]> bbs.cooldavid.org Git - net-next-2.6.git/blob - sound/soc/soc-core.c
Merge branch 'for-2.6.36' into for-2.6.37
[net-next-2.6.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE       32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62  * This is a timeout to do a DAPM powerdown after a stream is closed().
63  * It can be used to eliminate pops between different playback streams, e.g.
64  * between two audio tracks.
65  */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71  * This function forces any delayed work to be queued and run.
72  */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75         int ret;
76
77         /* cancel any work waiting to be queued. */
78         ret = cancel_delayed_work(dwork);
79
80         /* if there was any work waiting then we run it now and
81          * wait for it's completion */
82         if (ret) {
83                 schedule_delayed_work(dwork, 0);
84                 flush_scheduled_work();
85         }
86         return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92         int ret, i, step = 1, count = 0;
93
94         if (!codec->driver->reg_cache_size)
95                 return 0;
96
97         if (codec->driver->reg_cache_step)
98                 step = codec->driver->reg_cache_step;
99
100         count += sprintf(buf, "%s registers\n", codec->name);
101         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103                         continue;
104
105                 count += sprintf(buf + count, "%2x: ", i);
106                 if (count >= PAGE_SIZE - 1)
107                         break;
108
109                 if (codec->driver->display_register) {
110                         count += codec->driver->display_register(codec, buf + count,
111                                                          PAGE_SIZE - count, i);
112                 } else {
113                         /* If the read fails it's almost certainly due to
114                          * the register being volatile and the device being
115                          * powered off.
116                          */
117                         ret = codec->driver->read(codec, i);
118                         if (ret >= 0)
119                                 count += snprintf(buf + count,
120                                                   PAGE_SIZE - count,
121                                                   "%4x", ret);
122                         else
123                                 count += snprintf(buf + count,
124                                                   PAGE_SIZE - count,
125                                                   "<no data: %d>", ret);
126                 }
127
128                 if (count >= PAGE_SIZE - 1)
129                         break;
130
131                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132                 if (count >= PAGE_SIZE - 1)
133                         break;
134         }
135
136         /* Truncate count; min() would cause a warning */
137         if (count >= PAGE_SIZE)
138                 count = PAGE_SIZE - 1;
139
140         return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143         struct device_attribute *attr, char *buf)
144 {
145         struct snd_soc_pcm_runtime *rtd =
146                         container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148         return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154                                 struct device_attribute *attr, char *buf)
155 {
156         struct snd_soc_pcm_runtime *rtd =
157                         container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159         return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t count)
165 {
166         struct snd_soc_pcm_runtime *rtd =
167                         container_of(dev, struct snd_soc_pcm_runtime, dev);
168
169         strict_strtol(buf, 10, &rtd->pmdown_time);
170
171         return count;
172 }
173
174 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
175
176 #ifdef CONFIG_DEBUG_FS
177 static int codec_reg_open_file(struct inode *inode, struct file *file)
178 {
179         file->private_data = inode->i_private;
180         return 0;
181 }
182
183 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
184                                size_t count, loff_t *ppos)
185 {
186         ssize_t ret;
187         struct snd_soc_codec *codec = file->private_data;
188         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
189         if (!buf)
190                 return -ENOMEM;
191         ret = soc_codec_reg_show(codec, buf);
192         if (ret >= 0)
193                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
194         kfree(buf);
195         return ret;
196 }
197
198 static ssize_t codec_reg_write_file(struct file *file,
199                 const char __user *user_buf, size_t count, loff_t *ppos)
200 {
201         char buf[32];
202         int buf_size;
203         char *start = buf;
204         unsigned long reg, value;
205         int step = 1;
206         struct snd_soc_codec *codec = file->private_data;
207
208         buf_size = min(count, (sizeof(buf)-1));
209         if (copy_from_user(buf, user_buf, buf_size))
210                 return -EFAULT;
211         buf[buf_size] = 0;
212
213         if (codec->driver->reg_cache_step)
214                 step = codec->driver->reg_cache_step;
215
216         while (*start == ' ')
217                 start++;
218         reg = simple_strtoul(start, &start, 16);
219         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
220                 return -EINVAL;
221         while (*start == ' ')
222                 start++;
223         if (strict_strtoul(start, 16, &value))
224                 return -EINVAL;
225         codec->driver->write(codec, reg, value);
226         return buf_size;
227 }
228
229 static const struct file_operations codec_reg_fops = {
230         .open = codec_reg_open_file,
231         .read = codec_reg_read_file,
232         .write = codec_reg_write_file,
233 };
234
235 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
236 {
237         codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
238                                                        debugfs_root);
239         if (!codec->debugfs_codec_root) {
240                 printk(KERN_WARNING
241                        "ASoC: Failed to create codec debugfs directory\n");
242                 return;
243         }
244
245         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
246                                                  codec->debugfs_codec_root,
247                                                  codec, &codec_reg_fops);
248         if (!codec->debugfs_reg)
249                 printk(KERN_WARNING
250                        "ASoC: Failed to create codec register debugfs file\n");
251
252         codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
253                                                      codec->debugfs_codec_root,
254                                                      &codec->pop_time);
255         if (!codec->debugfs_pop_time)
256                 printk(KERN_WARNING
257                        "Failed to create pop time debugfs file\n");
258
259         codec->debugfs_dapm = debugfs_create_dir("dapm",
260                                                  codec->debugfs_codec_root);
261         if (!codec->debugfs_dapm)
262                 printk(KERN_WARNING
263                        "Failed to create DAPM debugfs directory\n");
264
265         snd_soc_dapm_debugfs_init(codec);
266 }
267
268 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
269 {
270         debugfs_remove_recursive(codec->debugfs_codec_root);
271 }
272
273 #else
274
275 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
276 {
277 }
278
279 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
280 {
281 }
282 #endif
283
284 #ifdef CONFIG_SND_SOC_AC97_BUS
285 /* unregister ac97 codec */
286 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
287 {
288         if (codec->ac97->dev.bus)
289                 device_unregister(&codec->ac97->dev);
290         return 0;
291 }
292
293 /* stop no dev release warning */
294 static void soc_ac97_device_release(struct device *dev){}
295
296 /* register ac97 codec to bus */
297 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
298 {
299         int err;
300
301         codec->ac97->dev.bus = &ac97_bus_type;
302         codec->ac97->dev.parent = codec->card->dev;
303         codec->ac97->dev.release = soc_ac97_device_release;
304
305         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
306                      codec->card->snd_card->number, 0, codec->name);
307         err = device_register(&codec->ac97->dev);
308         if (err < 0) {
309                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
310                 codec->ac97->dev.bus = NULL;
311                 return err;
312         }
313         return 0;
314 }
315 #endif
316
317 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
318 {
319         struct snd_soc_pcm_runtime *rtd = substream->private_data;
320         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
321         struct snd_soc_dai *codec_dai = rtd->codec_dai;
322         int ret;
323
324         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
325                         rtd->dai_link->symmetric_rates) {
326                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
327                                 rtd->rate);
328
329                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
330                                                    SNDRV_PCM_HW_PARAM_RATE,
331                                                    rtd->rate,
332                                                    rtd->rate);
333                 if (ret < 0) {
334                         dev_err(&rtd->dev,
335                                 "Unable to apply rate symmetry constraint: %d\n", ret);
336                         return ret;
337                 }
338         }
339
340         return 0;
341 }
342
343 /*
344  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
345  * then initialized and any private data can be allocated. This also calls
346  * startup for the cpu DAI, platform, machine and codec DAI.
347  */
348 static int soc_pcm_open(struct snd_pcm_substream *substream)
349 {
350         struct snd_soc_pcm_runtime *rtd = substream->private_data;
351         struct snd_pcm_runtime *runtime = substream->runtime;
352         struct snd_soc_platform *platform = rtd->platform;
353         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
354         struct snd_soc_dai *codec_dai = rtd->codec_dai;
355         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
356         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
357         int ret = 0;
358
359         mutex_lock(&pcm_mutex);
360
361         /* startup the audio subsystem */
362         if (cpu_dai->driver->ops->startup) {
363                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
364                 if (ret < 0) {
365                         printk(KERN_ERR "asoc: can't open interface %s\n",
366                                 cpu_dai->name);
367                         goto out;
368                 }
369         }
370
371         if (platform->driver->ops->open) {
372                 ret = platform->driver->ops->open(substream);
373                 if (ret < 0) {
374                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
375                         goto platform_err;
376                 }
377         }
378
379         if (codec_dai->driver->ops->startup) {
380                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
381                 if (ret < 0) {
382                         printk(KERN_ERR "asoc: can't open codec %s\n",
383                                 codec_dai->name);
384                         goto codec_dai_err;
385                 }
386         }
387
388         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
389                 ret = rtd->dai_link->ops->startup(substream);
390                 if (ret < 0) {
391                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
392                         goto machine_err;
393                 }
394         }
395
396         /* Check that the codec and cpu DAI's are compatible */
397         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
398                 runtime->hw.rate_min =
399                         max(codec_dai_drv->playback.rate_min,
400                             cpu_dai_drv->playback.rate_min);
401                 runtime->hw.rate_max =
402                         min(codec_dai_drv->playback.rate_max,
403                             cpu_dai_drv->playback.rate_max);
404                 runtime->hw.channels_min =
405                         max(codec_dai_drv->playback.channels_min,
406                                 cpu_dai_drv->playback.channels_min);
407                 runtime->hw.channels_max =
408                         min(codec_dai_drv->playback.channels_max,
409                                 cpu_dai_drv->playback.channels_max);
410                 runtime->hw.formats =
411                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
412                 runtime->hw.rates =
413                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
414                 if (codec_dai_drv->playback.rates
415                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
416                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
417                 if (cpu_dai_drv->playback.rates
418                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
419                         runtime->hw.rates |= codec_dai_drv->playback.rates;
420         } else {
421                 runtime->hw.rate_min =
422                         max(codec_dai_drv->capture.rate_min,
423                             cpu_dai_drv->capture.rate_min);
424                 runtime->hw.rate_max =
425                         min(codec_dai_drv->capture.rate_max,
426                             cpu_dai_drv->capture.rate_max);
427                 runtime->hw.channels_min =
428                         max(codec_dai_drv->capture.channels_min,
429                                 cpu_dai_drv->capture.channels_min);
430                 runtime->hw.channels_max =
431                         min(codec_dai_drv->capture.channels_max,
432                                 cpu_dai_drv->capture.channels_max);
433                 runtime->hw.formats =
434                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
435                 runtime->hw.rates =
436                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
437                 if (codec_dai_drv->capture.rates
438                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
439                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
440                 if (cpu_dai_drv->capture.rates
441                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
442                         runtime->hw.rates |= codec_dai_drv->capture.rates;
443         }
444
445         snd_pcm_limit_hw_rates(runtime);
446         if (!runtime->hw.rates) {
447                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
448                         codec_dai->name, cpu_dai->name);
449                 goto config_err;
450         }
451         if (!runtime->hw.formats) {
452                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
453                         codec_dai->name, cpu_dai->name);
454                 goto config_err;
455         }
456         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
457                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
458                                 codec_dai->name, cpu_dai->name);
459                 goto config_err;
460         }
461
462         /* Symmetry only applies if we've already got an active stream. */
463         if (cpu_dai->active || codec_dai->active) {
464                 ret = soc_pcm_apply_symmetry(substream);
465                 if (ret != 0)
466                         goto config_err;
467         }
468
469         pr_debug("asoc: %s <-> %s info:\n",
470                         codec_dai->name, cpu_dai->name);
471         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
472         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
473                  runtime->hw.channels_max);
474         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
475                  runtime->hw.rate_max);
476
477         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
478                 cpu_dai->playback_active++;
479                 codec_dai->playback_active++;
480         } else {
481                 cpu_dai->capture_active++;
482                 codec_dai->capture_active++;
483         }
484         cpu_dai->active++;
485         codec_dai->active++;
486         rtd->codec->active++;
487         mutex_unlock(&pcm_mutex);
488         return 0;
489
490 config_err:
491         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
492                 rtd->dai_link->ops->shutdown(substream);
493
494 machine_err:
495         if (codec_dai->driver->ops->shutdown)
496                 codec_dai->driver->ops->shutdown(substream, codec_dai);
497
498 codec_dai_err:
499         if (platform->driver->ops->close)
500                 platform->driver->ops->close(substream);
501
502 platform_err:
503         if (cpu_dai->driver->ops->shutdown)
504                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
505 out:
506         mutex_unlock(&pcm_mutex);
507         return ret;
508 }
509
510 /*
511  * Power down the audio subsystem pmdown_time msecs after close is called.
