]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/selinux/hooks.c
selinux: remove secondary ops call to sb_umount
[net-next-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534
2535         if (flags & MS_REMOUNT)
2536                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2537                                            FILESYSTEM__REMOUNT, NULL);
2538         else
2539                 return dentry_has_perm(cred, path->mnt, path->dentry,
2540                                        FILE__MOUNTON);
2541 }
2542
2543 static int selinux_umount(struct vfsmount *mnt, int flags)
2544 {
2545         const struct cred *cred = current_cred();
2546
2547         return superblock_has_perm(cred, mnt->mnt_sb,
2548                                    FILESYSTEM__UNMOUNT, NULL);
2549 }
2550
2551 /* inode security operations */
2552
2553 static int selinux_inode_alloc_security(struct inode *inode)
2554 {
2555         return inode_alloc_security(inode);
2556 }
2557
2558 static void selinux_inode_free_security(struct inode *inode)
2559 {
2560         inode_free_security(inode);
2561 }
2562
2563 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2564                                        char **name, void **value,
2565                                        size_t *len)
2566 {
2567         const struct cred *cred = current_cred();
2568         const struct task_security_struct *tsec = cred->security;
2569         struct inode_security_struct *dsec;
2570         struct superblock_security_struct *sbsec;
2571         u32 sid, newsid, clen;
2572         int rc;
2573         char *namep = NULL, *context;
2574
2575         dsec = dir->i_security;
2576         sbsec = dir->i_sb->s_security;
2577
2578         sid = tsec->sid;
2579         newsid = tsec->create_sid;
2580
2581         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2582                 rc = security_transition_sid(sid, dsec->sid,
2583                                              inode_mode_to_security_class(inode->i_mode),
2584                                              &newsid);
2585                 if (rc) {
2586                         printk(KERN_WARNING "%s:  "
2587                                "security_transition_sid failed, rc=%d (dev=%s "
2588                                "ino=%ld)\n",
2589                                __func__,
2590                                -rc, inode->i_sb->s_id, inode->i_ino);
2591                         return rc;
2592                 }
2593         }
2594
2595         /* Possibly defer initialization to selinux_complete_init. */
2596         if (sbsec->flags & SE_SBINITIALIZED) {
2597                 struct inode_security_struct *isec = inode->i_security;
2598                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2599                 isec->sid = newsid;
2600                 isec->initialized = 1;
2601         }
2602
2603         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2604                 return -EOPNOTSUPP;
2605
2606         if (name) {
2607                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2608                 if (!namep)
2609                         return -ENOMEM;
2610                 *name = namep;
2611         }
2612
2613         if (value && len) {
2614                 rc = security_sid_to_context_force(newsid, &context, &clen);
2615                 if (rc) {
2616                         kfree(namep);
2617                         return rc;
2618                 }
2619                 *value = context;
2620                 *len = clen;
2621         }
2622
2623         return 0;
2624 }
2625
2626 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_FILE);
2629 }
2630
2631 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2632 {
2633         int rc;
2634
2635         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2636         if (rc)
2637                 return rc;
2638         return may_link(dir, old_dentry, MAY_LINK);
2639 }
2640
2641 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2642 {
2643         int rc;
2644
2645         rc = secondary_ops->inode_unlink(dir, dentry);
2646         if (rc)
2647                 return rc;
2648         return may_link(dir, dentry, MAY_UNLINK);
2649 }
2650
2651 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2652 {
2653         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2654 }
2655
2656 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2657 {
2658         return may_create(dir, dentry, SECCLASS_DIR);
2659 }
2660
2661 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2662 {
2663         return may_link(dir, dentry, MAY_RMDIR);
2664 }
2665
2666 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2667 {
2668         int rc;
2669
2670         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2671         if (rc)
2672                 return rc;
2673
2674         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2675 }
2676
2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2678                                 struct inode *new_inode, struct dentry *new_dentry)
2679 {
2680         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2681 }
2682
2683 static int selinux_inode_readlink(struct dentry *dentry)
2684 {
2685         const struct cred *cred = current_cred();
2686
2687         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2688 }
2689
2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2691 {
2692         const struct cred *cred = current_cred();
2693         int rc;
2694
2695         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2696         if (rc)
2697                 return rc;
2698         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2699 }
2700
2701 static int selinux_inode_permission(struct inode *inode, int mask)
2702 {
2703         const struct cred *cred = current_cred();
2704         int rc;
2705
2706         rc = secondary_ops->inode_permission(inode, mask);
2707         if (rc)
2708                 return rc;
2709
2710         if (!mask) {
2711                 /* No permission to check.  Existence test. */
2712                 return 0;
2713         }
2714
2715         return inode_has_perm(cred, inode,
2716                               file_mask_to_av(inode->i_mode, mask), NULL);
2717 }
2718
2719 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2720 {
2721         const struct cred *cred = current_cred();
2722         int rc;
2723
2724         rc = secondary_ops->inode_setattr(dentry, iattr);
2725         if (rc)
2726                 return rc;
2727
2728         if (iattr->ia_valid & ATTR_FORCE)
2729                 return 0;
2730
2731         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2732                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2733                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2734
2735         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2736 }
2737
2738 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2739 {
2740         const struct cred *cred = current_cred();
2741
2742         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2743 }
2744
2745 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2746 {
2747         const struct cred *cred = current_cred();
2748
2749         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2750                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2751                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2752                         if (!capable(CAP_SETFCAP))
2753                                 return -EPERM;
2754                 } else if (!capable(CAP_SYS_ADMIN)) {
2755                         /* A different attribute in the security namespace.
2756                            Restrict to administrator. */
2757                         return -EPERM;
2758                 }
2759         }
2760
2761         /* Not an attribute we recognize, so just check the
2762            ordinary setattr permission. */
2763         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2764 }
2765
2766 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2767                                   const void *value, size_t size, int flags)
2768 {
2769         struct inode *inode = dentry->d_inode;
2770         struct inode_security_struct *isec = inode->i_security;
2771         struct superblock_security_struct *sbsec;
2772         struct avc_audit_data ad;
2773         u32 newsid, sid = current_sid();
2774         int rc = 0;
2775
2776         if (strcmp(name, XATTR_NAME_SELINUX))
2777                 return selinux_inode_setotherxattr(dentry, name);
2778
2779         sbsec = inode->i_sb->s_security;
2780         if (!(sbsec->flags & SE_SBLABELSUPP))
2781                 return -EOPNOTSUPP;
2782
2783         if (!is_owner_or_cap(inode))
2784                 return -EPERM;
2785
2786         AVC_AUDIT_DATA_INIT(&ad, FS);
2787         ad.u.fs.path.dentry = dentry;
2788
2789         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2790                           FILE__RELABELFROM, &ad);
2791         if (rc)
2792                 return rc;
2793
2794         rc = security_context_to_sid(value, size, &newsid);
2795         if (rc == -EINVAL) {
2796                 if (!capable(CAP_MAC_ADMIN))
2797                         return rc;
2798                 rc = security_context_to_sid_force(value, size, &newsid);
2799         }
2800         if (rc)
2801                 return rc;
2802
2803         rc = avc_has_perm(sid, newsid, isec->sclass,
2804                           FILE__RELABELTO, &ad);
2805         if (rc)
2806                 return rc;
2807
2808         rc = security_validate_transition(isec->sid, newsid, sid,
2809                                           isec->sclass);
2810         if (rc)
2811                 return rc;
2812
2813         return avc_has_perm(newsid,
2814                             sbsec->sid,
2815                             SECCLASS_FILESYSTEM,
2816                             FILESYSTEM__ASSOCIATE,
2817                             &ad);
2818 }
2819
2820 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2821                                         const void *value, size_t size,
2822                                         int flags)
2823 {
2824         struct inode *inode = dentry->d_inode;
2825         struct inode_security_struct *isec = inode->i_security;
2826         u32 newsid;
2827         int rc;
2828
2829         if (strcmp(name, XATTR_NAME_SELINUX)) {
2830                 /* Not an attribute we recognize, so nothing to do. */
2831                 return;
2832         }
2833
2834         rc = security_context_to_sid_force(value, size, &newsid);
2835         if (rc) {
2836                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2837                        "for (%s, %lu), rc=%d\n",
2838                        inode->i_sb->s_id, inode->i_ino, -rc);
2839                 return;
2840         }
2841
2842         isec->sid = newsid;
2843         return;
2844 }
2845
2846 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2847 {
2848         const struct cred *cred = current_cred();
2849
2850         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2851 }
2852
2853 static int selinux_inode_listxattr(struct dentry *dentry)
2854 {
2855         const struct cred *cred = current_cred();
2856
2857         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2858 }
2859
2860 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2861 {
2862         if (strcmp(name, XATTR_NAME_SELINUX))
2863                 return selinux_inode_setotherxattr(dentry, name);
2864
2865         /* No one is allowed to remove a SELinux security label.
2866            You can change the label, but all data must be labeled. */
2867         return -EACCES;
2868 }
2869
2870 /*
2871  * Copy the inode security context value to the user.
2872  *
2873  * Permission check is handled by selinux_inode_getxattr hook.
2874  */
2875 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2876 {
2877         u32 size;
2878         int error;
2879         char *context = NULL;
2880         struct inode_security_struct *isec = inode->i_security;
2881
2882         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2883                 return -EOPNOTSUPP;
2884
2885         /*
2886          * If the caller has CAP_MAC_ADMIN, then get the raw context
2887          * value even if it is not defined by current policy; otherwise,
2888          * use the in-core value under current policy.
2889          * Use the non-auditing forms of the permission checks since
2890          * getxattr may be called by unprivileged processes commonly
2891          * and lack of permission just means that we fall back to the
2892          * in-core context value, not a denial.
2893          */
2894         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2895                                 SECURITY_CAP_NOAUDIT);
2896         if (!error)
2897                 error = security_sid_to_context_force(isec->sid, &context,
2898                                                       &size);
2899         else
2900                 error = security_sid_to_context(isec->sid, &context, &size);
2901         if (error)
2902                 return error;
2903         error = size;
2904         if (alloc) {
2905                 *buffer = context;
2906                 goto out_nofree;
2907         }
2908         kfree(context);
2909 out_nofree:
2910         return error;
2911 }
2912
2913 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2914                                      const void *value, size_t size, int flags)
2915 {
2916         struct inode_security_struct *isec = inode->i_security;
2917         u32 newsid;
2918         int rc;
2919
2920         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2921                 return -EOPNOTSUPP;
2922
2923         if (!value || !size)
2924                 return -EACCES;
2925
2926         rc = security_context_to_sid((void *)value, size, &newsid);
2927         if (rc)
2928                 return rc;
2929
2930         isec->sid = newsid;
2931         return 0;
2932 }
2933
2934 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2935 {
2936         const int len = sizeof(XATTR_NAME_SELINUX);
2937         if (buffer && len <= buffer_size)
2938                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2939         return len;
2940 }
2941
2942 static int selinux_inode_need_killpriv(struct dentry *dentry)
2943 {
2944         return secondary_ops->inode_need_killpriv(dentry);
2945 }
2946
2947 static int selinux_inode_killpriv(struct dentry *dentry)
2948 {
2949         return secondary_ops->inode_killpriv(dentry);
2950 }
2951
2952 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2953 {
2954         struct inode_security_struct *isec = inode->i_security;
2955         *secid = isec->sid;
2956 }
2957
2958 /* file security operations */
2959
2960 static int selinux_revalidate_file_permission(struct file *file, int mask)
2961 {
2962         const struct cred *cred = current_cred();
2963         int rc;
2964         struct inode *inode = file->f_path.dentry->d_inode;
2965
2966         if (!mask) {
2967                 /* No permission to check.  Existence test. */
2968                 return 0;
2969         }
2970
2971         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2972         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2973                 mask |= MAY_APPEND;
2974
2975         rc = file_has_perm(cred, file,
2976                            file_mask_to_av(inode->i_mode, mask));
2977         if (rc)
2978                 return rc;
2979
2980         return selinux_netlbl_inode_permission(inode, mask);
2981 }
2982
2983 static int selinux_file_permission(struct file *file, int mask)
2984 {
2985         struct inode *inode = file->f_path.dentry->d_inode;
2986         struct file_security_struct *fsec = file->f_security;
2987         struct inode_security_struct *isec = inode->i_security;
2988         u32 sid = current_sid();
2989
2990         if (!mask) {
2991                 /* No permission to check.  Existence test. */
2992                 return 0;
2993         }
2994
2995         if (sid == fsec->sid && fsec->isid == isec->sid
2996             && fsec->pseqno == avc_policy_seqno())
2997                 return selinux_netlbl_inode_permission(inode, mask);
2998
2999         return selinux_revalidate_file_permission(file, mask);
3000 }
3001
3002 static int selinux_file_alloc_security(struct file *file)
3003 {
3004         return file_alloc_security(file);
3005 }
3006
3007 static void selinux_file_free_security(struct file *file)
3008 {
3009         file_free_security(file);
3010 }
3011
3012 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3013                               unsigned long arg)
3014 {
3015         const struct cred *cred = current_cred();
3016         u32 av = 0;
3017
3018         if (_IOC_DIR(cmd) & _IOC_WRITE)
3019                 av |= FILE__WRITE;
3020         if (_IOC_DIR(cmd) & _IOC_READ)
3021                 av |= FILE__READ;
3022         if (!av)
3023                 av = FILE__IOCTL;
3024
3025         return file_has_perm(cred, file, av);
3026 }
3027
3028 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3029 {
3030         const struct cred *cred = current_cred();
3031         int rc = 0;
3032
3033 #ifndef CONFIG_PPC32
3034         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3035                 /*
3036                  * We are making executable an anonymous mapping or a
3037                  * private file mapping that will also be writable.
