]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/wireless/reg.c
cfg80211: fix disabling channels based on hints
[net-next-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101         .n_reg_rules = 5,
102         .alpha2 =  "00",
103         .reg_rules = {
104                 /* IEEE 802.11b/g, channels 1..11 */
105                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106                 /* IEEE 802.11b/g, channels 12..13. No HT40
107                  * channel fits here. */
108                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS),
111                 /* IEEE 802.11 channel 14 - Only JP enables
112                  * this and for 802.11b only */
113                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS |
116                         NL80211_RRF_NO_OFDM),
117                 /* IEEE 802.11a, channel 36..48 */
118                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121
122                 /* NB: 5260 MHz - 5700 MHz requies DFS */
123
124                 /* IEEE 802.11a, channel 149..165 */
125                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126                         NL80211_RRF_PASSIVE_SCAN |
127                         NL80211_RRF_NO_IBSS),
128         }
129 };
130
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132         &world_regdom;
133
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139
140 static void reset_regdomains(void)
141 {
142         /* avoid freeing static information or freeing something twice */
143         if (cfg80211_regdomain == cfg80211_world_regdom)
144                 cfg80211_regdomain = NULL;
145         if (cfg80211_world_regdom == &world_regdom)
146                 cfg80211_world_regdom = NULL;
147         if (cfg80211_regdomain == &world_regdom)
148                 cfg80211_regdomain = NULL;
149
150         kfree(cfg80211_regdomain);
151         kfree(cfg80211_world_regdom);
152
153         cfg80211_world_regdom = &world_regdom;
154         cfg80211_regdomain = NULL;
155 }
156
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163         BUG_ON(!last_request);
164
165         reset_regdomains();
166
167         cfg80211_world_regdom = rd;
168         cfg80211_regdomain = rd;
169 }
170
171 bool is_world_regdom(const char *alpha2)
172 {
173         if (!alpha2)
174                 return false;
175         if (alpha2[0] == '0' && alpha2[1] == '0')
176                 return true;
177         return false;
178 }
179
180 static bool is_alpha2_set(const char *alpha2)
181 {
182         if (!alpha2)
183                 return false;
184         if (alpha2[0] != 0 && alpha2[1] != 0)
185                 return true;
186         return false;
187 }
188
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191         if (!alpha2)
192                 return false;
193         /*
194          * Special case where regulatory domain was built by driver
195          * but a specific alpha2 cannot be determined
196          */
197         if (alpha2[0] == '9' && alpha2[1] == '9')
198                 return true;
199         return false;
200 }
201
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain is the
208          * result of an intersection between two regulatory domain
209          * structures
210          */
211         if (alpha2[0] == '9' && alpha2[1] == '8')
212                 return true;
213         return false;
214 }
215
216 static bool is_an_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221                 return true;
222         return false;
223 }
224
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227         if (!alpha2_x || !alpha2_y)
228                 return false;
229         if (alpha2_x[0] == alpha2_y[0] &&
230                 alpha2_x[1] == alpha2_y[1])
231                 return true;
232         return false;
233 }
234
235 static bool regdom_changes(const char *alpha2)
236 {
237         assert_cfg80211_lock();
238
239         if (!cfg80211_regdomain)
240                 return true;
241         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242                 return false;
243         return true;
244 }
245
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254                 return false;
255
256         /* This would indicate a mistake on the design */
257         if (WARN((!is_world_regdom(user_alpha2) &&
258                   !is_an_alpha2(user_alpha2)),
259                  "Unexpected user alpha2: %c%c\n",
260                  user_alpha2[0],
261                  user_alpha2[1]))
262                 return false;
263
264         return true;
265 }
266
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268                          const struct ieee80211_regdomain *src_regd)
269 {
270         struct ieee80211_regdomain *regd;
271         int size_of_regd = 0;
272         unsigned int i;
273
274         size_of_regd = sizeof(struct ieee80211_regdomain) +
275           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276
277         regd = kzalloc(size_of_regd, GFP_KERNEL);
278         if (!regd)
279                 return -ENOMEM;
280
281         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282
283         for (i = 0; i < src_regd->n_reg_rules; i++)
284                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285                         sizeof(struct ieee80211_reg_rule));
286
287         *dst_regd = regd;
288         return 0;
289 }
290
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293         char alpha2[2];
294         struct list_head list;
295 };
296
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299
300 static void reg_regdb_search(struct work_struct *work)
301 {
302         struct reg_regdb_search_request *request;
303         const struct ieee80211_regdomain *curdom, *regdom;
304         int i, r;
305
306         mutex_lock(&reg_regdb_search_mutex);
307         while (!list_empty(&reg_regdb_search_list)) {
308                 request = list_first_entry(&reg_regdb_search_list,
309                                            struct reg_regdb_search_request,
310                                            list);
311                 list_del(&request->list);
312
313                 for (i=0; i<reg_regdb_size; i++) {
314                         curdom = reg_regdb[i];
315
316                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317                                 r = reg_copy_regd(&regdom, curdom);
318                                 if (r)
319                                         break;
320                                 mutex_lock(&cfg80211_mutex);
321                                 set_regdom(regdom);
322                                 mutex_unlock(&cfg80211_mutex);
323                                 break;
324                         }
325                 }
326
327                 kfree(request);
328         }
329         mutex_unlock(&reg_regdb_search_mutex);
330 }
331
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333
334 static void reg_regdb_query(const char *alpha2)
335 {
336         struct reg_regdb_search_request *request;
337
338         if (!alpha2)
339                 return;
340
341         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342         if (!request)
343                 return;
344
345         memcpy(request->alpha2, alpha2, 2);
346
347         mutex_lock(&reg_regdb_search_mutex);
348         list_add_tail(&request->list, &reg_regdb_search_list);
349         mutex_unlock(&reg_regdb_search_mutex);
350
351         schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         /* query internal regulatory database (if it exists) */
377         reg_regdb_query(alpha2);
378
379         country_env[8] = alpha2[0];
380         country_env[9] = alpha2[1];
381
382         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388         assert_cfg80211_lock();
389
390         if (!last_request)
391                 return false;
392
393         return alpha2_equal(last_request->alpha2, alpha2);
394 }
395
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400         u32 freq_diff;
401
402         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403                 return false;
404
405         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406                 return false;
407
408         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409
410         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411                         freq_range->max_bandwidth_khz > freq_diff)
412                 return false;
413
414         return true;
415 }
416
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419         const struct ieee80211_reg_rule *reg_rule = NULL;
420         unsigned int i;
421
422         if (!rd->n_reg_rules)
423                 return false;
424
425         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426                 return false;
427
428         for (i = 0; i < rd->n_reg_rules; i++) {
429                 reg_rule = &rd->reg_rules[i];
430                 if (!is_valid_reg_rule(reg_rule))
431                         return false;
432         }
433
434         return true;
435 }
436
