]]>
3314 </programlisting>
3315 </example>
3316 </para>
3317
3318 <para>
3319 ...and in the open callback:
3320 <informalexample>
3321 <programlisting>
3322<![CDATA[
3323 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3324 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3325 -1);
3326]]>
3327 </programlisting>
3328 </informalexample>
3329 </para>
3330
3331 <para>
3332 I won't explain more details here, rather I
3333 would like to say, <quote>Luke, use the source.</quote>
3334 </para>
3335 </section>
3336
3337 </chapter>
3338
3339
3340<!-- ****************************************************** -->
3341<!-- Control Interface -->
3342<!-- ****************************************************** -->
3343 <chapter id="control-interface">
3344 <title>Control Interface</title>
3345
3346 <section id="control-interface-general">
3347 <title>General</title>
3348 <para>
3349 The control interface is used widely for many switches,
3350 sliders, etc. which are accessed from the user-space. Its most
3351 important use is the mixer interface. In other words, on ALSA
3352 0.9.x, all the mixer stuff is implemented on the control kernel
3353 API (while there was an independent mixer kernel API on 0.5.x).
3354 </para>
3355
3356 <para>
3357 ALSA has a well-defined AC97 control module. If your chip
3358 supports only the AC97 and nothing else, you can skip this
3359 section.
3360 </para>
3361
3362 <para>
3363 The control API is defined in
3364 <filename>&lt;sound/control.h&gt;</filename>.
3365 Include this file if you add your own controls.
3366 </para>
3367 </section>
3368
3369 <section id="control-interface-definition">
3370 <title>Definition of Controls</title>
3371 <para>
3372 For creating a new control, you need to define the three
3373 callbacks: <structfield>info</structfield>,
3374 <structfield>get</structfield> and
3375 <structfield>put</structfield>. Then, define a
446ab5f5 3376 struct <structname>snd_kcontrol_new</structname> record, such as:
1da177e4
LT
3377
3378 <example>
3379 <title>Definition of a Control</title>
3380 <programlisting>
3381<![CDATA[
446ab5f5 3382 static struct snd_kcontrol_new my_control __devinitdata = {
1da177e4
LT
3383 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3384 .name = "PCM Playback Switch",
3385 .index = 0,
3386 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
0b7bed4e 3387 .private_value = 0xffff,
1da177e4
LT
3388 .info = my_control_info,
3389 .get = my_control_get,
3390 .put = my_control_put
3391 };
3392]]>
3393 </programlisting>
3394 </example>
3395 </para>
3396
3397 <para>
3398 Most likely the control is created via
3399 <function>snd_ctl_new1()</function>, and in such a case, you can
3400 add <parameter>__devinitdata</parameter> prefix to the
3401 definition like above.
3402 </para>
3403
3404 <para>
3405 The <structfield>iface</structfield> field specifies the type of
67ed4161
CL
3406 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3407 is usually <constant>MIXER</constant>.
3408 Use <constant>CARD</constant> for global controls that are not
3409 logically part of the mixer.
3410 If the control is closely associated with some specific device on
3411 the sound card, use <constant>HWDEP</constant>,
3412 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3413 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3414 specify the device number with the
3415 <structfield>device</structfield> and
3416 <structfield>subdevice</structfield> fields.
1da177e4
LT
3417 </para>
3418
3419 <para>
3420 The <structfield>name</structfield> is the name identifier
3421 string. On ALSA 0.9.x, the control name is very important,
3422 because its role is classified from its name. There are
3423 pre-defined standard control names. The details are described in
3424 the subsection
3425 <link linkend="control-interface-control-names"><citetitle>
3426 Control Names</citetitle></link>.
3427 </para>
3428
3429 <para>
3430 The <structfield>index</structfield> field holds the index number
3431 of this control. If there are several different controls with
3432 the same name, they can be distinguished by the index
3433 number. This is the case when
3434 several codecs exist on the card. If the index is zero, you can
3435 omit the definition above.
3436 </para>
3437
3438 <para>
3439 The <structfield>access</structfield> field contains the access
3440 type of this control. Give the combination of bit masks,
3441 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3442 The detailed will be explained in the subsection
3443 <link linkend="control-interface-access-flags"><citetitle>
3444 Access Flags</citetitle></link>.
3445 </para>
3446
3447 <para>
0b7bed4e 3448 The <structfield>private_value</structfield> field contains
1da177e4
LT
3449 an arbitrary long integer value for this record. When using
3450 generic <structfield>info</structfield>,
3451 <structfield>get</structfield> and
3452 <structfield>put</structfield> callbacks, you can pass a value
3453 through this field. If several small numbers are necessary, you can
3454 combine them in bitwise. Or, it's possible to give a pointer
3455 (casted to unsigned long) of some record to this field, too.
3456 </para>
3457
3458 <para>
3459 The other three are
3460 <link linkend="control-interface-callbacks"><citetitle>
3461 callback functions</citetitle></link>.
3462 </para>
3463 </section>
3464
3465 <section id="control-interface-control-names">
3466 <title>Control Names</title>
3467 <para>
3468 There are some standards for defining the control names. A
3469 control is usually defined from the three parts as
3470 <quote>SOURCE DIRECTION FUNCTION</quote>.
3471 </para>
3472
3473 <para>
3474 The first, <constant>SOURCE</constant>, specifies the source
3475 of the control, and is a string such as <quote>Master</quote>,
3476 <quote>PCM</quote>, <quote>CD</quote> or
3477 <quote>Line</quote>. There are many pre-defined sources.
3478 </para>
3479
3480 <para>
3481 The second, <constant>DIRECTION</constant>, is one of the
3482 following strings according to the direction of the control:
3483 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3484 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3485 be omitted, meaning both playback and capture directions.
3486 </para>
3487
3488 <para>
3489 The third, <constant>FUNCTION</constant>, is one of the
3490 following strings according to the function of the control:
3491 <quote>Switch</quote>, <quote>Volume</quote> and
3492 <quote>Route</quote>.
3493 </para>
3494
3495 <para>
3496 The example of control names are, thus, <quote>Master Capture
3497 Switch</quote> or <quote>PCM Playback Volume</quote>.
3498 </para>
3499
3500 <para>
3501 There are some exceptions:
3502 </para>
3503
3504 <section id="control-interface-control-names-global">
3505 <title>Global capture and playback</title>
3506 <para>
3507 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3508 and <quote>Capture Volume</quote> are used for the global
3509 capture (input) source, switch and volume. Similarly,
3510 <quote>Playback Switch</quote> and <quote>Playback
3511 Volume</quote> are used for the global output gain switch and
3512 volume.
3513 </para>
3514 </section>
3515
3516 <section id="control-interface-control-names-tone">
3517 <title>Tone-controls</title>
3518 <para>
3519 tone-control switch and volumes are specified like
3520 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3521 Switch</quote>, <quote>Tone Control - Bass</quote>,
3522 <quote>Tone Control - Center</quote>.
3523 </para>
3524 </section>
3525
3526 <section id="control-interface-control-names-3d">
3527 <title>3D controls</title>
3528 <para>
3529 3D-control switches and volumes are specified like <quote>3D
3530 Control - XXX</quote>, e.g. <quote>3D Control -
3531 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3532 Control - Space</quote>.
3533 </para>
3534 </section>
3535
3536 <section id="control-interface-control-names-mic">
3537 <title>Mic boost</title>
3538 <para>
3539 Mic-boost switch is set as <quote>Mic Boost</quote> or
3540 <quote>Mic Boost (6dB)</quote>.
3541 </para>
3542
3543 <para>
3544 More precise information can be found in
3545 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3546 </para>
3547 </section>
3548 </section>
3549
3550 <section id="control-interface-access-flags">
3551 <title>Access Flags</title>
3552
3553 <para>
3554 The access flag is the bit-flags which specifies the access type
3555 of the given control. The default access type is
3556 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3557 which means both read and write are allowed to this control.
3558 When the access flag is omitted (i.e. = 0), it is
3559 regarded as <constant>READWRITE</constant> access as default.
3560 </para>
3561
3562 <para>
3563 When the control is read-only, pass
3564 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3565 In this case, you don't have to define
3566 <structfield>put</structfield> callback.
3567 Similarly, when the control is write-only (although it's a rare
3568 case), you can use <constant>WRITE</constant> flag instead, and
3569 you don't need <structfield>get</structfield> callback.
3570 </para>
3571
3572 <para>
3573 If the control value changes frequently (e.g. the VU meter),
3574 <constant>VOLATILE</constant> flag should be given. This means
3575 that the control may be changed without
3576 <link linkend="control-interface-change-notification"><citetitle>
3577 notification</citetitle></link>. Applications should poll such
3578 a control constantly.
3579 </para>
3580
3581 <para>
3582 When the control is inactive, set
3583 <constant>INACTIVE</constant> flag, too.
3584 There are <constant>LOCK</constant> and
3585 <constant>OWNER</constant> flags for changing the write
3586 permissions.
3587 </para>
3588
3589 </section>
3590
3591 <section id="control-interface-callbacks">
3592 <title>Callbacks</title>
3593
3594 <section id="control-interface-callbacks-info">
3595 <title>info callback</title>
3596 <para>
3597 The <structfield>info</structfield> callback is used to get
3598 the detailed information of this control. This must store the
446ab5f5 3599 values of the given struct <structname>snd_ctl_elem_info</structname>
1da177e4
LT
3600 object. For example, for a boolean control with a single
3601 element will be:
3602
3603 <example>
3604 <title>Example of info callback</title>
3605 <programlisting>
3606<![CDATA[
446ab5f5
TI
3607 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3608 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3609 {
3610 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3611 uinfo->count = 1;
3612 uinfo->value.integer.min = 0;
3613 uinfo->value.integer.max = 1;
3614 return 0;
3615 }
3616]]>
3617 </programlisting>
3618 </example>
3619 </para>
3620
3621 <para>
3622 The <structfield>type</structfield> field specifies the type
3623 of the control. There are <constant>BOOLEAN</constant>,
3624 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3625 <constant>BYTES</constant>, <constant>IEC958</constant> and
3626 <constant>INTEGER64</constant>. The
3627 <structfield>count</structfield> field specifies the
3628 number of elements in this control. For example, a stereo
3629 volume would have count = 2. The
3630 <structfield>value</structfield> field is a union, and
3631 the values stored are depending on the type. The boolean and
3632 integer are identical.
3633 </para>
3634
3635 <para>
3636 The enumerated type is a bit different from others. You'll
3637 need to set the string for the currently given item index.
3638
3639 <informalexample>
3640 <programlisting>
3641<![CDATA[
446ab5f5
TI
3642 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3643 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3644 {
3645 static char *texts[4] = {
3646 "First", "Second", "Third", "Fourth"
3647 };
3648 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3649 uinfo->count = 1;
3650 uinfo->value.enumerated.items = 4;
3651 if (uinfo->value.enumerated.item > 3)
3652 uinfo->value.enumerated.item = 3;
3653 strcpy(uinfo->value.enumerated.name,
3654 texts[uinfo->value.enumerated.item]);
3655 return 0;
3656 }
3657]]>
3658 </programlisting>
3659 </informalexample>
3660 </para>
3661 </section>
3662
3663 <section id="control-interface-callbacks-get">
3664 <title>get callback</title>
3665
3666 <para>
3667 This callback is used to read the current value of the
3668 control and to return to the user-space.
