]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/sched/sch_hfsc.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[net-next-2.6.git] / net / sched / sch_hfsc.c
1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
70
71 /*
72  * kernel internal service curve representation:
73  *   coordinates are given by 64 bit unsigned integers.
74  *   x-axis: unit is clock count.
75  *   y-axis: unit is byte.
76  *
77  *   The service curve parameters are converted to the internal
78  *   representation. The slope values are scaled to avoid overflow.
79  *   the inverse slope values as well as the y-projection of the 1st
80  *   segment are kept in order to to avoid 64-bit divide operations
81  *   that are expensive on 32-bit architectures.
82  */
83
84 struct internal_sc
85 {
86         u64     sm1;    /* scaled slope of the 1st segment */
87         u64     ism1;   /* scaled inverse-slope of the 1st segment */
88         u64     dx;     /* the x-projection of the 1st segment */
89         u64     dy;     /* the y-projection of the 1st segment */
90         u64     sm2;    /* scaled slope of the 2nd segment */
91         u64     ism2;   /* scaled inverse-slope of the 2nd segment */
92 };
93
94 /* runtime service curve */
95 struct runtime_sc
96 {
97         u64     x;      /* current starting position on x-axis */
98         u64     y;      /* current starting position on y-axis */
99         u64     sm1;    /* scaled slope of the 1st segment */
100         u64     ism1;   /* scaled inverse-slope of the 1st segment */
101         u64     dx;     /* the x-projection of the 1st segment */
102         u64     dy;     /* the y-projection of the 1st segment */
103         u64     sm2;    /* scaled slope of the 2nd segment */
104         u64     ism2;   /* scaled inverse-slope of the 2nd segment */
105 };
106
107 enum hfsc_class_flags
108 {
109         HFSC_RSC = 0x1,
110         HFSC_FSC = 0x2,
111         HFSC_USC = 0x4
112 };
113
114 struct hfsc_class
115 {
116         u32             classid;        /* class id */
117         unsigned int    refcnt;         /* usage count */
118
119         struct gnet_stats_basic bstats;
120         struct gnet_stats_queue qstats;
121         struct gnet_stats_rate_est rate_est;
122         unsigned int    level;          /* class level in hierarchy */
123         struct tcf_proto *filter_list;  /* filter list */
124         unsigned int    filter_cnt;     /* filter count */
125
126         struct hfsc_sched *sched;       /* scheduler data */
127         struct hfsc_class *cl_parent;   /* parent class */
128         struct list_head siblings;      /* sibling classes */
129         struct list_head children;      /* child classes */
130         struct Qdisc    *qdisc;         /* leaf qdisc */
131
132         struct rb_node el_node;         /* qdisc's eligible tree member */
133         struct rb_root vt_tree;         /* active children sorted by cl_vt */
134         struct rb_node vt_node;         /* parent's vt_tree member */
135         struct rb_root cf_tree;         /* active children sorted by cl_f */
136         struct rb_node cf_node;         /* parent's cf_heap member */
137         struct list_head hlist;         /* hash list member */
138         struct list_head dlist;         /* drop list member */
139
140         u64     cl_total;               /* total work in bytes */
141         u64     cl_cumul;               /* cumulative work in bytes done by
142                                            real-time criteria */
143
144         u64     cl_d;                   /* deadline*/
145         u64     cl_e;                   /* eligible time */
146         u64     cl_vt;                  /* virtual time */
147         u64     cl_f;                   /* time when this class will fit for
148                                            link-sharing, max(myf, cfmin) */
149         u64     cl_myf;                 /* my fit-time (calculated from this
150                                            class's own upperlimit curve) */
151         u64     cl_myfadj;              /* my fit-time adjustment (to cancel
152                                            history dependence) */
153         u64     cl_cfmin;               /* earliest children's fit-time (used
154                                            with cl_myf to obtain cl_f) */
155         u64     cl_cvtmin;              /* minimal virtual time among the
156                                            children fit for link-sharing
157                                            (monotonic within a period) */
158         u64     cl_vtadj;               /* intra-period cumulative vt
159                                            adjustment */
160         u64     cl_vtoff;               /* inter-period cumulative vt offset */
161         u64     cl_cvtmax;              /* max child's vt in the last period */
162         u64     cl_cvtoff;              /* cumulative cvtmax of all periods */
163         u64     cl_pcvtoff;             /* parent's cvtoff at initalization
164                                            time */
165
166         struct internal_sc cl_rsc;      /* internal real-time service curve */
167         struct internal_sc cl_fsc;      /* internal fair service curve */
168         struct internal_sc cl_usc;      /* internal upperlimit service curve */
169         struct runtime_sc cl_deadline;  /* deadline curve */
170         struct runtime_sc cl_eligible;  /* eligible curve */
171         struct runtime_sc cl_virtual;   /* virtual curve */
172         struct runtime_sc cl_ulimit;    /* upperlimit curve */
173
174         unsigned long   cl_flags;       /* which curves are valid */
175         unsigned long   cl_vtperiod;    /* vt period sequence number */
176         unsigned long   cl_parentperiod;/* parent's vt period sequence number*/
177         unsigned long   cl_nactive;     /* number of active children */
178 };
179
180 #define HFSC_HSIZE      16
181
182 struct hfsc_sched
183 {
184         u16     defcls;                         /* default class id */
185         struct hfsc_class root;                 /* root class */
186         struct list_head clhash[HFSC_HSIZE];    /* class hash */
187         struct rb_root eligible;                /* eligible tree */
188         struct list_head droplist;              /* active leaf class list (for
189                                                    dropping) */
190         struct sk_buff_head requeue;            /* requeued packet */
191         struct qdisc_watchdog watchdog;         /* watchdog timer */
192 };
193
194 #define HT_INFINITY     0xffffffffffffffffULL   /* infinite time value */
195
196
197 /*
198  * eligible tree holds backlogged classes being sorted by their eligible times.
199  * there is one eligible tree per hfsc instance.