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438                             u32 center_freq_khz,
439                             u32 bw_khz)
440 {
441         u32 start_freq_khz, end_freq_khz;
442
443         start_freq_khz = center_freq_khz - (bw_khz/2);
444         end_freq_khz = center_freq_khz + (bw_khz/2);
445
446         if (start_freq_khz >= freq_range->start_freq_khz &&
447             end_freq_khz <= freq_range->end_freq_khz)
448                 return true;
449
450         return false;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483         const struct ieee80211_reg_rule *rule1,
484         const struct ieee80211_reg_rule *rule2,
485         struct ieee80211_reg_rule *intersected_rule)
486 {
487         const struct ieee80211_freq_range *freq_range1, *freq_range2;
488         struct ieee80211_freq_range *freq_range;
489         const struct ieee80211_power_rule *power_rule1, *power_rule2;
490         struct ieee80211_power_rule *power_rule;
491         u32 freq_diff;
492
493         freq_range1 = &rule1->freq_range;
494         freq_range2 = &rule2->freq_range;
495         freq_range = &intersected_rule->freq_range;
496
497         power_rule1 = &rule1->power_rule;
498         power_rule2 = &rule2->power_rule;
499         power_rule = &intersected_rule->power_rule;
500
501         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502                 freq_range2->start_freq_khz);
503         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504                 freq_range2->end_freq_khz);
505         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506                 freq_range2->max_bandwidth_khz);
507
508         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509         if (freq_range->max_bandwidth_khz > freq_diff)
510                 freq_range->max_bandwidth_khz = freq_diff;
511
512         power_rule->max_eirp = min(power_rule1->max_eirp,
513                 power_rule2->max_eirp);
514         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515                 power_rule2->max_antenna_gain);
516
517         intersected_rule->flags = (rule1->flags | rule2->flags);
518
519         if (!is_valid_reg_rule(intersected_rule))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539         const struct ieee80211_regdomain *rd1,
540         const struct ieee80211_regdomain *rd2)
541 {
542         int r, size_of_regd;
543         unsigned int x, y;
544         unsigned int num_rules = 0, rule_idx = 0;
545         const struct ieee80211_reg_rule *rule1, *rule2;
546         struct ieee80211_reg_rule *intersected_rule;
547         struct ieee80211_regdomain *rd;
548         /* This is just a dummy holder to help us count */
549         struct ieee80211_reg_rule irule;
550
551         /* Uses the stack temporarily for counter arithmetic */
552         intersected_rule = &irule;
553
554         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555
556         if (!rd1 || !rd2)
557                 return NULL;
558
559         /*
560          * First we get a count of the rules we'll need, then we actually
561          * build them. This is to so we can malloc() and free() a
562          * regdomain once. The reason we use reg_rules_intersect() here
563          * is it will return -EINVAL if the rule computed makes no sense.
564          * All rules that do check out OK are valid.
565          */
566
567         for (x = 0; x < rd1->n_reg_rules; x++) {
568                 rule1 = &rd1->reg_rules[x];
569                 for (y = 0; y < rd2->n_reg_rules; y++) {
570                         rule2 = &rd2->reg_rules[y];
571                         if (!reg_rules_intersect(rule1, rule2,
572                                         intersected_rule))
573                                 num_rules++;
574                         memset(intersected_rule, 0,
575                                         sizeof(struct ieee80211_reg_rule));
576                 }
577         }
578
579         if (!num_rules)
580                 return NULL;
581
582         size_of_regd = sizeof(struct ieee80211_regdomain) +
583                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584
585         rd = kzalloc(size_of_regd, GFP_KERNEL);
586         if (!rd)
587                 return NULL;
588
589         for (x = 0; x < rd1->n_reg_rules; x++) {
590                 rule1 = &rd1->reg_rules[x];
591                 for (y = 0; y < rd2->n_reg_rules; y++) {
592                         rule2 = &rd2->reg_rules[y];
593                         /*
594                          * This time around instead of using the stack lets
595                          * write to the target rule directly saving ourselves
596                          * a memcpy()
597                          */
598                         intersected_rule = &rd->reg_rules[rule_idx];
599                         r = reg_rules_intersect(rule1, rule2,
600                                 intersected_rule);
601                         /*
602                          * No need to memset here the intersected rule here as
603                          * we're not using the stack anymore
604                          */
605                         if (r)
606                                 continue;
607                         rule_idx++;
608                 }
609         }
610
611         if (rule_idx != num_rules) {
612                 kfree(rd);
613                 return NULL;
614         }
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = '9';
618         rd->alpha2[1] = '8';
619
620         return rd;
621 }
622
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629         u32 channel_flags = 0;
630         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632         if (rd_flags & NL80211_RRF_NO_IBSS)
633                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634         if (rd_flags & NL80211_RRF_DFS)
635                 channel_flags |= IEEE80211_CHAN_RADAR;
636         return channel_flags;
637 }
638
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640                               u32 center_freq,
641                               u32 desired_bw_khz,
642                               const struct ieee80211_reg_rule **reg_rule,
643                               const struct ieee80211_regdomain *custom_regd)
644 {
645         int i;
646         bool band_rule_found = false;
647         const struct ieee80211_regdomain *regd;
648         bool bw_fits = false;
649
650         if (!desired_bw_khz)
651                 desired_bw_khz = MHZ_TO_KHZ(20);
652
653         regd = custom_regd ? custom_regd : cfg80211_regdomain;
654
655         /*
656          * Follow the driver's regulatory domain, if present, unless a country
657          * IE has been processed or a user wants to help complaince further
658          */
659         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661             wiphy->regd)
662                 regd = wiphy->regd;
663
664         if (!regd)
665                 return -EINVAL;
666
667         for (i = 0; i < regd->n_reg_rules; i++) {
668                 const struct ieee80211_reg_rule *rr;
669                 const struct ieee80211_freq_range *fr = NULL;
670                 const struct ieee80211_power_rule *pr = NULL;
671
672                 rr = &regd->reg_rules[i];
673                 fr = &rr->freq_range;
674                 pr = &rr->power_rule;
675
676                 /*
677                  * We only need to know if one frequency rule was
678                  * was in center_freq's band, that's enough, so lets
679                  * not overwrite it once found
680                  */
681                 if (!band_rule_found)
682                         band_rule_found = freq_in_rule_band(fr, center_freq);
683
684                 bw_fits = reg_does_bw_fit(fr,
685                                           center_freq,
686                                           desired_bw_khz);
687
688                 if (band_rule_found && bw_fits) {
689                         *reg_rule = rr;
690                         return 0;
691                 }
692         }
693
694         if (!band_rule_found)
695                 return -ERANGE;
696
697         return -EINVAL;
698 }
699
700 int freq_reg_info(struct wiphy *wiphy,
701                   u32 center_freq,
702                   u32 desired_bw_khz,
703                   const struct ieee80211_reg_rule **reg_rule)
704 {
705         assert_cfg80211_lock();
706         return freq_reg_info_regd(wiphy,
707                                   center_freq,
708                                   desired_bw_khz,
709                                   reg_rule,
710                                   NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713
714 /*
715  * Note that right now we assume the desired channel bandwidth
716  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717  * per channel, the primary and the extension channel). To support
718  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719  * new ieee80211_channel.target_bw and re run the regulatory check
720  * on the wiphy with the target_bw specified. Then we can simply use
721  * that below for the desired_bw_khz below.