512  * This is to ensure there are no pops or clicks in between any music tracks
513  * due to DAPM power cycling.
514  */
515 static void close_delayed_work(struct work_struct *work)
516 {
517         struct snd_soc_pcm_runtime *rtd =
518                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
519         struct snd_soc_dai *codec_dai = rtd->codec_dai;
520
521         mutex_lock(&pcm_mutex);
522
523         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
524                  codec_dai->driver->playback.stream_name,
525                  codec_dai->playback_active ? "active" : "inactive",
526                  codec_dai->pop_wait ? "yes" : "no");
527
528         /* are we waiting on this codec DAI stream */
529         if (codec_dai->pop_wait == 1) {
530                 codec_dai->pop_wait = 0;
531                 snd_soc_dapm_stream_event(rtd,
532                         codec_dai->driver->playback.stream_name,
533                         SND_SOC_DAPM_STREAM_STOP);
534         }
535
536         mutex_unlock(&pcm_mutex);
537 }
538
539 /*
540  * Called by ALSA when a PCM substream is closed. Private data can be
541  * freed here. The cpu DAI, codec DAI, machine and platform are also
542  * shutdown.
543  */
544 static int soc_codec_close(struct snd_pcm_substream *substream)
545 {
546         struct snd_soc_pcm_runtime *rtd = substream->private_data;
547         struct snd_soc_platform *platform = rtd->platform;
548         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
549         struct snd_soc_dai *codec_dai = rtd->codec_dai;
550         struct snd_soc_codec *codec = rtd->codec;
551
552         mutex_lock(&pcm_mutex);
553
554         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
555                 cpu_dai->playback_active--;
556                 codec_dai->playback_active--;
557         } else {
558                 cpu_dai->capture_active--;
559                 codec_dai->capture_active--;
560         }
561
562         cpu_dai->active--;
563         codec_dai->active--;
564         codec->active--;
565
566         /* Muting the DAC suppresses artifacts caused during digital
567          * shutdown, for example from stopping clocks.
568          */
569         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
570                 snd_soc_dai_digital_mute(codec_dai, 1);
571
572         if (cpu_dai->driver->ops->shutdown)
573                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
574
575         if (codec_dai->driver->ops->shutdown)
576                 codec_dai->driver->ops->shutdown(substream, codec_dai);
577
578         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
579                 rtd->dai_link->ops->shutdown(substream);
580
581         if (platform->driver->ops->close)
582                 platform->driver->ops->close(substream);
583         cpu_dai->runtime = NULL;
584
585         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
586                 /* start delayed pop wq here for playback streams */
587                 codec_dai->pop_wait = 1;
588                 schedule_delayed_work(&rtd->delayed_work,
589                         msecs_to_jiffies(rtd->pmdown_time));
590         } else {
591                 /* capture streams can be powered down now */
592                 snd_soc_dapm_stream_event(rtd,
593                         codec_dai->driver->capture.stream_name,
594                         SND_SOC_DAPM_STREAM_STOP);
595         }
596
597         mutex_unlock(&pcm_mutex);
598         return 0;
599 }
600
601 /*
602  * Called by ALSA when the PCM substream is prepared, can set format, sample
603  * rate, etc.  This function is non atomic and can be called multiple times,
604  * it can refer to the runtime info.
605  */
606 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
607 {
608         struct snd_soc_pcm_runtime *rtd = substream->private_data;
609         struct snd_soc_platform *platform = rtd->platform;
610         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
611         struct snd_soc_dai *codec_dai = rtd->codec_dai;
612         int ret = 0;
613
614         mutex_lock(&pcm_mutex);
615
616         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
617                 ret = rtd->dai_link->ops->prepare(substream);
618                 if (ret < 0) {
619                         printk(KERN_ERR "asoc: machine prepare error\n");
620                         goto out;
621                 }
622         }
623
624         if (platform->driver->ops->prepare) {
625                 ret = platform->driver->ops->prepare(substream);
626                 if (ret < 0) {
627                         printk(KERN_ERR "asoc: platform prepare error\n");
628                         goto out;
629                 }
630         }
631
632         if (codec_dai->driver->ops->prepare) {
633                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
634                 if (ret < 0) {
635                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
636                         goto out;
637                 }
638         }
639
640         if (cpu_dai->driver->ops->prepare) {
641                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
642                 if (ret < 0) {
643                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
644                         goto out;
645                 }
646         }
647
648         /* cancel any delayed stream shutdown that is pending */
649         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
650             codec_dai->pop_wait) {
651                 codec_dai->pop_wait = 0;
652                 cancel_delayed_work(&rtd->delayed_work);
653         }
654
655         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
656                 snd_soc_dapm_stream_event(rtd,
657                                           codec_dai->driver->playback.stream_name,
658                                           SND_SOC_DAPM_STREAM_START);
659         else
660                 snd_soc_dapm_stream_event(rtd,
661                                           codec_dai->driver->capture.stream_name,
662                                           SND_SOC_DAPM_STREAM_START);
663
664         snd_soc_dai_digital_mute(codec_dai, 0);
665
666 out:
667         mutex_unlock(&pcm_mutex);
668         return ret;
669 }
670
671 /*
672  * Called by ALSA when the hardware params are set by application. This
673  * function can also be called multiple times and can allocate buffers
674  * (using snd_pcm_lib_* ). It's non-atomic.
675  */
676 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
677                                 struct snd_pcm_hw_params *params)
678 {
679         struct snd_soc_pcm_runtime *rtd = substream->private_data;
680         struct snd_soc_platform *platform = rtd->platform;
681         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
682         struct snd_soc_dai *codec_dai = rtd->codec_dai;
683         int ret = 0;
684
685         mutex_lock(&pcm_mutex);
686
687         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
688                 ret = rtd->dai_link->ops->hw_params(substream, params);
689                 if (ret < 0) {
690                         printk(KERN_ERR "asoc: machine hw_params failed\n");
691                         goto out;
692                 }
693         }
694
695         if (codec_dai->driver->ops->hw_params) {
696                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
697                 if (ret < 0) {
698                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
699                                 codec_dai->name);
700                         goto codec_err;
701                 }
702         }
703
704         if (cpu_dai->driver->ops->hw_params) {
705                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
706                 if (ret < 0) {
707                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
708                                 cpu_dai->name);
709                         goto interface_err;
710                 }
711         }
712
713         if (platform->driver->ops->hw_params) {
714                 ret = platform->driver->ops->hw_params(substream, params);
715                 if (ret < 0) {
716                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
717                                 platform->name);
718                         goto platform_err;
719                 }
720         }
721
722         rtd->rate = params_rate(params);
723
724 out:
725         mutex_unlock(&pcm_mutex);
726         return ret;
727
728 platform_err:
729         if (cpu_dai->driver->ops->hw_free)
730                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
731
732 interface_err:
733         if (codec_dai->driver->ops->hw_free)
734                 codec_dai->driver->ops->hw_free(substream, codec_dai);
735
736 codec_err:
737         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
738                 rtd->dai_link->ops->hw_free(substream);
739
740         mutex_unlock(&pcm_mutex);
741         return ret;
742 }
743
744 /*
745  * Free's resources allocated by hw_params, can be called multiple times
746  */
747 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
748 {
749         struct snd_soc_pcm_runtime *rtd = substream->private_data;
750         struct snd_soc_platform *platform = rtd->platform;
751         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
752         struct snd_soc_dai *codec_dai = rtd->codec_dai;
753         struct snd_soc_codec *codec = rtd->codec;
754
755         mutex_lock(&pcm_mutex);
756
757         /* apply codec digital mute */
758         if (!codec->active)
759                 snd_soc_dai_digital_mute(codec_dai, 1);
760
761         /* free any machine hw params */
762         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
763                 rtd->dai_link->ops->hw_free(substream);
764
765         /* free any DMA resources */
766         if (platform->driver->ops->hw_free)
767                 platform->driver->ops->hw_free(substream);
768
769         /* now free hw params for the DAI's  */
770         if (codec_dai->driver->ops->hw_free)
771                 codec_dai->driver->ops->hw_free(substream, codec_dai);
772
773         if (cpu_dai->driver->ops->hw_free)
774                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
775
776         mutex_unlock(&pcm_mutex);
777         return 0;
778 }
779
780 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
781 {
782         struct snd_soc_pcm_runtime *rtd = substream->private_data;
783         struct snd_soc_platform *platform = rtd->platform;
784         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
785         struct snd_soc_dai *codec_dai = rtd->codec_dai;
786         int ret;
787
788         if (codec_dai->driver->ops->trigger) {
789                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
790                 if (ret < 0)
791                         return ret;
792         }
793
794         if (platform->driver->ops->trigger) {
795                 ret = platform->driver->ops->trigger(substream, cmd);
796                 if (ret < 0)
797                         return ret;
798         }
799
800         if (cpu_dai->driver->ops->trigger) {
801                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
802                 if (ret < 0)
803                         return ret;
804         }
805         return 0;
806 }
807
808 /*
809  * soc level wrapper for pointer callback
810  * If cpu_dai, codec_dai, platform driver has the delay callback, than
811  * the runtime->delay will be updated accordingly.
812  */
813 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
814 {
815         struct snd_soc_pcm_runtime *rtd = substream->private_data;
816         struct snd_soc_platform *platform = rtd->platform;
817         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
818         struct snd_soc_dai *codec_dai = rtd->codec_dai;
819         struct snd_pcm_runtime *runtime = substream->runtime;
820         snd_pcm_uframes_t offset = 0;
821         snd_pcm_sframes_t delay = 0;
822
823         if (platform->driver->ops->pointer)
824                 offset = platform->driver->ops->pointer(substream);
825
826         if (cpu_dai->driver->ops->delay)
827                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
828
829         if (codec_dai->driver->ops->delay)
830                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
831
832         if (platform->driver->delay)
833                 delay += platform->driver->delay(substream, codec_dai);
834
835         runtime->delay = delay;
836
837         return offset;
838 }
839
840 /* ASoC PCM operations */
841 static struct snd_pcm_ops soc_pcm_ops = {
842         .open           = soc_pcm_open,
843         .close          = soc_codec_close,
844         .hw_params      = soc_pcm_hw_params,
845         .hw_free        = soc_pcm_hw_free,
846         .prepare        = soc_pcm_prepare,
847         .trigger        = soc_pcm_trigger,
848         .pointer        = soc_pcm_pointer,
849 };
850
851 #ifdef CONFIG_PM
852 /* powers down audio subsystem for suspend */
853 static int soc_suspend(struct device *dev)
854 {
855         struct platform_device *pdev = to_platform_device(dev);
856         struct snd_soc_card *card = platform_get_drvdata(pdev);
857         int i;
858
859         /* If the initialization of this soc device failed, there is no codec
860          * associated with it. Just bail out in this case.