3669 </para>
3670
3671 <para>
3672 For example,
3673
3674 <example>
3675 <title>Example of get callback</title>
3676 <programlisting>
3677<![CDATA[
446ab5f5
TI
3678 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3679 struct snd_ctl_elem_value *ucontrol)
1da177e4 3680 {
446ab5f5 3681 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3682 ucontrol->value.integer.value[0] = get_some_value(chip);
3683 return 0;
3684 }
3685]]>
3686 </programlisting>
3687 </example>
3688 </para>
3689
1da177e4
LT
3690 <para>
3691 The <structfield>value</structfield> field is depending on
3692 the type of control as well as on info callback. For example,
3693 the sb driver uses this field to store the register offset,
3694 the bit-shift and the bit-mask. The
3695 <structfield>private_value</structfield> is set like
3696 <informalexample>
3697 <programlisting>
3698<![CDATA[
3699 .private_value = reg | (shift << 16) | (mask << 24)
3700]]>
3701 </programlisting>
3702 </informalexample>
3703 and is retrieved in callbacks like
3704 <informalexample>
3705 <programlisting>
3706<![CDATA[
446ab5f5
TI
3707 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3708 struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
3709 {
3710 int reg = kcontrol->private_value & 0xff;
3711 int shift = (kcontrol->private_value >> 16) & 0xff;
3712 int mask = (kcontrol->private_value >> 24) & 0xff;
3713 ....
3714 }
3715]]>
3716 </programlisting>
3717 </informalexample>
3718 </para>
3719
3720 <para>
3721 In <structfield>get</structfield> callback, you have to fill all the elements if the
3722 control has more than one elements,
3723 i.e. <structfield>count</structfield> &gt; 1.
3724 In the example above, we filled only one element
3725 (<structfield>value.integer.value[0]</structfield>) since it's
3726 assumed as <structfield>count</structfield> = 1.
3727 </para>
3728 </section>
3729
3730 <section id="control-interface-callbacks-put">
3731 <title>put callback</title>
3732
3733 <para>
3734 This callback is used to write a value from the user-space.
3735 </para>
3736
3737 <para>
3738 For example,
3739
3740 <example>
3741 <title>Example of put callback</title>
3742 <programlisting>
3743<![CDATA[
446ab5f5
TI
3744 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3745 struct snd_ctl_elem_value *ucontrol)
1da177e4 3746 {
446ab5f5 3747 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3748 int changed = 0;
3749 if (chip->current_value !=
3750 ucontrol->value.integer.value[0]) {
3751 change_current_value(chip,
3752 ucontrol->value.integer.value[0]);
3753 changed = 1;
3754 }
3755 return changed;
3756 }
3757]]>
3758 </programlisting>
3759 </example>
3760
3761 As seen above, you have to return 1 if the value is
3762 changed. If the value is not changed, return 0 instead.
3763 If any fatal error happens, return a negative error code as
3764 usual.
3765 </para>
3766
3767 <para>
3768 Like <structfield>get</structfield> callback,
3769 when the control has more than one elements,
5bda9fa1 3770 all elements must be evaluated in this callback, too.
1da177e4
LT
3771 </para>
3772 </section>
3773
3774 <section id="control-interface-callbacks-all">
3775 <title>Callbacks are not atomic</title>
3776 <para>
3777 All these three callbacks are basically not atomic.
3778 </para>
3779 </section>
3780 </section>
3781
3782 <section id="control-interface-constructor">
3783 <title>Constructor</title>
3784 <para>
3785 When everything is ready, finally we can create a new
3786 control. For creating a control, there are two functions to be
3787 called, <function>snd_ctl_new1()</function> and
3788 <function>snd_ctl_add()</function>.
3789 </para>
3790
3791 <para>
3792 In the simplest way, you can do like this:
3793
3794 <informalexample>
3795 <programlisting>
3796<![CDATA[
3797 if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3798 return err;
3799]]>
3800 </programlisting>
3801 </informalexample>
3802
3803 where <parameter>my_control</parameter> is the
446ab5f5 3804 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
1da177e4
LT
3805 is the object pointer to be passed to
3806 kcontrol-&gt;private_data
3807 which can be referred in callbacks.
3808 </para>
3809
3810 <para>
3811 <function>snd_ctl_new1()</function> allocates a new
446ab5f5 3812 <structname>snd_kcontrol</structname> instance (that's why the definition
1da177e4
LT
3813 of <parameter>my_control</parameter> can be with
3814 <parameter>__devinitdata</parameter>
3815 prefix), and <function>snd_ctl_add</function> assigns the given
3816 control component to the card.
3817 </para>
3818 </section>
3819
3820 <section id="control-interface-change-notification">
3821 <title>Change Notification</title>
3822 <para>
3823 If you need to change and update a control in the interrupt
3824 routine, you can call <function>snd_ctl_notify()</function>. For
3825 example,
3826
3827 <informalexample>
3828 <programlisting>
3829<![CDATA[
3830 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3831]]>
3832 </programlisting>
3833 </informalexample>
3834
3835 This function takes the card pointer, the event-mask, and the
3836 control id pointer for the notification. The event-mask
3837 specifies the types of notification, for example, in the above
3838 example, the change of control values is notified.
446ab5f5 3839 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
1da177e4
LT
3840 to be notified.
3841 You can find some examples in <filename>es1938.c</filename> or
3842 <filename>es1968.c</filename> for hardware volume interrupts.
3843 </para>
3844 </section>
3845
3846 </chapter>
3847
3848
3849<!-- ****************************************************** -->
3850<!-- API for AC97 Codec -->
3851<!-- ****************************************************** -->
3852 <chapter id="api-ac97">
3853 <title>API for AC97 Codec</title>
3854
3855 <section>
3856 <title>General</title>
3857 <para>
3858 The ALSA AC97 codec layer is a well-defined one, and you don't
3859 have to write many codes to control it. Only low-level control
3860 routines are necessary. The AC97 codec API is defined in
3861 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3862 </para>
3863 </section>
3864
3865 <section id="api-ac97-example">
3866 <title>Full Code Example</title>
3867 <para>
3868 <example>
3869 <title>Example of AC97 Interface</title>
3870 <programlisting>
3871<![CDATA[
446ab5f5 3872 struct mychip {
1da177e4 3873 ....
446ab5f5 3874 struct snd_ac97 *ac97;
1da177e4
LT
3875 ....
3876 };
3877
446ab5f5 3878 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3879 unsigned short reg)
3880 {
446ab5f5 3881 struct mychip *chip = ac97->private_data;
1da177e4
LT
3882 ....
3883 // read a register value here from the codec
3884 return the_register_value;
3885 }
3886
446ab5f5 3887 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
3888 unsigned short reg, unsigned short val)
3889 {
446ab5f5 3890 struct mychip *chip = ac97->private_data;
1da177e4
LT
3891 ....
3892 // write the given register value to the codec
3893 }
3894
446ab5f5 3895 static int snd_mychip_ac97(struct mychip *chip)
1da177e4 3896 {
446ab5f5
TI
3897 struct snd_ac97_bus *bus;
3898 struct snd_ac97_template ac97;
1da177e4 3899 int err;
446ab5f5 3900 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3901 .write = snd_mychip_ac97_write,
3902 .read = snd_mychip_ac97_read,
3903 };
3904
3905 if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3906 return err;
3907 memset(&ac97, 0, sizeof(ac97));
3908 ac97.private_data = chip;
3909 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3910 }
3911
3912]]>
3913 </programlisting>
3914 </example>
3915 </para>
3916 </section>
3917
3918 <section id="api-ac97-constructor">
3919 <title>Constructor</title>
3920 <para>
3921 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3922 with an <type>ac97_bus_ops_t</type> record with callback functions.
3923
3924 <informalexample>
3925 <programlisting>
3926<![CDATA[
446ab5f5
TI
3927 struct snd_ac97_bus *bus;
3928 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3929 .write = snd_mychip_ac97_write,
3930 .read = snd_mychip_ac97_read,
3931 };
3932
3933 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3934]]>
3935 </programlisting>
3936 </informalexample>
3937
3938 The bus record is shared among all belonging ac97 instances.
3939 </para>
3940
3941 <para>
446ab5f5
TI
3942 And then call <function>snd_ac97_mixer()</function> with an
3943 struct <structname>snd_ac97_template</structname>
1da177e4
LT
3944 record together with the bus pointer created above.
3945
3946 <informalexample>
3947 <programlisting>
3948<![CDATA[
446ab5f5 3949 struct snd_ac97_template ac97;
1da177e4
LT
3950 int err;
3951
3952 memset(&ac97, 0, sizeof(ac97));
3953 ac97.private_data = chip;
3954 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3955]]>
3956 </programlisting>
3957 </informalexample>
3958
3959 where chip-&gt;ac97 is the pointer of a newly created
3960 <type>ac97_t</type> instance.
3961 In this case, the chip pointer is set as the private data, so that
3962 the read/write callback functions can refer to this chip instance.
3963 This instance is not necessarily stored in the chip
3964 record. When you need to change the register values from the
3965 driver, or need the suspend/resume of ac97 codecs, keep this
3966 pointer to pass to the corresponding functions.
3967 </para>
3968 </section>
3969
3970 <section id="api-ac97-callbacks">
3971 <title>Callbacks</title>
3972 <para>
3973 The standard callbacks are <structfield>read</structfield> and
3974 <structfield>write</structfield>. Obviously they
3975 correspond to the functions for read and write accesses to the
3976 hardware low-level codes.
3977 </para>
3978
3979 <para>
3980 The <structfield>read</structfield> callback returns the
3981 register value specified in the argument.
3982
3983 <informalexample>
3984 <programlisting>
3985<![CDATA[
446ab5f5 3986 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3987 unsigned short reg)
3988 {
446ab5f5 3989 struct mychip *chip = ac97->private_data;
1da177e4
LT
3990 ....
3991 return the_register_value;
3992 }
3993]]>
3994 </programlisting>
3995 </informalexample>
3996
3997 Here, the chip can be cast from ac97-&gt;private_data.
3998 </para>
3999
4000 <para>
4001 Meanwhile, the <structfield>write</structfield> callback is
4002 used to set the register value.
4003
4004 <informalexample>
4005 <programlisting>
4006<![CDATA[
446ab5f5 4007 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
4008 unsigned short reg, unsigned short val)
4009]]>
4010 </programlisting>
4011 </informalexample>
4012 </para>
4013
4014 <para>
4015 These callbacks are non-atomic like the callbacks of control API.
4016 </para>
4017
4018 <para>
4019 There are also other callbacks:
4020 <structfield>reset</structfield>,
4021 <structfield>wait</structfield> and
4022 <structfield>init</structfield>.