722  */
723 static void handle_channel(struct wiphy *wiphy,
724                            enum nl80211_reg_initiator initiator,
725                            enum ieee80211_band band,
726                            unsigned int chan_idx)
727 {
728         int r;
729         u32 flags, bw_flags = 0;
730         u32 desired_bw_khz = MHZ_TO_KHZ(20);
731         const struct ieee80211_reg_rule *reg_rule = NULL;
732         const struct ieee80211_power_rule *power_rule = NULL;
733         const struct ieee80211_freq_range *freq_range = NULL;
734         struct ieee80211_supported_band *sband;
735         struct ieee80211_channel *chan;
736         struct wiphy *request_wiphy = NULL;
737
738         assert_cfg80211_lock();
739
740         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
741
742         sband = wiphy->bands[band];
743         BUG_ON(chan_idx >= sband->n_channels);
744         chan = &sband->channels[chan_idx];
745
746         flags = chan->orig_flags;
747
748         r = freq_reg_info(wiphy,
749                           MHZ_TO_KHZ(chan->center_freq),
750                           desired_bw_khz,
751                           &reg_rule);
752
753         if (r) {
754                 /*
755                  * We will disable all channels that do not match our
756                  * recieved regulatory rule unless the hint is coming
757                  * from a Country IE and the Country IE had no information
758                  * about a band. The IEEE 802.11 spec allows for an AP
759                  * to send only a subset of the regulatory rules allowed,
760                  * so an AP in the US that only supports 2.4 GHz may only send
761                  * a country IE with information for the 2.4 GHz band
762                  * while 5 GHz is still supported.
763                  */
764                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
765                     r == -ERANGE)
766                         return;
767
768                 REG_DBG_PRINT("cfg80211: Disabling freq %d MHz\n",
769                               chan->center_freq);
770                 chan->flags = IEEE80211_CHAN_DISABLED;
771                 return;
772         }
773
774         power_rule = &reg_rule->power_rule;
775         freq_range = &reg_rule->freq_range;
776
777         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
778                 bw_flags = IEEE80211_CHAN_NO_HT40;
779
780         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
781             request_wiphy && request_wiphy == wiphy &&
782             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
783                 /*
784                  * This gaurantees the driver's requested regulatory domain
785                  * will always be used as a base for further regulatory
786                  * settings
787                  */
788                 chan->flags = chan->orig_flags =
789                         map_regdom_flags(reg_rule->flags) | bw_flags;
790                 chan->max_antenna_gain = chan->orig_mag =
791                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
792                 chan->max_power = chan->orig_mpwr =
793                         (int) MBM_TO_DBM(power_rule->max_eirp);
794                 return;
795         }
796
797         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
798         chan->max_antenna_gain = min(chan->orig_mag,
799                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
800         if (chan->orig_mpwr)
801                 chan->max_power = min(chan->orig_mpwr,
802                         (int) MBM_TO_DBM(power_rule->max_eirp));
803         else
804                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
805 }
806
807 static void handle_band(struct wiphy *wiphy,
808                         enum ieee80211_band band,
809                         enum nl80211_reg_initiator initiator)
810 {
811         unsigned int i;
812         struct ieee80211_supported_band *sband;
813
814         BUG_ON(!wiphy->bands[band]);
815         sband = wiphy->bands[band];
816
817         for (i = 0; i < sband->n_channels; i++)
818                 handle_channel(wiphy, initiator, band, i);
819 }
820
821 static bool ignore_reg_update(struct wiphy *wiphy,
822                               enum nl80211_reg_initiator initiator)
823 {
824         if (!last_request)
825                 return true;
826         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
827             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
828                 return true;
829         /*
830          * wiphy->regd will be set once the device has its own
831          * desired regulatory domain set
832          */
833         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
834             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
835             !is_world_regdom(last_request->alpha2))
836                 return true;
837         return false;
838 }
839
840 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
841 {
842         struct cfg80211_registered_device *rdev;
843
844         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
845                 wiphy_update_regulatory(&rdev->wiphy, initiator);
846 }
847
848 static void handle_reg_beacon(struct wiphy *wiphy,
849                               unsigned int chan_idx,
850                               struct reg_beacon *reg_beacon)
851 {
852         struct ieee80211_supported_band *sband;
853         struct ieee80211_channel *chan;
854         bool channel_changed = false;
855         struct ieee80211_channel chan_before;
856
857         assert_cfg80211_lock();
858
859         sband = wiphy->bands[reg_beacon->chan.band];
860         chan = &sband->channels[chan_idx];
861
862         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
863                 return;
864
865         if (chan->beacon_found)
866                 return;
867
868         chan->beacon_found = true;
869
870         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
871                 return;
872
873         chan_before.center_freq = chan->center_freq;
874         chan_before.flags = chan->flags;
875
876         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
877                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
878                 channel_changed = true;
879         }
880
881         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
882                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
883                 channel_changed = true;
884         }
885
886         if (channel_changed)
887                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
888 }
889
890 /*
891  * Called when a scan on a wiphy finds a beacon on
892  * new channel
893  */
894 static void wiphy_update_new_beacon(struct wiphy *wiphy,
895                                     struct reg_beacon *reg_beacon)
896 {
897         unsigned int i;
898         struct ieee80211_supported_band *sband;
899
900         assert_cfg80211_lock();
901
902         if (!wiphy->bands[reg_beacon->chan.band])
903                 return;
904
905         sband = wiphy->bands[reg_beacon->chan.band];
906
907         for (i = 0; i < sband->n_channels; i++)
908                 handle_reg_beacon(wiphy, i, reg_beacon);
909 }
910
911 /*
912  * Called upon reg changes or a new wiphy is added
913  */
914 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
915 {
916         unsigned int i;
917         struct ieee80211_supported_band *sband;
918         struct reg_beacon *reg_beacon;
919
920         assert_cfg80211_lock();
921
922         if (list_empty(&reg_beacon_list))
923                 return;
924
925         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
926                 if (!wiphy->bands[reg_beacon->chan.band])
927                         continue;
928                 sband = wiphy->bands[reg_beacon->chan.band];
929                 for (i = 0; i < sband->n_channels; i++)
930                         handle_reg_beacon(wiphy, i, reg_beacon);
931         }
932 }
933
934 static bool reg_is_world_roaming(struct wiphy *wiphy)
935 {
936         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
937             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
938                 return true;
939         if (last_request &&
940             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
941             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
942                 return true;
943         return false;
944 }
945
946 /* Reap the advantages of previously found beacons */
947 static void reg_process_beacons(struct wiphy *wiphy)
948 {
949         /*
950          * Means we are just firing up cfg80211, so no beacons would
951          * have been processed yet.