200  */
201
202 static void
203 eltree_insert(struct hfsc_class *cl)
204 {
205         struct rb_node **p = &cl->sched->eligible.rb_node;
206         struct rb_node *parent = NULL;
207         struct hfsc_class *cl1;
208
209         while (*p != NULL) {
210                 parent = *p;
211                 cl1 = rb_entry(parent, struct hfsc_class, el_node);
212                 if (cl->cl_e >= cl1->cl_e)
213                         p = &parent->rb_right;
214                 else
215                         p = &parent->rb_left;
216         }
217         rb_link_node(&cl->el_node, parent, p);
218         rb_insert_color(&cl->el_node, &cl->sched->eligible);
219 }
220
221 static inline void
222 eltree_remove(struct hfsc_class *cl)
223 {
224         rb_erase(&cl->el_node, &cl->sched->eligible);
225 }
226
227 static inline void
228 eltree_update(struct hfsc_class *cl)
229 {
230         eltree_remove(cl);
231         eltree_insert(cl);
232 }
233
234 /* find the class with the minimum deadline among the eligible classes */
235 static inline struct hfsc_class *
236 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
237 {
238         struct hfsc_class *p, *cl = NULL;
239         struct rb_node *n;
240
241         for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
242                 p = rb_entry(n, struct hfsc_class, el_node);
243                 if (p->cl_e > cur_time)
244                         break;
245                 if (cl == NULL || p->cl_d < cl->cl_d)
246                         cl = p;
247         }
248         return cl;
249 }
250
251 /* find the class with minimum eligible time among the eligible classes */
252 static inline struct hfsc_class *
253 eltree_get_minel(struct hfsc_sched *q)
254 {
255         struct rb_node *n;
256
257         n = rb_first(&q->eligible);
258         if (n == NULL)
259                 return NULL;
260         return rb_entry(n, struct hfsc_class, el_node);
261 }
262
263 /*
264  * vttree holds holds backlogged child classes being sorted by their virtual
265  * time. each intermediate class has one vttree.
266  */
267 static void
268 vttree_insert(struct hfsc_class *cl)
269 {
270         struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
271         struct rb_node *parent = NULL;
272         struct hfsc_class *cl1;
273
274         while (*p != NULL) {
275                 parent = *p;
276                 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
277                 if (cl->cl_vt >= cl1->cl_vt)
278                         p = &parent->rb_right;
279                 else
280                         p = &parent->rb_left;
281         }
282         rb_link_node(&cl->vt_node, parent, p);
283         rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
284 }
285
286 static inline void
287 vttree_remove(struct hfsc_class *cl)
288 {
289         rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
290 }
291
292 static inline void
293 vttree_update(struct hfsc_class *cl)
294 {
295         vttree_remove(cl);
296         vttree_insert(cl);
297 }
298
299 static inline struct hfsc_class *
300 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
301 {
302         struct hfsc_class *p;
303         struct rb_node *n;
304
305         for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
306                 p = rb_entry(n, struct hfsc_class, vt_node);
307                 if (p->cl_f <= cur_time)
308                         return p;
309         }
310         return NULL;
311 }
312
313 /*
314  * get the leaf class with the minimum vt in the hierarchy
315  */
316 static struct hfsc_class *
317 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
318 {
319         /* if root-class's cfmin is bigger than cur_time nothing to do */
320         if (cl->cl_cfmin > cur_time)
321                 return NULL;
322
323         while (cl->level > 0) {
324                 cl = vttree_firstfit(cl, cur_time);
325                 if (cl == NULL)
326                         return NULL;
327                 /*
328                  * update parent's cl_cvtmin.
329                  */
330                 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
331                         cl->cl_parent->cl_cvtmin = cl->cl_vt;
332         }
333         return cl;
334 }
335
336 static void
337 cftree_insert(struct hfsc_class *cl)
338 {
339         struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
340         struct rb_node *parent = NULL;
341         struct hfsc_class *cl1;
342
343         while (*p != NULL) {
344                 parent = *p;
345                 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
346                 if (cl->cl_f >= cl1->cl_f)
347                         p = &parent->rb_right;
348                 else
349                         p = &parent->rb_left;
350         }
351         rb_link_node(&cl->cf_node, parent, p);
352         rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
353 }
354
355 static inline void
356 cftree_remove(struct hfsc_class *cl)
357 {
358         rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
359 }
360
361 static inline void
362 cftree_update(struct hfsc_class *cl)
363 {
364         cftree_remove(cl);
365         cftree_insert(cl);
366 }
367
368 /*
369  * service curve support functions
370  *
371  *  external service curve parameters
372  *      m: bps
373  *      d: us
374  *  internal service curve parameters
375  *      sm: (bytes/psched_us) << SM_SHIFT
376  *      ism: (psched_us/byte) << ISM_SHIFT
377  *      dx: psched_us
378  *
379  * The clock source resolution with ktime is 1.024us.
380  *
381  * sm and ism are scaled in order to keep effective digits.
382  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
383  * digits in decimal using the following table.
384  *
385  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
386  *  ------------+-------------------------------------------------------
387  *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
388  *
389  *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
390  */
391 #define SM_SHIFT        20
392 #define ISM_SHIFT       18
393
394 #define SM_MASK         ((1ULL << SM_SHIFT) - 1)
395 #define ISM_MASK        ((1ULL << ISM_SHIFT) - 1)
396
397 static inline u64
398 seg_x2y(u64 x, u64 sm)
399 {
400         u64 y;
401
402         /*
403          * compute
404          *      y = x * sm >> SM_SHIFT
405          * but divide it for the upper and lower bits to avoid overflow
406          */
407         y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
408         return y;
409 }
410
411 static inline u64
412 seg_y2x(u64 y, u64 ism)
413 {
414         u64 x;
415
416         if (y == 0)
417                 x = 0;
418         else if (ism == HT_INFINITY)
419                 x = HT_INFINITY;
420         else {
421                 x = (y >> ISM_SHIFT) * ism
422                     + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
423         }
424         return x;
425 }
426
427 /* Convert m (bps) into sm (bytes/psched us) */
428 static u64
429 m2sm(u32 m)
430 {
431         u64 sm;
432
433         sm = ((u64)m << SM_SHIFT);
434         sm += PSCHED_TICKS_PER_SEC - 1;
435         do_div(sm, PSCHED_TICKS_PER_SEC);
436         return sm;
437 }
438
439 /* convert m (bps) into ism (psched us/byte) */
440 static u64
441 m2ism(u32 m)
442 {
443         u64 ism;
444
445         if (m == 0)
446                 ism = HT_INFINITY;
447         else {
448                 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
449                 ism += m - 1;
450                 do_div(ism, m);
451         }
452         return ism;
453 }
454
455 /* convert d (us) into dx (psched us) */
456 static u64
457 d2dx(u32 d)
458 {
459         u64 dx;
460
461         dx = ((u64)d * PSCHED_TICKS_PER_SEC);
462         dx += USEC_PER_SEC - 1;
463         do_div(dx, USEC_PER_SEC);
464         return dx;
465 }
466
467 /* convert sm (bytes/psched us) into m (bps) */
468 static u32
469 sm2m(u64 sm)
470 {
471         u64 m;
472
473         m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
474         return (u32)m;
475 }
476
477 /* convert dx (psched us) into d (us) */
478 static u32
479 dx2d(u64 dx)
480 {
481         u64 d;
482
483         d = dx * USEC_PER_SEC;
484         do_div(d, PSCHED_TICKS_PER_SEC);
485         return (u32)d;
486 }
487
488 static void
489 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
490 {
491         isc->sm1  = m2sm(sc->m1);
492         isc->ism1 = m2ism(sc->m1);
493         isc->dx   = d2dx(sc->d);
494         isc->dy   = seg_x2y(isc->dx, isc->sm1);
495         isc->sm2  = m2sm(sc->m2);
496         isc->ism2 = m2ism(sc->m2);
497 }
498
499 /*
500  * initialize the runtime service curve with the given internal
501  * service curve starting at (x, y).
