]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/security.c
LSM/SELinux: show LSM mount options in /proc/mounts
[net-next-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in dummy.c */
24 extern struct security_operations dummy_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         if (verify(&dummy_security_ops)) {
61                 printk(KERN_ERR "%s could not verify "
62                        "dummy_security_ops structure.\n", __func__);
63                 return -EIO;
64         }
65
66         security_ops = &dummy_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 /* Save user chosen LSM */
73 static int __init choose_lsm(char *str)
74 {
75         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76         return 1;
77 }
78 __setup("security=", choose_lsm);
79
80 /**
81  * security_module_enable - Load given security module on boot ?
82  * @ops: a pointer to the struct security_operations that is to be checked.
83  *
84  * Each LSM must pass this method before registering its own operations
85  * to avoid security registration races. This method may also be used
86  * to check if your LSM is currently loaded during kernel initialization.
87  *
88  * Return true if:
89  *      -The passed LSM is the one chosen by user at boot time,
90  *      -or user didsn't specify a specific LSM and we're the first to ask
91  *       for registeration permissoin,
92  *      -or the passed LSM is currently loaded.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         if (!*chosen_lsm)
98                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100                 return 0;
101
102         return 1;
103 }
104
105 /**
106  * register_security - registers a security framework with the kernel
107  * @ops: a pointer to the struct security_options that is to be registered
108  *
109  * This function is to allow a security module to register itself with the
110  * kernel security subsystem.  Some rudimentary checking is done on the @ops
111  * value passed to this function. You'll need to check first if your LSM
112  * is allowed to register its @ops by calling security_module_enable(@ops).
113  *
114  * If there is already a security module registered with the kernel,
115  * an error will be returned.  Otherwise 0 is returned on success.
116  */
117 int register_security(struct security_operations *ops)
118 {
119         if (verify(ops)) {
120                 printk(KERN_DEBUG "%s could not verify "
121                        "security_operations structure.\n", __func__);
122                 return -EINVAL;
123         }
124
125         if (security_ops != &dummy_security_ops)
126                 return -EAGAIN;
127
128         security_ops = ops;
129
130         return 0;
131 }
132
133 /**
134  * mod_reg_security - allows security modules to be "stacked"
135  * @name: a pointer to a string with the name of the security_options to be registered
136  * @ops: a pointer to the struct security_options that is to be registered
137  *
138  * This function allows security modules to be stacked if the currently loaded
139  * security module allows this to happen.  It passes the @name and @ops to the
140  * register_security function of the currently loaded security module.
141  *
142  * The return value depends on the currently loaded security module, with 0 as
143  * success.
144  */
145 int mod_reg_security(const char *name, struct security_operations *ops)
146 {
147         if (verify(ops)) {
148                 printk(KERN_INFO "%s could not verify "
149                        "security operations.\n", __func__);
150                 return -EINVAL;
151         }
152
153         if (ops == security_ops) {
154                 printk(KERN_INFO "%s security operations "
155                        "already registered.\n", __func__);
156                 return -EINVAL;
157         }
158
159         return security_ops->register_security(name, ops);
160 }
161
162 /* Security operations */
163
164 int security_ptrace(struct task_struct *parent, struct task_struct *child,
165                     unsigned int mode)
166 {
167         return security_ops->ptrace(parent, child, mode);
168 }
169
170 int security_capget(struct task_struct *target,
171                      kernel_cap_t *effective,
172                      kernel_cap_t *inheritable,
173                      kernel_cap_t *permitted)
174 {
175         return security_ops->capget(target, effective, inheritable, permitted);
176 }
177
178 int security_capset_check(struct task_struct *target,
179                            kernel_cap_t *effective,
180                            kernel_cap_t *inheritable,
181                            kernel_cap_t *permitted)
182 {
183         return security_ops->capset_check(target, effective, inheritable, permitted);
184 }
185
186 void security_capset_set(struct task_struct *target,
187                           kernel_cap_t *effective,
188                           kernel_cap_t *inheritable,
