/* memcontrol.c - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include struct cgroup_subsys mem_cgroup_subsys; static const int MEM_CGROUP_RECLAIM_RETRIES = 5; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. * * TODO: Add a water mark for the memory controller. Reclaim will begin when * we hit the water mark. May be even add a low water mark, such that * no reclaim occurs from a cgroup at it's low water mark, this is * a feature that will be implemented much later in the future. */ struct mem_cgroup { struct cgroup_subsys_state css; /* * the counter to account for memory usage */ struct res_counter res; /* * Per cgroup active and inactive list, similar to the * per zone LRU lists. * TODO: Consider making these lists per zone */ struct list_head active_list; struct list_head inactive_list; /* * spin_lock to protect the per cgroup LRU */ spinlock_t lru_lock; }; /* * We use the lower bit of the page->page_cgroup pointer as a bit spin * lock. We need to ensure that page->page_cgroup is atleast two * byte aligned (based on comments from Nick Piggin) */ #define PAGE_CGROUP_LOCK_BIT 0x0 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) /* * A page_cgroup page is associated with every page descriptor. The * page_cgroup helps us identify information about the cgroup */ struct page_cgroup { struct list_head lru; /* per cgroup LRU list */ struct page *page; struct mem_cgroup *mem_cgroup; atomic_t ref_cnt; /* Helpful when pages move b/w */ /* mapped and cached states */ }; static inline struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) { return container_of(cgroup_subsys_state(cont, mem_cgroup_subsys_id), struct mem_cgroup, css); } static inline struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) { return container_of(task_subsys_state(p, mem_cgroup_subsys_id), struct mem_cgroup, css); } void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p) { struct mem_cgroup *mem; mem = mem_cgroup_from_task(p); css_get(&mem->css); mm->mem_cgroup = mem; } void mm_free_cgroup(struct mm_struct *mm) { css_put(&mm->mem_cgroup->css); } static inline int page_cgroup_locked(struct page *page) { return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); } void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) { int locked; /* * While resetting the page_cgroup we might not hold the * page_cgroup lock. free_hot_cold_page() is an example * of such a scenario */ if (pc) VM_BUG_ON(!page_cgroup_locked(page)); locked = (page->page_cgroup & PAGE_CGROUP_LOCK); page->page_cgroup = ((unsigned long)pc | locked); } struct page_cgroup *page_get_page_cgroup(struct page *page) { return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); } void __always_inline lock_page_cgroup(struct page *page) { bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); VM_BUG_ON(!page_cgroup_locked(page)); } void __always_inline unlock_page_cgroup(struct page *page) { bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); } void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) { if (active) list_move(&pc->lru, &pc->mem_cgroup->active_list); else list_move(&pc->lru, &pc->mem_cgroup->inactive_list); } /* * This routine assumes that the appropriate zone's lru lock is already held */ void mem_cgroup_move_lists(struct page_cgroup *pc, bool active) { struct mem_cgroup *mem; if (!pc) return; mem = pc->mem_cgroup; spin_lock(&mem->lru_lock); __mem_cgroup_move_lists(pc, active); spin_unlock(&mem->lru_lock); } unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, struct list_head *dst, unsigned long *scanned, int order, int mode, struct zone *z, struct mem_cgroup *mem_cont, int active) { unsigned long nr_taken = 0; struct page *page; unsigned long scan; LIST_HEAD(pc_list); struct list_head *src; struct page_cgroup *pc; if (active) src = &mem_cont->active_list; else src = &mem_cont->inactive_list; spin_lock(&mem_cont->lru_lock); for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { pc = list_entry(src->prev, struct page_cgroup, lru); page = pc->page; VM_BUG_ON(!pc); if (PageActive(page) && !active) { __mem_cgroup_move_lists(pc, true); scan--; continue; } if (!PageActive(page) && active) { __mem_cgroup_move_lists(pc, false); scan--; continue; } /* * Reclaim, per zone * TODO: make the active/inactive lists per zone */ if (page_zone(page) != z) continue; /* * Check if the meta page went away from under us */ if (!list_empty(&pc->lru)) list_move(&pc->lru, &pc_list); else continue; if (__isolate_lru_page(page, mode) == 0) { list_move(&page->lru, dst); nr_taken++; } } list_splice(&pc_list, src); spin_unlock(&mem_cont->lru_lock); *scanned = scan; return nr_taken; } /* * Charge the memory controller for page usage. * Return * 0 if the charge was successful * < 0 if the cgroup is over its limit */ int mem_cgroup_charge(struct page *page, struct mm_struct *mm) { struct mem_cgroup *mem; struct page_cgroup *pc, *race_pc; unsigned long flags; unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; /* * Should page_cgroup's go to their own slab? * One could optimize the performance of the charging routine * by saving a bit in the page_flags and using it as a lock * to see if the cgroup page already has a page_cgroup associated * with it */ retry: lock_page_cgroup(page); pc = page_get_page_cgroup(page); /* * The page_cgroup exists and the page has already been accounted */ if (pc) { if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) { /* this page is under being uncharged ? */ unlock_page_cgroup(page); cpu_relax(); goto retry; } else goto done; } unlock_page_cgroup(page); pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL); if (pc == NULL) goto err; rcu_read_lock(); /* * We always charge the cgroup the mm_struct belongs to * the mm_struct's mem_cgroup changes on task migration if the * thread group leader migrates. It's possible that mm is not * set, if so charge the init_mm (happens for pagecache usage). */ if (!mm) mm = &init_mm; mem = rcu_dereference(mm->mem_cgroup); /* * For every charge from the cgroup, increment reference * count */ css_get(&mem->css); rcu_read_unlock(); /* * If we created the page_cgroup, we should free it on exceeding * the cgroup limit. */ while (res_counter_charge(&mem->res, 1)) { if (try_to_free_mem_cgroup_pages(mem)) continue; /* * try_to_free_mem_cgroup_pages() might not give us a full * picture of reclaim. Some pages are reclaimed and might be * moved to swap cache or just unmapped from the cgroup. * Check the limit again to see if the reclaim reduced the * current usage of the cgroup before giving up */ if (res_counter_check_under_limit(&mem->res)) continue; /* * Since we control both RSS and cache, we end up with a * very interesting scenario where we end up reclaiming * memory (essentially RSS), since the memory is pushed * to swap cache, we eventually end up adding those * pages back to our list. Hence we give ourselves a * few chances before we fail */ else if (nr_retries--) { congestion_wait(WRITE, HZ/10); continue; } css_put(&mem->css); goto free_pc; } lock_page_cgroup(page); /* * Check if somebody else beat us to allocating the page_cgroup */ race_pc = page_get_page_cgroup(page); if (race_pc) { kfree(pc); pc = race_pc; atomic_inc(&pc->ref_cnt); res_counter_uncharge(&mem->res, 1); css_put(&mem->css); goto done; } atomic_set(&pc->ref_cnt, 1); pc->mem_cgroup = mem; pc->page = page; page_assign_page_cgroup(page, pc); spin_lock_irqsave(&mem->lru_lock, flags); list_add(&pc->lru, &mem->active_list); spin_unlock_irqrestore(&mem->lru_lock, flags); done: unlock_page_cgroup(page); return 0; free_pc: kfree(pc); err: return -ENOMEM; } /* * Uncharging is always a welcome operation, we never complain, simply * uncharge. */ void mem_cgroup_uncharge(struct page_cgroup *pc) { struct mem_cgroup *mem; struct page *page; unsigned long flags; if (!pc) return; if (atomic_dec_and_test(&pc->ref_cnt)) { page = pc->page; lock_page_cgroup(page); mem = pc->mem_cgroup; css_put(&mem->css); page_assign_page_cgroup(page, NULL); unlock_page_cgroup(page); res_counter_uncharge(&mem->res, 1); spin_lock_irqsave(&mem->lru_lock, flags); list_del_init(&pc->lru); spin_unlock_irqrestore(&mem->lru_lock, flags); kfree(pc); } } static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, struct file *file, char __user *userbuf, size_t nbytes, loff_t *ppos) { return res_counter_read(&mem_cgroup_from_cont(cont)->res, cft->private, userbuf, nbytes, ppos); } static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, struct file *file, const char __user *userbuf, size_t nbytes, loff_t *ppos) { return res_counter_write(&mem_cgroup_from_cont(cont)->res, cft->private, userbuf, nbytes, ppos); } static struct cftype mem_cgroup_files[] = { { .name = "usage", .private = RES_USAGE, .read = mem_cgroup_read, }, { .name = "limit", .private = RES_LIMIT, .write = mem_cgroup_write, .read = mem_cgroup_read, }, { .name = "failcnt", .private = RES_FAILCNT, .read = mem_cgroup_read, }, }; static struct mem_cgroup init_mem_cgroup; static struct cgroup_subsys_state * mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) { struct mem_cgroup *mem; if (unlikely((cont->parent) == NULL)) { mem = &init_mem_cgroup; init_mm.mem_cgroup = mem; } else mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL); if (mem == NULL) return NULL; res_counter_init(&mem->res); INIT_LIST_HEAD(&mem->active_list); INIT_LIST_HEAD(&mem->inactive_list); spin_lock_init(&mem->lru_lock); return &mem->css; } static void mem_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cont) { kfree(mem_cgroup_from_cont(cont)); } static int mem_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) { return cgroup_add_files(cont, ss, mem_cgroup_files, ARRAY_SIZE(mem_cgroup_files)); } static void mem_cgroup_move_task(struct cgroup_subsys *ss, struct cgroup *cont, struct cgroup *old_cont, struct task_struct *p) { struct mm_struct *mm; struct mem_cgroup *mem, *old_mem; mm = get_task_mm(p); if (mm == NULL) return; mem = mem_cgroup_from_cont(cont); old_mem = mem_cgroup_from_cont(old_cont); if (mem == old_mem) goto out; /* * Only thread group leaders are allowed to migrate, the mm_struct is * in effect owned by the leader */ if (p->tgid != p->pid) goto out; css_get(&mem->css); rcu_assign_pointer(mm->mem_cgroup, mem); css_put(&old_mem->css); out: mmput(mm); return; } struct cgroup_subsys mem_cgroup_subsys = { .name = "memory", .subsys_id = mem_cgroup_subsys_id, .create = mem_cgroup_create, .destroy = mem_cgroup_destroy, .populate = mem_cgroup_populate, .attach = mem_cgroup_move_task, .early_init = 1, };