]> bbs.cooldavid.org Git - net-next-2.6.git/blame - Documentation/DocBook/kernel-locking.tmpl
Documentation: kernel-locking: mutex_trylock cannot be used in interrupt context
[net-next-2.6.git] / Documentation / DocBook / kernel-locking.tmpl
CommitLineData
1da177e4
LT
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LKLockingGuide">
6 <bookinfo>
7 <title>Unreliable Guide To Locking</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Rusty</firstname>
12 <surname>Russell</surname>
13 <affiliation>
14 <address>
15 <email>rusty@rustcorp.com.au</email>
16 </address>
17 </affiliation>
18 </author>
19 </authorgroup>
20
21 <copyright>
22 <year>2003</year>
23 <holder>Rusty Russell</holder>
24 </copyright>
25
26 <legalnotice>
27 <para>
28 This documentation is free software; you can redistribute
29 it and/or modify it under the terms of the GNU General Public
30 License as published by the Free Software Foundation; either
31 version 2 of the License, or (at your option) any later
32 version.
33 </para>
34
35 <para>
36 This program is distributed in the hope that it will be
37 useful, but WITHOUT ANY WARRANTY; without even the implied
38 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39 See the GNU General Public License for more details.
40 </para>
41
42 <para>
43 You should have received a copy of the GNU General Public
44 License along with this program; if not, write to the Free
45 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46 MA 02111-1307 USA
47 </para>
48
49 <para>
50 For more details see the file COPYING in the source
51 distribution of Linux.
52 </para>
53 </legalnotice>
54 </bookinfo>
55
56 <toc></toc>
57 <chapter id="intro">
58 <title>Introduction</title>
59 <para>
60 Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
61 Locking issues. This document describes the locking systems in
62 the Linux Kernel in 2.6.
63 </para>
64 <para>
65 With the wide availability of HyperThreading, and <firstterm
66 linkend="gloss-preemption">preemption </firstterm> in the Linux
67 Kernel, everyone hacking on the kernel needs to know the
68 fundamentals of concurrency and locking for
69 <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>.
70 </para>
71 </chapter>
72
73 <chapter id="races">
74 <title>The Problem With Concurrency</title>
75 <para>
76 (Skip this if you know what a Race Condition is).
77 </para>
78 <para>
79 In a normal program, you can increment a counter like so:
80 </para>
81 <programlisting>
82 very_important_count++;
83 </programlisting>
84
85 <para>
86 This is what they would expect to happen:
87 </para>
88
89 <table>
90 <title>Expected Results</title>
91
92 <tgroup cols="2" align="left">
93
94 <thead>
95 <row>
96 <entry>Instance 1</entry>
97 <entry>Instance 2</entry>
98 </row>
99 </thead>
100
101 <tbody>
102 <row>
103 <entry>read very_important_count (5)</entry>
104 <entry></entry>
105 </row>
106 <row>
107 <entry>add 1 (6)</entry>
108 <entry></entry>
109 </row>
110 <row>
111 <entry>write very_important_count (6)</entry>
112 <entry></entry>
113 </row>
114 <row>
115 <entry></entry>
116 <entry>read very_important_count (6)</entry>
117 </row>
118 <row>
119 <entry></entry>
120 <entry>add 1 (7)</entry>
121 </row>
122 <row>
123 <entry></entry>
124 <entry>write very_important_count (7)</entry>
125 </row>
126 </tbody>
127
128 </tgroup>
129 </table>
130
131 <para>
132 This is what might happen:
133 </para>
134
135 <table>
136 <title>Possible Results</title>
137
138 <tgroup cols="2" align="left">
139 <thead>
140 <row>
141 <entry>Instance 1</entry>
142 <entry>Instance 2</entry>
143 </row>
144 </thead>
145
146 <tbody>
147 <row>
148 <entry>read very_important_count (5)</entry>
149 <entry></entry>
150 </row>
151 <row>
152 <entry></entry>
153 <entry>read very_important_count (5)</entry>
154 </row>
155 <row>
156 <entry>add 1 (6)</entry>
157 <entry></entry>
158 </row>
159 <row>
160 <entry></entry>
161 <entry>add 1 (6)</entry>
162 </row>
163 <row>
164 <entry>write very_important_count (6)</entry>
165 <entry></entry>
166 </row>
167 <row>
168 <entry></entry>
169 <entry>write very_important_count (6)</entry>
170 </row>
171 </tbody>
172 </tgroup>
173 </table>
174
175 <sect1 id="race-condition">
176 <title>Race Conditions and Critical Regions</title>
177 <para>
178 This overlap, where the result depends on the
179 relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>.
180 The piece of code containing the concurrency issue is called a
181 <firstterm>critical region</firstterm>. And especially since Linux starting running
182 on SMP machines, they became one of the major issues in kernel
183 design and implementation.
184 </para>
185 <para>
186 Preemption can have the same effect, even if there is only one
187 CPU: by preempting one task during the critical region, we have
188 exactly the same race condition. In this case the thread which
189 preempts might run the critical region itself.
190 </para>
191 <para>
192 The solution is to recognize when these simultaneous accesses
193 occur, and use locks to make sure that only one instance can
194 enter the critical region at any time. There are many
195 friendly primitives in the Linux kernel to help you do this.
196 And then there are the unfriendly primitives, but I'll pretend
197 they don't exist.
198 </para>
199 </sect1>
200 </chapter>
201
202 <chapter id="locks">
203 <title>Locking in the Linux Kernel</title>
204
205 <para>
206 If I could give you one piece of advice: never sleep with anyone
207 crazier than yourself. But if I had to give you advice on
208 locking: <emphasis>keep it simple</emphasis>.
209 </para>
210
211 <para>
212 Be reluctant to introduce new locks.
213 </para>
214
215 <para>
216 Strangely enough, this last one is the exact reverse of my advice when
217 you <emphasis>have</emphasis> slept with someone crazier than yourself.
218 And you should think about getting a big dog.
219 </para>
220
221 <sect1 id="lock-intro">
78305de2 222 <title>Two Main Types of Kernel Locks: Spinlocks and Mutexes</title>
1da177e4
LT
223
224 <para>
78305de2 225 There are two main types of kernel locks. The fundamental type
1da177e4
LT
226 is the spinlock
227 (<filename class="headerfile">include/asm/spinlock.h</filename>),
228 which is a very simple single-holder lock: if you can't get the
229 spinlock, you keep trying (spinning) until you can. Spinlocks are
230 very small and fast, and can be used anywhere.
231 </para>
232 <para>
f3f54ffa
IM
233 The second type is a mutex
234 (<filename class="headerfile">include/linux/mutex.h</filename>): it
235 is like a spinlock, but you may block holding a mutex.
236 If you can't lock a mutex, your task will suspend itself, and be woken
237 up when the mutex is released. This means the CPU can do something
238 else while you are waiting. There are many cases when you simply
239 can't sleep (see <xref linkend="sleeping-things"/>), and so have to
240 use a spinlock instead.
241 </para>
1da177e4
LT
242 <para>
243 Neither type of lock is recursive: see
244 <xref linkend="deadlock"/>.
245 </para>
246 </sect1>
247
248 <sect1 id="uniprocessor">
249 <title>Locks and Uniprocessor Kernels</title>
250
251 <para>
252 For kernels compiled without <symbol>CONFIG_SMP</symbol>, and
253 without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at
254 all. This is an excellent design decision: when no-one else can
255 run at the same time, there is no reason to have a lock.
256 </para>
257
258 <para>
259 If the kernel is compiled without <symbol>CONFIG_SMP</symbol>,
260 but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks
261 simply disable preemption, which is sufficient to prevent any
262 races. For most purposes, we can think of preemption as
263 equivalent to SMP, and not worry about it separately.
264 </para>
265
266 <para>
267 You should always test your locking code with <symbol>CONFIG_SMP</symbol>
268 and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it
269 will still catch some kinds of locking bugs.
270 </para>
271
272 <para>
78305de2 273 Mutexes still exist, because they are required for
1da177e4
LT
274 synchronization between <firstterm linkend="gloss-usercontext">user
275 contexts</firstterm>, as we will see below.
276 </para>
277 </sect1>
278
279 <sect1 id="usercontextlocking">
280 <title>Locking Only In User Context</title>
281
282 <para>
283 If you have a data structure which is only ever accessed from
78305de2
MW
284 user context, then you can use a simple mutex
285 (<filename>include/linux/mutex.h</filename>) to protect it. This
286 is the most trivial case: you initialize the mutex. Then you can
287 call <function>mutex_lock_interruptible()</function> to grab the mutex,
288 and <function>mutex_unlock()</function> to release it. There is also a
289 <function>mutex_lock()</function>, which should be avoided, because it
1da177e4
LT
290 will not return if a signal is received.