3038                  * This has an additional check.
3039                  */
3040                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3041                 if (rc)
3042                         goto error;
3043         }
3044 #endif
3045
3046         if (file) {
3047                 /* read access is always possible with a mapping */
3048                 u32 av = FILE__READ;
3049
3050                 /* write access only matters if the mapping is shared */
3051                 if (shared && (prot & PROT_WRITE))
3052                         av |= FILE__WRITE;
3053
3054                 if (prot & PROT_EXEC)
3055                         av |= FILE__EXECUTE;
3056
3057                 return file_has_perm(cred, file, av);
3058         }
3059
3060 error:
3061         return rc;
3062 }
3063
3064 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3065                              unsigned long prot, unsigned long flags,
3066                              unsigned long addr, unsigned long addr_only)
3067 {
3068         int rc = 0;
3069         u32 sid = current_sid();
3070
3071         if (addr < mmap_min_addr)
3072                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3073                                   MEMPROTECT__MMAP_ZERO, NULL);
3074         if (rc || addr_only)
3075                 return rc;
3076
3077         if (selinux_checkreqprot)
3078                 prot = reqprot;
3079
3080         return file_map_prot_check(file, prot,
3081                                    (flags & MAP_TYPE) == MAP_SHARED);
3082 }
3083
3084 static int selinux_file_mprotect(struct vm_area_struct *vma,
3085                                  unsigned long reqprot,
3086                                  unsigned long prot)
3087 {
3088         const struct cred *cred = current_cred();
3089         int rc;
3090
3091         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3092         if (rc)
3093                 return rc;
3094
3095         if (selinux_checkreqprot)
3096                 prot = reqprot;
3097
3098 #ifndef CONFIG_PPC32
3099         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3100                 rc = 0;
3101                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3102                     vma->vm_end <= vma->vm_mm->brk) {
3103                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3104                 } else if (!vma->vm_file &&
3105                            vma->vm_start <= vma->vm_mm->start_stack &&
3106                            vma->vm_end >= vma->vm_mm->start_stack) {
3107                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3108                 } else if (vma->vm_file && vma->anon_vma) {
3109                         /*
3110                          * We are making executable a file mapping that has
3111                          * had some COW done. Since pages might have been
3112                          * written, check ability to execute the possibly
3113                          * modified content.  This typically should only
3114                          * occur for text relocations.
3115                          */
3116                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3117                 }
3118                 if (rc)
3119                         return rc;
3120         }
3121 #endif
3122
3123         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3124 }
3125
3126 static int selinux_file_lock(struct file *file, unsigned int cmd)
3127 {
3128         const struct cred *cred = current_cred();
3129
3130         return file_has_perm(cred, file, FILE__LOCK);
3131 }
3132
3133 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3134                               unsigned long arg)
3135 {
3136         const struct cred *cred = current_cred();
3137         int err = 0;
3138
3139         switch (cmd) {
3140         case F_SETFL:
3141                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3142                         err = -EINVAL;
3143                         break;
3144                 }
3145
3146                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3147                         err = file_has_perm(cred, file, FILE__WRITE);
3148                         break;
3149                 }
3150                 /* fall through */
3151         case F_SETOWN:
3152         case F_SETSIG:
3153         case F_GETFL:
3154         case F_GETOWN:
3155         case F_GETSIG:
3156                 /* Just check FD__USE permission */
3157                 err = file_has_perm(cred, file, 0);
3158                 break;
3159         case F_GETLK:
3160         case F_SETLK:
3161         case F_SETLKW:
3162 #if BITS_PER_LONG == 32
3163         case F_GETLK64:
3164         case F_SETLK64:
3165         case F_SETLKW64:
3166 #endif
3167                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3168                         err = -EINVAL;
3169                         break;
3170                 }
3171                 err = file_has_perm(cred, file, FILE__LOCK);
3172                 break;
3173         }
3174
3175         return err;
3176 }
3177
3178 static int selinux_file_set_fowner(struct file *file)
3179 {
3180         struct file_security_struct *fsec;
3181
3182         fsec = file->f_security;
3183         fsec->fown_sid = current_sid();
3184
3185         return 0;
3186 }
3187
3188 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3189                                        struct fown_struct *fown, int signum)
3190 {
3191         struct file *file;
3192         u32 sid = current_sid();
3193         u32 perm;
3194         struct file_security_struct *fsec;
3195
3196         /* struct fown_struct is never outside the context of a struct file */
3197         file = container_of(fown, struct file, f_owner);
3198
3199         fsec = file->f_security;
3200
3201         if (!signum)
3202                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3203         else
3204                 perm = signal_to_av(signum);
3205
3206         return avc_has_perm(fsec->fown_sid, sid,
3207                             SECCLASS_PROCESS, perm, NULL);
3208 }
3209
3210 static int selinux_file_receive(struct file *file)
3211 {
3212         const struct cred *cred = current_cred();
3213
3214         return file_has_perm(cred, file, file_to_av(file));
3215 }
3216
3217 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3218 {
3219         struct file_security_struct *fsec;
3220         struct inode *inode;
3221         struct inode_security_struct *isec;
3222
3223         inode = file->f_path.dentry->d_inode;
3224         fsec = file->f_security;
3225         isec = inode->i_security;
3226         /*
3227          * Save inode label and policy sequence number
3228          * at open-time so that selinux_file_permission
3229          * can determine whether revalidation is necessary.
3230          * Task label is already saved in the file security
3231          * struct as its SID.
3232          */
3233         fsec->isid = isec->sid;
3234         fsec->pseqno = avc_policy_seqno();
3235         /*
3236          * Since the inode label or policy seqno may have changed
3237          * between the selinux_inode_permission check and the saving
3238          * of state above, recheck that access is still permitted.
3239          * Otherwise, access might never be revalidated against the
3240          * new inode label or new policy.
3241          * This check is not redundant - do not remove.
3242          */
3243         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3244 }
3245
3246 /* task security operations */
3247
3248 static int selinux_task_create(unsigned long clone_flags)
3249 {
3250         int rc;
3251
3252         rc = secondary_ops->task_create(clone_flags);
3253         if (rc)
3254                 return rc;
3255
3256         return current_has_perm(current, PROCESS__FORK);
3257 }
3258
3259 /*
3260  * detach and free the LSM part of a set of credentials
3261  */
3262 static void selinux_cred_free(struct cred *cred)
3263 {
3264         struct task_security_struct *tsec = cred->security;
3265         cred->security = NULL;
3266         kfree(tsec);
3267 }
3268
3269 /*
3270  * prepare a new set of credentials for modification
3271  */
3272 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3273                                 gfp_t gfp)
3274 {
3275         const struct task_security_struct *old_tsec;
3276         struct task_security_struct *tsec;
3277
3278         old_tsec = old->security;
3279
3280         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3281         if (!tsec)
3282                 return -ENOMEM;
3283
3284         new->security = tsec;
3285         return 0;
3286 }
3287
3288 /*
3289  * commit new credentials
3290  */
3291 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3292 {
3293         secondary_ops->cred_commit(new, old);
3294 }
3295
3296 /*
3297  * set the security data for a kernel service
3298  * - all the creation contexts are set to unlabelled
3299  */
3300 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3301 {
3302         struct task_security_struct *tsec = new->security;
3303         u32 sid = current_sid();
3304         int ret;
3305
3306         ret = avc_has_perm(sid, secid,
3307                            SECCLASS_KERNEL_SERVICE,
3308                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3309                            NULL);
3310         if (ret == 0) {
3311                 tsec->sid = secid;
3312                 tsec->create_sid = 0;
3313                 tsec->keycreate_sid = 0;
3314                 tsec->sockcreate_sid = 0;
3315         }
3316         return ret;
3317 }
3318
3319 /*
3320  * set the file creation context in a security record to the same as the
3321  * objective context of the specified inode
3322  */
3323 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3324 {
3325         struct inode_security_struct *isec = inode->i_security;
3326         struct task_security_struct *tsec = new->security;
3327         u32 sid = current_sid();
3328         int ret;
3329
3330         ret = avc_has_perm(sid, isec->sid,
3331                            SECCLASS_KERNEL_SERVICE,
3332                            KERNEL_SERVICE__CREATE_FILES_AS,
3333                            NULL);
3334
3335         if (ret == 0)
3336                 tsec->create_sid = isec->sid;
3337         return 0;
3338 }
3339
3340 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3341 {
3342         /* Since setuid only affects the current process, and
3343            since the SELinux controls are not based on the Linux
3344            identity attributes, SELinux does not need to control
3345            this operation.  However, SELinux does control the use
3346            of the CAP_SETUID and CAP_SETGID capabilities using the
3347            capable hook. */
3348         return 0;
3349 }
3350
3351 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3352                                    int flags)
3353 {
3354         return secondary_ops->task_fix_setuid(new, old, flags);
3355 }
3356
3357 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3358 {
3359         /* See the comment for setuid above. */
3360         return 0;
3361 }
3362
3363 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3364 {
3365         return current_has_perm(p, PROCESS__SETPGID);
3366 }
3367
3368 static int selinux_task_getpgid(struct task_struct *p)
3369 {
3370         return current_has_perm(p, PROCESS__GETPGID);
3371 }
3372
3373 static int selinux_task_getsid(struct task_struct *p)
3374 {
3375         return current_has_perm(p, PROCESS__GETSESSION);
3376 }
3377
3378 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3379 {
3380         *secid = task_sid(p);
3381 }
3382
3383 static int selinux_task_setgroups(struct group_info *group_info)
3384 {
3385         /* See the comment for setuid above. */
3386         return 0;
3387 }
3388
3389 static int selinux_task_setnice(struct task_struct *p, int nice)
3390 {
3391         int rc;
3392
3393         rc = secondary_ops->task_setnice(p, nice);
3394         if (rc)
3395                 return rc;
3396
3397         return current_has_perm(p, PROCESS__SETSCHED);
3398 }
3399
3400 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3401 {
3402         int rc;
3403
3404         rc = secondary_ops->task_setioprio(p, ioprio);
3405         if (rc)
3406                 return rc;
3407
3408         return current_has_perm(p, PROCESS__SETSCHED);
3409 }
3410
3411 static int selinux_task_getioprio(struct task_struct *p)
3412 {
3413         return current_has_perm(p, PROCESS__GETSCHED);
3414 }
3415
3416 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3417 {
3418         struct rlimit *old_rlim = current->signal->rlim + resource;
3419         int rc;
3420
3421         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3422         if (rc)
3423                 return rc;
3424
3425         /* Control the ability to change the hard limit (whether
3426            lowering or raising it), so that the hard limit can
3427            later be used as a safe reset point for the soft limit
3428            upon context transitions.  See selinux_bprm_committing_creds. */
3429         if (old_rlim->rlim_max != new_rlim->rlim_max)
3430                 return current_has_perm(current, PROCESS__SETRLIMIT);
3431
3432         return 0;
3433 }
3434
3435 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3436 {
3437         int rc;
3438
3439         rc = secondary_ops->task_setscheduler(p, policy, lp);
3440         if (rc)
3441                 return rc;
3442
3443         return current_has_perm(p, PROCESS__SETSCHED);
3444 }
3445
3446 static int selinux_task_getscheduler(struct task_struct *p)
3447 {
3448         return current_has_perm(p, PROCESS__GETSCHED);
3449 }
3450
3451 static int selinux_task_movememory(struct task_struct *p)
3452 {
3453         return current_has_perm(p, PROCESS__SETSCHED);
3454 }
3455
3456 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3457                                 int sig, u32 secid)
3458 {
3459         u32 perm;
3460         int rc;
3461
3462         rc = secondary_ops->task_kill(p, info, sig, secid);
3463         if (rc)
3464                 return rc;
3465
3466         if (!sig)
3467                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3468         else
3469                 perm = signal_to_av(sig);
3470         if (secid)
3471                 rc = avc_has_perm(secid, task_sid(p),
3472                                   SECCLASS_PROCESS, perm, NULL);
3473         else
3474                 rc = current_has_perm(p, perm);
3475         return rc;
3476 }
3477
3478 static int selinux_task_prctl(int option,
3479                               unsigned long arg2,
3480                               unsigned long arg3,
3481                               unsigned long arg4,
3482                               unsigned long arg5)
3483 {
3484         /* The current prctl operations do not appear to require
3485            any SELinux controls since they merely observe or modify
3486            the state of the current process. */
3487         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3488 }
