]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/ipv6/route.c
[IPV6] NDISC: Take source address into account for redirects.
[net-next-2.6.git] / net / ipv6 / route.c
1 /*
2  *      Linux INET6 implementation
3  *      FIB front-end.
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>     
7  *
8  *      $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 /*      Changes:
17  *
18  *      YOSHIFUJI Hideaki @USAGI
19  *              reworked default router selection.
20  *              - respect outgoing interface
21  *              - select from (probably) reachable routers (i.e.
22  *              routers in REACHABLE, STALE, DELAY or PROBE states).
23  *              - always select the same router if it is (probably)
24  *              reachable.  otherwise, round-robin the list.
25  */
26
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/times.h>
31 #include <linux/socket.h>
32 #include <linux/sockios.h>
33 #include <linux/net.h>
34 #include <linux/route.h>
35 #include <linux/netdevice.h>
36 #include <linux/in6.h>
37 #include <linux/init.h>
38 #include <linux/if_arp.h>
39
40 #ifdef  CONFIG_PROC_FS
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #endif
44
45 #include <net/snmp.h>
46 #include <net/ipv6.h>
47 #include <net/ip6_fib.h>
48 #include <net/ip6_route.h>
49 #include <net/ndisc.h>
50 #include <net/addrconf.h>
51 #include <net/tcp.h>
52 #include <linux/rtnetlink.h>
53 #include <net/dst.h>
54 #include <net/xfrm.h>
55 #include <net/netevent.h>
56 #include <net/netlink.h>
57
58 #include <asm/uaccess.h>
59
60 #ifdef CONFIG_SYSCTL
61 #include <linux/sysctl.h>
62 #endif
63
64 /* Set to 3 to get tracing. */
65 #define RT6_DEBUG 2
66
67 #if RT6_DEBUG >= 3
68 #define RDBG(x) printk x
69 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
70 #else
71 #define RDBG(x)
72 #define RT6_TRACE(x...) do { ; } while (0)
73 #endif
74
75 #define CLONE_OFFLINK_ROUTE 0
76
77 #define RT6_SELECT_F_IFACE      0x1
78 #define RT6_SELECT_F_REACHABLE  0x2
79
80 static int ip6_rt_max_size = 4096;
81 static int ip6_rt_gc_min_interval = HZ / 2;
82 static int ip6_rt_gc_timeout = 60*HZ;
83 int ip6_rt_gc_interval = 30*HZ;
84 static int ip6_rt_gc_elasticity = 9;
85 static int ip6_rt_mtu_expires = 10*60*HZ;
86 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87
88 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
89 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void             ip6_dst_destroy(struct dst_entry *);
92 static void             ip6_dst_ifdown(struct dst_entry *,
93                                        struct net_device *dev, int how);
94 static int               ip6_dst_gc(void);
95
96 static int              ip6_pkt_discard(struct sk_buff *skb);
97 static int              ip6_pkt_discard_out(struct sk_buff *skb);
98 static void             ip6_link_failure(struct sk_buff *skb);
99 static void             ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100
101 #ifdef CONFIG_IPV6_ROUTE_INFO
102 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
103                                            struct in6_addr *gwaddr, int ifindex,
104                                            unsigned pref);
105 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
106                                            struct in6_addr *gwaddr, int ifindex);
107 #endif
108
109 static struct dst_ops ip6_dst_ops = {
110         .family                 =       AF_INET6,
111         .protocol               =       __constant_htons(ETH_P_IPV6),
112         .gc                     =       ip6_dst_gc,
113         .gc_thresh              =       1024,
114         .check                  =       ip6_dst_check,
115         .destroy                =       ip6_dst_destroy,
116         .ifdown                 =       ip6_dst_ifdown,
117         .negative_advice        =       ip6_negative_advice,
118         .link_failure           =       ip6_link_failure,
119         .update_pmtu            =       ip6_rt_update_pmtu,
120         .entry_size             =       sizeof(struct rt6_info),
121 };
122
123 struct rt6_info ip6_null_entry = {
124         .u = {
125                 .dst = {
126                         .__refcnt       = ATOMIC_INIT(1),
127                         .__use          = 1,
128                         .dev            = &loopback_dev,
129                         .obsolete       = -1,
130                         .error          = -ENETUNREACH,
131                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
132                         .input          = ip6_pkt_discard,
133                         .output         = ip6_pkt_discard_out,
134                         .ops            = &ip6_dst_ops,
135                         .path           = (struct dst_entry*)&ip6_null_entry,
136                 }
137         },
138         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
139         .rt6i_metric    = ~(u32) 0,
140         .rt6i_ref       = ATOMIC_INIT(1),
141 };
142
143 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
144
145 struct rt6_info ip6_prohibit_entry = {
146         .u = {