291 </para>
292
293 <para>
78305de2 294 Example: <filename>net/netfilter/nf_sockopt.c</filename> allows
1da177e4
LT
295 registration of new <function>setsockopt()</function> and
296 <function>getsockopt()</function> calls, with
297 <function>nf_register_sockopt()</function>. Registration and
298 de-registration are only done on module load and unload (and boot
299 time, where there is no concurrency), and the list of registrations
300 is only consulted for an unknown <function>setsockopt()</function>
301 or <function>getsockopt()</function> system call. The
302 <varname>nf_sockopt_mutex</varname> is perfect to protect this,
303 especially since the setsockopt and getsockopt calls may well
304 sleep.
305 </para>
306 </sect1>
307
308 <sect1 id="lock-user-bh">
309 <title>Locking Between User Context and Softirqs</title>
310
311 <para>
312 If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares
313 data with user context, you have two problems. Firstly, the current
314 user context can be interrupted by a softirq, and secondly, the
315 critical region could be entered from another CPU. This is where
316 <function>spin_lock_bh()</function>
317 (<filename class="headerfile">include/linux/spinlock.h</filename>) is
318 used. It disables softirqs on that CPU, then grabs the lock.
319 <function>spin_unlock_bh()</function> does the reverse. (The
320 '_bh' suffix is a historical reference to "Bottom Halves", the
321 old name for software interrupts. It should really be
322 called spin_lock_softirq()' in a perfect world).
323 </para>
324
325 <para>
326 Note that you can also use <function>spin_lock_irq()</function>
327 or <function>spin_lock_irqsave()</function> here, which stop
328 hardware interrupts as well: see <xref linkend="hardirq-context"/>.
329 </para>
330
331 <para>
332 This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
333 </acronym></firstterm> as well: the spin lock vanishes, and this macro
334 simply becomes <function>local_bh_disable()</function>
335 (<filename class="headerfile">include/linux/interrupt.h</filename>), which
336 protects you from the softirq being run.
337 </para>
338 </sect1>
339
340 <sect1 id="lock-user-tasklet">
341 <title>Locking Between User Context and Tasklets</title>
342
343 <para>
344 This is exactly the same as above, because <firstterm
345 linkend="gloss-tasklet">tasklets</firstterm> are actually run
346 from a softirq.
347 </para>
348 </sect1>
349
350 <sect1 id="lock-user-timers">
351 <title>Locking Between User Context and Timers</title>
352
353 <para>
354 This, too, is exactly the same as above, because <firstterm
355 linkend="gloss-timers">timers</firstterm> are actually run from
356 a softirq. From a locking point of view, tasklets and timers
357 are identical.
358 </para>
359 </sect1>
360
361 <sect1 id="lock-tasklets">
362 <title>Locking Between Tasklets/Timers</title>
363
364 <para>
365 Sometimes a tasklet or timer might want to share data with
366 another tasklet or timer.
367 </para>
368
369 <sect2 id="lock-tasklets-same">
370 <title>The Same Tasklet/Timer</title>
371 <para>
372 Since a tasklet is never run on two CPUs at once, you don't
373 need to worry about your tasklet being reentrant (running
374 twice at once), even on SMP.
375 </para>
376 </sect2>
377
378 <sect2 id="lock-tasklets-different">
379 <title>Different Tasklets/Timers</title>
380 <para>
381 If another tasklet/timer wants
382 to share data with your tasklet or timer , you will both need to use
383 <function>spin_lock()</function> and
384 <function>spin_unlock()</function> calls.
385 <function>spin_lock_bh()</function> is
386 unnecessary here, as you are already in a tasklet, and
387 none will be run on the same CPU.
388 </para>
389 </sect2>
390 </sect1>
391
392 <sect1 id="lock-softirqs">
393 <title>Locking Between Softirqs</title>
394
395 <para>
396 Often a softirq might
397 want to share data with itself or a tasklet/timer.
398 </para>
399
400 <sect2 id="lock-softirqs-same">
401 <title>The Same Softirq</title>
402
403 <para>
404 The same softirq can run on the other CPUs: you can use a
405 per-CPU array (see <xref linkend="per-cpu"/>) for better
406 performance. If you're going so far as to use a softirq,
407 you probably care about scalable performance enough
408 to justify the extra complexity.
409 </para>
410
411 <para>
412 You'll need to use <function>spin_lock()</function> and
413 <function>spin_unlock()</function> for shared data.
414 </para>
415 </sect2>
416
417 <sect2 id="lock-softirqs-different">
418 <title>Different Softirqs</title>
419
420 <para>
421 You'll need to use <function>spin_lock()</function> and
422 <function>spin_unlock()</function> for shared data, whether it
423 be a timer, tasklet, different softirq or the same or another
424 softirq: any of them could be running on a different CPU.
425 </para>
426 </sect2>
427 </sect1>
428 </chapter>
429
430 <chapter id="hardirq-context">
431 <title>Hard IRQ Context</title>
432
433 <para>
434 Hardware interrupts usually communicate with a
435 tasklet or softirq. Frequently this involves putting work in a
436 queue, which the softirq will take out.
437 </para>
438
439 <sect1 id="hardirq-softirq">
440 <title>Locking Between Hard IRQ and Softirqs/Tasklets</title>
441
442 <para>
443 If a hardware irq handler shares data with a softirq, you have
444 two concerns. Firstly, the softirq processing can be
445 interrupted by a hardware interrupt, and secondly, the
446 critical region could be entered by a hardware interrupt on
447 another CPU. This is where <function>spin_lock_irq()</function> is
448 used. It is defined to disable interrupts on that cpu, then grab
449 the lock. <function>spin_unlock_irq()</function> does the reverse.
450 </para>
451
452 <para>
453 The irq handler does not to use
454 <function>spin_lock_irq()</function>, because the softirq cannot
455 run while the irq handler is running: it can use
456 <function>spin_lock()</function>, which is slightly faster. The
457 only exception would be if a different hardware irq handler uses
458 the same lock: <function>spin_lock_irq()</function> will stop
459 that from interrupting us.
460 </para>
461
462 <para>
463 This works perfectly for UP as well: the spin lock vanishes,
464 and this macro simply becomes <function>local_irq_disable()</function>
465 (<filename class="headerfile">include/asm/smp.h</filename>), which
466 protects you from the softirq/tasklet/BH being run.
467 </para>
468
469 <para>
470 <function>spin_lock_irqsave()</function>
471 (<filename>include/linux/spinlock.h</filename>) is a variant
472 which saves whether interrupts were on or off in a flags word,
473 which is passed to <function>spin_unlock_irqrestore()</function>. This
474 means that the same code can be used inside an hard irq handler (where
475 interrupts are already off) and in softirqs (where the irq
476 disabling is required).
477 </para>
478
479 <para>
480 Note that softirqs (and hence tasklets and timers) are run on
481 return from hardware interrupts, so
482 <function>spin_lock_irq()</function> also stops these. In that
483 sense, <function>spin_lock_irqsave()</function> is the most
484 general and powerful locking function.
485 </para>
486
487 </sect1>
488 <sect1 id="hardirq-hardirq">
489 <title>Locking Between Two Hard IRQ Handlers</title>
490 <para>
491 It is rare to have to share data between two IRQ handlers, but
492 if you do, <function>spin_lock_irqsave()</function> should be
493 used: it is architecture-specific whether all interrupts are
494 disabled inside irq handlers themselves.
495 </para>
496 </sect1>
497
498 </chapter>
499
500 <chapter id="cheatsheet">
501 <title>Cheat Sheet For Locking</title>
502 <para>
503 Pete Zaitcev gives the following summary:
504 </para>
505 <itemizedlist>
506 <listitem>
507 <para>
508 If you are in a process context (any syscall) and want to
78305de2 509 lock other process out, use a mutex. You can take a mutex
1da177e4
LT
510 and sleep (<function>copy_from_user*(</function> or
511 <function>kmalloc(x,GFP_KERNEL)</function>).
512 </para>
513 </listitem>
514 <listitem>
515 <para>
516 Otherwise (== data can be touched in an interrupt), use
517 <function>spin_lock_irqsave()</function> and
518 <function>spin_unlock_irqrestore()</function>.
519 </para>
520 </listitem>
521 <listitem>
522 <para>
523 Avoid holding spinlock for more than 5 lines of code and
524 across any function call (except accessors like
525 <function>readb</function>).
526 </para>
527 </listitem>
528 </itemizedlist>
529
530 <sect1 id="minimum-lock-reqirements">
531 <title>Table of Minimum Requirements</title>
532
533 <para> The following table lists the <emphasis>minimum</emphasis>
534 locking requirements between various contexts. In some cases,
535 the same context can only be running on one CPU at a time, so
536 no locking is required for that context (eg. a particular
537 thread can only run on one CPU at a time, but if it needs
538 shares data with another thread, locking is required).
539 </para>
540 <para>
541 Remember the advice above: you can always use
542 <function>spin_lock_irqsave()</function>, which is a superset
543 of all other spinlock primitives.