3489
3490 static int selinux_task_wait(struct task_struct *p)
3491 {
3492         return task_has_perm(p, current, PROCESS__SIGCHLD);
3493 }
3494
3495 static void selinux_task_to_inode(struct task_struct *p,
3496                                   struct inode *inode)
3497 {
3498         struct inode_security_struct *isec = inode->i_security;
3499         u32 sid = task_sid(p);
3500
3501         isec->sid = sid;
3502         isec->initialized = 1;
3503 }
3504
3505 /* Returns error only if unable to parse addresses */
3506 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3507                         struct avc_audit_data *ad, u8 *proto)
3508 {
3509         int offset, ihlen, ret = -EINVAL;
3510         struct iphdr _iph, *ih;
3511
3512         offset = skb_network_offset(skb);
3513         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3514         if (ih == NULL)
3515                 goto out;
3516
3517         ihlen = ih->ihl * 4;
3518         if (ihlen < sizeof(_iph))
3519                 goto out;
3520
3521         ad->u.net.v4info.saddr = ih->saddr;
3522         ad->u.net.v4info.daddr = ih->daddr;
3523         ret = 0;
3524
3525         if (proto)
3526                 *proto = ih->protocol;
3527
3528         switch (ih->protocol) {
3529         case IPPROTO_TCP: {
3530                 struct tcphdr _tcph, *th;
3531
3532                 if (ntohs(ih->frag_off) & IP_OFFSET)
3533                         break;
3534
3535                 offset += ihlen;
3536                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3537                 if (th == NULL)
3538                         break;
3539
3540                 ad->u.net.sport = th->source;
3541                 ad->u.net.dport = th->dest;
3542                 break;
3543         }
3544
3545         case IPPROTO_UDP: {
3546                 struct udphdr _udph, *uh;
3547
3548                 if (ntohs(ih->frag_off) & IP_OFFSET)
3549                         break;
3550
3551                 offset += ihlen;
3552                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3553                 if (uh == NULL)
3554                         break;
3555
3556                 ad->u.net.sport = uh->source;
3557                 ad->u.net.dport = uh->dest;
3558                 break;
3559         }
3560
3561         case IPPROTO_DCCP: {
3562                 struct dccp_hdr _dccph, *dh;
3563
3564                 if (ntohs(ih->frag_off) & IP_OFFSET)
3565                         break;
3566
3567                 offset += ihlen;
3568                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3569                 if (dh == NULL)
3570                         break;
3571
3572                 ad->u.net.sport = dh->dccph_sport;
3573                 ad->u.net.dport = dh->dccph_dport;
3574                 break;
3575         }
3576
3577         default:
3578                 break;
3579         }
3580 out:
3581         return ret;
3582 }
3583
3584 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3585
3586 /* Returns error only if unable to parse addresses */
3587 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3588                         struct avc_audit_data *ad, u8 *proto)
3589 {
3590         u8 nexthdr;
3591         int ret = -EINVAL, offset;
3592         struct ipv6hdr _ipv6h, *ip6;
3593
3594         offset = skb_network_offset(skb);
3595         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3596         if (ip6 == NULL)
3597                 goto out;
3598
3599         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3600         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3601         ret = 0;
3602
3603         nexthdr = ip6->nexthdr;
3604         offset += sizeof(_ipv6h);
3605         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3606         if (offset < 0)
3607                 goto out;
3608
3609         if (proto)
3610                 *proto = nexthdr;
3611
3612         switch (nexthdr) {
3613         case IPPROTO_TCP: {
3614                 struct tcphdr _tcph, *th;
3615
3616                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3617                 if (th == NULL)
3618                         break;
3619
3620                 ad->u.net.sport = th->source;
3621                 ad->u.net.dport = th->dest;
3622                 break;
3623         }
3624
3625         case IPPROTO_UDP: {
3626                 struct udphdr _udph, *uh;
3627
3628                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3629                 if (uh == NULL)
3630                         break;
3631
3632                 ad->u.net.sport = uh->source;
3633                 ad->u.net.dport = uh->dest;
3634                 break;
3635         }
3636
3637         case IPPROTO_DCCP: {
3638                 struct dccp_hdr _dccph, *dh;
3639
3640                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3641                 if (dh == NULL)
3642                         break;
3643
3644                 ad->u.net.sport = dh->dccph_sport;
3645                 ad->u.net.dport = dh->dccph_dport;
3646                 break;
3647         }
3648
3649         /* includes fragments */
3650         default:
3651                 break;
3652         }
3653 out:
3654         return ret;
3655 }
3656
3657 #endif /* IPV6 */
3658
3659 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3660                              char **_addrp, int src, u8 *proto)
3661 {
3662         char *addrp;
3663         int ret;
3664
3665         switch (ad->u.net.family) {
3666         case PF_INET:
3667                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3668                 if (ret)
3669                         goto parse_error;
3670                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3671                                        &ad->u.net.v4info.daddr);
3672                 goto okay;
3673
3674 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3675         case PF_INET6:
3676                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3677                 if (ret)
3678                         goto parse_error;
3679                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3680                                        &ad->u.net.v6info.daddr);
3681                 goto okay;
3682 #endif  /* IPV6 */
3683         default:
3684                 addrp = NULL;
3685                 goto okay;
3686         }
3687
3688 parse_error:
3689         printk(KERN_WARNING
3690                "SELinux: failure in selinux_parse_skb(),"
3691                " unable to parse packet\n");
3692         return ret;
3693
3694 okay:
3695         if (_addrp)
3696                 *_addrp = addrp;
3697         return 0;
3698 }
3699
3700 /**
3701  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3702  * @skb: the packet
3703  * @family: protocol family
3704  * @sid: the packet's peer label SID
3705  *
3706  * Description:
3707  * Check the various different forms of network peer labeling and determine
3708  * the peer label/SID for the packet; most of the magic actually occurs in
3709  * the security server function security_net_peersid_cmp().  The function
3710  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3711  * or -EACCES if @sid is invalid due to inconsistencies with the different
3712  * peer labels.
3713  *
3714  */
3715 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3716 {
3717         int err;
3718         u32 xfrm_sid;
3719         u32 nlbl_sid;
3720         u32 nlbl_type;
3721
3722         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3723         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3724
3725         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3726         if (unlikely(err)) {
3727                 printk(KERN_WARNING
3728                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3729                        " unable to determine packet's peer label\n");
3730                 return -EACCES;
3731         }
3732
3733         return 0;
3734 }
3735
3736 /* socket security operations */
3737 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3738                            u32 perms)
3739 {
3740         struct inode_security_struct *isec;
3741         struct avc_audit_data ad;
3742         u32 sid;
3743         int err = 0;
3744
3745         isec = SOCK_INODE(sock)->i_security;
3746
3747         if (isec->sid == SECINITSID_KERNEL)
3748                 goto out;
3749         sid = task_sid(task);
3750
3751         AVC_AUDIT_DATA_INIT(&ad, NET);
3752         ad.u.net.sk = sock->sk;
3753         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3754
3755 out:
3756         return err;
3757 }
3758
3759 static int selinux_socket_create(int family, int type,
3760                                  int protocol, int kern)
3761 {
3762         const struct cred *cred = current_cred();
3763         const struct task_security_struct *tsec = cred->security;
3764         u32 sid, newsid;
3765         u16 secclass;
3766         int err = 0;
3767
3768         if (kern)
3769                 goto out;
3770
3771         sid = tsec->sid;
3772         newsid = tsec->sockcreate_sid ?: sid;
3773
3774         secclass = socket_type_to_security_class(family, type, protocol);
3775         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3776
3777 out:
3778         return err;
3779 }
3780
3781 static int selinux_socket_post_create(struct socket *sock, int family,
3782                                       int type, int protocol, int kern)
3783 {
3784         const struct cred *cred = current_cred();
3785         const struct task_security_struct *tsec = cred->security;
3786         struct inode_security_struct *isec;
3787         struct sk_security_struct *sksec;
3788         u32 sid, newsid;
3789         int err = 0;
3790
3791         sid = tsec->sid;
3792         newsid = tsec->sockcreate_sid;
3793
3794         isec = SOCK_INODE(sock)->i_security;
3795
3796         if (kern)
3797                 isec->sid = SECINITSID_KERNEL;
3798         else if (newsid)
3799                 isec->sid = newsid;
3800         else
3801                 isec->sid = sid;
3802
3803         isec->sclass = socket_type_to_security_class(family, type, protocol);
3804         isec->initialized = 1;
3805
3806         if (sock->sk) {
3807                 sksec = sock->sk->sk_security;
3808                 sksec->sid = isec->sid;
3809                 sksec->sclass = isec->sclass;
3810                 err = selinux_netlbl_socket_post_create(sock);
3811         }
3812
3813         return err;
3814 }
3815
3816 /* Range of port numbers used to automatically bind.
3817    Need to determine whether we should perform a name_bind
3818    permission check between the socket and the port number. */
3819
3820 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3821 {
3822         u16 family;
3823         int err;
3824
3825         err = socket_has_perm(current, sock, SOCKET__BIND);
3826         if (err)
3827                 goto out;
3828
3829         /*
3830          * If PF_INET or PF_INET6, check name_bind permission for the port.
3831          * Multiple address binding for SCTP is not supported yet: we just
3832          * check the first address now.
3833          */
3834         family = sock->sk->sk_family;
3835         if (family == PF_INET || family == PF_INET6) {
3836                 char *addrp;
3837                 struct inode_security_struct *isec;
3838                 struct avc_audit_data ad;
3839                 struct sockaddr_in *addr4 = NULL;
3840                 struct sockaddr_in6 *addr6 = NULL;
3841                 unsigned short snum;
3842                 struct sock *sk = sock->sk;
3843                 u32 sid, node_perm;
3844
3845                 isec = SOCK_INODE(sock)->i_security;
3846
3847                 if (family == PF_INET) {
3848                         addr4 = (struct sockaddr_in *)address;
3849                         snum = ntohs(addr4->sin_port);
3850                         addrp = (char *)&addr4->sin_addr.s_addr;
3851                 } else {
3852                         addr6 = (struct sockaddr_in6 *)address;
3853                         snum = ntohs(addr6->sin6_port);
3854                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3855                 }
3856
3857                 if (snum) {
3858                         int low, high;
3859
3860                         inet_get_local_port_range(&low, &high);
3861
3862                         if (snum < max(PROT_SOCK, low) || snum > high) {
3863                                 err = sel_netport_sid(sk->sk_protocol,
3864                                                       snum, &sid);
3865                                 if (err)
3866                                         goto out;
3867                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3868                                 ad.u.net.sport = htons(snum);
3869                                 ad.u.net.family = family;
3870                                 err = avc_has_perm(isec->sid, sid,
3871                                                    isec->sclass,
3872                                                    SOCKET__NAME_BIND, &ad);
3873                                 if (err)
3874                                         goto out;
3875                         }
3876                 }
3877
3878                 switch (isec->sclass) {
3879                 case SECCLASS_TCP_SOCKET:
3880                         node_perm = TCP_SOCKET__NODE_BIND;
3881                         break;
3882
3883                 case SECCLASS_UDP_SOCKET:
3884                         node_perm = UDP_SOCKET__NODE_BIND;
3885                         break;
3886
3887                 case SECCLASS_DCCP_SOCKET:
3888                         node_perm = DCCP_SOCKET__NODE_BIND;
3889                         break;
3890
3891                 default:
3892                         node_perm = RAWIP_SOCKET__NODE_BIND;
3893                         break;
3894                 }
3895
3896                 err = sel_netnode_sid(addrp, family, &sid);
3897                 if (err)
3898                         goto out;
3899
3900                 AVC_AUDIT_DATA_INIT(&ad, NET);
3901                 ad.u.net.sport = htons(snum);
3902                 ad.u.net.family = family;
3903
3904                 if (family == PF_INET)
3905                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3906                 else
3907                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3908
3909                 err = avc_has_perm(isec->sid, sid,
3910                                    isec->sclass, node_perm, &ad);
3911                 if (err)
3912                         goto out;
3913         }
3914 out:
3915         return err;
3916 }
3917
3918 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3919 {
3920         struct sock *sk = sock->sk;
3921         struct inode_security_struct *isec;
3922         int err;
3923
3924         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3925         if (err)
3926                 return err;
3927
3928         /*
3929          * If a TCP or DCCP socket, check name_connect permission for the port.