189                           kernel_cap_t *permitted)
190 {
191         security_ops->capset_set(target, effective, inheritable, permitted);
192 }
193
194 int security_capable(struct task_struct *tsk, int cap)
195 {
196         return security_ops->capable(tsk, cap);
197 }
198
199 int security_acct(struct file *file)
200 {
201         return security_ops->acct(file);
202 }
203
204 int security_sysctl(struct ctl_table *table, int op)
205 {
206         return security_ops->sysctl(table, op);
207 }
208
209 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
210 {
211         return security_ops->quotactl(cmds, type, id, sb);
212 }
213
214 int security_quota_on(struct dentry *dentry)
215 {
216         return security_ops->quota_on(dentry);
217 }
218
219 int security_syslog(int type)
220 {
221         return security_ops->syslog(type);
222 }
223
224 int security_settime(struct timespec *ts, struct timezone *tz)
225 {
226         return security_ops->settime(ts, tz);
227 }
228
229 int security_vm_enough_memory(long pages)
230 {
231         return security_ops->vm_enough_memory(current->mm, pages);
232 }
233
234 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
235 {
236         return security_ops->vm_enough_memory(mm, pages);
237 }
238
239 int security_bprm_alloc(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_alloc_security(bprm);
242 }
243
244 void security_bprm_free(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_free_security(bprm);
247 }
248
249 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
250 {
251         security_ops->bprm_apply_creds(bprm, unsafe);
252 }
253
254 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
255 {
256         security_ops->bprm_post_apply_creds(bprm);
257 }
258
259 int security_bprm_set(struct linux_binprm *bprm)
260 {
261         return security_ops->bprm_set_security(bprm);
262 }
263
264 int security_bprm_check(struct linux_binprm *bprm)
265 {
266         return security_ops->bprm_check_security(bprm);
267 }
268
269 int security_bprm_secureexec(struct linux_binprm *bprm)
270 {
271         return security_ops->bprm_secureexec(bprm);
272 }
273
274 int security_sb_alloc(struct super_block *sb)
275 {
276         return security_ops->sb_alloc_security(sb);
277 }
278
279 void security_sb_free(struct super_block *sb)
280 {
281         security_ops->sb_free_security(sb);
282 }
283
284 int security_sb_copy_data(char *orig, char *copy)
285 {
286         return security_ops->sb_copy_data(orig, copy);
287 }
288 EXPORT_SYMBOL(security_sb_copy_data);
289
290 int security_sb_kern_mount(struct super_block *sb, void *data)
291 {
292         return security_ops->sb_kern_mount(sb, data);
293 }
294
295 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
296 {
297         return security_ops->sb_show_options(m, sb);
298 }
299
300 int security_sb_statfs(struct dentry *dentry)
301 {
302         return security_ops->sb_statfs(dentry);
303 }
304
305 int security_sb_mount(char *dev_name, struct path *path,
306                        char *type, unsigned long flags, void *data)
307 {
308         return security_ops->sb_mount(dev_name, path, type, flags, data);
309 }
310
311 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
312 {
313         return security_ops->sb_check_sb(mnt, path);
314 }
315
316 int security_sb_umount(struct vfsmount *mnt, int flags)
317 {
318         return security_ops->sb_umount(mnt, flags);
319 }
320
321 void security_sb_umount_close(struct vfsmount *mnt)
322 {
323         security_ops->sb_umount_close(mnt);
324 }
325
326 void security_sb_umount_busy(struct vfsmount *mnt)
327 {
328         security_ops->sb_umount_busy(mnt);
329 }
330
331 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
332 {
333         security_ops->sb_post_remount(mnt, flags, data);
334 }
335
336 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
337 {
338         security_ops->sb_post_addmount(mnt, mountpoint);
339 }
340
341 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
342 {
343         return security_ops->sb_pivotroot(old_path, new_path);
344 }
345
346 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
347 {
348         security_ops->sb_post_pivotroot(old_path, new_path);
349 }
350
351 int security_sb_get_mnt_opts(const struct super_block *sb,
352                                 struct security_mnt_opts *opts)
353 {
354         return security_ops->sb_get_mnt_opts(sb, opts);
355 }
356
357 int security_sb_set_mnt_opts(struct super_block *sb,
358                                 struct security_mnt_opts *opts)
359 {
360         return security_ops->sb_set_mnt_opts(sb, opts);
361 }
362 EXPORT_SYMBOL(security_sb_set_mnt_opts);
363
364 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
365                                 struct super_block *newsb)
366 {
367         security_ops->sb_clone_mnt_opts(oldsb, newsb);
368 }
369 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
370
371 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
372 {