544 </para>
621e59a7 545
1da177e4
LT
546 <table>
547<title>Table of Locking Requirements</title>
548<tgroup cols="11">
549<tbody>
621e59a7 550
1da177e4
LT
551<row>
552<entry></entry>
553<entry>IRQ Handler A</entry>
554<entry>IRQ Handler B</entry>
555<entry>Softirq A</entry>
556<entry>Softirq B</entry>
557<entry>Tasklet A</entry>
558<entry>Tasklet B</entry>
559<entry>Timer A</entry>
560<entry>Timer B</entry>
561<entry>User Context A</entry>
562<entry>User Context B</entry>
563</row>
564
565<row>
566<entry>IRQ Handler A</entry>
567<entry>None</entry>
568</row>
569
570<row>
571<entry>IRQ Handler B</entry>
621e59a7 572<entry>SLIS</entry>
1da177e4
LT
573<entry>None</entry>
574</row>
575
576<row>
577<entry>Softirq A</entry>
621e59a7
RD
578<entry>SLI</entry>
579<entry>SLI</entry>
580<entry>SL</entry>
1da177e4
LT
581</row>
582
583<row>
584<entry>Softirq B</entry>
621e59a7
RD
585<entry>SLI</entry>
586<entry>SLI</entry>
587<entry>SL</entry>
588<entry>SL</entry>
1da177e4
LT
589</row>
590
591<row>
592<entry>Tasklet A</entry>
621e59a7
RD
593<entry>SLI</entry>
594<entry>SLI</entry>
595<entry>SL</entry>
596<entry>SL</entry>
1da177e4
LT
597<entry>None</entry>
598</row>
599
600<row>
601<entry>Tasklet B</entry>
621e59a7
RD
602<entry>SLI</entry>
603<entry>SLI</entry>
604<entry>SL</entry>
605<entry>SL</entry>
606<entry>SL</entry>
1da177e4
LT
607<entry>None</entry>
608</row>
609
610<row>
611<entry>Timer A</entry>
621e59a7
RD
612<entry>SLI</entry>
613<entry>SLI</entry>
614<entry>SL</entry>
615<entry>SL</entry>
616<entry>SL</entry>
617<entry>SL</entry>
1da177e4
LT
618<entry>None</entry>
619</row>
620
621<row>
622<entry>Timer B</entry>
621e59a7
RD
623<entry>SLI</entry>
624<entry>SLI</entry>
625<entry>SL</entry>
626<entry>SL</entry>
627<entry>SL</entry>
628<entry>SL</entry>
629<entry>SL</entry>
1da177e4
LT
630<entry>None</entry>
631</row>
632
633<row>
634<entry>User Context A</entry>
621e59a7
RD
635<entry>SLI</entry>
636<entry>SLI</entry>
637<entry>SLBH</entry>
638<entry>SLBH</entry>
639<entry>SLBH</entry>
640<entry>SLBH</entry>
641<entry>SLBH</entry>
642<entry>SLBH</entry>
1da177e4
LT
643<entry>None</entry>
644</row>
645
646<row>
647<entry>User Context B</entry>
621e59a7
RD
648<entry>SLI</entry>
649<entry>SLI</entry>
650<entry>SLBH</entry>
651<entry>SLBH</entry>
652<entry>SLBH</entry>
653<entry>SLBH</entry>
654<entry>SLBH</entry>
655<entry>SLBH</entry>
78305de2 656<entry>MLI</entry>
621e59a7
RD
657<entry>None</entry>
658</row>
659
660</tbody>
661</tgroup>
662</table>
663
664 <table>
665<title>Legend for Locking Requirements Table</title>
666<tgroup cols="2">
667<tbody>
668
669<row>
670<entry>SLIS</entry>
671<entry>spin_lock_irqsave</entry>
672</row>
673<row>
674<entry>SLI</entry>
1da177e4 675<entry>spin_lock_irq</entry>
621e59a7
RD
676</row>
677<row>
678<entry>SL</entry>
679<entry>spin_lock</entry>
680</row>
681<row>
682<entry>SLBH</entry>
1da177e4 683<entry>spin_lock_bh</entry>
621e59a7
RD
684</row>
685<row>
78305de2
MW
686<entry>MLI</entry>
687<entry>mutex_lock_interruptible</entry>
1da177e4
LT
688</row>
689
690</tbody>
691</tgroup>
692</table>
621e59a7 693
1da177e4
LT
694</sect1>
695</chapter>
696
4d2e7d0d
ML
697<chapter id="trylock-functions">
698 <title>The trylock Functions</title>
699 <para>
700 There are functions that try to acquire a lock only once and immediately
701 return a value telling about success or failure to acquire the lock.
702 They can be used if you need no access to the data protected with the lock
703 when some other thread is holding the lock. You should acquire the lock
704 later if you then need access to the data protected with the lock.
705 </para>
706
707 <para>
708 <function>spin_trylock()</function> does not spin but returns non-zero if
709 it acquires the spinlock on the first try or 0 if not. This function can
710 be used in all contexts like <function>spin_lock</function>: you must have
711 disabled the contexts that might interrupt you and acquire the spin lock.
712 </para>
713
714 <para>
715 <function>mutex_trylock()</function> does not suspend your task
716 but returns non-zero if it could lock the mutex on the first try
717 or 0 if not. This function cannot be safely used in hardware or software
718 interrupt contexts despite not sleeping.
719 </para>
720</chapter>
721
1da177e4
LT
722 <chapter id="Examples">
723 <title>Common Examples</title>
724 <para>
725Let's step through a simple example: a cache of number to name
726mappings. The cache keeps a count of how often each of the objects is
727used, and when it gets full, throws out the least used one.
728
729 </para>
730
731 <sect1 id="examples-usercontext">
732 <title>All In User Context</title>
733 <para>
734For our first example, we assume that all operations are in user
735context (ie. from system calls), so we can sleep. This means we can
66656ebb 736use a mutex to protect the cache and all the objects within
1da177e4
LT
737it. Here's the code:
738 </para>
739
740 <programlisting>
741#include &lt;linux/list.h&gt;
742#include &lt;linux/slab.h&gt;
743#include &lt;linux/string.h&gt;
66656ebb 744#include &lt;linux/mutex.h&gt;
1da177e4
LT
745#include &lt;asm/errno.h&gt;
746
747struct object
748{
749 struct list_head list;
750 int id;
751 char name[32];
752 int popularity;
753};
754
755/* Protects the cache, cache_num, and the objects within it */
66656ebb 756static DEFINE_MUTEX(cache_lock);
1da177e4
LT
757static LIST_HEAD(cache);
758static unsigned int cache_num = 0;
759#define MAX_CACHE_SIZE 10
760
761/* Must be holding cache_lock */
762static struct object *__cache_find(int id)
763{
764 struct object *i;
765
766 list_for_each_entry(i, &amp;cache, list)
767 if (i-&gt;id == id) {
768 i-&gt;popularity++;
769 return i;
770 }
771 return NULL;
772}
773
774/* Must be holding cache_lock */
775static void __cache_delete(struct object *obj)
776{
777 BUG_ON(!obj);
778 list_del(&amp;obj-&gt;list);
779 kfree(obj);
780 cache_num--;
781}
782
783/* Must be holding cache_lock */
784static void __cache_add(struct object *obj)
785{
786 list_add(&amp;obj-&gt;list, &amp;cache);
787 if (++cache_num > MAX_CACHE_SIZE) {
788 struct object *i, *outcast = NULL;
789 list_for_each_entry(i, &amp;cache, list) {
790 if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity)
791 outcast = i;
792 }
793 __cache_delete(outcast);
794 }
795}
796
797int cache_add(int id, const char *name)
798{
799 struct object *obj;
800
801 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
802 return -ENOMEM;
803
804 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
805 obj-&gt;id = id;
806 obj-&gt;popularity = 0;
807
66656ebb 808 mutex_lock(&amp;cache_lock);
1da177e4 809 __cache_add(obj);
66656ebb 810 mutex_unlock(&amp;cache_lock);
1da177e4
LT
811 return 0;
812}
813
814void cache_delete(int id)
815{
66656ebb 816 mutex_lock(&amp;cache_lock);
1da177e4 817 __cache_delete(__cache_find(id));
66656ebb 818 mutex_unlock(&amp;cache_lock);
1da177e4
LT
819}
820
821int cache_find(int id, char *name)
822{
823 struct object *obj;
824 int ret = -ENOENT;
825
66656ebb 826 mutex_lock(&amp;cache_lock);
1da177e4
LT
827 obj = __cache_find(id);
828 if (obj) {
829 ret = 0;
830 strcpy(name, obj-&gt;name);
831 }
66656ebb 832 mutex_unlock(&amp;cache_lock);
1da177e4
LT
833 return ret;
834}
835</programlisting>
836
837 <para>
838Note that we always make sure we have the cache_lock when we add,
839delete, or look up the cache: both the cache infrastructure itself and
840the contents of the objects are protected by the lock. In this case
841it's easy, since we copy the data for the user, and never let them
842access the objects directly.