502  */
503 static void
504 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
505 {
506         rtsc->x    = x;
507         rtsc->y    = y;
508         rtsc->sm1  = isc->sm1;
509         rtsc->ism1 = isc->ism1;
510         rtsc->dx   = isc->dx;
511         rtsc->dy   = isc->dy;
512         rtsc->sm2  = isc->sm2;
513         rtsc->ism2 = isc->ism2;
514 }
515
516 /*
517  * calculate the y-projection of the runtime service curve by the
518  * given x-projection value
519  */
520 static u64
521 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
522 {
523         u64 x;
524
525         if (y < rtsc->y)
526                 x = rtsc->x;
527         else if (y <= rtsc->y + rtsc->dy) {
528                 /* x belongs to the 1st segment */
529                 if (rtsc->dy == 0)
530                         x = rtsc->x + rtsc->dx;
531                 else
532                         x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
533         } else {
534                 /* x belongs to the 2nd segment */
535                 x = rtsc->x + rtsc->dx
536                     + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
537         }
538         return x;
539 }
540
541 static u64
542 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
543 {
544         u64 y;
545
546         if (x <= rtsc->x)
547                 y = rtsc->y;
548         else if (x <= rtsc->x + rtsc->dx)
549                 /* y belongs to the 1st segment */
550                 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
551         else
552                 /* y belongs to the 2nd segment */
553                 y = rtsc->y + rtsc->dy
554                     + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
555         return y;
556 }
557
558 /*
559  * update the runtime service curve by taking the minimum of the current
560  * runtime service curve and the service curve starting at (x, y).
561  */
562 static void
563 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
564 {
565         u64 y1, y2, dx, dy;
566         u32 dsm;
567
568         if (isc->sm1 <= isc->sm2) {
569                 /* service curve is convex */
570                 y1 = rtsc_x2y(rtsc, x);
571                 if (y1 < y)
572                         /* the current rtsc is smaller */
573                         return;
574                 rtsc->x = x;
575                 rtsc->y = y;
576                 return;
577         }
578
579         /*
580          * service curve is concave
581          * compute the two y values of the current rtsc
582          *      y1: at x
583          *      y2: at (x + dx)
584          */
585         y1 = rtsc_x2y(rtsc, x);
586         if (y1 <= y) {
587                 /* rtsc is below isc, no change to rtsc */
588                 return;
589         }
590
591         y2 = rtsc_x2y(rtsc, x + isc->dx);
592         if (y2 >= y + isc->dy) {
593                 /* rtsc is above isc, replace rtsc by isc */
594                 rtsc->x = x;
595                 rtsc->y = y;
596                 rtsc->dx = isc->dx;
597                 rtsc->dy = isc->dy;
598                 return;
599         }
600
601         /*
602          * the two curves intersect
603          * compute the offsets (dx, dy) using the reverse
604          * function of seg_x2y()
605          *      seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
606          */
607         dx = (y1 - y) << SM_SHIFT;
608         dsm = isc->sm1 - isc->sm2;
609         do_div(dx, dsm);
610         /*
611          * check if (x, y1) belongs to the 1st segment of rtsc.
612          * if so, add the offset.
613          */
614         if (rtsc->x + rtsc->dx > x)
615                 dx += rtsc->x + rtsc->dx - x;
616         dy = seg_x2y(dx, isc->sm1);
617
618         rtsc->x = x;
619         rtsc->y = y;
620         rtsc->dx = dx;
621         rtsc->dy = dy;
622         return;
623 }
624
625 static void
626 init_ed(struct hfsc_class *cl, unsigned int next_len)
627 {
628         u64 cur_time = psched_get_time();
629
630         /* update the deadline curve */
631         rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
632
633         /*
634          * update the eligible curve.
635          * for concave, it is equal to the deadline curve.
636          * for convex, it is a linear curve with slope m2.
637          */
638         cl->cl_eligible = cl->cl_deadline;
639         if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
640                 cl->cl_eligible.dx = 0;
641                 cl->cl_eligible.dy = 0;
642         }
643
644         /* compute e and d */
645         cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
646         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
647
648         eltree_insert(cl);
649 }
650
651 static void
652 update_ed(struct hfsc_class *cl, unsigned int next_len)
653 {
654         cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
655         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
656
657         eltree_update(cl);
658 }
659
660 static inline void
661 update_d(struct hfsc_class *cl, unsigned int next_len)
662 {
663         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
664 }
665
666 static inline void
667 update_cfmin(struct hfsc_class *cl)
668 {
669         struct rb_node *n = rb_first(&cl->cf_tree);
670         struct hfsc_class *p;
671
672         if (n == NULL) {
673                 cl->cl_cfmin = 0;
674                 return;
675         }
676         p = rb_entry(n, struct hfsc_class, cf_node);
677         cl->cl_cfmin = p->cl_f;
678 }
679
680 static void
681 init_vf(struct hfsc_class *cl, unsigned int len)
682 {
683         struct hfsc_class *max_cl;
684         struct rb_node *n;
685         u64 vt, f, cur_time;
686         int go_active;
687
688         cur_time = 0;
689         go_active = 1;
690         for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
691                 if (go_active && cl->cl_nactive++ == 0)
692                         go_active = 1;
693                 else
694                         go_active = 0;
695
696                 if (go_active) {
697                         n = rb_last(&cl->cl_parent->vt_tree);
698                         if (n != NULL) {
699                                 max_cl = rb_entry(n, struct hfsc_class,vt_node);
700                                 /*
701                                  * set vt to the average of the min and max
702                                  * classes.  if the parent's period didn't
703                                  * change, don't decrease vt of the class.