861          */
862         if (list_empty(&card->codec_dev_list))
863                 return 0;
864
865         /* Due to the resume being scheduled into a workqueue we could
866         * suspend before that's finished - wait for it to complete.
867          */
868         snd_power_lock(card->snd_card);
869         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
870         snd_power_unlock(card->snd_card);
871
872         /* we're going to block userspace touching us until resume completes */
873         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
874
875         /* mute any active DAC's */
876         for (i = 0; i < card->num_rtd; i++) {
877                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
878                 struct snd_soc_dai_driver *drv = dai->driver;
879
880                 if (card->rtd[i].dai_link->ignore_suspend)
881                         continue;
882
883                 if (drv->ops->digital_mute && dai->playback_active)
884                         drv->ops->digital_mute(dai, 1);
885         }
886
887         /* suspend all pcms */
888         for (i = 0; i < card->num_rtd; i++) {
889                 if (card->rtd[i].dai_link->ignore_suspend)
890                         continue;
891
892                 snd_pcm_suspend_all(card->rtd[i].pcm);
893         }
894
895         if (card->suspend_pre)
896                 card->suspend_pre(pdev, PMSG_SUSPEND);
897
898         for (i = 0; i < card->num_rtd; i++) {
899                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
900                 struct snd_soc_platform *platform = card->rtd[i].platform;
901
902                 if (card->rtd[i].dai_link->ignore_suspend)
903                         continue;
904
905                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
906                         cpu_dai->driver->suspend(cpu_dai);
907                 if (platform->driver->suspend && !platform->suspended) {
908                         platform->driver->suspend(cpu_dai);
909                         platform->suspended = 1;
910                 }
911         }
912
913         /* close any waiting streams and save state */
914         for (i = 0; i < card->num_rtd; i++) {
915                 run_delayed_work(&card->rtd[i].delayed_work);
916                 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level;
917         }
918
919         for (i = 0; i < card->num_rtd; i++) {
920                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
921
922                 if (card->rtd[i].dai_link->ignore_suspend)
923                         continue;
924
925                 if (driver->playback.stream_name != NULL)
926                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
927                                 SND_SOC_DAPM_STREAM_SUSPEND);
928
929                 if (driver->capture.stream_name != NULL)
930                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
931                                 SND_SOC_DAPM_STREAM_SUSPEND);
932         }
933
934         /* suspend all CODECs */
935         for (i = 0; i < card->num_rtd; i++) {
936                 struct snd_soc_codec *codec = card->rtd[i].codec;
937                 /* If there are paths active then the CODEC will be held with
938                  * bias _ON and should not be suspended. */
939                 if (!codec->suspended && codec->driver->suspend) {
940                         switch (codec->bias_level) {
941                         case SND_SOC_BIAS_STANDBY:
942                         case SND_SOC_BIAS_OFF:
943                                 codec->driver->suspend(codec, PMSG_SUSPEND);
944                                 codec->suspended = 1;
945                                 break;
946                         default:
947                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
948                                 break;
949                         }
950                 }
951         }
952
953         for (i = 0; i < card->num_rtd; i++) {
954                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
955
956                 if (card->rtd[i].dai_link->ignore_suspend)
957                         continue;
958
959                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
960                         cpu_dai->driver->suspend(cpu_dai);
961         }
962
963         if (card->suspend_post)
964                 card->suspend_post(pdev, PMSG_SUSPEND);
965
966         return 0;
967 }
968
969 /* deferred resume work, so resume can complete before we finished
970  * setting our codec back up, which can be very slow on I2C
971  */
972 static void soc_resume_deferred(struct work_struct *work)
973 {
974         struct snd_soc_card *card =
975                         container_of(work, struct snd_soc_card, deferred_resume_work);
976         struct platform_device *pdev = to_platform_device(card->dev);
977         int i;
978
979         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
980          * so userspace apps are blocked from touching us
981          */
982
983         dev_dbg(card->dev, "starting resume work\n");
984
985         /* Bring us up into D2 so that DAPM starts enabling things */
986         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
987
988         if (card->resume_pre)
989                 card->resume_pre(pdev);
990
991         /* resume AC97 DAIs */
992         for (i = 0; i < card->num_rtd; i++) {
993                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
994
995                 if (card->rtd[i].dai_link->ignore_suspend)
996                         continue;
997
998                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
999                         cpu_dai->driver->resume(cpu_dai);
1000         }
1001
1002         for (i = 0; i < card->num_rtd; i++) {
1003                 struct snd_soc_codec *codec = card->rtd[i].codec;
1004                 /* If the CODEC was idle over suspend then it will have been
1005                  * left with bias OFF or STANDBY and suspended so we must now
1006                  * resume.  Otherwise the suspend was suppressed.
1007                  */
1008                 if (codec->driver->resume && codec->suspended) {
1009                         switch (codec->bias_level) {
1010                         case SND_SOC_BIAS_STANDBY:
1011                         case SND_SOC_BIAS_OFF:
1012                                 codec->driver->resume(codec);
1013                                 codec->suspended = 0;
1014                                 break;
1015                         default:
1016                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1017                                 break;
1018                         }
1019                 }
1020         }
1021
1022         for (i = 0; i < card->num_rtd; i++) {
1023                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1024
1025                 if (card->rtd[i].dai_link->ignore_suspend)
1026                         continue;
1027
1028                 if (driver->playback.stream_name != NULL)
1029                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1030                                 SND_SOC_DAPM_STREAM_RESUME);
1031
1032                 if (driver->capture.stream_name != NULL)
1033                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1034                                 SND_SOC_DAPM_STREAM_RESUME);
1035         }
1036
1037         /* unmute any active DACs */
1038         for (i = 0; i < card->num_rtd; i++) {
1039                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1040                 struct snd_soc_dai_driver *drv = dai->driver;
1041
1042                 if (card->rtd[i].dai_link->ignore_suspend)
1043                         continue;
1044
1045                 if (drv->ops->digital_mute && dai->playback_active)
1046                         drv->ops->digital_mute(dai, 0);
1047         }
1048
1049         for (i = 0; i < card->num_rtd; i++) {
1050                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1051                 struct snd_soc_platform *platform = card->rtd[i].platform;
1052
1053                 if (card->rtd[i].dai_link->ignore_suspend)
1054                         continue;
1055
1056                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1057                         cpu_dai->driver->resume(cpu_dai);
1058                 if (platform->driver->resume && platform->suspended) {
1059                         platform->driver->resume(cpu_dai);
1060                         platform->suspended = 0;
1061                 }
1062         }
1063
1064         if (card->resume_post)
1065                 card->resume_post(pdev);
1066
1067         dev_dbg(card->dev, "resume work completed\n");
1068
1069         /* userspace can access us now we are back as we were before */
1070         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1071 }
1072
1073 /* powers up audio subsystem after a suspend */
1074 static int soc_resume(struct device *dev)
1075 {
1076         struct platform_device *pdev = to_platform_device(dev);
1077         struct snd_soc_card *card = platform_get_drvdata(pdev);
1078         int i;
1079
1080         /* AC97 devices might have other drivers hanging off them so
1081          * need to resume immediately.  Other drivers don't have that
1082          * problem and may take a substantial amount of time to resume
1083          * due to I/O costs and anti-pop so handle them out of line.
1084          */
1085         for (i = 0; i < card->num_rtd; i++) {
1086                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1087                 if (cpu_dai->driver->ac97_control) {
1088                         dev_dbg(dev, "Resuming AC97 immediately\n");
1089                         soc_resume_deferred(&card->deferred_resume_work);
1090                 } else {
1091                         dev_dbg(dev, "Scheduling resume work\n");
1092                         if (!schedule_work(&card->deferred_resume_work))
1093                                 dev_err(dev, "resume work item may be lost\n");
1094                 }
1095         }
1096
1097         return 0;
1098 }
1099 #else
1100 #define soc_suspend     NULL
1101 #define soc_resume      NULL
1102 #endif
1103
1104 static struct snd_soc_dai_ops null_dai_ops = {
1105 };
1106
1107 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1108 {
1109         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1110         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1111         struct snd_soc_codec *codec;
1112         struct snd_soc_platform *platform;
1113         struct snd_soc_dai *codec_dai, *cpu_dai;
1114
1115         if (rtd->complete)
1116                 return 1;
1117         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1118
1119         /* do we already have the CPU DAI for this link ? */
1120         if (rtd->cpu_dai) {
1121                 goto find_codec;
1122         }
1123         /* no, then find CPU DAI from registered DAIs*/
1124         list_for_each_entry(cpu_dai, &dai_list, list) {
1125                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1126
1127                         if (!try_module_get(cpu_dai->dev->driver->owner))
1128                                 return -ENODEV;
1129
1130                         rtd->cpu_dai = cpu_dai;
1131                         goto find_codec;
1132                 }
1133         }
1134         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1135                         dai_link->cpu_dai_name);
1136
1137 find_codec:
1138         /* do we already have the CODEC for this link ? */
1139         if (rtd->codec) {
1140                 goto find_platform;
1141         }
1142
1143         /* no, then find CODEC from registered CODECs*/
1144         list_for_each_entry(codec, &codec_list, list) {
1145                 if (!strcmp(codec->name, dai_link->codec_name)) {
1146                         rtd->codec = codec;
1147
1148                         if (!try_module_get(codec->dev->driver->owner))
1149                                 return -ENODEV;
1150
1151                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1152                         list_for_each_entry(codec_dai, &dai_list, list) {
1153                                 if (codec->dev == codec_dai->dev &&
1154                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1155                                         rtd->codec_dai = codec_dai;
1156                                         goto find_platform;
1157                                 }
1158                         }
1159                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1160                                         dai_link->codec_dai_name);
1161
1162                         goto find_platform;
1163                 }
1164         }
1165         dev_dbg(card->dev, "CODEC %s not registered\n",
1166                         dai_link->codec_name);
1167
1168 find_platform:
1169         /* do we already have the CODEC DAI for this link ? */
1170         if (rtd->platform) {
1171                 goto out;
1172         }
1173         /* no, then find CPU DAI from registered DAIs*/
1174         list_for_each_entry(platform, &platform_list, list) {
1175                 if (!strcmp(platform->name, dai_link->platform_name)) {
1176
1177                         if (!try_module_get(platform->dev->driver->owner))
1178                                 return -ENODEV;
1179