952          */
953         if (!last_request)
954                 return;
955         if (!reg_is_world_roaming(wiphy))
956                 return;
957         wiphy_update_beacon_reg(wiphy);
958 }
959
960 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
961 {
962         if (!chan)
963                 return true;
964         if (chan->flags & IEEE80211_CHAN_DISABLED)
965                 return true;
966         /* This would happen when regulatory rules disallow HT40 completely */
967         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
968                 return true;
969         return false;
970 }
971
972 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
973                                          enum ieee80211_band band,
974                                          unsigned int chan_idx)
975 {
976         struct ieee80211_supported_band *sband;
977         struct ieee80211_channel *channel;
978         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
979         unsigned int i;
980
981         assert_cfg80211_lock();
982
983         sband = wiphy->bands[band];
984         BUG_ON(chan_idx >= sband->n_channels);
985         channel = &sband->channels[chan_idx];
986
987         if (is_ht40_not_allowed(channel)) {
988                 channel->flags |= IEEE80211_CHAN_NO_HT40;
989                 return;
990         }
991
992         /*
993          * We need to ensure the extension channels exist to
994          * be able to use HT40- or HT40+, this finds them (or not)
995          */
996         for (i = 0; i < sband->n_channels; i++) {
997                 struct ieee80211_channel *c = &sband->channels[i];
998                 if (c->center_freq == (channel->center_freq - 20))
999                         channel_before = c;
1000                 if (c->center_freq == (channel->center_freq + 20))
1001                         channel_after = c;
1002         }
1003
1004         /*
1005          * Please note that this assumes target bandwidth is 20 MHz,
1006          * if that ever changes we also need to change the below logic
1007          * to include that as well.
1008          */
1009         if (is_ht40_not_allowed(channel_before))
1010                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1011         else
1012                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1013
1014         if (is_ht40_not_allowed(channel_after))
1015                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1016         else
1017                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1018 }
1019
1020 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1021                                       enum ieee80211_band band)
1022 {
1023         unsigned int i;
1024         struct ieee80211_supported_band *sband;
1025
1026         BUG_ON(!wiphy->bands[band]);
1027         sband = wiphy->bands[band];
1028
1029         for (i = 0; i < sband->n_channels; i++)
1030                 reg_process_ht_flags_channel(wiphy, band, i);
1031 }
1032
1033 static void reg_process_ht_flags(struct wiphy *wiphy)
1034 {
1035         enum ieee80211_band band;
1036
1037         if (!wiphy)
1038                 return;
1039
1040         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1041                 if (wiphy->bands[band])
1042                         reg_process_ht_flags_band(wiphy, band);
1043         }
1044
1045 }
1046
1047 void wiphy_update_regulatory(struct wiphy *wiphy,
1048                              enum nl80211_reg_initiator initiator)
1049 {
1050         enum ieee80211_band band;
1051
1052         if (ignore_reg_update(wiphy, initiator))
1053                 goto out;
1054         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1055                 if (wiphy->bands[band])
1056                         handle_band(wiphy, band, initiator);
1057         }
1058 out:
1059         reg_process_beacons(wiphy);
1060         reg_process_ht_flags(wiphy);
1061         if (wiphy->reg_notifier)
1062                 wiphy->reg_notifier(wiphy, last_request);
1063 }
1064
1065 static void handle_channel_custom(struct wiphy *wiphy,
1066                                   enum ieee80211_band band,
1067                                   unsigned int chan_idx,
1068                                   const struct ieee80211_regdomain *regd)
1069 {
1070         int r;
1071         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1072         u32 bw_flags = 0;
1073         const struct ieee80211_reg_rule *reg_rule = NULL;
1074         const struct ieee80211_power_rule *power_rule = NULL;
1075         const struct ieee80211_freq_range *freq_range = NULL;
1076         struct ieee80211_supported_band *sband;
1077         struct ieee80211_channel *chan;
1078
1079         assert_reg_lock();
1080
1081         sband = wiphy->bands[band];
1082         BUG_ON(chan_idx >= sband->n_channels);
1083         chan = &sband->channels[chan_idx];
1084
1085         r = freq_reg_info_regd(wiphy,
1086                                MHZ_TO_KHZ(chan->center_freq),
1087                                desired_bw_khz,
1088                                &reg_rule,
1089                                regd);
1090
1091         if (r) {
1092                 chan->flags = IEEE80211_CHAN_DISABLED;
1093                 return;
1094         }
1095
1096         power_rule = &reg_rule->power_rule;
1097         freq_range = &reg_rule->freq_range;
1098
1099         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1100                 bw_flags = IEEE80211_CHAN_NO_HT40;
1101
1102         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1103         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1104         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1105 }
1106
1107 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1108                                const struct ieee80211_regdomain *regd)
1109 {
1110         unsigned int i;
1111         struct ieee80211_supported_band *sband;
1112
1113         BUG_ON(!wiphy->bands[band]);
1114         sband = wiphy->bands[band];
1115
1116         for (i = 0; i < sband->n_channels; i++)
1117                 handle_channel_custom(wiphy, band, i, regd);
1118 }
1119
1120 /* Used by drivers prior to wiphy registration */
1121 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1122                                    const struct ieee80211_regdomain *regd)
1123 {
1124         enum ieee80211_band band;
1125         unsigned int bands_set = 0;
1126
1127         mutex_lock(&reg_mutex);
1128         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129                 if (!wiphy->bands[band])
1130                         continue;
1131                 handle_band_custom(wiphy, band, regd);
1132                 bands_set++;
1133         }
1134         mutex_unlock(&reg_mutex);
1135
1136         /*
1137          * no point in calling this if it won't have any effect
1138          * on your device's supportd bands.
1139          */
1140         WARN_ON(!bands_set);
1141 }
1142 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1143
1144 /*
1145  * Return value which can be used by ignore_request() to indicate
1146  * it has been determined we should intersect two regulatory domains
1147  */
1148 #define REG_INTERSECT   1
1149
1150 /* This has the logic which determines when a new request
1151  * should be ignored. */
1152 static int ignore_request(struct wiphy *wiphy,
1153                           struct regulatory_request *pending_request)
1154 {
1155         struct wiphy *last_wiphy = NULL;
1156
1157         assert_cfg80211_lock();
1158
1159         /* All initial requests are respected */
1160         if (!last_request)
1161                 return 0;
1162
1163         switch (pending_request->initiator) {
1164         case NL80211_REGDOM_SET_BY_CORE:
1165                 return 0;
1166         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1167
1168                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1169
1170                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1171                         return -EINVAL;
1172                 if (last_request->initiator ==
1173                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1174                         if (last_wiphy != wiphy) {
1175                                 /*
1176                                  * Two cards with two APs claiming different
1177                                  * Country IE alpha2s. We could
1178                                  * intersect them, but that seems unlikely
1179                                  * to be correct. Reject second one for now.
1180                                  */
1181                                 if (regdom_changes(pending_request->alpha2))
1182                                         return -EOPNOTSUPP;
1183                                 return -EALREADY;
1184                         }
1185                         /*
1186                          * Two consecutive Country IE hints on the same wiphy.
1187                          * This should be picked up early by the driver/stack
1188                          */
1189                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1190                                 return 0;
1191                         return -EALREADY;
1192                 }
1193                 return 0;
1194         case NL80211_REGDOM_SET_BY_DRIVER:
1195                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1196                         if (regdom_changes(pending_request->alpha2))
1197                                 return 0;
1198                         return -EALREADY;
1199                 }
1200
1201                 /*
1202                  * This would happen if you unplug and plug your card
1203                  * back in or if you add a new device for which the previously
1204                  * loaded card also agrees on the regulatory domain.