704                                  */
705                                 vt = max_cl->cl_vt;
706                                 if (cl->cl_parent->cl_cvtmin != 0)
707                                         vt = (cl->cl_parent->cl_cvtmin + vt)/2;
708
709                                 if (cl->cl_parent->cl_vtperiod !=
710                                     cl->cl_parentperiod || vt > cl->cl_vt)
711                                         cl->cl_vt = vt;
712                         } else {
713                                 /*
714                                  * first child for a new parent backlog period.
715                                  * add parent's cvtmax to cvtoff to make a new
716                                  * vt (vtoff + vt) larger than the vt in the
717                                  * last period for all children.
718                                  */
719                                 vt = cl->cl_parent->cl_cvtmax;
720                                 cl->cl_parent->cl_cvtoff += vt;
721                                 cl->cl_parent->cl_cvtmax = 0;
722                                 cl->cl_parent->cl_cvtmin = 0;
723                                 cl->cl_vt = 0;
724                         }
725
726                         cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
727                                                         cl->cl_pcvtoff;
728
729                         /* update the virtual curve */
730                         vt = cl->cl_vt + cl->cl_vtoff;
731                         rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
732                                                       cl->cl_total);
733                         if (cl->cl_virtual.x == vt) {
734                                 cl->cl_virtual.x -= cl->cl_vtoff;
735                                 cl->cl_vtoff = 0;
736                         }
737                         cl->cl_vtadj = 0;
738
739                         cl->cl_vtperiod++;  /* increment vt period */
740                         cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
741                         if (cl->cl_parent->cl_nactive == 0)
742                                 cl->cl_parentperiod++;
743                         cl->cl_f = 0;
744
745                         vttree_insert(cl);
746                         cftree_insert(cl);
747
748                         if (cl->cl_flags & HFSC_USC) {
749                                 /* class has upper limit curve */
750                                 if (cur_time == 0)
751                                         cur_time = psched_get_time();
752
753                                 /* update the ulimit curve */
754                                 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
755                                          cl->cl_total);
756                                 /* compute myf */
757                                 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
758                                                       cl->cl_total);
759                                 cl->cl_myfadj = 0;
760                         }
761                 }
762
763                 f = max(cl->cl_myf, cl->cl_cfmin);
764                 if (f != cl->cl_f) {
765                         cl->cl_f = f;
766                         cftree_update(cl);
767                         update_cfmin(cl->cl_parent);
768                 }
769         }
770 }
771
772 static void
773 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
774 {
775         u64 f; /* , myf_bound, delta; */
776         int go_passive = 0;
777
778         if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
779                 go_passive = 1;
780
781         for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
782                 cl->cl_total += len;
783
784                 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
785                         continue;
786
787                 if (go_passive && --cl->cl_nactive == 0)
788                         go_passive = 1;
789                 else
790                         go_passive = 0;
791
792                 if (go_passive) {
793                         /* no more active child, going passive */
794
795                         /* update cvtmax of the parent class */
796                         if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
797                                 cl->cl_parent->cl_cvtmax = cl->cl_vt;
798
799                         /* remove this class from the vt tree */
800                         vttree_remove(cl);
801
802                         cftree_remove(cl);
803                         update_cfmin(cl->cl_parent);
804
805                         continue;
806                 }
807
808                 /*
809                  * update vt and f
810                  */
811                 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
812                             - cl->cl_vtoff + cl->cl_vtadj;
813
814                 /*
815                  * if vt of the class is smaller than cvtmin,
816                  * the class was skipped in the past due to non-fit.
817                  * if so, we need to adjust vtadj.
818                  */
819                 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
820                         cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
821                         cl->cl_vt = cl->cl_parent->cl_cvtmin;
822                 }
823
824                 /* update the vt tree */
825                 vttree_update(cl);
826
827                 if (cl->cl_flags & HFSC_USC) {
828                         cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
829                                                               cl->cl_total);
830 #if 0
831                         /*
832                          * This code causes classes to stay way under their
833                          * limit when multiple classes are used at gigabit
834                          * speed. needs investigation. -kaber
835                          */
836                         /*
837                          * if myf lags behind by more than one clock tick
838                          * from the current time, adjust myfadj to prevent
839                          * a rate-limited class from going greedy.
840                          * in a steady state under rate-limiting, myf
841                          * fluctuates within one clock tick.
842                          */
843                         myf_bound = cur_time - PSCHED_JIFFIE2US(1);
844                         if (cl->cl_myf < myf_bound) {
845                                 delta = cur_time - cl->cl_myf;
846                                 cl->cl_myfadj += delta;
847                                 cl->cl_myf += delta;
848                         }
849 #endif
850                 }
851
852                 f = max(cl->cl_myf, cl->cl_cfmin);
853                 if (f != cl->cl_f) {
854                         cl->cl_f = f;
855                         cftree_update(cl);
856                         update_cfmin(cl->cl_parent);
857                 }
858         }
859 }
860
861 static void
862 set_active(struct hfsc_class *cl, unsigned int len)
863 {
864         if (cl->cl_flags & HFSC_RSC)
865                 init_ed(cl, len);
866         if (cl->cl_flags & HFSC_FSC)
867                 init_vf(cl, len);
868
869         list_add_tail(&cl->dlist, &cl->sched->droplist);
870 }
871
872 static void
873 set_passive(struct hfsc_class *cl)
874 {
875         if (cl->cl_flags & HFSC_RSC)
876                 eltree_remove(cl);
877
878         list_del(&cl->dlist);
879
880         /*
881          * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
882          * needs to be called explicitly to remove a class from vttree.
883          */
884 }
885
886 /*
887  * hack to get length of first packet in queue.
