]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/selinux/hooks.c
selinux: remove secondary ops call to inode_setattr
[net-next-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534
2535         if (flags & MS_REMOUNT)
2536                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2537                                            FILESYSTEM__REMOUNT, NULL);
2538         else
2539                 return dentry_has_perm(cred, path->mnt, path->dentry,
2540                                        FILE__MOUNTON);
2541 }
2542
2543 static int selinux_umount(struct vfsmount *mnt, int flags)
2544 {
2545         const struct cred *cred = current_cred();
2546
2547         return superblock_has_perm(cred, mnt->mnt_sb,
2548                                    FILESYSTEM__UNMOUNT, NULL);
2549 }
2550
2551 /* inode security operations */
2552
2553 static int selinux_inode_alloc_security(struct inode *inode)
2554 {
2555         return inode_alloc_security(inode);
2556 }
2557
2558 static void selinux_inode_free_security(struct inode *inode)
2559 {
2560         inode_free_security(inode);
2561 }
2562
2563 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2564                                        char **name, void **value,
2565                                        size_t *len)
2566 {
2567         const struct cred *cred = current_cred();
2568         const struct task_security_struct *tsec = cred->security;
2569         struct inode_security_struct *dsec;
2570         struct superblock_security_struct *sbsec;
2571         u32 sid, newsid, clen;
2572         int rc;
2573         char *namep = NULL, *context;
2574
2575         dsec = dir->i_security;
2576         sbsec = dir->i_sb->s_security;
2577
2578         sid = tsec->sid;
2579         newsid = tsec->create_sid;
2580
2581         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2582                 rc = security_transition_sid(sid, dsec->sid,
2583                                              inode_mode_to_security_class(inode->i_mode),
2584                                              &newsid);
2585                 if (rc) {
2586                         printk(KERN_WARNING "%s:  "
2587                                "security_transition_sid failed, rc=%d (dev=%s "
2588                                "ino=%ld)\n",
2589                                __func__,
2590                                -rc, inode->i_sb->s_id, inode->i_ino);
2591                         return rc;
2592                 }
2593         }
2594
2595         /* Possibly defer initialization to selinux_complete_init. */
2596         if (sbsec->flags & SE_SBINITIALIZED) {
2597                 struct inode_security_struct *isec = inode->i_security;
2598                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2599                 isec->sid = newsid;
2600                 isec->initialized = 1;
2601         }
2602
2603         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2604                 return -EOPNOTSUPP;
2605
2606         if (name) {
2607                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2608                 if (!namep)
2609                         return -ENOMEM;
2610                 *name = namep;
2611         }
2612
2613         if (value && len) {
2614                 rc = security_sid_to_context_force(newsid, &context, &clen);
2615                 if (rc) {
2616                         kfree(namep);
2617                         return rc;
2618                 }
2619                 *value = context;
2620                 *len = clen;
2621         }
2622
2623         return 0;
2624 }
2625
2626 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_FILE);
2629 }
2630
2631 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2632 {
2633         return may_link(dir, old_dentry, MAY_LINK);
2634 }
2635
2636 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2637 {
2638         return may_link(dir, dentry, MAY_UNLINK);
2639 }
2640
2641 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2642 {
2643         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2644 }
2645
2646 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2647 {
2648         return may_create(dir, dentry, SECCLASS_DIR);
2649 }
2650
2651 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2652 {
2653         return may_link(dir, dentry, MAY_RMDIR);
2654 }
2655
2656 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2657 {
2658         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2659 }
2660
2661 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2662                                 struct inode *new_inode, struct dentry *new_dentry)
2663 {
2664         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2665 }
2666
2667 static int selinux_inode_readlink(struct dentry *dentry)
2668 {
2669         const struct cred *cred = current_cred();
2670
2671         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2672 }
2673
2674 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2675 {
2676         const struct cred *cred = current_cred();
2677
2678         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2679 }
2680
2681 static int selinux_inode_permission(struct inode *inode, int mask)
2682 {
2683         const struct cred *cred = current_cred();
2684
2685         if (!mask) {
2686                 /* No permission to check.  Existence test. */
2687                 return 0;
2688         }
2689
2690         return inode_has_perm(cred, inode,
2691                               file_mask_to_av(inode->i_mode, mask), NULL);
2692 }
2693
2694 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2695 {
2696         const struct cred *cred = current_cred();
2697
2698         if (iattr->ia_valid & ATTR_FORCE)
2699                 return 0;
2700
2701         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2703                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2704
2705         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2706 }
2707
2708 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709 {
2710         const struct cred *cred = current_cred();
2711
2712         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2713 }
2714
2715 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2716 {
2717         const struct cred *cred = current_cred();
2718
2719         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2720                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2721                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2722                         if (!capable(CAP_SETFCAP))
2723                                 return -EPERM;
2724                 } else if (!capable(CAP_SYS_ADMIN)) {
2725                         /* A different attribute in the security namespace.
2726                            Restrict to administrator. */
2727                         return -EPERM;
2728                 }
2729         }
2730
2731         /* Not an attribute we recognize, so just check the
2732            ordinary setattr permission. */
2733         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2734 }
2735
2736 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2737                                   const void *value, size_t size, int flags)
2738 {
2739         struct inode *inode = dentry->d_inode;
2740         struct inode_security_struct *isec = inode->i_security;
2741         struct superblock_security_struct *sbsec;
2742         struct avc_audit_data ad;
2743         u32 newsid, sid = current_sid();
2744         int rc = 0;
2745
2746         if (strcmp(name, XATTR_NAME_SELINUX))
2747                 return selinux_inode_setotherxattr(dentry, name);
2748
2749         sbsec = inode->i_sb->s_security;
2750         if (!(sbsec->flags & SE_SBLABELSUPP))
2751                 return -EOPNOTSUPP;
2752
2753         if (!is_owner_or_cap(inode))
2754                 return -EPERM;
2755
2756         AVC_AUDIT_DATA_INIT(&ad, FS);
2757         ad.u.fs.path.dentry = dentry;
2758
2759         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2760                           FILE__RELABELFROM, &ad);
2761         if (rc)
2762                 return rc;
2763
2764         rc = security_context_to_sid(value, size, &newsid);
2765         if (rc == -EINVAL) {
2766                 if (!capable(CAP_MAC_ADMIN))
2767                         return rc;
2768                 rc = security_context_to_sid_force(value, size, &newsid);
2769         }
2770         if (rc)
2771                 return rc;
2772
2773         rc = avc_has_perm(sid, newsid, isec->sclass,
2774                           FILE__RELABELTO, &ad);
2775         if (rc)
2776                 return rc;
2777
2778         rc = security_validate_transition(isec->sid, newsid, sid,
2779                                           isec->sclass);
2780         if (rc)
2781                 return rc;
2782
2783         return avc_has_perm(newsid,
2784                             sbsec->sid,
2785                             SECCLASS_FILESYSTEM,
2786                             FILESYSTEM__ASSOCIATE,
2787                             &ad);
2788 }
2789
2790 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2791                                         const void *value, size_t size,
2792                                         int flags)
2793 {
2794         struct inode *inode = dentry->d_inode;
2795         struct inode_security_struct *isec = inode->i_security;
2796         u32 newsid;
2797         int rc;
2798
2799         if (strcmp(name, XATTR_NAME_SELINUX)) {
2800                 /* Not an attribute we recognize, so nothing to do. */
2801                 return;
2802         }
2803
2804         rc = security_context_to_sid_force(value, size, &newsid);
2805         if (rc) {
2806                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2807                        "for (%s, %lu), rc=%d\n",
2808                        inode->i_sb->s_id, inode->i_ino, -rc);
2809                 return;
2810         }
2811
2812         isec->sid = newsid;
2813         return;
2814 }
2815
2816 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2817 {
2818         const struct cred *cred = current_cred();
2819
2820         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2821 }
2822
2823 static int selinux_inode_listxattr(struct dentry *dentry)
2824 {
2825         const struct cred *cred = current_cred();
2826
2827         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2828 }
2829
2830 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2831 {
2832         if (strcmp(name, XATTR_NAME_SELINUX))
2833                 return selinux_inode_setotherxattr(dentry, name);
2834
2835         /* No one is allowed to remove a SELinux security label.
2836            You can change the label, but all data must be labeled. */
2837         return -EACCES;
2838 }
2839
2840 /*
2841  * Copy the inode security context value to the user.
2842  *
2843  * Permission check is handled by selinux_inode_getxattr hook.
2844  */
2845 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2846 {
2847         u32 size;
2848         int error;
2849         char *context = NULL;
2850         struct inode_security_struct *isec = inode->i_security;
2851
2852         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2853                 return -EOPNOTSUPP;
2854
2855         /*
2856          * If the caller has CAP_MAC_ADMIN, then get the raw context
2857          * value even if it is not defined by current policy; otherwise,
2858          * use the in-core value under current policy.
2859          * Use the non-auditing forms of the permission checks since
2860          * getxattr may be called by unprivileged processes commonly
2861          * and lack of permission just means that we fall back to the
2862          * in-core context value, not a denial.
2863          */
2864         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2865                                 SECURITY_CAP_NOAUDIT);
2866         if (!error)
2867                 error = security_sid_to_context_force(isec->sid, &context,
2868                                                       &size);
2869         else
2870                 error = security_sid_to_context(isec->sid, &context, &size);
2871         if (error)
2872                 return error;
2873         error = size;
2874         if (alloc) {
2875                 *buffer = context;
2876                 goto out_nofree;
2877         }
2878         kfree(context);
2879 out_nofree:
2880         return error;
2881 }
2882
2883 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2884                                      const void *value, size_t size, int flags)
2885 {
2886         struct inode_security_struct *isec = inode->i_security;
2887         u32 newsid;
2888         int rc;
2889
2890         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2891                 return -EOPNOTSUPP;
2892
2893         if (!value || !size)
2894                 return -EACCES;
2895
2896         rc = security_context_to_sid((void *)value, size, &newsid);
2897         if (rc)
2898                 return rc;
2899
2900         isec->sid = newsid;
2901         return 0;
2902 }
2903
2904 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2905 {
2906         const int len = sizeof(XATTR_NAME_SELINUX);
2907         if (buffer && len <= buffer_size)
2908                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2909         return len;
2910 }
2911
2912 static int selinux_inode_need_killpriv(struct dentry *dentry)
2913 {
2914         return secondary_ops->inode_need_killpriv(dentry);
2915 }
2916
2917 static int selinux_inode_killpriv(struct dentry *dentry)
2918 {
2919         return secondary_ops->inode_killpriv(dentry);
2920 }
2921
2922 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2923 {
2924         struct inode_security_struct *isec = inode->i_security;
2925         *secid = isec->sid;
2926 }
2927
2928 /* file security operations */
2929
2930 static int selinux_revalidate_file_permission(struct file *file, int mask)
2931 {
2932         const struct cred *cred = current_cred();
2933         int rc;
2934         struct inode *inode = file->f_path.dentry->d_inode;
2935
2936         if (!mask) {
2937                 /* No permission to check.  Existence test. */
2938                 return 0;
2939         }
2940
2941         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943                 mask |= MAY_APPEND;
2944
2945         rc = file_has_perm(cred, file,
2946                            file_mask_to_av(inode->i_mode, mask));
2947         if (rc)
2948                 return rc;
2949
2950         return selinux_netlbl_inode_permission(inode, mask);
2951 }
2952
2953 static int selinux_file_permission(struct file *file, int mask)
2954 {
2955         struct inode *inode = file->f_path.dentry->d_inode;
2956         struct file_security_struct *fsec = file->f_security;
2957         struct inode_security_struct *isec = inode->i_security;
2958         u32 sid = current_sid();
2959
2960         if (!mask) {
2961                 /* No permission to check.  Existence test. */
2962                 return 0;
2963         }
2964
2965         if (sid == fsec->sid && fsec->isid == isec->sid
2966             && fsec->pseqno == avc_policy_seqno())
2967                 return selinux_netlbl_inode_permission(inode, mask);
2968
2969         return selinux_revalidate_file_permission(file, mask);
2970 }
2971
2972 static int selinux_file_alloc_security(struct file *file)
2973 {
2974         return file_alloc_security(file);
2975 }
2976
2977 static void selinux_file_free_security(struct file *file)
2978 {
2979         file_free_security(file);
2980 }
2981
2982 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2983                               unsigned long arg)
2984 {
2985         const struct cred *cred = current_cred();
2986         u32 av = 0;
2987
2988         if (_IOC_DIR(cmd) & _IOC_WRITE)
2989                 av |= FILE__WRITE;
2990         if (_IOC_DIR(cmd) & _IOC_READ)
2991                 av |= FILE__READ;
2992         if (!av)
2993                 av = FILE__IOCTL;
2994
2995         return file_has_perm(cred, file, av);
2996 }
2997
2998 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2999 {
3000         const struct cred *cred = current_cred();
3001         int rc = 0;
3002
3003 #ifndef CONFIG_PPC32
3004         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3005                 /*
3006                  * We are making executable an anonymous mapping or a
3007                  * private file mapping that will also be writable.