373         return security_ops->sb_parse_opts_str(options, opts);
374 }
375 EXPORT_SYMBOL(security_sb_parse_opts_str);
376
377 int security_inode_alloc(struct inode *inode)
378 {
379         inode->i_security = NULL;
380         return security_ops->inode_alloc_security(inode);
381 }
382
383 void security_inode_free(struct inode *inode)
384 {
385         security_ops->inode_free_security(inode);
386 }
387
388 int security_inode_init_security(struct inode *inode, struct inode *dir,
389                                   char **name, void **value, size_t *len)
390 {
391         if (unlikely(IS_PRIVATE(inode)))
392                 return -EOPNOTSUPP;
393         return security_ops->inode_init_security(inode, dir, name, value, len);
394 }
395 EXPORT_SYMBOL(security_inode_init_security);
396
397 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
398 {
399         if (unlikely(IS_PRIVATE(dir)))
400                 return 0;
401         return security_ops->inode_create(dir, dentry, mode);
402 }
403
404 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
405                          struct dentry *new_dentry)
406 {
407         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
408                 return 0;
409         return security_ops->inode_link(old_dentry, dir, new_dentry);
410 }
411
412 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
413 {
414         if (unlikely(IS_PRIVATE(dentry->d_inode)))
415                 return 0;
416         return security_ops->inode_unlink(dir, dentry);
417 }
418
419 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
420                             const char *old_name)
421 {
422         if (unlikely(IS_PRIVATE(dir)))
423                 return 0;
424         return security_ops->inode_symlink(dir, dentry, old_name);
425 }
426
427 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
428 {
429         if (unlikely(IS_PRIVATE(dir)))
430                 return 0;
431         return security_ops->inode_mkdir(dir, dentry, mode);
432 }
433
434 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
435 {
436         if (unlikely(IS_PRIVATE(dentry->d_inode)))
437                 return 0;
438         return security_ops->inode_rmdir(dir, dentry);
439 }
440
441 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
442 {
443         if (unlikely(IS_PRIVATE(dir)))
444                 return 0;
445         return security_ops->inode_mknod(dir, dentry, mode, dev);
446 }
447
448 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
449                            struct inode *new_dir, struct dentry *new_dentry)
450 {
451         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
452             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
453                 return 0;
454         return security_ops->inode_rename(old_dir, old_dentry,
455                                            new_dir, new_dentry);
456 }
457
458 int security_inode_readlink(struct dentry *dentry)
459 {
460         if (unlikely(IS_PRIVATE(dentry->d_inode)))
461                 return 0;
462         return security_ops->inode_readlink(dentry);
463 }
464
465 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
466 {
467         if (unlikely(IS_PRIVATE(dentry->d_inode)))
468                 return 0;
469         return security_ops->inode_follow_link(dentry, nd);
470 }
471
472 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
473 {
474         if (unlikely(IS_PRIVATE(inode)))
475                 return 0;
476         return security_ops->inode_permission(inode, mask, nd);
477 }
478
479 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
480 {
481         if (unlikely(IS_PRIVATE(dentry->d_inode)))
482                 return 0;
483         return security_ops->inode_setattr(dentry, attr);
484 }
485
486 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
487 {
488         if (unlikely(IS_PRIVATE(dentry->d_inode)))
489                 return 0;
490         return security_ops->inode_getattr(mnt, dentry);
491 }
492
493 void security_inode_delete(struct inode *inode)
494 {
495         if (unlikely(IS_PRIVATE(inode)))
496                 return;
497         security_ops->inode_delete(inode);
498 }
499
500 int security_inode_setxattr(struct dentry *dentry, const char *name,
501                             const void *value, size_t size, int flags)
502 {
503         if (unlikely(IS_PRIVATE(dentry->d_inode)))
504                 return 0;
505         return security_ops->inode_setxattr(dentry, name, value, size, flags);
506 }
507
508 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
509                                   const void *value, size_t size, int flags)
510 {
511         if (unlikely(IS_PRIVATE(dentry->d_inode)))
512                 return;
513         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
514 }
515
516 int security_inode_getxattr(struct dentry *dentry, const char *name)
517 {
518         if (unlikely(IS_PRIVATE(dentry->d_inode)))
519                 return 0;