1205                  */
1206                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1207                     !regdom_changes(pending_request->alpha2))
1208                         return -EALREADY;
1209
1210                 return REG_INTERSECT;
1211         case NL80211_REGDOM_SET_BY_USER:
1212                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1213                         return REG_INTERSECT;
1214                 /*
1215                  * If the user knows better the user should set the regdom
1216                  * to their country before the IE is picked up
1217                  */
1218                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1219                           last_request->intersect)
1220                         return -EOPNOTSUPP;
1221                 /*
1222                  * Process user requests only after previous user/driver/core
1223                  * requests have been processed
1224                  */
1225                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1226                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1227                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1228                         if (regdom_changes(last_request->alpha2))
1229                                 return -EAGAIN;
1230                 }
1231
1232                 if (!regdom_changes(pending_request->alpha2))
1233                         return -EALREADY;
1234
1235                 return 0;
1236         }
1237
1238         return -EINVAL;
1239 }
1240
1241 /**
1242  * __regulatory_hint - hint to the wireless core a regulatory domain
1243  * @wiphy: if the hint comes from country information from an AP, this
1244  *      is required to be set to the wiphy that received the information
1245  * @pending_request: the regulatory request currently being processed
1246  *
1247  * The Wireless subsystem can use this function to hint to the wireless core
1248  * what it believes should be the current regulatory domain.
1249  *
1250  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1251  * already been set or other standard error codes.
1252  *
1253  * Caller must hold &cfg80211_mutex and &reg_mutex
1254  */
1255 static int __regulatory_hint(struct wiphy *wiphy,
1256                              struct regulatory_request *pending_request)
1257 {
1258         bool intersect = false;
1259         int r = 0;
1260
1261         assert_cfg80211_lock();
1262
1263         r = ignore_request(wiphy, pending_request);
1264
1265         if (r == REG_INTERSECT) {
1266                 if (pending_request->initiator ==
1267                     NL80211_REGDOM_SET_BY_DRIVER) {
1268                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1269                         if (r) {
1270                                 kfree(pending_request);
1271                                 return r;
1272                         }
1273                 }
1274                 intersect = true;
1275         } else if (r) {
1276                 /*
1277                  * If the regulatory domain being requested by the
1278                  * driver has already been set just copy it to the
1279                  * wiphy
1280                  */
1281                 if (r == -EALREADY &&
1282                     pending_request->initiator ==
1283                     NL80211_REGDOM_SET_BY_DRIVER) {
1284                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1285                         if (r) {
1286                                 kfree(pending_request);
1287                                 return r;
1288                         }
1289                         r = -EALREADY;
1290                         goto new_request;
1291                 }
1292                 kfree(pending_request);
1293                 return r;
1294         }
1295
1296 new_request:
1297         kfree(last_request);
1298
1299         last_request = pending_request;
1300         last_request->intersect = intersect;
1301
1302         pending_request = NULL;
1303
1304         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1305                 user_alpha2[0] = last_request->alpha2[0];
1306                 user_alpha2[1] = last_request->alpha2[1];
1307         }
1308
1309         /* When r == REG_INTERSECT we do need to call CRDA */
1310         if (r < 0) {
1311                 /*
1312                  * Since CRDA will not be called in this case as we already
1313                  * have applied the requested regulatory domain before we just
1314                  * inform userspace we have processed the request
1315                  */
1316                 if (r == -EALREADY)
1317                         nl80211_send_reg_change_event(last_request);
1318                 return r;
1319         }
1320
1321         return call_crda(last_request->alpha2);
1322 }
1323
1324 /* This processes *all* regulatory hints */
1325 static void reg_process_hint(struct regulatory_request *reg_request)
1326 {
1327         int r = 0;
1328         struct wiphy *wiphy = NULL;
1329         enum nl80211_reg_initiator initiator = reg_request->initiator;
1330
1331         BUG_ON(!reg_request->alpha2);
1332
1333         mutex_lock(&cfg80211_mutex);
1334         mutex_lock(&reg_mutex);
1335
1336         if (wiphy_idx_valid(reg_request->wiphy_idx))
1337                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1338
1339         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1340             !wiphy) {
1341                 kfree(reg_request);
1342                 goto out;
1343         }
1344
1345         r = __regulatory_hint(wiphy, reg_request);
1346         /* This is required so that the orig_* parameters are saved */
1347         if (r == -EALREADY && wiphy &&
1348             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1349                 wiphy_update_regulatory(wiphy, initiator);
1350 out:
1351         mutex_unlock(&reg_mutex);
1352         mutex_unlock(&cfg80211_mutex);
1353 }
1354
1355 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1356 static void reg_process_pending_hints(void)
1357         {
1358         struct regulatory_request *reg_request;
1359
1360         spin_lock(&reg_requests_lock);
1361         while (!list_empty(&reg_requests_list)) {
1362                 reg_request = list_first_entry(&reg_requests_list,
1363                                                struct regulatory_request,
1364                                                list);
1365                 list_del_init(&reg_request->list);
1366
1367                 spin_unlock(&reg_requests_lock);
1368                 reg_process_hint(reg_request);
1369                 spin_lock(&reg_requests_lock);
1370         }
1371         spin_unlock(&reg_requests_lock);
1372 }
1373
1374 /* Processes beacon hints -- this has nothing to do with country IEs */
1375 static void reg_process_pending_beacon_hints(void)
1376 {
1377         struct cfg80211_registered_device *rdev;
1378         struct reg_beacon *pending_beacon, *tmp;
1379
1380         /*
1381          * No need to hold the reg_mutex here as we just touch wiphys
1382          * and do not read or access regulatory variables.
1383          */
1384         mutex_lock(&cfg80211_mutex);
1385
1386         /* This goes through the _pending_ beacon list */
1387         spin_lock_bh(&reg_pending_beacons_lock);
1388
1389         if (list_empty(&reg_pending_beacons)) {
1390                 spin_unlock_bh(&reg_pending_beacons_lock);
1391                 goto out;
1392         }
1393
1394         list_for_each_entry_safe(pending_beacon, tmp,
1395                                  &reg_pending_beacons, list) {
1396
1397                 list_del_init(&pending_beacon->list);
1398
1399                 /* Applies the beacon hint to current wiphys */
1400                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1401                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1402
1403                 /* Remembers the beacon hint for new wiphys or reg changes */
1404                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1405         }
1406
1407         spin_unlock_bh(&reg_pending_beacons_lock);
1408 out:
1409         mutex_unlock(&cfg80211_mutex);
1410 }
1411
1412 static void reg_todo(struct work_struct *work)
1413 {
1414         reg_process_pending_hints();
1415         reg_process_pending_beacon_hints();
1416 }
1417
1418 static DECLARE_WORK(reg_work, reg_todo);
1419
1420 static void queue_regulatory_request(struct regulatory_request *request)
1421 {
1422         if (isalpha(request->alpha2[0]))
1423                 request->alpha2[0] = toupper(request->alpha2[0]);
1424         if (isalpha(request->alpha2[1]))
1425                 request->alpha2[1] = toupper(request->alpha2[1]);
1426
1427         spin_lock(&reg_requests_lock);
1428         list_add_tail(&request->list, &reg_requests_list);
1429         spin_unlock(&reg_requests_lock);
1430
1431         schedule_work(&reg_work);
1432 }
1433
1434 /*
1435  * Core regulatory hint -- happens during cfg80211_init()
1436  * and when we restore regulatory settings.