3008                  * This has an additional check.
3009                  */
3010                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3011                 if (rc)
3012                         goto error;
3013         }
3014 #endif
3015
3016         if (file) {
3017                 /* read access is always possible with a mapping */
3018                 u32 av = FILE__READ;
3019
3020                 /* write access only matters if the mapping is shared */
3021                 if (shared && (prot & PROT_WRITE))
3022                         av |= FILE__WRITE;
3023
3024                 if (prot & PROT_EXEC)
3025                         av |= FILE__EXECUTE;
3026
3027                 return file_has_perm(cred, file, av);
3028         }
3029
3030 error:
3031         return rc;
3032 }
3033
3034 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3035                              unsigned long prot, unsigned long flags,
3036                              unsigned long addr, unsigned long addr_only)
3037 {
3038         int rc = 0;
3039         u32 sid = current_sid();
3040
3041         if (addr < mmap_min_addr)
3042                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3043                                   MEMPROTECT__MMAP_ZERO, NULL);
3044         if (rc || addr_only)
3045                 return rc;
3046
3047         if (selinux_checkreqprot)
3048                 prot = reqprot;
3049
3050         return file_map_prot_check(file, prot,
3051                                    (flags & MAP_TYPE) == MAP_SHARED);
3052 }
3053
3054 static int selinux_file_mprotect(struct vm_area_struct *vma,
3055                                  unsigned long reqprot,
3056                                  unsigned long prot)
3057 {
3058         const struct cred *cred = current_cred();
3059         int rc;
3060
3061         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3062         if (rc)
3063                 return rc;
3064
3065         if (selinux_checkreqprot)
3066                 prot = reqprot;
3067
3068 #ifndef CONFIG_PPC32
3069         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3070                 rc = 0;
3071                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3072                     vma->vm_end <= vma->vm_mm->brk) {
3073                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3074                 } else if (!vma->vm_file &&
3075                            vma->vm_start <= vma->vm_mm->start_stack &&
3076                            vma->vm_end >= vma->vm_mm->start_stack) {
3077                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3078                 } else if (vma->vm_file && vma->anon_vma) {
3079                         /*
3080                          * We are making executable a file mapping that has
3081                          * had some COW done. Since pages might have been
3082                          * written, check ability to execute the possibly
3083                          * modified content.  This typically should only
3084                          * occur for text relocations.
3085                          */
3086                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3087                 }
3088                 if (rc)
3089                         return rc;
3090         }
3091 #endif
3092
3093         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3094 }
3095
3096 static int selinux_file_lock(struct file *file, unsigned int cmd)
3097 {
3098         const struct cred *cred = current_cred();
3099
3100         return file_has_perm(cred, file, FILE__LOCK);
3101 }
3102
3103 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3104                               unsigned long arg)
3105 {
3106         const struct cred *cred = current_cred();
3107         int err = 0;
3108
3109         switch (cmd) {
3110         case F_SETFL:
3111                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3112                         err = -EINVAL;
3113                         break;
3114                 }
3115
3116                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3117                         err = file_has_perm(cred, file, FILE__WRITE);
3118                         break;
3119                 }
3120                 /* fall through */
3121         case F_SETOWN:
3122         case F_SETSIG:
3123         case F_GETFL:
3124         case F_GETOWN:
3125         case F_GETSIG:
3126                 /* Just check FD__USE permission */
3127                 err = file_has_perm(cred, file, 0);
3128                 break;
3129         case F_GETLK:
3130         case F_SETLK:
3131         case F_SETLKW:
3132 #if BITS_PER_LONG == 32
3133         case F_GETLK64:
3134         case F_SETLK64:
3135         case F_SETLKW64:
3136 #endif
3137                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3138                         err = -EINVAL;
3139                         break;
3140                 }
3141                 err = file_has_perm(cred, file, FILE__LOCK);
3142                 break;
3143         }
3144
3145         return err;
3146 }
3147
3148 static int selinux_file_set_fowner(struct file *file)
3149 {
3150         struct file_security_struct *fsec;
3151
3152         fsec = file->f_security;
3153         fsec->fown_sid = current_sid();
3154
3155         return 0;
3156 }
3157
3158 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3159                                        struct fown_struct *fown, int signum)
3160 {
3161         struct file *file;
3162         u32 sid = current_sid();
3163         u32 perm;
3164         struct file_security_struct *fsec;
3165
3166         /* struct fown_struct is never outside the context of a struct file */
3167         file = container_of(fown, struct file, f_owner);
3168
3169         fsec = file->f_security;
3170
3171         if (!signum)
3172                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3173         else
3174                 perm = signal_to_av(signum);
3175
3176         return avc_has_perm(fsec->fown_sid, sid,
3177                             SECCLASS_PROCESS, perm, NULL);
3178 }
3179
3180 static int selinux_file_receive(struct file *file)
3181 {
3182         const struct cred *cred = current_cred();
3183
3184         return file_has_perm(cred, file, file_to_av(file));
3185 }
3186
3187 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3188 {
3189         struct file_security_struct *fsec;
3190         struct inode *inode;
3191         struct inode_security_struct *isec;
3192
3193         inode = file->f_path.dentry->d_inode;
3194         fsec = file->f_security;
3195         isec = inode->i_security;
3196         /*
3197          * Save inode label and policy sequence number
3198          * at open-time so that selinux_file_permission
3199          * can determine whether revalidation is necessary.
3200          * Task label is already saved in the file security
3201          * struct as its SID.
3202          */
3203         fsec->isid = isec->sid;
3204         fsec->pseqno = avc_policy_seqno();
3205         /*
3206          * Since the inode label or policy seqno may have changed
3207          * between the selinux_inode_permission check and the saving
3208          * of state above, recheck that access is still permitted.
3209          * Otherwise, access might never be revalidated against the
3210          * new inode label or new policy.
3211          * This check is not redundant - do not remove.
3212          */
3213         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3214 }
3215
3216 /* task security operations */
3217
3218 static int selinux_task_create(unsigned long clone_flags)
3219 {
3220         int rc;
3221
3222         rc = secondary_ops->task_create(clone_flags);
3223         if (rc)
3224                 return rc;
3225
3226         return current_has_perm(current, PROCESS__FORK);
3227 }
3228
3229 /*
3230  * detach and free the LSM part of a set of credentials
3231  */
3232 static void selinux_cred_free(struct cred *cred)
3233 {
3234         struct task_security_struct *tsec = cred->security;
3235         cred->security = NULL;
3236         kfree(tsec);
3237 }
3238
3239 /*
3240  * prepare a new set of credentials for modification
3241  */
3242 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3243                                 gfp_t gfp)
3244 {
3245         const struct task_security_struct *old_tsec;
3246         struct task_security_struct *tsec;
3247
3248         old_tsec = old->security;
3249
3250         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3251         if (!tsec)
3252                 return -ENOMEM;
3253
3254         new->security = tsec;
3255         return 0;
3256 }
3257
3258 /*
3259  * commit new credentials
3260  */
3261 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3262 {
3263         secondary_ops->cred_commit(new, old);
3264 }
3265
3266 /*
3267  * set the security data for a kernel service
3268  * - all the creation contexts are set to unlabelled
3269  */
3270 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3271 {
3272         struct task_security_struct *tsec = new->security;
3273         u32 sid = current_sid();
3274         int ret;
3275
3276         ret = avc_has_perm(sid, secid,
3277                            SECCLASS_KERNEL_SERVICE,
3278                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3279                            NULL);
3280         if (ret == 0) {
3281                 tsec->sid = secid;
3282                 tsec->create_sid = 0;
3283                 tsec->keycreate_sid = 0;
3284                 tsec->sockcreate_sid = 0;
3285         }
3286         return ret;
3287 }
3288
3289 /*
3290  * set the file creation context in a security record to the same as the
3291  * objective context of the specified inode
3292  */
3293 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3294 {
3295         struct inode_security_struct *isec = inode->i_security;
3296         struct task_security_struct *tsec = new->security;
3297         u32 sid = current_sid();
3298         int ret;
3299
3300         ret = avc_has_perm(sid, isec->sid,
3301                            SECCLASS_KERNEL_SERVICE,
3302                            KERNEL_SERVICE__CREATE_FILES_AS,
3303                            NULL);
3304
3305         if (ret == 0)
3306                 tsec->create_sid = isec->sid;
3307         return 0;
3308 }
3309
3310 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3311 {
3312         /* Since setuid only affects the current process, and
3313            since the SELinux controls are not based on the Linux
3314            identity attributes, SELinux does not need to control
3315            this operation.  However, SELinux does control the use
3316            of the CAP_SETUID and CAP_SETGID capabilities using the
3317            capable hook. */
3318         return 0;
3319 }
3320
3321 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3322                                    int flags)
3323 {
3324         return secondary_ops->task_fix_setuid(new, old, flags);
3325 }
3326
3327 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3328 {
3329         /* See the comment for setuid above. */
3330         return 0;
3331 }
3332
3333 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3334 {
3335         return current_has_perm(p, PROCESS__SETPGID);
3336 }
3337
3338 static int selinux_task_getpgid(struct task_struct *p)
3339 {
3340         return current_has_perm(p, PROCESS__GETPGID);
3341 }
3342
3343 static int selinux_task_getsid(struct task_struct *p)
3344 {
3345         return current_has_perm(p, PROCESS__GETSESSION);
3346 }
3347
3348 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3349 {
3350         *secid = task_sid(p);
3351 }
3352
3353 static int selinux_task_setgroups(struct group_info *group_info)
3354 {
3355         /* See the comment for setuid above. */
3356         return 0;
3357 }
3358
3359 static int selinux_task_setnice(struct task_struct *p, int nice)
3360 {
3361         int rc;
3362
3363         rc = secondary_ops->task_setnice(p, nice);
3364         if (rc)
3365                 return rc;
3366
3367         return current_has_perm(p, PROCESS__SETSCHED);
3368 }
3369
3370 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3371 {
3372         int rc;
3373
3374         rc = secondary_ops->task_setioprio(p, ioprio);
3375         if (rc)
3376                 return rc;
3377
3378         return current_has_perm(p, PROCESS__SETSCHED);
3379 }
3380
3381 static int selinux_task_getioprio(struct task_struct *p)
3382 {
3383         return current_has_perm(p, PROCESS__GETSCHED);
3384 }
3385
3386 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3387 {
3388         struct rlimit *old_rlim = current->signal->rlim + resource;
3389         int rc;
3390
3391         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3392         if (rc)
3393                 return rc;
3394
3395         /* Control the ability to change the hard limit (whether
3396            lowering or raising it), so that the hard limit can
3397            later be used as a safe reset point for the soft limit
3398            upon context transitions.  See selinux_bprm_committing_creds. */
3399         if (old_rlim->rlim_max != new_rlim->rlim_max)
3400                 return current_has_perm(current, PROCESS__SETRLIMIT);
3401
3402         return 0;
3403 }
3404
3405 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3406 {
3407         int rc;
3408
3409         rc = secondary_ops->task_setscheduler(p, policy, lp);
3410         if (rc)
3411                 return rc;
3412
3413         return current_has_perm(p, PROCESS__SETSCHED);
3414 }
3415
3416 static int selinux_task_getscheduler(struct task_struct *p)
3417 {
3418         return current_has_perm(p, PROCESS__GETSCHED);
3419 }
3420
3421 static int selinux_task_movememory(struct task_struct *p)
3422 {
3423         return current_has_perm(p, PROCESS__SETSCHED);
3424 }
3425
3426 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3427                                 int sig, u32 secid)
3428 {
3429         u32 perm;
3430         int rc;
3431
3432         rc = secondary_ops->task_kill(p, info, sig, secid);
3433         if (rc)
3434                 return rc;
3435
3436         if (!sig)
3437                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3438         else
3439                 perm = signal_to_av(sig);
3440         if (secid)
3441                 rc = avc_has_perm(secid, task_sid(p),
3442                                   SECCLASS_PROCESS, perm, NULL);
3443         else
3444                 rc = current_has_perm(p, perm);
3445         return rc;
3446 }
3447
3448 static int selinux_task_prctl(int option,
3449                               unsigned long arg2,
3450                               unsigned long arg3,
3451                               unsigned long arg4,
3452                               unsigned long arg5)
3453 {
3454         /* The current prctl operations do not appear to require
3455            any SELinux controls since they merely observe or modify
3456            the state of the current process. */