888  */
889 static unsigned int
890 qdisc_peek_len(struct Qdisc *sch)
891 {
892         struct sk_buff *skb;
893         unsigned int len;
894
895         skb = sch->dequeue(sch);
896         if (skb == NULL) {
897                 if (net_ratelimit())
898                         printk("qdisc_peek_len: non work-conserving qdisc ?\n");
899                 return 0;
900         }
901         len = skb->len;
902         if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
903                 if (net_ratelimit())
904                         printk("qdisc_peek_len: failed to requeue\n");
905                 qdisc_tree_decrease_qlen(sch, 1);
906                 return 0;
907         }
908         return len;
909 }
910
911 static void
912 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
913 {
914         unsigned int len = cl->qdisc->q.qlen;
915
916         qdisc_reset(cl->qdisc);
917         qdisc_tree_decrease_qlen(cl->qdisc, len);
918 }
919
920 static void
921 hfsc_adjust_levels(struct hfsc_class *cl)
922 {
923         struct hfsc_class *p;
924         unsigned int level;
925
926         do {
927                 level = 0;
928                 list_for_each_entry(p, &cl->children, siblings) {
929                         if (p->level >= level)
930                                 level = p->level + 1;
931                 }
932                 cl->level = level;
933         } while ((cl = cl->cl_parent) != NULL);
934 }
935
936 static inline unsigned int
937 hfsc_hash(u32 h)
938 {
939         h ^= h >> 8;
940         h ^= h >> 4;
941
942         return h & (HFSC_HSIZE - 1);
943 }
944
945 static inline struct hfsc_class *
946 hfsc_find_class(u32 classid, struct Qdisc *sch)
947 {
948         struct hfsc_sched *q = qdisc_priv(sch);
949         struct hfsc_class *cl;
950
951         list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
952                 if (cl->classid == classid)
953                         return cl;
954         }
955         return NULL;
956 }
957
958 static void
959 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
960                 u64 cur_time)
961 {
962         sc2isc(rsc, &cl->cl_rsc);
963         rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
964         cl->cl_eligible = cl->cl_deadline;
965         if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
966                 cl->cl_eligible.dx = 0;
967                 cl->cl_eligible.dy = 0;
968         }
969         cl->cl_flags |= HFSC_RSC;
970 }
971
972 static void
973 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
974 {
975         sc2isc(fsc, &cl->cl_fsc);
976         rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
977         cl->cl_flags |= HFSC_FSC;
978 }
979
980 static void
981 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
982                 u64 cur_time)
983 {
984         sc2isc(usc, &cl->cl_usc);
985         rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
986         cl->cl_flags |= HFSC_USC;
987 }
988
989 static int
990 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
991                   struct rtattr **tca, unsigned long *arg)
992 {
993         struct hfsc_sched *q = qdisc_priv(sch);
994         struct hfsc_class *cl = (struct hfsc_class *)*arg;
995         struct hfsc_class *parent = NULL;
996         struct rtattr *opt = tca[TCA_OPTIONS-1];
997         struct rtattr *tb[TCA_HFSC_MAX];
998         struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
999         u64 cur_time;
1000
1001         if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt))
1002                 return -EINVAL;
1003
1004         if (tb[TCA_HFSC_RSC-1]) {
1005                 if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc))
1006                         return -EINVAL;
1007                 rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]);
1008                 if (rsc->m1 == 0 && rsc->m2 == 0)
1009                         rsc = NULL;
1010         }
1011
1012         if (tb[TCA_HFSC_FSC-1]) {
1013                 if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc))
1014                         return -EINVAL;
1015                 fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]);
1016                 if (fsc->m1 == 0 && fsc->m2 == 0)
1017                         fsc = NULL;
1018         }
1019
1020         if (tb[TCA_HFSC_USC-1]) {
1021                 if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc))
1022                         return -EINVAL;
1023                 usc = RTA_DATA(tb[TCA_HFSC_USC-1]);
1024                 if (usc->m1 == 0 && usc->m2 == 0)
1025                         usc = NULL;
1026         }
1027
1028         if (cl != NULL) {
1029                 if (parentid) {
1030                         if (cl->cl_parent && cl->cl_parent->classid != parentid)
1031                                 return -EINVAL;
1032                         if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1033                                 return -EINVAL;
1034                 }
1035                 cur_time = psched_get_time();
1036
1037                 sch_tree_lock(sch);
1038                 if (rsc != NULL)
1039                         hfsc_change_rsc(cl, rsc, cur_time);
1040                 if (fsc != NULL)
1041                         hfsc_change_fsc(cl, fsc);
1042                 if (usc != NULL)
1043                         hfsc_change_usc(cl, usc, cur_time);
1044
1045                 if (cl->qdisc->q.qlen != 0) {
1046                         if (cl->cl_flags & HFSC_RSC)
1047                                 update_ed(cl, qdisc_peek_len(cl->qdisc));
1048                         if (cl->cl_flags & HFSC_FSC)
1049                                 update_vf(cl, 0, cur_time);
1050                 }
1051                 sch_tree_unlock(sch);
1052
1053                 if (tca[TCA_RATE-1])
1054                         gen_replace_estimator(&cl->bstats, &cl->rate_est,
1055                                               &sch->dev->queue_lock,
1056                                               tca[TCA_RATE-1]);
1057                 return 0;
1058         }
1059
1060         if (parentid == TC_H_ROOT)
1061                 return -EEXIST;
1062
1063         parent = &q->root;
1064         if (parentid) {
1065                 parent = hfsc_find_class(parentid, sch);
1066                 if (parent == NULL)
1067                         return -ENOENT;
1068         }
1069
1070         if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1071                 return -EINVAL;
1072         if (hfsc_find_class(classid, sch))
1073                 return -EEXIST;
1074
1075         if (rsc == NULL && fsc == NULL)
1076                 return -EINVAL;
1077
1078         cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1079         if (cl == NULL)
1080                 return -ENOBUFS;
1081
1082         if (rsc != NULL)
1083                 hfsc_change_rsc(cl, rsc, 0);
1084         if (fsc != NULL)
1085                 hfsc_change_fsc(cl, fsc);
1086         if (usc != NULL)
1087                 hfsc_change_usc(cl, usc, 0);
1088
1089         cl->refcnt    = 1;
1090         cl->classid   = classid;
1091         cl->sched     = q;
1092         cl->cl_parent = parent;
1093         cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, classid);
1094         if (cl->qdisc == NULL)
1095                 cl->qdisc = &noop_qdisc;
1096         INIT_LIST_HEAD(&cl->children);
1097         cl->vt_tree = RB_ROOT;
1098         cl->cf_tree = RB_ROOT;
1099
1100         sch_tree_lock(sch);
1101         list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1102         list_add_tail(&cl->siblings, &parent->children);
1103         if (parent->level == 0)
1104                 hfsc_purge_queue(sch, parent);
1105         hfsc_adjust_levels(parent);
1106         cl->cl_pcvtoff = parent->cl_cvtoff;
1107         sch_tree_unlock(sch);
1108
1109         if (tca[TCA_RATE-1])
1110                 gen_new_estimator(&cl->bstats, &cl->rate_est,
1111                                   &sch->dev->queue_lock, tca[TCA_RATE-1]);
