]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/wireless/reg.c
5556c5fe489a72e8f21c7bb96206267dae9e21e5
[net-next-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101         .n_reg_rules = 5,
102         .alpha2 =  "00",
103         .reg_rules = {
104                 /* IEEE 802.11b/g, channels 1..11 */
105                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106                 /* IEEE 802.11b/g, channels 12..13. No HT40
107                  * channel fits here. */
108                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS),
111                 /* IEEE 802.11 channel 14 - Only JP enables
112                  * this and for 802.11b only */
113                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS |
116                         NL80211_RRF_NO_OFDM),
117                 /* IEEE 802.11a, channel 36..48 */
118                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121
122                 /* NB: 5260 MHz - 5700 MHz requies DFS */
123
124                 /* IEEE 802.11a, channel 149..165 */
125                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126                         NL80211_RRF_PASSIVE_SCAN |
127                         NL80211_RRF_NO_IBSS),
128         }
129 };
130
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132         &world_regdom;
133
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139
140 static void reset_regdomains(void)
141 {
142         /* avoid freeing static information or freeing something twice */
143         if (cfg80211_regdomain == cfg80211_world_regdom)
144                 cfg80211_regdomain = NULL;
145         if (cfg80211_world_regdom == &world_regdom)
146                 cfg80211_world_regdom = NULL;
147         if (cfg80211_regdomain == &world_regdom)
148                 cfg80211_regdomain = NULL;
149
150         kfree(cfg80211_regdomain);
151         kfree(cfg80211_world_regdom);
152
153         cfg80211_world_regdom = &world_regdom;
154         cfg80211_regdomain = NULL;
155 }
156
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163         BUG_ON(!last_request);
164
165         reset_regdomains();
166
167         cfg80211_world_regdom = rd;
168         cfg80211_regdomain = rd;
169 }
170
171 bool is_world_regdom(const char *alpha2)
172 {
173         if (!alpha2)
174                 return false;
175         if (alpha2[0] == '0' && alpha2[1] == '0')
176                 return true;
177         return false;
178 }
179
180 static bool is_alpha2_set(const char *alpha2)
181 {
182         if (!alpha2)
183                 return false;
184         if (alpha2[0] != 0 && alpha2[1] != 0)
185                 return true;
186         return false;
187 }
188
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191         if (!alpha2)
192                 return false;
193         /*
194          * Special case where regulatory domain was built by driver
195          * but a specific alpha2 cannot be determined
196          */
197         if (alpha2[0] == '9' && alpha2[1] == '9')
198                 return true;
199         return false;
200 }
201
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain is the
208          * result of an intersection between two regulatory domain
209          * structures
210          */
211         if (alpha2[0] == '9' && alpha2[1] == '8')
212                 return true;
213         return false;
214 }
215
216 static bool is_an_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221                 return true;
222         return false;
223 }
224
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227         if (!alpha2_x || !alpha2_y)
228                 return false;
229         if (alpha2_x[0] == alpha2_y[0] &&
230                 alpha2_x[1] == alpha2_y[1])
231                 return true;
232         return false;
233 }
234
235 static bool regdom_changes(const char *alpha2)
236 {
237         assert_cfg80211_lock();
238
239         if (!cfg80211_regdomain)
240                 return true;
241         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242                 return false;
243         return true;
244 }
245
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254                 return false;
255
256         /* This would indicate a mistake on the design */
257         if (WARN((!is_world_regdom(user_alpha2) &&
258                   !is_an_alpha2(user_alpha2)),
259                  "Unexpected user alpha2: %c%c\n",
260                  user_alpha2[0],
261                  user_alpha2[1]))
262                 return false;
263
264         return true;
265 }
266
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268                          const struct ieee80211_regdomain *src_regd)
269 {
270         struct ieee80211_regdomain *regd;
271         int size_of_regd = 0;
272         unsigned int i;
273
274         size_of_regd = sizeof(struct ieee80211_regdomain) +
275           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276
277         regd = kzalloc(size_of_regd, GFP_KERNEL);
278         if (!regd)
279                 return -ENOMEM;
280
281         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282
283         for (i = 0; i < src_regd->n_reg_rules; i++)
284                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285                         sizeof(struct ieee80211_reg_rule));
286
287         *dst_regd = regd;
288         return 0;
289 }
290
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293         char alpha2[2];
294         struct list_head list;
295 };
296
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299
300 static void reg_regdb_search(struct work_struct *work)
301 {
302         struct reg_regdb_search_request *request;
303         const struct ieee80211_regdomain *curdom, *regdom;
304         int i, r;
305
306         mutex_lock(&reg_regdb_search_mutex);
307         while (!list_empty(&reg_regdb_search_list)) {
308                 request = list_first_entry(&reg_regdb_search_list,
309                                            struct reg_regdb_search_request,
310                                            list);
311                 list_del(&request->list);
312
313                 for (i=0; i<reg_regdb_size; i++) {
314                         curdom = reg_regdb[i];
315
316                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317                                 r = reg_copy_regd(&regdom, curdom);
318                                 if (r)
319                                         break;
320                                 mutex_lock(&cfg80211_mutex);
321                                 set_regdom(regdom);
322                                 mutex_unlock(&cfg80211_mutex);
323                                 break;
324                         }
325                 }
326
327                 kfree(request);
328         }
329         mutex_unlock(&reg_regdb_search_mutex);
330 }
331
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333
334 static void reg_regdb_query(const char *alpha2)
335 {
336         struct reg_regdb_search_request *request;
337
338         if (!alpha2)
339                 return;
340
341         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342         if (!request)
343                 return;
344
345         memcpy(request->alpha2, alpha2, 2);
346
347         mutex_lock(&reg_regdb_search_mutex);
348         list_add_tail(&request->list, &reg_regdb_search_list);
349         mutex_unlock(&reg_regdb_search_mutex);
350
351         schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         /* query internal regulatory database (if it exists) */
377         reg_regdb_query(alpha2);
378
379         country_env[8] = alpha2[0];
380         country_env[9] = alpha2[1];
381
382         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388         assert_cfg80211_lock();
389
390         if (!last_request)
391                 return false;
392
393         return alpha2_equal(last_request->alpha2, alpha2);
394 }
395
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400         u32 freq_diff;
401
402         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403                 return false;
404
405         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406                 return false;
407
408         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409
410         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411                         freq_range->max_bandwidth_khz > freq_diff)
412                 return false;
413
414         return true;
415 }
416
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419         const struct ieee80211_reg_rule *reg_rule = NULL;
420         unsigned int i;
421
422         if (!rd->n_reg_rules)
423                 return false;
424
425         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426                 return false;
427
428         for (i = 0; i < rd->n_reg_rules; i++) {
429                 reg_rule = &rd->reg_rules[i];
430                 if (!is_valid_reg_rule(reg_rule))
431                         return false;
432         }
433
434         return true;
435 }
436
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438                             u32 center_freq_khz,
439                             u32 bw_khz)
440 {
441         u32 start_freq_khz, end_freq_khz;
442
443         start_freq_khz = center_freq_khz - (bw_khz/2);
444         end_freq_khz = center_freq_khz + (bw_khz/2);
445
446         if (start_freq_khz >= freq_range->start_freq_khz &&
447             end_freq_khz <= freq_range->end_freq_khz)
448                 return true;
449
450         return false;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483         const struct ieee80211_reg_rule *rule1,
484         const struct ieee80211_reg_rule *rule2,
485         struct ieee80211_reg_rule *intersected_rule)
486 {
487         const struct ieee80211_freq_range *freq_range1, *freq_range2;
488         struct ieee80211_freq_range *freq_range;
489         const struct ieee80211_power_rule *power_rule1, *power_rule2;
490         struct ieee80211_power_rule *power_rule;
491         u32 freq_diff;
492
493         freq_range1 = &rule1->freq_range;
494         freq_range2 = &rule2->freq_range;
495         freq_range = &intersected_rule->freq_range;
496
497         power_rule1 = &rule1->power_rule;
498         power_rule2 = &rule2->power_rule;
499         power_rule = &intersected_rule->power_rule;
500
501         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502                 freq_range2->start_freq_khz);
503         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504                 freq_range2->end_freq_khz);
505         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506                 freq_range2->max_bandwidth_khz);
507
508         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509         if (freq_range->max_bandwidth_khz > freq_diff)
510                 freq_range->max_bandwidth_khz = freq_diff;
511
512         power_rule->max_eirp = min(power_rule1->max_eirp,
513                 power_rule2->max_eirp);
514         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515                 power_rule2->max_antenna_gain);
516
517         intersected_rule->flags = (rule1->flags | rule2->flags);
518
519         if (!is_valid_reg_rule(intersected_rule))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539         const struct ieee80211_regdomain *rd1,
540         const struct ieee80211_regdomain *rd2)
541 {
542         int r, size_of_regd;
543         unsigned int x, y;
544         unsigned int num_rules = 0, rule_idx = 0;
545         const struct ieee80211_reg_rule *rule1, *rule2;
546         struct ieee80211_reg_rule *intersected_rule;
547         struct ieee80211_regdomain *rd;
548         /* This is just a dummy holder to help us count */
549         struct ieee80211_reg_rule irule;
550
551         /* Uses the stack temporarily for counter arithmetic */
552         intersected_rule = &irule;
553
554         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555
556         if (!rd1 || !rd2)
557                 return NULL;
558
559         /*
560          * First we get a count of the rules we'll need, then we actually
561          * build them. This is to so we can malloc() and free() a
562          * regdomain once. The reason we use reg_rules_intersect() here
563          * is it will return -EINVAL if the rule computed makes no sense.