147                 .dst = {
148                         .__refcnt       = ATOMIC_INIT(1),
149                         .__use          = 1,
150                         .dev            = &loopback_dev,
151                         .obsolete       = -1,
152                         .error          = -EACCES,
153                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
154                         .input          = ip6_pkt_discard,
155                         .output         = ip6_pkt_discard_out,
156                         .ops            = &ip6_dst_ops,
157                         .path           = (struct dst_entry*)&ip6_prohibit_entry,
158                 }
159         },
160         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
161         .rt6i_metric    = ~(u32) 0,
162         .rt6i_ref       = ATOMIC_INIT(1),
163 };
164
165 struct rt6_info ip6_blk_hole_entry = {
166         .u = {
167                 .dst = {
168                         .__refcnt       = ATOMIC_INIT(1),
169                         .__use          = 1,
170                         .dev            = &loopback_dev,
171                         .obsolete       = -1,
172                         .error          = -EINVAL,
173                         .metrics        = { [RTAX_HOPLIMIT - 1] = 255, },
174                         .input          = ip6_pkt_discard,
175                         .output         = ip6_pkt_discard_out,
176                         .ops            = &ip6_dst_ops,
177                         .path           = (struct dst_entry*)&ip6_blk_hole_entry,
178                 }
179         },
180         .rt6i_flags     = (RTF_REJECT | RTF_NONEXTHOP),
181         .rt6i_metric    = ~(u32) 0,
182         .rt6i_ref       = ATOMIC_INIT(1),
183 };
184
185 #endif
186
187 /* allocate dst with ip6_dst_ops */
188 static __inline__ struct rt6_info *ip6_dst_alloc(void)
189 {
190         return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
191 }
192
193 static void ip6_dst_destroy(struct dst_entry *dst)
194 {
195         struct rt6_info *rt = (struct rt6_info *)dst;
196         struct inet6_dev *idev = rt->rt6i_idev;
197
198         if (idev != NULL) {
199                 rt->rt6i_idev = NULL;
200                 in6_dev_put(idev);
201         }       
202 }
203
204 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
205                            int how)
206 {
207         struct rt6_info *rt = (struct rt6_info *)dst;
208         struct inet6_dev *idev = rt->rt6i_idev;
209
210         if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
211                 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
212                 if (loopback_idev != NULL) {
213                         rt->rt6i_idev = loopback_idev;
214                         in6_dev_put(idev);
215                 }
216         }
217 }
218
219 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
220 {
221         return (rt->rt6i_flags & RTF_EXPIRES &&
222                 time_after(jiffies, rt->rt6i_expires));
223 }
224
225 static inline int rt6_need_strict(struct in6_addr *daddr)
226 {
227         return (ipv6_addr_type(daddr) &
228                 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
229 }
230
231 /*
232  *      Route lookup. Any table->tb6_lock is implied.
233  */
234
235 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
236                                                     int oif,
237                                                     int strict)
238 {
239         struct rt6_info *local = NULL;
240         struct rt6_info *sprt;
241
242         if (oif) {
243                 for (sprt = rt; sprt; sprt = sprt->u.next) {
244                         struct net_device *dev = sprt->rt6i_dev;
245                         if (dev->ifindex == oif)
246                                 return sprt;
247                         if (dev->flags & IFF_LOOPBACK) {
248                                 if (sprt->rt6i_idev == NULL ||
249                                     sprt->rt6i_idev->dev->ifindex != oif) {
250                                         if (strict && oif)
251                                                 continue;
252                                         if (local && (!oif || 
253                                                       local->rt6i_idev->dev->ifindex == oif))
254                                                 continue;
255                                 }
256                                 local = sprt;
257                         }
258                 }
259
260                 if (local)
261                         return local;
262
263                 if (strict)
264                         return &ip6_null_entry;
265         }
266         return rt;
267 }
268
269 #ifdef CONFIG_IPV6_ROUTER_PREF
270 static void rt6_probe(struct rt6_info *rt)
271 {
272         struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
273         /*
274          * Okay, this does not seem to be appropriate
275          * for now, however, we need to check if it
276          * is really so; aka Router Reachability Probing.