843 </para>
844 <para>
845There is a slight (and common) optimization here: in
846<function>cache_add</function> we set up the fields of the object
847before grabbing the lock. This is safe, as no-one else can access it
848until we put it in cache.
849 </para>
850 </sect1>
851
852 <sect1 id="examples-interrupt">
853 <title>Accessing From Interrupt Context</title>
854 <para>
855Now consider the case where <function>cache_find</function> can be
856called from interrupt context: either a hardware interrupt or a
857softirq. An example would be a timer which deletes object from the
858cache.
859 </para>
860 <para>
861The change is shown below, in standard patch format: the
862<symbol>-</symbol> are lines which are taken away, and the
863<symbol>+</symbol> are lines which are added.
864 </para>
865<programlisting>
866--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
867+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100
868@@ -12,7 +12,7 @@
869 int popularity;
870 };
871
66656ebb 872-static DEFINE_MUTEX(cache_lock);
c0d1f295 873+static DEFINE_SPINLOCK(cache_lock);
1da177e4
LT
874 static LIST_HEAD(cache);
875 static unsigned int cache_num = 0;
876 #define MAX_CACHE_SIZE 10
877@@ -55,6 +55,7 @@
878 int cache_add(int id, const char *name)
879 {
880 struct object *obj;
881+ unsigned long flags;
882
883 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
884 return -ENOMEM;
885@@ -63,30 +64,33 @@
886 obj-&gt;id = id;
887 obj-&gt;popularity = 0;
888
66656ebb 889- mutex_lock(&amp;cache_lock);
1da177e4
LT
890+ spin_lock_irqsave(&amp;cache_lock, flags);
891 __cache_add(obj);
66656ebb 892- mutex_unlock(&amp;cache_lock);
1da177e4
LT
893+ spin_unlock_irqrestore(&amp;cache_lock, flags);
894 return 0;
895 }
896
897 void cache_delete(int id)
898 {
66656ebb 899- mutex_lock(&amp;cache_lock);
1da177e4
LT
900+ unsigned long flags;
901+
902+ spin_lock_irqsave(&amp;cache_lock, flags);
903 __cache_delete(__cache_find(id));
66656ebb 904- mutex_unlock(&amp;cache_lock);
1da177e4
LT
905+ spin_unlock_irqrestore(&amp;cache_lock, flags);
906 }
907
908 int cache_find(int id, char *name)
909 {
910 struct object *obj;
911 int ret = -ENOENT;
912+ unsigned long flags;
913
66656ebb 914- mutex_lock(&amp;cache_lock);
1da177e4
LT
915+ spin_lock_irqsave(&amp;cache_lock, flags);
916 obj = __cache_find(id);
917 if (obj) {
918 ret = 0;
919 strcpy(name, obj-&gt;name);
920 }
66656ebb 921- mutex_unlock(&amp;cache_lock);
1da177e4
LT
922+ spin_unlock_irqrestore(&amp;cache_lock, flags);
923 return ret;
924 }
925</programlisting>
926
927 <para>
928Note that the <function>spin_lock_irqsave</function> will turn off
929interrupts if they are on, otherwise does nothing (if we are already
930in an interrupt handler), hence these functions are safe to call from
931any context.
932 </para>
933 <para>
934Unfortunately, <function>cache_add</function> calls
935<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol>
936flag, which is only legal in user context. I have assumed that
937<function>cache_add</function> is still only called in user context,
938otherwise this should become a parameter to
939<function>cache_add</function>.
940 </para>
941 </sect1>
942 <sect1 id="examples-refcnt">
943 <title>Exposing Objects Outside This File</title>
944 <para>
945If our objects contained more information, it might not be sufficient
946to copy the information in and out: other parts of the code might want
947to keep pointers to these objects, for example, rather than looking up
948the id every time. This produces two problems.
949 </para>
950 <para>
951The first problem is that we use the <symbol>cache_lock</symbol> to
952protect objects: we'd need to make this non-static so the rest of the
953code can use it. This makes locking trickier, as it is no longer all
954in one place.
955 </para>
956 <para>
957The second problem is the lifetime problem: if another structure keeps
958a pointer to an object, it presumably expects that pointer to remain
959valid. Unfortunately, this is only guaranteed while you hold the
960lock, otherwise someone might call <function>cache_delete</function>
961and even worse, add another object, re-using the same address.
962 </para>
963 <para>
964As there is only one lock, you can't hold it forever: no-one else would
965get any work done.
966 </para>
967 <para>
968The solution to this problem is to use a reference count: everyone who
969has a pointer to the object increases it when they first get the
970object, and drops the reference count when they're finished with it.
971Whoever drops it to zero knows it is unused, and can actually delete it.
972 </para>
973 <para>
974Here is the code:
975 </para>
976
977<programlisting>
978--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100
979+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100
980@@ -7,6 +7,7 @@
981 struct object
982 {
983 struct list_head list;
984+ unsigned int refcnt;
985 int id;
986 char name[32];
987 int popularity;
988@@ -17,6 +18,35 @@
989 static unsigned int cache_num = 0;
990 #define MAX_CACHE_SIZE 10
991
992+static void __object_put(struct object *obj)
993+{
994+ if (--obj-&gt;refcnt == 0)
995+ kfree(obj);
996+}
997+
998+static void __object_get(struct object *obj)
999+{
1000+ obj-&gt;refcnt++;
1001+}
1002+
1003+void object_put(struct object *obj)
1004+{
1005+ unsigned long flags;
1006+
1007+ spin_lock_irqsave(&amp;cache_lock, flags);
1008+ __object_put(obj);
1009+ spin_unlock_irqrestore(&amp;cache_lock, flags);
1010+}
1011+
1012+void object_get(struct object *obj)
1013+{
1014+ unsigned long flags;
1015+
1016+ spin_lock_irqsave(&amp;cache_lock, flags);
1017+ __object_get(obj);
1018+ spin_unlock_irqrestore(&amp;cache_lock, flags);
1019+}
1020+
1021 /* Must be holding cache_lock */
1022 static struct object *__cache_find(int id)
1023 {
1024@@ -35,6 +65,7 @@
1025 {
1026 BUG_ON(!obj);
1027 list_del(&amp;obj-&gt;list);
1028+ __object_put(obj);
1029 cache_num--;
1030 }
1031
1032@@ -63,6 +94,7 @@
1033 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1034 obj-&gt;id = id;
1035 obj-&gt;popularity = 0;
1036+ obj-&gt;refcnt = 1; /* The cache holds a reference */
1037
1038 spin_lock_irqsave(&amp;cache_lock, flags);
1039 __cache_add(obj);
1040@@ -79,18 +111,15 @@
1041 spin_unlock_irqrestore(&amp;cache_lock, flags);
1042 }
1043
1044-int cache_find(int id, char *name)
1045+struct object *cache_find(int id)
1046 {
1047 struct object *obj;
1048- int ret = -ENOENT;
1049 unsigned long flags;
1050
1051 spin_lock_irqsave(&amp;cache_lock, flags);
1052 obj = __cache_find(id);
1053- if (obj) {
1054- ret = 0;
1055- strcpy(name, obj-&gt;name);
1056- }
1057+ if (obj)
1058+ __object_get(obj);
1059 spin_unlock_irqrestore(&amp;cache_lock, flags);
1060- return ret;
1061+ return obj;
1062 }
1063</programlisting>
1064
1065<para>
1066We encapsulate the reference counting in the standard 'get' and 'put'
1067functions. Now we can return the object itself from
1068<function>cache_find</function> which has the advantage that the user
1069can now sleep holding the object (eg. to
1070<function>copy_to_user</function> to name to userspace).
1071</para>
1072<para>
1073The other point to note is that I said a reference should be held for
1074every pointer to the object: thus the reference count is 1 when first
1075inserted into the cache. In some versions the framework does not hold
1076a reference count, but they are more complicated.
1077</para>
1078
1079 <sect2 id="examples-refcnt-atomic">
1080 <title>Using Atomic Operations For The Reference Count</title>
1081<para>
1082In practice, <type>atomic_t</type> would usually be used for
1083<structfield>refcnt</structfield>. There are a number of atomic
1084operations defined in
1085
1086<filename class="headerfile">include/asm/atomic.h</filename>: these are
1087guaranteed to be seen atomically from all CPUs in the system, so no
1088lock is required. In this case, it is simpler than using spinlocks,
1089although for anything non-trivial using spinlocks is clearer. The
1090<function>atomic_inc</function> and
1091<function>atomic_dec_and_test</function> are used instead of the
1092standard increment and decrement operators, and the lock is no longer
1093used to protect the reference count itself.