564          * All rules that do check out OK are valid.
565          */
566
567         for (x = 0; x < rd1->n_reg_rules; x++) {
568                 rule1 = &rd1->reg_rules[x];
569                 for (y = 0; y < rd2->n_reg_rules; y++) {
570                         rule2 = &rd2->reg_rules[y];
571                         if (!reg_rules_intersect(rule1, rule2,
572                                         intersected_rule))
573                                 num_rules++;
574                         memset(intersected_rule, 0,
575                                         sizeof(struct ieee80211_reg_rule));
576                 }
577         }
578
579         if (!num_rules)
580                 return NULL;
581
582         size_of_regd = sizeof(struct ieee80211_regdomain) +
583                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584
585         rd = kzalloc(size_of_regd, GFP_KERNEL);
586         if (!rd)
587                 return NULL;
588
589         for (x = 0; x < rd1->n_reg_rules; x++) {
590                 rule1 = &rd1->reg_rules[x];
591                 for (y = 0; y < rd2->n_reg_rules; y++) {
592                         rule2 = &rd2->reg_rules[y];
593                         /*
594                          * This time around instead of using the stack lets
595                          * write to the target rule directly saving ourselves
596                          * a memcpy()
597                          */
598                         intersected_rule = &rd->reg_rules[rule_idx];
599                         r = reg_rules_intersect(rule1, rule2,
600                                 intersected_rule);
601                         /*
602                          * No need to memset here the intersected rule here as
603                          * we're not using the stack anymore
604                          */
605                         if (r)
606                                 continue;
607                         rule_idx++;
608                 }
609         }
610
611         if (rule_idx != num_rules) {
612                 kfree(rd);
613                 return NULL;
614         }
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = '9';
618         rd->alpha2[1] = '8';
619
620         return rd;
621 }
622
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629         u32 channel_flags = 0;
630         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632         if (rd_flags & NL80211_RRF_NO_IBSS)
633                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634         if (rd_flags & NL80211_RRF_DFS)
635                 channel_flags |= IEEE80211_CHAN_RADAR;
636         return channel_flags;
637 }
638
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640                               u32 center_freq,
641                               u32 desired_bw_khz,
642                               const struct ieee80211_reg_rule **reg_rule,
643                               const struct ieee80211_regdomain *custom_regd)
644 {
645         int i;
646         bool band_rule_found = false;
647         const struct ieee80211_regdomain *regd;
648         bool bw_fits = false;
649
650         if (!desired_bw_khz)
651                 desired_bw_khz = MHZ_TO_KHZ(20);
652
653         regd = custom_regd ? custom_regd : cfg80211_regdomain;
654
655         /*
656          * Follow the driver's regulatory domain, if present, unless a country
657          * IE has been processed or a user wants to help complaince further
658          */
659         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661             wiphy->regd)
662                 regd = wiphy->regd;
663
664         if (!regd)
665                 return -EINVAL;
666
667         for (i = 0; i < regd->n_reg_rules; i++) {
668                 const struct ieee80211_reg_rule *rr;
669                 const struct ieee80211_freq_range *fr = NULL;
670                 const struct ieee80211_power_rule *pr = NULL;
671
672                 rr = &regd->reg_rules[i];
673                 fr = &rr->freq_range;
674                 pr = &rr->power_rule;
675
676                 /*
677                  * We only need to know if one frequency rule was
678                  * was in center_freq's band, that's enough, so lets
679                  * not overwrite it once found
680                  */
681                 if (!band_rule_found)
682                         band_rule_found = freq_in_rule_band(fr, center_freq);
683
684                 bw_fits = reg_does_bw_fit(fr,
685                                           center_freq,
686                                           desired_bw_khz);
687
688                 if (band_rule_found && bw_fits) {
689                         *reg_rule = rr;
690                         return 0;
691                 }
692         }
693
694         if (!band_rule_found)
695                 return -ERANGE;
696
697         return -EINVAL;
698 }
699
700 int freq_reg_info(struct wiphy *wiphy,
701                   u32 center_freq,
702                   u32 desired_bw_khz,
703                   const struct ieee80211_reg_rule **reg_rule)
704 {
705         assert_cfg80211_lock();
706         return freq_reg_info_regd(wiphy,
707                                   center_freq,
708                                   desired_bw_khz,
709                                   reg_rule,
710                                   NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713
714 #ifdef CONFIG_CFG80211_REG_DEBUG
715 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
716 {
717         switch (initiator) {
718         case NL80211_REGDOM_SET_BY_CORE:
719                 return "Set by core";
720         case NL80211_REGDOM_SET_BY_USER:
721                 return "Set by user";
722         case NL80211_REGDOM_SET_BY_DRIVER:
723                 return "Set by driver";
724         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
725                 return "Set by country IE";
726         default:
727                 WARN_ON(1);
728                 return "Set by bug";
729         }
730 }
731
732 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
733                                     u32 desired_bw_khz,
734                                     const struct ieee80211_reg_rule *reg_rule)
735 {
736         const struct ieee80211_power_rule *power_rule;
737         const struct ieee80211_freq_range *freq_range;
738         char max_antenna_gain[32];
739
740         power_rule = &reg_rule->power_rule;
741         freq_range = &reg_rule->freq_range;
742
743         if (!power_rule->max_antenna_gain)
744                 snprintf(max_antenna_gain, 32, "N/A");
745         else
746                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
747
748         REG_DBG_PRINT("cfg80211: Updating information on frequency %d MHz "
749                       "for %d a MHz width channel with regulatory rule:\n",
750                       chan->center_freq,
751                       KHZ_TO_MHZ(desired_bw_khz));
752
753         REG_DBG_PRINT("cfg80211: %d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
754                       freq_range->start_freq_khz,
755                       freq_range->end_freq_khz,
756                       max_antenna_gain,
757                       power_rule->max_eirp);
758 }
759 #else
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761                                     u32 desired_bw_khz,
762                                     const struct ieee80211_reg_rule *reg_rule)
763 {
764         return;
765 }
766 #endif
767
768 /*
769  * Note that right now we assume the desired channel bandwidth
770  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
771  * per channel, the primary and the extension channel). To support
772  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
773  * new ieee80211_channel.target_bw and re run the regulatory check
774  * on the wiphy with the target_bw specified. Then we can simply use
775  * that below for the desired_bw_khz below.