3930          */
3931         isec = SOCK_INODE(sock)->i_security;
3932         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3933             isec->sclass == SECCLASS_DCCP_SOCKET) {
3934                 struct avc_audit_data ad;
3935                 struct sockaddr_in *addr4 = NULL;
3936                 struct sockaddr_in6 *addr6 = NULL;
3937                 unsigned short snum;
3938                 u32 sid, perm;
3939
3940                 if (sk->sk_family == PF_INET) {
3941                         addr4 = (struct sockaddr_in *)address;
3942                         if (addrlen < sizeof(struct sockaddr_in))
3943                                 return -EINVAL;
3944                         snum = ntohs(addr4->sin_port);
3945                 } else {
3946                         addr6 = (struct sockaddr_in6 *)address;
3947                         if (addrlen < SIN6_LEN_RFC2133)
3948                                 return -EINVAL;
3949                         snum = ntohs(addr6->sin6_port);
3950                 }
3951
3952                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3953                 if (err)
3954                         goto out;
3955
3956                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3957                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3958
3959                 AVC_AUDIT_DATA_INIT(&ad, NET);
3960                 ad.u.net.dport = htons(snum);
3961                 ad.u.net.family = sk->sk_family;
3962                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3963                 if (err)
3964                         goto out;
3965         }
3966
3967         err = selinux_netlbl_socket_connect(sk, address);
3968
3969 out:
3970         return err;
3971 }
3972
3973 static int selinux_socket_listen(struct socket *sock, int backlog)
3974 {
3975         return socket_has_perm(current, sock, SOCKET__LISTEN);
3976 }
3977
3978 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3979 {
3980         int err;
3981         struct inode_security_struct *isec;
3982         struct inode_security_struct *newisec;
3983
3984         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3985         if (err)
3986                 return err;
3987
3988         newisec = SOCK_INODE(newsock)->i_security;
3989
3990         isec = SOCK_INODE(sock)->i_security;
3991         newisec->sclass = isec->sclass;
3992         newisec->sid = isec->sid;
3993         newisec->initialized = 1;
3994
3995         return 0;
3996 }
3997
3998 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3999                                   int size)
4000 {
4001         int rc;
4002
4003         rc = socket_has_perm(current, sock, SOCKET__WRITE);
4004         if (rc)
4005                 return rc;
4006
4007         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
4008 }
4009
4010 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4011                                   int size, int flags)
4012 {
4013         return socket_has_perm(current, sock, SOCKET__READ);
4014 }
4015
4016 static int selinux_socket_getsockname(struct socket *sock)
4017 {
4018         return socket_has_perm(current, sock, SOCKET__GETATTR);
4019 }
4020
4021 static int selinux_socket_getpeername(struct socket *sock)
4022 {
4023         return socket_has_perm(current, sock, SOCKET__GETATTR);
4024 }
4025
4026 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4027 {
4028         int err;
4029
4030         err = socket_has_perm(current, sock, SOCKET__SETOPT);
4031         if (err)
4032                 return err;
4033
4034         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4035 }
4036
4037 static int selinux_socket_getsockopt(struct socket *sock, int level,
4038                                      int optname)
4039 {
4040         return socket_has_perm(current, sock, SOCKET__GETOPT);
4041 }
4042
4043 static int selinux_socket_shutdown(struct socket *sock, int how)
4044 {
4045         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4046 }
4047
4048 static int selinux_socket_unix_stream_connect(struct socket *sock,
4049                                               struct socket *other,
4050                                               struct sock *newsk)
4051 {
4052         struct sk_security_struct *ssec;
4053         struct inode_security_struct *isec;
4054         struct inode_security_struct *other_isec;
4055         struct avc_audit_data ad;
4056         int err;
4057
4058         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4059         if (err)
4060                 return err;
4061
4062         isec = SOCK_INODE(sock)->i_security;
4063         other_isec = SOCK_INODE(other)->i_security;
4064
4065         AVC_AUDIT_DATA_INIT(&ad, NET);
4066         ad.u.net.sk = other->sk;
4067
4068         err = avc_has_perm(isec->sid, other_isec->sid,
4069                            isec->sclass,
4070                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4071         if (err)
4072                 return err;
4073
4074         /* connecting socket */
4075         ssec = sock->sk->sk_security;
4076         ssec->peer_sid = other_isec->sid;
4077
4078         /* server child socket */
4079         ssec = newsk->sk_security;
4080         ssec->peer_sid = isec->sid;
4081         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4082
4083         return err;
4084 }
4085
4086 static int selinux_socket_unix_may_send(struct socket *sock,
4087                                         struct socket *other)
4088 {
4089         struct inode_security_struct *isec;
4090         struct inode_security_struct *other_isec;
4091         struct avc_audit_data ad;
4092         int err;
4093
4094         isec = SOCK_INODE(sock)->i_security;
4095         other_isec = SOCK_INODE(other)->i_security;
4096
4097         AVC_AUDIT_DATA_INIT(&ad, NET);
4098         ad.u.net.sk = other->sk;
4099
4100         err = avc_has_perm(isec->sid, other_isec->sid,
4101                            isec->sclass, SOCKET__SENDTO, &ad);
4102         if (err)
4103                 return err;
4104
4105         return 0;
4106 }
4107
4108 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4109                                     u32 peer_sid,
4110                                     struct avc_audit_data *ad)
4111 {
4112         int err;
4113         u32 if_sid;
4114         u32 node_sid;
4115
4116         err = sel_netif_sid(ifindex, &if_sid);
4117         if (err)
4118                 return err;
4119         err = avc_has_perm(peer_sid, if_sid,
4120                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4121         if (err)
4122                 return err;
4123
4124         err = sel_netnode_sid(addrp, family, &node_sid);
4125         if (err)
4126                 return err;
4127         return avc_has_perm(peer_sid, node_sid,
4128                             SECCLASS_NODE, NODE__RECVFROM, ad);
4129 }
4130
4131 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4132                                                 struct sk_buff *skb,
4133                                                 struct avc_audit_data *ad,
4134                                                 u16 family,
4135                                                 char *addrp)
4136 {
4137         int err;
4138         struct sk_security_struct *sksec = sk->sk_security;
4139         u16 sk_class;
4140         u32 netif_perm, node_perm, recv_perm;
4141         u32 port_sid, node_sid, if_sid, sk_sid;
4142
4143         sk_sid = sksec->sid;
4144         sk_class = sksec->sclass;
4145
4146         switch (sk_class) {
4147         case SECCLASS_UDP_SOCKET:
4148                 netif_perm = NETIF__UDP_RECV;
4149                 node_perm = NODE__UDP_RECV;
4150                 recv_perm = UDP_SOCKET__RECV_MSG;
4151                 break;
4152         case SECCLASS_TCP_SOCKET:
4153                 netif_perm = NETIF__TCP_RECV;
4154                 node_perm = NODE__TCP_RECV;
4155                 recv_perm = TCP_SOCKET__RECV_MSG;
4156                 break;
4157         case SECCLASS_DCCP_SOCKET:
4158                 netif_perm = NETIF__DCCP_RECV;
4159                 node_perm = NODE__DCCP_RECV;
4160                 recv_perm = DCCP_SOCKET__RECV_MSG;
4161                 break;
4162         default:
4163                 netif_perm = NETIF__RAWIP_RECV;
4164                 node_perm = NODE__RAWIP_RECV;
4165                 recv_perm = 0;
4166                 break;
4167         }
4168
4169         err = sel_netif_sid(skb->iif, &if_sid);
4170         if (err)
4171                 return err;
4172         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4173         if (err)
4174                 return err;
4175
4176         err = sel_netnode_sid(addrp, family, &node_sid);
4177         if (err)
4178                 return err;
4179         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4180         if (err)
4181                 return err;
4182
4183         if (!recv_perm)
4184                 return 0;
4185         err = sel_netport_sid(sk->sk_protocol,
4186                               ntohs(ad->u.net.sport), &port_sid);
4187         if (unlikely(err)) {
4188                 printk(KERN_WARNING
4189                        "SELinux: failure in"
4190                        " selinux_sock_rcv_skb_iptables_compat(),"
4191                        " network port label not found\n");
4192                 return err;
4193         }
4194         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4195 }
4196
4197 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4198                                        u16 family)
4199 {
4200         int err = 0;
4201         struct sk_security_struct *sksec = sk->sk_security;
4202         u32 peer_sid;
4203         u32 sk_sid = sksec->sid;
4204         struct avc_audit_data ad;
4205         char *addrp;
4206
4207         AVC_AUDIT_DATA_INIT(&ad, NET);
4208         ad.u.net.netif = skb->iif;
4209         ad.u.net.family = family;
4210         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4211         if (err)
4212                 return err;
4213
4214         if (selinux_compat_net)
4215                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4216                                                            family, addrp);
4217         else if (selinux_secmark_enabled())
4218                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4219                                    PACKET__RECV, &ad);
4220         if (err)
4221                 return err;
4222
4223         if (selinux_policycap_netpeer) {
4224                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4225                 if (err)
4226                         return err;
4227                 err = avc_has_perm(sk_sid, peer_sid,
4228                                    SECCLASS_PEER, PEER__RECV, &ad);
4229                 if (err)
4230                         selinux_netlbl_err(skb, err, 0);
4231         } else {
4232                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4233                 if (err)
4234                         return err;
4235                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4236         }
4237
4238         return err;
4239 }
4240
4241 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4242 {
4243         int err;
4244         struct sk_security_struct *sksec = sk->sk_security;
4245         u16 family = sk->sk_family;
4246         u32 sk_sid = sksec->sid;
4247         struct avc_audit_data ad;
4248         char *addrp;
4249         u8 secmark_active;
4250         u8 peerlbl_active;
4251
4252         if (family != PF_INET && family != PF_INET6)
4253                 return 0;
4254
4255         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4256         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4257                 family = PF_INET;
4258
4259         /* If any sort of compatibility mode is enabled then handoff processing
4260          * to the selinux_sock_rcv_skb_compat() function to deal with the
4261          * special handling.  We do this in an attempt to keep this function
4262          * as fast and as clean as possible. */
4263         if (selinux_compat_net || !selinux_policycap_netpeer)
4264                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4265
4266         secmark_active = selinux_secmark_enabled();
4267         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4268         if (!secmark_active && !peerlbl_active)
4269                 return 0;
4270
4271         AVC_AUDIT_DATA_INIT(&ad, NET);
4272         ad.u.net.netif = skb->iif;
4273         ad.u.net.family = family;
4274         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4275         if (err)
4276                 return err;
4277
4278         if (peerlbl_active) {
4279                 u32 peer_sid;
4280
4281                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4282                 if (err)
4283                         return err;
4284                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4285                                                peer_sid, &ad);
4286                 if (err) {
4287                         selinux_netlbl_err(skb, err, 0);
4288                         return err;
4289                 }
4290                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4291                                    PEER__RECV, &ad);
4292                 if (err)
4293                         selinux_netlbl_err(skb, err, 0);
4294         }
4295
4296         if (secmark_active) {
4297                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4298                                    PACKET__RECV, &ad);
4299                 if (err)
4300                         return err;
4301         }
4302
4303         return err;
4304 }
4305
4306 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4307                                             int __user *optlen, unsigned len)
4308 {
4309         int err = 0;
4310         char *scontext;
4311         u32 scontext_len;
4312         struct sk_security_struct *ssec;
4313         struct inode_security_struct *isec;
4314         u32 peer_sid = SECSID_NULL;
4315
4316         isec = SOCK_INODE(sock)->i_security;
4317
4318         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4319             isec->sclass == SECCLASS_TCP_SOCKET) {
4320                 ssec = sock->sk->sk_security;
4321                 peer_sid = ssec->peer_sid;
4322         }
4323         if (peer_sid == SECSID_NULL) {
4324                 err = -ENOPROTOOPT;
4325                 goto out;
4326         }
4327
4328         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4329
4330         if (err)
4331                 goto out;
4332
4333         if (scontext_len > len) {
4334                 err = -ERANGE;
4335                 goto out_len;
4336         }
4337
4338         if (copy_to_user(optval, scontext, scontext_len))
4339                 err = -EFAULT;
4340
4341 out_len:
4342         if (put_user(scontext_len, optlen))
4343                 err = -EFAULT;
4344
4345         kfree(scontext);
4346 out:
4347         return err;
4348 }
4349
4350 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4351 {
4352         u32 peer_secid = SECSID_NULL;
4353         u16 family;
4354
4355         if (skb && skb->protocol == htons(ETH_P_IP))
4356                 family = PF_INET;
4357         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4358                 family = PF_INET6;
4359         else if (sock)
4360                 family = sock->sk->sk_family;
4361         else
4362                 goto out;
4363
4364         if (sock && family == PF_UNIX)
4365                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4366         else if (skb)
4367                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4368
4369 out:
4370         *secid = peer_secid;
4371         if (peer_secid == SECSID_NULL)
4372                 return -EINVAL;
4373         return 0;
4374 }
4375
4376 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4377 {
4378         return sk_alloc_security(sk, family, priority);
4379 }
4380
4381 static void selinux_sk_free_security(struct sock *sk)
4382 {
4383         sk_free_security(sk);
4384 }
4385
4386 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4387 {
4388         struct sk_security_struct *ssec = sk->sk_security;
4389         struct sk_security_struct *newssec = newsk->sk_security;
4390
4391         newssec->sid = ssec->sid;
4392         newssec->peer_sid = ssec->peer_sid;
4393         newssec->sclass = ssec->sclass;
4394
4395         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4396 }
4397
4398 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4399 {
4400         if (!sk)
4401                 *secid = SECINITSID_ANY_SOCKET;
4402         else {
4403                 struct sk_security_struct *sksec = sk->sk_security;
4404
4405                 *secid = sksec->sid;
4406         }
4407 }
4408
4409 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4410 {
4411         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4412         struct sk_security_struct *sksec = sk->sk_security;
4413
4414         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4415             sk->sk_family == PF_UNIX)
4416                 isec->sid = sksec->sid;
4417         sksec->sclass = isec->sclass;
4418 }
4419
4420 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4421                                      struct request_sock *req)
4422 {
4423         struct sk_security_struct *sksec = sk->sk_security;
4424         int err;
4425         u16 family = sk->sk_family;
4426         u32 newsid;
4427         u32 peersid;
4428
4429         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4430         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4431                 family = PF_INET;
4432
4433         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4434         if (err)
4435                 return err;
4436         if (peersid == SECSID_NULL) {
4437                 req->secid = sksec->sid;
4438                 req->peer_secid = SECSID_NULL;
4439                 return 0;
4440         }
4441
4442         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4443         if (err)
4444                 return err;
4445
4446         req->secid = newsid;
4447         req->peer_secid = peersid;
4448         return 0;
4449 }
4450
4451 static void selinux_inet_csk_clone(struct sock *newsk,
4452                                    const struct request_sock *req)
4453 {
4454         struct sk_security_struct *newsksec = newsk->sk_security;
4455
4456         newsksec->sid = req->secid;
4457         newsksec->peer_sid = req->peer_secid;
4458         /* NOTE: Ideally, we should also get the isec->sid for the
4459            new socket in sync, but we don't have the isec available yet.