1094</para>
1095
1096<programlisting>
1097--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100
1098+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100
1099@@ -7,7 +7,7 @@
1100 struct object
1101 {
1102 struct list_head list;
1103- unsigned int refcnt;
1104+ atomic_t refcnt;
1105 int id;
1106 char name[32];
1107 int popularity;
1108@@ -18,33 +18,15 @@
1109 static unsigned int cache_num = 0;
1110 #define MAX_CACHE_SIZE 10
1111
1112-static void __object_put(struct object *obj)
1113-{
1114- if (--obj-&gt;refcnt == 0)
1115- kfree(obj);
1116-}
1117-
1118-static void __object_get(struct object *obj)
1119-{
1120- obj-&gt;refcnt++;
1121-}
1122-
1123 void object_put(struct object *obj)
1124 {
1125- unsigned long flags;
1126-
1127- spin_lock_irqsave(&amp;cache_lock, flags);
1128- __object_put(obj);
1129- spin_unlock_irqrestore(&amp;cache_lock, flags);
1130+ if (atomic_dec_and_test(&amp;obj-&gt;refcnt))
1131+ kfree(obj);
1132 }
1133
1134 void object_get(struct object *obj)
1135 {
1136- unsigned long flags;
1137-
1138- spin_lock_irqsave(&amp;cache_lock, flags);
1139- __object_get(obj);
1140- spin_unlock_irqrestore(&amp;cache_lock, flags);
1141+ atomic_inc(&amp;obj-&gt;refcnt);
1142 }
1143
1144 /* Must be holding cache_lock */
1145@@ -65,7 +47,7 @@
1146 {
1147 BUG_ON(!obj);
1148 list_del(&amp;obj-&gt;list);
1149- __object_put(obj);
1150+ object_put(obj);
1151 cache_num--;
1152 }
1153
1154@@ -94,7 +76,7 @@
1155 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1156 obj-&gt;id = id;
1157 obj-&gt;popularity = 0;
1158- obj-&gt;refcnt = 1; /* The cache holds a reference */
1159+ atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1160
1161 spin_lock_irqsave(&amp;cache_lock, flags);
1162 __cache_add(obj);
1163@@ -119,7 +101,7 @@
1164 spin_lock_irqsave(&amp;cache_lock, flags);
1165 obj = __cache_find(id);
1166 if (obj)
1167- __object_get(obj);
1168+ object_get(obj);
1169 spin_unlock_irqrestore(&amp;cache_lock, flags);
1170 return obj;
1171 }
1172</programlisting>
1173</sect2>
1174</sect1>
1175
1176 <sect1 id="examples-lock-per-obj">
1177 <title>Protecting The Objects Themselves</title>
1178 <para>
1179In these examples, we assumed that the objects (except the reference
1180counts) never changed once they are created. If we wanted to allow
1181the name to change, there are three possibilities:
1182 </para>
1183 <itemizedlist>
1184 <listitem>
1185 <para>
1186You can make <symbol>cache_lock</symbol> non-static, and tell people
1187to grab that lock before changing the name in any object.
1188 </para>
1189 </listitem>
1190 <listitem>
1191 <para>
1192You can provide a <function>cache_obj_rename</function> which grabs
1193this lock and changes the name for the caller, and tell everyone to
1194use that function.
1195 </para>
1196 </listitem>
1197 <listitem>
1198 <para>
1199You can make the <symbol>cache_lock</symbol> protect only the cache
1200itself, and use another lock to protect the name.
1201 </para>
1202 </listitem>
1203 </itemizedlist>
1204
1205 <para>
1206Theoretically, you can make the locks as fine-grained as one lock for
1207every field, for every object. In practice, the most common variants
1208are:
1209</para>
1210 <itemizedlist>
1211 <listitem>
1212 <para>
1213One lock which protects the infrastructure (the <symbol>cache</symbol>
1214list in this example) and all the objects. This is what we have done
1215so far.
1216 </para>
1217 </listitem>
1218 <listitem>
1219 <para>
1220One lock which protects the infrastructure (including the list
1221pointers inside the objects), and one lock inside the object which
1222protects the rest of that object.
1223 </para>
1224 </listitem>
1225 <listitem>
1226 <para>
1227Multiple locks to protect the infrastructure (eg. one lock per hash
1228chain), possibly with a separate per-object lock.
1229 </para>
1230 </listitem>
1231 </itemizedlist>
1232
1233<para>
1234Here is the "lock-per-object" implementation:
1235</para>
1236<programlisting>
1237--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100
1238+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1239@@ -6,11 +6,17 @@
1240
1241 struct object
1242 {
1243+ /* These two protected by cache_lock. */
1244 struct list_head list;
1245+ int popularity;
1246+
1247 atomic_t refcnt;
1248+
1249+ /* Doesn't change once created. */
1250 int id;
1251+
1252+ spinlock_t lock; /* Protects the name */
1253 char name[32];
1254- int popularity;
1255 };
1256
c0d1f295 1257 static DEFINE_SPINLOCK(cache_lock);
1da177e4
LT
1258@@ -77,6 +84,7 @@
1259 obj-&gt;id = id;
1260 obj-&gt;popularity = 0;
1261 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1262+ spin_lock_init(&amp;obj-&gt;lock);
1263
1264 spin_lock_irqsave(&amp;cache_lock, flags);
1265 __cache_add(obj);
1266</programlisting>
1267
1268<para>
1269Note that I decide that the <structfield>popularity</structfield>
1270count should be protected by the <symbol>cache_lock</symbol> rather
1271than the per-object lock: this is because it (like the
1272<structname>struct list_head</structname> inside the object) is
1273logically part of the infrastructure. This way, I don't need to grab
1274the lock of every object in <function>__cache_add</function> when
1275seeking the least popular.
1276</para>
1277
1278<para>
1279I also decided that the <structfield>id</structfield> member is
1280unchangeable, so I don't need to grab each object lock in
1281<function>__cache_find()</function> to examine the
1282<structfield>id</structfield>: the object lock is only used by a
1283caller who wants to read or write the <structfield>name</structfield>
1284field.
1285</para>
1286
1287<para>
1288Note also that I added a comment describing what data was protected by
1289which locks. This is extremely important, as it describes the runtime
1290behavior of the code, and can be hard to gain from just reading. And
1291as Alan Cox says, <quote>Lock data, not code</quote>.
1292</para>
1293</sect1>
1294</chapter>
1295
1296 <chapter id="common-problems">
1297 <title>Common Problems</title>
1298 <sect1 id="deadlock">
1299 <title>Deadlock: Simple and Advanced</title>
1300
1301 <para>
1302 There is a coding bug where a piece of code tries to grab a
1303 spinlock twice: it will spin forever, waiting for the lock to
78305de2 1304 be released (spinlocks, rwlocks and mutexes are not
1da177e4
LT
1305 recursive in Linux). This is trivial to diagnose: not a
1306 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
1307 problem.
1308 </para>
1309
1310 <para>
1311 For a slightly more complex case, imagine you have a region
1312 shared by a softirq and user context. If you use a
1313 <function>spin_lock()</function> call to protect it, it is
1314 possible that the user context will be interrupted by the softirq
1315 while it holds the lock, and the softirq will then spin
1316 forever trying to get the same lock.
1317 </para>
1318
1319 <para>
1320 Both of these are called deadlock, and as shown above, it can
1321 occur even with a single CPU (although not on UP compiles,
1322 since spinlocks vanish on kernel compiles with
1323 <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption
1324 in the second example).
1325 </para>
1326
1327 <para>
1328 This complete lockup is easy to diagnose: on SMP boxes the
78305de2 1329 watchdog timer or compiling with <symbol>DEBUG_SPINLOCK</symbol> set
1da177e4
LT
1330 (<filename>include/linux/spinlock.h</filename>) will show this up
1331 immediately when it happens.
1332 </para>
1333
1334 <para>
1335 A more complex problem is the so-called 'deadly embrace',
1336 involving two or more locks. Say you have a hash table: each
1337 entry in the table is a spinlock, and a chain of hashed
1338 objects. Inside a softirq handler, you sometimes want to
1339 alter an object from one place in the hash to another: you
1340 grab the spinlock of the old hash chain and the spinlock of
1341 the new hash chain, and delete the object from the old one,
1342 and insert it in the new one.
1343 </para>
1344
1345 <para>
1346 There are two problems here. First, if your code ever
1347 tries to move the object to the same chain, it will deadlock
1348 with itself as it tries to lock it twice. Secondly, if the
1349 same softirq on another CPU is trying to move another object
1350 in the reverse direction, the following could happen:
1351 </para>
1352
1353 <table>
1354 <title>Consequences</title>
1355
1356 <tgroup cols="2" align="left">
1357
1358 <thead>
1359 <row>
1360 <entry>CPU 1</entry>
1361 <entry>CPU 2</entry>
1362 </row>
1363 </thead>
1364
1365 <tbody>
1366 <row>
1367 <entry>Grab lock A -&gt; OK</entry>
1368 <entry>Grab lock B -&gt; OK</entry>
1369 </row>
1370 <row>
1371 <entry>Grab lock B -&gt; spin</entry>
1372 <entry>Grab lock A -&gt; spin</entry>
1373 </row>
1374 </tbody>
1375 </tgroup>
1376 </table>
1377
1378 <para>
1379 The two CPUs will spin forever, waiting for the other to give up
1380 their lock. It will look, smell, and feel like a crash.