776  */
777 static void handle_channel(struct wiphy *wiphy,
778                            enum nl80211_reg_initiator initiator,
779                            enum ieee80211_band band,
780                            unsigned int chan_idx)
781 {
782         int r;
783         u32 flags, bw_flags = 0;
784         u32 desired_bw_khz = MHZ_TO_KHZ(20);
785         const struct ieee80211_reg_rule *reg_rule = NULL;
786         const struct ieee80211_power_rule *power_rule = NULL;
787         const struct ieee80211_freq_range *freq_range = NULL;
788         struct ieee80211_supported_band *sband;
789         struct ieee80211_channel *chan;
790         struct wiphy *request_wiphy = NULL;
791
792         assert_cfg80211_lock();
793
794         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
795
796         sband = wiphy->bands[band];
797         BUG_ON(chan_idx >= sband->n_channels);
798         chan = &sband->channels[chan_idx];
799
800         flags = chan->orig_flags;
801
802         r = freq_reg_info(wiphy,
803                           MHZ_TO_KHZ(chan->center_freq),
804                           desired_bw_khz,
805                           &reg_rule);
806
807         if (r) {
808                 /*
809                  * We will disable all channels that do not match our
810                  * recieved regulatory rule unless the hint is coming
811                  * from a Country IE and the Country IE had no information
812                  * about a band. The IEEE 802.11 spec allows for an AP
813                  * to send only a subset of the regulatory rules allowed,
814                  * so an AP in the US that only supports 2.4 GHz may only send
815                  * a country IE with information for the 2.4 GHz band
816                  * while 5 GHz is still supported.
817                  */
818                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
819                     r == -ERANGE)
820                         return;
821
822                 REG_DBG_PRINT("cfg80211: Disabling freq %d MHz\n",
823                               chan->center_freq);
824                 chan->flags = IEEE80211_CHAN_DISABLED;
825                 return;
826         }
827
828         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
829
830         power_rule = &reg_rule->power_rule;
831         freq_range = &reg_rule->freq_range;
832
833         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
834                 bw_flags = IEEE80211_CHAN_NO_HT40;
835
836         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
837             request_wiphy && request_wiphy == wiphy &&
838             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
839                 /*
840                  * This gaurantees the driver's requested regulatory domain
841                  * will always be used as a base for further regulatory
842                  * settings
843                  */
844                 chan->flags = chan->orig_flags =
845                         map_regdom_flags(reg_rule->flags) | bw_flags;
846                 chan->max_antenna_gain = chan->orig_mag =
847                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
848                 chan->max_power = chan->orig_mpwr =
849                         (int) MBM_TO_DBM(power_rule->max_eirp);
850                 return;
851         }
852
853         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
854         chan->max_antenna_gain = min(chan->orig_mag,
855                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
856         if (chan->orig_mpwr)
857                 chan->max_power = min(chan->orig_mpwr,
858                         (int) MBM_TO_DBM(power_rule->max_eirp));
859         else
860                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
861 }
862
863 static void handle_band(struct wiphy *wiphy,
864                         enum ieee80211_band band,
865                         enum nl80211_reg_initiator initiator)
866 {
867         unsigned int i;
868         struct ieee80211_supported_band *sband;
869
870         BUG_ON(!wiphy->bands[band]);
871         sband = wiphy->bands[band];
872
873         for (i = 0; i < sband->n_channels; i++)
874                 handle_channel(wiphy, initiator, band, i);
875 }
876
877 static bool ignore_reg_update(struct wiphy *wiphy,
878                               enum nl80211_reg_initiator initiator)
879 {
880         if (!last_request) {
881                 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s since "
882                               "last_request is not set\n",
883                               reg_initiator_name(initiator));
884                 return true;
885         }
886
887         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
888             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
889                 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s "
890                               "since the driver uses its own custom "
891                               "regulatory domain ",
892                               reg_initiator_name(initiator));
893                 return true;
894         }
895
896         /*
897          * wiphy->regd will be set once the device has its own
898          * desired regulatory domain set
899          */
900         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
901             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
902             !is_world_regdom(last_request->alpha2)) {
903                 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s "
904                               "since the driver requires its own regulaotry "
905                               "domain to be set first",
906                               reg_initiator_name(initiator));
907                 return true;
908         }
909
910         return false;
911 }
912
913 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
914 {
915         struct cfg80211_registered_device *rdev;
916
917         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
918                 wiphy_update_regulatory(&rdev->wiphy, initiator);
919 }
920
921 static void handle_reg_beacon(struct wiphy *wiphy,
922                               unsigned int chan_idx,
923                               struct reg_beacon *reg_beacon)
924 {
925         struct ieee80211_supported_band *sband;
926         struct ieee80211_channel *chan;
927         bool channel_changed = false;
928         struct ieee80211_channel chan_before;
929
930         assert_cfg80211_lock();
931
932         sband = wiphy->bands[reg_beacon->chan.band];
933         chan = &sband->channels[chan_idx];
934
935         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
936                 return;
937
938         if (chan->beacon_found)
939                 return;
940
941         chan->beacon_found = true;
942
943         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
944                 return;
945
946         chan_before.center_freq = chan->center_freq;
947         chan_before.flags = chan->flags;
948
949         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
950                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
951                 channel_changed = true;
952         }
953
954         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
955                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
956                 channel_changed = true;
957         }
958
959         if (channel_changed)
960                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
961 }
962
963 /*
964  * Called when a scan on a wiphy finds a beacon on
965  * new channel
966  */
967 static void wiphy_update_new_beacon(struct wiphy *wiphy,
968                                     struct reg_beacon *reg_beacon)
969 {
970         unsigned int i;
971         struct ieee80211_supported_band *sband;
972
973         assert_cfg80211_lock();
974
975         if (!wiphy->bands[reg_beacon->chan.band])
976                 return;
977
978         sband = wiphy->bands[reg_beacon->chan.band];
979
980         for (i = 0; i < sband->n_channels; i++)
981                 handle_reg_beacon(wiphy, i, reg_beacon);
982 }
983
984 /*
985  * Called upon reg changes or a new wiphy is added
986  */
987 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
988 {
989         unsigned int i;
990         struct ieee80211_supported_band *sband;
991         struct reg_beacon *reg_beacon;
992
993         assert_cfg80211_lock();
994
995         if (list_empty(&reg_beacon_list))
996                 return;
997
998         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
999                 if (!wiphy->bands[reg_beacon->chan.band])
1000                         continue;
1001                 sband = wiphy->bands[reg_beacon->chan.band];
1002                 for (i = 0; i < sband->n_channels; i++)
1003                         handle_reg_beacon(wiphy, i, reg_beacon);
1004         }
1005 }
1006
1007 static bool reg_is_world_roaming(struct wiphy *wiphy)
1008 {
1009         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1010             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1011                 return true;
1012         if (last_request &&
1013             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1014             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1015                 return true;
1016         return false;
1017 }
1018
1019 /* Reap the advantages of previously found beacons */
1020 static void reg_process_beacons(struct wiphy *wiphy)
1021 {
1022         /*
1023          * Means we are just firing up cfg80211, so no beacons would
1024          * have been processed yet.