1437  */
1438 static int regulatory_hint_core(const char *alpha2)
1439 {
1440         struct regulatory_request *request;
1441
1442         kfree(last_request);
1443         last_request = NULL;
1444
1445         request = kzalloc(sizeof(struct regulatory_request),
1446                           GFP_KERNEL);
1447         if (!request)
1448                 return -ENOMEM;
1449
1450         request->alpha2[0] = alpha2[0];
1451         request->alpha2[1] = alpha2[1];
1452         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1453
1454         /*
1455          * This ensures last_request is populated once modules
1456          * come swinging in and calling regulatory hints and
1457          * wiphy_apply_custom_regulatory().
1458          */
1459         reg_process_hint(request);
1460
1461         return 0;
1462 }
1463
1464 /* User hints */
1465 int regulatory_hint_user(const char *alpha2)
1466 {
1467         struct regulatory_request *request;
1468
1469         BUG_ON(!alpha2);
1470
1471         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1472         if (!request)
1473                 return -ENOMEM;
1474
1475         request->wiphy_idx = WIPHY_IDX_STALE;
1476         request->alpha2[0] = alpha2[0];
1477         request->alpha2[1] = alpha2[1];
1478         request->initiator = NL80211_REGDOM_SET_BY_USER;
1479
1480         queue_regulatory_request(request);
1481
1482         return 0;
1483 }
1484
1485 /* Driver hints */
1486 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1487 {
1488         struct regulatory_request *request;
1489
1490         BUG_ON(!alpha2);
1491         BUG_ON(!wiphy);
1492
1493         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1494         if (!request)
1495                 return -ENOMEM;
1496
1497         request->wiphy_idx = get_wiphy_idx(wiphy);
1498
1499         /* Must have registered wiphy first */
1500         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1501
1502         request->alpha2[0] = alpha2[0];
1503         request->alpha2[1] = alpha2[1];
1504         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1505
1506         queue_regulatory_request(request);
1507
1508         return 0;
1509 }
1510 EXPORT_SYMBOL(regulatory_hint);
1511
1512 /*
1513  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1514  * therefore cannot iterate over the rdev list here.
1515  */
1516 void regulatory_hint_11d(struct wiphy *wiphy,
1517                          enum ieee80211_band band,
1518                          u8 *country_ie,
1519                          u8 country_ie_len)
1520 {
1521         char alpha2[2];
1522         enum environment_cap env = ENVIRON_ANY;
1523         struct regulatory_request *request;
1524
1525         mutex_lock(&reg_mutex);
1526
1527         if (unlikely(!last_request))
1528                 goto out;
1529
1530         /* IE len must be evenly divisible by 2 */
1531         if (country_ie_len & 0x01)
1532                 goto out;
1533
1534         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1535                 goto out;
1536
1537         alpha2[0] = country_ie[0];
1538         alpha2[1] = country_ie[1];
1539
1540         if (country_ie[2] == 'I')
1541                 env = ENVIRON_INDOOR;
1542         else if (country_ie[2] == 'O')
1543                 env = ENVIRON_OUTDOOR;
1544
1545         /*
1546          * We will run this only upon a successful connection on cfg80211.
1547          * We leave conflict resolution to the workqueue, where can hold
1548          * cfg80211_mutex.
1549          */
1550         if (likely(last_request->initiator ==
1551             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1552             wiphy_idx_valid(last_request->wiphy_idx)))
1553                 goto out;
1554
1555         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1556         if (!request)
1557                 goto out;
1558
1559         request->wiphy_idx = get_wiphy_idx(wiphy);
1560         request->alpha2[0] = alpha2[0];
1561         request->alpha2[1] = alpha2[1];
1562         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1563         request->country_ie_env = env;
1564
1565         mutex_unlock(&reg_mutex);
1566
1567         queue_regulatory_request(request);
1568
1569         return;
1570
1571 out:
1572         mutex_unlock(&reg_mutex);
1573 }
1574
1575 static void restore_alpha2(char *alpha2, bool reset_user)
1576 {
1577         /* indicates there is no alpha2 to consider for restoration */
1578         alpha2[0] = '9';
1579         alpha2[1] = '7';
1580
1581         /* The user setting has precedence over the module parameter */
1582         if (is_user_regdom_saved()) {
1583                 /* Unless we're asked to ignore it and reset it */
1584                 if (reset_user) {
1585                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1586                                "including user preference\n");
1587                         user_alpha2[0] = '9';
1588                         user_alpha2[1] = '7';
1589
1590                         /*
1591                          * If we're ignoring user settings, we still need to
1592                          * check the module parameter to ensure we put things
1593                          * back as they were for a full restore.
1594                          */
1595                         if (!is_world_regdom(ieee80211_regdom)) {
1596                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1597                                        "module parameter ieee80211_regdom: %c%c\n",
1598                                        ieee80211_regdom[0],
1599                                        ieee80211_regdom[1]);
1600                                 alpha2[0] = ieee80211_regdom[0];
1601                                 alpha2[1] = ieee80211_regdom[1];
1602                         }
1603                 } else {
1604                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1605                                "while preserving user preference for: %c%c\n",
1606                                user_alpha2[0],
1607                                user_alpha2[1]);
1608                         alpha2[0] = user_alpha2[0];
1609                         alpha2[1] = user_alpha2[1];
1610                 }
1611         } else if (!is_world_regdom(ieee80211_regdom)) {
1612                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1613                        "module parameter ieee80211_regdom: %c%c\n",
1614                        ieee80211_regdom[0],
1615                        ieee80211_regdom[1]);
1616                 alpha2[0] = ieee80211_regdom[0];
1617                 alpha2[1] = ieee80211_regdom[1];
1618         } else
1619                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1620 }
1621
1622 /*
1623  * Restoring regulatory settings involves ingoring any
1624  * possibly stale country IE information and user regulatory
1625  * settings if so desired, this includes any beacon hints
1626  * learned as we could have traveled outside to another country
1627  * after disconnection. To restore regulatory settings we do
1628  * exactly what we did at bootup:
1629  *
1630  *   - send a core regulatory hint
1631  *   - send a user regulatory hint if applicable
1632  *
1633  * Device drivers that send a regulatory hint for a specific country
1634  * keep their own regulatory domain on wiphy->regd so that does does
1635  * not need to be remembered.
1636  */
1637 static void restore_regulatory_settings(bool reset_user)
1638 {
1639         char alpha2[2];
1640         struct reg_beacon *reg_beacon, *btmp;
1641
1642         mutex_lock(&cfg80211_mutex);
1643         mutex_lock(&reg_mutex);
1644
1645         reset_regdomains();
1646         restore_alpha2(alpha2, reset_user);
1647
1648         /* Clear beacon hints */
1649         spin_lock_bh(&reg_pending_beacons_lock);
1650         if (!list_empty(&reg_pending_beacons)) {
1651                 list_for_each_entry_safe(reg_beacon, btmp,
1652                                          &reg_pending_beacons, list) {
1653                         list_del(&reg_beacon->list);
1654                         kfree(reg_beacon);
1655                 }
1656         }
1657         spin_unlock_bh(&reg_pending_beacons_lock);
1658
1659         if (!list_empty(&reg_beacon_list)) {
1660                 list_for_each_entry_safe(reg_beacon, btmp,
1661                                          &reg_beacon_list, list) {
1662                         list_del(&reg_beacon->list);
1663                         kfree(reg_beacon);
1664                 }
1665         }
1666
1667         /* First restore to the basic regulatory settings */
1668         cfg80211_regdomain = cfg80211_world_regdom;
1669
1670         mutex_unlock(&reg_mutex);
1671         mutex_unlock(&cfg80211_mutex);
1672
1673         regulatory_hint_core(cfg80211_regdomain->alpha2);
1674
1675         /*
1676          * This restores the ieee80211_regdom module parameter
1677          * preference or the last user requested regulatory
1678          * settings, user regulatory settings takes precedence.