1180                         rtd->platform = platform;
1181                         goto out;
1182                 }
1183         }
1184
1185         dev_dbg(card->dev, "platform %s not registered\n",
1186                         dai_link->platform_name);
1187         return 0;
1188
1189 out:
1190         /* mark rtd as complete if we found all 4 of our client devices */
1191         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1192                 rtd->complete = 1;
1193                 card->num_rtd++;
1194         }
1195         return 1;
1196 }
1197
1198 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1199 {
1200         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1201         struct snd_soc_codec *codec = rtd->codec;
1202         struct snd_soc_platform *platform = rtd->platform;
1203         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1204         int err;
1205
1206         /* unregister the rtd device */
1207         if (rtd->dev_registered) {
1208                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1209                 device_unregister(&rtd->dev);
1210                 rtd->dev_registered = 0;
1211         }
1212
1213         /* remove the CODEC DAI */
1214         if (codec_dai && codec_dai->probed) {
1215                 if (codec_dai->driver->remove) {
1216                         err = codec_dai->driver->remove(codec_dai);
1217                         if (err < 0)
1218                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1219                 }
1220                 codec_dai->probed = 0;
1221                 list_del(&codec_dai->card_list);
1222         }
1223
1224         /* remove the platform */
1225         if (platform && platform->probed) {
1226                 if (platform->driver->remove) {
1227                         err = platform->driver->remove(platform);
1228                         if (err < 0)
1229                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1230                 }
1231                 platform->probed = 0;
1232                 list_del(&platform->card_list);
1233                 module_put(platform->dev->driver->owner);
1234         }
1235
1236         /* remove the CODEC */
1237         if (codec && codec->probed) {
1238                 if (codec->driver->remove) {
1239                         err = codec->driver->remove(codec);
1240                         if (err < 0)
1241                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1242                 }
1243
1244                 /* Make sure all DAPM widgets are freed */
1245                 snd_soc_dapm_free(codec);
1246
1247                 soc_cleanup_codec_debugfs(codec);
1248                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1249                 codec->probed = 0;
1250                 list_del(&codec->card_list);
1251                 module_put(codec->dev->driver->owner);
1252         }
1253
1254         /* remove the cpu_dai */
1255         if (cpu_dai && cpu_dai->probed) {
1256                 if (cpu_dai->driver->remove) {
1257                         err = cpu_dai->driver->remove(cpu_dai);
1258                         if (err < 0)
1259                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1260                 }
1261                 cpu_dai->probed = 0;
1262                 list_del(&cpu_dai->card_list);
1263                 module_put(cpu_dai->dev->driver->owner);
1264         }
1265 }
1266
1267 static void rtd_release(struct device *dev) {}
1268
1269 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1270 {
1271         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1272         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1273         struct snd_soc_codec *codec = rtd->codec;
1274         struct snd_soc_platform *platform = rtd->platform;
1275         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1276         int ret;
1277
1278         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1279
1280         /* config components */
1281         codec_dai->codec = codec;
1282         codec->card = card;
1283         cpu_dai->platform = platform;
1284         rtd->card = card;
1285         rtd->dev.parent = card->dev;
1286         codec_dai->card = card;
1287         cpu_dai->card = card;
1288
1289         /* set default power off timeout */
1290         rtd->pmdown_time = pmdown_time;
1291
1292         /* probe the cpu_dai */
1293         if (!cpu_dai->probed) {
1294                 if (cpu_dai->driver->probe) {
1295                         ret = cpu_dai->driver->probe(cpu_dai);
1296                         if (ret < 0) {
1297                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1298                                                 cpu_dai->name);
1299                                 return ret;
1300                         }
1301                 }
1302                 cpu_dai->probed = 1;
1303                 /* mark cpu_dai as probed and add to card cpu_dai list */
1304                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1305         }
1306
1307         /* probe the CODEC */
1308         if (!codec->probed) {
1309                 if (codec->driver->probe) {
1310                         ret = codec->driver->probe(codec);
1311                         if (ret < 0) {
1312                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1313                                                 codec->name);
1314                                 return ret;
1315                         }
1316                 }
1317
1318                 soc_init_codec_debugfs(codec);
1319
1320                 /* mark codec as probed and add to card codec list */
1321                 codec->probed = 1;
1322                 list_add(&codec->card_list, &card->codec_dev_list);
1323         }
1324
1325         /* probe the platform */
1326         if (!platform->probed) {
1327                 if (platform->driver->probe) {
1328                         ret = platform->driver->probe(platform);
1329                         if (ret < 0) {
1330                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1331                                                 platform->name);
1332                                 return ret;
1333                         }
1334                 }
1335                 /* mark platform as probed and add to card platform list */
1336                 platform->probed = 1;
1337                 list_add(&platform->card_list, &card->platform_dev_list);
1338         }
1339
1340         /* probe the CODEC DAI */
1341         if (!codec_dai->probed) {
1342                 if (codec_dai->driver->probe) {
1343                         ret = codec_dai->driver->probe(codec_dai);
1344                         if (ret < 0) {
1345                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1346                                                 codec_dai->name);
1347                                 return ret;
1348                         }
1349                 }
1350
1351                 /* mark cpu_dai as probed and add to card cpu_dai list */
1352                 codec_dai->probed = 1;
1353                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1354         }
1355
1356         /* DAPM dai link stream work */
1357         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1358
1359         /* now that all clients have probed, initialise the DAI link */
1360         if (dai_link->init) {
1361                 ret = dai_link->init(rtd);
1362                 if (ret < 0) {
1363                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1364                         return ret;
1365                 }
1366         }
1367
1368         /* Make sure all DAPM widgets are instantiated */
1369         snd_soc_dapm_new_widgets(codec);
1370         snd_soc_dapm_sync(codec);
1371
1372         /* register the rtd device */
1373         rtd->dev.init_name = rtd->dai_link->stream_name;
1374         rtd->dev.release = rtd_release;
1375         rtd->dev.init_name = dai_link->name;
1376         ret = device_register(&rtd->dev);
1377         if (ret < 0) {
1378                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1379                 return ret;
1380         }
1381
1382         rtd->dev_registered = 1;
1383         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1384         if (ret < 0)
1385                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1386
1387         /* add DAPM sysfs entries for this codec */
1388         ret = snd_soc_dapm_sys_add(&rtd->dev);
1389         if (ret < 0)
1390                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1391
1392         /* add codec sysfs entries */
1393         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1394         if (ret < 0)
1395                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1396
1397         /* create the pcm */
1398         ret = soc_new_pcm(rtd, num);
1399         if (ret < 0) {
1400                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1401                 return ret;
1402         }
1403
1404         /* add platform data for AC97 devices */
1405         if (rtd->codec_dai->driver->ac97_control)
1406                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1407
1408         return 0;
1409 }
1410
1411 #ifdef CONFIG_SND_SOC_AC97_BUS
1412 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1413 {
1414         int ret;
1415
1416         /* Only instantiate AC97 if not already done by the adaptor
1417          * for the generic AC97 subsystem.
1418          */
1419         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1420
1421                 ret = soc_ac97_dev_register(rtd->codec);
1422                 if (ret < 0) {
1423                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1424                         return ret;
1425                 }
1426
1427                 rtd->codec->ac97_registered = 1;
1428         }
1429         return 0;
1430 }
1431
1432 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1433 {
1434         if (codec->ac97_registered) {
1435                 soc_ac97_dev_unregister(codec);
1436                 codec->ac97_registered = 0;
1437         }
1438 }
1439 #endif
1440
1441 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1442 {
1443         struct platform_device *pdev = to_platform_device(card->dev);
1444         int ret, i;
1445
1446         mutex_lock(&card->mutex);
1447
1448         if (card->instantiated) {
1449                 mutex_unlock(&card->mutex);
1450                 return;
1451         }
1452
1453         /* bind DAIs */
1454         for (i = 0; i < card->num_links; i++)
1455                 soc_bind_dai_link(card, i);
1456
1457         /* bind completed ? */
1458         if (card->num_rtd != card->num_links) {
1459                 mutex_unlock(&card->mutex);
1460                 return;
1461         }
1462
1463         /* card bind complete so register a sound card */
1464         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1465                         card->owner, 0, &card->snd_card);
1466         if (ret < 0) {
1467                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1468                         card->name);
1469                 mutex_unlock(&card->mutex);
1470                 return;
1471         }
1472         card->snd_card->dev = card->dev;
1473
1474 #ifdef CONFIG_PM
1475         /* deferred resume work */
1476         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1477 #endif
1478
1479         /* initialise the sound card only once */
1480         if (card->probe) {
1481                 ret = card->probe(pdev);
1482                 if (ret < 0)
1483                         goto card_probe_error;
1484         }
1485
1486         for (i = 0; i < card->num_links; i++) {
1487                 ret = soc_probe_dai_link(card, i);
1488                 if (ret < 0) {
1489                         printk(KERN_ERR "asoc: failed to instanciate card %s\n", card->name);
1490                         goto probe_dai_err;
1491                 }
1492         }
1493
1494         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1495                  "%s",  card->name);
1496         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1497                  "%s", card->name);
1498
1499         ret = snd_card_register(card->snd_card);
1500         if (ret < 0) {
1501                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1502                 goto probe_dai_err;
1503         }
1504
1505 #ifdef CONFIG_SND_SOC_AC97_BUS
1506         /* register any AC97 codecs */
1507         for (i = 0; i < card->num_rtd; i++) {
1508                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1509                         if (ret < 0) {
1510                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1511                                 goto probe_dai_err;
1512                         }
1513                 }
1514 #endif
1515
1516         card->instantiated = 1;
1517         mutex_unlock(&card->mutex);
1518         return;
1519
1520 probe_dai_err:
1521         for (i = 0; i < card->num_links; i++)
1522                 soc_remove_dai_link(card, i);
1523
1524 card_probe_error:
1525         if (card->remove)
1526                 card->remove(pdev);
1527
1528         snd_card_free(card->snd_card);
1529
1530         mutex_unlock(&card->mutex);
1531 }
1532
1533 /*
1534  * Attempt to initialise any uninitialised cards.  Must be called with
1535  * client_mutex.