1025          */
1026         if (!last_request)
1027                 return;
1028         if (!reg_is_world_roaming(wiphy))
1029                 return;
1030         wiphy_update_beacon_reg(wiphy);
1031 }
1032
1033 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1034 {
1035         if (!chan)
1036                 return true;
1037         if (chan->flags & IEEE80211_CHAN_DISABLED)
1038                 return true;
1039         /* This would happen when regulatory rules disallow HT40 completely */
1040         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1041                 return true;
1042         return false;
1043 }
1044
1045 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1046                                          enum ieee80211_band band,
1047                                          unsigned int chan_idx)
1048 {
1049         struct ieee80211_supported_band *sband;
1050         struct ieee80211_channel *channel;
1051         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1052         unsigned int i;
1053
1054         assert_cfg80211_lock();
1055
1056         sband = wiphy->bands[band];
1057         BUG_ON(chan_idx >= sband->n_channels);
1058         channel = &sband->channels[chan_idx];
1059
1060         if (is_ht40_not_allowed(channel)) {
1061                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1062                 return;
1063         }
1064
1065         /*
1066          * We need to ensure the extension channels exist to
1067          * be able to use HT40- or HT40+, this finds them (or not)
1068          */
1069         for (i = 0; i < sband->n_channels; i++) {
1070                 struct ieee80211_channel *c = &sband->channels[i];
1071                 if (c->center_freq == (channel->center_freq - 20))
1072                         channel_before = c;
1073                 if (c->center_freq == (channel->center_freq + 20))
1074                         channel_after = c;
1075         }
1076
1077         /*
1078          * Please note that this assumes target bandwidth is 20 MHz,
1079          * if that ever changes we also need to change the below logic
1080          * to include that as well.
1081          */
1082         if (is_ht40_not_allowed(channel_before))
1083                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1084         else
1085                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1086
1087         if (is_ht40_not_allowed(channel_after))
1088                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1089         else
1090                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1091 }
1092
1093 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1094                                       enum ieee80211_band band)
1095 {
1096         unsigned int i;
1097         struct ieee80211_supported_band *sband;
1098
1099         BUG_ON(!wiphy->bands[band]);
1100         sband = wiphy->bands[band];
1101
1102         for (i = 0; i < sband->n_channels; i++)
1103                 reg_process_ht_flags_channel(wiphy, band, i);
1104 }
1105
1106 static void reg_process_ht_flags(struct wiphy *wiphy)
1107 {
1108         enum ieee80211_band band;
1109
1110         if (!wiphy)
1111                 return;
1112
1113         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1114                 if (wiphy->bands[band])
1115                         reg_process_ht_flags_band(wiphy, band);
1116         }
1117
1118 }
1119
1120 void wiphy_update_regulatory(struct wiphy *wiphy,
1121                              enum nl80211_reg_initiator initiator)
1122 {
1123         enum ieee80211_band band;
1124
1125         if (ignore_reg_update(wiphy, initiator))
1126                 goto out;
1127         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1128                 if (wiphy->bands[band])
1129                         handle_band(wiphy, band, initiator);
1130         }
1131 out:
1132         reg_process_beacons(wiphy);
1133         reg_process_ht_flags(wiphy);
1134         if (wiphy->reg_notifier)
1135                 wiphy->reg_notifier(wiphy, last_request);
1136 }
1137
1138 static void handle_channel_custom(struct wiphy *wiphy,
1139                                   enum ieee80211_band band,
1140                                   unsigned int chan_idx,
1141                                   const struct ieee80211_regdomain *regd)
1142 {
1143         int r;
1144         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1145         u32 bw_flags = 0;
1146         const struct ieee80211_reg_rule *reg_rule = NULL;
1147         const struct ieee80211_power_rule *power_rule = NULL;
1148         const struct ieee80211_freq_range *freq_range = NULL;
1149         struct ieee80211_supported_band *sband;
1150         struct ieee80211_channel *chan;
1151
1152         assert_reg_lock();
1153
1154         sband = wiphy->bands[band];
1155         BUG_ON(chan_idx >= sband->n_channels);
1156         chan = &sband->channels[chan_idx];
1157
1158         r = freq_reg_info_regd(wiphy,
1159                                MHZ_TO_KHZ(chan->center_freq),
1160                                desired_bw_khz,
1161                                &reg_rule,
1162                                regd);
1163
1164         if (r) {
1165                 REG_DBG_PRINT("cfg80211: Disabling freq %d MHz as custom "
1166                               "regd has no rule that fits a %d MHz "
1167                               "wide channel\n",
1168                               chan->center_freq,
1169                               KHZ_TO_MHZ(desired_bw_khz));
1170                 chan->flags = IEEE80211_CHAN_DISABLED;
1171                 return;
1172         }
1173
1174         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1175
1176         power_rule = &reg_rule->power_rule;
1177         freq_range = &reg_rule->freq_range;
1178
1179         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1180                 bw_flags = IEEE80211_CHAN_NO_HT40;
1181
1182         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1183         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1184         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1185 }
1186
1187 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1188                                const struct ieee80211_regdomain *regd)
1189 {
1190         unsigned int i;
1191         struct ieee80211_supported_band *sband;
1192
1193         BUG_ON(!wiphy->bands[band]);
1194         sband = wiphy->bands[band];
1195
1196         for (i = 0; i < sband->n_channels; i++)
1197                 handle_channel_custom(wiphy, band, i, regd);
1198 }
1199
1200 /* Used by drivers prior to wiphy registration */
1201 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1202                                    const struct ieee80211_regdomain *regd)
1203 {
1204         enum ieee80211_band band;
1205         unsigned int bands_set = 0;
1206
1207         mutex_lock(&reg_mutex);
1208         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1209                 if (!wiphy->bands[band])
1210                         continue;
1211                 handle_band_custom(wiphy, band, regd);
1212                 bands_set++;
1213         }
1214         mutex_unlock(&reg_mutex);
1215
1216         /*
1217          * no point in calling this if it won't have any effect
1218          * on your device's supportd bands.
1219          */
1220         WARN_ON(!bands_set);
1221 }
1222 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1223
1224 /*
1225  * Return value which can be used by ignore_request() to indicate
1226  * it has been determined we should intersect two regulatory domains
1227  */
1228 #define REG_INTERSECT   1
1229
1230 /* This has the logic which determines when a new request
1231  * should be ignored. */
1232 static int ignore_request(struct wiphy *wiphy,
1233                           struct regulatory_request *pending_request)
1234 {
1235         struct wiphy *last_wiphy = NULL;
1236
1237         assert_cfg80211_lock();
1238
1239         /* All initial requests are respected */
1240         if (!last_request)
1241                 return 0;
1242
1243         switch (pending_request->initiator) {
1244         case NL80211_REGDOM_SET_BY_CORE:
1245                 return 0;
1246         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1247
1248                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1249
1250                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1251                         return -EINVAL;
1252                 if (last_request->initiator ==
1253                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1254                         if (last_wiphy != wiphy) {
1255                                 /*
1256                                  * Two cards with two APs claiming different
1257                                  * Country IE alpha2s. We could
1258                                  * intersect them, but that seems unlikely
1259                                  * to be correct. Reject second one for now.