277          *
278          * Router Reachability Probe MUST be rate-limited
279          * to no more than one per minute.
280          */
281         if (!neigh || (neigh->nud_state & NUD_VALID))
282                 return;
283         read_lock_bh(&neigh->lock);
284         if (!(neigh->nud_state & NUD_VALID) &&
285             time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
286                 struct in6_addr mcaddr;
287                 struct in6_addr *target;
288
289                 neigh->updated = jiffies;
290                 read_unlock_bh(&neigh->lock);
291
292                 target = (struct in6_addr *)&neigh->primary_key;
293                 addrconf_addr_solict_mult(target, &mcaddr);
294                 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
295         } else
296                 read_unlock_bh(&neigh->lock);
297 }
298 #else
299 static inline void rt6_probe(struct rt6_info *rt)
300 {
301         return;
302 }
303 #endif
304
305 /*
306  * Default Router Selection (RFC 2461 6.3.6)
307  */
308 static int inline rt6_check_dev(struct rt6_info *rt, int oif)
309 {
310         struct net_device *dev = rt->rt6i_dev;
311         if (!oif || dev->ifindex == oif)
312                 return 2;
313         if ((dev->flags & IFF_LOOPBACK) &&
314             rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
315                 return 1;
316         return 0;
317 }
318
319 static int inline rt6_check_neigh(struct rt6_info *rt)
320 {
321         struct neighbour *neigh = rt->rt6i_nexthop;
322         int m = 0;
323         if (rt->rt6i_flags & RTF_NONEXTHOP ||
324             !(rt->rt6i_flags & RTF_GATEWAY))
325                 m = 1;
326         else if (neigh) {
327                 read_lock_bh(&neigh->lock);
328                 if (neigh->nud_state & NUD_VALID)
329                         m = 2;
330                 read_unlock_bh(&neigh->lock);
331         }
332         return m;
333 }
334
335 static int rt6_score_route(struct rt6_info *rt, int oif,
336                            int strict)
337 {
338         int m, n;
339                 
340         m = rt6_check_dev(rt, oif);
341         if (!m && (strict & RT6_SELECT_F_IFACE))
342                 return -1;
343 #ifdef CONFIG_IPV6_ROUTER_PREF
344         m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
345 #endif
346         n = rt6_check_neigh(rt);
347         if (n > 1)
348                 m |= 16;
349         else if (!n && strict & RT6_SELECT_F_REACHABLE)
350                 return -1;
351         return m;
352 }
353
354 static struct rt6_info *rt6_select(struct rt6_info **head, int oif,
355                                    int strict)
356 {
357         struct rt6_info *match = NULL, *last = NULL;
358         struct rt6_info *rt, *rt0 = *head;
359         u32 metric;
360         int mpri = -1;
361
362         RT6_TRACE("%s(head=%p(*head=%p), oif=%d)\n",
363                   __FUNCTION__, head, head ? *head : NULL, oif);
364
365         for (rt = rt0, metric = rt0->rt6i_metric;
366              rt && rt->rt6i_metric == metric && (!last || rt != rt0);
367              rt = rt->u.next) {
368                 int m;
369
370                 if (rt6_check_expired(rt))
371                         continue;
372
373                 last = rt;
374
375                 m = rt6_score_route(rt, oif, strict);
376                 if (m < 0)
377                         continue;
378
379                 if (m > mpri) {
380                         rt6_probe(match);
381                         match = rt;
382                         mpri = m;
383                 } else {
384                         rt6_probe(rt);
385                 }
386         }
387
388         if (!match &&
389             (strict & RT6_SELECT_F_REACHABLE) &&
390             last && last != rt0) {
391                 /* no entries matched; do round-robin */
392                 static DEFINE_SPINLOCK(lock);
393                 spin_lock(&lock);
394                 *head = rt0->u.next;
395                 rt0->u.next = last->u.next;
396                 last->u.next = rt0;
397                 spin_unlock(&lock);
398         }
399
400         RT6_TRACE("%s() => %p, score=%d\n",
401                   __FUNCTION__, match, mpri);
402
403         return (match ? match : &ip6_null_entry);
404 }
405
406 #ifdef CONFIG_IPV6_ROUTE_INFO
407 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
408                   struct in6_addr *gwaddr)
409 {
410         struct route_info *rinfo = (struct route_info *) opt;
411         struct in6_addr prefix_buf, *prefix;