1381 </para>
1382 </sect1>
1383
1384 <sect1 id="techs-deadlock-prevent">
1385 <title>Preventing Deadlock</title>
1386
1387 <para>
1388 Textbooks will tell you that if you always lock in the same
1389 order, you will never get this kind of deadlock. Practice
1390 will tell you that this approach doesn't scale: when I
1391 create a new lock, I don't understand enough of the kernel
1392 to figure out where in the 5000 lock hierarchy it will fit.
1393 </para>
1394
1395 <para>
1396 The best locks are encapsulated: they never get exposed in
1397 headers, and are never held around calls to non-trivial
1398 functions outside the same file. You can read through this
1399 code and see that it will never deadlock, because it never
1400 tries to grab another lock while it has that one. People
1401 using your code don't even need to know you are using a
1402 lock.
1403 </para>
1404
1405 <para>
1406 A classic problem here is when you provide callbacks or
1407 hooks: if you call these with the lock held, you risk simple
1408 deadlock, or a deadly embrace (who knows what the callback
1409 will do?). Remember, the other programmers are out to get
1410 you, so don't do this.
1411 </para>
1412
1413 <sect2 id="techs-deadlock-overprevent">
1414 <title>Overzealous Prevention Of Deadlocks</title>
1415
1416 <para>
1417 Deadlocks are problematic, but not as bad as data
1418 corruption. Code which grabs a read lock, searches a list,
1419 fails to find what it wants, drops the read lock, grabs a
1420 write lock and inserts the object has a race condition.
1421 </para>
1422
1423 <para>
1424 If you don't see why, please stay the fuck away from my code.
1425 </para>
1426 </sect2>
1427 </sect1>
1428
1429 <sect1 id="racing-timers">
1430 <title>Racing Timers: A Kernel Pastime</title>
1431
1432 <para>
1433 Timers can produce their own special problems with races.
1434 Consider a collection of objects (list, hash, etc) where each
1435 object has a timer which is due to destroy it.
1436 </para>
1437
1438 <para>
1439 If you want to destroy the entire collection (say on module
1440 removal), you might do the following:
1441 </para>
1442
1443 <programlisting>
1444 /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
1445 HUNGARIAN NOTATION */
1446 spin_lock_bh(&amp;list_lock);
1447
1448 while (list) {
1449 struct foo *next = list-&gt;next;
1450 del_timer(&amp;list-&gt;timer);
1451 kfree(list);
1452 list = next;
1453 }
1454
1455 spin_unlock_bh(&amp;list_lock);
1456 </programlisting>
1457
1458 <para>
1459 Sooner or later, this will crash on SMP, because a timer can
1460 have just gone off before the <function>spin_lock_bh()</function>,
1461 and it will only get the lock after we
1462 <function>spin_unlock_bh()</function>, and then try to free
1463 the element (which has already been freed!).
1464 </para>
1465
1466 <para>
1467 This can be avoided by checking the result of
1468 <function>del_timer()</function>: if it returns
1469 <returnvalue>1</returnvalue>, the timer has been deleted.
1470 If <returnvalue>0</returnvalue>, it means (in this
1471 case) that it is currently running, so we can do:
1472 </para>
1473
1474 <programlisting>
1475 retry:
1476 spin_lock_bh(&amp;list_lock);
1477
1478 while (list) {
1479 struct foo *next = list-&gt;next;
1480 if (!del_timer(&amp;list-&gt;timer)) {
1481 /* Give timer a chance to delete this */
1482 spin_unlock_bh(&amp;list_lock);
1483 goto retry;
1484 }
1485 kfree(list);
1486 list = next;
1487 }
1488
1489 spin_unlock_bh(&amp;list_lock);
1490 </programlisting>
1491
1492 <para>
1493 Another common problem is deleting timers which restart
1494 themselves (by calling <function>add_timer()</function> at the end
1495 of their timer function). Because this is a fairly common case
1496 which is prone to races, you should use <function>del_timer_sync()</function>
1497 (<filename class="headerfile">include/linux/timer.h</filename>)
1498 to handle this case. It returns the number of times the timer
1499 had to be deleted before we finally stopped it from adding itself back
1500 in.
1501 </para>
1502 </sect1>
1503
1504 </chapter>
1505
1506 <chapter id="Efficiency">
1507 <title>Locking Speed</title>
1508
1509 <para>
1510There are three main things to worry about when considering speed of
1511some code which does locking. First is concurrency: how many things
1512are going to be waiting while someone else is holding a lock. Second
1513is the time taken to actually acquire and release an uncontended lock.
1514Third is using fewer, or smarter locks. I'm assuming that the lock is
1515used fairly often: otherwise, you wouldn't be concerned about
1516efficiency.
1517</para>
1518 <para>
1519Concurrency depends on how long the lock is usually held: you should
1520hold the lock for as long as needed, but no longer. In the cache
1521example, we always create the object without the lock held, and then
1522grab the lock only when we are ready to insert it in the list.
1523</para>
1524 <para>
1525Acquisition times depend on how much damage the lock operations do to
1526the pipeline (pipeline stalls) and how likely it is that this CPU was
1527the last one to grab the lock (ie. is the lock cache-hot for this
1528CPU): on a machine with more CPUs, this likelihood drops fast.
1529Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns,
1530an atomic increment takes about 58ns, a lock which is cache-hot on
1531this CPU takes 160ns, and a cacheline transfer from another CPU takes
1532an additional 170 to 360ns. (These figures from Paul McKenney's
1533<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux
1534Journal RCU article</ulink>).
1535</para>
1536 <para>
1537These two aims conflict: holding a lock for a short time might be done
1538by splitting locks into parts (such as in our final per-object-lock
1539example), but this increases the number of lock acquisitions, and the
1540results are often slower than having a single lock. This is another
1541reason to advocate locking simplicity.
1542</para>
1543 <para>
1544The third concern is addressed below: there are some methods to reduce
1545the amount of locking which needs to be done.
1546</para>
1547
1548 <sect1 id="efficiency-rwlocks">
1549 <title>Read/Write Lock Variants</title>
1550
1551 <para>
78305de2 1552 Both spinlocks and mutexes have read/write variants:
1da177e4
LT
1553 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
1554 These divide users into two classes: the readers and the writers. If
1555 you are only reading the data, you can get a read lock, but to write to
1556 the data you need the write lock. Many people can hold a read lock,
1557 but a writer must be sole holder.
1558 </para>
1559
1560 <para>
1561 If your code divides neatly along reader/writer lines (as our
1562 cache code does), and the lock is held by readers for
1563 significant lengths of time, using these locks can help. They
1564 are slightly slower than the normal locks though, so in practice
1565 <type>rwlock_t</type> is not usually worthwhile.
1566 </para>
1567 </sect1>
1568
1569 <sect1 id="efficiency-read-copy-update">
1570 <title>Avoiding Locks: Read Copy Update</title>
1571
1572 <para>
1573 There is a special method of read/write locking called Read Copy
1574 Update. Using RCU, the readers can avoid taking a lock
1575 altogether: as we expect our cache to be read more often than
1576 updated (otherwise the cache is a waste of time), it is a
1577 candidate for this optimization.
1578 </para>
1579
1580 <para>
1581 How do we get rid of read locks? Getting rid of read locks
1582 means that writers may be changing the list underneath the
1583 readers. That is actually quite simple: we can read a linked
1584 list while an element is being added if the writer adds the
1585 element very carefully. For example, adding
1586 <symbol>new</symbol> to a single linked list called
1587 <symbol>list</symbol>:
1588 </para>
1589
1590 <programlisting>
1591 new-&gt;next = list-&gt;next;
1592 wmb();
1593 list-&gt;next = new;
1594 </programlisting>
1595
1596 <para>
1597 The <function>wmb()</function> is a write memory barrier. It
1598 ensures that the first operation (setting the new element's
1599 <symbol>next</symbol> pointer) is complete and will be seen by
1600 all CPUs, before the second operation is (putting the new
1601 element into the list). This is important, since modern
1602 compilers and modern CPUs can both reorder instructions unless
1603 told otherwise: we want a reader to either not see the new
1604 element at all, or see the new element with the
1605 <symbol>next</symbol> pointer correctly pointing at the rest of
1606 the list.
1607 </para>
1608 <para>
1609 Fortunately, there is a function to do this for standard
1610 <structname>struct list_head</structname> lists:
1611 <function>list_add_rcu()</function>
1612 (<filename>include/linux/list.h</filename>).
1613 </para>
1614 <para>
1615 Removing an element from the list is even simpler: we replace
1616 the pointer to the old element with a pointer to its successor,
1617 and readers will either see it, or skip over it.
1618 </para>
1619 <programlisting>
1620 list-&gt;next = old-&gt;next;
1621 </programlisting>
1622 <para>
1623 There is <function>list_del_rcu()</function>
1624 (<filename>include/linux/list.h</filename>) which does this (the
1625 normal version poisons the old object, which we don't want).