520         return security_ops->inode_getxattr(dentry, name);
521 }
522
523 int security_inode_listxattr(struct dentry *dentry)
524 {
525         if (unlikely(IS_PRIVATE(dentry->d_inode)))
526                 return 0;
527         return security_ops->inode_listxattr(dentry);
528 }
529
530 int security_inode_removexattr(struct dentry *dentry, const char *name)
531 {
532         if (unlikely(IS_PRIVATE(dentry->d_inode)))
533                 return 0;
534         return security_ops->inode_removexattr(dentry, name);
535 }
536
537 int security_inode_need_killpriv(struct dentry *dentry)
538 {
539         return security_ops->inode_need_killpriv(dentry);
540 }
541
542 int security_inode_killpriv(struct dentry *dentry)
543 {
544         return security_ops->inode_killpriv(dentry);
545 }
546
547 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
548 {
549         if (unlikely(IS_PRIVATE(inode)))
550                 return 0;
551         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
552 }
553
554 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
555 {
556         if (unlikely(IS_PRIVATE(inode)))
557                 return 0;
558         return security_ops->inode_setsecurity(inode, name, value, size, flags);
559 }
560
561 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
562 {
563         if (unlikely(IS_PRIVATE(inode)))
564                 return 0;
565         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
566 }
567
568 void security_inode_getsecid(const struct inode *inode, u32 *secid)
569 {
570         security_ops->inode_getsecid(inode, secid);
571 }
572
573 int security_file_permission(struct file *file, int mask)
574 {
575         return security_ops->file_permission(file, mask);
576 }
577
578 int security_file_alloc(struct file *file)
579 {
580         return security_ops->file_alloc_security(file);
581 }
582
583 void security_file_free(struct file *file)
584 {
585         security_ops->file_free_security(file);
586 }
587
588 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
589 {
590         return security_ops->file_ioctl(file, cmd, arg);
591 }
592
593 int security_file_mmap(struct file *file, unsigned long reqprot,
594                         unsigned long prot, unsigned long flags,
595                         unsigned long addr, unsigned long addr_only)
596 {
597         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
598 }
599
600 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
601                             unsigned long prot)
602 {
603         return security_ops->file_mprotect(vma, reqprot, prot);
604 }
605
606 int security_file_lock(struct file *file, unsigned int cmd)
607 {
608         return security_ops->file_lock(file, cmd);
609 }
610
611 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
612 {
613         return security_ops->file_fcntl(file, cmd, arg);
614 }
615
616 int security_file_set_fowner(struct file *file)
617 {
618         return security_ops->file_set_fowner(file);
619 }
620
621 int security_file_send_sigiotask(struct task_struct *tsk,
622                                   struct fown_struct *fown, int sig)
623 {
624         return security_ops->file_send_sigiotask(tsk, fown, sig);
625 }
626
627 int security_file_receive(struct file *file)
628 {
629         return security_ops->file_receive(file);
630 }
631
632 int security_dentry_open(struct file *file)
633 {
634         return security_ops->dentry_open(file);
635 }
636
637 int security_task_create(unsigned long clone_flags)
638 {
639         return security_ops->task_create(clone_flags);
640 }
641
642 int security_task_alloc(struct task_struct *p)
643 {
644         return security_ops->task_alloc_security(p);
645 }
646
647 void security_task_free(struct task_struct *p)
648 {
649         security_ops->task_free_security(p);
650 }
651
652 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
653 {
654         return security_ops->task_setuid(id0, id1, id2, flags);
655 }
656
657 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
658                                uid_t old_suid, int flags)
659 {
660         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
661 }
662
663 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
664 {
665         return security_ops->task_setgid(id0, id1, id2, flags);
666 }
667
668 int security_task_setpgid(struct task_struct *p, pid_t pgid)
669 {
670         return security_ops->task_setpgid(p, pgid);
671 }
672
673 int security_task_getpgid(struct task_struct *p)
674 {
675         return security_ops->task_getpgid(p);
676 }
677
678 int security_task_getsid(struct task_struct *p)
679 {
680         return security_ops->task_getsid(p);
681 }
682
683 void security_task_getsecid(struct task_struct *p, u32 *secid)
684 {
685         security_ops->task_getsecid(p, secid);
686 }
687 EXPORT_SYMBOL(security_task_getsecid);
688
689 int security_task_setgroups(struct group_info *group_info)
690 {
691         return security_ops->task_setgroups(group_info);
692 }
693