412         unsigned int pref;
413         u32 lifetime;
414         struct rt6_info *rt;
415
416         if (len < sizeof(struct route_info)) {
417                 return -EINVAL;
418         }
419
420         /* Sanity check for prefix_len and length */
421         if (rinfo->length > 3) {
422                 return -EINVAL;
423         } else if (rinfo->prefix_len > 128) {
424                 return -EINVAL;
425         } else if (rinfo->prefix_len > 64) {
426                 if (rinfo->length < 2) {
427                         return -EINVAL;
428                 }
429         } else if (rinfo->prefix_len > 0) {
430                 if (rinfo->length < 1) {
431                         return -EINVAL;
432                 }
433         }
434
435         pref = rinfo->route_pref;
436         if (pref == ICMPV6_ROUTER_PREF_INVALID)
437                 pref = ICMPV6_ROUTER_PREF_MEDIUM;
438
439         lifetime = htonl(rinfo->lifetime);
440         if (lifetime == 0xffffffff) {
441                 /* infinity */
442         } else if (lifetime > 0x7fffffff/HZ) {
443                 /* Avoid arithmetic overflow */
444                 lifetime = 0x7fffffff/HZ - 1;
445         }
446
447         if (rinfo->length == 3)
448                 prefix = (struct in6_addr *)rinfo->prefix;
449         else {
450                 /* this function is safe */
451                 ipv6_addr_prefix(&prefix_buf,
452                                  (struct in6_addr *)rinfo->prefix,
453                                  rinfo->prefix_len);
454                 prefix = &prefix_buf;
455         }
456
457         rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
458
459         if (rt && !lifetime) {
460                 ip6_del_rt(rt);
461                 rt = NULL;
462         }
463
464         if (!rt && lifetime)
465                 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
466                                         pref);
467         else if (rt)
468                 rt->rt6i_flags = RTF_ROUTEINFO |
469                                  (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
470
471         if (rt) {
472                 if (lifetime == 0xffffffff) {
473                         rt->rt6i_flags &= ~RTF_EXPIRES;
474                 } else {
475                         rt->rt6i_expires = jiffies + HZ * lifetime;
476                         rt->rt6i_flags |= RTF_EXPIRES;
477                 }
478                 dst_release(&rt->u.dst);
479         }
480         return 0;
481 }
482 #endif
483
484 #define BACKTRACK() \
485 if (rt == &ip6_null_entry && flags & RT6_F_STRICT) { \
486         while ((fn = fn->parent) != NULL) { \
487                 if (fn->fn_flags & RTN_TL_ROOT) { \
488                         dst_hold(&rt->u.dst); \
489                         goto out; \
490                 } \
491                 if (fn->fn_flags & RTN_RTINFO) \
492                         goto restart; \
493         } \
494 }
495
496 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
497                                              struct flowi *fl, int flags)
498 {
499         struct fib6_node *fn;
500         struct rt6_info *rt;
501
502         read_lock_bh(&table->tb6_lock);
503         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
504 restart:
505         rt = fn->leaf;
506         rt = rt6_device_match(rt, fl->oif, flags & RT6_F_STRICT);
507         BACKTRACK();
508         dst_hold(&rt->u.dst);
509 out:
510         read_unlock_bh(&table->tb6_lock);
511
512         rt->u.dst.lastuse = jiffies;
513         rt->u.dst.__use++;
514
515         return rt;
516
517 }
518
519 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
520                             int oif, int strict)
521 {
522         struct flowi fl = {
523                 .oif = oif,
524                 .nl_u = {
525                         .ip6_u = {
526                                 .daddr = *daddr,
527                                 /* TODO: saddr */
528                         },
529                 },
530         };
531         struct dst_entry *dst;
532         int flags = strict ? RT6_F_STRICT : 0;
533
534         dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
535         if (dst->error == 0)
536                 return (struct rt6_info *) dst;
537
538         dst_release(dst);
539
540         return NULL;
541 }
542
543 /* ip6_ins_rt is called with FREE table->tb6_lock.
544    It takes new route entry, the addition fails by any reason the
545    route is freed. In any case, if caller does not hold it, it may
546    be destroyed.