1536  */
1537 static void snd_soc_instantiate_cards(void)
1538 {
1539         struct snd_soc_card *card;
1540         list_for_each_entry(card, &card_list, list)
1541                 snd_soc_instantiate_card(card);
1542 }
1543
1544 /* probes a new socdev */
1545 static int soc_probe(struct platform_device *pdev)
1546 {
1547         struct snd_soc_card *card = platform_get_drvdata(pdev);
1548         int ret = 0;
1549
1550         /* Bodge while we unpick instantiation */
1551         card->dev = &pdev->dev;
1552         INIT_LIST_HEAD(&card->dai_dev_list);
1553         INIT_LIST_HEAD(&card->codec_dev_list);
1554         INIT_LIST_HEAD(&card->platform_dev_list);
1555
1556         ret = snd_soc_register_card(card);
1557         if (ret != 0) {
1558                 dev_err(&pdev->dev, "Failed to register card\n");
1559                 return ret;
1560         }
1561
1562         return 0;
1563 }
1564
1565 /* removes a socdev */
1566 static int soc_remove(struct platform_device *pdev)
1567 {
1568         struct snd_soc_card *card = platform_get_drvdata(pdev);
1569         int i;
1570
1571                 if (card->instantiated) {
1572
1573                 /* make sure any delayed work runs */
1574                 for (i = 0; i < card->num_rtd; i++) {
1575                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1576                         run_delayed_work(&rtd->delayed_work);
1577                 }
1578
1579                 /* remove and free each DAI */
1580                 for (i = 0; i < card->num_rtd; i++)
1581                         soc_remove_dai_link(card, i);
1582
1583                 /* remove the card */
1584                 if (card->remove)
1585                         card->remove(pdev);
1586
1587                 kfree(card->rtd);
1588                 snd_card_free(card->snd_card);
1589         }
1590         snd_soc_unregister_card(card);
1591         return 0;
1592 }
1593
1594 static int soc_poweroff(struct device *dev)
1595 {
1596         struct platform_device *pdev = to_platform_device(dev);
1597         struct snd_soc_card *card = platform_get_drvdata(pdev);
1598         int i;
1599
1600         if (!card->instantiated)
1601                 return 0;
1602
1603         /* Flush out pmdown_time work - we actually do want to run it
1604          * now, we're shutting down so no imminent restart. */
1605         for (i = 0; i < card->num_rtd; i++) {
1606                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1607                 run_delayed_work(&rtd->delayed_work);
1608         }
1609
1610         snd_soc_dapm_shutdown(card);
1611
1612         return 0;
1613 }
1614
1615 static const struct dev_pm_ops soc_pm_ops = {
1616         .suspend = soc_suspend,
1617         .resume = soc_resume,
1618         .poweroff = soc_poweroff,
1619 };
1620
1621 /* ASoC platform driver */
1622 static struct platform_driver soc_driver = {
1623         .driver         = {
1624                 .name           = "soc-audio",
1625                 .owner          = THIS_MODULE,
1626                 .pm             = &soc_pm_ops,
1627         },
1628         .probe          = soc_probe,
1629         .remove         = soc_remove,
1630 };
1631
1632 /* create a new pcm */
1633 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1634 {
1635         struct snd_soc_codec *codec = rtd->codec;
1636         struct snd_soc_platform *platform = rtd->platform;
1637         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1638         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1639         struct snd_pcm *pcm;
1640         char new_name[64];
1641         int ret = 0, playback = 0, capture = 0;
1642
1643         /* check client and interface hw capabilities */
1644         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1645                         rtd->dai_link->stream_name, codec_dai->name, num);
1646
1647         if (codec_dai->driver->playback.channels_min)
1648                 playback = 1;
1649         if (codec_dai->driver->capture.channels_min)
1650                 capture = 1;
1651
1652         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1653         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1654                         num, playback, capture, &pcm);
1655         if (ret < 0) {
1656                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1657                 return ret;
1658         }
1659
1660         rtd->pcm = pcm;
1661         pcm->private_data = rtd;
1662         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1663         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1664         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1665         soc_pcm_ops.copy = platform->driver->ops->copy;
1666         soc_pcm_ops.silence = platform->driver->ops->silence;
1667         soc_pcm_ops.ack = platform->driver->ops->ack;
1668         soc_pcm_ops.page = platform->driver->ops->page;
1669
1670         if (playback)
1671                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1672
1673         if (capture)
1674                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1675
1676         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1677         if (ret < 0) {
1678                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1679                 return ret;
1680         }
1681
1682         pcm->private_free = platform->driver->pcm_free;
1683         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1684                 cpu_dai->name);
1685         return ret;
1686 }
1687
1688 /**
1689  * snd_soc_codec_volatile_register: Report if a register is volatile.
1690  *
1691  * @codec: CODEC to query.
1692  * @reg: Register to query.
1693  *
1694  * Boolean function indiciating if a CODEC register is volatile.
1695  */
1696 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1697 {
1698         if (codec->driver->volatile_register)
1699                 return codec->driver->volatile_register(reg);
1700         else
1701                 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1704
1705 /**
1706  * snd_soc_new_ac97_codec - initailise AC97 device
1707  * @codec: audio codec
1708  * @ops: AC97 bus operations
1709  * @num: AC97 codec number
1710  *
1711  * Initialises AC97 codec resources for use by ad-hoc devices only.
1712  */
1713 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1714         struct snd_ac97_bus_ops *ops, int num)
1715 {
1716         mutex_lock(&codec->mutex);
1717
1718         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1719         if (codec->ac97 == NULL) {
1720                 mutex_unlock(&codec->mutex);
1721                 return -ENOMEM;
1722         }
1723
1724         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1725         if (codec->ac97->bus == NULL) {
1726                 kfree(codec->ac97);
1727                 codec->ac97 = NULL;
1728                 mutex_unlock(&codec->mutex);
1729                 return -ENOMEM;
1730         }
1731
1732         codec->ac97->bus->ops = ops;
1733         codec->ac97->num = num;
1734         mutex_unlock(&codec->mutex);
1735         return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1738
1739 /**
1740  * snd_soc_free_ac97_codec - free AC97 codec device
1741  * @codec: audio codec
1742  *
1743  * Frees AC97 codec device resources.
1744  */
1745 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1746 {
1747         mutex_lock(&codec->mutex);
1748 #ifdef CONFIG_SND_SOC_AC97_BUS
1749         soc_unregister_ac97_dai_link(codec);
1750 #endif
1751         kfree(codec->ac97->bus);
1752         kfree(codec->ac97);
1753         codec->ac97 = NULL;
1754         mutex_unlock(&codec->mutex);
1755 }
1756 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1757
1758 /**
1759  * snd_soc_update_bits - update codec register bits
1760  * @codec: audio codec
1761  * @reg: codec register
1762  * @mask: register mask
1763  * @value: new value
1764  *
1765  * Writes new register value.
1766  *
1767  * Returns 1 for change else 0.
1768  */
1769 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1770                                 unsigned int mask, unsigned int value)
1771 {
1772         int change;
1773         unsigned int old, new;
1774
1775         old = snd_soc_read(codec, reg);
1776         new = (old & ~mask) | value;
1777         change = old != new;
1778         if (change)
1779                 snd_soc_write(codec, reg, new);
1780
1781         return change;
1782 }
1783 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1784
1785 /**
1786  * snd_soc_update_bits_locked - update codec register bits
1787  * @codec: audio codec
1788  * @reg: codec register
1789  * @mask: register mask
1790  * @value: new value
1791  *
1792  * Writes new register value, and takes the codec mutex.
1793  *
1794  * Returns 1 for change else 0.
1795  */
1796 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1797                                unsigned short reg, unsigned int mask,
1798                                unsigned int value)
1799 {
1800         int change;
1801
1802         mutex_lock(&codec->mutex);
1803         change = snd_soc_update_bits(codec, reg, mask, value);
1804         mutex_unlock(&codec->mutex);
1805
1806         return change;
1807 }
1808 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1809
1810 /**
1811  * snd_soc_test_bits - test register for change
1812  * @codec: audio codec
1813  * @reg: codec register
1814  * @mask: register mask
1815  * @value: new value
1816  *
1817  * Tests a register with a new value and checks if the new value is
1818  * different from the old value.
1819  *
1820  * Returns 1 for change else 0.
1821  */
1822 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1823                                 unsigned int mask, unsigned int value)
1824 {
1825         int change;
1826         unsigned int old, new;
1827
1828         old = snd_soc_read(codec, reg);
1829         new = (old & ~mask) | value;
1830         change = old != new;
1831
1832         return change;
1833 }
1834 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1835
1836 /**
1837  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1838  * @substream: the pcm substream
1839  * @hw: the hardware parameters
1840  *
1841  * Sets the substream runtime hardware parameters.
1842  */
1843 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1844         const struct snd_pcm_hardware *hw)
1845 {
1846         struct snd_pcm_runtime *runtime = substream->runtime;
1847         runtime->hw.info = hw->info;
1848         runtime->hw.formats = hw->formats;
1849         runtime->hw.period_bytes_min = hw->period_bytes_min;
1850         runtime->hw.period_bytes_max = hw->period_bytes_max;
1851         runtime->hw.periods_min = hw->periods_min;
1852         runtime->hw.periods_max = hw->periods_max;
1853         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1854         runtime->hw.fifo_size = hw->fifo_size;
1855         return 0;
1856 }
1857 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1858
1859 /**
1860  * snd_soc_cnew - create new control
1861  * @_template: control template
1862  * @data: control private data
1863  * @long_name: control long name
1864  *
1865  * Create a new mixer control from a template control.
1866  *
1867  * Returns 0 for success, else error.
1868  */
1869 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1870         void *data, char *long_name)
1871 {
1872         struct snd_kcontrol_new template;
1873
1874         memcpy(&template, _template, sizeof(template));
1875         if (long_name)
1876                 template.name = long_name;
1877         template.index = 0;
1878
1879         return snd_ctl_new1(&template, data);
1880 }
1881 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1882
1883 /**
1884  * snd_soc_add_controls - add an array of controls to a codec.
1885  * Convienience function to add a list of controls. Many codecs were
1886  * duplicating this code.
1887  *
1888  * @codec: codec to add controls to
1889  * @controls: array of controls to add
1890  * @num_controls: number of elements in the array
1891  *
1892  * Return 0 for success, else error.
1893  */
1894 int snd_soc_add_controls(struct snd_soc_codec *codec,
1895         const struct snd_kcontrol_new *controls, int num_controls)
1896 {
1897         struct snd_card *card = codec->card->snd_card;
1898         int err, i;
1899
1900         for (i = 0; i < num_controls; i++) {
1901                 const struct snd_kcontrol_new *control = &controls[i];
1902                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1903                 if (err < 0) {
1904                         dev_err(codec->dev, "%s: Failed to add %s\n",
1905                                 codec->name, control->name);
1906                         return err;
1907                 }
1908         }
1909
1910         return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1913
1914 /**
1915  * snd_soc_info_enum_double - enumerated double mixer info callback
1916  * @kcontrol: mixer control
1917  * @uinfo: control element information
1918  *
1919  * Callback to provide information about a double enumerated
1920  * mixer control.
1921  *
1922  * Returns 0 for success.
1923  */
1924 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1925         struct snd_ctl_elem_info *uinfo)
1926 {
1927         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1928
1929         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1930         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1931         uinfo->value.enumerated.items = e->max;
1932
1933         if (uinfo->value.enumerated.item > e->max - 1)
1934                 uinfo->value.enumerated.item = e->max - 1;
1935         strcpy(uinfo->value.enumerated.name,
1936                 e->texts[uinfo->value.enumerated.item]);
1937         return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1940
1941 /**
1942  * snd_soc_get_enum_double - enumerated double mixer get callback
1943  * @kcontrol: mixer control
1944  * @ucontrol: control element information
1945  *
1946  * Callback to get the value of a double enumerated mixer.
1947  *
1948  * Returns 0 for success.
1949  */
1950 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1951         struct snd_ctl_elem_value *ucontrol)
1952 {
1953         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1954         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1955         unsigned int val, bitmask;
1956
1957         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1958                 ;
1959         val = snd_soc_read(codec, e->reg);
1960         ucontrol->value.enumerated.item[0]
1961                 = (val >> e->shift_l) & (bitmask - 1);
1962         if (e->shift_l != e->shift_r)
1963                 ucontrol->value.enumerated.item[1] =
1964                         (val >> e->shift_r) & (bitmask - 1);
1965
1966         return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1969
1970 /**
1971  * snd_soc_put_enum_double - enumerated double mixer put callback
1972  * @kcontrol: mixer control
1973  * @ucontrol: control element information
1974  *
1975  * Callback to set the value of a double enumerated mixer.
1976  *
1977  * Returns 0 for success.
1978  */
1979 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1980         struct snd_ctl_elem_value *ucontrol)
1981 {
1982         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1983         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1984         unsigned int val;
1985         unsigned int mask, bitmask;
1986
1987         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1988                 ;
1989         if (ucontrol->value.enumerated.item[0] > e->max - 1)
1990                 return -EINVAL;
1991         val = ucontrol->value.enumerated.item[0] << e->shift_l;
1992         mask = (bitmask - 1) << e->shift_l;
1993         if (e->shift_l != e->shift_r) {
1994                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1995                         return -EINVAL;
1996                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1997                 mask |= (bitmask - 1) << e->shift_r;
1998         }
1999
2000         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2001 }
2002 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2003
2004 /**
2005  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2006  * @kcontrol: mixer control
2007  * @ucontrol: control element information
2008  *
2009  * Callback to get the value of a double semi enumerated mixer.