694 int security_task_setnice(struct task_struct *p, int nice)
695 {
696         return security_ops->task_setnice(p, nice);
697 }
698
699 int security_task_setioprio(struct task_struct *p, int ioprio)
700 {
701         return security_ops->task_setioprio(p, ioprio);
702 }
703
704 int security_task_getioprio(struct task_struct *p)
705 {
706         return security_ops->task_getioprio(p);
707 }
708
709 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
710 {
711         return security_ops->task_setrlimit(resource, new_rlim);
712 }
713
714 int security_task_setscheduler(struct task_struct *p,
715                                 int policy, struct sched_param *lp)
716 {
717         return security_ops->task_setscheduler(p, policy, lp);
718 }
719
720 int security_task_getscheduler(struct task_struct *p)
721 {
722         return security_ops->task_getscheduler(p);
723 }
724
725 int security_task_movememory(struct task_struct *p)
726 {
727         return security_ops->task_movememory(p);
728 }
729
730 int security_task_kill(struct task_struct *p, struct siginfo *info,
731                         int sig, u32 secid)
732 {
733         return security_ops->task_kill(p, info, sig, secid);
734 }
735
736 int security_task_wait(struct task_struct *p)
737 {
738         return security_ops->task_wait(p);
739 }
740
741 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
742                          unsigned long arg4, unsigned long arg5, long *rc_p)
743 {
744         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
745 }
746
747 void security_task_reparent_to_init(struct task_struct *p)
748 {
749         security_ops->task_reparent_to_init(p);
750 }
751
752 void security_task_to_inode(struct task_struct *p, struct inode *inode)
753 {
754         security_ops->task_to_inode(p, inode);
755 }
756
757 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
758 {
759         return security_ops->ipc_permission(ipcp, flag);
760 }
761
762 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
763 {
764         security_ops->ipc_getsecid(ipcp, secid);
765 }
766
767 int security_msg_msg_alloc(struct msg_msg *msg)
768 {
769         return security_ops->msg_msg_alloc_security(msg);
770 }
771
772 void security_msg_msg_free(struct msg_msg *msg)
773 {
774         security_ops->msg_msg_free_security(msg);
775 }
776
777 int security_msg_queue_alloc(struct msg_queue *msq)
778 {
779         return security_ops->msg_queue_alloc_security(msq);
780 }
781
782 void security_msg_queue_free(struct msg_queue *msq)
783 {
784         security_ops->msg_queue_free_security(msq);
785 }
786
787 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
788 {
789         return security_ops->msg_queue_associate(msq, msqflg);
790 }
791
792 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
793 {
794         return security_ops->msg_queue_msgctl(msq, cmd);
795 }
796
797 int security_msg_queue_msgsnd(struct msg_queue *msq,
798                                struct msg_msg *msg, int msqflg)
799 {
800         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
801 }
802
803 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
804                                struct task_struct *target, long type, int mode)
805 {
806         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
807 }
808
809 int security_shm_alloc(struct shmid_kernel *shp)
810 {
811         return security_ops->shm_alloc_security(shp);
812 }
813
814 void security_shm_free(struct shmid_kernel *shp)
815 {
816         security_ops->shm_free_security(shp);
817 }
818
819 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
820 {
821         return security_ops->shm_associate(shp, shmflg);
822 }
823
824 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
825 {
826         return security_ops->shm_shmctl(shp, cmd);
827 }
828
829 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
830 {
831         return security_ops->shm_shmat(shp, shmaddr, shmflg);
832 }
833
834 int security_sem_alloc(struct sem_array *sma)
835 {
836         return security_ops->sem_alloc_security(sma);
837 }
838
839 void security_sem_free(struct sem_array *sma)
840 {
841         security_ops->sem_free_security(sma);
842 }
843
844 int security_sem_associate(struct sem_array *sma, int semflg)
845 {
846         return security_ops->sem_associate(sma, semflg);
847 }
848
849 int security_sem_semctl(struct sem_array *sma, int cmd)
850 {
851         return security_ops->sem_semctl(sma, cmd);
852 }
853
854 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
855                         unsigned nsops, int alter)
856 {
857         return security_ops->sem_semop(sma, sops, nsops, alter);
858 }
859
860 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
861 {
862         if (unlikely(inode && IS_PRIVATE(inode)))
863                 return;
864         security_ops->d_instantiate(dentry, inode);
865 }
866 EXPORT_SYMBOL(security_d_instantiate);
867
868 int security_getprocattr(struct task_struct *p, char *name, char **value)
869 {