4023 </para>
4024
4025 <para>
4026 The <structfield>reset</structfield> callback is used to reset
4027 the codec. If the chip requires a special way of reset, you can
4028 define this callback.
4029 </para>
4030
4031 <para>
4032 The <structfield>wait</structfield> callback is used for a
4033 certain wait at the standard initialization of the codec. If the
4034 chip requires the extra wait-time, define this callback.
4035 </para>
4036
4037 <para>
4038 The <structfield>init</structfield> callback is used for
4039 additional initialization of the codec.
4040 </para>
4041 </section>
4042
4043 <section id="api-ac97-updating-registers">
4044 <title>Updating Registers in The Driver</title>
4045 <para>
4046 If you need to access to the codec from the driver, you can
4047 call the following functions:
4048 <function>snd_ac97_write()</function>,
4049 <function>snd_ac97_read()</function>,
4050 <function>snd_ac97_update()</function> and
4051 <function>snd_ac97_update_bits()</function>.
4052 </para>
4053
4054 <para>
4055 Both <function>snd_ac97_write()</function> and
4056 <function>snd_ac97_update()</function> functions are used to
4057 set a value to the given register
4058 (<constant>AC97_XXX</constant>). The difference between them is
4059 that <function>snd_ac97_update()</function> doesn't write a
4060 value if the given value has been already set, while
4061 <function>snd_ac97_write()</function> always rewrites the
4062 value.
4063
4064 <informalexample>
4065 <programlisting>
4066<![CDATA[
4067 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4068 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4069]]>
4070 </programlisting>
4071 </informalexample>
4072 </para>
4073
4074 <para>
4075 <function>snd_ac97_read()</function> is used to read the value
4076 of the given register. For example,
4077
4078 <informalexample>
4079 <programlisting>
4080<![CDATA[
4081 value = snd_ac97_read(ac97, AC97_MASTER);
4082]]>
4083 </programlisting>
4084 </informalexample>
4085 </para>
4086
4087 <para>
4088 <function>snd_ac97_update_bits()</function> is used to update
4089 some bits of the given register.
4090
4091 <informalexample>
4092 <programlisting>
4093<![CDATA[
4094 snd_ac97_update_bits(ac97, reg, mask, value);
4095]]>
4096 </programlisting>
4097 </informalexample>
4098 </para>
4099
4100 <para>
4101 Also, there is a function to change the sample rate (of a
4102 certain register such as
4103 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4104 DRA is supported by the codec:
4105 <function>snd_ac97_set_rate()</function>.
4106
4107 <informalexample>
4108 <programlisting>
4109<![CDATA[
4110 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4111]]>
4112 </programlisting>
4113 </informalexample>
4114 </para>
4115
4116 <para>
4117 The following registers are available for setting the rate:
4118 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4119 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4120 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4121 <constant>AC97_SPDIF</constant>. When the
4122 <constant>AC97_SPDIF</constant> is specified, the register is
4123 not really changed but the corresponding IEC958 status bits will
4124 be updated.
4125 </para>
4126 </section>
4127
4128 <section id="api-ac97-clock-adjustment">
4129 <title>Clock Adjustment</title>
4130 <para>
4131 On some chip, the clock of the codec isn't 48000 but using a
4132 PCI clock (to save a quartz!). In this case, change the field
4133 bus-&gt;clock to the corresponding
4134 value. For example, intel8x0
4135 and es1968 drivers have the auto-measurement function of the
4136 clock.
4137 </para>
4138 </section>
4139
4140 <section id="api-ac97-proc-files">
4141 <title>Proc Files</title>
4142 <para>
4143 The ALSA AC97 interface will create a proc file such as
4144 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4145 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4146 see the current status and registers of the codec.
4147 </para>
4148 </section>
4149
4150 <section id="api-ac97-multiple-codecs">
4151 <title>Multiple Codecs</title>
4152 <para>
4153 When there are several codecs on the same card, you need to
446ab5f5 4154 call <function>snd_ac97_mixer()</function> multiple times with
1da177e4
LT
4155 ac97.num=1 or greater. The <structfield>num</structfield> field
4156 specifies the codec
4157 number.
4158 </para>
4159
4160 <para>
4161 If you have set up multiple codecs, you need to either write
4162 different callbacks for each codec or check
4163 ac97-&gt;num in the
4164 callback routines.
4165 </para>
4166 </section>
4167
4168 </chapter>
4169
4170
4171<!-- ****************************************************** -->
4172<!-- MIDI (MPU401-UART) Interface -->
4173<!-- ****************************************************** -->
4174 <chapter id="midi-interface">
4175 <title>MIDI (MPU401-UART) Interface</title>
4176
4177 <section id="midi-interface-general">
4178 <title>General</title>
4179 <para>
4180 Many soundcards have built-in MIDI (MPU401-UART)
4181 interfaces. When the soundcard supports the standard MPU401-UART
4182 interface, most likely you can use the ALSA MPU401-UART API. The
4183 MPU401-UART API is defined in
4184 <filename>&lt;sound/mpu401.h&gt;</filename>.
4185 </para>
4186
4187 <para>
4188 Some soundchips have similar but a little bit different
4189 implementation of mpu401 stuff. For example, emu10k1 has its own
4190 mpu401 routines.
4191 </para>
4192 </section>
4193
4194 <section id="midi-interface-constructor">
4195 <title>Constructor</title>
4196 <para>
4197 For creating a rawmidi object, call
4198 <function>snd_mpu401_uart_new()</function>.
4199
4200 <informalexample>
4201 <programlisting>
4202<![CDATA[
446ab5f5 4203 struct snd_rawmidi *rmidi;
302e4c2f 4204 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
1da177e4
LT
4205 irq, irq_flags, &rmidi);
4206]]>
4207 </programlisting>
4208 </informalexample>
4209 </para>
4210
4211 <para>
4212 The first argument is the card pointer, and the second is the
4213 index of this component. You can create up to 8 rawmidi
4214 devices.
4215 </para>
4216
4217 <para>
4218 The third argument is the type of the hardware,
4219 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4220 you can use <constant>MPU401_HW_MPU401</constant>.
4221 </para>
4222
4223 <para>
4224 The 4th argument is the i/o port address. Many
4225 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4226 might be a part of its own PCI i/o region. It depends on the
4227 chip design.
4228 </para>
4229
4230 <para>
302e4c2f 4231 The 5th argument is bitflags for additional information.
1da177e4
LT
4232 When the i/o port address above is a part of the PCI i/o
4233 region, the MPU401 i/o port might have been already allocated
302e4c2f
TI
4234 (reserved) by the driver itself. In such a case, pass a bit flag
4235 <constant>MPU401_INFO_INTEGRATED</constant>,
1da177e4
LT
4236 and
4237 the mpu401-uart layer will allocate the i/o ports by itself.
4238 </para>
4239
302e4c2f
TI
4240 <para>
4241 When the controller supports only the input or output MIDI stream,
4242 pass <constant>MPU401_INFO_INPUT</constant> or
4243 <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4244 Then the rawmidi instance is created as a single stream.
4245 </para>
4246
4247 <para>
4248 <constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4249 the access method to MMIO (via readb and writeb) instead of
4250 iob and outb. In this case, you have to pass the iomapped address
4251 to <function>snd_mpu401_uart_new()</function>.
4252 </para>
4253
4254 <para>
4255 When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4256 stream isn't checked in the default interrupt handler. The driver
4257 needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4258 by itself to start processing the output stream in irq handler.
4259 </para>
4260
1da177e4
LT
4261 <para>
4262 Usually, the port address corresponds to the command port and
4263 port + 1 corresponds to the data port. If not, you may change
4264 the <structfield>cport</structfield> field of
446ab5f5
TI
4265 struct <structname>snd_mpu401</structname> manually
4266 afterward. However, <structname>snd_mpu401</structname> pointer is not
1da177e4
LT
4267 returned explicitly by
4268 <function>snd_mpu401_uart_new()</function>. You need to cast
4269 rmidi-&gt;private_data to
446ab5f5 4270 <structname>snd_mpu401</structname> explicitly,
1da177e4
LT
4271
4272 <informalexample>
4273 <programlisting>
4274<![CDATA[
446ab5f5 4275 struct snd_mpu401 *mpu;
1da177e4
LT
4276 mpu = rmidi->private_data;
4277]]>
4278 </programlisting>
4279 </informalexample>
4280
4281 and reset the cport as you like:
4282
4283 <informalexample>
4284 <programlisting>
4285<![CDATA[
4286 mpu->cport = my_own_control_port;
4287]]>
4288 </programlisting>
4289 </informalexample>
4290 </para>
4291
4292 <para>
4293 The 6th argument specifies the irq number for UART. If the irq
4294 is already allocated, pass 0 to the 7th argument
4295 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4296 for irq allocation
4297 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4298 reserved by the mpu401-uart layer. If the card doesn't generates
4299 UART interrupts, pass -1 as the irq number. Then a timer
4300 interrupt will be invoked for polling.
4301 </para>
4302 </section>
4303
4304 <section id="midi-interface-interrupt-handler">
4305 <title>Interrupt Handler</title>
4306 <para>
4307 When the interrupt is allocated in
4308 <function>snd_mpu401_uart_new()</function>, the private
4309 interrupt handler is used, hence you don't have to do nothing
4310 else than creating the mpu401 stuff. Otherwise, you have to call
4311 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4312 a UART interrupt is invoked and checked in your own interrupt
4313 handler.
4314 </para>
4315
4316 <para>
4317 In this case, you need to pass the private_data of the
4318 returned rawmidi object from
4319 <function>snd_mpu401_uart_new()</function> as the second
4320 argument of <function>snd_mpu401_uart_interrupt()</function>.
4321
4322 <informalexample>
4323 <programlisting>
4324<![CDATA[
4325 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4326]]>
4327 </programlisting>
4328 </informalexample>
4329 </para>
4330 </section>
4331
4332 </chapter>
4333
4334
4335<!-- ****************************************************** -->
4336<!-- RawMIDI Interface -->
4337<!-- ****************************************************** -->
4338 <chapter id="rawmidi-interface">
4339 <title>RawMIDI Interface</title>
4340
4341 <section id="rawmidi-interface-overview">
4342 <title>Overview</title>
4343
4344 <para>
4345 The raw MIDI interface is used for hardware MIDI ports that can
4346 be accessed as a byte stream. It is not used for synthesizer
4347 chips that do not directly understand MIDI.
4348 </para>
4349
4350 <para>
4351 ALSA handles file and buffer management. All you have to do is
4352 to write some code to move data between the buffer and the
4353 hardware.