4460            So we will wait until sock_graft to do it, by which
4461            time it will have been created and available. */
4462
4463         /* We don't need to take any sort of lock here as we are the only
4464          * thread with access to newsksec */
4465         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4466 }
4467
4468 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4469 {
4470         u16 family = sk->sk_family;
4471         struct sk_security_struct *sksec = sk->sk_security;
4472
4473         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4474         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4475                 family = PF_INET;
4476
4477         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4478
4479         selinux_netlbl_inet_conn_established(sk, family);
4480 }
4481
4482 static void selinux_req_classify_flow(const struct request_sock *req,
4483                                       struct flowi *fl)
4484 {
4485         fl->secid = req->secid;
4486 }
4487
4488 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4489 {
4490         int err = 0;
4491         u32 perm;
4492         struct nlmsghdr *nlh;
4493         struct socket *sock = sk->sk_socket;
4494         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4495
4496         if (skb->len < NLMSG_SPACE(0)) {
4497                 err = -EINVAL;
4498                 goto out;
4499         }
4500         nlh = nlmsg_hdr(skb);
4501
4502         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4503         if (err) {
4504                 if (err == -EINVAL) {
4505                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4506                                   "SELinux:  unrecognized netlink message"
4507                                   " type=%hu for sclass=%hu\n",
4508                                   nlh->nlmsg_type, isec->sclass);
4509                         if (!selinux_enforcing || security_get_allow_unknown())
4510                                 err = 0;
4511                 }
4512
4513                 /* Ignore */
4514                 if (err == -ENOENT)
4515                         err = 0;
4516                 goto out;
4517         }
4518
4519         err = socket_has_perm(current, sock, perm);
4520 out:
4521         return err;
4522 }
4523
4524 #ifdef CONFIG_NETFILTER
4525
4526 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4527                                        u16 family)
4528 {
4529         int err;
4530         char *addrp;
4531         u32 peer_sid;
4532         struct avc_audit_data ad;
4533         u8 secmark_active;
4534         u8 netlbl_active;
4535         u8 peerlbl_active;
4536
4537         if (!selinux_policycap_netpeer)
4538                 return NF_ACCEPT;
4539
4540         secmark_active = selinux_secmark_enabled();
4541         netlbl_active = netlbl_enabled();
4542         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4543         if (!secmark_active && !peerlbl_active)
4544                 return NF_ACCEPT;
4545
4546         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4547                 return NF_DROP;
4548
4549         AVC_AUDIT_DATA_INIT(&ad, NET);
4550         ad.u.net.netif = ifindex;
4551         ad.u.net.family = family;
4552         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4553                 return NF_DROP;
4554
4555         if (peerlbl_active) {
4556                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4557                                                peer_sid, &ad);
4558                 if (err) {
4559                         selinux_netlbl_err(skb, err, 1);
4560                         return NF_DROP;
4561                 }
4562         }
4563
4564         if (secmark_active)
4565                 if (avc_has_perm(peer_sid, skb->secmark,
4566                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4567                         return NF_DROP;
4568
4569         if (netlbl_active)
4570                 /* we do this in the FORWARD path and not the POST_ROUTING
4571                  * path because we want to make sure we apply the necessary
4572                  * labeling before IPsec is applied so we can leverage AH
4573                  * protection */
4574                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4575                         return NF_DROP;
4576
4577         return NF_ACCEPT;
4578 }
4579
4580 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4581                                          struct sk_buff *skb,
4582                                          const struct net_device *in,
4583                                          const struct net_device *out,
4584                                          int (*okfn)(struct sk_buff *))
4585 {
4586         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4587 }
4588
4589 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4590 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4591                                          struct sk_buff *skb,
4592                                          const struct net_device *in,
4593                                          const struct net_device *out,
4594                                          int (*okfn)(struct sk_buff *))
4595 {
4596         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4597 }
4598 #endif  /* IPV6 */
4599
4600 static unsigned int selinux_ip_output(struct sk_buff *skb,
4601                                       u16 family)
4602 {
4603         u32 sid;
4604
4605         if (!netlbl_enabled())
4606                 return NF_ACCEPT;
4607
4608         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4609          * because we want to make sure we apply the necessary labeling
4610          * before IPsec is applied so we can leverage AH protection */
4611         if (skb->sk) {
4612                 struct sk_security_struct *sksec = skb->sk->sk_security;
4613                 sid = sksec->sid;
4614         } else
4615                 sid = SECINITSID_KERNEL;
4616         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4617                 return NF_DROP;
4618
4619         return NF_ACCEPT;
4620 }
4621
4622 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4623                                         struct sk_buff *skb,
4624                                         const struct net_device *in,
4625                                         const struct net_device *out,
4626                                         int (*okfn)(struct sk_buff *))
4627 {
4628         return selinux_ip_output(skb, PF_INET);
4629 }
4630
4631 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4632                                                 int ifindex,
4633                                                 struct avc_audit_data *ad,
4634                                                 u16 family, char *addrp)
4635 {
4636         int err;
4637         struct sk_security_struct *sksec = sk->sk_security;
4638         u16 sk_class;
4639         u32 netif_perm, node_perm, send_perm;
4640         u32 port_sid, node_sid, if_sid, sk_sid;
4641
4642         sk_sid = sksec->sid;
4643         sk_class = sksec->sclass;
4644
4645         switch (sk_class) {
4646         case SECCLASS_UDP_SOCKET:
4647                 netif_perm = NETIF__UDP_SEND;
4648                 node_perm = NODE__UDP_SEND;
4649                 send_perm = UDP_SOCKET__SEND_MSG;
4650                 break;
4651         case SECCLASS_TCP_SOCKET:
4652                 netif_perm = NETIF__TCP_SEND;
4653                 node_perm = NODE__TCP_SEND;
4654                 send_perm = TCP_SOCKET__SEND_MSG;
4655                 break;
4656         case SECCLASS_DCCP_SOCKET:
4657                 netif_perm = NETIF__DCCP_SEND;
4658                 node_perm = NODE__DCCP_SEND;
4659                 send_perm = DCCP_SOCKET__SEND_MSG;
4660                 break;
4661         default:
4662                 netif_perm = NETIF__RAWIP_SEND;
4663                 node_perm = NODE__RAWIP_SEND;
4664                 send_perm = 0;
4665                 break;
4666         }
4667
4668         err = sel_netif_sid(ifindex, &if_sid);
4669         if (err)
4670                 return err;
4671         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4672                 return err;
4673
4674         err = sel_netnode_sid(addrp, family, &node_sid);
4675         if (err)
4676                 return err;
4677         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4678         if (err)
4679                 return err;
4680
4681         if (send_perm != 0)
4682                 return 0;
4683
4684         err = sel_netport_sid(sk->sk_protocol,
4685                               ntohs(ad->u.net.dport), &port_sid);
4686         if (unlikely(err)) {
4687                 printk(KERN_WARNING
4688                        "SELinux: failure in"
4689                        " selinux_ip_postroute_iptables_compat(),"
4690                        " network port label not found\n");
4691                 return err;
4692         }
4693         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4694 }
4695
4696 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4697                                                 int ifindex,
4698                                                 u16 family)
4699 {
4700         struct sock *sk = skb->sk;
4701         struct sk_security_struct *sksec;
4702         struct avc_audit_data ad;
4703         char *addrp;
4704         u8 proto;
4705
4706         if (sk == NULL)
4707                 return NF_ACCEPT;
4708         sksec = sk->sk_security;
4709
4710         AVC_AUDIT_DATA_INIT(&ad, NET);
4711         ad.u.net.netif = ifindex;
4712         ad.u.net.family = family;
4713         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4714                 return NF_DROP;
4715
4716         if (selinux_compat_net) {
4717                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4718                                                          &ad, family, addrp))
4719                         return NF_DROP;
4720         } else if (selinux_secmark_enabled()) {
4721                 if (avc_has_perm(sksec->sid, skb->secmark,
4722                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4723                         return NF_DROP;
4724         }
4725
4726         if (selinux_policycap_netpeer)
4727                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4728                         return NF_DROP;
4729
4730         return NF_ACCEPT;
4731 }
4732
4733 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4734                                          u16 family)
4735 {
4736         u32 secmark_perm;
4737         u32 peer_sid;
4738         struct sock *sk;
4739         struct avc_audit_data ad;
4740         char *addrp;
4741         u8 secmark_active;
4742         u8 peerlbl_active;
4743
4744         /* If any sort of compatibility mode is enabled then handoff processing
4745          * to the selinux_ip_postroute_compat() function to deal with the
4746          * special handling.  We do this in an attempt to keep this function
4747          * as fast and as clean as possible. */
4748         if (selinux_compat_net || !selinux_policycap_netpeer)
4749                 return selinux_ip_postroute_compat(skb, ifindex, family);
4750 #ifdef CONFIG_XFRM
4751         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4752          * packet transformation so allow the packet to pass without any checks
4753          * since we'll have another chance to perform access control checks
4754          * when the packet is on it's final way out.