870         return security_ops->getprocattr(p, name, value);
871 }
872
873 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
874 {
875         return security_ops->setprocattr(p, name, value, size);
876 }
877
878 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
879 {
880         return security_ops->netlink_send(sk, skb);
881 }
882
883 int security_netlink_recv(struct sk_buff *skb, int cap)
884 {
885         return security_ops->netlink_recv(skb, cap);
886 }
887 EXPORT_SYMBOL(security_netlink_recv);
888
889 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
890 {
891         return security_ops->secid_to_secctx(secid, secdata, seclen);
892 }
893 EXPORT_SYMBOL(security_secid_to_secctx);
894
895 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
896 {
897         return security_ops->secctx_to_secid(secdata, seclen, secid);
898 }
899 EXPORT_SYMBOL(security_secctx_to_secid);
900
901 void security_release_secctx(char *secdata, u32 seclen)
902 {
903         security_ops->release_secctx(secdata, seclen);
904 }
905 EXPORT_SYMBOL(security_release_secctx);
906
907 #ifdef CONFIG_SECURITY_NETWORK
908
909 int security_unix_stream_connect(struct socket *sock, struct socket *other,
910                                  struct sock *newsk)
911 {
912         return security_ops->unix_stream_connect(sock, other, newsk);
913 }
914 EXPORT_SYMBOL(security_unix_stream_connect);
915
916 int security_unix_may_send(struct socket *sock,  struct socket *other)
917 {
918         return security_ops->unix_may_send(sock, other);
919 }
920 EXPORT_SYMBOL(security_unix_may_send);
921
922 int security_socket_create(int family, int type, int protocol, int kern)
923 {
924         return security_ops->socket_create(family, type, protocol, kern);
925 }
926
927 int security_socket_post_create(struct socket *sock, int family,
928                                 int type, int protocol, int kern)
929 {
930         return security_ops->socket_post_create(sock, family, type,
931                                                 protocol, kern);
932 }
933
934 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
935 {
936         return security_ops->socket_bind(sock, address, addrlen);
937 }
938
939 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
940 {
941         return security_ops->socket_connect(sock, address, addrlen);
942 }
943
944 int security_socket_listen(struct socket *sock, int backlog)
945 {
946         return security_ops->socket_listen(sock, backlog);
947 }
948
949 int security_socket_accept(struct socket *sock, struct socket *newsock)
950 {
951         return security_ops->socket_accept(sock, newsock);
952 }
953
954 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
955 {
956         security_ops->socket_post_accept(sock, newsock);
957 }
958
959 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
960 {
961         return security_ops->socket_sendmsg(sock, msg, size);
962 }
963
964 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
965                             int size, int flags)
966 {
967         return security_ops->socket_recvmsg(sock, msg, size, flags);
968 }
969
970 int security_socket_getsockname(struct socket *sock)
971 {
972         return security_ops->socket_getsockname(sock);
973 }
974
975 int security_socket_getpeername(struct socket *sock)
976 {
977         return security_ops->socket_getpeername(sock);
978 }
979
980 int security_socket_getsockopt(struct socket *sock, int level, int optname)
981 {
982         return security_ops->socket_getsockopt(sock, level, optname);
983 }
984
985 int security_socket_setsockopt(struct socket *sock, int level, int optname)
986 {
987         return security_ops->socket_setsockopt(sock, level, optname);
988 }
989
990 int security_socket_shutdown(struct socket *sock, int how)
991 {
992         return security_ops->socket_shutdown(sock, how);
993 }
994
995 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
996 {
997         return security_ops->socket_sock_rcv_skb(sk, skb);
998 }
999 EXPORT_SYMBOL(security_sock_rcv_skb);
1000
1001 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1002                                       int __user *optlen, unsigned len)
1003 {
1004         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1005 }
1006
1007 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1008 {
1009         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1010 }
1011 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1012
1013 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1014 {
1015         return security_ops->sk_alloc_security(sk, family, priority);
1016 }
1017
1018 void security_sk_free(struct sock *sk)
1019 {
1020         security_ops->sk_free_security(sk);
1021 }
1022
1023 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1024 {
1025         security_ops->sk_clone_security(sk, newsk);
1026 }
1027
1028 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1029 {
1030         security_ops->sk_getsecid(sk, &fl->secid);
1031 }