1112         *arg = (unsigned long)cl;
1113         return 0;
1114 }
1115
1116 static void
1117 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1118 {
1119         struct hfsc_sched *q = qdisc_priv(sch);
1120
1121         tcf_destroy_chain(cl->filter_list);
1122         qdisc_destroy(cl->qdisc);
1123         gen_kill_estimator(&cl->bstats, &cl->rate_est);
1124         if (cl != &q->root)
1125                 kfree(cl);
1126 }
1127
1128 static int
1129 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1130 {
1131         struct hfsc_sched *q = qdisc_priv(sch);
1132         struct hfsc_class *cl = (struct hfsc_class *)arg;
1133
1134         if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1135                 return -EBUSY;
1136
1137         sch_tree_lock(sch);
1138
1139         list_del(&cl->siblings);
1140         hfsc_adjust_levels(cl->cl_parent);
1141
1142         hfsc_purge_queue(sch, cl);
1143         list_del(&cl->hlist);
1144
1145         if (--cl->refcnt == 0)
1146                 hfsc_destroy_class(sch, cl);
1147
1148         sch_tree_unlock(sch);
1149         return 0;
1150 }
1151
1152 static struct hfsc_class *
1153 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1154 {
1155         struct hfsc_sched *q = qdisc_priv(sch);
1156         struct hfsc_class *cl;
1157         struct tcf_result res;
1158         struct tcf_proto *tcf;
1159         int result;
1160
1161         if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1162             (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1163                 if (cl->level == 0)
1164                         return cl;
1165
1166         *qerr = NET_XMIT_BYPASS;
1167         tcf = q->root.filter_list;
1168         while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1169 #ifdef CONFIG_NET_CLS_ACT
1170                 switch (result) {
1171                 case TC_ACT_QUEUED:
1172                 case TC_ACT_STOLEN:
1173                         *qerr = NET_XMIT_SUCCESS;
1174                 case TC_ACT_SHOT:
1175                         return NULL;
1176                 }
1177 #elif defined(CONFIG_NET_CLS_POLICE)
1178                 if (result == TC_POLICE_SHOT)
1179                         return NULL;
1180 #endif
1181                 if ((cl = (struct hfsc_class *)res.class) == NULL) {
1182                         if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1183                                 break; /* filter selected invalid classid */
1184                 }
1185
1186                 if (cl->level == 0)
1187                         return cl; /* hit leaf class */
1188
1189                 /* apply inner filter chain */
1190                 tcf = cl->filter_list;
1191         }
1192
1193         /* classification failed, try default class */
1194         cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1195         if (cl == NULL || cl->level > 0)
1196                 return NULL;
1197
1198         return cl;
1199 }
1200
1201 static int
1202 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1203                  struct Qdisc **old)
1204 {
1205         struct hfsc_class *cl = (struct hfsc_class *)arg;
1206
1207         if (cl == NULL)
1208                 return -ENOENT;
1209         if (cl->level > 0)
1210                 return -EINVAL;
1211         if (new == NULL) {
1212                 new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1213                                         cl->classid);
1214                 if (new == NULL)
1215                         new = &noop_qdisc;
1216         }
1217
1218         sch_tree_lock(sch);
1219         hfsc_purge_queue(sch, cl);
1220         *old = xchg(&cl->qdisc, new);
1221         sch_tree_unlock(sch);
1222         return 0;
1223 }
1224
1225 static struct Qdisc *
1226 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1227 {
1228         struct hfsc_class *cl = (struct hfsc_class *)arg;
1229
1230         if (cl != NULL && cl->level == 0)
1231                 return cl->qdisc;
1232
1233         return NULL;
1234 }
1235
1236 static void
1237 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1238 {
1239         struct hfsc_class *cl = (struct hfsc_class *)arg;
1240
1241         if (cl->qdisc->q.qlen == 0) {
1242                 update_vf(cl, 0, 0);
1243                 set_passive(cl);
1244         }
1245 }
1246
1247 static unsigned long
1248 hfsc_get_class(struct Qdisc *sch, u32 classid)
1249 {
1250         struct hfsc_class *cl = hfsc_find_class(classid, sch);
1251
1252         if (cl != NULL)
1253                 cl->refcnt++;
1254
1255         return (unsigned long)cl;
1256 }
1257
1258 static void
1259 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1260 {
1261         struct hfsc_class *cl = (struct hfsc_class *)arg;
1262
1263         if (--cl->refcnt == 0)
1264                 hfsc_destroy_class(sch, cl);
1265 }
1266
1267 static unsigned long
1268 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1269 {
1270         struct hfsc_class *p = (struct hfsc_class *)parent;
1271         struct hfsc_class *cl = hfsc_find_class(classid, sch);
1272
1273         if (cl != NULL) {
1274                 if (p != NULL && p->level <= cl->level)
1275                         return 0;
1276                 cl->filter_cnt++;
1277         }
1278
1279         return (unsigned long)cl;
1280 }
1281
1282 static void
1283 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1284 {
1285         struct hfsc_class *cl = (struct hfsc_class *)arg;
1286
1287         cl->filter_cnt--;
1288 }
1289
1290 static struct tcf_proto **
1291 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1292 {
1293         struct hfsc_sched *q = qdisc_priv(sch);
1294         struct hfsc_class *cl = (struct hfsc_class *)arg;
1295
1296         if (cl == NULL)
1297                 cl = &q->root;
1298
1299         return &cl->filter_list;
1300 }
1301
1302 static int
1303 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1304 {
1305         struct tc_service_curve tsc;
1306
1307         tsc.m1 = sm2m(sc->sm1);
1308         tsc.d  = dx2d(sc->dx);
1309         tsc.m2 = sm2m(sc->sm2);
1310         RTA_PUT(skb, attr, sizeof(tsc), &tsc);
1311
1312         return skb->len;
1313
1314  rtattr_failure:
1315         return -1;
1316 }
1317
1318 static inline int
1319 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1320 {
1321         if ((cl->cl_flags & HFSC_RSC) &&
1322             (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1323                 goto rtattr_failure;
1324
1325         if ((cl->cl_flags & HFSC_FSC) &&
1326             (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1327                 goto rtattr_failure;
1328
1329         if ((cl->cl_flags & HFSC_USC) &&
1330             (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1331                 goto rtattr_failure;
1332
1333         return skb->len;
1334
1335  rtattr_failure:
1336         return -1;
1337 }
1338
1339 static int
1340 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1341                 struct tcmsg *tcm)
1342 {
1343         struct hfsc_class *cl = (struct hfsc_class *)arg;
1344         unsigned char *b = skb_tail_pointer(skb);
1345         struct rtattr *rta = (struct rtattr *)b;
1346
1347         tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1348         tcm->tcm_handle = cl->classid;
1349         if (cl->level == 0)
1350                 tcm->tcm_info = cl->qdisc->handle;
1351
1352         RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
1353         if (hfsc_dump_curves(skb, cl) < 0)
1354                 goto rtattr_failure;
1355         rta->rta_len = skb_tail_pointer(skb) - b;
1356         return skb->len;
1357
1358  rtattr_failure:
1359         nlmsg_trim(skb, b);
1360         return -1;
1361 }
1362
1363 static int
1364 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1365         struct gnet_dump *d)
1366 {
1367         struct hfsc_class *cl = (struct hfsc_class *)arg;
1368         struct tc_hfsc_stats xstats;
1369
1370         cl->qstats.qlen = cl->qdisc->q.qlen;
1371         xstats.level   = cl->level;