4354 </para>
4355
4356 <para>
4357 The rawmidi API is defined in
4358 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4359 </para>
4360 </section>
4361
4362 <section id="rawmidi-interface-constructor">
4363 <title>Constructor</title>
4364
4365 <para>
4366 To create a rawmidi device, call the
4367 <function>snd_rawmidi_new</function> function:
4368 <informalexample>
4369 <programlisting>
4370<![CDATA[
446ab5f5 4371 struct snd_rawmidi *rmidi;
1da177e4
LT
4372 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4373 if (err < 0)
4374 return err;
4375 rmidi->private_data = chip;
4376 strcpy(rmidi->name, "My MIDI");
4377 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4378 SNDRV_RAWMIDI_INFO_INPUT |
4379 SNDRV_RAWMIDI_INFO_DUPLEX;
4380]]>
4381 </programlisting>
4382 </informalexample>
4383 </para>
4384
4385 <para>
4386 The first argument is the card pointer, the second argument is
4387 the ID string.
4388 </para>
4389
4390 <para>
4391 The third argument is the index of this component. You can
4392 create up to 8 rawmidi devices.
4393 </para>
4394
4395 <para>
4396 The fourth and fifth arguments are the number of output and
4397 input substreams, respectively, of this device. (A substream is
4398 the equivalent of a MIDI port.)
4399 </para>
4400
4401 <para>
4402 Set the <structfield>info_flags</structfield> field to specify
4403 the capabilities of the device.
4404 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4405 at least one output port,
4406 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4407 least one input port,
4408 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4409 can handle output and input at the same time.
4410 </para>
4411
4412 <para>
4413 After the rawmidi device is created, you need to set the
4414 operators (callbacks) for each substream. There are helper
4415 functions to set the operators for all substream of a device:
4416 <informalexample>
4417 <programlisting>
4418<![CDATA[
4419 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4420 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4421]]>
4422 </programlisting>
4423 </informalexample>
4424 </para>
4425
4426 <para>
4427 The operators are usually defined like this:
4428 <informalexample>
4429 <programlisting>
4430<![CDATA[
446ab5f5 4431 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
1da177e4
LT
4432 .open = snd_mymidi_output_open,
4433 .close = snd_mymidi_output_close,
4434 .trigger = snd_mymidi_output_trigger,
4435 };
4436]]>
4437 </programlisting>
4438 </informalexample>
4439 These callbacks are explained in the <link
4440 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4441 section.
4442 </para>
4443
4444 <para>
4445 If there is more than one substream, you should give each one a
4446 unique name:
4447 <informalexample>
4448 <programlisting>
4449<![CDATA[
4450 struct list_head *list;
446ab5f5 4451 struct snd_rawmidi_substream *substream;
1da177e4 4452 list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
446ab5f5 4453 substream = list_entry(list, struct snd_rawmidi_substream, list);
1da177e4
LT
4454 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4455 }
4456 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4457]]>
4458 </programlisting>
4459 </informalexample>
4460 </para>
4461 </section>
4462
4463 <section id="rawmidi-interface-callbacks">
4464 <title>Callbacks</title>
4465
4466 <para>
4467 In all callbacks, the private data that you've set for the
4468 rawmidi device can be accessed as
4469 substream-&gt;rmidi-&gt;private_data.
4470 <!-- <code> isn't available before DocBook 4.3 -->
4471 </para>
4472
4473 <para>
4474 If there is more than one port, your callbacks can determine the
446ab5f5 4475 port index from the struct snd_rawmidi_substream data passed to each
1da177e4
LT
4476 callback:
4477 <informalexample>
4478 <programlisting>
4479<![CDATA[
446ab5f5 4480 struct snd_rawmidi_substream *substream;
1da177e4
LT
4481 int index = substream->number;
4482]]>
4483 </programlisting>
4484 </informalexample>
4485 </para>
4486
4487 <section id="rawmidi-interface-op-open">
4488 <title><function>open</function> callback</title>
4489
4490 <informalexample>
4491 <programlisting>
4492<![CDATA[
446ab5f5 4493 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
1da177e4
LT
4494]]>
4495 </programlisting>
4496 </informalexample>
4497
4498 <para>
4499 This is called when a substream is opened.
4500 You can initialize the hardware here, but you should not yet
4501 start transmitting/receiving data.
4502 </para>
4503 </section>
4504
4505 <section id="rawmidi-interface-op-close">
4506 <title><function>close</function> callback</title>
4507
4508 <informalexample>
4509 <programlisting>
4510<![CDATA[
446ab5f5 4511 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
1da177e4
LT
4512]]>
4513 </programlisting>
4514 </informalexample>
4515
4516 <para>
4517 Guess what.
4518 </para>
4519
4520 <para>
4521 The <function>open</function> and <function>close</function>
4522 callbacks of a rawmidi device are serialized with a mutex,
4523 and can sleep.
4524 </para>
4525 </section>
4526
4527 <section id="rawmidi-interface-op-trigger-out">
4528 <title><function>trigger</function> callback for output
4529 substreams</title>
4530
4531 <informalexample>
4532 <programlisting>
4533<![CDATA[
446ab5f5 4534 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4535]]>
4536 </programlisting>
4537 </informalexample>
4538
4539 <para>
4540 This is called with a nonzero <parameter>up</parameter>
4541 parameter when there is some data in the substream buffer that
4542 must be transmitted.
4543 </para>
4544
4545 <para>
4546 To read data from the buffer, call
4547 <function>snd_rawmidi_transmit_peek</function>. It will
4548 return the number of bytes that have been read; this will be
4549 less than the number of bytes requested when there is no more
4550 data in the buffer.
4551 After the data has been transmitted successfully, call
4552 <function>snd_rawmidi_transmit_ack</function> to remove the
4553 data from the substream buffer:
4554 <informalexample>
4555 <programlisting>
4556<![CDATA[
4557 unsigned char data;
4558 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
446ab5f5 4559 if (snd_mychip_try_to_transmit(data))
1da177e4
LT
4560 snd_rawmidi_transmit_ack(substream, 1);
4561 else
4562 break; /* hardware FIFO full */
4563 }
4564]]>
4565 </programlisting>
4566 </informalexample>
4567 </para>
4568
4569 <para>
4570 If you know beforehand that the hardware will accept data, you
4571 can use the <function>snd_rawmidi_transmit</function> function
4572 which reads some data and removes it from the buffer at once:
4573 <informalexample>
4574 <programlisting>
4575<![CDATA[
446ab5f5 4576 while (snd_mychip_transmit_possible()) {
1da177e4
LT
4577 unsigned char data;
4578 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4579 break; /* no more data */
446ab5f5 4580 snd_mychip_transmit(data);
1da177e4
LT
4581 }
4582]]>
4583 </programlisting>
4584 </informalexample>
4585 </para>
4586
4587 <para>
4588 If you know beforehand how many bytes you can accept, you can
4589 use a buffer size greater than one with the
4590 <function>snd_rawmidi_transmit*</function> functions.
4591 </para>
4592
4593 <para>
4594 The <function>trigger</function> callback must not sleep. If
4595 the hardware FIFO is full before the substream buffer has been
4596 emptied, you have to continue transmitting data later, either
4597 in an interrupt handler, or with a timer if the hardware
4598 doesn't have a MIDI transmit interrupt.
4599 </para>
4600
4601 <para>
4602 The <function>trigger</function> callback is called with a
4603 zero <parameter>up</parameter> parameter when the transmission
4604 of data should be aborted.
4605 </para>
4606 </section>
4607
4608 <section id="rawmidi-interface-op-trigger-in">
4609 <title><function>trigger</function> callback for input
4610 substreams</title>
4611
4612 <informalexample>
4613 <programlisting>
4614<![CDATA[
446ab5f5 4615 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4616]]>
4617 </programlisting>
4618 </informalexample>
4619
4620 <para>
4621 This is called with a nonzero <parameter>up</parameter>
4622 parameter to enable receiving data, or with a zero
4623 <parameter>up</parameter> parameter do disable receiving data.
4624 </para>
4625
4626 <para>
4627 The <function>trigger</function> callback must not sleep; the
4628 actual reading of data from the device is usually done in an
4629 interrupt handler.
4630 </para>
4631
4632 <para>
4633 When data reception is enabled, your interrupt handler should
4634 call <function>snd_rawmidi_receive</function> for all received
4635 data:
4636 <informalexample>
4637 <programlisting>
4638<![CDATA[
4639 void snd_mychip_midi_interrupt(...)
4640 {
4641 while (mychip_midi_available()) {
4642 unsigned char data;
4643 data = mychip_midi_read();
4644 snd_rawmidi_receive(substream, &data, 1);
4645 }
4646 }
4647]]>
4648 </programlisting>
4649 </informalexample>
4650 </para>
4651 </section>
4652
4653 <section id="rawmidi-interface-op-drain">
4654 <title><function>drain</function> callback</title>
4655
4656 <informalexample>
4657 <programlisting>
4658<![CDATA[
446ab5f5 4659 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
1da177e4
LT
4660]]>
4661 </programlisting>
4662 </informalexample>
4663
4664 <para>
4665 This is only used with output substreams. This function should wait
4666 until all data read from the substream buffer has been transmitted.
4667 This ensures that the device can be closed and the driver unloaded
4668 without losing data.
4669 </para>
4670
4671 <para>
4672 This callback is optional. If you do not set
446ab5f5 4673 <structfield>drain</structfield> in the struct snd_rawmidi_ops
1da177e4
LT
4674 structure, ALSA will simply wait for 50&nbsp;milliseconds
4675 instead.
4676 </para>
4677 </section>
4678 </section>
4679
4680 </chapter>
4681
4682
4683<!-- ****************************************************** -->
4684<!-- Miscellaneous Devices -->
4685<!-- ****************************************************** -->
4686 <chapter id="misc-devices">
4687 <title>Miscellaneous Devices</title>
4688
4689 <section id="misc-devices-opl3">
4690 <title>FM OPL3</title>
4691 <para>
4692 The FM OPL3 is still used on many chips (mainly for backward
4693 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4694 OPL3 API is defined in
4695 <filename>&lt;sound/opl3.h&gt;</filename>.
4696 </para>
4697
4698 <para>
4699 FM registers can be directly accessed through direct-FM API,
4700 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4701 ALSA native mode, FM registers are accessed through
4702 Hardware-Dependant Device direct-FM extension API, whereas in
4703 OSS compatible mode, FM registers can be accessed with OSS
4704 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4705 </para>
4706
4707 <para>
4708 For creating the OPL3 component, you have two functions to
4709 call. The first one is a constructor for <type>opl3_t</type>
4710 instance.
4711
4712 <informalexample>
4713 <programlisting>
4714<![CDATA[
446ab5f5 4715 struct snd_opl3 *opl3;
1da177e4
LT
4716 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4717 integrated, &opl3);
4718]]>
4719 </programlisting>
4720 </informalexample>
4721 </para>
4722
4723 <para>
4724 The first argument is the card pointer, the second one is the
4725 left port address, and the third is the right port address. In
4726 most cases, the right port is placed at the left port + 2.
4727 </para>
4728
4729 <para>
4730 The fourth argument is the hardware type.
4731 </para>
4732
4733 <para>
4734 When the left and right ports have been already allocated by
4735 the card driver, pass non-zero to the fifth argument
4736 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4737 allocate the specified ports by itself.