1626 </para>
1627 <para>
1628 The reader must also be careful: some CPUs can look through the
1629 <symbol>next</symbol> pointer to start reading the contents of
1630 the next element early, but don't realize that the pre-fetched
1631 contents is wrong when the <symbol>next</symbol> pointer changes
1632 underneath them. Once again, there is a
1633 <function>list_for_each_entry_rcu()</function>
1634 (<filename>include/linux/list.h</filename>) to help you. Of
1635 course, writers can just use
1636 <function>list_for_each_entry()</function>, since there cannot
1637 be two simultaneous writers.
1638 </para>
1639 <para>
1640 Our final dilemma is this: when can we actually destroy the
1641 removed element? Remember, a reader might be stepping through
2e2d0dcc 1642 this element in the list right now: if we free this element and
1da177e4
LT
1643 the <symbol>next</symbol> pointer changes, the reader will jump
1644 off into garbage and crash. We need to wait until we know that
1645 all the readers who were traversing the list when we deleted the
1646 element are finished. We use <function>call_rcu()</function> to
1647 register a callback which will actually destroy the object once
1648 the readers are finished.
1649 </para>
1650 <para>
1651 But how does Read Copy Update know when the readers are
1652 finished? The method is this: firstly, the readers always
1653 traverse the list inside
1654 <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function>
1655 pairs: these simply disable preemption so the reader won't go to
1656 sleep while reading the list.
1657 </para>
1658 <para>
1659 RCU then waits until every other CPU has slept at least once:
1660 since readers cannot sleep, we know that any readers which were
1661 traversing the list during the deletion are finished, and the
1662 callback is triggered. The real Read Copy Update code is a
1663 little more optimized than this, but this is the fundamental
1664 idea.
1665 </para>
1666
1667<programlisting>
1668--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1669+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100
1670@@ -1,15 +1,18 @@
1671 #include &lt;linux/list.h&gt;
1672 #include &lt;linux/slab.h&gt;
1673 #include &lt;linux/string.h&gt;
1674+#include &lt;linux/rcupdate.h&gt;
78305de2 1675 #include &lt;linux/mutex.h&gt;
1da177e4
LT
1676 #include &lt;asm/errno.h&gt;
1677
1678 struct object
1679 {
1680- /* These two protected by cache_lock. */
1681+ /* This is protected by RCU */
1682 struct list_head list;
1683 int popularity;
1684
1685+ struct rcu_head rcu;
1686+
1687 atomic_t refcnt;
1688
1689 /* Doesn't change once created. */
1690@@ -40,7 +43,7 @@
1691 {
1692 struct object *i;
1693
1694- list_for_each_entry(i, &amp;cache, list) {
1695+ list_for_each_entry_rcu(i, &amp;cache, list) {
1696 if (i-&gt;id == id) {
1697 i-&gt;popularity++;
1698 return i;
1699@@ -49,19 +52,25 @@
1700 return NULL;
1701 }
1702
1703+/* Final discard done once we know no readers are looking. */
1704+static void cache_delete_rcu(void *arg)
1705+{
1706+ object_put(arg);
1707+}
1708+
1709 /* Must be holding cache_lock */
1710 static void __cache_delete(struct object *obj)
1711 {
1712 BUG_ON(!obj);
1713- list_del(&amp;obj-&gt;list);
1714- object_put(obj);
1715+ list_del_rcu(&amp;obj-&gt;list);
1716 cache_num--;
1717+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
1718 }
1719
1720 /* Must be holding cache_lock */
1721 static void __cache_add(struct object *obj)
1722 {
1723- list_add(&amp;obj-&gt;list, &amp;cache);
1724+ list_add_rcu(&amp;obj-&gt;list, &amp;cache);
1725 if (++cache_num > MAX_CACHE_SIZE) {
1726 struct object *i, *outcast = NULL;
1727 list_for_each_entry(i, &amp;cache, list) {
1728@@ -85,6 +94,7 @@
1729 obj-&gt;popularity = 0;
1730 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1731 spin_lock_init(&amp;obj-&gt;lock);
1732+ INIT_RCU_HEAD(&amp;obj-&gt;rcu);
1733
1734 spin_lock_irqsave(&amp;cache_lock, flags);
1735 __cache_add(obj);
1736@@ -104,12 +114,11 @@
1737 struct object *cache_find(int id)
1738 {
1739 struct object *obj;
1740- unsigned long flags;
1741
1742- spin_lock_irqsave(&amp;cache_lock, flags);
1743+ rcu_read_lock();
1744 obj = __cache_find(id);
1745 if (obj)
1746 object_get(obj);
1747- spin_unlock_irqrestore(&amp;cache_lock, flags);
1748+ rcu_read_unlock();
1749 return obj;
1750 }
1751</programlisting>
1752
1753<para>
1754Note that the reader will alter the
1755<structfield>popularity</structfield> member in
1756<function>__cache_find()</function>, and now it doesn't hold a lock.
1757One solution would be to make it an <type>atomic_t</type>, but for
1758this usage, we don't really care about races: an approximate result is
1759good enough, so I didn't change it.
1760</para>
1761
1762<para>
1763The result is that <function>cache_find()</function> requires no
1764synchronization with any other functions, so is almost as fast on SMP
1765as it would be on UP.
1766</para>
1767
1768<para>
1769There is a furthur optimization possible here: remember our original
1770cache code, where there were no reference counts and the caller simply
1771held the lock whenever using the object? This is still possible: if
1772you hold the lock, noone can delete the object, so you don't need to
1773get and put the reference count.
1774</para>
1775
1776<para>
1777Now, because the 'read lock' in RCU is simply disabling preemption, a
1778caller which always has preemption disabled between calling
1779<function>cache_find()</function> and
1780<function>object_put()</function> does not need to actually get and
1781put the reference count: we could expose
1782<function>__cache_find()</function> by making it non-static, and
1783such callers could simply call that.
1784</para>
1785<para>
1786The benefit here is that the reference count is not written to: the
1787object is not altered in any way, which is much faster on SMP
1788machines due to caching.
1789</para>
1790 </sect1>
1791
1792 <sect1 id="per-cpu">
1793 <title>Per-CPU Data</title>
1794
1795 <para>
1796 Another technique for avoiding locking which is used fairly
1797 widely is to duplicate information for each CPU. For example,
1798 if you wanted to keep a count of a common condition, you could
1799 use a spin lock and a single counter. Nice and simple.
1800 </para>
1801
1802 <para>
1803 If that was too slow (it's usually not, but if you've got a
1804 really big machine to test on and can show that it is), you
1805 could instead use a counter for each CPU, then none of them need
1806 an exclusive lock. See <function>DEFINE_PER_CPU()</function>,
1807 <function>get_cpu_var()</function> and
1808 <function>put_cpu_var()</function>
1809 (<filename class="headerfile">include/linux/percpu.h</filename>).
1810 </para>
1811
1812 <para>
1813 Of particular use for simple per-cpu counters is the
1814 <type>local_t</type> type, and the
1815 <function>cpu_local_inc()</function> and related functions,
1816 which are more efficient than simple code on some architectures
1817 (<filename class="headerfile">include/asm/local.h</filename>).
1818 </para>
1819
1820 <para>
1821 Note that there is no simple, reliable way of getting an exact
1822 value of such a counter, without introducing more locks. This
1823 is not a problem for some uses.
1824 </para>
1825 </sect1>
1826
1827 <sect1 id="mostly-hardirq">
1828 <title>Data Which Mostly Used By An IRQ Handler</title>
1829
1830 <para>
1831 If data is always accessed from within the same IRQ handler, you
1832 don't need a lock at all: the kernel already guarantees that the
1833 irq handler will not run simultaneously on multiple CPUs.
1834 </para>
1835 <para>
1836 Manfred Spraul points out that you can still do this, even if
1837 the data is very occasionally accessed in user context or
1838 softirqs/tasklets. The irq handler doesn't use a lock, and
1839 all other accesses are done as so:
1840 </para>
1841
1842<programlisting>
1843 spin_lock(&amp;lock);
1844 disable_irq(irq);
1845 ...
1846 enable_irq(irq);
1847 spin_unlock(&amp;lock);
1848</programlisting>
1849 <para>
1850 The <function>disable_irq()</function> prevents the irq handler
1851 from running (and waits for it to finish if it's currently
1852 running on other CPUs). The spinlock prevents any other
1853 accesses happening at the same time. Naturally, this is slower
1854 than just a <function>spin_lock_irq()</function> call, so it
1855 only makes sense if this type of access happens extremely
1856 rarely.
1857 </para>
1858 </sect1>
1859 </chapter>
1860
1861 <chapter id="sleeping-things">
1862 <title>What Functions Are Safe To Call From Interrupts?</title>
1863
1864 <para>
1865 Many functions in the kernel sleep (ie. call schedule())
1866 directly or indirectly: you can never call them while holding a
1867 spinlock, or with preemption disabled. This also means you need
1868 to be in user context: calling them from an interrupt is illegal.