4755          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4756          *       is NULL, in this case go ahead and apply access control. */
4757         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4758                 return NF_ACCEPT;
4759 #endif
4760         secmark_active = selinux_secmark_enabled();
4761         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4762         if (!secmark_active && !peerlbl_active)
4763                 return NF_ACCEPT;
4764
4765         /* if the packet is being forwarded then get the peer label from the
4766          * packet itself; otherwise check to see if it is from a local
4767          * application or the kernel, if from an application get the peer label
4768          * from the sending socket, otherwise use the kernel's sid */
4769         sk = skb->sk;
4770         if (sk == NULL) {
4771                 switch (family) {
4772                 case PF_INET:
4773                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4774                                 secmark_perm = PACKET__FORWARD_OUT;
4775                         else
4776                                 secmark_perm = PACKET__SEND;
4777                         break;
4778                 case PF_INET6:
4779                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4780                                 secmark_perm = PACKET__FORWARD_OUT;
4781                         else
4782                                 secmark_perm = PACKET__SEND;
4783                         break;
4784                 default:
4785                         return NF_DROP;
4786                 }
4787                 if (secmark_perm == PACKET__FORWARD_OUT) {
4788                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4789                                 return NF_DROP;
4790                 } else
4791                         peer_sid = SECINITSID_KERNEL;
4792         } else {
4793                 struct sk_security_struct *sksec = sk->sk_security;
4794                 peer_sid = sksec->sid;
4795                 secmark_perm = PACKET__SEND;
4796         }
4797
4798         AVC_AUDIT_DATA_INIT(&ad, NET);
4799         ad.u.net.netif = ifindex;
4800         ad.u.net.family = family;
4801         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4802                 return NF_DROP;
4803
4804         if (secmark_active)
4805                 if (avc_has_perm(peer_sid, skb->secmark,
4806                                  SECCLASS_PACKET, secmark_perm, &ad))
4807                         return NF_DROP;
4808
4809         if (peerlbl_active) {
4810                 u32 if_sid;
4811                 u32 node_sid;
4812
4813                 if (sel_netif_sid(ifindex, &if_sid))
4814                         return NF_DROP;
4815                 if (avc_has_perm(peer_sid, if_sid,
4816                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4817                         return NF_DROP;
4818
4819                 if (sel_netnode_sid(addrp, family, &node_sid))
4820                         return NF_DROP;
4821                 if (avc_has_perm(peer_sid, node_sid,
4822                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4823                         return NF_DROP;
4824         }
4825
4826         return NF_ACCEPT;
4827 }
4828
4829 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4830                                            struct sk_buff *skb,
4831                                            const struct net_device *in,
4832                                            const struct net_device *out,
4833                                            int (*okfn)(struct sk_buff *))
4834 {
4835         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4836 }
4837
4838 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4839 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4840                                            struct sk_buff *skb,
4841                                            const struct net_device *in,
4842                                            const struct net_device *out,
4843                                            int (*okfn)(struct sk_buff *))
4844 {
4845         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4846 }
4847 #endif  /* IPV6 */
4848
4849 #endif  /* CONFIG_NETFILTER */
4850
4851 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4852 {
4853         int err;
4854
4855         err = secondary_ops->netlink_send(sk, skb);
4856         if (err)
4857                 return err;
4858
4859         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4860                 err = selinux_nlmsg_perm(sk, skb);
4861
4862         return err;
4863 }
4864
4865 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4866 {
4867         int err;
4868         struct avc_audit_data ad;
4869
4870         err = secondary_ops->netlink_recv(skb, capability);
4871         if (err)
4872                 return err;
4873
4874         AVC_AUDIT_DATA_INIT(&ad, CAP);
4875         ad.u.cap = capability;
4876
4877         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4878                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4879 }
4880
4881 static int ipc_alloc_security(struct task_struct *task,
4882                               struct kern_ipc_perm *perm,
4883                               u16 sclass)
4884 {
4885         struct ipc_security_struct *isec;
4886         u32 sid;
4887
4888         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4889         if (!isec)
4890                 return -ENOMEM;
4891
4892         sid = task_sid(task);
4893         isec->sclass = sclass;
4894         isec->sid = sid;
4895         perm->security = isec;
4896
4897         return 0;
4898 }
4899
4900 static void ipc_free_security(struct kern_ipc_perm *perm)
4901 {
4902         struct ipc_security_struct *isec = perm->security;
4903         perm->security = NULL;
4904         kfree(isec);
4905 }
4906
4907 static int msg_msg_alloc_security(struct msg_msg *msg)
4908 {
4909         struct msg_security_struct *msec;
4910
4911         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4912         if (!msec)
4913                 return -ENOMEM;
4914
4915         msec->sid = SECINITSID_UNLABELED;
4916         msg->security = msec;
4917
4918         return 0;
4919 }
4920
4921 static void msg_msg_free_security(struct msg_msg *msg)
4922 {
4923         struct msg_security_struct *msec = msg->security;
4924
4925         msg->security = NULL;
4926         kfree(msec);
4927 }
4928
4929 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4930                         u32 perms)
4931 {
4932         struct ipc_security_struct *isec;
4933         struct avc_audit_data ad;
4934         u32 sid = current_sid();
4935
4936         isec = ipc_perms->security;
4937
4938         AVC_AUDIT_DATA_INIT(&ad, IPC);
4939         ad.u.ipc_id = ipc_perms->key;
4940
4941         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4942 }
4943
4944 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4945 {
4946         return msg_msg_alloc_security(msg);
4947 }
4948
4949 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4950 {
4951         msg_msg_free_security(msg);
4952 }
4953
4954 /* message queue security operations */
4955 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4956 {
4957         struct ipc_security_struct *isec;
4958         struct avc_audit_data ad;
4959         u32 sid = current_sid();
4960         int rc;
4961
4962         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4963         if (rc)
4964                 return rc;
4965
4966         isec = msq->q_perm.security;
4967
4968         AVC_AUDIT_DATA_INIT(&ad, IPC);
4969         ad.u.ipc_id = msq->q_perm.key;
4970
4971         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4972                           MSGQ__CREATE, &ad);
4973         if (rc) {
4974                 ipc_free_security(&msq->q_perm);
4975                 return rc;
4976         }
4977         return 0;
4978 }
4979
4980 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4981 {
4982         ipc_free_security(&msq->q_perm);
4983 }
4984
4985 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4986 {
4987         struct ipc_security_struct *isec;
4988         struct avc_audit_data ad;
4989         u32 sid = current_sid();
4990
4991         isec = msq->q_perm.security;
4992
4993         AVC_AUDIT_DATA_INIT(&ad, IPC);
4994         ad.u.ipc_id = msq->q_perm.key;
4995
4996         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4997                             MSGQ__ASSOCIATE, &ad);
4998 }
4999
5000 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5001 {
5002         int err;
5003         int perms;
5004
5005         switch (cmd) {
5006         case IPC_INFO:
5007         case MSG_INFO:
5008                 /* No specific object, just general system-wide information. */
5009                 return task_has_system(current, SYSTEM__IPC_INFO);
5010         case IPC_STAT:
5011         case MSG_STAT:
5012                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5013                 break;
5014         case IPC_SET:
5015                 perms = MSGQ__SETATTR;
5016                 break;
5017         case IPC_RMID:
5018                 perms = MSGQ__DESTROY;
5019                 break;
5020         default:
5021                 return 0;
5022         }
5023
5024         err = ipc_has_perm(&msq->q_perm, perms);
5025         return err;
5026 }
5027
5028 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5029 {
5030         struct ipc_security_struct *isec;
5031         struct msg_security_struct *msec;
5032         struct avc_audit_data ad;
5033         u32 sid = current_sid();
5034         int rc;
5035
5036         isec = msq->q_perm.security;
5037         msec = msg->security;
5038
5039         /*
5040          * First time through, need to assign label to the message
5041          */
5042         if (msec->sid == SECINITSID_UNLABELED) {
5043                 /*
5044                  * Compute new sid based on current process and
5045                  * message queue this message will be stored in
5046                  */
5047                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5048                                              &msec->sid);
5049                 if (rc)
5050                         return rc;
5051         }
5052
5053         AVC_AUDIT_DATA_INIT(&ad, IPC);
5054         ad.u.ipc_id = msq->q_perm.key;
5055
5056         /* Can this process write to the queue? */
5057         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5058                           MSGQ__WRITE, &ad);
5059         if (!rc)
5060                 /* Can this process send the message */
5061                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5062                                   MSG__SEND, &ad);
5063         if (!rc)
5064                 /* Can the message be put in the queue? */
5065                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5066                                   MSGQ__ENQUEUE, &ad);
5067
5068         return rc;
5069 }
5070
5071 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5072                                     struct task_struct *target,
5073                                     long type, int mode)
5074 {
5075         struct ipc_security_struct *isec;
5076         struct msg_security_struct *msec;
5077         struct avc_audit_data ad;
5078         u32 sid = task_sid(target);
5079         int rc;
5080
5081         isec = msq->q_perm.security;
5082         msec = msg->security;
5083
5084         AVC_AUDIT_DATA_INIT(&ad, IPC);
5085         ad.u.ipc_id = msq->q_perm.key;
5086
5087         rc = avc_has_perm(sid, isec->sid,
5088                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5089         if (!rc)
5090                 rc = avc_has_perm(sid, msec->sid,
5091                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5092         return rc;
5093 }
5094
5095 /* Shared Memory security operations */
5096 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5097 {
5098         struct ipc_security_struct *isec;
5099         struct avc_audit_data ad;
5100         u32 sid = current_sid();
5101         int rc;
5102
5103         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5104         if (rc)
5105                 return rc;
5106
5107         isec = shp->shm_perm.security;
5108
5109         AVC_AUDIT_DATA_INIT(&ad, IPC);
5110         ad.u.ipc_id = shp->shm_perm.key;
5111
5112         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5113                           SHM__CREATE, &ad);
5114         if (rc) {
5115                 ipc_free_security(&shp->shm_perm);
5116                 return rc;
5117         }
5118         return 0;
5119 }
5120
5121 static void selinux_shm_free_security(struct shmid_kernel *shp)
5122 {
5123         ipc_free_security(&shp->shm_perm);
5124 }
5125
5126 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5127 {
5128         struct ipc_security_struct *isec;
5129         struct avc_audit_data ad;
5130         u32 sid = current_sid();
5131
5132         isec = shp->shm_perm.security;
5133
5134         AVC_AUDIT_DATA_INIT(&ad, IPC);
5135         ad.u.ipc_id = shp->shm_perm.key;
5136
5137         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5138                             SHM__ASSOCIATE, &ad);
5139 }
5140
5141 /* Note, at this point, shp is locked down */
5142 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5143 {
5144         int perms;
5145         int err;
5146
5147         switch (cmd) {
5148         case IPC_INFO:
5149         case SHM_INFO:
5150                 /* No specific object, just general system-wide information. */
5151                 return task_has_system(current, SYSTEM__IPC_INFO);
5152         case IPC_STAT:
5153         case SHM_STAT:
5154                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5155                 break;
5156         case IPC_SET:
5157                 perms = SHM__SETATTR;
5158                 break;
5159         case SHM_LOCK:
5160         case SHM_UNLOCK:
5161                 perms = SHM__LOCK;
5162                 break;
5163         case IPC_RMID:
5164                 perms = SHM__DESTROY;
5165                 break;
5166         default:
5167                 return 0;
5168         }
5169
5170         err = ipc_has_perm(&shp->shm_perm, perms);
5171         return err;
5172 }
5173
5174 static int selinux_shm_shmat(struct shmid_kernel *shp,
5175                              char __user *shmaddr, int shmflg)
5176 {
5177         u32 perms;
5178         int rc;
5179
5180         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5181         if (rc)
5182                 return rc;
5183
5184         if (shmflg & SHM_RDONLY)
5185                 perms = SHM__READ;
5186         else
5187                 perms = SHM__READ | SHM__WRITE;
5188
5189         return ipc_has_perm(&shp->shm_perm, perms);
5190 }
5191
5192 /* Semaphore security operations */
5193 static int selinux_sem_alloc_security(struct sem_array *sma)
5194 {
5195         struct ipc_security_struct *isec;
5196         struct avc_audit_data ad;
5197         u32 sid = current_sid();
5198         int rc;
5199
5200         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5201         if (rc)
5202                 return rc;
5203
5204         isec = sma->sem_perm.security;
5205