2010  *
2011  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2012  * used for handling bitfield coded enumeration for example.
2013  *
2014  * Returns 0 for success.
2015  */
2016 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2017         struct snd_ctl_elem_value *ucontrol)
2018 {
2019         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2020         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2021         unsigned int reg_val, val, mux;
2022
2023         reg_val = snd_soc_read(codec, e->reg);
2024         val = (reg_val >> e->shift_l) & e->mask;
2025         for (mux = 0; mux < e->max; mux++) {
2026                 if (val == e->values[mux])
2027                         break;
2028         }
2029         ucontrol->value.enumerated.item[0] = mux;
2030         if (e->shift_l != e->shift_r) {
2031                 val = (reg_val >> e->shift_r) & e->mask;
2032                 for (mux = 0; mux < e->max; mux++) {
2033                         if (val == e->values[mux])
2034                                 break;
2035                 }
2036                 ucontrol->value.enumerated.item[1] = mux;
2037         }
2038
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2042
2043 /**
2044  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2045  * @kcontrol: mixer control
2046  * @ucontrol: control element information
2047  *
2048  * Callback to set the value of a double semi enumerated mixer.
2049  *
2050  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2051  * used for handling bitfield coded enumeration for example.
2052  *
2053  * Returns 0 for success.
2054  */
2055 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2056         struct snd_ctl_elem_value *ucontrol)
2057 {
2058         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2059         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2060         unsigned int val;
2061         unsigned int mask;
2062
2063         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2064                 return -EINVAL;
2065         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2066         mask = e->mask << e->shift_l;
2067         if (e->shift_l != e->shift_r) {
2068                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2069                         return -EINVAL;
2070                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2071                 mask |= e->mask << e->shift_r;
2072         }
2073
2074         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2075 }
2076 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2077
2078 /**
2079  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2080  * @kcontrol: mixer control
2081  * @uinfo: control element information
2082  *
2083  * Callback to provide information about an external enumerated
2084  * single mixer.
2085  *
2086  * Returns 0 for success.
2087  */
2088 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2089         struct snd_ctl_elem_info *uinfo)
2090 {
2091         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2092
2093         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2094         uinfo->count = 1;
2095         uinfo->value.enumerated.items = e->max;
2096
2097         if (uinfo->value.enumerated.item > e->max - 1)
2098                 uinfo->value.enumerated.item = e->max - 1;
2099         strcpy(uinfo->value.enumerated.name,
2100                 e->texts[uinfo->value.enumerated.item]);
2101         return 0;
2102 }
2103 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2104
2105 /**
2106  * snd_soc_info_volsw_ext - external single mixer info callback
2107  * @kcontrol: mixer control
2108  * @uinfo: control element information
2109  *
2110  * Callback to provide information about a single external mixer control.
2111  *
2112  * Returns 0 for success.
2113  */
2114 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2115         struct snd_ctl_elem_info *uinfo)
2116 {
2117         int max = kcontrol->private_value;
2118
2119         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2120                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2121         else
2122                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2123
2124         uinfo->count = 1;
2125         uinfo->value.integer.min = 0;
2126         uinfo->value.integer.max = max;
2127         return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2130
2131 /**
2132  * snd_soc_info_volsw - single mixer info callback
2133  * @kcontrol: mixer control
2134  * @uinfo: control element information
2135  *
2136  * Callback to provide information about a single mixer control.
2137  *
2138  * Returns 0 for success.
2139  */
2140 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2141         struct snd_ctl_elem_info *uinfo)
2142 {
2143         struct soc_mixer_control *mc =
2144                 (struct soc_mixer_control *)kcontrol->private_value;
2145         int platform_max;
2146         unsigned int shift = mc->shift;
2147         unsigned int rshift = mc->rshift;
2148
2149         if (!mc->platform_max)
2150                 mc->platform_max = mc->max;
2151         platform_max = mc->platform_max;
2152
2153         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2154                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2155         else
2156                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2157
2158         uinfo->count = shift == rshift ? 1 : 2;
2159         uinfo->value.integer.min = 0;
2160         uinfo->value.integer.max = platform_max;
2161         return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2164
2165 /**
2166  * snd_soc_get_volsw - single mixer get callback
2167  * @kcontrol: mixer control
2168  * @ucontrol: control element information
2169  *
2170  * Callback to get the value of a single mixer control.
2171  *
2172  * Returns 0 for success.
2173  */
2174 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2175         struct snd_ctl_elem_value *ucontrol)
2176 {
2177         struct soc_mixer_control *mc =
2178                 (struct soc_mixer_control *)kcontrol->private_value;
2179         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2180         unsigned int reg = mc->reg;
2181         unsigned int shift = mc->shift;
2182         unsigned int rshift = mc->rshift;
2183         int max = mc->max;
2184         unsigned int mask = (1 << fls(max)) - 1;
2185         unsigned int invert = mc->invert;
2186
2187         ucontrol->value.integer.value[0] =
2188                 (snd_soc_read(codec, reg) >> shift) & mask;
2189         if (shift != rshift)
2190                 ucontrol->value.integer.value[1] =
2191                         (snd_soc_read(codec, reg) >> rshift) & mask;
2192         if (invert) {
2193                 ucontrol->value.integer.value[0] =
2194                         max - ucontrol->value.integer.value[0];
2195                 if (shift != rshift)
2196                         ucontrol->value.integer.value[1] =
2197                                 max - ucontrol->value.integer.value[1];
2198         }
2199
2200         return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2203
2204 /**
2205  * snd_soc_put_volsw - single mixer put callback
2206  * @kcontrol: mixer control
2207  * @ucontrol: control element information
2208  *
2209  * Callback to set the value of a single mixer control.
2210  *
2211  * Returns 0 for success.
2212  */
2213 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2214         struct snd_ctl_elem_value *ucontrol)
2215 {
2216         struct soc_mixer_control *mc =
2217                 (struct soc_mixer_control *)kcontrol->private_value;
2218         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2219         unsigned int reg = mc->reg;
2220         unsigned int shift = mc->shift;
2221         unsigned int rshift = mc->rshift;
2222         int max = mc->max;
2223         unsigned int mask = (1 << fls(max)) - 1;
2224         unsigned int invert = mc->invert;
2225         unsigned int val, val2, val_mask;
2226
2227         val = (ucontrol->value.integer.value[0] & mask);
2228         if (invert)
2229                 val = max - val;
2230         val_mask = mask << shift;
2231         val = val << shift;
2232         if (shift != rshift) {
2233                 val2 = (ucontrol->value.integer.value[1] & mask);
2234                 if (invert)
2235                         val2 = max - val2;
2236                 val_mask |= mask << rshift;
2237                 val |= val2 << rshift;
2238         }
2239         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2240 }
2241 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2242
2243 /**
2244  * snd_soc_info_volsw_2r - double mixer info callback
2245  * @kcontrol: mixer control
2246  * @uinfo: control element information
2247  *
2248  * Callback to provide information about a double mixer control that
2249  * spans 2 codec registers.
2250  *
2251  * Returns 0 for success.
2252  */
2253 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2254         struct snd_ctl_elem_info *uinfo)
2255 {
2256         struct soc_mixer_control *mc =
2257                 (struct soc_mixer_control *)kcontrol->private_value;
2258         int platform_max;
2259
2260         if (!mc->platform_max)
2261                 mc->platform_max = mc->max;
2262         platform_max = mc->platform_max;
2263
2264         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2265                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2266         else
2267                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2268
2269         uinfo->count = 2;
2270         uinfo->value.integer.min = 0;
2271         uinfo->value.integer.max = platform_max;
2272         return 0;
2273 }
2274 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2275
2276 /**
2277  * snd_soc_get_volsw_2r - double mixer get callback
2278  * @kcontrol: mixer control
2279  * @ucontrol: control element information
2280  *
2281  * Callback to get the value of a double mixer control that spans 2 registers.
2282  *
2283  * Returns 0 for success.
2284  */
2285 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2286         struct snd_ctl_elem_value *ucontrol)
2287 {
2288         struct soc_mixer_control *mc =
2289                 (struct soc_mixer_control *)kcontrol->private_value;
2290         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2291         unsigned int reg = mc->reg;
2292         unsigned int reg2 = mc->rreg;
2293         unsigned int shift = mc->shift;
2294         int max = mc->max;
2295         unsigned int mask = (1 << fls(max)) - 1;
2296         unsigned int invert = mc->invert;
2297
2298         ucontrol->value.integer.value[0] =
2299                 (snd_soc_read(codec, reg) >> shift) & mask;
2300         ucontrol->value.integer.value[1] =
2301                 (snd_soc_read(codec, reg2) >> shift) & mask;
2302         if (invert) {
2303                 ucontrol->value.integer.value[0] =
2304                         max - ucontrol->value.integer.value[0];
2305                 ucontrol->value.integer.value[1] =
2306                         max - ucontrol->value.integer.value[1];
2307         }
2308
2309         return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2312
2313 /**
2314  * snd_soc_put_volsw_2r - double mixer set callback
2315  * @kcontrol: mixer control
2316  * @ucontrol: control element information
2317  *
2318  * Callback to set the value of a double mixer control that spans 2 registers.
2319  *
2320  * Returns 0 for success.
2321  */
2322 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2323         struct snd_ctl_elem_value *ucontrol)
2324 {
2325         struct soc_mixer_control *mc =
2326                 (struct soc_mixer_control *)kcontrol->private_value;
2327         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2328         unsigned int reg = mc->reg;
2329         unsigned int reg2 = mc->rreg;
2330         unsigned int shift = mc->shift;
2331         int max = mc->max;
2332         unsigned int mask = (1 << fls(max)) - 1;
2333         unsigned int invert = mc->invert;
2334         int err;
2335         unsigned int val, val2, val_mask;
2336
2337         val_mask = mask << shift;
2338         val = (ucontrol->value.integer.value[0] & mask);
2339         val2 = (ucontrol->value.integer.value[1] & mask);
2340
2341         if (invert) {
2342                 val = max - val;
2343                 val2 = max - val2;
2344         }
2345
2346         val = val << shift;
2347         val2 = val2 << shift;
2348
2349         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2350         if (err < 0)
2351                 return err;
2352
2353         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2354         return err;
2355 }
2356 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2357
2358 /**
2359  * snd_soc_info_volsw_s8 - signed mixer info callback
2360  * @kcontrol: mixer control
2361  * @uinfo: control element information
2362  *
2363  * Callback to provide information about a signed mixer control.
2364  *
2365  * Returns 0 for success.
2366  */
2367 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2368         struct snd_ctl_elem_info *uinfo)
2369 {
2370         struct soc_mixer_control *mc =
2371                 (struct soc_mixer_control *)kcontrol->private_value;
2372         int platform_max;
2373         int min = mc->min;
2374
2375         if (!mc->platform_max)
2376                 mc->platform_max = mc->max;
2377         platform_max = mc->platform_max;
2378
2379         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2380         uinfo->count = 2;
2381         uinfo->value.integer.min = 0;
2382         uinfo->value.integer.max = platform_max - min;
2383         return 0;
2384 }
2385 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2386
2387 /**
2388  * snd_soc_get_volsw_s8 - signed mixer get callback
2389  * @kcontrol: mixer control
2390  * @ucontrol: control element information
2391  *
2392  * Callback to get the value of a signed mixer control.
2393  *
2394  * Returns 0 for success.