547  */
548
549 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
550 {
551         int err;
552         struct fib6_table *table;
553
554         table = rt->rt6i_table;
555         write_lock_bh(&table->tb6_lock);
556         err = fib6_add(&table->tb6_root, rt, info);
557         write_unlock_bh(&table->tb6_lock);
558
559         return err;
560 }
561
562 int ip6_ins_rt(struct rt6_info *rt)
563 {
564         return __ip6_ins_rt(rt, NULL);
565 }
566
567 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
568                                       struct in6_addr *saddr)
569 {
570         struct rt6_info *rt;
571
572         /*
573          *      Clone the route.
574          */
575
576         rt = ip6_rt_copy(ort);
577
578         if (rt) {
579                 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
580                         if (rt->rt6i_dst.plen != 128 &&
581                             ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
582                                 rt->rt6i_flags |= RTF_ANYCAST;
583                         ipv6_addr_copy(&rt->rt6i_gateway, daddr);
584                 }
585
586                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
587                 rt->rt6i_dst.plen = 128;
588                 rt->rt6i_flags |= RTF_CACHE;
589                 rt->u.dst.flags |= DST_HOST;
590
591 #ifdef CONFIG_IPV6_SUBTREES
592                 if (rt->rt6i_src.plen && saddr) {
593                         ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
594                         rt->rt6i_src.plen = 128;
595                 }
596 #endif
597
598                 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
599
600         }
601
602         return rt;
603 }
604
605 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
606 {
607         struct rt6_info *rt = ip6_rt_copy(ort);
608         if (rt) {
609                 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
610                 rt->rt6i_dst.plen = 128;
611                 rt->rt6i_flags |= RTF_CACHE;
612                 if (rt->rt6i_flags & RTF_REJECT)
613                         rt->u.dst.error = ort->u.dst.error;
614                 rt->u.dst.flags |= DST_HOST;
615                 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
616         }
617         return rt;
618 }
619
620 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
621                                             struct flowi *fl, int flags)
622 {
623         struct fib6_node *fn;
624         struct rt6_info *rt, *nrt;
625         int strict = 0;
626         int attempts = 3;
627         int err;
628         int reachable = RT6_SELECT_F_REACHABLE;
629
630         if (flags & RT6_F_STRICT)
631                 strict = RT6_SELECT_F_IFACE;
632
633 relookup:
634         read_lock_bh(&table->tb6_lock);
635
636 restart_2:
637         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
638
639 restart:
640         rt = rt6_select(&fn->leaf, fl->iif, strict | reachable);
641         BACKTRACK();
642         if (rt == &ip6_null_entry ||
643             rt->rt6i_flags & RTF_CACHE)
644                 goto out;
645
646         dst_hold(&rt->u.dst);
647         read_unlock_bh(&table->tb6_lock);
648
649         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
650                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
651         else {
652 #if CLONE_OFFLINK_ROUTE
653                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
654 #else
655                 goto out2;
656 #endif
657         }
658
659         dst_release(&rt->u.dst);
660         rt = nrt ? : &ip6_null_entry;
661
662         dst_hold(&rt->u.dst);
663         if (nrt) {
664                 err = ip6_ins_rt(nrt);
665                 if (!err)
666                         goto out2;
667         }
668
669         if (--attempts <= 0)
670                 goto out2;
671
672         /*
673          * Race condition! In the gap, when table->tb6_lock was
674          * released someone could insert this route.  Relookup.