5206         AVC_AUDIT_DATA_INIT(&ad, IPC);
5207         ad.u.ipc_id = sma->sem_perm.key;
5208
5209         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5210                           SEM__CREATE, &ad);
5211         if (rc) {
5212                 ipc_free_security(&sma->sem_perm);
5213                 return rc;
5214         }
5215         return 0;
5216 }
5217
5218 static void selinux_sem_free_security(struct sem_array *sma)
5219 {
5220         ipc_free_security(&sma->sem_perm);
5221 }
5222
5223 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5224 {
5225         struct ipc_security_struct *isec;
5226         struct avc_audit_data ad;
5227         u32 sid = current_sid();
5228
5229         isec = sma->sem_perm.security;
5230
5231         AVC_AUDIT_DATA_INIT(&ad, IPC);
5232         ad.u.ipc_id = sma->sem_perm.key;
5233
5234         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5235                             SEM__ASSOCIATE, &ad);
5236 }
5237
5238 /* Note, at this point, sma is locked down */
5239 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5240 {
5241         int err;
5242         u32 perms;
5243
5244         switch (cmd) {
5245         case IPC_INFO:
5246         case SEM_INFO:
5247                 /* No specific object, just general system-wide information. */
5248                 return task_has_system(current, SYSTEM__IPC_INFO);
5249         case GETPID:
5250         case GETNCNT:
5251         case GETZCNT:
5252                 perms = SEM__GETATTR;
5253                 break;
5254         case GETVAL:
5255         case GETALL:
5256                 perms = SEM__READ;
5257                 break;
5258         case SETVAL:
5259         case SETALL:
5260                 perms = SEM__WRITE;
5261                 break;
5262         case IPC_RMID:
5263                 perms = SEM__DESTROY;
5264                 break;
5265         case IPC_SET:
5266                 perms = SEM__SETATTR;
5267                 break;
5268         case IPC_STAT:
5269         case SEM_STAT:
5270                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5271                 break;
5272         default:
5273                 return 0;
5274         }
5275
5276         err = ipc_has_perm(&sma->sem_perm, perms);
5277         return err;
5278 }
5279
5280 static int selinux_sem_semop(struct sem_array *sma,
5281                              struct sembuf *sops, unsigned nsops, int alter)
5282 {
5283         u32 perms;
5284
5285         if (alter)
5286                 perms = SEM__READ | SEM__WRITE;
5287         else
5288                 perms = SEM__READ;
5289
5290         return ipc_has_perm(&sma->sem_perm, perms);
5291 }
5292
5293 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5294 {
5295         u32 av = 0;
5296
5297         av = 0;
5298         if (flag & S_IRUGO)
5299                 av |= IPC__UNIX_READ;
5300         if (flag & S_IWUGO)
5301                 av |= IPC__UNIX_WRITE;
5302
5303         if (av == 0)
5304                 return 0;
5305
5306         return ipc_has_perm(ipcp, av);
5307 }
5308
5309 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5310 {
5311         struct ipc_security_struct *isec = ipcp->security;
5312         *secid = isec->sid;
5313 }
5314
5315 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5316 {
5317         if (inode)
5318                 inode_doinit_with_dentry(inode, dentry);
5319 }
5320
5321 static int selinux_getprocattr(struct task_struct *p,
5322                                char *name, char **value)
5323 {
5324         const struct task_security_struct *__tsec;
5325         u32 sid;
5326         int error;
5327         unsigned len;
5328
5329         if (current != p) {
5330                 error = current_has_perm(p, PROCESS__GETATTR);
5331                 if (error)
5332                         return error;
5333         }
5334
5335         rcu_read_lock();
5336         __tsec = __task_cred(p)->security;
5337
5338         if (!strcmp(name, "current"))
5339                 sid = __tsec->sid;
5340         else if (!strcmp(name, "prev"))
5341                 sid = __tsec->osid;
5342         else if (!strcmp(name, "exec"))
5343                 sid = __tsec->exec_sid;
5344         else if (!strcmp(name, "fscreate"))
5345                 sid = __tsec->create_sid;
5346         else if (!strcmp(name, "keycreate"))
5347                 sid = __tsec->keycreate_sid;
5348         else if (!strcmp(name, "sockcreate"))
5349                 sid = __tsec->sockcreate_sid;
5350         else
5351                 goto invalid;
5352         rcu_read_unlock();
5353
5354         if (!sid)
5355                 return 0;
5356
5357         error = security_sid_to_context(sid, value, &len);
5358         if (error)
5359                 return error;
5360         return len;
5361
5362 invalid:
5363         rcu_read_unlock();
5364         return -EINVAL;
5365 }
5366
5367 static int selinux_setprocattr(struct task_struct *p,
5368                                char *name, void *value, size_t size)
5369 {
5370         struct task_security_struct *tsec;
5371         struct task_struct *tracer;
5372         struct cred *new;
5373         u32 sid = 0, ptsid;
5374         int error;
5375         char *str = value;
5376
5377         if (current != p) {
5378                 /* SELinux only allows a process to change its own
5379                    security attributes. */
5380                 return -EACCES;
5381         }
5382
5383         /*
5384          * Basic control over ability to set these attributes at all.
5385          * current == p, but we'll pass them separately in case the
5386          * above restriction is ever removed.
5387          */
5388         if (!strcmp(name, "exec"))
5389                 error = current_has_perm(p, PROCESS__SETEXEC);
5390         else if (!strcmp(name, "fscreate"))
5391                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5392         else if (!strcmp(name, "keycreate"))
5393                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5394         else if (!strcmp(name, "sockcreate"))
5395                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5396         else if (!strcmp(name, "current"))
5397                 error = current_has_perm(p, PROCESS__SETCURRENT);
5398         else
5399                 error = -EINVAL;
5400         if (error)
5401                 return error;
5402
5403         /* Obtain a SID for the context, if one was specified. */
5404         if (size && str[1] && str[1] != '\n') {
5405                 if (str[size-1] == '\n') {
5406                         str[size-1] = 0;
5407                         size--;
5408                 }
5409                 error = security_context_to_sid(value, size, &sid);
5410                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5411                         if (!capable(CAP_MAC_ADMIN))
5412                                 return error;
5413                         error = security_context_to_sid_force(value, size,
5414                                                               &sid);
5415                 }
5416                 if (error)
5417                         return error;
5418         }
5419
5420         new = prepare_creds();
5421         if (!new)
5422                 return -ENOMEM;
5423
5424         /* Permission checking based on the specified context is
5425            performed during the actual operation (execve,
5426            open/mkdir/...), when we know the full context of the
5427            operation.  See selinux_bprm_set_creds for the execve
5428            checks and may_create for the file creation checks. The
5429            operation will then fail if the context is not permitted. */
5430         tsec = new->security;
5431         if (!strcmp(name, "exec")) {
5432                 tsec->exec_sid = sid;
5433         } else if (!strcmp(name, "fscreate")) {
5434                 tsec->create_sid = sid;
5435         } else if (!strcmp(name, "keycreate")) {
5436                 error = may_create_key(sid, p);
5437                 if (error)
5438                         goto abort_change;
5439                 tsec->keycreate_sid = sid;
5440         } else if (!strcmp(name, "sockcreate")) {
5441                 tsec->sockcreate_sid = sid;
5442         } else if (!strcmp(name, "current")) {
5443                 error = -EINVAL;
5444                 if (sid == 0)
5445                         goto abort_change;
5446
5447                 /* Only allow single threaded processes to change context */
5448                 error = -EPERM;
5449                 if (!is_single_threaded(p)) {
5450                         error = security_bounded_transition(tsec->sid, sid);
5451                         if (error)
5452                                 goto abort_change;
5453                 }
5454
5455                 /* Check permissions for the transition. */
5456                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5457                                      PROCESS__DYNTRANSITION, NULL);
5458                 if (error)
5459                         goto abort_change;
5460
5461                 /* Check for ptracing, and update the task SID if ok.
5462                    Otherwise, leave SID unchanged and fail. */
5463                 ptsid = 0;
5464                 task_lock(p);
5465                 tracer = tracehook_tracer_task(p);
5466                 if (tracer)
5467                         ptsid = task_sid(tracer);
5468                 task_unlock(p);
5469
5470                 if (tracer) {
5471                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5472                                              PROCESS__PTRACE, NULL);
5473                         if (error)
5474                                 goto abort_change;
5475                 }
5476
5477                 tsec->sid = sid;
5478         } else {
5479                 error = -EINVAL;
5480                 goto abort_change;
5481         }
5482
5483         commit_creds(new);
5484         return size;
5485
5486 abort_change:
5487         abort_creds(new);
5488         return error;
5489 }
5490
5491 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5492 {
5493         return security_sid_to_context(secid, secdata, seclen);
5494 }
5495
5496 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5497 {
5498         return security_context_to_sid(secdata, seclen, secid);
5499 }
5500
5501 static void selinux_release_secctx(char *secdata, u32 seclen)
5502 {
5503         kfree(secdata);
5504 }
5505
5506 #ifdef CONFIG_KEYS
5507
5508 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5509                              unsigned long flags)
5510 {
5511         const struct task_security_struct *tsec;
5512         struct key_security_struct *ksec;
5513
5514         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5515         if (!ksec)
5516                 return -ENOMEM;
5517
5518         tsec = cred->security;
5519         if (tsec->keycreate_sid)
5520                 ksec->sid = tsec->keycreate_sid;
5521         else
5522                 ksec->sid = tsec->sid;
5523
5524         k->security = ksec;
5525         return 0;
5526 }
5527
5528 static void selinux_key_free(struct key *k)
5529 {
5530         struct key_security_struct *ksec = k->security;
5531
5532         k->security = NULL;
5533         kfree(ksec);
5534 }
5535
5536 static int selinux_key_permission(key_ref_t key_ref,
5537                                   const struct cred *cred,
5538                                   key_perm_t perm)
5539 {
5540         struct key *key;
5541         struct key_security_struct *ksec;
5542         u32 sid;
5543
5544         /* if no specific permissions are requested, we skip the
5545            permission check. No serious, additional covert channels
5546            appear to be created. */
5547         if (perm == 0)
5548                 return 0;
5549
5550         sid = cred_sid(cred);
5551
5552         key = key_ref_to_ptr(key_ref);
5553         ksec = key->security;
5554
5555         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5556 }
5557
5558 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5559 {
5560         struct key_security_struct *ksec = key->security;
5561         char *context = NULL;
5562         unsigned len;
5563         int rc;
5564
5565         rc = security_sid_to_context(ksec->sid, &context, &len);
5566         if (!rc)
5567                 rc = len;
5568         *_buffer = context;
5569         return rc;
5570 }
5571
5572 #endif
5573
5574 static struct security_operations selinux_ops = {
5575         .name =                         "selinux",
5576
5577         .ptrace_may_access =            selinux_ptrace_may_access,
5578         .ptrace_traceme =               selinux_ptrace_traceme,
5579         .capget =                       selinux_capget,
5580         .capset =                       selinux_capset,
5581         .sysctl =                       selinux_sysctl,
5582         .capable =                      selinux_capable,
5583         .quotactl =                     selinux_quotactl,
5584         .quota_on =                     selinux_quota_on,
5585         .syslog =                       selinux_syslog,
5586         .vm_enough_memory =             selinux_vm_enough_memory,
5587
5588         .netlink_send =                 selinux_netlink_send,
5589         .netlink_recv =                 selinux_netlink_recv,
5590
5591         .bprm_set_creds =               selinux_bprm_set_creds,
5592         .bprm_committing_creds =        selinux_bprm_committing_creds,
5593         .bprm_committed_creds =         selinux_bprm_committed_creds,
5594         .bprm_secureexec =              selinux_bprm_secureexec,
5595
5596         .sb_alloc_security =            selinux_sb_alloc_security,
5597         .sb_free_security =             selinux_sb_free_security,
5598         .sb_copy_data =                 selinux_sb_copy_data,
5599         .sb_kern_mount =                selinux_sb_kern_mount,
5600         .sb_show_options =              selinux_sb_show_options,
5601         .sb_statfs =                    selinux_sb_statfs,
5602         .sb_mount =                     selinux_mount,
5603         .sb_umount =                    selinux_umount,
5604         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5605         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5606         .sb_parse_opts_str =            selinux_parse_opts_str,
5607
5608
5609         .inode_alloc_security =         selinux_inode_alloc_security,
5610         .inode_free_security =          selinux_inode_free_security,
5611         .inode_init_security =          selinux_inode_init_security,
5612         .inode_create =                 selinux_inode_create,
5613         .inode_link =                   selinux_inode_link,
5614         .inode_unlink =                 selinux_inode_unlink,
5615         .inode_symlink =                selinux_inode_symlink,
5616         .inode_mkdir =                  selinux_inode_mkdir,
5617         .inode_rmdir =                  selinux_inode_rmdir,
5618         .inode_mknod =                  selinux_inode_mknod,
5619         .inode_rename =                 selinux_inode_rename,
5620         .inode_readlink =               selinux_inode_readlink,
5621         .inode_follow_link =            selinux_inode_follow_link,
5622         .inode_permission =             selinux_inode_permission,