1260                                  */
1261                                 if (regdom_changes(pending_request->alpha2))
1262                                         return -EOPNOTSUPP;
1263                                 return -EALREADY;
1264                         }
1265                         /*
1266                          * Two consecutive Country IE hints on the same wiphy.
1267                          * This should be picked up early by the driver/stack
1268                          */
1269                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1270                                 return 0;
1271                         return -EALREADY;
1272                 }
1273                 return 0;
1274         case NL80211_REGDOM_SET_BY_DRIVER:
1275                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1276                         if (regdom_changes(pending_request->alpha2))
1277                                 return 0;
1278                         return -EALREADY;
1279                 }
1280
1281                 /*
1282                  * This would happen if you unplug and plug your card
1283                  * back in or if you add a new device for which the previously
1284                  * loaded card also agrees on the regulatory domain.
1285                  */
1286                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1287                     !regdom_changes(pending_request->alpha2))
1288                         return -EALREADY;
1289
1290                 return REG_INTERSECT;
1291         case NL80211_REGDOM_SET_BY_USER:
1292                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1293                         return REG_INTERSECT;
1294                 /*
1295                  * If the user knows better the user should set the regdom
1296                  * to their country before the IE is picked up
1297                  */
1298                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1299                           last_request->intersect)
1300                         return -EOPNOTSUPP;
1301                 /*
1302                  * Process user requests only after previous user/driver/core
1303                  * requests have been processed
1304                  */
1305                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1306                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1307                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1308                         if (regdom_changes(last_request->alpha2))
1309                                 return -EAGAIN;
1310                 }
1311
1312                 if (!regdom_changes(pending_request->alpha2))
1313                         return -EALREADY;
1314
1315                 return 0;
1316         }
1317
1318         return -EINVAL;
1319 }
1320
1321 /**
1322  * __regulatory_hint - hint to the wireless core a regulatory domain
1323  * @wiphy: if the hint comes from country information from an AP, this
1324  *      is required to be set to the wiphy that received the information
1325  * @pending_request: the regulatory request currently being processed
1326  *
1327  * The Wireless subsystem can use this function to hint to the wireless core
1328  * what it believes should be the current regulatory domain.
1329  *
1330  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1331  * already been set or other standard error codes.
1332  *
1333  * Caller must hold &cfg80211_mutex and &reg_mutex
1334  */
1335 static int __regulatory_hint(struct wiphy *wiphy,
1336                              struct regulatory_request *pending_request)
1337 {
1338         bool intersect = false;
1339         int r = 0;
1340
1341         assert_cfg80211_lock();
1342
1343         r = ignore_request(wiphy, pending_request);
1344
1345         if (r == REG_INTERSECT) {
1346                 if (pending_request->initiator ==
1347                     NL80211_REGDOM_SET_BY_DRIVER) {
1348                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1349                         if (r) {
1350                                 kfree(pending_request);
1351                                 return r;
1352                         }
1353                 }
1354                 intersect = true;
1355         } else if (r) {
1356                 /*
1357                  * If the regulatory domain being requested by the
1358                  * driver has already been set just copy it to the
1359                  * wiphy
1360                  */
1361                 if (r == -EALREADY &&
1362                     pending_request->initiator ==
1363                     NL80211_REGDOM_SET_BY_DRIVER) {
1364                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1365                         if (r) {
1366                                 kfree(pending_request);
1367                                 return r;
1368                         }
1369                         r = -EALREADY;
1370                         goto new_request;
1371                 }
1372                 kfree(pending_request);
1373                 return r;
1374         }
1375
1376 new_request:
1377         kfree(last_request);
1378
1379         last_request = pending_request;
1380         last_request->intersect = intersect;
1381
1382         pending_request = NULL;
1383
1384         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1385                 user_alpha2[0] = last_request->alpha2[0];
1386                 user_alpha2[1] = last_request->alpha2[1];
1387         }
1388
1389         /* When r == REG_INTERSECT we do need to call CRDA */
1390         if (r < 0) {
1391                 /*
1392                  * Since CRDA will not be called in this case as we already
1393                  * have applied the requested regulatory domain before we just
1394                  * inform userspace we have processed the request
1395                  */
1396                 if (r == -EALREADY)
1397                         nl80211_send_reg_change_event(last_request);
1398                 return r;
1399         }
1400
1401         return call_crda(last_request->alpha2);
1402 }
1403
1404 /* This processes *all* regulatory hints */
1405 static void reg_process_hint(struct regulatory_request *reg_request)
1406 {
1407         int r = 0;
1408         struct wiphy *wiphy = NULL;
1409         enum nl80211_reg_initiator initiator = reg_request->initiator;
1410
1411         BUG_ON(!reg_request->alpha2);
1412
1413         mutex_lock(&cfg80211_mutex);
1414         mutex_lock(&reg_mutex);
1415
1416         if (wiphy_idx_valid(reg_request->wiphy_idx))
1417                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1418
1419         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1420             !wiphy) {
1421                 kfree(reg_request);
1422                 goto out;
1423         }
1424
1425         r = __regulatory_hint(wiphy, reg_request);
1426         /* This is required so that the orig_* parameters are saved */
1427         if (r == -EALREADY && wiphy &&
1428             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1429                 wiphy_update_regulatory(wiphy, initiator);
1430 out:
1431         mutex_unlock(&reg_mutex);
1432         mutex_unlock(&cfg80211_mutex);
1433 }
1434
1435 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1436 static void reg_process_pending_hints(void)
1437         {
1438         struct regulatory_request *reg_request;
1439
1440         spin_lock(&reg_requests_lock);
1441         while (!list_empty(&reg_requests_list)) {
1442                 reg_request = list_first_entry(&reg_requests_list,
1443                                                struct regulatory_request,
1444                                                list);
1445                 list_del_init(&reg_request->list);
1446
1447                 spin_unlock(&reg_requests_lock);
1448                 reg_process_hint(reg_request);
1449                 spin_lock(&reg_requests_lock);
1450         }
1451         spin_unlock(&reg_requests_lock);
1452 }
1453
1454 /* Processes beacon hints -- this has nothing to do with country IEs */
1455 static void reg_process_pending_beacon_hints(void)
1456 {
1457         struct cfg80211_registered_device *rdev;
1458         struct reg_beacon *pending_beacon, *tmp;
1459
1460         /*
1461          * No need to hold the reg_mutex here as we just touch wiphys
1462          * and do not read or access regulatory variables.
