/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _INET_HASHTABLES_H #define _INET_HASHTABLES_H #include #include #include #include #include /* This is for all connections with a full identity, no wildcards. * New scheme, half the table is for TIME_WAIT, the other half is * for the rest. I'll experiment with dynamic table growth later. */ struct inet_ehash_bucket { rwlock_t lock; struct hlist_head chain; } __attribute__((__aligned__(8))); /* There are a few simple rules, which allow for local port reuse by * an application. In essence: * * 1) Sockets bound to different interfaces may share a local port. * Failing that, goto test 2. * 2) If all sockets have sk->sk_reuse set, and none of them are in * TCP_LISTEN state, the port may be shared. * Failing that, goto test 3. * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local * address, and none of them are the same, the port may be * shared. * Failing this, the port cannot be shared. * * The interesting point, is test #2. This is what an FTP server does * all day. To optimize this case we use a specific flag bit defined * below. As we add sockets to a bind bucket list, we perform a * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN)) * As long as all sockets added to a bind bucket pass this test, * the flag bit will be set. * The resulting situation is that tcp_v[46]_verify_bind() can just check * for this flag bit, if it is set and the socket trying to bind has * sk->sk_reuse set, we don't even have to walk the owners list at all, * we return that it is ok to bind this socket to the requested local port. * * Sounds like a lot of work, but it is worth it. In a more naive * implementation (ie. current FreeBSD etc.) the entire list of ports * must be walked for each data port opened by an ftp server. Needless * to say, this does not scale at all. With a couple thousand FTP * users logged onto your box, isn't it nice to know that new data * ports are created in O(1) time? I thought so. ;-) -DaveM */ struct inet_bind_bucket { unsigned short port; signed short fastreuse; struct hlist_node node; struct hlist_head owners; }; #define inet_bind_bucket_for_each(tb, node, head) \ hlist_for_each_entry(tb, node, head, node) struct inet_bind_hashbucket { spinlock_t lock; struct hlist_head chain; }; /* This is for listening sockets, thus all sockets which possess wildcards. */ #define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */ struct inet_hashinfo { /* This is for sockets with full identity only. Sockets here will * always be without wildcards and will have the following invariant: * * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE * * First half of the table is for sockets not in TIME_WAIT, second half * is for TIME_WAIT sockets only. */ struct inet_ehash_bucket *ehash; /* Ok, let's try this, I give up, we do need a local binding * TCP hash as well as the others for fast bind/connect. */ struct inet_bind_hashbucket *bhash; int bhash_size; int ehash_size; /* All sockets in TCP_LISTEN state will be in here. This is the only * table where wildcard'd TCP sockets can exist. Hash function here * is just local port number. */ struct hlist_head listening_hash[INET_LHTABLE_SIZE]; /* All the above members are written once at bootup and * never written again _or_ are predominantly read-access. * * Now align to a new cache line as all the following members * are often dirty. */ rwlock_t lhash_lock ____cacheline_aligned; atomic_t lhash_users; wait_queue_head_t lhash_wait; spinlock_t portalloc_lock; }; static inline int inet_ehashfn(const __u32 laddr, const __u16 lport, const __u32 faddr, const __u16 fport, const int ehash_size) { int h = (laddr ^ lport) ^ (faddr ^ fport); h ^= h >> 16; h ^= h >> 8; return h & (ehash_size - 1); } static inline int inet_sk_ehashfn(const struct sock *sk, const int ehash_size) { const struct inet_sock *inet = inet_sk(sk); const __u32 laddr = inet->rcv_saddr; const __u16 lport = inet->num; const __u32 faddr = inet->daddr; const __u16 fport = inet->dport; return inet_ehashfn(laddr, lport, faddr, fport, ehash_size); } extern struct inet_bind_bucket * inet_bind_bucket_create(kmem_cache_t *cachep, struct inet_bind_hashbucket *head, const unsigned short snum); extern void inet_bind_bucket_destroy(kmem_cache_t *cachep, struct inet_bind_bucket *tb); static inline int inet_bhashfn(const __u16 lport, const int bhash_size) { return lport & (bhash_size - 1); } /* These can have wildcards, don't try too hard. */ static inline int inet_lhashfn(const unsigned short num) { return num & (INET_LHTABLE_SIZE - 1); } static inline int inet_sk_listen_hashfn(const struct sock *sk) { return inet_lhashfn(inet_sk(sk)->num); } #endif /* _INET_HASHTABLES_H */