4738 </para>
4739
4740 <para>
4741 When the accessing to the hardware requires special method
4742 instead of the standard I/O access, you can create opl3 instance
4743 separately with <function>snd_opl3_new()</function>.
4744
4745 <informalexample>
4746 <programlisting>
4747<![CDATA[
446ab5f5 4748 struct snd_opl3 *opl3;
1da177e4
LT
4749 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4750]]>
4751 </programlisting>
4752 </informalexample>
4753 </para>
4754
4755 <para>
4756 Then set <structfield>command</structfield>,
4757 <structfield>private_data</structfield> and
4758 <structfield>private_free</structfield> for the private
4759 access function, the private data and the destructor.
4760 The l_port and r_port are not necessarily set. Only the
4761 command must be set properly. You can retrieve the data
4762 from opl3-&gt;private_data field.
4763 </para>
4764
4765 <para>
4766 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4767 call <function>snd_opl3_init()</function> to initialize the chip to the
4768 proper state. Note that <function>snd_opl3_create()</function> always
4769 calls it internally.
4770 </para>
4771
4772 <para>
4773 If the opl3 instance is created successfully, then create a
4774 hwdep device for this opl3.
4775
4776 <informalexample>
4777 <programlisting>
4778<![CDATA[
446ab5f5 4779 struct snd_hwdep *opl3hwdep;
1da177e4
LT
4780 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4781]]>
4782 </programlisting>
4783 </informalexample>
4784 </para>
4785
4786 <para>
4787 The first argument is the <type>opl3_t</type> instance you
4788 created, and the second is the index number, usually 0.
4789 </para>
4790
4791 <para>
4792 The third argument is the index-offset for the sequencer
4793 client assigned to the OPL3 port. When there is an MPU401-UART,
4794 give 1 for here (UART always takes 0).
4795 </para>
4796 </section>
4797
4798 <section id="misc-devices-hardware-dependent">
4799 <title>Hardware-Dependent Devices</title>
4800 <para>
4801 Some chips need the access from the user-space for special
4802 controls or for loading the micro code. In such a case, you can
4803 create a hwdep (hardware-dependent) device. The hwdep API is
4804 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4805 find examples in opl3 driver or
4806 <filename>isa/sb/sb16_csp.c</filename>.
4807 </para>
4808
4809 <para>
4810 Creation of the <type>hwdep</type> instance is done via
4811 <function>snd_hwdep_new()</function>.
4812
4813 <informalexample>
4814 <programlisting>
4815<![CDATA[
446ab5f5 4816 struct snd_hwdep *hw;
1da177e4
LT
4817 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4818]]>
4819 </programlisting>
4820 </informalexample>
4821
4822 where the third argument is the index number.
4823 </para>
4824
4825 <para>
4826 You can then pass any pointer value to the
4827 <parameter>private_data</parameter>.
4828 If you assign a private data, you should define the
4829 destructor, too. The destructor function is set to
4830 <structfield>private_free</structfield> field.
4831
4832 <informalexample>
4833 <programlisting>
4834<![CDATA[
446ab5f5 4835 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
1da177e4
LT
4836 hw->private_data = p;
4837 hw->private_free = mydata_free;
4838]]>
4839 </programlisting>
4840 </informalexample>
4841
4842 and the implementation of destructor would be:
4843
4844 <informalexample>
4845 <programlisting>
4846<![CDATA[
446ab5f5 4847 static void mydata_free(struct snd_hwdep *hw)
1da177e4 4848 {
446ab5f5 4849 struct mydata *p = hw->private_data;
1da177e4
LT
4850 kfree(p);
4851 }
4852]]>
4853 </programlisting>
4854 </informalexample>
4855 </para>
4856
4857 <para>
4858 The arbitrary file operations can be defined for this
4859 instance. The file operators are defined in
4860 <parameter>ops</parameter> table. For example, assume that
4861 this chip needs an ioctl.
4862
4863 <informalexample>
4864 <programlisting>
4865<![CDATA[
4866 hw->ops.open = mydata_open;
4867 hw->ops.ioctl = mydata_ioctl;
4868 hw->ops.release = mydata_release;
4869]]>
4870 </programlisting>
4871 </informalexample>
4872
4873 And implement the callback functions as you like.
4874 </para>
4875 </section>
4876
4877 <section id="misc-devices-IEC958">
4878 <title>IEC958 (S/PDIF)</title>
4879 <para>
4880 Usually the controls for IEC958 devices are implemented via
4881 control interface. There is a macro to compose a name string for
4882 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4883 defined in <filename>&lt;include/asound.h&gt;</filename>.
4884 </para>
4885
4886 <para>
4887 There are some standard controls for IEC958 status bits. These
4888 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4889 and the size of element is fixed as 4 bytes array
4890 (value.iec958.status[x]). For <structfield>info</structfield>
4891 callback, you don't specify
4892 the value field for this type (the count field must be set,
4893 though).
4894 </para>
4895
4896 <para>
4897 <quote>IEC958 Playback Con Mask</quote> is used to return the
4898 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4899 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4900 professional mode. They are read-only controls, and are defined
4901 as MIXER controls (iface =
4902 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4903 </para>
4904
4905 <para>
4906 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4907 defined for getting and setting the current default IEC958
4908 bits. Note that this one is usually defined as a PCM control
4909 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4910 although in some places it's defined as a MIXER control.
4911 </para>
4912
4913 <para>
4914 In addition, you can define the control switches to
4915 enable/disable or to set the raw bit mode. The implementation
4916 will depend on the chip, but the control should be named as
4917 <quote>IEC958 xxx</quote>, preferably using
4918 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4919 </para>
4920
4921 <para>
4922 You can find several cases, for example,
4923 <filename>pci/emu10k1</filename>,
4924 <filename>pci/ice1712</filename>, or
4925 <filename>pci/cmipci.c</filename>.
4926 </para>
4927 </section>
4928
4929 </chapter>
4930
4931
4932<!-- ****************************************************** -->
4933<!-- Buffer and Memory Management -->
4934<!-- ****************************************************** -->
4935 <chapter id="buffer-and-memory">
4936 <title>Buffer and Memory Management</title>
4937
4938 <section id="buffer-and-memory-buffer-types">
4939 <title>Buffer Types</title>
4940 <para>
4941 ALSA provides several different buffer allocation functions
4942 depending on the bus and the architecture. All these have a
4943 consistent API. The allocation of physically-contiguous pages is
4944 done via
4945 <function>snd_malloc_xxx_pages()</function> function, where xxx
4946 is the bus type.
4947 </para>
4948
4949 <para>
4950 The allocation of pages with fallback is
4951 <function>snd_malloc_xxx_pages_fallback()</function>. This
4952 function tries to allocate the specified pages but if the pages
4953 are not available, it tries to reduce the page sizes until the
4954 enough space is found.
4955 </para>
4956
4957 <para>
4958 For releasing the space, call
4959 <function>snd_free_xxx_pages()</function> function.
4960 </para>
4961
4962 <para>
4963 Usually, ALSA drivers try to allocate and reserve
4964 a large contiguous physical space
4965 at the time the module is loaded for the later use.
4966 This is called <quote>pre-allocation</quote>.
4967 As already written, you can call the following function at the
4968 construction of pcm instance (in the case of PCI bus).
4969
4970 <informalexample>
4971 <programlisting>
4972<![CDATA[
4973 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4974 snd_dma_pci_data(pci), size, max);
4975]]>
4976 </programlisting>
4977 </informalexample>
4978
4979 where <parameter>size</parameter> is the byte size to be
4980 pre-allocated and the <parameter>max</parameter> is the maximal
4981 size to be changed via <filename>prealloc</filename> proc file.
4982 The allocator will try to get as large area as possible
4983 within the given size.
4984 </para>
4985
4986 <para>
4987 The second argument (type) and the third argument (device pointer)
4988 are dependent on the bus.
4989 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4990 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4991 For the continuous buffer unrelated to the bus can be pre-allocated
4992 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
4993 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
4994 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
4995 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
4996 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
4997 For the PCI scatter-gather buffers, use
4998 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
4999 <function>snd_dma_pci_data(pci)</function>
5000 (see the section
5001 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5002 </citetitle></link>).
5003 </para>
5004
5005 <para>
5006 Once when the buffer is pre-allocated, you can use the
5007 allocator in the <structfield>hw_params</structfield> callback
5008
5009 <informalexample>
5010 <programlisting>
5011<![CDATA[
5012 snd_pcm_lib_malloc_pages(substream, size);
5013]]>
5014 </programlisting>
5015 </informalexample>
5016
5017 Note that you have to pre-allocate to use this function.
5018 </para>
5019 </section>
5020
5021 <section id="buffer-and-memory-external-hardware">
5022 <title>External Hardware Buffers</title>
5023 <para>
5024 Some chips have their own hardware buffers and the DMA
5025 transfer from the host memory is not available. In such a case,
5026 you need to either 1) copy/set the audio data directly to the
5027 external hardware buffer, or 2) make an intermediate buffer and
5028 copy/set the data from it to the external hardware buffer in
5029 interrupts (or in tasklets, preferably).
5030 </para>
5031
5032 <para>
5033 The first case works fine if the external hardware buffer is enough
5034 large. This method doesn't need any extra buffers and thus is
5035 more effective. You need to define the
5036 <structfield>copy</structfield> and
5037 <structfield>silence</structfield> callbacks for
5038 the data transfer. However, there is a drawback: it cannot
5039 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5040 wavetable PCM.
5041 </para>
5042
5043 <para>
5044 The second case allows the mmap of the buffer, although you have
5045 to handle an interrupt or a tasklet for transferring the data
5046 from the intermediate buffer to the hardware buffer. You can find an
5047 example in vxpocket driver.
5048 </para>
5049
5050 <para>
5051 Another case is that the chip uses a PCI memory-map
5052 region for the buffer instead of the host memory. In this case,
5053 mmap is available only on certain architectures like intel. In
5054 non-mmap mode, the data cannot be transferred as the normal
5055 way. Thus you need to define <structfield>copy</structfield> and
5056 <structfield>silence</structfield> callbacks as well
5057 as in the cases above. The examples are found in
5058 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5059 </para>
5060
5061 <para>
5062 The implementation of <structfield>copy</structfield> and
5063 <structfield>silence</structfield> callbacks depends upon
5064 whether the hardware supports interleaved or non-interleaved
5065 samples. The <structfield>copy</structfield> callback is
5066 defined like below, a bit
5067 differently depending whether the direction is playback or
5068 capture:
5069
5070 <informalexample>
5071 <programlisting>
5072<![CDATA[
446ab5f5 5073 static int playback_copy(struct snd_pcm_substream *substream, int channel,
1da177e4 5074 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
446ab5f5 5075 static int capture_copy(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5076 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5077]]>
5078 </programlisting>
5079 </informalexample>
5080 </para>
5081
5082 <para>
5083 In the case of interleaved samples, the second argument
5084 (<parameter>channel</parameter>) is not used. The third argument
5085 (<parameter>pos</parameter>) points the
5086 current position offset in frames.