1679          */
1680         if (is_an_alpha2(alpha2))
1681                 regulatory_hint_user(user_alpha2);
1682 }
1683
1684
1685 void regulatory_hint_disconnect(void)
1686 {
1687         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1688                       "restore regulatory settings\n");
1689         restore_regulatory_settings(false);
1690 }
1691
1692 static bool freq_is_chan_12_13_14(u16 freq)
1693 {
1694         if (freq == ieee80211_channel_to_frequency(12) ||
1695             freq == ieee80211_channel_to_frequency(13) ||
1696             freq == ieee80211_channel_to_frequency(14))
1697                 return true;
1698         return false;
1699 }
1700
1701 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1702                                  struct ieee80211_channel *beacon_chan,
1703                                  gfp_t gfp)
1704 {
1705         struct reg_beacon *reg_beacon;
1706
1707         if (likely((beacon_chan->beacon_found ||
1708             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1709             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1710              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1711                 return 0;
1712
1713         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1714         if (!reg_beacon)
1715                 return -ENOMEM;
1716
1717         REG_DBG_PRINT("cfg80211: Found new beacon on "
1718                       "frequency: %d MHz (Ch %d) on %s\n",
1719                       beacon_chan->center_freq,
1720                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1721                       wiphy_name(wiphy));
1722
1723         memcpy(&reg_beacon->chan, beacon_chan,
1724                 sizeof(struct ieee80211_channel));
1725
1726
1727         /*
1728          * Since we can be called from BH or and non-BH context
1729          * we must use spin_lock_bh()
1730          */
1731         spin_lock_bh(&reg_pending_beacons_lock);
1732         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1733         spin_unlock_bh(&reg_pending_beacons_lock);
1734
1735         schedule_work(&reg_work);
1736
1737         return 0;
1738 }
1739
1740 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1741 {
1742         unsigned int i;
1743         const struct ieee80211_reg_rule *reg_rule = NULL;
1744         const struct ieee80211_freq_range *freq_range = NULL;
1745         const struct ieee80211_power_rule *power_rule = NULL;
1746
1747         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1748                 "(max_antenna_gain, max_eirp)\n");
1749
1750         for (i = 0; i < rd->n_reg_rules; i++) {
1751                 reg_rule = &rd->reg_rules[i];
1752                 freq_range = &reg_rule->freq_range;
1753                 power_rule = &reg_rule->power_rule;
1754
1755                 /*
1756                  * There may not be documentation for max antenna gain
1757                  * in certain regions
1758                  */
1759                 if (power_rule->max_antenna_gain)
1760                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1761                                 "(%d mBi, %d mBm)\n",
1762                                 freq_range->start_freq_khz,
1763                                 freq_range->end_freq_khz,
1764                                 freq_range->max_bandwidth_khz,
1765                                 power_rule->max_antenna_gain,
1766                                 power_rule->max_eirp);
1767                 else
1768                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1769                                 "(N/A, %d mBm)\n",
1770                                 freq_range->start_freq_khz,
1771                                 freq_range->end_freq_khz,
1772                                 freq_range->max_bandwidth_khz,
1773                                 power_rule->max_eirp);
1774         }
1775 }
1776
1777 static void print_regdomain(const struct ieee80211_regdomain *rd)
1778 {
1779
1780         if (is_intersected_alpha2(rd->alpha2)) {
1781
1782                 if (last_request->initiator ==
1783                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1784                         struct cfg80211_registered_device *rdev;
1785                         rdev = cfg80211_rdev_by_wiphy_idx(
1786                                 last_request->wiphy_idx);
1787                         if (rdev) {
1788                                 printk(KERN_INFO "cfg80211: Current regulatory "
1789                                         "domain updated by AP to: %c%c\n",
1790                                         rdev->country_ie_alpha2[0],
1791                                         rdev->country_ie_alpha2[1]);
1792                         } else
1793                                 printk(KERN_INFO "cfg80211: Current regulatory "
1794                                         "domain intersected:\n");
1795                 } else
1796                         printk(KERN_INFO "cfg80211: Current regulatory "
1797                                 "domain intersected:\n");
1798         } else if (is_world_regdom(rd->alpha2))
1799                 printk(KERN_INFO "cfg80211: World regulatory "
1800                         "domain updated:\n");
1801         else {
1802                 if (is_unknown_alpha2(rd->alpha2))
1803                         printk(KERN_INFO "cfg80211: Regulatory domain "
1804                                 "changed to driver built-in settings "
1805                                 "(unknown country)\n");
1806                 else
1807                         printk(KERN_INFO "cfg80211: Regulatory domain "
1808                                 "changed to country: %c%c\n",
1809                                 rd->alpha2[0], rd->alpha2[1]);
1810         }
1811         print_rd_rules(rd);
1812 }
1813
1814 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1815 {
1816         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1817                 rd->alpha2[0], rd->alpha2[1]);
1818         print_rd_rules(rd);
1819 }
1820
1821 /* Takes ownership of rd only if it doesn't fail */
1822 static int __set_regdom(const struct ieee80211_regdomain *rd)
1823 {
1824         const struct ieee80211_regdomain *intersected_rd = NULL;
1825         struct cfg80211_registered_device *rdev = NULL;
1826         struct wiphy *request_wiphy;
1827         /* Some basic sanity checks first */
1828
1829         if (is_world_regdom(rd->alpha2)) {
1830                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1831                         return -EINVAL;
1832                 update_world_regdomain(rd);
1833                 return 0;
1834         }
1835
1836         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1837                         !is_unknown_alpha2(rd->alpha2))
1838                 return -EINVAL;
1839
1840         if (!last_request)
1841                 return -EINVAL;
1842
1843         /*
1844          * Lets only bother proceeding on the same alpha2 if the current
1845          * rd is non static (it means CRDA was present and was used last)
1846          * and the pending request came in from a country IE
1847          */
1848         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1849                 /*
1850                  * If someone else asked us to change the rd lets only bother
1851                  * checking if the alpha2 changes if CRDA was already called
1852                  */
1853                 if (!regdom_changes(rd->alpha2))
1854                         return -EINVAL;
1855         }
1856
1857         /*
1858          * Now lets set the regulatory domain, update all driver channels
1859          * and finally inform them of what we have done, in case they want
1860          * to review or adjust their own settings based on their own
1861          * internal EEPROM data
1862          */
1863
1864         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1865                 return -EINVAL;
1866
1867         if (!is_valid_rd(rd)) {
1868                 printk(KERN_ERR "cfg80211: Invalid "
1869                         "regulatory domain detected:\n");
1870                 print_regdomain_info(rd);
1871                 return -EINVAL;
1872         }
1873
1874         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1875
1876         if (!last_request->intersect) {
1877                 int r;
1878
1879                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1880                         reset_regdomains();
1881                         cfg80211_regdomain = rd;
1882                         return 0;
1883                 }
1884
1885                 /*
1886                  * For a driver hint, lets copy the regulatory domain the
1887                  * driver wanted to the wiphy to deal with conflicts
1888                  */
1889
1890                 /*
1891                  * Userspace could have sent two replies with only
1892                  * one kernel request.