1032 EXPORT_SYMBOL(security_sk_classify_flow);
1033
1034 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1035 {
1036         security_ops->req_classify_flow(req, fl);
1037 }
1038 EXPORT_SYMBOL(security_req_classify_flow);
1039
1040 void security_sock_graft(struct sock *sk, struct socket *parent)
1041 {
1042         security_ops->sock_graft(sk, parent);
1043 }
1044 EXPORT_SYMBOL(security_sock_graft);
1045
1046 int security_inet_conn_request(struct sock *sk,
1047                         struct sk_buff *skb, struct request_sock *req)
1048 {
1049         return security_ops->inet_conn_request(sk, skb, req);
1050 }
1051 EXPORT_SYMBOL(security_inet_conn_request);
1052
1053 void security_inet_csk_clone(struct sock *newsk,
1054                         const struct request_sock *req)
1055 {
1056         security_ops->inet_csk_clone(newsk, req);
1057 }
1058
1059 void security_inet_conn_established(struct sock *sk,
1060                         struct sk_buff *skb)
1061 {
1062         security_ops->inet_conn_established(sk, skb);
1063 }
1064
1065 #endif  /* CONFIG_SECURITY_NETWORK */
1066
1067 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1068
1069 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1070 {
1071         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1072 }
1073 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1074
1075 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1076                               struct xfrm_sec_ctx **new_ctxp)
1077 {
1078         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1079 }
1080
1081 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1082 {
1083         security_ops->xfrm_policy_free_security(ctx);
1084 }
1085 EXPORT_SYMBOL(security_xfrm_policy_free);
1086
1087 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1088 {
1089         return security_ops->xfrm_policy_delete_security(ctx);
1090 }
1091
1092 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1093 {
1094         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1095 }
1096 EXPORT_SYMBOL(security_xfrm_state_alloc);
1097
1098 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1099                                       struct xfrm_sec_ctx *polsec, u32 secid)
1100 {
1101         if (!polsec)
1102                 return 0;
1103         /*
1104          * We want the context to be taken from secid which is usually
1105          * from the sock.
1106          */
1107         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1108 }
1109
1110 int security_xfrm_state_delete(struct xfrm_state *x)
1111 {
1112         return security_ops->xfrm_state_delete_security(x);
1113 }
1114 EXPORT_SYMBOL(security_xfrm_state_delete);
1115
1116 void security_xfrm_state_free(struct xfrm_state *x)
1117 {
1118         security_ops->xfrm_state_free_security(x);
1119 }
1120
1121 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1122 {
1123         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1124 }
1125
1126 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1127                                        struct xfrm_policy *xp, struct flowi *fl)
1128 {
1129         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1130 }
1131
1132 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1133 {
1134         return security_ops->xfrm_decode_session(skb, secid, 1);
1135 }
1136
1137 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1138 {
1139         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1140
1141         BUG_ON(rc);
1142 }
1143 EXPORT_SYMBOL(security_skb_classify_flow);
1144
1145 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1146
1147 #ifdef CONFIG_KEYS
1148
1149 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1150 {
1151         return security_ops->key_alloc(key, tsk, flags);
1152 }
1153
1154 void security_key_free(struct key *key)
1155 {
1156         security_ops->key_free(key);
1157 }
1158
1159 int security_key_permission(key_ref_t key_ref,
1160                             struct task_struct *context, key_perm_t perm)
1161 {
1162         return security_ops->key_permission(key_ref, context, perm);
1163 }
1164
1165 int security_key_getsecurity(struct key *key, char **_buffer)
1166 {
1167         return security_ops->key_getsecurity(key, _buffer);
1168 }
1169
1170 #endif  /* CONFIG_KEYS */
1171
1172 #ifdef CONFIG_AUDIT
1173
1174 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1175 {
1176         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1177 }
1178
1179 int security_audit_rule_known(struct audit_krule *krule)
1180 {
1181         return security_ops->audit_rule_known(krule);
1182 }
1183
1184 void security_audit_rule_free(void *lsmrule)
1185 {
1186         security_ops->audit_rule_free(lsmrule);
1187 }
1188
1189 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1190                               struct audit_context *actx)
1191 {
1192         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1193 }
1194
1195 #endif /* CONFIG_AUDIT */