1463          */
1464         mutex_lock(&cfg80211_mutex);
1465
1466         /* This goes through the _pending_ beacon list */
1467         spin_lock_bh(&reg_pending_beacons_lock);
1468
1469         if (list_empty(&reg_pending_beacons)) {
1470                 spin_unlock_bh(&reg_pending_beacons_lock);
1471                 goto out;
1472         }
1473
1474         list_for_each_entry_safe(pending_beacon, tmp,
1475                                  &reg_pending_beacons, list) {
1476
1477                 list_del_init(&pending_beacon->list);
1478
1479                 /* Applies the beacon hint to current wiphys */
1480                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1481                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1482
1483                 /* Remembers the beacon hint for new wiphys or reg changes */
1484                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1485         }
1486
1487         spin_unlock_bh(&reg_pending_beacons_lock);
1488 out:
1489         mutex_unlock(&cfg80211_mutex);
1490 }
1491
1492 static void reg_todo(struct work_struct *work)
1493 {
1494         reg_process_pending_hints();
1495         reg_process_pending_beacon_hints();
1496 }
1497
1498 static DECLARE_WORK(reg_work, reg_todo);
1499
1500 static void queue_regulatory_request(struct regulatory_request *request)
1501 {
1502         if (isalpha(request->alpha2[0]))
1503                 request->alpha2[0] = toupper(request->alpha2[0]);
1504         if (isalpha(request->alpha2[1]))
1505                 request->alpha2[1] = toupper(request->alpha2[1]);
1506
1507         spin_lock(&reg_requests_lock);
1508         list_add_tail(&request->list, &reg_requests_list);
1509         spin_unlock(&reg_requests_lock);
1510
1511         schedule_work(&reg_work);
1512 }
1513
1514 /*
1515  * Core regulatory hint -- happens during cfg80211_init()
1516  * and when we restore regulatory settings.
1517  */
1518 static int regulatory_hint_core(const char *alpha2)
1519 {
1520         struct regulatory_request *request;
1521
1522         kfree(last_request);
1523         last_request = NULL;
1524
1525         request = kzalloc(sizeof(struct regulatory_request),
1526                           GFP_KERNEL);
1527         if (!request)
1528                 return -ENOMEM;
1529
1530         request->alpha2[0] = alpha2[0];
1531         request->alpha2[1] = alpha2[1];
1532         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1533
1534         /*
1535          * This ensures last_request is populated once modules
1536          * come swinging in and calling regulatory hints and
1537          * wiphy_apply_custom_regulatory().
1538          */
1539         reg_process_hint(request);
1540
1541         return 0;
1542 }
1543
1544 /* User hints */
1545 int regulatory_hint_user(const char *alpha2)
1546 {
1547         struct regulatory_request *request;
1548
1549         BUG_ON(!alpha2);
1550
1551         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1552         if (!request)
1553                 return -ENOMEM;
1554
1555         request->wiphy_idx = WIPHY_IDX_STALE;
1556         request->alpha2[0] = alpha2[0];
1557         request->alpha2[1] = alpha2[1];
1558         request->initiator = NL80211_REGDOM_SET_BY_USER;
1559
1560         queue_regulatory_request(request);
1561
1562         return 0;
1563 }
1564
1565 /* Driver hints */
1566 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1567 {
1568         struct regulatory_request *request;
1569
1570         BUG_ON(!alpha2);
1571         BUG_ON(!wiphy);
1572
1573         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1574         if (!request)
1575                 return -ENOMEM;
1576
1577         request->wiphy_idx = get_wiphy_idx(wiphy);
1578
1579         /* Must have registered wiphy first */
1580         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1581
1582         request->alpha2[0] = alpha2[0];
1583         request->alpha2[1] = alpha2[1];
1584         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1585
1586         queue_regulatory_request(request);
1587
1588         return 0;
1589 }
1590 EXPORT_SYMBOL(regulatory_hint);
1591
1592 /*
1593  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1594  * therefore cannot iterate over the rdev list here.
1595  */
1596 void regulatory_hint_11d(struct wiphy *wiphy,
1597                          enum ieee80211_band band,
1598                          u8 *country_ie,
1599                          u8 country_ie_len)
1600 {
1601         char alpha2[2];
1602         enum environment_cap env = ENVIRON_ANY;
1603         struct regulatory_request *request;
1604
1605         mutex_lock(&reg_mutex);
1606
1607         if (unlikely(!last_request))
1608                 goto out;
1609
1610         /* IE len must be evenly divisible by 2 */
1611         if (country_ie_len & 0x01)
1612                 goto out;
1613
1614         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1615                 goto out;
1616
1617         alpha2[0] = country_ie[0];
1618         alpha2[1] = country_ie[1];
1619
1620         if (country_ie[2] == 'I')
1621                 env = ENVIRON_INDOOR;
1622         else if (country_ie[2] == 'O')
1623                 env = ENVIRON_OUTDOOR;
1624
1625         /*
1626          * We will run this only upon a successful connection on cfg80211.
1627          * We leave conflict resolution to the workqueue, where can hold
1628          * cfg80211_mutex.
1629          */
1630         if (likely(last_request->initiator ==
1631             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1632             wiphy_idx_valid(last_request->wiphy_idx)))
1633                 goto out;
1634
1635         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1636         if (!request)
1637                 goto out;
1638
1639         request->wiphy_idx = get_wiphy_idx(wiphy);
1640         request->alpha2[0] = alpha2[0];
1641         request->alpha2[1] = alpha2[1];
1642         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1643         request->country_ie_env = env;
1644
1645         mutex_unlock(&reg_mutex);
1646
1647         queue_regulatory_request(request);
1648
1649         return;
1650
1651 out:
1652         mutex_unlock(&reg_mutex);
1653 }
1654
1655 static void restore_alpha2(char *alpha2, bool reset_user)
1656 {
1657         /* indicates there is no alpha2 to consider for restoration */
1658         alpha2[0] = '9';
1659         alpha2[1] = '7';
1660
1661         /* The user setting has precedence over the module parameter */
1662         if (is_user_regdom_saved()) {
1663                 /* Unless we're asked to ignore it and reset it */
1664                 if (reset_user) {
1665                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1666                                "including user preference\n");
1667                         user_alpha2[0] = '9';
1668                         user_alpha2[1] = '7';
1669
1670                         /*
1671                          * If we're ignoring user settings, we still need to
1672                          * check the module parameter to ensure we put things
1673                          * back as they were for a full restore.
1674                          */
1675                         if (!is_world_regdom(ieee80211_regdom)) {
1676                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1677                                        "module parameter ieee80211_regdom: %c%c\n",
1678                                        ieee80211_regdom[0],
1679                                        ieee80211_regdom[1]);
1680                                 alpha2[0] = ieee80211_regdom[0];
1681                                 alpha2[1] = ieee80211_regdom[1];
1682                         }
1683                 } else {
1684                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1685                                "while preserving user preference for: %c%c\n",
1686                                user_alpha2[0],
1687                                user_alpha2[1]);
1688                         alpha2[0] = user_alpha2[0];
1689                         alpha2[1] = user_alpha2[1];
1690                 }
1691         } else if (!is_world_regdom(ieee80211_regdom)) {
1692                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1693                        "module parameter ieee80211_regdom: %c%c\n",
1694                        ieee80211_regdom[0],
1695                        ieee80211_regdom[1]);
1696                 alpha2[0] = ieee80211_regdom[0];
1697                 alpha2[1] = ieee80211_regdom[1];
1698         } else
1699                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1700 }
1701
1702 /*
1703  * Restoring regulatory settings involves ingoring any
1704  * possibly stale country IE information and user regulatory
1705  * settings if so desired, this includes any beacon hints
1706  * learned as we could have traveled outside to another country
1707  * after disconnection. To restore regulatory settings we do
1708  * exactly what we did at bootup:
1709  *
1710  *   - send a core regulatory hint
1711  *   - send a user regulatory hint if applicable
1712  *
1713  * Device drivers that send a regulatory hint for a specific country
1714  * keep their own regulatory domain on wiphy->regd so that does does
1715  * not need to be remembered.