3457         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3458 }
3459
3460 static int selinux_task_wait(struct task_struct *p)
3461 {
3462         return task_has_perm(p, current, PROCESS__SIGCHLD);
3463 }
3464
3465 static void selinux_task_to_inode(struct task_struct *p,
3466                                   struct inode *inode)
3467 {
3468         struct inode_security_struct *isec = inode->i_security;
3469         u32 sid = task_sid(p);
3470
3471         isec->sid = sid;
3472         isec->initialized = 1;
3473 }
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3477                         struct avc_audit_data *ad, u8 *proto)
3478 {
3479         int offset, ihlen, ret = -EINVAL;
3480         struct iphdr _iph, *ih;
3481
3482         offset = skb_network_offset(skb);
3483         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3484         if (ih == NULL)
3485                 goto out;
3486
3487         ihlen = ih->ihl * 4;
3488         if (ihlen < sizeof(_iph))
3489                 goto out;
3490
3491         ad->u.net.v4info.saddr = ih->saddr;
3492         ad->u.net.v4info.daddr = ih->daddr;
3493         ret = 0;
3494
3495         if (proto)
3496                 *proto = ih->protocol;
3497
3498         switch (ih->protocol) {
3499         case IPPROTO_TCP: {
3500                 struct tcphdr _tcph, *th;
3501
3502                 if (ntohs(ih->frag_off) & IP_OFFSET)
3503                         break;
3504
3505                 offset += ihlen;
3506                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3507                 if (th == NULL)
3508                         break;
3509
3510                 ad->u.net.sport = th->source;
3511                 ad->u.net.dport = th->dest;
3512                 break;
3513         }
3514
3515         case IPPROTO_UDP: {
3516                 struct udphdr _udph, *uh;
3517
3518                 if (ntohs(ih->frag_off) & IP_OFFSET)
3519                         break;
3520
3521                 offset += ihlen;
3522                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3523                 if (uh == NULL)
3524                         break;
3525
3526                 ad->u.net.sport = uh->source;
3527                 ad->u.net.dport = uh->dest;
3528                 break;
3529         }
3530
3531         case IPPROTO_DCCP: {
3532                 struct dccp_hdr _dccph, *dh;
3533
3534                 if (ntohs(ih->frag_off) & IP_OFFSET)
3535                         break;
3536
3537                 offset += ihlen;
3538                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3539                 if (dh == NULL)
3540                         break;
3541
3542                 ad->u.net.sport = dh->dccph_sport;
3543                 ad->u.net.dport = dh->dccph_dport;
3544                 break;
3545         }
3546
3547         default:
3548                 break;
3549         }
3550 out:
3551         return ret;
3552 }
3553
3554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3555
3556 /* Returns error only if unable to parse addresses */
3557 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3558                         struct avc_audit_data *ad, u8 *proto)
3559 {
3560         u8 nexthdr;
3561         int ret = -EINVAL, offset;
3562         struct ipv6hdr _ipv6h, *ip6;
3563
3564         offset = skb_network_offset(skb);
3565         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3566         if (ip6 == NULL)
3567                 goto out;
3568
3569         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3570         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3571         ret = 0;
3572
3573         nexthdr = ip6->nexthdr;
3574         offset += sizeof(_ipv6h);
3575         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3576         if (offset < 0)
3577                 goto out;
3578
3579         if (proto)
3580                 *proto = nexthdr;
3581
3582         switch (nexthdr) {
3583         case IPPROTO_TCP: {
3584                 struct tcphdr _tcph, *th;
3585
3586                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3587                 if (th == NULL)
3588                         break;
3589
3590                 ad->u.net.sport = th->source;
3591                 ad->u.net.dport = th->dest;
3592                 break;
3593         }
3594
3595         case IPPROTO_UDP: {
3596                 struct udphdr _udph, *uh;
3597
3598                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3599                 if (uh == NULL)
3600                         break;
3601
3602                 ad->u.net.sport = uh->source;
3603                 ad->u.net.dport = uh->dest;
3604                 break;
3605         }
3606
3607         case IPPROTO_DCCP: {
3608                 struct dccp_hdr _dccph, *dh;
3609
3610                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3611                 if (dh == NULL)
3612                         break;
3613
3614                 ad->u.net.sport = dh->dccph_sport;
3615                 ad->u.net.dport = dh->dccph_dport;
3616                 break;
3617         }
3618
3619         /* includes fragments */
3620         default:
3621                 break;
3622         }
3623 out:
3624         return ret;
3625 }
3626
3627 #endif /* IPV6 */
3628
3629 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3630                              char **_addrp, int src, u8 *proto)
3631 {
3632         char *addrp;
3633         int ret;
3634
3635         switch (ad->u.net.family) {
3636         case PF_INET:
3637                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3638                 if (ret)
3639                         goto parse_error;
3640                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3641                                        &ad->u.net.v4info.daddr);
3642                 goto okay;
3643
3644 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3645         case PF_INET6:
3646                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3647                 if (ret)
3648                         goto parse_error;
3649                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3650                                        &ad->u.net.v6info.daddr);
3651                 goto okay;
3652 #endif  /* IPV6 */
3653         default:
3654                 addrp = NULL;
3655                 goto okay;
3656         }
3657
3658 parse_error:
3659         printk(KERN_WARNING
3660                "SELinux: failure in selinux_parse_skb(),"
3661                " unable to parse packet\n");
3662         return ret;
3663
3664 okay:
3665         if (_addrp)
3666                 *_addrp = addrp;
3667         return 0;
3668 }
3669
3670 /**
3671  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3672  * @skb: the packet
3673  * @family: protocol family
3674  * @sid: the packet's peer label SID
3675  *
3676  * Description:
3677  * Check the various different forms of network peer labeling and determine
3678  * the peer label/SID for the packet; most of the magic actually occurs in
3679  * the security server function security_net_peersid_cmp().  The function
3680  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3681  * or -EACCES if @sid is invalid due to inconsistencies with the different
3682  * peer labels.
3683  *
3684  */
3685 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3686 {
3687         int err;
3688         u32 xfrm_sid;
3689         u32 nlbl_sid;
3690         u32 nlbl_type;
3691
3692         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3693         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3694
3695         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3696         if (unlikely(err)) {
3697                 printk(KERN_WARNING
3698                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3699                        " unable to determine packet's peer label\n");
3700                 return -EACCES;
3701         }
3702
3703         return 0;
3704 }
3705
3706 /* socket security operations */
3707 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3708                            u32 perms)
3709 {
3710         struct inode_security_struct *isec;
3711         struct avc_audit_data ad;
3712         u32 sid;
3713         int err = 0;
3714
3715         isec = SOCK_INODE(sock)->i_security;
3716
3717         if (isec->sid == SECINITSID_KERNEL)
3718                 goto out;
3719         sid = task_sid(task);
3720
3721         AVC_AUDIT_DATA_INIT(&ad, NET);
3722         ad.u.net.sk = sock->sk;
3723         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3724
3725 out:
3726         return err;
3727 }
3728
3729 static int selinux_socket_create(int family, int type,
3730                                  int protocol, int kern)
3731 {
3732         const struct cred *cred = current_cred();
3733         const struct task_security_struct *tsec = cred->security;
3734         u32 sid, newsid;
3735         u16 secclass;
3736         int err = 0;
3737
3738         if (kern)
3739                 goto out;
3740
3741         sid = tsec->sid;
3742         newsid = tsec->sockcreate_sid ?: sid;
3743
3744         secclass = socket_type_to_security_class(family, type, protocol);
3745         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3746
3747 out:
3748         return err;
3749 }
3750
3751 static int selinux_socket_post_create(struct socket *sock, int family,
3752                                       int type, int protocol, int kern)
3753 {
3754         const struct cred *cred = current_cred();
3755         const struct task_security_struct *tsec = cred->security;
3756         struct inode_security_struct *isec;
3757         struct sk_security_struct *sksec;
3758         u32 sid, newsid;
3759         int err = 0;
3760
3761         sid = tsec->sid;
3762         newsid = tsec->sockcreate_sid;
3763
3764         isec = SOCK_INODE(sock)->i_security;
3765
3766         if (kern)
3767                 isec->sid = SECINITSID_KERNEL;
3768         else if (newsid)
3769                 isec->sid = newsid;
3770         else
3771                 isec->sid = sid;
3772
3773         isec->sclass = socket_type_to_security_class(family, type, protocol);
3774         isec->initialized = 1;
3775
3776         if (sock->sk) {
3777                 sksec = sock->sk->sk_security;
3778                 sksec->sid = isec->sid;
3779                 sksec->sclass = isec->sclass;
3780                 err = selinux_netlbl_socket_post_create(sock);
3781         }
3782
3783         return err;
3784 }
3785
3786 /* Range of port numbers used to automatically bind.
3787    Need to determine whether we should perform a name_bind
3788    permission check between the socket and the port number. */
3789
3790 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3791 {
3792         u16 family;
3793         int err;
3794
3795         err = socket_has_perm(current, sock, SOCKET__BIND);
3796         if (err)
3797                 goto out;
3798
3799         /*
3800          * If PF_INET or PF_INET6, check name_bind permission for the port.
3801          * Multiple address binding for SCTP is not supported yet: we just
3802          * check the first address now.
3803          */
3804         family = sock->sk->sk_family;
3805         if (family == PF_INET || family == PF_INET6) {
3806                 char *addrp;
3807                 struct inode_security_struct *isec;
3808                 struct avc_audit_data ad;
3809                 struct sockaddr_in *addr4 = NULL;
3810                 struct sockaddr_in6 *addr6 = NULL;
3811                 unsigned short snum;
3812                 struct sock *sk = sock->sk;
3813                 u32 sid, node_perm;
3814
3815                 isec = SOCK_INODE(sock)->i_security;
3816
3817                 if (family == PF_INET) {
3818                         addr4 = (struct sockaddr_in *)address;
3819                         snum = ntohs(addr4->sin_port);
3820                         addrp = (char *)&addr4->sin_addr.s_addr;
3821                 } else {
3822                         addr6 = (struct sockaddr_in6 *)address;
3823                         snum = ntohs(addr6->sin6_port);
3824                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3825                 }
3826
3827                 if (snum) {
3828                         int low, high;
3829
3830                         inet_get_local_port_range(&low, &high);
3831
3832                         if (snum < max(PROT_SOCK, low) || snum > high) {
3833                                 err = sel_netport_sid(sk->sk_protocol,
3834                                                       snum, &sid);
3835                                 if (err)
3836                                         goto out;
3837                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3838                                 ad.u.net.sport = htons(snum);
3839                                 ad.u.net.family = family;
3840                                 err = avc_has_perm(isec->sid, sid,
3841                                                    isec->sclass,
3842                                                    SOCKET__NAME_BIND, &ad);
3843                                 if (err)
3844                                         goto out;
3845                         }
3846                 }
3847
3848                 switch (isec->sclass) {
3849                 case SECCLASS_TCP_SOCKET:
3850                         node_perm = TCP_SOCKET__NODE_BIND;
3851                         break;
3852
3853                 case SECCLASS_UDP_SOCKET:
3854                         node_perm = UDP_SOCKET__NODE_BIND;
3855                         break;
3856
3857                 case SECCLASS_DCCP_SOCKET:
3858                         node_perm = DCCP_SOCKET__NODE_BIND;
3859                         break;
3860
3861                 default:
3862                         node_perm = RAWIP_SOCKET__NODE_BIND;
3863                         break;
3864                 }
3865
3866                 err = sel_netnode_sid(addrp, family, &sid);
3867                 if (err)
3868                         goto out;
3869
3870                 AVC_AUDIT_DATA_INIT(&ad, NET);
3871                 ad.u.net.sport = htons(snum);
3872                 ad.u.net.family = family;
3873
3874                 if (family == PF_INET)
3875                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3876                 else
3877                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3878
3879                 err = avc_has_perm(isec->sid, sid,
3880                                    isec->sclass, node_perm, &ad);
3881                 if (err)
3882                         goto out;
3883         }
3884 out:
3885         return err;
3886 }
3887
3888 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3889 {
3890         struct sock *sk = sock->sk;
3891         struct inode_security_struct *isec;
3892         int err;
3893
3894         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3895         if (err)
3896                 return err;
3897
3898         /*
3899          * If a TCP or DCCP socket, check name_connect permission for the port.