1372         xstats.period  = cl->cl_vtperiod;
1373         xstats.work    = cl->cl_total;
1374         xstats.rtwork  = cl->cl_cumul;
1375
1376         if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1377             gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1378             gnet_stats_copy_queue(d, &cl->qstats) < 0)
1379                 return -1;
1380
1381         return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1382 }
1383
1384
1385
1386 static void
1387 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1388 {
1389         struct hfsc_sched *q = qdisc_priv(sch);
1390         struct hfsc_class *cl;
1391         unsigned int i;
1392
1393         if (arg->stop)
1394                 return;
1395
1396         for (i = 0; i < HFSC_HSIZE; i++) {
1397                 list_for_each_entry(cl, &q->clhash[i], hlist) {
1398                         if (arg->count < arg->skip) {
1399                                 arg->count++;
1400                                 continue;
1401                         }
1402                         if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1403                                 arg->stop = 1;
1404                                 return;
1405                         }
1406                         arg->count++;
1407                 }
1408         }
1409 }
1410
1411 static void
1412 hfsc_schedule_watchdog(struct Qdisc *sch)
1413 {
1414         struct hfsc_sched *q = qdisc_priv(sch);
1415         struct hfsc_class *cl;
1416         u64 next_time = 0;
1417
1418         if ((cl = eltree_get_minel(q)) != NULL)
1419                 next_time = cl->cl_e;
1420         if (q->root.cl_cfmin != 0) {
1421                 if (next_time == 0 || next_time > q->root.cl_cfmin)
1422                         next_time = q->root.cl_cfmin;
1423         }
1424         WARN_ON(next_time == 0);
1425         qdisc_watchdog_schedule(&q->watchdog, next_time);
1426 }
1427
1428 static int
1429 hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt)
1430 {
1431         struct hfsc_sched *q = qdisc_priv(sch);
1432         struct tc_hfsc_qopt *qopt;
1433         unsigned int i;
1434
1435         if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1436                 return -EINVAL;
1437         qopt = RTA_DATA(opt);
1438
1439         q->defcls = qopt->defcls;
1440         for (i = 0; i < HFSC_HSIZE; i++)
1441                 INIT_LIST_HEAD(&q->clhash[i]);
1442         q->eligible = RB_ROOT;
1443         INIT_LIST_HEAD(&q->droplist);
1444         skb_queue_head_init(&q->requeue);
1445
1446         q->root.refcnt  = 1;
1447         q->root.classid = sch->handle;
1448         q->root.sched   = q;
1449         q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1450                                           sch->handle);
1451         if (q->root.qdisc == NULL)
1452                 q->root.qdisc = &noop_qdisc;
1453         INIT_LIST_HEAD(&q->root.children);
1454         q->root.vt_tree = RB_ROOT;
1455         q->root.cf_tree = RB_ROOT;
1456
1457         list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1458
1459         qdisc_watchdog_init(&q->watchdog, sch);
1460
1461         return 0;
1462 }
1463
1464 static int
1465 hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt)
1466 {
1467         struct hfsc_sched *q = qdisc_priv(sch);
1468         struct tc_hfsc_qopt *qopt;
1469
1470         if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1471                 return -EINVAL;
1472         qopt = RTA_DATA(opt);
1473
1474         sch_tree_lock(sch);
1475         q->defcls = qopt->defcls;
1476         sch_tree_unlock(sch);
1477
1478         return 0;
1479 }
1480
1481 static void
1482 hfsc_reset_class(struct hfsc_class *cl)
1483 {
1484         cl->cl_total        = 0;
1485         cl->cl_cumul        = 0;
1486         cl->cl_d            = 0;
1487         cl->cl_e            = 0;
1488         cl->cl_vt           = 0;
1489         cl->cl_vtadj        = 0;
1490         cl->cl_vtoff        = 0;
1491         cl->cl_cvtmin       = 0;
1492         cl->cl_cvtmax       = 0;
1493         cl->cl_cvtoff       = 0;
1494         cl->cl_pcvtoff      = 0;
1495         cl->cl_vtperiod     = 0;
1496         cl->cl_parentperiod = 0;
1497         cl->cl_f            = 0;
1498         cl->cl_myf          = 0;
1499         cl->cl_myfadj       = 0;
1500         cl->cl_cfmin        = 0;
1501         cl->cl_nactive      = 0;
1502
1503         cl->vt_tree = RB_ROOT;
1504         cl->cf_tree = RB_ROOT;
1505         qdisc_reset(cl->qdisc);
1506
1507         if (cl->cl_flags & HFSC_RSC)
1508                 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1509         if (cl->cl_flags & HFSC_FSC)
1510                 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1511         if (cl->cl_flags & HFSC_USC)
1512                 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1513 }
1514
1515 static void
1516 hfsc_reset_qdisc(struct Qdisc *sch)
1517 {
1518         struct hfsc_sched *q = qdisc_priv(sch);
1519         struct hfsc_class *cl;
1520         unsigned int i;
1521
1522         for (i = 0; i < HFSC_HSIZE; i++) {
1523                 list_for_each_entry(cl, &q->clhash[i], hlist)
1524                         hfsc_reset_class(cl);
1525         }
1526         __skb_queue_purge(&q->requeue);
1527         q->eligible = RB_ROOT;
1528         INIT_LIST_HEAD(&q->droplist);
1529         qdisc_watchdog_cancel(&q->watchdog);
1530         sch->q.qlen = 0;
1531 }
1532
1533 static void
1534 hfsc_destroy_qdisc(struct Qdisc *sch)
1535 {
1536         struct hfsc_sched *q = qdisc_priv(sch);
1537         struct hfsc_class *cl, *next;
1538         unsigned int i;
1539
1540         for (i = 0; i < HFSC_HSIZE; i++) {
1541                 list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1542                         hfsc_destroy_class(sch, cl);
1543         }
1544         __skb_queue_purge(&q->requeue);
1545         qdisc_watchdog_cancel(&q->watchdog);
1546 }
1547
1548 static int
1549 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1550 {
1551         struct hfsc_sched *q = qdisc_priv(sch);
1552         unsigned char *b = skb_tail_pointer(skb);
1553         struct tc_hfsc_qopt qopt;
1554
1555         qopt.defcls = q->defcls;
1556         RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1557         return skb->len;
1558
1559  rtattr_failure:
1560         nlmsg_trim(skb, b);
1561         return -1;
1562 }
1563
1564 static int
1565 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1566 {
1567         struct hfsc_class *cl;
1568         unsigned int len;
1569         int err;
1570
1571         cl = hfsc_classify(skb, sch, &err);
1572         if (cl == NULL) {
1573                 if (err == NET_XMIT_BYPASS)
1574                         sch->qstats.drops++;
1575                 kfree_skb(skb);
1576                 return err;
1577         }
1578
1579         len = skb->len;
1580         err = cl->qdisc->enqueue(skb, cl->qdisc);
1581         if (unlikely(err != NET_XMIT_SUCCESS)) {
1582                 cl->qstats.drops++;
1583                 sch->qstats.drops++;
1584                 return err;
1585         }
1586
1587         if (cl->qdisc->q.qlen == 1)
1588                 set_active(cl, len);
1589
1590         cl->bstats.packets++;
1591         cl->bstats.bytes += len;
1592         sch->bstats.packets++;
1593         sch->bstats.bytes += len;
1594         sch->q.qlen++;
1595
1596         return NET_XMIT_SUCCESS;
1597 }
1598
1599 static struct sk_buff *
1600 hfsc_dequeue(struct Qdisc *sch)
1601 {
1602         struct hfsc_sched *q = qdisc_priv(sch);
1603         struct hfsc_class *cl;
1604         struct sk_buff *skb;
1605         u64 cur_time;
1606         unsigned int next_len;
1607         int realtime = 0;
1608
1609         if (sch->q.qlen == 0)
1610                 return NULL;
1611         if ((skb = __skb_dequeue(&q->requeue)))
1612                 goto out;
1613
1614         cur_time = psched_get_time();
1615
1616         /*
1617          * if there are eligible classes, use real-time criteria.