5623         .inode_setattr =                selinux_inode_setattr,
5624         .inode_getattr =                selinux_inode_getattr,
5625         .inode_setxattr =               selinux_inode_setxattr,
5626         .inode_post_setxattr =          selinux_inode_post_setxattr,
5627         .inode_getxattr =               selinux_inode_getxattr,
5628         .inode_listxattr =              selinux_inode_listxattr,
5629         .inode_removexattr =            selinux_inode_removexattr,
5630         .inode_getsecurity =            selinux_inode_getsecurity,
5631         .inode_setsecurity =            selinux_inode_setsecurity,
5632         .inode_listsecurity =           selinux_inode_listsecurity,
5633         .inode_need_killpriv =          selinux_inode_need_killpriv,
5634         .inode_killpriv =               selinux_inode_killpriv,
5635         .inode_getsecid =               selinux_inode_getsecid,
5636
5637         .file_permission =              selinux_file_permission,
5638         .file_alloc_security =          selinux_file_alloc_security,
5639         .file_free_security =           selinux_file_free_security,
5640         .file_ioctl =                   selinux_file_ioctl,
5641         .file_mmap =                    selinux_file_mmap,
5642         .file_mprotect =                selinux_file_mprotect,
5643         .file_lock =                    selinux_file_lock,
5644         .file_fcntl =                   selinux_file_fcntl,
5645         .file_set_fowner =              selinux_file_set_fowner,
5646         .file_send_sigiotask =          selinux_file_send_sigiotask,
5647         .file_receive =                 selinux_file_receive,
5648
5649         .dentry_open =                  selinux_dentry_open,
5650
5651         .task_create =                  selinux_task_create,
5652         .cred_free =                    selinux_cred_free,
5653         .cred_prepare =                 selinux_cred_prepare,
5654         .cred_commit =                  selinux_cred_commit,
5655         .kernel_act_as =                selinux_kernel_act_as,
5656         .kernel_create_files_as =       selinux_kernel_create_files_as,
5657         .task_setuid =                  selinux_task_setuid,
5658         .task_fix_setuid =              selinux_task_fix_setuid,
5659         .task_setgid =                  selinux_task_setgid,
5660         .task_setpgid =                 selinux_task_setpgid,
5661         .task_getpgid =                 selinux_task_getpgid,
5662         .task_getsid =                  selinux_task_getsid,
5663         .task_getsecid =                selinux_task_getsecid,
5664         .task_setgroups =               selinux_task_setgroups,
5665         .task_setnice =                 selinux_task_setnice,
5666         .task_setioprio =               selinux_task_setioprio,
5667         .task_getioprio =               selinux_task_getioprio,
5668         .task_setrlimit =               selinux_task_setrlimit,
5669         .task_setscheduler =            selinux_task_setscheduler,
5670         .task_getscheduler =            selinux_task_getscheduler,
5671         .task_movememory =              selinux_task_movememory,
5672         .task_kill =                    selinux_task_kill,
5673         .task_wait =                    selinux_task_wait,
5674         .task_prctl =                   selinux_task_prctl,
5675         .task_to_inode =                selinux_task_to_inode,
5676
5677         .ipc_permission =               selinux_ipc_permission,
5678         .ipc_getsecid =                 selinux_ipc_getsecid,
5679
5680         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5681         .msg_msg_free_security =        selinux_msg_msg_free_security,
5682
5683         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5684         .msg_queue_free_security =      selinux_msg_queue_free_security,
5685         .msg_queue_associate =          selinux_msg_queue_associate,
5686         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5687         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5688         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5689
5690         .shm_alloc_security =           selinux_shm_alloc_security,
5691         .shm_free_security =            selinux_shm_free_security,
5692         .shm_associate =                selinux_shm_associate,
5693         .shm_shmctl =                   selinux_shm_shmctl,
5694         .shm_shmat =                    selinux_shm_shmat,
5695
5696         .sem_alloc_security =           selinux_sem_alloc_security,
5697         .sem_free_security =            selinux_sem_free_security,
5698         .sem_associate =                selinux_sem_associate,
5699         .sem_semctl =                   selinux_sem_semctl,
5700         .sem_semop =                    selinux_sem_semop,
5701
5702         .d_instantiate =                selinux_d_instantiate,
5703
5704         .getprocattr =                  selinux_getprocattr,
5705         .setprocattr =                  selinux_setprocattr,
5706
5707         .secid_to_secctx =              selinux_secid_to_secctx,
5708         .secctx_to_secid =              selinux_secctx_to_secid,
5709         .release_secctx =               selinux_release_secctx,
5710
5711         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5712         .unix_may_send =                selinux_socket_unix_may_send,
5713
5714         .socket_create =                selinux_socket_create,
5715         .socket_post_create =           selinux_socket_post_create,
5716         .socket_bind =                  selinux_socket_bind,
5717         .socket_connect =               selinux_socket_connect,
5718         .socket_listen =                selinux_socket_listen,
5719         .socket_accept =                selinux_socket_accept,
5720         .socket_sendmsg =               selinux_socket_sendmsg,
5721         .socket_recvmsg =               selinux_socket_recvmsg,
5722         .socket_getsockname =           selinux_socket_getsockname,
5723         .socket_getpeername =           selinux_socket_getpeername,
5724         .socket_getsockopt =            selinux_socket_getsockopt,
5725         .socket_setsockopt =            selinux_socket_setsockopt,
5726         .socket_shutdown =              selinux_socket_shutdown,
5727         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5728         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5729         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5730         .sk_alloc_security =            selinux_sk_alloc_security,
5731         .sk_free_security =             selinux_sk_free_security,
5732         .sk_clone_security =            selinux_sk_clone_security,
5733         .sk_getsecid =                  selinux_sk_getsecid,
5734         .sock_graft =                   selinux_sock_graft,
5735         .inet_conn_request =            selinux_inet_conn_request,
5736         .inet_csk_clone =               selinux_inet_csk_clone,
5737         .inet_conn_established =        selinux_inet_conn_established,
5738         .req_classify_flow =            selinux_req_classify_flow,
5739
5740 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5741         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5742         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5743         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5744         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5745         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5746         .xfrm_state_free_security =     selinux_xfrm_state_free,
5747         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5748         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5749         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5750         .xfrm_decode_session =          selinux_xfrm_decode_session,
5751 #endif
5752
5753 #ifdef CONFIG_KEYS
5754         .key_alloc =                    selinux_key_alloc,
5755         .key_free =                     selinux_key_free,
5756         .key_permission =               selinux_key_permission,
5757         .key_getsecurity =              selinux_key_getsecurity,
5758 #endif
5759
5760 #ifdef CONFIG_AUDIT
5761         .audit_rule_init =              selinux_audit_rule_init,
5762         .audit_rule_known =             selinux_audit_rule_known,
5763         .audit_rule_match =             selinux_audit_rule_match,
5764         .audit_rule_free =              selinux_audit_rule_free,
5765 #endif
5766 };
5767
5768 static __init int selinux_init(void)
5769 {
5770         if (!security_module_enable(&selinux_ops)) {
5771                 selinux_enabled = 0;
5772                 return 0;
5773         }
5774
5775         if (!selinux_enabled) {
5776                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5777                 return 0;
5778         }
5779
5780         printk(KERN_INFO "SELinux:  Initializing.\n");
5781
5782         /* Set the security state for the initial task. */
5783         cred_init_security();
5784
5785         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5786                                             sizeof(struct inode_security_struct),
5787                                             0, SLAB_PANIC, NULL);
5788         avc_init();
5789
5790         secondary_ops = security_ops;
5791         if (!secondary_ops)
5792                 panic("SELinux: No initial security operations\n");
5793         if (register_security(&selinux_ops))
5794                 panic("SELinux: Unable to register with kernel.\n");
5795
5796         if (selinux_enforcing)
5797                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5798         else
5799                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5800
5801         return 0;
5802 }
5803
5804 void selinux_complete_init(void)
5805 {
5806         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5807
5808         /* Set up any superblocks initialized prior to the policy load. */
5809         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5810         spin_lock(&sb_lock);
5811         spin_lock(&sb_security_lock);
5812 next_sb:
5813         if (!list_empty(&superblock_security_head)) {
5814                 struct superblock_security_struct *sbsec =
5815                                 list_entry(superblock_security_head.next,
5816                                            struct superblock_security_struct,
5817                                            list);
5818                 struct super_block *sb = sbsec->sb;
5819                 sb->s_count++;
5820                 spin_unlock(&sb_security_lock);
5821                 spin_unlock(&sb_lock);
5822                 down_read(&sb->s_umount);
5823                 if (sb->s_root)
5824                         superblock_doinit(sb, NULL);
5825                 drop_super(sb);
5826                 spin_lock(&sb_lock);
5827                 spin_lock(&sb_security_lock);
5828                 list_del_init(&sbsec->list);
5829                 goto next_sb;
5830         }
5831         spin_unlock(&sb_security_lock);
5832         spin_unlock(&sb_lock);
5833 }
5834
5835 /* SELinux requires early initialization in order to label
5836    all processes and objects when they are created. */
5837 security_initcall(selinux_init);
5838
5839 #if defined(CONFIG_NETFILTER)
5840
5841 static struct nf_hook_ops selinux_ipv4_ops[] = {
5842         {
5843                 .hook =         selinux_ipv4_postroute,
5844                 .owner =        THIS_MODULE,
5845                 .pf =           PF_INET,
5846                 .hooknum =      NF_INET_POST_ROUTING,
5847                 .priority =     NF_IP_PRI_SELINUX_LAST,
5848         },
5849         {
5850                 .hook =         selinux_ipv4_forward,
5851                 .owner =        THIS_MODULE,
5852                 .pf =           PF_INET,
5853                 .hooknum =      NF_INET_FORWARD,
5854                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5855         },
5856         {
5857                 .hook =         selinux_ipv4_output,
5858                 .owner =        THIS_MODULE,
5859                 .pf =           PF_INET,
5860                 .hooknum =      NF_INET_LOCAL_OUT,
5861                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5862         }
5863 };
5864
5865 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5866
5867 static struct nf_hook_ops selinux_ipv6_ops[] = {
5868         {
5869                 .hook =         selinux_ipv6_postroute,
5870                 .owner =        THIS_MODULE,
5871                 .pf =           PF_INET6,
5872                 .hooknum =      NF_INET_POST_ROUTING,
5873                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5874         },
5875         {
5876                 .hook =         selinux_ipv6_forward,
5877                 .owner =        THIS_MODULE,
5878                 .pf =           PF_INET6,
5879                 .hooknum =      NF_INET_FORWARD,
5880                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5881         }
5882 };
5883
5884 #endif  /* IPV6 */
5885
5886 static int __init selinux_nf_ip_init(void)
5887 {
5888         int err = 0;
5889
5890         if (!selinux_enabled)
5891                 goto out;
5892
5893         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5894
5895         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5896         if (err)
5897                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5898
5899 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5900         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5901         if (err)
5902                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5903 #endif  /* IPV6 */
5904
5905 out:
5906         return err;
5907 }
5908
5909 __initcall(selinux_nf_ip_init);
5910
5911 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5912 static void selinux_nf_ip_exit(void)
5913 {
5914         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5915
5916         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5917 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5918         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5919 #endif  /* IPV6 */
5920 }
5921 #endif
5922
5923 #else /* CONFIG_NETFILTER */
5924
5925 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5926 #define selinux_nf_ip_exit()
5927 #endif
5928
5929 #endif /* CONFIG_NETFILTER */
5930
5931 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5932 static int selinux_disabled;
5933
5934 int selinux_disable(void)
5935 {
5936         extern void exit_sel_fs(void);
5937
5938         if (ss_initialized) {
5939                 /* Not permitted after initial policy load. */
5940                 return -EINVAL;
5941         }
5942
5943         if (selinux_disabled) {
5944                 /* Only do this once. */
5945                 return -EINVAL;
5946         }
5947
5948         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5949
5950         selinux_disabled = 1;
5951         selinux_enabled = 0;
5952
5953         /* Reset security_ops to the secondary module, dummy or capability. */
5954         security_ops = secondary_ops;
5955
5956         /* Unregister netfilter hooks. */
5957         selinux_nf_ip_exit();
5958
5959         /* Unregister selinuxfs. */
5960         exit_sel_fs();
5961
5962         return 0;
5963 }
5964 #endif