1893                  */
1894                 if (request_wiphy->regd)
1895                         return -EALREADY;
1896
1897                 r = reg_copy_regd(&request_wiphy->regd, rd);
1898                 if (r)
1899                         return r;
1900
1901                 reset_regdomains();
1902                 cfg80211_regdomain = rd;
1903                 return 0;
1904         }
1905
1906         /* Intersection requires a bit more work */
1907
1908         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1909
1910                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1911                 if (!intersected_rd)
1912                         return -EINVAL;
1913
1914                 /*
1915                  * We can trash what CRDA provided now.
1916                  * However if a driver requested this specific regulatory
1917                  * domain we keep it for its private use
1918                  */
1919                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1920                         request_wiphy->regd = rd;
1921                 else
1922                         kfree(rd);
1923
1924                 rd = NULL;
1925
1926                 reset_regdomains();
1927                 cfg80211_regdomain = intersected_rd;
1928
1929                 return 0;
1930         }
1931
1932         if (!intersected_rd)
1933                 return -EINVAL;
1934
1935         rdev = wiphy_to_dev(request_wiphy);
1936
1937         rdev->country_ie_alpha2[0] = rd->alpha2[0];
1938         rdev->country_ie_alpha2[1] = rd->alpha2[1];
1939         rdev->env = last_request->country_ie_env;
1940
1941         BUG_ON(intersected_rd == rd);
1942
1943         kfree(rd);
1944         rd = NULL;
1945
1946         reset_regdomains();
1947         cfg80211_regdomain = intersected_rd;
1948
1949         return 0;
1950 }
1951
1952
1953 /*
1954  * Use this call to set the current regulatory domain. Conflicts with
1955  * multiple drivers can be ironed out later. Caller must've already
1956  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1957  */
1958 int set_regdom(const struct ieee80211_regdomain *rd)
1959 {
1960         int r;
1961
1962         assert_cfg80211_lock();
1963
1964         mutex_lock(&reg_mutex);
1965
1966         /* Note that this doesn't update the wiphys, this is done below */
1967         r = __set_regdom(rd);
1968         if (r) {
1969                 kfree(rd);
1970                 mutex_unlock(&reg_mutex);
1971                 return r;
1972         }
1973
1974         /* This would make this whole thing pointless */
1975         if (!last_request->intersect)
1976                 BUG_ON(rd != cfg80211_regdomain);
1977
1978         /* update all wiphys now with the new established regulatory domain */
1979         update_all_wiphy_regulatory(last_request->initiator);
1980
1981         print_regdomain(cfg80211_regdomain);
1982
1983         nl80211_send_reg_change_event(last_request);
1984
1985         mutex_unlock(&reg_mutex);
1986
1987         return r;
1988 }
1989
1990 /* Caller must hold cfg80211_mutex */
1991 void reg_device_remove(struct wiphy *wiphy)
1992 {
1993         struct wiphy *request_wiphy = NULL;
1994
1995         assert_cfg80211_lock();
1996
1997         mutex_lock(&reg_mutex);
1998
1999         kfree(wiphy->regd);
2000
2001         if (last_request)
2002                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2003
2004         if (!request_wiphy || request_wiphy != wiphy)
2005                 goto out;
2006
2007         last_request->wiphy_idx = WIPHY_IDX_STALE;
2008         last_request->country_ie_env = ENVIRON_ANY;
2009 out:
2010         mutex_unlock(&reg_mutex);
2011 }
2012
2013 int __init regulatory_init(void)
2014 {
2015         int err = 0;
2016
2017         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2018         if (IS_ERR(reg_pdev))
2019                 return PTR_ERR(reg_pdev);
2020
2021         spin_lock_init(&reg_requests_lock);
2022         spin_lock_init(&reg_pending_beacons_lock);
2023
2024         cfg80211_regdomain = cfg80211_world_regdom;
2025
2026         user_alpha2[0] = '9';
2027         user_alpha2[1] = '7';
2028
2029         /* We always try to get an update for the static regdomain */
2030         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2031         if (err) {
2032                 if (err == -ENOMEM)
2033                         return err;
2034                 /*
2035                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2036                  * memory which is handled and propagated appropriately above
2037                  * but it can also fail during a netlink_broadcast() or during
2038                  * early boot for call_usermodehelper(). For now treat these
2039                  * errors as non-fatal.
2040                  */
2041                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2042                         "to call CRDA during init");
2043 #ifdef CONFIG_CFG80211_REG_DEBUG
2044                 /* We want to find out exactly why when debugging */
2045                 WARN_ON(err);
2046 #endif
2047         }
2048
2049         /*
2050          * Finally, if the user set the module parameter treat it
2051          * as a user hint.
2052          */
2053         if (!is_world_regdom(ieee80211_regdom))
2054                 regulatory_hint_user(ieee80211_regdom);
2055
2056         return 0;
2057 }
2058
2059 void /* __init_or_exit */ regulatory_exit(void)
2060 {
2061         struct regulatory_request *reg_request, *tmp;
2062         struct reg_beacon *reg_beacon, *btmp;
2063
2064         cancel_work_sync(&reg_work);
2065
2066         mutex_lock(&cfg80211_mutex);
2067         mutex_lock(&reg_mutex);
2068
2069         reset_regdomains();
2070
2071         kfree(last_request);
2072
2073         platform_device_unregister(reg_pdev);
2074
2075         spin_lock_bh(&reg_pending_beacons_lock);
2076         if (!list_empty(&reg_pending_beacons)) {
2077                 list_for_each_entry_safe(reg_beacon, btmp,
2078                                          &reg_pending_beacons, list) {
2079                         list_del(&reg_beacon->list);
2080                         kfree(reg_beacon);
2081                 }
2082         }
2083         spin_unlock_bh(&reg_pending_beacons_lock);
2084
2085         if (!list_empty(&reg_beacon_list)) {
2086                 list_for_each_entry_safe(reg_beacon, btmp,
2087                                          &reg_beacon_list, list) {
2088                         list_del(&reg_beacon->list);
2089                         kfree(reg_beacon);
2090                 }
2091         }
2092
2093         spin_lock(&reg_requests_lock);
2094         if (!list_empty(&reg_requests_list)) {
2095                 list_for_each_entry_safe(reg_request, tmp,
2096                                          &reg_requests_list, list) {
2097                         list_del(&reg_request->list);
2098                         kfree(reg_request);
2099                 }
2100         }
2101         spin_unlock(&reg_requests_lock);
2102
2103         mutex_unlock(&reg_mutex);
2104         mutex_unlock(&cfg80211_mutex);
2105 }