3900          */
3901         isec = SOCK_INODE(sock)->i_security;
3902         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3903             isec->sclass == SECCLASS_DCCP_SOCKET) {
3904                 struct avc_audit_data ad;
3905                 struct sockaddr_in *addr4 = NULL;
3906                 struct sockaddr_in6 *addr6 = NULL;
3907                 unsigned short snum;
3908                 u32 sid, perm;
3909
3910                 if (sk->sk_family == PF_INET) {
3911                         addr4 = (struct sockaddr_in *)address;
3912                         if (addrlen < sizeof(struct sockaddr_in))
3913                                 return -EINVAL;
3914                         snum = ntohs(addr4->sin_port);
3915                 } else {
3916                         addr6 = (struct sockaddr_in6 *)address;
3917                         if (addrlen < SIN6_LEN_RFC2133)
3918                                 return -EINVAL;
3919                         snum = ntohs(addr6->sin6_port);
3920                 }
3921
3922                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3923                 if (err)
3924                         goto out;
3925
3926                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3927                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3928
3929                 AVC_AUDIT_DATA_INIT(&ad, NET);
3930                 ad.u.net.dport = htons(snum);
3931                 ad.u.net.family = sk->sk_family;
3932                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3933                 if (err)
3934                         goto out;
3935         }
3936
3937         err = selinux_netlbl_socket_connect(sk, address);
3938
3939 out:
3940         return err;
3941 }
3942
3943 static int selinux_socket_listen(struct socket *sock, int backlog)
3944 {
3945         return socket_has_perm(current, sock, SOCKET__LISTEN);
3946 }
3947
3948 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3949 {
3950         int err;
3951         struct inode_security_struct *isec;
3952         struct inode_security_struct *newisec;
3953
3954         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3955         if (err)
3956                 return err;
3957
3958         newisec = SOCK_INODE(newsock)->i_security;
3959
3960         isec = SOCK_INODE(sock)->i_security;
3961         newisec->sclass = isec->sclass;
3962         newisec->sid = isec->sid;
3963         newisec->initialized = 1;
3964
3965         return 0;
3966 }
3967
3968 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3969                                   int size)
3970 {
3971         int rc;
3972
3973         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3974         if (rc)
3975                 return rc;
3976
3977         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3978 }
3979
3980 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3981                                   int size, int flags)
3982 {
3983         return socket_has_perm(current, sock, SOCKET__READ);
3984 }
3985
3986 static int selinux_socket_getsockname(struct socket *sock)
3987 {
3988         return socket_has_perm(current, sock, SOCKET__GETATTR);
3989 }
3990
3991 static int selinux_socket_getpeername(struct socket *sock)
3992 {
3993         return socket_has_perm(current, sock, SOCKET__GETATTR);
3994 }
3995
3996 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3997 {
3998         int err;
3999
4000         err = socket_has_perm(current, sock, SOCKET__SETOPT);
4001         if (err)
4002                 return err;
4003
4004         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4005 }
4006
4007 static int selinux_socket_getsockopt(struct socket *sock, int level,
4008                                      int optname)
4009 {
4010         return socket_has_perm(current, sock, SOCKET__GETOPT);
4011 }
4012
4013 static int selinux_socket_shutdown(struct socket *sock, int how)
4014 {
4015         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4016 }
4017
4018 static int selinux_socket_unix_stream_connect(struct socket *sock,
4019                                               struct socket *other,
4020                                               struct sock *newsk)
4021 {
4022         struct sk_security_struct *ssec;
4023         struct inode_security_struct *isec;
4024         struct inode_security_struct *other_isec;
4025         struct avc_audit_data ad;
4026         int err;
4027
4028         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4029         if (err)
4030                 return err;
4031
4032         isec = SOCK_INODE(sock)->i_security;
4033         other_isec = SOCK_INODE(other)->i_security;
4034
4035         AVC_AUDIT_DATA_INIT(&ad, NET);
4036         ad.u.net.sk = other->sk;
4037
4038         err = avc_has_perm(isec->sid, other_isec->sid,
4039                            isec->sclass,
4040                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4041         if (err)
4042                 return err;
4043
4044         /* connecting socket */
4045         ssec = sock->sk->sk_security;
4046         ssec->peer_sid = other_isec->sid;
4047
4048         /* server child socket */
4049         ssec = newsk->sk_security;
4050         ssec->peer_sid = isec->sid;
4051         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4052
4053         return err;
4054 }
4055
4056 static int selinux_socket_unix_may_send(struct socket *sock,
4057                                         struct socket *other)
4058 {
4059         struct inode_security_struct *isec;
4060         struct inode_security_struct *other_isec;
4061         struct avc_audit_data ad;
4062         int err;
4063
4064         isec = SOCK_INODE(sock)->i_security;
4065         other_isec = SOCK_INODE(other)->i_security;
4066
4067         AVC_AUDIT_DATA_INIT(&ad, NET);
4068         ad.u.net.sk = other->sk;
4069
4070         err = avc_has_perm(isec->sid, other_isec->sid,
4071                            isec->sclass, SOCKET__SENDTO, &ad);
4072         if (err)
4073                 return err;
4074
4075         return 0;
4076 }
4077
4078 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4079                                     u32 peer_sid,
4080                                     struct avc_audit_data *ad)
4081 {
4082         int err;
4083         u32 if_sid;
4084         u32 node_sid;
4085
4086         err = sel_netif_sid(ifindex, &if_sid);
4087         if (err)
4088                 return err;
4089         err = avc_has_perm(peer_sid, if_sid,
4090                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4091         if (err)
4092                 return err;
4093
4094         err = sel_netnode_sid(addrp, family, &node_sid);
4095         if (err)
4096                 return err;
4097         return avc_has_perm(peer_sid, node_sid,
4098                             SECCLASS_NODE, NODE__RECVFROM, ad);
4099 }
4100
4101 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4102                                                 struct sk_buff *skb,
4103                                                 struct avc_audit_data *ad,
4104                                                 u16 family,
4105                                                 char *addrp)
4106 {
4107         int err;
4108         struct sk_security_struct *sksec = sk->sk_security;
4109         u16 sk_class;
4110         u32 netif_perm, node_perm, recv_perm;
4111         u32 port_sid, node_sid, if_sid, sk_sid;
4112
4113         sk_sid = sksec->sid;
4114         sk_class = sksec->sclass;
4115
4116         switch (sk_class) {
4117         case SECCLASS_UDP_SOCKET:
4118                 netif_perm = NETIF__UDP_RECV;
4119                 node_perm = NODE__UDP_RECV;
4120                 recv_perm = UDP_SOCKET__RECV_MSG;
4121                 break;
4122         case SECCLASS_TCP_SOCKET:
4123                 netif_perm = NETIF__TCP_RECV;
4124                 node_perm = NODE__TCP_RECV;
4125                 recv_perm = TCP_SOCKET__RECV_MSG;
4126                 break;
4127         case SECCLASS_DCCP_SOCKET:
4128                 netif_perm = NETIF__DCCP_RECV;
4129                 node_perm = NODE__DCCP_RECV;
4130                 recv_perm = DCCP_SOCKET__RECV_MSG;
4131                 break;
4132         default:
4133                 netif_perm = NETIF__RAWIP_RECV;
4134                 node_perm = NODE__RAWIP_RECV;
4135                 recv_perm = 0;
4136                 break;
4137         }
4138
4139         err = sel_netif_sid(skb->iif, &if_sid);
4140         if (err)
4141                 return err;
4142         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4143         if (err)
4144                 return err;
4145
4146         err = sel_netnode_sid(addrp, family, &node_sid);
4147         if (err)
4148                 return err;
4149         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4150         if (err)
4151                 return err;
4152
4153         if (!recv_perm)
4154                 return 0;
4155         err = sel_netport_sid(sk->sk_protocol,
4156                               ntohs(ad->u.net.sport), &port_sid);
4157         if (unlikely(err)) {
4158                 printk(KERN_WARNING
4159                        "SELinux: failure in"
4160                        " selinux_sock_rcv_skb_iptables_compat(),"
4161                        " network port label not found\n");
4162                 return err;
4163         }
4164         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4165 }
4166
4167 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4168                                        u16 family)
4169 {
4170         int err = 0;
4171         struct sk_security_struct *sksec = sk->sk_security;
4172         u32 peer_sid;
4173         u32 sk_sid = sksec->sid;
4174         struct avc_audit_data ad;
4175         char *addrp;
4176
4177         AVC_AUDIT_DATA_INIT(&ad, NET);
4178         ad.u.net.netif = skb->iif;
4179         ad.u.net.family = family;
4180         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4181         if (err)
4182                 return err;
4183
4184         if (selinux_compat_net)
4185                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4186                                                            family, addrp);
4187         else if (selinux_secmark_enabled())
4188                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4189                                    PACKET__RECV, &ad);
4190         if (err)
4191                 return err;
4192
4193         if (selinux_policycap_netpeer) {
4194                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4195                 if (err)
4196                         return err;
4197                 err = avc_has_perm(sk_sid, peer_sid,
4198                                    SECCLASS_PEER, PEER__RECV, &ad);
4199                 if (err)
4200                         selinux_netlbl_err(skb, err, 0);
4201         } else {
4202                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4203                 if (err)
4204                         return err;
4205                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4206         }
4207
4208         return err;
4209 }
4210
4211 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4212 {
4213         int err;
4214         struct sk_security_struct *sksec = sk->sk_security;
4215         u16 family = sk->sk_family;
4216         u32 sk_sid = sksec->sid;
4217         struct avc_audit_data ad;
4218         char *addrp;
4219         u8 secmark_active;
4220         u8 peerlbl_active;
4221
4222         if (family != PF_INET && family != PF_INET6)
4223                 return 0;
4224
4225         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4226         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4227                 family = PF_INET;
4228
4229         /* If any sort of compatibility mode is enabled then handoff processing
4230          * to the selinux_sock_rcv_skb_compat() function to deal with the
4231          * special handling.  We do this in an attempt to keep this function
4232          * as fast and as clean as possible. */
4233         if (selinux_compat_net || !selinux_policycap_netpeer)
4234                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4235
4236         secmark_active = selinux_secmark_enabled();
4237         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4238         if (!secmark_active && !peerlbl_active)
4239                 return 0;
4240
4241         AVC_AUDIT_DATA_INIT(&ad, NET);
4242         ad.u.net.netif = skb->iif;
4243         ad.u.net.family = family;
4244         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4245         if (err)
4246                 return err;
4247
4248         if (peerlbl_active) {
4249                 u32 peer_sid;
4250
4251                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4252                 if (err)
4253                         return err;
4254                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4255                                                peer_sid, &ad);
4256                 if (err) {
4257                         selinux_netlbl_err(skb, err, 0);
4258                         return err;
4259                 }
4260                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4261                                    PEER__RECV, &ad);
4262                 if (err)
4263                         selinux_netlbl_err(skb, err, 0);
4264         }
4265
4266         if (secmark_active) {
4267                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4268                                    PACKET__RECV, &ad);
4269                 if (err)
4270                         return err;
4271         }
4272
4273         return err;
4274 }
4275
4276 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4277                                             int __user *optlen, unsigned len)
4278 {
4279         int err = 0;
4280         char *scontext;
4281         u32 scontext_len;
4282         struct sk_security_struct *ssec;
4283         struct inode_security_struct *isec;
4284         u32 peer_sid = SECSID_NULL;
4285
4286         isec = SOCK_INODE(sock)->i_security;
4287
4288         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4289             isec->sclass == SECCLASS_TCP_SOCKET) {
4290                 ssec = sock->sk->sk_security;
4291                 peer_sid = ssec->peer_sid;
4292         }
4293         if (peer_sid == SECSID_NULL) {
4294                 err = -ENOPROTOOPT;
4295                 goto out;
4296         }
4297
4298         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4299
4300         if (err)
4301                 goto out;
4302
4303         if (scontext_len > len) {
4304                 err = -ERANGE;
4305                 goto out_len;
4306         }
4307
4308         if (copy_to_user(optval, scontext, scontext_len))
4309                 err = -EFAULT;
4310
4311 out_len:
4312         if (put_user(scontext_len, optlen))
4313                 err = -EFAULT;
4314
4315         kfree(scontext);
4316 out:
4317         return err;
4318 }
4319
4320 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4321 {
4322         u32 peer_secid = SECSID_NULL;
4323         u16 family;
4324
4325         if (skb && skb->protocol == htons(ETH_P_IP))
4326                 family = PF_INET;
4327         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4328                 family = PF_INET6;
4329         else if (sock)
4330                 family = sock->sk->sk_family;
4331         else
4332                 goto out;
4333
4334         if (sock && family == PF_UNIX)
4335                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4336         else if (skb)
4337                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4338
4339 out:
4340         *secid = peer_secid;
4341         if (peer_secid == SECSID_NULL)
4342                 return -EINVAL;
4343         return 0;
4344 }
4345
4346 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4347 {
4348         return sk_alloc_security(sk, family, priority);
4349 }
4350
4351 static void selinux_sk_free_security(struct sock *sk)
4352 {
4353         sk_free_security(sk);
4354 }
4355
4356 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4357 {
4358         struct sk_security_struct *ssec = sk->sk_security;
4359         struct sk_security_struct *newssec = newsk->sk_security;
4360
4361         newssec->sid = ssec->sid;
4362         newssec->peer_sid = ssec->peer_sid;
4363         newssec->sclass = ssec->sclass;
4364
4365         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4366 }
4367
4368 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4369 {
4370         if (!sk)
4371                 *secid = SECINITSID_ANY_SOCKET;
4372         else {
4373                 struct sk_security_struct *sksec = sk->sk_security;
4374
4375                 *secid = sksec->sid;
4376         }
4377 }
4378
4379 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4380 {
4381         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4382         struct sk_security_struct *sksec = sk->sk_security;
4383
4384         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4385             sk->sk_family == PF_UNIX)
4386                 isec->sid = sksec->sid;
4387         sksec->sclass = isec->sclass;
4388 }
4389
4390 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4391                                      struct request_sock *req)
4392 {
4393         struct sk_security_struct *sksec = sk->sk_security;
4394         int err;
4395         u16 family = sk->sk_family;
4396         u32 newsid;
4397         u32 peersid;
4398
4399         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4400         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4401                 family = PF_INET;
4402
4403         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4404         if (err)
4405                 return err;
4406         if (peersid == SECSID_NULL) {
4407                 req->secid = sksec->sid;
4408                 req->peer_secid = SECSID_NULL;
4409                 return 0;
4410         }
4411
4412         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4413         if (err)
4414                 return err;
4415
4416         req->secid = newsid;
4417         req->peer_secid = peersid;
4418         return 0;
4419 }
4420
4421 static void selinux_inet_csk_clone(struct sock *newsk,
4422                                    const struct request_sock *req)
4423 {
4424         struct sk_security_struct *newsksec = newsk->sk_security;
4425
4426         newsksec->sid = req->secid;
4427         newsksec->peer_sid = req->peer_secid;
4428         /* NOTE: Ideally, we should also get the isec->sid for the
4429            new socket in sync, but we don't have the isec available yet.