5087 </para>
5088
5089 <para>
5090 The meaning of the fourth argument is different between
5091 playback and capture. For playback, it holds the source data
5092 pointer, and for capture, it's the destination data pointer.
5093 </para>
5094
5095 <para>
5096 The last argument is the number of frames to be copied.
5097 </para>
5098
5099 <para>
5100 What you have to do in this callback is again different
5101 between playback and capture directions. In the case of
5102 playback, you do: copy the given amount of data
5103 (<parameter>count</parameter>) at the specified pointer
5104 (<parameter>src</parameter>) to the specified offset
5105 (<parameter>pos</parameter>) on the hardware buffer. When
5106 coded like memcpy-like way, the copy would be like:
5107
5108 <informalexample>
5109 <programlisting>
5110<![CDATA[
5111 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5112 frames_to_bytes(runtime, count));
5113]]>
5114 </programlisting>
5115 </informalexample>
5116 </para>
5117
5118 <para>
5119 For the capture direction, you do: copy the given amount of
5120 data (<parameter>count</parameter>) at the specified offset
5121 (<parameter>pos</parameter>) on the hardware buffer to the
5122 specified pointer (<parameter>dst</parameter>).
5123
5124 <informalexample>
5125 <programlisting>
5126<![CDATA[
5127 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5128 frames_to_bytes(runtime, count));
5129]]>
5130 </programlisting>
5131 </informalexample>
5132
5133 Note that both of the position and the data amount are given
5134 in frames.
5135 </para>
5136
5137 <para>
5138 In the case of non-interleaved samples, the implementation
5139 will be a bit more complicated.
5140 </para>
5141
5142 <para>
5143 You need to check the channel argument, and if it's -1, copy
5144 the whole channels. Otherwise, you have to copy only the
5145 specified channel. Please check
5146 <filename>isa/gus/gus_pcm.c</filename> as an example.
5147 </para>
5148
5149 <para>
5150 The <structfield>silence</structfield> callback is also
5151 implemented in a similar way.
5152
5153 <informalexample>
5154 <programlisting>
5155<![CDATA[
446ab5f5 5156 static int silence(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5157 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5158]]>
5159 </programlisting>
5160 </informalexample>
5161 </para>
5162
5163 <para>
5164 The meanings of arguments are identical with the
5165 <structfield>copy</structfield>
5166 callback, although there is no <parameter>src/dst</parameter>
5167 argument. In the case of interleaved samples, the channel
5168 argument has no meaning, as well as on
5169 <structfield>copy</structfield> callback.
5170 </para>
5171
5172 <para>
5173 The role of <structfield>silence</structfield> callback is to
5174 set the given amount
5175 (<parameter>count</parameter>) of silence data at the
5176 specified offset (<parameter>pos</parameter>) on the hardware
5177 buffer. Suppose that the data format is signed (that is, the
5178 silent-data is 0), and the implementation using a memset-like
5179 function would be like:
5180
5181 <informalexample>
5182 <programlisting>
5183<![CDATA[
5184 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5185 frames_to_bytes(runtime, count));
5186]]>
5187 </programlisting>
5188 </informalexample>
5189 </para>
5190
5191 <para>
5192 In the case of non-interleaved samples, again, the
5193 implementation becomes a bit more complicated. See, for example,
5194 <filename>isa/gus/gus_pcm.c</filename>.
5195 </para>
5196 </section>
5197
5198 <section id="buffer-and-memory-non-contiguous">
5199 <title>Non-Contiguous Buffers</title>
5200 <para>
5201 If your hardware supports the page table like emu10k1 or the
5202 buffer descriptors like via82xx, you can use the scatter-gather
5203 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5204 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5205 </para>
5206
5207 <para>
5208 For creating the SG-buffer handler, call
5209 <function>snd_pcm_lib_preallocate_pages()</function> or
5210 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5211 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5212 in the PCM constructor like other PCI pre-allocator.
5213 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5214 where pci is the struct <structname>pci_dev</structname> pointer
5215 of the chip as well.
44275f18 5216 The <type>struct snd_sg_buf</type> instance is created as
1da177e4
LT
5217 substream-&gt;dma_private. You can cast
5218 the pointer like:
5219
5220 <informalexample>
5221 <programlisting>
5222<![CDATA[
44275f18 5223 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
1da177e4
LT
5224]]>
5225 </programlisting>
5226 </informalexample>
5227 </para>
5228
5229 <para>
5230 Then call <function>snd_pcm_lib_malloc_pages()</function>
5231 in <structfield>hw_params</structfield> callback
5232 as well as in the case of normal PCI buffer.
5233 The SG-buffer handler will allocate the non-contiguous kernel
5234 pages of the given size and map them onto the virtually contiguous
5235 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5236 The physical address (runtime-&gt;dma_addr) is set to zero,
5237 because the buffer is physically non-contigous.
5238 The physical address table is set up in sgbuf-&gt;table.
5239 You can get the physical address at a certain offset via
5240 <function>snd_pcm_sgbuf_get_addr()</function>.
5241 </para>
5242
5243 <para>
5244 When a SG-handler is used, you need to set
5245 <function>snd_pcm_sgbuf_ops_page</function> as
5246 the <structfield>page</structfield> callback.
5247 (See <link linkend="pcm-interface-operators-page-callback">
5248 <citetitle>page callback section</citetitle></link>.)
5249 </para>
5250
5251 <para>
5252 For releasing the data, call
5253 <function>snd_pcm_lib_free_pages()</function> in the
5254 <structfield>hw_free</structfield> callback as usual.
5255 </para>
5256 </section>
5257
5258 <section id="buffer-and-memory-vmalloced">
5259 <title>Vmalloc'ed Buffers</title>
5260 <para>
5261 It's possible to use a buffer allocated via
5262 <function>vmalloc</function>, for example, for an intermediate
5263 buffer. Since the allocated pages are not contiguous, you need
5264 to set the <structfield>page</structfield> callback to obtain
5265 the physical address at every offset.
5266 </para>
5267
5268 <para>
5269 The implementation of <structfield>page</structfield> callback
5270 would be like this:
5271
5272 <informalexample>
5273 <programlisting>
5274<![CDATA[
5275 #include <linux/vmalloc.h>
5276
5277 /* get the physical page pointer on the given offset */
446ab5f5 5278 static struct page *mychip_page(struct snd_pcm_substream *substream,
1da177e4
LT
5279 unsigned long offset)
5280 {
5281 void *pageptr = substream->runtime->dma_area + offset;
5282 return vmalloc_to_page(pageptr);
5283 }
5284]]>
5285 </programlisting>
5286 </informalexample>
5287 </para>
5288 </section>
5289
5290 </chapter>
5291
5292
5293<!-- ****************************************************** -->
5294<!-- Proc Interface -->
5295<!-- ****************************************************** -->
5296 <chapter id="proc-interface">
5297 <title>Proc Interface</title>
5298 <para>
5299 ALSA provides an easy interface for procfs. The proc files are
5300 very useful for debugging. I recommend you set up proc files if
5301 you write a driver and want to get a running status or register
5302 dumps. The API is found in
5303 <filename>&lt;sound/info.h&gt;</filename>.
5304 </para>
5305
5306 <para>
5307 For creating a proc file, call
5308 <function>snd_card_proc_new()</function>.
5309
5310 <informalexample>
5311 <programlisting>
5312<![CDATA[
446ab5f5 5313 struct snd_info_entry *entry;
1da177e4
LT
5314 int err = snd_card_proc_new(card, "my-file", &entry);
5315]]>
5316 </programlisting>
5317 </informalexample>
5318
5319 where the second argument specifies the proc-file name to be
5320 created. The above example will create a file
5321 <filename>my-file</filename> under the card directory,
5322 e.g. <filename>/proc/asound/card0/my-file</filename>.
5323 </para>
5324
5325 <para>
5326 Like other components, the proc entry created via
5327 <function>snd_card_proc_new()</function> will be registered and
5328 released automatically in the card registration and release
5329 functions.
5330 </para>
5331
5332 <para>
5333 When the creation is successful, the function stores a new
5334 instance at the pointer given in the third argument.
5335 It is initialized as a text proc file for read only. For using
5336 this proc file as a read-only text file as it is, set the read
5337 callback with a private data via
5338 <function>snd_info_set_text_ops()</function>.
5339
5340 <informalexample>
5341 <programlisting>
5342<![CDATA[
bf850204 5343 snd_info_set_text_ops(entry, chip, my_proc_read);
1da177e4
LT
5344]]>
5345 </programlisting>
5346 </informalexample>
5347
5348 where the second argument (<parameter>chip</parameter>) is the
5349 private data to be used in the callbacks. The third parameter
5350 specifies the read buffer size and the fourth
5351 (<parameter>my_proc_read</parameter>) is the callback function, which
5352 is defined like
5353
5354 <informalexample>
5355 <programlisting>
5356<![CDATA[
446ab5f5
TI
5357 static void my_proc_read(struct snd_info_entry *entry,
5358 struct snd_info_buffer *buffer);
1da177e4
LT
5359]]>
5360 </programlisting>
5361 </informalexample>
5362
5363 </para>
5364
5365 <para>
5366 In the read callback, use <function>snd_iprintf()</function> for
5367 output strings, which works just like normal
5368 <function>printf()</function>. For example,
5369
5370 <informalexample>
5371 <programlisting>
5372<![CDATA[
446ab5f5
TI
5373 static void my_proc_read(struct snd_info_entry *entry,
5374 struct snd_info_buffer *buffer)
1da177e4 5375 {
446ab5f5 5376 struct my_chip *chip = entry->private_data;
1da177e4
LT
5377
5378 snd_iprintf(buffer, "This is my chip!\n");
5379 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5380 }
5381]]>
5382 </programlisting>
5383 </informalexample>
5384 </para>
5385
5386 <para>
5387 The file permission can be changed afterwards. As default, it's
5388 set as read only for all users. If you want to add the write
5389 permission to the user (root as default), set like below:
5390
5391 <informalexample>
5392 <programlisting>
5393<![CDATA[
5394 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5395]]>
5396 </programlisting>
5397 </informalexample>
5398
5399 and set the write buffer size and the callback
5400
5401 <informalexample>
5402 <programlisting>
5403<![CDATA[
1da177e4
LT
5404 entry->c.text.write = my_proc_write;
5405]]>
5406 </programlisting>
5407 </informalexample>
5408 </para>
5409
1da177e4
LT
5410 <para>
5411 For the write callback, you can use
5412 <function>snd_info_get_line()</function> to get a text line, and
5413 <function>snd_info_get_str()</function> to retrieve a string from
5414 the line. Some examples are found in
5415 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5416 <filename>pcm_oss.c</filename>.