1618          * find the class with the minimum deadline among
1619          * the eligible classes.
1620          */
1621         if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1622                 realtime = 1;
1623         } else {
1624                 /*
1625                  * use link-sharing criteria
1626                  * get the class with the minimum vt in the hierarchy
1627                  */
1628                 cl = vttree_get_minvt(&q->root, cur_time);
1629                 if (cl == NULL) {
1630                         sch->qstats.overlimits++;
1631                         hfsc_schedule_watchdog(sch);
1632                         return NULL;
1633                 }
1634         }
1635
1636         skb = cl->qdisc->dequeue(cl->qdisc);
1637         if (skb == NULL) {
1638                 if (net_ratelimit())
1639                         printk("HFSC: Non-work-conserving qdisc ?\n");
1640                 return NULL;
1641         }
1642
1643         update_vf(cl, skb->len, cur_time);
1644         if (realtime)
1645                 cl->cl_cumul += skb->len;
1646
1647         if (cl->qdisc->q.qlen != 0) {
1648                 if (cl->cl_flags & HFSC_RSC) {
1649                         /* update ed */
1650                         next_len = qdisc_peek_len(cl->qdisc);
1651                         if (realtime)
1652                                 update_ed(cl, next_len);
1653                         else
1654                                 update_d(cl, next_len);
1655                 }
1656         } else {
1657                 /* the class becomes passive */
1658                 set_passive(cl);
1659         }
1660
1661  out:
1662         sch->flags &= ~TCQ_F_THROTTLED;
1663         sch->q.qlen--;
1664
1665         return skb;
1666 }
1667
1668 static int
1669 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1670 {
1671         struct hfsc_sched *q = qdisc_priv(sch);
1672
1673         __skb_queue_head(&q->requeue, skb);
1674         sch->q.qlen++;
1675         sch->qstats.requeues++;
1676         return NET_XMIT_SUCCESS;
1677 }
1678
1679 static unsigned int
1680 hfsc_drop(struct Qdisc *sch)
1681 {
1682         struct hfsc_sched *q = qdisc_priv(sch);
1683         struct hfsc_class *cl;
1684         unsigned int len;
1685
1686         list_for_each_entry(cl, &q->droplist, dlist) {
1687                 if (cl->qdisc->ops->drop != NULL &&
1688                     (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1689                         if (cl->qdisc->q.qlen == 0) {
1690                                 update_vf(cl, 0, 0);
1691                                 set_passive(cl);
1692                         } else {
1693                                 list_move_tail(&cl->dlist, &q->droplist);
1694                         }
1695                         cl->qstats.drops++;
1696                         sch->qstats.drops++;
1697                         sch->q.qlen--;
1698                         return len;
1699                 }
1700         }
1701         return 0;
1702 }
1703
1704 static struct Qdisc_class_ops hfsc_class_ops = {
1705         .change         = hfsc_change_class,
1706         .delete         = hfsc_delete_class,
1707         .graft          = hfsc_graft_class,
1708         .leaf           = hfsc_class_leaf,
1709         .qlen_notify    = hfsc_qlen_notify,
1710         .get            = hfsc_get_class,
1711         .put            = hfsc_put_class,
1712         .bind_tcf       = hfsc_bind_tcf,
1713         .unbind_tcf     = hfsc_unbind_tcf,
1714         .tcf_chain      = hfsc_tcf_chain,
1715         .dump           = hfsc_dump_class,
1716         .dump_stats     = hfsc_dump_class_stats,
1717         .walk           = hfsc_walk
1718 };
1719
1720 static struct Qdisc_ops hfsc_qdisc_ops = {
1721         .id             = "hfsc",
1722         .init           = hfsc_init_qdisc,
1723         .change         = hfsc_change_qdisc,
1724         .reset          = hfsc_reset_qdisc,
1725         .destroy        = hfsc_destroy_qdisc,
1726         .dump           = hfsc_dump_qdisc,
1727         .enqueue        = hfsc_enqueue,
1728         .dequeue        = hfsc_dequeue,
1729         .requeue        = hfsc_requeue,
1730         .drop           = hfsc_drop,
1731         .cl_ops         = &hfsc_class_ops,
1732         .priv_size      = sizeof(struct hfsc_sched),
1733         .owner          = THIS_MODULE
1734 };
1735
1736 static int __init
1737 hfsc_init(void)
1738 {
1739         return register_qdisc(&hfsc_qdisc_ops);
1740 }
1741
1742 static void __exit
1743 hfsc_cleanup(void)
1744 {
1745         unregister_qdisc(&hfsc_qdisc_ops);
1746 }
1747
1748 MODULE_LICENSE("GPL");
1749 module_init(hfsc_init);
1750 module_exit(hfsc_cleanup);