4430            So we will wait until sock_graft to do it, by which
4431            time it will have been created and available. */
4432
4433         /* We don't need to take any sort of lock here as we are the only
4434          * thread with access to newsksec */
4435         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4436 }
4437
4438 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4439 {
4440         u16 family = sk->sk_family;
4441         struct sk_security_struct *sksec = sk->sk_security;
4442
4443         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4444         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4445                 family = PF_INET;
4446
4447         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4448
4449         selinux_netlbl_inet_conn_established(sk, family);
4450 }
4451
4452 static void selinux_req_classify_flow(const struct request_sock *req,
4453                                       struct flowi *fl)
4454 {
4455         fl->secid = req->secid;
4456 }
4457
4458 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4459 {
4460         int err = 0;
4461         u32 perm;
4462         struct nlmsghdr *nlh;
4463         struct socket *sock = sk->sk_socket;
4464         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4465
4466         if (skb->len < NLMSG_SPACE(0)) {
4467                 err = -EINVAL;
4468                 goto out;
4469         }
4470         nlh = nlmsg_hdr(skb);
4471
4472         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4473         if (err) {
4474                 if (err == -EINVAL) {
4475                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4476                                   "SELinux:  unrecognized netlink message"
4477                                   " type=%hu for sclass=%hu\n",
4478                                   nlh->nlmsg_type, isec->sclass);
4479                         if (!selinux_enforcing || security_get_allow_unknown())
4480                                 err = 0;
4481                 }
4482
4483                 /* Ignore */
4484                 if (err == -ENOENT)
4485                         err = 0;
4486                 goto out;
4487         }
4488
4489         err = socket_has_perm(current, sock, perm);
4490 out:
4491         return err;
4492 }
4493
4494 #ifdef CONFIG_NETFILTER
4495
4496 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4497                                        u16 family)
4498 {
4499         int err;
4500         char *addrp;
4501         u32 peer_sid;
4502         struct avc_audit_data ad;
4503         u8 secmark_active;
4504         u8 netlbl_active;
4505         u8 peerlbl_active;
4506
4507         if (!selinux_policycap_netpeer)
4508                 return NF_ACCEPT;
4509
4510         secmark_active = selinux_secmark_enabled();
4511         netlbl_active = netlbl_enabled();
4512         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4513         if (!secmark_active && !peerlbl_active)
4514                 return NF_ACCEPT;
4515
4516         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4517                 return NF_DROP;
4518
4519         AVC_AUDIT_DATA_INIT(&ad, NET);
4520         ad.u.net.netif = ifindex;
4521         ad.u.net.family = family;
4522         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4523                 return NF_DROP;
4524
4525         if (peerlbl_active) {
4526                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4527                                                peer_sid, &ad);
4528                 if (err) {
4529                         selinux_netlbl_err(skb, err, 1);
4530                         return NF_DROP;
4531                 }
4532         }
4533
4534         if (secmark_active)
4535                 if (avc_has_perm(peer_sid, skb->secmark,
4536                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4537                         return NF_DROP;
4538
4539         if (netlbl_active)
4540                 /* we do this in the FORWARD path and not the POST_ROUTING
4541                  * path because we want to make sure we apply the necessary
4542                  * labeling before IPsec is applied so we can leverage AH
4543                  * protection */
4544                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4545                         return NF_DROP;
4546
4547         return NF_ACCEPT;
4548 }
4549
4550 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4551                                          struct sk_buff *skb,
4552                                          const struct net_device *in,
4553                                          const struct net_device *out,
4554                                          int (*okfn)(struct sk_buff *))
4555 {
4556         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4557 }
4558
4559 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4560 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4561                                          struct sk_buff *skb,
4562                                          const struct net_device *in,
4563                                          const struct net_device *out,
4564                                          int (*okfn)(struct sk_buff *))
4565 {
4566         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4567 }
4568 #endif  /* IPV6 */
4569
4570 static unsigned int selinux_ip_output(struct sk_buff *skb,
4571                                       u16 family)
4572 {
4573         u32 sid;
4574
4575         if (!netlbl_enabled())
4576                 return NF_ACCEPT;
4577
4578         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4579          * because we want to make sure we apply the necessary labeling
4580          * before IPsec is applied so we can leverage AH protection */
4581         if (skb->sk) {
4582                 struct sk_security_struct *sksec = skb->sk->sk_security;
4583                 sid = sksec->sid;
4584         } else
4585                 sid = SECINITSID_KERNEL;
4586         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4587                 return NF_DROP;
4588
4589         return NF_ACCEPT;
4590 }
4591
4592 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4593                                         struct sk_buff *skb,
4594                                         const struct net_device *in,
4595                                         const struct net_device *out,
4596                                         int (*okfn)(struct sk_buff *))
4597 {
4598         return selinux_ip_output(skb, PF_INET);
4599 }
4600
4601 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4602                                                 int ifindex,
4603                                                 struct avc_audit_data *ad,
4604                                                 u16 family, char *addrp)
4605 {
4606         int err;
4607         struct sk_security_struct *sksec = sk->sk_security;
4608         u16 sk_class;
4609         u32 netif_perm, node_perm, send_perm;
4610         u32 port_sid, node_sid, if_sid, sk_sid;
4611
4612         sk_sid = sksec->sid;
4613         sk_class = sksec->sclass;
4614
4615         switch (sk_class) {
4616         case SECCLASS_UDP_SOCKET:
4617                 netif_perm = NETIF__UDP_SEND;
4618                 node_perm = NODE__UDP_SEND;
4619                 send_perm = UDP_SOCKET__SEND_MSG;
4620                 break;
4621         case SECCLASS_TCP_SOCKET:
4622                 netif_perm = NETIF__TCP_SEND;
4623                 node_perm = NODE__TCP_SEND;
4624                 send_perm = TCP_SOCKET__SEND_MSG;
4625                 break;
4626         case SECCLASS_DCCP_SOCKET:
4627                 netif_perm = NETIF__DCCP_SEND;
4628                 node_perm = NODE__DCCP_SEND;
4629                 send_perm = DCCP_SOCKET__SEND_MSG;
4630                 break;
4631         default:
4632                 netif_perm = NETIF__RAWIP_SEND;
4633                 node_perm = NODE__RAWIP_SEND;
4634                 send_perm = 0;
4635                 break;
4636         }
4637
4638         err = sel_netif_sid(ifindex, &if_sid);
4639         if (err)
4640                 return err;
4641         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4642                 return err;
4643
4644         err = sel_netnode_sid(addrp, family, &node_sid);
4645         if (err)
4646                 return err;
4647         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4648         if (err)
4649                 return err;
4650
4651         if (send_perm != 0)
4652                 return 0;
4653
4654         err = sel_netport_sid(sk->sk_protocol,
4655                               ntohs(ad->u.net.dport), &port_sid);
4656         if (unlikely(err)) {
4657                 printk(KERN_WARNING
4658                        "SELinux: failure in"
4659                        " selinux_ip_postroute_iptables_compat(),"
4660                        " network port label not found\n");
4661                 return err;
4662         }
4663         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4664 }
4665
4666 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4667                                                 int ifindex,
4668                                                 u16 family)
4669 {
4670         struct sock *sk = skb->sk;
4671         struct sk_security_struct *sksec;
4672         struct avc_audit_data ad;
4673         char *addrp;
4674         u8 proto;
4675
4676         if (sk == NULL)
4677                 return NF_ACCEPT;
4678         sksec = sk->sk_security;
4679
4680         AVC_AUDIT_DATA_INIT(&ad, NET);
4681         ad.u.net.netif = ifindex;
4682         ad.u.net.family = family;
4683         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4684                 return NF_DROP;
4685
4686         if (selinux_compat_net) {
4687                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4688                                                          &ad, family, addrp))
4689                         return NF_DROP;
4690         } else if (selinux_secmark_enabled()) {
4691                 if (avc_has_perm(sksec->sid, skb->secmark,
4692                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4693                         return NF_DROP;
4694         }
4695
4696         if (selinux_policycap_netpeer)
4697                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4698                         return NF_DROP;
4699
4700         return NF_ACCEPT;
4701 }
4702
4703 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4704                                          u16 family)
4705 {
4706         u32 secmark_perm;
4707         u32 peer_sid;
4708         struct sock *sk;
4709         struct avc_audit_data ad;
4710         char *addrp;
4711         u8 secmark_active;
4712         u8 peerlbl_active;
4713
4714         /* If any sort of compatibility mode is enabled then handoff processing
4715          * to the selinux_ip_postroute_compat() function to deal with the
4716          * special handling.  We do this in an attempt to keep this function
4717          * as fast and as clean as possible. */
4718         if (selinux_compat_net || !selinux_policycap_netpeer)
4719                 return selinux_ip_postroute_compat(skb, ifindex, family);
4720 #ifdef CONFIG_XFRM
4721         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4722          * packet transformation so allow the packet to pass without any checks
4723          * since we'll have another chance to perform access control checks
4724          * when the packet is on it's final way out.