5417 </para>
5418
5419 <para>
5420 For a raw-data proc-file, set the attributes like the following:
5421
5422 <informalexample>
5423 <programlisting>
5424<![CDATA[
5425 static struct snd_info_entry_ops my_file_io_ops = {
5426 .read = my_file_io_read,
5427 };
5428
5429 entry->content = SNDRV_INFO_CONTENT_DATA;
5430 entry->private_data = chip;
5431 entry->c.ops = &my_file_io_ops;
5432 entry->size = 4096;
5433 entry->mode = S_IFREG | S_IRUGO;
5434]]>
5435 </programlisting>
5436 </informalexample>
5437 </para>
5438
5439 <para>
5440 The callback is much more complicated than the text-file
5441 version. You need to use a low-level i/o functions such as
5442 <function>copy_from/to_user()</function> to transfer the
5443 data.
5444
5445 <informalexample>
5446 <programlisting>
5447<![CDATA[
446ab5f5 5448 static long my_file_io_read(struct snd_info_entry *entry,
1da177e4
LT
5449 void *file_private_data,
5450 struct file *file,
5451 char *buf,
5452 unsigned long count,
5453 unsigned long pos)
5454 {
5455 long size = count;
5456 if (pos + size > local_max_size)
5457 size = local_max_size - pos;
5458 if (copy_to_user(buf, local_data + pos, size))
5459 return -EFAULT;
5460 return size;
5461 }
5462]]>
5463 </programlisting>
5464 </informalexample>
5465 </para>
5466
5467 </chapter>
5468
5469
5470<!-- ****************************************************** -->
5471<!-- Power Management -->
5472<!-- ****************************************************** -->
5473 <chapter id="power-management">
5474 <title>Power Management</title>
5475 <para>
670e9f34 5476 If the chip is supposed to work with suspend/resume
1da177e4
LT
5477 functions, you need to add the power-management codes to the
5478 driver. The additional codes for the power-management should be
5479 <function>ifdef</function>'ed with
5480 <constant>CONFIG_PM</constant>.
5481 </para>
5482
5fe76e4d
TI
5483 <para>
5484 If the driver supports the suspend/resume
5485 <emphasis>fully</emphasis>, that is, the device can be
5486 properly resumed to the status at the suspend is called,
5487 you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5488 to pcm info field. Usually, this is possible when the
5489 registers of ths chip can be safely saved and restored to the
5490 RAM. If this is set, the trigger callback is called with
5491 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume
5492 callback is finished.
5493 </para>
5494
5495 <para>
5496 Even if the driver doesn't support PM fully but only the
5497 partial suspend/resume is possible, it's still worthy to
5498 implement suspend/resume callbacks. In such a case, applications
5499 would reset the status by calling
5500 <function>snd_pcm_prepare()</function> and restart the stream
5501 appropriately. Hence, you can define suspend/resume callbacks
5502 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5503 info flag to the PCM.
5504 </para>
5505
5506 <para>
5507 Note that the trigger with SUSPEND can be always called when
5508 <function>snd_pcm_suspend_all</function> is called,
5509 regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5510 The <constant>RESUME</constant> flag affects only the behavior
5511 of <function>snd_pcm_resume()</function>.
5512 (Thus, in theory,
5513 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5514 to be handled in the trigger callback when no
5515 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5516 it's better to keep it for compatibility reason.)
5517 </para>
1da177e4 5518 <para>
5fe76e4d
TI
5519 In the earlier version of ALSA drivers, a common
5520 power-management layer was provided, but it has been removed.
5521 The driver needs to define the suspend/resume hooks according to
5522 the bus the device is assigned. In the case of PCI driver, the
5523 callbacks look like below:
1da177e4
LT
5524
5525 <informalexample>
5526 <programlisting>
5527<![CDATA[
5528 #ifdef CONFIG_PM
5fe76e4d 5529 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
1da177e4 5530 {
5bda9fa1 5531 .... /* do things for suspend */
1da177e4
LT
5532 return 0;
5533 }
5fe76e4d 5534 static int snd_my_resume(struct pci_dev *pci)
1da177e4 5535 {
5bda9fa1 5536 .... /* do things for suspend */
1da177e4
LT
5537 return 0;
5538 }
5539 #endif
5540]]>
5541 </programlisting>
5542 </informalexample>
5543 </para>
5544
5545 <para>
5546 The scheme of the real suspend job is as following.
5547
5548 <orderedlist>
5fe76e4d
TI
5549 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5550 <listitem><para>Call <function>snd_power_change_state()</function> with
5551 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5552 power status.</para></listitem>
1da177e4 5553 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5fe76e4d 5554 <listitem><para>If AC97 codecs are used, call
a7306336 5555 <function>snd_ac97_suspend()</function> for each codec.</para></listitem>
1da177e4
LT
5556 <listitem><para>Save the register values if necessary.</para></listitem>
5557 <listitem><para>Stop the hardware if necessary.</para></listitem>
5fe76e4d
TI
5558 <listitem><para>Disable the PCI device by calling
5559 <function>pci_disable_device()</function>. Then, call
5560 <function>pci_save_state()</function> at last.</para></listitem>
1da177e4
LT
5561 </orderedlist>
5562 </para>
5563
5564 <para>
5565 A typical code would be like:
5566
5567 <informalexample>
5568 <programlisting>
5569<![CDATA[
32357988 5570 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
1da177e4
LT
5571 {
5572 /* (1) */
5fe76e4d
TI
5573 struct snd_card *card = pci_get_drvdata(pci);
5574 struct mychip *chip = card->private_data;
1da177e4 5575 /* (2) */
5fe76e4d 5576 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1da177e4 5577 /* (3) */
5fe76e4d 5578 snd_pcm_suspend_all(chip->pcm);
1da177e4 5579 /* (4) */
5fe76e4d 5580 snd_ac97_suspend(chip->ac97);
1da177e4 5581 /* (5) */
5fe76e4d
TI
5582 snd_mychip_save_registers(chip);
5583 /* (6) */
5584 snd_mychip_stop_hardware(chip);
5585 /* (7) */
5586 pci_disable_device(pci);
5587 pci_save_state(pci);
1da177e4
LT
5588 return 0;
5589 }
5590]]>
5591 </programlisting>
5592 </informalexample>
5593 </para>
5594
5595 <para>
5596 The scheme of the real resume job is as following.
5597
5598 <orderedlist>
5fe76e4d
TI
5599 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5600 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5601 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5602 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
1da177e4
LT
5603 <listitem><para>Re-initialize the chip.</para></listitem>
5604 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5605 <listitem><para>Resume the mixer, e.g. calling
5606 <function>snd_ac97_resume()</function>.</para></listitem>
5607 <listitem><para>Restart the hardware (if any).</para></listitem>
5fe76e4d
TI
5608 <listitem><para>Call <function>snd_power_change_state()</function> with
5609 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
1da177e4
LT
5610 </orderedlist>
5611 </para>
5612
5613 <para>
5614 A typical code would be like:
5615
5616 <informalexample>
5617 <programlisting>
5618<![CDATA[
5fe76e4d 5619 static int mychip_resume(struct pci_dev *pci)
1da177e4
LT
5620 {
5621 /* (1) */
5fe76e4d
TI
5622 struct snd_card *card = pci_get_drvdata(pci);
5623 struct mychip *chip = card->private_data;
1da177e4 5624 /* (2) */
5fe76e4d
TI
5625 pci_restore_state(pci);
5626 pci_enable_device(pci);
5627 pci_set_master(pci);
1da177e4
LT
5628 /* (3) */
5629 snd_mychip_reinit_chip(chip);
5630 /* (4) */
5631 snd_mychip_restore_registers(chip);
5632 /* (5) */
5633 snd_ac97_resume(chip->ac97);
5634 /* (6) */
5635 snd_mychip_restart_chip(chip);
5fe76e4d
TI
5636 /* (7) */
5637 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1da177e4
LT
5638 return 0;
5639 }
5640]]>
5641 </programlisting>
5642 </informalexample>
5643 </para>
5644
5645 <para>
5fe76e4d
TI
5646 As shown in the above, it's better to save registers after
5647 suspending the PCM operations via
5648 <function>snd_pcm_suspend_all()</function> or
5649 <function>snd_pcm_suspend()</function>. It means that the PCM
5650 streams are already stoppped when the register snapshot is
5651 taken. But, remind that you don't have to restart the PCM
5652 stream in the resume callback. It'll be restarted via
5653 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5654 when necessary.
5655 </para>
5656
5657 <para>
5658 OK, we have all callbacks now. Let's set them up. In the
5659 initialization of the card, make sure that you can get the chip
5660 data from the card instance, typically via
5661 <structfield>private_data</structfield> field, in case you
5662 created the chip data individually.
5663
5664 <informalexample>
5665 <programlisting>
5666<![CDATA[
5667 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5668 const struct pci_device_id *pci_id)
5669 {
5670 ....
5671 struct snd_card *card;
5672 struct mychip *chip;
5673 ....
5674 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
5675 ....
5676 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5677 ....
5678 card->private_data = chip;
5679 ....
5680 }
5681]]>
5682 </programlisting>
5683 </informalexample>
5684
5685 When you created the chip data with
5686 <function>snd_card_new()</function>, it's anyway accessible
5687 via <structfield>private_data</structfield> field.
1da177e4
LT
5688
5689 <informalexample>
5690 <programlisting>
5691<![CDATA[
5692 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5693 const struct pci_device_id *pci_id)
5694 {
5695 ....
446ab5f5
TI
5696 struct snd_card *card;
5697 struct mychip *chip;
1da177e4 5698 ....
5fe76e4d
TI
5699 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
5700 sizeof(struct mychip));
5701 ....
5702 chip = card->private_data;
1da177e4
LT
5703 ....
5704 }
5705]]>
5706 </programlisting>
5707 </informalexample>
5708
1da177e4
LT
5709 </para>
5710
5711 <para>
5fe76e4d
TI
5712 If you need a space for saving the registers, allocate the
5713 buffer for it here, too, since it would be fatal
1da177e4
LT
5714 if you cannot allocate a memory in the suspend phase.
5715 The allocated buffer should be released in the corresponding
5716 destructor.
5717 </para>
5718
5719 <para>
5fe76e4d 5720 And next, set suspend/resume callbacks to the pci_driver.
1da177e4
LT
5721
5722 <informalexample>
5723 <programlisting>
5724<![CDATA[
5725 static struct pci_driver driver = {
5726 .name = "My Chip",
5727 .id_table = snd_my_ids,
5728 .probe = snd_my_probe,
5729 .remove = __devexit_p(snd_my_remove),
5fe76e4d
TI
5730 #ifdef CONFIG_PM
5731 .suspend = snd_my_suspend,
5732 .resume = snd_my_resume,
5733 #endif
1da177e4
LT
5734 };
5735]]>
5736 </programlisting>
5737 </informalexample>
5738 </para>
5739
5740 </chapter>
5741
5742
5743<!-- ****************************************************** -->
5744<!-- Module Parameters -->
5745<!-- ****************************************************** -->
5746 <chapter id="module-parameters">
5747 <title>Module Parameters</title>
5748 <para>
5749 There are standard module options for ALSA. At least, each
5750 module should have <parameter>index</parameter>,
5751 <parameter>id</parameter> and <parameter>enable</parameter>
5752 options.