2395  */
2396 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2397         struct snd_ctl_elem_value *ucontrol)
2398 {
2399         struct soc_mixer_control *mc =
2400                 (struct soc_mixer_control *)kcontrol->private_value;
2401         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2402         unsigned int reg = mc->reg;
2403         int min = mc->min;
2404         int val = snd_soc_read(codec, reg);
2405
2406         ucontrol->value.integer.value[0] =
2407                 ((signed char)(val & 0xff))-min;
2408         ucontrol->value.integer.value[1] =
2409                 ((signed char)((val >> 8) & 0xff))-min;
2410         return 0;
2411 }
2412 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2413
2414 /**
2415  * snd_soc_put_volsw_sgn - signed mixer put callback
2416  * @kcontrol: mixer control
2417  * @ucontrol: control element information
2418  *
2419  * Callback to set the value of a signed mixer control.
2420  *
2421  * Returns 0 for success.
2422  */
2423 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2424         struct snd_ctl_elem_value *ucontrol)
2425 {
2426         struct soc_mixer_control *mc =
2427                 (struct soc_mixer_control *)kcontrol->private_value;
2428         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2429         unsigned int reg = mc->reg;
2430         int min = mc->min;
2431         unsigned int val;
2432
2433         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2434         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2435
2436         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2437 }
2438 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2439
2440 /**
2441  * snd_soc_limit_volume - Set new limit to an existing volume control.
2442  *
2443  * @codec: where to look for the control
2444  * @name: Name of the control
2445  * @max: new maximum limit
2446  *
2447  * Return 0 for success, else error.
2448  */
2449 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2450         const char *name, int max)
2451 {
2452         struct snd_card *card = codec->card->snd_card;
2453         struct snd_kcontrol *kctl;
2454         struct soc_mixer_control *mc;
2455         int found = 0;
2456         int ret = -EINVAL;
2457
2458         /* Sanity check for name and max */
2459         if (unlikely(!name || max <= 0))
2460                 return -EINVAL;
2461
2462         list_for_each_entry(kctl, &card->controls, list) {
2463                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2464                         found = 1;
2465                         break;
2466                 }
2467         }
2468         if (found) {
2469                 mc = (struct soc_mixer_control *)kctl->private_value;
2470                 if (max <= mc->max) {
2471                         mc->platform_max = max;
2472                         ret = 0;
2473                 }
2474         }
2475         return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2478
2479 /**
2480  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2481  *  mixer info callback
2482  * @kcontrol: mixer control
2483  * @uinfo: control element information
2484  *
2485  * Returns 0 for success.
2486  */
2487 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2488                         struct snd_ctl_elem_info *uinfo)
2489 {
2490         struct soc_mixer_control *mc =
2491                 (struct soc_mixer_control *)kcontrol->private_value;
2492         int max = mc->max;
2493         int min = mc->min;
2494
2495         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2496         uinfo->count = 2;
2497         uinfo->value.integer.min = 0;
2498         uinfo->value.integer.max = max-min;
2499
2500         return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2503
2504 /**
2505  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2506  *  mixer get callback
2507  * @kcontrol: mixer control
2508  * @uinfo: control element information
2509  *
2510  * Returns 0 for success.
2511  */
2512 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2513                         struct snd_ctl_elem_value *ucontrol)
2514 {
2515         struct soc_mixer_control *mc =
2516                 (struct soc_mixer_control *)kcontrol->private_value;
2517         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2518         unsigned int mask = (1<<mc->shift)-1;
2519         int min = mc->min;
2520         int val = snd_soc_read(codec, mc->reg) & mask;
2521         int valr = snd_soc_read(codec, mc->rreg) & mask;
2522
2523         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2524         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2528
2529 /**
2530  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2531  *  mixer put callback
2532  * @kcontrol: mixer control
2533  * @uinfo: control element information
2534  *
2535  * Returns 0 for success.
2536  */
2537 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2538                         struct snd_ctl_elem_value *ucontrol)
2539 {
2540         struct soc_mixer_control *mc =
2541                 (struct soc_mixer_control *)kcontrol->private_value;
2542         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2543         unsigned int mask = (1<<mc->shift)-1;
2544         int min = mc->min;
2545         int ret;
2546         unsigned int val, valr, oval, ovalr;
2547
2548         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2549         val &= mask;
2550         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2551         valr &= mask;
2552
2553         oval = snd_soc_read(codec, mc->reg) & mask;
2554         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2555
2556         ret = 0;
2557         if (oval != val) {
2558                 ret = snd_soc_write(codec, mc->reg, val);
2559                 if (ret < 0)
2560                         return ret;
2561         }
2562         if (ovalr != valr) {
2563                 ret = snd_soc_write(codec, mc->rreg, valr);
2564                 if (ret < 0)
2565                         return ret;
2566         }
2567
2568         return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2571
2572 /**
2573  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2574  * @dai: DAI
2575  * @clk_id: DAI specific clock ID
2576  * @freq: new clock frequency in Hz
2577  * @dir: new clock direction - input/output.
2578  *
2579  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2580  */
2581 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2582         unsigned int freq, int dir)
2583 {
2584         if (dai->driver && dai->driver->ops->set_sysclk)
2585                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2586         else
2587                 return -EINVAL;
2588 }
2589 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2590
2591 /**
2592  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2593  * @dai: DAI
2594  * @div_id: DAI specific clock divider ID
2595  * @div: new clock divisor.
2596  *
2597  * Configures the clock dividers. This is used to derive the best DAI bit and
2598  * frame clocks from the system or master clock. It's best to set the DAI bit
2599  * and frame clocks as low as possible to save system power.
2600  */
2601 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2602         int div_id, int div)
2603 {
2604         if (dai->driver && dai->driver->ops->set_clkdiv)
2605                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2606         else
2607                 return -EINVAL;
2608 }
2609 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2610
2611 /**
2612  * snd_soc_dai_set_pll - configure DAI PLL.
2613  * @dai: DAI
2614  * @pll_id: DAI specific PLL ID
2615  * @source: DAI specific source for the PLL
2616  * @freq_in: PLL input clock frequency in Hz
2617  * @freq_out: requested PLL output clock frequency in Hz
2618  *
2619  * Configures and enables PLL to generate output clock based on input clock.
2620  */
2621 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2622         unsigned int freq_in, unsigned int freq_out)
2623 {
2624         if (dai->driver && dai->driver->ops->set_pll)
2625                 return dai->driver->ops->set_pll(dai, pll_id, source,
2626                                          freq_in, freq_out);
2627         else
2628                 return -EINVAL;
2629 }
2630 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2631
2632 /**
2633  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2634  * @dai: DAI
2635  * @fmt: SND_SOC_DAIFMT_ format value.
2636  *
2637  * Configures the DAI hardware format and clocking.
2638  */
2639 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2640 {
2641         if (dai->driver && dai->driver->ops->set_fmt)
2642                 return dai->driver->ops->set_fmt(dai, fmt);
2643         else
2644                 return -EINVAL;
2645 }
2646 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2647
2648 /**
2649  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2650  * @dai: DAI
2651  * @tx_mask: bitmask representing active TX slots.
2652  * @rx_mask: bitmask representing active RX slots.
2653  * @slots: Number of slots in use.
2654  * @slot_width: Width in bits for each slot.
2655  *
2656  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2657  * specific.
2658  */
2659 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2660         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2661 {
2662         if (dai->driver && dai->driver->ops->set_tdm_slot)
2663                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2664                                 slots, slot_width);
2665         else
2666                 return -EINVAL;
2667 }
2668 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2669
2670 /**
2671  * snd_soc_dai_set_channel_map - configure DAI audio channel map
2672  * @dai: DAI
2673  * @tx_num: how many TX channels
2674  * @tx_slot: pointer to an array which imply the TX slot number channel
2675  *           0~num-1 uses
2676  * @rx_num: how many RX channels
2677  * @rx_slot: pointer to an array which imply the RX slot number channel
2678  *           0~num-1 uses
2679  *
2680  * configure the relationship between channel number and TDM slot number.
2681  */
2682 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2683         unsigned int tx_num, unsigned int *tx_slot,
2684         unsigned int rx_num, unsigned int *rx_slot)
2685 {
2686         if (dai->driver && dai->driver->ops->set_channel_map)
2687                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2688                         rx_num, rx_slot);
2689         else
2690                 return -EINVAL;
2691 }
2692 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2693
2694 /**
2695  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2696  * @dai: DAI
2697  * @tristate: tristate enable
2698  *
2699  * Tristates the DAI so that others can use it.
2700  */
2701 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2702 {
2703         if (dai->driver && dai->driver->ops->set_tristate)
2704                 return dai->driver->ops->set_tristate(dai, tristate);
2705         else
2706                 return -EINVAL;
2707 }
2708 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2709
2710 /**
2711  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2712  * @dai: DAI
2713  * @mute: mute enable
2714  *
2715  * Mutes the DAI DAC.
2716  */
2717 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2718 {
2719         if (dai->driver && dai->driver->ops->digital_mute)
2720                 return dai->driver->ops->digital_mute(dai, mute);
2721         else
2722                 return -EINVAL;
2723 }
2724 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2725
2726 /**
2727  * snd_soc_register_card - Register a card with the ASoC core
2728  *
2729  * @card: Card to register
2730  *
2731  * Note that currently this is an internal only function: it will be
2732  * exposed to machine drivers after further backporting of ASoC v2
2733  * registration APIs.
2734  */
2735 static int snd_soc_register_card(struct snd_soc_card *card)
2736 {
2737         int i;
2738
2739         if (!card->name || !card->dev)
2740                 return -EINVAL;
2741
2742         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2743                         GFP_KERNEL);
2744         if (card->rtd == NULL)
2745                 return -ENOMEM;
2746
2747         for (i = 0; i < card->num_links; i++)
2748                 card->rtd[i].dai_link = &card->dai_link[i];
2749
2750         INIT_LIST_HEAD(&card->list);
2751         card->instantiated = 0;
2752         mutex_init(&card->mutex);
2753
2754         mutex_lock(&client_mutex);
2755         list_add(&card->list, &card_list);
2756         snd_soc_instantiate_cards();
2757         mutex_unlock(&client_mutex);
2758
2759         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2760
2761         return 0;
2762 }
2763
2764 /**
2765  * snd_soc_unregister_card - Unregister a card with the ASoC core
2766  *
2767  * @card: Card to unregister
2768  *
2769  * Note that currently this is an internal only function: it will be
2770  * exposed to machine drivers after further backporting of ASoC v2
2771  * registration APIs.
2772  */
2773 static int snd_soc_unregister_card(struct snd_soc_card *card)
2774 {
2775         mutex_lock(&client_mutex);
2776         list_del(&card->list);
2777         mutex_unlock(&client_mutex);
2778         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2779
2780         return 0;
2781 }
2782
2783 /*
2784  * Simplify DAI link configuration by removing ".-1" from device names
2785  * and sanitizing names.
2786  */
2787 static inline char *fmt_single_name(struct device *dev, int *id)
2788 {
2789         char *found, name[NAME_SIZE];
2790         int id1, id2;
2791
2792         if (dev_name(dev) == NULL)
2793                 return NULL;
2794
2795         strncpy(name, dev_name(dev), NAME_SIZE);
2796
2797         /* are we a "%s.%d" name (platform and SPI components) */
2798         found = strstr(name, dev->driver->name);
2799         if (found) {
2800                 /* get ID */
2801                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2802
2803                         /* discard ID from name if ID == -1 */
2804                         if (*id == -1)
2805                                 found[strlen(dev->driver->name)] = '\0';
2806                 }
2807
2808         } else {
2809                 /* I2C component devices are named "bus-addr"  */
2810                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2811                         char tmp[NAME_SIZE];
2812
2813                         /* create unique ID number from I2C addr and bus */
2814                         *id = ((id1 && 0xffff) << 16) + id2;
2815
2816                         /* sanitize component name for DAI link creation */
2817                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2818                         strncpy(name, tmp, NAME_SIZE);
2819                 } else
2820                         *id = 0;
2821         }
2822
2823         return kstrdup(name, GFP_KERNEL);
2824 }
2825
2826 /*
2827  * Simplify DAI link naming for single devices with multiple DAIs by removing
2828  * any ".-1" and using the DAI name (instead of device name).