4725          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4726          *       is NULL, in this case go ahead and apply access control. */
4727         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4728                 return NF_ACCEPT;
4729 #endif
4730         secmark_active = selinux_secmark_enabled();
4731         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4732         if (!secmark_active && !peerlbl_active)
4733                 return NF_ACCEPT;
4734
4735         /* if the packet is being forwarded then get the peer label from the
4736          * packet itself; otherwise check to see if it is from a local
4737          * application or the kernel, if from an application get the peer label
4738          * from the sending socket, otherwise use the kernel's sid */
4739         sk = skb->sk;
4740         if (sk == NULL) {
4741                 switch (family) {
4742                 case PF_INET:
4743                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4744                                 secmark_perm = PACKET__FORWARD_OUT;
4745                         else
4746                                 secmark_perm = PACKET__SEND;
4747                         break;
4748                 case PF_INET6:
4749                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4750                                 secmark_perm = PACKET__FORWARD_OUT;
4751                         else
4752                                 secmark_perm = PACKET__SEND;
4753                         break;
4754                 default:
4755                         return NF_DROP;
4756                 }
4757                 if (secmark_perm == PACKET__FORWARD_OUT) {
4758                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4759                                 return NF_DROP;
4760                 } else
4761                         peer_sid = SECINITSID_KERNEL;
4762         } else {
4763                 struct sk_security_struct *sksec = sk->sk_security;
4764                 peer_sid = sksec->sid;
4765                 secmark_perm = PACKET__SEND;
4766         }
4767
4768         AVC_AUDIT_DATA_INIT(&ad, NET);
4769         ad.u.net.netif = ifindex;
4770         ad.u.net.family = family;
4771         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4772                 return NF_DROP;
4773
4774         if (secmark_active)
4775                 if (avc_has_perm(peer_sid, skb->secmark,
4776                                  SECCLASS_PACKET, secmark_perm, &ad))
4777                         return NF_DROP;
4778
4779         if (peerlbl_active) {
4780                 u32 if_sid;
4781                 u32 node_sid;
4782
4783                 if (sel_netif_sid(ifindex, &if_sid))
4784                         return NF_DROP;
4785                 if (avc_has_perm(peer_sid, if_sid,
4786                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4787                         return NF_DROP;
4788
4789                 if (sel_netnode_sid(addrp, family, &node_sid))
4790                         return NF_DROP;
4791                 if (avc_has_perm(peer_sid, node_sid,
4792                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4793                         return NF_DROP;
4794         }
4795
4796         return NF_ACCEPT;
4797 }
4798
4799 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4800                                            struct sk_buff *skb,
4801                                            const struct net_device *in,
4802                                            const struct net_device *out,
4803                                            int (*okfn)(struct sk_buff *))
4804 {
4805         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4806 }
4807
4808 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4809 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4810                                            struct sk_buff *skb,
4811                                            const struct net_device *in,
4812                                            const struct net_device *out,
4813                                            int (*okfn)(struct sk_buff *))
4814 {
4815         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4816 }
4817 #endif  /* IPV6 */
4818
4819 #endif  /* CONFIG_NETFILTER */
4820
4821 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4822 {
4823         int err;
4824
4825         err = secondary_ops->netlink_send(sk, skb);
4826         if (err)
4827                 return err;
4828
4829         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4830                 err = selinux_nlmsg_perm(sk, skb);
4831
4832         return err;
4833 }
4834
4835 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4836 {
4837         int err;
4838         struct avc_audit_data ad;
4839
4840         err = secondary_ops->netlink_recv(skb, capability);
4841         if (err)
4842                 return err;
4843
4844         AVC_AUDIT_DATA_INIT(&ad, CAP);
4845         ad.u.cap = capability;
4846
4847         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4848                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4849 }
4850
4851 static int ipc_alloc_security(struct task_struct *task,
4852                               struct kern_ipc_perm *perm,
4853                               u16 sclass)
4854 {
4855         struct ipc_security_struct *isec;
4856         u32 sid;
4857
4858         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4859         if (!isec)
4860                 return -ENOMEM;
4861
4862         sid = task_sid(task);
4863         isec->sclass = sclass;
4864         isec->sid = sid;
4865         perm->security = isec;
4866
4867         return 0;
4868 }
4869
4870 static void ipc_free_security(struct kern_ipc_perm *perm)
4871 {
4872         struct ipc_security_struct *isec = perm->security;
4873         perm->security = NULL;
4874         kfree(isec);
4875 }
4876
4877 static int msg_msg_alloc_security(struct msg_msg *msg)
4878 {
4879         struct msg_security_struct *msec;
4880
4881         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4882         if (!msec)
4883                 return -ENOMEM;
4884
4885         msec->sid = SECINITSID_UNLABELED;
4886         msg->security = msec;
4887
4888         return 0;
4889 }
4890
4891 static void msg_msg_free_security(struct msg_msg *msg)
4892 {
4893         struct msg_security_struct *msec = msg->security;
4894
4895         msg->security = NULL;
4896         kfree(msec);
4897 }
4898
4899 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4900                         u32 perms)
4901 {
4902         struct ipc_security_struct *isec;
4903         struct avc_audit_data ad;
4904         u32 sid = current_sid();
4905
4906         isec = ipc_perms->security;
4907
4908         AVC_AUDIT_DATA_INIT(&ad, IPC);
4909         ad.u.ipc_id = ipc_perms->key;
4910
4911         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4912 }
4913
4914 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4915 {
4916         return msg_msg_alloc_security(msg);
4917 }
4918
4919 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4920 {
4921         msg_msg_free_security(msg);
4922 }
4923
4924 /* message queue security operations */
4925 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4926 {
4927         struct ipc_security_struct *isec;
4928         struct avc_audit_data ad;
4929         u32 sid = current_sid();
4930         int rc;
4931
4932         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4933         if (rc)
4934                 return rc;
4935
4936         isec = msq->q_perm.security;
4937
4938         AVC_AUDIT_DATA_INIT(&ad, IPC);
4939         ad.u.ipc_id = msq->q_perm.key;
4940
4941         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4942                           MSGQ__CREATE, &ad);
4943         if (rc) {
4944                 ipc_free_security(&msq->q_perm);
4945                 return rc;
4946         }
4947         return 0;
4948 }
4949
4950 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4951 {
4952         ipc_free_security(&msq->q_perm);
4953 }
4954
4955 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4956 {
4957         struct ipc_security_struct *isec;
4958         struct avc_audit_data ad;
4959         u32 sid = current_sid();
4960
4961         isec = msq->q_perm.security;
4962
4963         AVC_AUDIT_DATA_INIT(&ad, IPC);
4964         ad.u.ipc_id = msq->q_perm.key;
4965
4966         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4967                             MSGQ__ASSOCIATE, &ad);
4968 }
4969
4970 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4971 {
4972         int err;
4973         int perms;
4974
4975         switch (cmd) {
4976         case IPC_INFO:
4977         case MSG_INFO:
4978                 /* No specific object, just general system-wide information. */
4979                 return task_has_system(current, SYSTEM__IPC_INFO);
4980         case IPC_STAT:
4981         case MSG_STAT:
4982                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4983                 break;
4984         case IPC_SET:
4985                 perms = MSGQ__SETATTR;
4986                 break;
4987         case IPC_RMID:
4988                 perms = MSGQ__DESTROY;
4989                 break;
4990         default:
4991                 return 0;
4992         }
4993
4994         err = ipc_has_perm(&msq->q_perm, perms);
4995         return err;
4996 }
4997
4998 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4999 {
5000         struct ipc_security_struct *isec;
5001         struct msg_security_struct *msec;
5002         struct avc_audit_data ad;
5003         u32 sid = current_sid();
5004         int rc;
5005
5006         isec = msq->q_perm.security;
5007         msec = msg->security;
5008
5009         /*
5010          * First time through, need to assign label to the message
5011          */
5012         if (msec->sid == SECINITSID_UNLABELED) {
5013                 /*
5014                  * Compute new sid based on current process and
5015                  * message queue this message will be stored in
5016                  */
5017                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5018                                              &msec->sid);
5019                 if (rc)
5020                         return rc;
5021         }
5022
5023         AVC_AUDIT_DATA_INIT(&ad, IPC);
5024         ad.u.ipc_id = msq->q_perm.key;
5025
5026         /* Can this process write to the queue? */
5027         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5028                           MSGQ__WRITE, &ad);
5029         if (!rc)
5030                 /* Can this process send the message */
5031                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5032                                   MSG__SEND, &ad);
5033         if (!rc)
5034                 /* Can the message be put in the queue? */
5035                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5036                                   MSGQ__ENQUEUE, &ad);
5037
5038         return rc;
5039 }
5040
5041 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5042                                     struct task_struct *target,
5043                                     long type, int mode)
5044 {
5045         struct ipc_security_struct *isec;
5046         struct msg_security_struct *msec;
5047         struct avc_audit_data ad;
5048         u32 sid = task_sid(target);
5049         int rc;
5050
5051         isec = msq->q_perm.security;
5052         msec = msg->security;
5053
5054         AVC_AUDIT_DATA_INIT(&ad, IPC);
5055         ad.u.ipc_id = msq->q_perm.key;
5056
5057         rc = avc_has_perm(sid, isec->sid,
5058                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5059         if (!rc)
5060                 rc = avc_has_perm(sid, msec->sid,
5061                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5062         return rc;
5063 }
5064
5065 /* Shared Memory security operations */
5066 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5067 {
5068         struct ipc_security_struct *isec;
5069         struct avc_audit_data ad;
5070         u32 sid = current_sid();
5071         int rc;
5072
5073         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5074         if (rc)
5075                 return rc;
5076
5077         isec = shp->shm_perm.security;
5078
5079         AVC_AUDIT_DATA_INIT(&ad, IPC);
5080         ad.u.ipc_id = shp->shm_perm.key;
5081
5082         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5083                           SHM__CREATE, &ad);
5084         if (rc) {
5085                 ipc_free_security(&shp->shm_perm);
5086                 return rc;
5087         }
5088         return 0;
5089 }
5090
5091 static void selinux_shm_free_security(struct shmid_kernel *shp)
5092 {
5093         ipc_free_security(&shp->shm_perm);
5094 }
5095
5096 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5097 {
5098         struct ipc_security_struct *isec;
5099         struct avc_audit_data ad;
5100         u32 sid = current_sid();
5101
5102         isec = shp->shm_perm.security;
5103
5104         AVC_AUDIT_DATA_INIT(&ad, IPC);
5105         ad.u.ipc_id = shp->shm_perm.key;
5106
5107         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5108                             SHM__ASSOCIATE, &ad);
5109 }
5110
5111 /* Note, at this point, shp is locked down */
5112 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5113 {
5114         int perms;
5115         int err;
5116
5117         switch (cmd) {
5118         case IPC_INFO:
5119         case SHM_INFO:
5120                 /* No specific object, just general system-wide information. */
5121                 return task_has_system(current, SYSTEM__IPC_INFO);
5122         case IPC_STAT:
5123         case SHM_STAT:
5124                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5125                 break;
5126         case IPC_SET:
5127                 perms = SHM__SETATTR;
5128                 break;
5129         case SHM_LOCK:
5130         case SHM_UNLOCK:
5131                 perms = SHM__LOCK;
5132                 break;
5133         case IPC_RMID:
5134                 perms = SHM__DESTROY;
5135                 break;
5136         default:
5137                 return 0;
5138         }
5139
5140         err = ipc_has_perm(&shp->shm_perm, perms);
5141         return err;
5142 }
5143
5144 static int selinux_shm_shmat(struct shmid_kernel *shp,
5145                              char __user *shmaddr, int shmflg)
5146 {
5147         u32 perms;
5148         int rc;
5149
5150         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5151         if (rc)
5152                 return rc;
5153
5154         if (shmflg & SHM_RDONLY)
5155                 perms = SHM__READ;
5156         else
5157                 perms = SHM__READ | SHM__WRITE;
5158
5159         return ipc_has_perm(&shp->shm_perm, perms);
5160 }
5161
5162 /* Semaphore security operations */
5163 static int selinux_sem_alloc_security(struct sem_array *sma)
5164 {
5165         struct ipc_security_struct *isec;
5166         struct avc_audit_data ad;
5167         u32 sid = current_sid();
5168         int rc;
5169
5170         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5171         if (rc)
5172                 return rc;
5173
5174         isec = sma->sem_perm.security;
5175