5753 </para>
5754
5755 <para>
5756 If the module supports multiple cards (usually up to
5757 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5758 arrays. The default initial values are defined already as
5759 constants for ease of programming:
5760
5761 <informalexample>
5762 <programlisting>
5763<![CDATA[
5764 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5765 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5766 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5767]]>
5768 </programlisting>
5769 </informalexample>
5770 </para>
5771
5772 <para>
5773 If the module supports only a single card, they could be single
5774 variables, instead. <parameter>enable</parameter> option is not
5775 always necessary in this case, but it wouldn't be so bad to have a
5776 dummy option for compatibility.
5777 </para>
5778
5779 <para>
5780 The module parameters must be declared with the standard
5781 <function>module_param()()</function>,
5782 <function>module_param_array()()</function> and
5783 <function>MODULE_PARM_DESC()</function> macros.
5784 </para>
5785
5786 <para>
5787 The typical coding would be like below:
5788
5789 <informalexample>
5790 <programlisting>
5791<![CDATA[
5792 #define CARD_NAME "My Chip"
5793
5794 module_param_array(index, int, NULL, 0444);
5795 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5796 module_param_array(id, charp, NULL, 0444);
5797 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5798 module_param_array(enable, bool, NULL, 0444);
5799 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5800]]>
5801 </programlisting>
5802 </informalexample>
5803 </para>
5804
5805 <para>
5806 Also, don't forget to define the module description, classes,
5807 license and devices. Especially, the recent modprobe requires to
5808 define the module license as GPL, etc., otherwise the system is
5809 shown as <quote>tainted</quote>.
5810
5811 <informalexample>
5812 <programlisting>
5813<![CDATA[
5814 MODULE_DESCRIPTION("My Chip");
5815 MODULE_LICENSE("GPL");
5816 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5817]]>
5818 </programlisting>
5819 </informalexample>
5820 </para>
5821
5822 </chapter>
5823
5824
5825<!-- ****************************************************** -->
5826<!-- How To Put Your Driver -->
5827<!-- ****************************************************** -->
5828 <chapter id="how-to-put-your-driver">
5829 <title>How To Put Your Driver Into ALSA Tree</title>
5830 <section>
5831 <title>General</title>
5832 <para>
5833 So far, you've learned how to write the driver codes.
5834 And you might have a question now: how to put my own
5835 driver into the ALSA driver tree?
5836 Here (finally :) the standard procedure is described briefly.
5837 </para>
5838
5839 <para>
5840 Suppose that you'll create a new PCI driver for the card
5841 <quote>xyz</quote>. The card module name would be
5842 snd-xyz. The new driver is usually put into alsa-driver
5843 tree, <filename>alsa-driver/pci</filename> directory in
5844 the case of PCI cards.
5845 Then the driver is evaluated, audited and tested
5846 by developers and users. After a certain time, the driver
5847 will go to alsa-kernel tree (to the corresponding directory,
5848 such as <filename>alsa-kernel/pci</filename>) and eventually
5849 integrated into Linux 2.6 tree (the directory would be
5850 <filename>linux/sound/pci</filename>).
5851 </para>
5852
5853 <para>
5854 In the following sections, the driver code is supposed
5855 to be put into alsa-driver tree. The two cases are assumed:
5856 a driver consisting of a single source file and one consisting
5857 of several source files.
5858 </para>
5859 </section>
5860
5861 <section>
5862 <title>Driver with A Single Source File</title>
5863 <para>
5864 <orderedlist>
5865 <listitem>
5866 <para>
5867 Modify alsa-driver/pci/Makefile
5868 </para>
5869
5870 <para>
5871 Suppose you have a file xyz.c. Add the following
5872 two lines
5873 <informalexample>
5874 <programlisting>
5875<![CDATA[
5876 snd-xyz-objs := xyz.o
5877 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5878]]>
5879 </programlisting>
5880 </informalexample>
5881 </para>
5882 </listitem>
5883
5884 <listitem>
5885 <para>
5886 Create the Kconfig entry
5887 </para>
5888
5889 <para>
5890 Add the new entry of Kconfig for your xyz driver.
5891 <informalexample>
5892 <programlisting>
5893<![CDATA[
5894 config SND_XYZ
5895 tristate "Foobar XYZ"
5896 depends on SND
5897 select SND_PCM
5898 help
5899 Say Y here to include support for Foobar XYZ soundcard.
5900
5901 To compile this driver as a module, choose M here: the module
5902 will be called snd-xyz.
5903]]>
5904 </programlisting>
5905 </informalexample>
5906
5907 the line, select SND_PCM, specifies that the driver xyz supports
5908 PCM. In addition to SND_PCM, the following components are
5909 supported for select command:
5910 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5911 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5912 Add the select command for each supported component.
5913 </para>
5914
5915 <para>
5916 Note that some selections imply the lowlevel selections.
5917 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5918 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5919 You don't need to give the lowlevel selections again.
5920 </para>
5921
5922 <para>
5923 For the details of Kconfig script, refer to the kbuild
5924 documentation.
5925 </para>
5926
5927 </listitem>
5928
5929 <listitem>
5930 <para>
5931 Run cvscompile script to re-generate the configure script and
5932 build the whole stuff again.
5933 </para>
5934 </listitem>
5935 </orderedlist>
5936 </para>
5937 </section>
5938
5939 <section>
5940 <title>Drivers with Several Source Files</title>
5941 <para>
5942 Suppose that the driver snd-xyz have several source files.
5943 They are located in the new subdirectory,
5944 pci/xyz.
5945
5946 <orderedlist>
5947 <listitem>
5948 <para>
5949 Add a new directory (<filename>xyz</filename>) in
5950 <filename>alsa-driver/pci/Makefile</filename> like below
5951
5952 <informalexample>
5953 <programlisting>
5954<![CDATA[
5955 obj-$(CONFIG_SND) += xyz/
5956]]>
5957 </programlisting>
5958 </informalexample>
5959 </para>
5960 </listitem>
5961
5962 <listitem>
5963 <para>
5964 Under the directory <filename>xyz</filename>, create a Makefile
5965
5966 <example>
5967 <title>Sample Makefile for a driver xyz</title>
5968 <programlisting>
5969<![CDATA[
5970 ifndef SND_TOPDIR
5971 SND_TOPDIR=../..
5972 endif
5973
5974 include $(SND_TOPDIR)/toplevel.config
5975 include $(SND_TOPDIR)/Makefile.conf
5976
5977 snd-xyz-objs := xyz.o abc.o def.o
5978
5979 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5980
5981 include $(SND_TOPDIR)/Rules.make
5982]]>
5983 </programlisting>
5984 </example>
5985 </para>
5986 </listitem>
5987
5988 <listitem>
5989 <para>
5990 Create the Kconfig entry
5991 </para>
5992
5993 <para>
5994 This procedure is as same as in the last section.
5995 </para>
5996 </listitem>
5997
5998 <listitem>
5999 <para>
6000 Run cvscompile script to re-generate the configure script and
6001 build the whole stuff again.
6002 </para>
6003 </listitem>
6004 </orderedlist>
6005 </para>
6006 </section>
6007
6008 </chapter>
6009
6010<!-- ****************************************************** -->
6011<!-- Useful Functions -->
6012<!-- ****************************************************** -->
6013 <chapter id="useful-functions">
6014 <title>Useful Functions</title>
6015
6016 <section id="useful-functions-snd-printk">
6017 <title><function>snd_printk()</function> and friends</title>
6018 <para>
6019 ALSA provides a verbose version of
6020 <function>printk()</function> function. If a kernel config
6021 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6022 function prints the given message together with the file name
6023 and the line of the caller. The <constant>KERN_XXX</constant>
6024 prefix is processed as
6025 well as the original <function>printk()</function> does, so it's
6026 recommended to add this prefix, e.g.
6027
6028 <informalexample>
6029 <programlisting>
6030<![CDATA[
6031 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6032]]>
6033 </programlisting>
6034 </informalexample>
6035 </para>
6036
6037 <para>
6038 There are also <function>printk()</function>'s for
6039 debugging. <function>snd_printd()</function> can be used for
6040 general debugging purposes. If
6041 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6042 compiled, and works just like
6043 <function>snd_printk()</function>. If the ALSA is compiled
6044 without the debugging flag, it's ignored.
6045 </para>
6046
6047 <para>
6048 <function>snd_printdd()</function> is compiled in only when
6049 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
6050 that <constant>DEBUG_DETECT</constant> is not set as default
6051 even if you configure the alsa-driver with
6052 <option>--with-debug=full</option> option. You need to give
6053 explicitly <option>--with-debug=detect</option> option instead.
6054 </para>
6055 </section>
6056
6057 <section id="useful-functions-snd-assert">
6058 <title><function>snd_assert()</function></title>
6059 <para>
6060 <function>snd_assert()</function> macro is similar with the
6061 normal <function>assert()</function> macro. For example,
6062
6063 <informalexample>
6064 <programlisting>
6065<![CDATA[
6066 snd_assert(pointer != NULL, return -EINVAL);
6067]]>
6068 </programlisting>
6069 </informalexample>
6070 </para>
6071
6072 <para>
6073 The first argument is the expression to evaluate, and the
6074 second argument is the action if it fails. When
6075 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
7c22f1aa
TI
6076 error message such as <computeroutput>BUG? (xxx)</computeroutput>
6077 together with stack trace.
1da177e4 6078 </para>
1da177e4 6079 <para>
7c22f1aa 6080 When no debug flag is set, this macro is ignored.
1da177e4
LT
6081 </para>
6082 </section>
6083
6084 <section id="useful-functions-snd-bug">
6085 <title><function>snd_BUG()</function></title>
6086 <para>
7c22f1aa
TI
6087 It shows <computeroutput>BUG?</computeroutput> message and
6088 stack trace as well as <function>snd_assert</function> at the point.
6089 It's useful to show that a fatal error happens there.
6090 </para>
6091 <para>
6092 When no debug flag is set, this macro is ignored.
1da177e4
LT
6093 </para>
6094 </section>
6095 </chapter>
6096
6097
6098<!-- ****************************************************** -->
6099<!-- Acknowledgments -->
6100<!-- ****************************************************** -->
5bda9fa1 6101 <chapter id="acknowledgments">
1da177e4
LT
6102 <title>Acknowledgments</title>
6103 <para>
6104 I would like to thank Phil Kerr for his help for improvement and
6105 corrections of this document.
6106 </para>
6107 <para>
6108 Kevin Conder reformatted the original plain-text to the
6109 DocBook format.
6110 </para>
6111 <para>
6112 Giuliano Pochini corrected typos and contributed the example codes
6113 in the hardware constraints section.
6114 </para>
6115 </chapter>
6116
6117
6118</book>