1716  */
1717 static void restore_regulatory_settings(bool reset_user)
1718 {
1719         char alpha2[2];
1720         struct reg_beacon *reg_beacon, *btmp;
1721
1722         mutex_lock(&cfg80211_mutex);
1723         mutex_lock(&reg_mutex);
1724
1725         reset_regdomains();
1726         restore_alpha2(alpha2, reset_user);
1727
1728         /* Clear beacon hints */
1729         spin_lock_bh(&reg_pending_beacons_lock);
1730         if (!list_empty(&reg_pending_beacons)) {
1731                 list_for_each_entry_safe(reg_beacon, btmp,
1732                                          &reg_pending_beacons, list) {
1733                         list_del(&reg_beacon->list);
1734                         kfree(reg_beacon);
1735                 }
1736         }
1737         spin_unlock_bh(&reg_pending_beacons_lock);
1738
1739         if (!list_empty(&reg_beacon_list)) {
1740                 list_for_each_entry_safe(reg_beacon, btmp,
1741                                          &reg_beacon_list, list) {
1742                         list_del(&reg_beacon->list);
1743                         kfree(reg_beacon);
1744                 }
1745         }
1746
1747         /* First restore to the basic regulatory settings */
1748         cfg80211_regdomain = cfg80211_world_regdom;
1749
1750         mutex_unlock(&reg_mutex);
1751         mutex_unlock(&cfg80211_mutex);
1752
1753         regulatory_hint_core(cfg80211_regdomain->alpha2);
1754
1755         /*
1756          * This restores the ieee80211_regdom module parameter
1757          * preference or the last user requested regulatory
1758          * settings, user regulatory settings takes precedence.
1759          */
1760         if (is_an_alpha2(alpha2))
1761                 regulatory_hint_user(user_alpha2);
1762 }
1763
1764
1765 void regulatory_hint_disconnect(void)
1766 {
1767         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1768                       "restore regulatory settings\n");
1769         restore_regulatory_settings(false);
1770 }
1771
1772 static bool freq_is_chan_12_13_14(u16 freq)
1773 {
1774         if (freq == ieee80211_channel_to_frequency(12) ||
1775             freq == ieee80211_channel_to_frequency(13) ||
1776             freq == ieee80211_channel_to_frequency(14))
1777                 return true;
1778         return false;
1779 }
1780
1781 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1782                                  struct ieee80211_channel *beacon_chan,
1783                                  gfp_t gfp)
1784 {
1785         struct reg_beacon *reg_beacon;
1786
1787         if (likely((beacon_chan->beacon_found ||
1788             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1789             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1790              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1791                 return 0;
1792
1793         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1794         if (!reg_beacon)
1795                 return -ENOMEM;
1796
1797         REG_DBG_PRINT("cfg80211: Found new beacon on "
1798                       "frequency: %d MHz (Ch %d) on %s\n",
1799                       beacon_chan->center_freq,
1800                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1801                       wiphy_name(wiphy));
1802
1803         memcpy(&reg_beacon->chan, beacon_chan,
1804                 sizeof(struct ieee80211_channel));
1805
1806
1807         /*
1808          * Since we can be called from BH or and non-BH context
1809          * we must use spin_lock_bh()
1810          */
1811         spin_lock_bh(&reg_pending_beacons_lock);
1812         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1813         spin_unlock_bh(&reg_pending_beacons_lock);
1814
1815         schedule_work(&reg_work);
1816
1817         return 0;
1818 }
1819
1820 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1821 {
1822         unsigned int i;
1823         const struct ieee80211_reg_rule *reg_rule = NULL;
1824         const struct ieee80211_freq_range *freq_range = NULL;
1825         const struct ieee80211_power_rule *power_rule = NULL;
1826
1827         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1828                 "(max_antenna_gain, max_eirp)\n");
1829
1830         for (i = 0; i < rd->n_reg_rules; i++) {
1831                 reg_rule = &rd->reg_rules[i];
1832                 freq_range = &reg_rule->freq_range;
1833                 power_rule = &reg_rule->power_rule;
1834
1835                 /*
1836                  * There may not be documentation for max antenna gain
1837                  * in certain regions
1838                  */
1839                 if (power_rule->max_antenna_gain)
1840                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1841                                 "(%d mBi, %d mBm)\n",
1842                                 freq_range->start_freq_khz,
1843                                 freq_range->end_freq_khz,
1844                                 freq_range->max_bandwidth_khz,
1845                                 power_rule->max_antenna_gain,
1846                                 power_rule->max_eirp);
1847                 else
1848                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1849                                 "(N/A, %d mBm)\n",
1850                                 freq_range->start_freq_khz,
1851                                 freq_range->end_freq_khz,
1852                                 freq_range->max_bandwidth_khz,
1853                                 power_rule->max_eirp);
1854         }
1855 }
1856
1857 static void print_regdomain(const struct ieee80211_regdomain *rd)
1858 {
1859
1860         if (is_intersected_alpha2(rd->alpha2)) {
1861
1862                 if (last_request->initiator ==
1863                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1864                         struct cfg80211_registered_device *rdev;
1865                         rdev = cfg80211_rdev_by_wiphy_idx(
1866                                 last_request->wiphy_idx);
1867                         if (rdev) {
1868                                 printk(KERN_INFO "cfg80211: Current regulatory "
1869                                         "domain updated by AP to: %c%c\n",
1870                                         rdev->country_ie_alpha2[0],
1871                                         rdev->country_ie_alpha2[1]);
1872                         } else
1873                                 printk(KERN_INFO "cfg80211: Current regulatory "
1874                                         "domain intersected:\n");
1875                 } else
1876                         printk(KERN_INFO "cfg80211: Current regulatory "
1877                                 "domain intersected:\n");
1878         } else if (is_world_regdom(rd->alpha2))
1879                 printk(KERN_INFO "cfg80211: World regulatory "
1880                         "domain updated:\n");
1881         else {
1882                 if (is_unknown_alpha2(rd->alpha2))
1883                         printk(KERN_INFO "cfg80211: Regulatory domain "
1884                                 "changed to driver built-in settings "
1885                                 "(unknown country)\n");
1886                 else
1887                         printk(KERN_INFO "cfg80211: Regulatory domain "
1888                                 "changed to country: %c%c\n",
1889                                 rd->alpha2[0], rd->alpha2[1]);
1890         }
1891         print_rd_rules(rd);
1892 }
1893
1894 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1895 {
1896         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1897                 rd->alpha2[0], rd->alpha2[1]);
1898         print_rd_rules(rd);
1899 }
1900
1901 /* Takes ownership of rd only if it doesn't fail */
1902 static int __set_regdom(const struct ieee80211_regdomain *rd)
1903 {
1904         const struct ieee80211_regdomain *intersected_rd = NULL;
1905         struct cfg80211_registered_device *rdev = NULL;
1906         struct wiphy *request_wiphy;
1907         /* Some basic sanity checks first */
1908
1909         if (is_world_regdom(rd->alpha2)) {
1910                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1911                         return -EINVAL;
1912                 update_world_regdomain(rd);
1913                 return 0;
1914         }
1915
1916         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1917                         !is_unknown_alpha2(rd->alpha2))
1918                 return -EINVAL;
1919
1920         if (!last_request)
1921                 return -EINVAL;
1922
1923         /*
1924          * Lets only bother proceeding on the same alpha2 if the current
1925          * rd is non static (it means CRDA was present and was used last)
1926          * and the pending request came in from a country IE
1927          */
1928         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1929                 /*
1930                  * If someone else asked us to change the rd lets only bother
1931                  * checking if the alpha2 changes if CRDA was already called
1932                  */
1933                 if (!regdom_changes(rd->alpha2))
1934                         return -EINVAL;
1935         }
1936
1937         /*
1938          * Now lets set the regulatory domain, update all driver channels
1939          * and finally inform them of what we have done, in case they want
1940          * to review or adjust their own settings based on their own
1941          * internal EEPROM data
1942          */
1943
1944         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1945                 return -EINVAL;
1946
1947         if (!is_valid_rd(rd)) {
1948                 printk(KERN_ERR "cfg80211: Invalid "
1949                         "regulatory domain detected:\n");
1950                 print_regdomain_info(rd);
1951                 return -EINVAL;
1952         }
1953
1954         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1955
1956         if (!last_request->intersect) {
1957                 int r;
1958
1959                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1960                         reset_regdomains();
1961                         cfg80211_regdomain = rd;
1962                         return 0;
1963                 }
1964
1965                 /*
1966                  * For a driver hint, lets copy the regulatory domain the
1967                  * driver wanted to the wiphy to deal with conflicts
1968                  */
1969
1970                 /*
1971                  * Userspace could have sent two replies with only
1972                  * one kernel request.