5176         AVC_AUDIT_DATA_INIT(&ad, IPC);
5177         ad.u.ipc_id = sma->sem_perm.key;
5178
5179         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5180                           SEM__CREATE, &ad);
5181         if (rc) {
5182                 ipc_free_security(&sma->sem_perm);
5183                 return rc;
5184         }
5185         return 0;
5186 }
5187
5188 static void selinux_sem_free_security(struct sem_array *sma)
5189 {
5190         ipc_free_security(&sma->sem_perm);
5191 }
5192
5193 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5194 {
5195         struct ipc_security_struct *isec;
5196         struct avc_audit_data ad;
5197         u32 sid = current_sid();
5198
5199         isec = sma->sem_perm.security;
5200
5201         AVC_AUDIT_DATA_INIT(&ad, IPC);
5202         ad.u.ipc_id = sma->sem_perm.key;
5203
5204         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5205                             SEM__ASSOCIATE, &ad);
5206 }
5207
5208 /* Note, at this point, sma is locked down */
5209 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5210 {
5211         int err;
5212         u32 perms;
5213
5214         switch (cmd) {
5215         case IPC_INFO:
5216         case SEM_INFO:
5217                 /* No specific object, just general system-wide information. */
5218                 return task_has_system(current, SYSTEM__IPC_INFO);
5219         case GETPID:
5220         case GETNCNT:
5221         case GETZCNT:
5222                 perms = SEM__GETATTR;
5223                 break;
5224         case GETVAL:
5225         case GETALL:
5226                 perms = SEM__READ;
5227                 break;
5228         case SETVAL:
5229         case SETALL:
5230                 perms = SEM__WRITE;
5231                 break;
5232         case IPC_RMID:
5233                 perms = SEM__DESTROY;
5234                 break;
5235         case IPC_SET:
5236                 perms = SEM__SETATTR;
5237                 break;
5238         case IPC_STAT:
5239         case SEM_STAT:
5240                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5241                 break;
5242         default:
5243                 return 0;
5244         }
5245
5246         err = ipc_has_perm(&sma->sem_perm, perms);
5247         return err;
5248 }
5249
5250 static int selinux_sem_semop(struct sem_array *sma,
5251                              struct sembuf *sops, unsigned nsops, int alter)
5252 {
5253         u32 perms;
5254
5255         if (alter)
5256                 perms = SEM__READ | SEM__WRITE;
5257         else
5258                 perms = SEM__READ;
5259
5260         return ipc_has_perm(&sma->sem_perm, perms);
5261 }
5262
5263 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5264 {
5265         u32 av = 0;
5266
5267         av = 0;
5268         if (flag & S_IRUGO)
5269                 av |= IPC__UNIX_READ;
5270         if (flag & S_IWUGO)
5271                 av |= IPC__UNIX_WRITE;
5272
5273         if (av == 0)
5274                 return 0;
5275
5276         return ipc_has_perm(ipcp, av);
5277 }
5278
5279 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5280 {
5281         struct ipc_security_struct *isec = ipcp->security;
5282         *secid = isec->sid;
5283 }
5284
5285 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5286 {
5287         if (inode)
5288                 inode_doinit_with_dentry(inode, dentry);
5289 }
5290
5291 static int selinux_getprocattr(struct task_struct *p,
5292                                char *name, char **value)
5293 {
5294         const struct task_security_struct *__tsec;
5295         u32 sid;
5296         int error;
5297         unsigned len;
5298
5299         if (current != p) {
5300                 error = current_has_perm(p, PROCESS__GETATTR);
5301                 if (error)
5302                         return error;
5303         }
5304
5305         rcu_read_lock();
5306         __tsec = __task_cred(p)->security;
5307
5308         if (!strcmp(name, "current"))
5309                 sid = __tsec->sid;
5310         else if (!strcmp(name, "prev"))
5311                 sid = __tsec->osid;
5312         else if (!strcmp(name, "exec"))
5313                 sid = __tsec->exec_sid;
5314         else if (!strcmp(name, "fscreate"))
5315                 sid = __tsec->create_sid;
5316         else if (!strcmp(name, "keycreate"))
5317                 sid = __tsec->keycreate_sid;
5318         else if (!strcmp(name, "sockcreate"))
5319                 sid = __tsec->sockcreate_sid;
5320         else
5321                 goto invalid;
5322         rcu_read_unlock();
5323
5324         if (!sid)
5325                 return 0;
5326
5327         error = security_sid_to_context(sid, value, &len);
5328         if (error)
5329                 return error;
5330         return len;
5331
5332 invalid:
5333         rcu_read_unlock();
5334         return -EINVAL;
5335 }
5336
5337 static int selinux_setprocattr(struct task_struct *p,
5338                                char *name, void *value, size_t size)
5339 {
5340         struct task_security_struct *tsec;
5341         struct task_struct *tracer;
5342         struct cred *new;
5343         u32 sid = 0, ptsid;
5344         int error;
5345         char *str = value;
5346
5347         if (current != p) {
5348                 /* SELinux only allows a process to change its own
5349                    security attributes. */
5350                 return -EACCES;
5351         }
5352
5353         /*
5354          * Basic control over ability to set these attributes at all.
5355          * current == p, but we'll pass them separately in case the
5356          * above restriction is ever removed.
5357          */
5358         if (!strcmp(name, "exec"))
5359                 error = current_has_perm(p, PROCESS__SETEXEC);
5360         else if (!strcmp(name, "fscreate"))
5361                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5362         else if (!strcmp(name, "keycreate"))
5363                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5364         else if (!strcmp(name, "sockcreate"))
5365                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5366         else if (!strcmp(name, "current"))
5367                 error = current_has_perm(p, PROCESS__SETCURRENT);
5368         else
5369                 error = -EINVAL;
5370         if (error)
5371                 return error;
5372
5373         /* Obtain a SID for the context, if one was specified. */
5374         if (size && str[1] && str[1] != '\n') {
5375                 if (str[size-1] == '\n') {
5376                         str[size-1] = 0;
5377                         size--;
5378                 }
5379                 error = security_context_to_sid(value, size, &sid);
5380                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5381                         if (!capable(CAP_MAC_ADMIN))
5382                                 return error;
5383                         error = security_context_to_sid_force(value, size,
5384                                                               &sid);
5385                 }
5386                 if (error)
5387                         return error;
5388         }
5389
5390         new = prepare_creds();
5391         if (!new)
5392                 return -ENOMEM;
5393
5394         /* Permission checking based on the specified context is
5395            performed during the actual operation (execve,
5396            open/mkdir/...), when we know the full context of the
5397            operation.  See selinux_bprm_set_creds for the execve
5398            checks and may_create for the file creation checks. The
5399            operation will then fail if the context is not permitted. */
5400         tsec = new->security;
5401         if (!strcmp(name, "exec")) {
5402                 tsec->exec_sid = sid;
5403         } else if (!strcmp(name, "fscreate")) {
5404                 tsec->create_sid = sid;
5405         } else if (!strcmp(name, "keycreate")) {
5406                 error = may_create_key(sid, p);
5407                 if (error)
5408                         goto abort_change;
5409                 tsec->keycreate_sid = sid;
5410         } else if (!strcmp(name, "sockcreate")) {
5411                 tsec->sockcreate_sid = sid;
5412         } else if (!strcmp(name, "current")) {
5413                 error = -EINVAL;
5414                 if (sid == 0)
5415                         goto abort_change;
5416
5417                 /* Only allow single threaded processes to change context */
5418                 error = -EPERM;
5419                 if (!is_single_threaded(p)) {
5420                         error = security_bounded_transition(tsec->sid, sid);
5421                         if (error)
5422                                 goto abort_change;
5423                 }
5424
5425                 /* Check permissions for the transition. */
5426                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5427                                      PROCESS__DYNTRANSITION, NULL);
5428                 if (error)
5429                         goto abort_change;
5430
5431                 /* Check for ptracing, and update the task SID if ok.
5432                    Otherwise, leave SID unchanged and fail. */
5433                 ptsid = 0;
5434                 task_lock(p);
5435                 tracer = tracehook_tracer_task(p);
5436                 if (tracer)
5437                         ptsid = task_sid(tracer);
5438                 task_unlock(p);
5439
5440                 if (tracer) {
5441                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5442                                              PROCESS__PTRACE, NULL);
5443                         if (error)
5444                                 goto abort_change;
5445                 }
5446
5447                 tsec->sid = sid;
5448         } else {
5449                 error = -EINVAL;
5450                 goto abort_change;
5451         }
5452
5453         commit_creds(new);
5454         return size;
5455
5456 abort_change:
5457         abort_creds(new);
5458         return error;
5459 }
5460
5461 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5462 {
5463         return security_sid_to_context(secid, secdata, seclen);
5464 }
5465
5466 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5467 {
5468         return security_context_to_sid(secdata, seclen, secid);
5469 }
5470
5471 static void selinux_release_secctx(char *secdata, u32 seclen)
5472 {
5473         kfree(secdata);
5474 }
5475
5476 #ifdef CONFIG_KEYS
5477
5478 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5479                              unsigned long flags)
5480 {
5481         const struct task_security_struct *tsec;
5482         struct key_security_struct *ksec;
5483
5484         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5485         if (!ksec)
5486                 return -ENOMEM;
5487
5488         tsec = cred->security;
5489         if (tsec->keycreate_sid)
5490                 ksec->sid = tsec->keycreate_sid;
5491         else
5492                 ksec->sid = tsec->sid;
5493
5494         k->security = ksec;
5495         return 0;
5496 }
5497
5498 static void selinux_key_free(struct key *k)
5499 {
5500         struct key_security_struct *ksec = k->security;
5501
5502         k->security = NULL;
5503         kfree(ksec);
5504 }
5505
5506 static int selinux_key_permission(key_ref_t key_ref,
5507                                   const struct cred *cred,
5508                                   key_perm_t perm)
5509 {
5510         struct key *key;
5511         struct key_security_struct *ksec;
5512         u32 sid;
5513
5514         /* if no specific permissions are requested, we skip the
5515            permission check. No serious, additional covert channels
5516            appear to be created. */
5517         if (perm == 0)
5518                 return 0;
5519
5520         sid = cred_sid(cred);
5521
5522         key = key_ref_to_ptr(key_ref);
5523         ksec = key->security;
5524
5525         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5526 }
5527
5528 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5529 {
5530         struct key_security_struct *ksec = key->security;
5531         char *context = NULL;
5532         unsigned len;
5533         int rc;
5534
5535         rc = security_sid_to_context(ksec->sid, &context, &len);
5536         if (!rc)
5537                 rc = len;
5538         *_buffer = context;
5539         return rc;
5540 }
5541
5542 #endif
5543
5544 static struct security_operations selinux_ops = {
5545         .name =                         "selinux",
5546
5547         .ptrace_may_access =            selinux_ptrace_may_access,
5548         .ptrace_traceme =               selinux_ptrace_traceme,
5549         .capget =                       selinux_capget,
5550         .capset =                       selinux_capset,
5551         .sysctl =                       selinux_sysctl,
5552         .capable =                      selinux_capable,
5553         .quotactl =                     selinux_quotactl,
5554         .quota_on =                     selinux_quota_on,
5555         .syslog =                       selinux_syslog,
5556         .vm_enough_memory =             selinux_vm_enough_memory,
5557
5558         .netlink_send =                 selinux_netlink_send,
5559         .netlink_recv =                 selinux_netlink_recv,
5560
5561         .bprm_set_creds =               selinux_bprm_set_creds,
5562         .bprm_committing_creds =        selinux_bprm_committing_creds,
5563         .bprm_committed_creds =         selinux_bprm_committed_creds,
5564         .bprm_secureexec =              selinux_bprm_secureexec,
5565
5566         .sb_alloc_security =            selinux_sb_alloc_security,
5567         .sb_free_security =             selinux_sb_free_security,
5568         .sb_copy_data =                 selinux_sb_copy_data,
5569         .sb_kern_mount =                selinux_sb_kern_mount,
5570         .sb_show_options =              selinux_sb_show_options,
5571         .sb_statfs =                    selinux_sb_statfs,
5572         .sb_mount =                     selinux_mount,
5573         .sb_umount =                    selinux_umount,
5574         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5575         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5576         .sb_parse_opts_str =            selinux_parse_opts_str,
5577
5578
5579         .inode_alloc_security =         selinux_inode_alloc_security,
5580         .inode_free_security =          selinux_inode_free_security,
5581         .inode_init_security =          selinux_inode_init_security,
5582         .inode_create =                 selinux_inode_create,
5583         .inode_link =                   selinux_inode_link,
5584         .inode_unlink =                 selinux_inode_unlink,
5585         .inode_symlink =                selinux_inode_symlink,
5586         .inode_mkdir =                  selinux_inode_mkdir,
5587         .inode_rmdir =                  selinux_inode_rmdir,
5588         .inode_mknod =                  selinux_inode_mknod,
5589         .inode_rename =                 selinux_inode_rename,
5590         .inode_readlink =               selinux_inode_readlink,
5591         .inode_follow_link =            selinux_inode_follow_link,
5592         .inode_permission =             selinux_inode_permission,