1869 </para>
1870
1871 <sect1 id="sleeping">
1872 <title>Some Functions Which Sleep</title>
1873
1874 <para>
1875 The most common ones are listed below, but you usually have to
1876 read the code to find out if other calls are safe. If everyone
1877 else who calls it can sleep, you probably need to be able to
1878 sleep, too. In particular, registration and deregistration
1879 functions usually expect to be called from user context, and can
1880 sleep.
1881 </para>
1882
1883 <itemizedlist>
1884 <listitem>
1885 <para>
1886 Accesses to
1887 <firstterm linkend="gloss-userspace">userspace</firstterm>:
1888 </para>
1889 <itemizedlist>
1890 <listitem>
1891 <para>
1892 <function>copy_from_user()</function>
1893 </para>
1894 </listitem>
1895 <listitem>
1896 <para>
1897 <function>copy_to_user()</function>
1898 </para>
1899 </listitem>
1900 <listitem>
1901 <para>
1902 <function>get_user()</function>
1903 </para>
1904 </listitem>
1905 <listitem>
1906 <para>
78305de2 1907 <function>put_user()</function>
1da177e4
LT
1908 </para>
1909 </listitem>
1910 </itemizedlist>
1911 </listitem>
1912
1913 <listitem>
1914 <para>
1915 <function>kmalloc(GFP_KERNEL)</function>
1916 </para>
1917 </listitem>
1918
1919 <listitem>
1920 <para>
78305de2
MW
1921 <function>mutex_lock_interruptible()</function> and
1922 <function>mutex_lock()</function>
1da177e4
LT
1923 </para>
1924 <para>
1ee41680
SR
1925 There is a <function>mutex_trylock()</function> which does not
1926 sleep. Still, it must not be used inside interrupt context since
1927 its implementation is not safe for that.
78305de2 1928 <function>mutex_unlock()</function> will also never sleep.
1ee41680
SR
1929 It cannot be used in interrupt context either since a mutex
1930 must be released by the same task that acquired it.
1da177e4
LT
1931 </para>
1932 </listitem>
1933 </itemizedlist>
1934 </sect1>
1935
1936 <sect1 id="dont-sleep">
1937 <title>Some Functions Which Don't Sleep</title>
1938
1939 <para>
1940 Some functions are safe to call from any context, or holding
1941 almost any lock.
1942 </para>
1943
1944 <itemizedlist>
1945 <listitem>
1946 <para>
1947 <function>printk()</function>
1948 </para>
1949 </listitem>
1950 <listitem>
1951 <para>
1952 <function>kfree()</function>
1953 </para>
1954 </listitem>
1955 <listitem>
1956 <para>
1957 <function>add_timer()</function> and <function>del_timer()</function>
1958 </para>
1959 </listitem>
1960 </itemizedlist>
1961 </sect1>
1962 </chapter>
1963
1964 <chapter id="references">
1965 <title>Further reading</title>
1966
1967 <itemizedlist>
1968 <listitem>
1969 <para>
1970 <filename>Documentation/spinlocks.txt</filename>:
1971 Linus Torvalds' spinlocking tutorial in the kernel sources.
1972 </para>
1973 </listitem>
1974
1975 <listitem>
1976 <para>
1977 Unix Systems for Modern Architectures: Symmetric
1978 Multiprocessing and Caching for Kernel Programmers:
1979 </para>
1980
1981 <para>
1982 Curt Schimmel's very good introduction to kernel level
1983 locking (not written for Linux, but nearly everything
1984 applies). The book is expensive, but really worth every
1985 penny to understand SMP locking. [ISBN: 0201633388]
1986 </para>
1987 </listitem>
1988 </itemizedlist>
1989 </chapter>
1990
1991 <chapter id="thanks">
1992 <title>Thanks</title>
1993
1994 <para>
1995 Thanks to Telsa Gwynne for DocBooking, neatening and adding
1996 style.
1997 </para>
1998
1999 <para>
2000 Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
2001 Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim
2002 Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney,
2003 John Ashby for proofreading, correcting, flaming, commenting.
2004 </para>
2005
2006 <para>
2007 Thanks to the cabal for having no influence on this document.
2008 </para>
2009 </chapter>
2010
2011 <glossary id="glossary">
2012 <title>Glossary</title>
2013
2014 <glossentry id="gloss-preemption">
2015 <glossterm>preemption</glossterm>
2016 <glossdef>
2017 <para>
2018 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
2019 unset, processes in user context inside the kernel would not
78305de2 2020 preempt each other (ie. you had that CPU until you gave it up,
1da177e4
LT
2021 except for interrupts). With the addition of
2022 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
2023 in user context, higher priority tasks can "cut in": spinlocks
2024 were changed to disable preemption, even on UP.
2025 </para>
2026 </glossdef>
2027 </glossentry>
2028
2029 <glossentry id="gloss-bh">
2030 <glossterm>bh</glossterm>
2031 <glossdef>
2032 <para>
2033 Bottom Half: for historical reasons, functions with
2034 '_bh' in them often now refer to any software interrupt, e.g.
2035 <function>spin_lock_bh()</function> blocks any software interrupt
2036 on the current CPU. Bottom halves are deprecated, and will
2037 eventually be replaced by tasklets. Only one bottom half will be
2038 running at any time.
2039 </para>
2040 </glossdef>
2041 </glossentry>
2042
2043 <glossentry id="gloss-hwinterrupt">
2044 <glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
2045 <glossdef>
2046 <para>
2047 Hardware interrupt request. <function>in_irq()</function> returns
2048 <returnvalue>true</returnvalue> in a hardware interrupt handler.
2049 </para>
2050 </glossdef>
2051 </glossentry>
2052
2053 <glossentry id="gloss-interruptcontext">
2054 <glossterm>Interrupt Context</glossterm>
2055 <glossdef>
2056 <para>
2057 Not user context: processing a hardware irq or software irq.
2058 Indicated by the <function>in_interrupt()</function> macro
2059 returning <returnvalue>true</returnvalue>.
2060 </para>
2061 </glossdef>
2062 </glossentry>
2063
2064 <glossentry id="gloss-smp">
2065 <glossterm><acronym>SMP</acronym></glossterm>
2066 <glossdef>
2067 <para>
2068 Symmetric Multi-Processor: kernels compiled for multiple-CPU
2069 machines. (CONFIG_SMP=y).
2070 </para>
2071 </glossdef>
2072 </glossentry>
2073
2074 <glossentry id="gloss-softirq">
2075 <glossterm>Software Interrupt / softirq</glossterm>
2076 <glossdef>
2077 <para>
2078 Software interrupt handler. <function>in_irq()</function> returns
2079 <returnvalue>false</returnvalue>; <function>in_softirq()</function>
2080 returns <returnvalue>true</returnvalue>. Tasklets and softirqs
2081 both fall into the category of 'software interrupts'.
2082 </para>
2083 <para>
2084 Strictly speaking a softirq is one of up to 32 enumerated software
2085 interrupts which can run on multiple CPUs at once.
2086 Sometimes used to refer to tasklets as
2087 well (ie. all software interrupts).
2088 </para>
2089 </glossdef>
2090 </glossentry>
2091
2092 <glossentry id="gloss-tasklet">
2093 <glossterm>tasklet</glossterm>
2094 <glossdef>
2095 <para>
2096 A dynamically-registrable software interrupt,
2097 which is guaranteed to only run on one CPU at a time.
2098 </para>
2099 </glossdef>
2100 </glossentry>
2101
2102 <glossentry id="gloss-timers">
2103 <glossterm>timer</glossterm>
2104 <glossdef>
2105 <para>
2106 A dynamically-registrable software interrupt, which is run at
2107 (or close to) a given time. When running, it is just like a
2108 tasklet (in fact, they are called from the TIMER_SOFTIRQ).
2109 </para>
2110 </glossdef>
2111 </glossentry>
2112
2113 <glossentry id="gloss-up">
2114 <glossterm><acronym>UP</acronym></glossterm>
2115 <glossdef>
2116 <para>
2117 Uni-Processor: Non-SMP. (CONFIG_SMP=n).
2118 </para>
2119 </glossdef>
2120 </glossentry>
2121
2122 <glossentry id="gloss-usercontext">
2123 <glossterm>User Context</glossterm>
2124 <glossdef>
2125 <para>
2126 The kernel executing on behalf of a particular process (ie. a
2127 system call or trap) or kernel thread. You can tell which
2128 process with the <symbol>current</symbol> macro.) Not to
2129 be confused with userspace. Can be interrupted by software or
2130 hardware interrupts.
2131 </para>
2132 </glossdef>
2133 </glossentry>
2134
2135 <glossentry id="gloss-userspace">
2136 <glossterm>Userspace</glossterm>
2137 <glossdef>
2138 <para>
2139 A process executing its own code outside the kernel.
2140 </para>
2141 </glossdef>
2142 </glossentry>
2143
2144 </glossary>
2145</book>
2146