2829  */
2830 static inline char *fmt_multiple_name(struct device *dev,
2831                 struct snd_soc_dai_driver *dai_drv)
2832 {
2833         if (dai_drv->name == NULL) {
2834                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2835                                 dev_name(dev));
2836                 return NULL;
2837         }
2838
2839         return kstrdup(dai_drv->name, GFP_KERNEL);
2840 }
2841
2842 /**
2843  * snd_soc_register_dai - Register a DAI with the ASoC core
2844  *
2845  * @dai: DAI to register
2846  */
2847 int snd_soc_register_dai(struct device *dev,
2848                 struct snd_soc_dai_driver *dai_drv)
2849 {
2850         struct snd_soc_dai *dai;
2851
2852         dev_dbg(dev, "dai register %s\n", dev_name(dev));
2853
2854         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2855         if (dai == NULL)
2856                         return -ENOMEM;
2857
2858         /* create DAI component name */
2859         dai->name = fmt_single_name(dev, &dai->id);
2860         if (dai->name == NULL) {
2861                 kfree(dai);
2862                 return -ENOMEM;
2863         }
2864
2865         dai->dev = dev;
2866         dai->driver = dai_drv;
2867         if (!dai->driver->ops)
2868                 dai->driver->ops = &null_dai_ops;
2869
2870         mutex_lock(&client_mutex);
2871         list_add(&dai->list, &dai_list);
2872         snd_soc_instantiate_cards();
2873         mutex_unlock(&client_mutex);
2874
2875         pr_debug("Registered DAI '%s'\n", dai->name);
2876
2877         return 0;
2878 }
2879 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2880
2881 /**
2882  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2883  *
2884  * @dai: DAI to unregister
2885  */
2886 void snd_soc_unregister_dai(struct device *dev)
2887 {
2888         struct snd_soc_dai *dai;
2889
2890         list_for_each_entry(dai, &dai_list, list) {
2891                 if (dev == dai->dev)
2892                         goto found;
2893         }
2894         return;
2895
2896 found:
2897         mutex_lock(&client_mutex);
2898         list_del(&dai->list);
2899         mutex_unlock(&client_mutex);
2900
2901         pr_debug("Unregistered DAI '%s'\n", dai->name);
2902         kfree(dai->name);
2903         kfree(dai);
2904 }
2905 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2906
2907 /**
2908  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2909  *
2910  * @dai: Array of DAIs to register
2911  * @count: Number of DAIs
2912  */
2913 int snd_soc_register_dais(struct device *dev,
2914                 struct snd_soc_dai_driver *dai_drv, size_t count)
2915 {
2916         struct snd_soc_dai *dai;
2917         int i, ret = 0;
2918
2919         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
2920
2921         for (i = 0; i < count; i++) {
2922
2923                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2924                 if (dai == NULL)
2925                         return -ENOMEM;
2926
2927                 /* create DAI component name */
2928                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
2929                 if (dai->name == NULL) {
2930                         kfree(dai);
2931                         ret = -EINVAL;
2932                         goto err;
2933                 }
2934
2935                 dai->dev = dev;
2936                 dai->id = i;
2937                 dai->driver = &dai_drv[i];
2938                 if (!dai->driver->ops)
2939                         dai->driver->ops = &null_dai_ops;
2940
2941                 mutex_lock(&client_mutex);
2942                 list_add(&dai->list, &dai_list);
2943                 mutex_unlock(&client_mutex);
2944
2945                 pr_debug("Registered DAI '%s'\n", dai->name);
2946         }
2947
2948         snd_soc_instantiate_cards();
2949         return 0;
2950
2951 err:
2952         for (i--; i >= 0; i--)
2953                 snd_soc_unregister_dai(dev);
2954
2955         return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2958
2959 /**
2960  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2961  *
2962  * @dai: Array of DAIs to unregister
2963  * @count: Number of DAIs
2964  */
2965 void snd_soc_unregister_dais(struct device *dev, size_t count)
2966 {
2967         int i;
2968
2969         for (i = 0; i < count; i++)
2970                 snd_soc_unregister_dai(dev);
2971 }
2972 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2973
2974 /**
2975  * snd_soc_register_platform - Register a platform with the ASoC core
2976  *
2977  * @platform: platform to register
2978  */
2979 int snd_soc_register_platform(struct device *dev,
2980                 struct snd_soc_platform_driver *platform_drv)
2981 {
2982         struct snd_soc_platform *platform;
2983
2984         dev_dbg(dev, "platform register %s\n", dev_name(dev));
2985
2986         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
2987         if (platform == NULL)
2988                         return -ENOMEM;
2989
2990         /* create platform component name */
2991         platform->name = fmt_single_name(dev, &platform->id);
2992         if (platform->name == NULL) {
2993                 kfree(platform);
2994                 return -ENOMEM;
2995         }
2996
2997         platform->dev = dev;
2998         platform->driver = platform_drv;
2999
3000         mutex_lock(&client_mutex);
3001         list_add(&platform->list, &platform_list);
3002         snd_soc_instantiate_cards();
3003         mutex_unlock(&client_mutex);
3004
3005         pr_debug("Registered platform '%s'\n", platform->name);
3006
3007         return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3010
3011 /**
3012  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3013  *
3014  * @platform: platform to unregister
3015  */
3016 void snd_soc_unregister_platform(struct device *dev)
3017 {
3018         struct snd_soc_platform *platform;
3019
3020         list_for_each_entry(platform, &platform_list, list) {
3021                 if (dev == platform->dev)
3022                         goto found;
3023         }
3024         return;
3025
3026 found:
3027         mutex_lock(&client_mutex);
3028         list_del(&platform->list);
3029         mutex_unlock(&client_mutex);
3030
3031         pr_debug("Unregistered platform '%s'\n", platform->name);
3032         kfree(platform->name);
3033         kfree(platform);
3034 }
3035 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3036
3037 static u64 codec_format_map[] = {
3038         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3039         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3040         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3041         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3042         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3043         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3044         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3045         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3046         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3047         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3048         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3049         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3050         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3051         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3052         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3053         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3054 };
3055
3056 /* Fix up the DAI formats for endianness: codecs don't actually see
3057  * the endianness of the data but we're using the CPU format
3058  * definitions which do need to include endianness so we ensure that
3059  * codec DAIs always have both big and little endian variants set.
3060  */
3061 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3062 {
3063         int i;
3064
3065         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3066                 if (stream->formats & codec_format_map[i])
3067                         stream->formats |= codec_format_map[i];
3068 }
3069
3070 /**
3071  * snd_soc_register_codec - Register a codec with the ASoC core
3072  *
3073  * @codec: codec to register
3074  */
3075 int snd_soc_register_codec(struct device *dev,
3076                 struct snd_soc_codec_driver *codec_drv,
3077                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3078 {
3079         struct snd_soc_codec *codec;
3080         int ret, i;
3081
3082         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3083
3084         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3085         if (codec == NULL)
3086                 return -ENOMEM;
3087
3088         /* create CODEC component name */
3089         codec->name = fmt_single_name(dev, &codec->id);
3090         if (codec->name == NULL) {
3091                 kfree(codec);
3092                 return -ENOMEM;
3093         }
3094
3095         /* allocate CODEC register cache */
3096         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3097
3098                 if (codec_drv->reg_cache_default)
3099                         codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3100                                 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3101                 else
3102                         codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3103                                 codec_drv->reg_word_size, GFP_KERNEL);
3104
3105                 if (codec->reg_cache == NULL) {
3106                         kfree(codec->name);
3107                         kfree(codec);
3108                         return -ENOMEM;
3109                 }
3110         }
3111
3112         codec->dev = dev;
3113         codec->driver = codec_drv;
3114         codec->bias_level = SND_SOC_BIAS_OFF;
3115         codec->num_dai = num_dai;
3116         mutex_init(&codec->mutex);
3117         INIT_LIST_HEAD(&codec->dapm_widgets);
3118         INIT_LIST_HEAD(&codec->dapm_paths);
3119
3120         for (i = 0; i < num_dai; i++) {
3121                 fixup_codec_formats(&dai_drv[i].playback);
3122                 fixup_codec_formats(&dai_drv[i].capture);
3123         }
3124
3125         /* register any DAIs */
3126         if (num_dai) {
3127                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3128                 if (ret < 0)
3129                         goto error;
3130         }
3131
3132         mutex_lock(&client_mutex);
3133         list_add(&codec->list, &codec_list);
3134         snd_soc_instantiate_cards();
3135         mutex_unlock(&client_mutex);
3136
3137         pr_debug("Registered codec '%s'\n", codec->name);
3138         return 0;
3139
3140 error:
3141         for (i--; i >= 0; i--)
3142                 snd_soc_unregister_dai(dev);
3143
3144         if (codec->reg_cache)
3145                 kfree(codec->reg_cache);
3146         kfree(codec->name);
3147         kfree(codec);
3148         return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3151
3152 /**
3153  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3154  *
3155  * @codec: codec to unregister
3156  */
3157 void snd_soc_unregister_codec(struct device *dev)
3158 {
3159         struct snd_soc_codec *codec;
3160         int i;
3161
3162         list_for_each_entry(codec, &codec_list, list) {
3163                 if (dev == codec->dev)
3164                         goto found;
3165         }
3166         return;
3167
3168 found:
3169         if (codec->num_dai)
3170                 for (i = 0; i < codec->num_dai; i++)
3171                         snd_soc_unregister_dai(dev);
3172
3173         mutex_lock(&client_mutex);
3174         list_del(&codec->list);
3175         mutex_unlock(&client_mutex);
3176
3177         pr_debug("Unregistered codec '%s'\n", codec->name);
3178
3179         if (codec->reg_cache)
3180                 kfree(codec->reg_cache);
3181         kfree(codec);
3182 }
3183 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3184
3185 static int __init snd_soc_init(void)
3186 {
3187 #ifdef CONFIG_DEBUG_FS
3188         debugfs_root = debugfs_create_dir("asoc", NULL);
3189         if (IS_ERR(debugfs_root) || !debugfs_root) {
3190                 printk(KERN_WARNING
3191                        "ASoC: Failed to create debugfs directory\n");
3192                 debugfs_root = NULL;
3193         }
3194 #endif
3195
3196         return platform_driver_register(&soc_driver);
3197 }
3198
3199 static void __exit snd_soc_exit(void)
3200 {
3201 #ifdef CONFIG_DEBUG_FS
3202         debugfs_remove_recursive(debugfs_root);
3203 #endif
3204         platform_driver_unregister(&soc_driver);
3205 }
3206
3207 module_init(snd_soc_init);
3208 module_exit(snd_soc_exit);
3209
3210 /* Module information */
3211 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3212 MODULE_DESCRIPTION("ALSA SoC Core");
3213 MODULE_LICENSE("GPL");
3214 MODULE_ALIAS("platform:soc-audio");