5593         .inode_setattr =                selinux_inode_setattr,
5594         .inode_getattr =                selinux_inode_getattr,
5595         .inode_setxattr =               selinux_inode_setxattr,
5596         .inode_post_setxattr =          selinux_inode_post_setxattr,
5597         .inode_getxattr =               selinux_inode_getxattr,
5598         .inode_listxattr =              selinux_inode_listxattr,
5599         .inode_removexattr =            selinux_inode_removexattr,
5600         .inode_getsecurity =            selinux_inode_getsecurity,
5601         .inode_setsecurity =            selinux_inode_setsecurity,
5602         .inode_listsecurity =           selinux_inode_listsecurity,
5603         .inode_need_killpriv =          selinux_inode_need_killpriv,
5604         .inode_killpriv =               selinux_inode_killpriv,
5605         .inode_getsecid =               selinux_inode_getsecid,
5606
5607         .file_permission =              selinux_file_permission,
5608         .file_alloc_security =          selinux_file_alloc_security,
5609         .file_free_security =           selinux_file_free_security,
5610         .file_ioctl =                   selinux_file_ioctl,
5611         .file_mmap =                    selinux_file_mmap,
5612         .file_mprotect =                selinux_file_mprotect,
5613         .file_lock =                    selinux_file_lock,
5614         .file_fcntl =                   selinux_file_fcntl,
5615         .file_set_fowner =              selinux_file_set_fowner,
5616         .file_send_sigiotask =          selinux_file_send_sigiotask,
5617         .file_receive =                 selinux_file_receive,
5618
5619         .dentry_open =                  selinux_dentry_open,
5620
5621         .task_create =                  selinux_task_create,
5622         .cred_free =                    selinux_cred_free,
5623         .cred_prepare =                 selinux_cred_prepare,
5624         .cred_commit =                  selinux_cred_commit,
5625         .kernel_act_as =                selinux_kernel_act_as,
5626         .kernel_create_files_as =       selinux_kernel_create_files_as,
5627         .task_setuid =                  selinux_task_setuid,
5628         .task_fix_setuid =              selinux_task_fix_setuid,
5629         .task_setgid =                  selinux_task_setgid,
5630         .task_setpgid =                 selinux_task_setpgid,
5631         .task_getpgid =                 selinux_task_getpgid,
5632         .task_getsid =                  selinux_task_getsid,
5633         .task_getsecid =                selinux_task_getsecid,
5634         .task_setgroups =               selinux_task_setgroups,
5635         .task_setnice =                 selinux_task_setnice,
5636         .task_setioprio =               selinux_task_setioprio,
5637         .task_getioprio =               selinux_task_getioprio,
5638         .task_setrlimit =               selinux_task_setrlimit,
5639         .task_setscheduler =            selinux_task_setscheduler,
5640         .task_getscheduler =            selinux_task_getscheduler,
5641         .task_movememory =              selinux_task_movememory,
5642         .task_kill =                    selinux_task_kill,
5643         .task_wait =                    selinux_task_wait,
5644         .task_prctl =                   selinux_task_prctl,
5645         .task_to_inode =                selinux_task_to_inode,
5646
5647         .ipc_permission =               selinux_ipc_permission,
5648         .ipc_getsecid =                 selinux_ipc_getsecid,
5649
5650         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5651         .msg_msg_free_security =        selinux_msg_msg_free_security,
5652
5653         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5654         .msg_queue_free_security =      selinux_msg_queue_free_security,
5655         .msg_queue_associate =          selinux_msg_queue_associate,
5656         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5657         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5658         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5659
5660         .shm_alloc_security =           selinux_shm_alloc_security,
5661         .shm_free_security =            selinux_shm_free_security,
5662         .shm_associate =                selinux_shm_associate,
5663         .shm_shmctl =                   selinux_shm_shmctl,
5664         .shm_shmat =                    selinux_shm_shmat,
5665
5666         .sem_alloc_security =           selinux_sem_alloc_security,
5667         .sem_free_security =            selinux_sem_free_security,
5668         .sem_associate =                selinux_sem_associate,
5669         .sem_semctl =                   selinux_sem_semctl,
5670         .sem_semop =                    selinux_sem_semop,
5671
5672         .d_instantiate =                selinux_d_instantiate,
5673
5674         .getprocattr =                  selinux_getprocattr,
5675         .setprocattr =                  selinux_setprocattr,
5676
5677         .secid_to_secctx =              selinux_secid_to_secctx,
5678         .secctx_to_secid =              selinux_secctx_to_secid,
5679         .release_secctx =               selinux_release_secctx,
5680
5681         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5682         .unix_may_send =                selinux_socket_unix_may_send,
5683
5684         .socket_create =                selinux_socket_create,
5685         .socket_post_create =           selinux_socket_post_create,
5686         .socket_bind =                  selinux_socket_bind,
5687         .socket_connect =               selinux_socket_connect,
5688         .socket_listen =                selinux_socket_listen,
5689         .socket_accept =                selinux_socket_accept,
5690         .socket_sendmsg =               selinux_socket_sendmsg,
5691         .socket_recvmsg =               selinux_socket_recvmsg,
5692         .socket_getsockname =           selinux_socket_getsockname,
5693         .socket_getpeername =           selinux_socket_getpeername,
5694         .socket_getsockopt =            selinux_socket_getsockopt,
5695         .socket_setsockopt =            selinux_socket_setsockopt,
5696         .socket_shutdown =              selinux_socket_shutdown,
5697         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5698         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5699         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5700         .sk_alloc_security =            selinux_sk_alloc_security,
5701         .sk_free_security =             selinux_sk_free_security,
5702         .sk_clone_security =            selinux_sk_clone_security,
5703         .sk_getsecid =                  selinux_sk_getsecid,
5704         .sock_graft =                   selinux_sock_graft,
5705         .inet_conn_request =            selinux_inet_conn_request,
5706         .inet_csk_clone =               selinux_inet_csk_clone,
5707         .inet_conn_established =        selinux_inet_conn_established,
5708         .req_classify_flow =            selinux_req_classify_flow,
5709
5710 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5711         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5712         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5713         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5714         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5715         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5716         .xfrm_state_free_security =     selinux_xfrm_state_free,
5717         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5718         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5719         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5720         .xfrm_decode_session =          selinux_xfrm_decode_session,
5721 #endif
5722
5723 #ifdef CONFIG_KEYS
5724         .key_alloc =                    selinux_key_alloc,
5725         .key_free =                     selinux_key_free,
5726         .key_permission =               selinux_key_permission,
5727         .key_getsecurity =              selinux_key_getsecurity,
5728 #endif
5729
5730 #ifdef CONFIG_AUDIT
5731         .audit_rule_init =              selinux_audit_rule_init,
5732         .audit_rule_known =             selinux_audit_rule_known,
5733         .audit_rule_match =             selinux_audit_rule_match,
5734         .audit_rule_free =              selinux_audit_rule_free,
5735 #endif
5736 };
5737
5738 static __init int selinux_init(void)
5739 {
5740         if (!security_module_enable(&selinux_ops)) {
5741                 selinux_enabled = 0;
5742                 return 0;
5743         }
5744
5745         if (!selinux_enabled) {
5746                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5747                 return 0;
5748         }
5749
5750         printk(KERN_INFO "SELinux:  Initializing.\n");
5751
5752         /* Set the security state for the initial task. */
5753         cred_init_security();
5754
5755         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5756                                             sizeof(struct inode_security_struct),
5757                                             0, SLAB_PANIC, NULL);
5758         avc_init();
5759
5760         secondary_ops = security_ops;
5761         if (!secondary_ops)
5762                 panic("SELinux: No initial security operations\n");
5763         if (register_security(&selinux_ops))
5764                 panic("SELinux: Unable to register with kernel.\n");
5765
5766         if (selinux_enforcing)
5767                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5768         else
5769                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5770
5771         return 0;
5772 }
5773
5774 void selinux_complete_init(void)
5775 {
5776         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5777
5778         /* Set up any superblocks initialized prior to the policy load. */
5779         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5780         spin_lock(&sb_lock);
5781         spin_lock(&sb_security_lock);
5782 next_sb:
5783         if (!list_empty(&superblock_security_head)) {
5784                 struct superblock_security_struct *sbsec =
5785                                 list_entry(superblock_security_head.next,
5786                                            struct superblock_security_struct,
5787                                            list);
5788                 struct super_block *sb = sbsec->sb;
5789                 sb->s_count++;
5790                 spin_unlock(&sb_security_lock);
5791                 spin_unlock(&sb_lock);
5792                 down_read(&sb->s_umount);
5793                 if (sb->s_root)
5794                         superblock_doinit(sb, NULL);
5795                 drop_super(sb);
5796                 spin_lock(&sb_lock);
5797                 spin_lock(&sb_security_lock);
5798                 list_del_init(&sbsec->list);
5799                 goto next_sb;
5800         }
5801         spin_unlock(&sb_security_lock);
5802         spin_unlock(&sb_lock);
5803 }
5804
5805 /* SELinux requires early initialization in order to label
5806    all processes and objects when they are created. */
5807 security_initcall(selinux_init);
5808
5809 #if defined(CONFIG_NETFILTER)
5810
5811 static struct nf_hook_ops selinux_ipv4_ops[] = {
5812         {
5813                 .hook =         selinux_ipv4_postroute,
5814                 .owner =        THIS_MODULE,
5815                 .pf =           PF_INET,
5816                 .hooknum =      NF_INET_POST_ROUTING,
5817                 .priority =     NF_IP_PRI_SELINUX_LAST,
5818         },
5819         {
5820                 .hook =         selinux_ipv4_forward,
5821                 .owner =        THIS_MODULE,
5822                 .pf =           PF_INET,
5823                 .hooknum =      NF_INET_FORWARD,
5824                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5825         },
5826         {
5827                 .hook =         selinux_ipv4_output,
5828                 .owner =        THIS_MODULE,
5829                 .pf =           PF_INET,
5830                 .hooknum =      NF_INET_LOCAL_OUT,
5831                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5832         }
5833 };
5834
5835 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5836
5837 static struct nf_hook_ops selinux_ipv6_ops[] = {
5838         {
5839                 .hook =         selinux_ipv6_postroute,
5840                 .owner =        THIS_MODULE,
5841                 .pf =           PF_INET6,
5842                 .hooknum =      NF_INET_POST_ROUTING,
5843                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5844         },
5845         {
5846                 .hook =         selinux_ipv6_forward,
5847                 .owner =        THIS_MODULE,
5848                 .pf =           PF_INET6,
5849                 .hooknum =      NF_INET_FORWARD,
5850                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5851         }
5852 };
5853
5854 #endif  /* IPV6 */
5855
5856 static int __init selinux_nf_ip_init(void)
5857 {
5858         int err = 0;
5859
5860         if (!selinux_enabled)
5861                 goto out;
5862
5863         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5864
5865         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5866         if (err)
5867                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5868
5869 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5870         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5871         if (err)
5872                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5873 #endif  /* IPV6 */
5874
5875 out:
5876         return err;
5877 }
5878
5879 __initcall(selinux_nf_ip_init);
5880
5881 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5882 static void selinux_nf_ip_exit(void)
5883 {
5884         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5885
5886         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5887 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5888         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5889 #endif  /* IPV6 */
5890 }
5891 #endif
5892
5893 #else /* CONFIG_NETFILTER */
5894
5895 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5896 #define selinux_nf_ip_exit()
5897 #endif
5898
5899 #endif /* CONFIG_NETFILTER */
5900
5901 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5902 static int selinux_disabled;
5903
5904 int selinux_disable(void)
5905 {
5906         extern void exit_sel_fs(void);
5907
5908         if (ss_initialized) {
5909                 /* Not permitted after initial policy load. */
5910                 return -EINVAL;
5911         }
5912
5913         if (selinux_disabled) {
5914                 /* Only do this once. */
5915                 return -EINVAL;
5916         }
5917
5918         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5919
5920         selinux_disabled = 1;
5921         selinux_enabled = 0;
5922
5923         /* Reset security_ops to the secondary module, dummy or capability. */
5924         security_ops = secondary_ops;
5925
5926         /* Unregister netfilter hooks. */
5927         selinux_nf_ip_exit();
5928
5929         /* Unregister selinuxfs. */
5930         exit_sel_fs();
5931
5932         return 0;
5933 }
5934 #endif