1973                  */
1974                 if (request_wiphy->regd)
1975                         return -EALREADY;
1976
1977                 r = reg_copy_regd(&request_wiphy->regd, rd);
1978                 if (r)
1979                         return r;
1980
1981                 reset_regdomains();
1982                 cfg80211_regdomain = rd;
1983                 return 0;
1984         }
1985
1986         /* Intersection requires a bit more work */
1987
1988         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1989
1990                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1991                 if (!intersected_rd)
1992                         return -EINVAL;
1993
1994                 /*
1995                  * We can trash what CRDA provided now.
1996                  * However if a driver requested this specific regulatory
1997                  * domain we keep it for its private use
1998                  */
1999                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2000                         request_wiphy->regd = rd;
2001                 else
2002                         kfree(rd);
2003
2004                 rd = NULL;
2005
2006                 reset_regdomains();
2007                 cfg80211_regdomain = intersected_rd;
2008
2009                 return 0;
2010         }
2011
2012         if (!intersected_rd)
2013                 return -EINVAL;
2014
2015         rdev = wiphy_to_dev(request_wiphy);
2016
2017         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2018         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2019         rdev->env = last_request->country_ie_env;
2020
2021         BUG_ON(intersected_rd == rd);
2022
2023         kfree(rd);
2024         rd = NULL;
2025
2026         reset_regdomains();
2027         cfg80211_regdomain = intersected_rd;
2028
2029         return 0;
2030 }
2031
2032
2033 /*
2034  * Use this call to set the current regulatory domain. Conflicts with
2035  * multiple drivers can be ironed out later. Caller must've already
2036  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2037  */
2038 int set_regdom(const struct ieee80211_regdomain *rd)
2039 {
2040         int r;
2041
2042         assert_cfg80211_lock();
2043
2044         mutex_lock(&reg_mutex);
2045
2046         /* Note that this doesn't update the wiphys, this is done below */
2047         r = __set_regdom(rd);
2048         if (r) {
2049                 kfree(rd);
2050                 mutex_unlock(&reg_mutex);
2051                 return r;
2052         }
2053
2054         /* This would make this whole thing pointless */
2055         if (!last_request->intersect)
2056                 BUG_ON(rd != cfg80211_regdomain);
2057
2058         /* update all wiphys now with the new established regulatory domain */
2059         update_all_wiphy_regulatory(last_request->initiator);
2060
2061         print_regdomain(cfg80211_regdomain);
2062
2063         nl80211_send_reg_change_event(last_request);
2064
2065         mutex_unlock(&reg_mutex);
2066
2067         return r;
2068 }
2069
2070 /* Caller must hold cfg80211_mutex */
2071 void reg_device_remove(struct wiphy *wiphy)
2072 {
2073         struct wiphy *request_wiphy = NULL;
2074
2075         assert_cfg80211_lock();
2076
2077         mutex_lock(&reg_mutex);
2078
2079         kfree(wiphy->regd);
2080
2081         if (last_request)
2082                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2083
2084         if (!request_wiphy || request_wiphy != wiphy)
2085                 goto out;
2086
2087         last_request->wiphy_idx = WIPHY_IDX_STALE;
2088         last_request->country_ie_env = ENVIRON_ANY;
2089 out:
2090         mutex_unlock(&reg_mutex);
2091 }
2092
2093 int __init regulatory_init(void)
2094 {
2095         int err = 0;
2096
2097         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2098         if (IS_ERR(reg_pdev))
2099                 return PTR_ERR(reg_pdev);
2100
2101         spin_lock_init(&reg_requests_lock);
2102         spin_lock_init(&reg_pending_beacons_lock);
2103
2104         cfg80211_regdomain = cfg80211_world_regdom;
2105
2106         user_alpha2[0] = '9';
2107         user_alpha2[1] = '7';
2108
2109         /* We always try to get an update for the static regdomain */
2110         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2111         if (err) {
2112                 if (err == -ENOMEM)
2113                         return err;
2114                 /*
2115                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2116                  * memory which is handled and propagated appropriately above
2117                  * but it can also fail during a netlink_broadcast() or during
2118                  * early boot for call_usermodehelper(). For now treat these
2119                  * errors as non-fatal.
2120                  */
2121                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2122                         "to call CRDA during init");
2123 #ifdef CONFIG_CFG80211_REG_DEBUG
2124                 /* We want to find out exactly why when debugging */
2125                 WARN_ON(err);
2126 #endif
2127         }
2128
2129         /*
2130          * Finally, if the user set the module parameter treat it
2131          * as a user hint.
2132          */
2133         if (!is_world_regdom(ieee80211_regdom))
2134                 regulatory_hint_user(ieee80211_regdom);
2135
2136         return 0;
2137 }
2138
2139 void /* __init_or_exit */ regulatory_exit(void)
2140 {
2141         struct regulatory_request *reg_request, *tmp;
2142         struct reg_beacon *reg_beacon, *btmp;
2143
2144         cancel_work_sync(&reg_work);
2145
2146         mutex_lock(&cfg80211_mutex);
2147         mutex_lock(&reg_mutex);
2148
2149         reset_regdomains();
2150
2151         kfree(last_request);
2152
2153         platform_device_unregister(reg_pdev);
2154
2155         spin_lock_bh(&reg_pending_beacons_lock);
2156         if (!list_empty(&reg_pending_beacons)) {
2157                 list_for_each_entry_safe(reg_beacon, btmp,
2158                                          &reg_pending_beacons, list) {
2159                         list_del(&reg_beacon->list);
2160                         kfree(reg_beacon);
2161                 }
2162         }
2163         spin_unlock_bh(&reg_pending_beacons_lock);
2164
2165         if (!list_empty(&reg_beacon_list)) {
2166                 list_for_each_entry_safe(reg_beacon, btmp,
2167                                          &reg_beacon_list, list) {
2168                         list_del(&reg_beacon->list);
2169                         kfree(reg_beacon);
2170                 }
2171         }
2172
2173         spin_lock(&reg_requests_lock);
2174         if (!list_empty(&reg_requests_list)) {
2175                 list_for_each_entry_safe(reg_request, tmp,
2176                                          &reg_requests_list, list) {
2177                         list_del(&reg_request->list);
2178                         kfree(reg_request);
2179                 }
2180         }
2181         spin_unlock(&reg_requests_lock);
2182
2183         mutex_unlock(&reg_mutex);
2184         mutex_unlock(&cfg80211_mutex);
2185 }