675          */
676         dst_release(&rt->u.dst);
677         goto relookup;
678
679 out:
680         if (reachable) {
681                 reachable = 0;
682                 goto restart_2;
683         }
684         dst_hold(&rt->u.dst);
685         read_unlock_bh(&table->tb6_lock);
686 out2:
687         rt->u.dst.lastuse = jiffies;
688         rt->u.dst.__use++;
689
690         return rt;
691 }
692
693 void ip6_route_input(struct sk_buff *skb)
694 {
695         struct ipv6hdr *iph = skb->nh.ipv6h;
696         struct flowi fl = {
697                 .iif = skb->dev->ifindex,
698                 .nl_u = {
699                         .ip6_u = {
700                                 .daddr = iph->daddr,
701                                 .saddr = iph->saddr,
702                                 .flowlabel = (* (u32 *) iph)&IPV6_FLOWINFO_MASK,
703                         },
704                 },
705                 .proto = iph->nexthdr,
706         };
707         int flags = 0;
708
709         if (rt6_need_strict(&iph->daddr))
710                 flags |= RT6_F_STRICT;
711
712         skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
713 }
714
715 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
716                                              struct flowi *fl, int flags)
717 {
718         struct fib6_node *fn;
719         struct rt6_info *rt, *nrt;
720         int strict = 0;
721         int attempts = 3;
722         int err;
723         int reachable = RT6_SELECT_F_REACHABLE;
724
725         if (flags & RT6_F_STRICT)
726                 strict = RT6_SELECT_F_IFACE;
727
728 relookup:
729         read_lock_bh(&table->tb6_lock);
730
731 restart_2:
732         fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
733
734 restart:
735         rt = rt6_select(&fn->leaf, fl->oif, strict | reachable);
736         BACKTRACK();
737         if (rt == &ip6_null_entry ||
738             rt->rt6i_flags & RTF_CACHE)
739                 goto out;
740
741         dst_hold(&rt->u.dst);
742         read_unlock_bh(&table->tb6_lock);
743
744         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
745                 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
746         else {
747 #if CLONE_OFFLINK_ROUTE
748                 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
749 #else
750                 goto out2;
751 #endif
752         }
753
754         dst_release(&rt->u.dst);
755         rt = nrt ? : &ip6_null_entry;
756
757         dst_hold(&rt->u.dst);
758         if (nrt) {
759                 err = ip6_ins_rt(nrt);
760                 if (!err)
761                         goto out2;
762         }
763
764         if (--attempts <= 0)
765                 goto out2;
766
767         /*
768          * Race condition! In the gap, when table->tb6_lock was
769          * released someone could insert this route.  Relookup.
770          */
771         dst_release(&rt->u.dst);
772         goto relookup;
773
774 out:
775         if (reachable) {
776                 reachable = 0;
777                 goto restart_2;
778         }
779         dst_hold(&rt->u.dst);
780         read_unlock_bh(&table->tb6_lock);
781 out2:
782         rt->u.dst.lastuse = jiffies;
783         rt->u.dst.__use++;
784         return rt;
785 }
786
787 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
788 {
789         int flags = 0;
790
791         if (rt6_need_strict(&fl->fl6_dst))
792                 flags |= RT6_F_STRICT;
793
794         return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
795 }
796
797
798 /*
799  *      Destination cache support functions
800  */
801
802 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
803 {
804         struct rt6_info *rt;
805
806         rt = (struct rt6_info *) dst;
807
808         if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
809                 return dst;
810
811         return NULL;
812 }
813
814 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
815 {
816         struct rt6_info *rt = (struct rt6_info *) dst;
817
818         if (rt) {
819                 if (rt->rt6i_flags & RTF_CACHE)
820                         ip6_del_rt(rt);
821                 else
822                         dst_release(dst);
823         }
824         return NULL;
825 }
826
827 static void ip6_link_failure(struct sk_buff *skb)
828 {
829         struct rt6_info *rt;
830
831         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
832
833         rt = (struct rt6_info *) skb->dst;
834         if (rt) {
835                 if (rt->rt6i_flags&RTF_CACHE) {
836                         dst_set_expires(&rt->u.dst, 0);
837                         rt->rt6i_flags |= RTF_EXPIRES;
838                 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
839                         rt->rt6i_node->fn_sernum = -1;
840         }
841 }
842
843 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
844 {
845         struct rt6_info *rt6 = (struct rt6_info*)dst;
846
847         if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
848                 rt6->rt6i_flags |= RTF_MODIFIED;
849                 if (mtu < IPV6_MIN_MTU) {
850                         mtu = IPV6_MIN_MTU;
851                         dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
852                 }
853                 dst->metrics[RTAX_MTU-1] = mtu;
854                 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
855         }
856 }
857
858 static int ipv6_get_mtu(struct net_device *dev);
859
860 static inline unsigned int ipv6_advmss(unsigned int mtu)
861 {
862         mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
863
864         if (mtu < ip6_rt_min_advmss)
865                 mtu = ip6_rt_min_advmss;
866
867         /*
868          * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 
869          * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 
870          * IPV6_MAXPLEN is also valid and means: "any MSS, 
871          * rely only on pmtu discovery"
872          */
873         if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
874                 mtu = IPV6_MAXPLEN;
875         return mtu;
876 }
877
878 static struct dst_entry *ndisc_dst_gc_list;
879 static DEFINE_SPINLOCK(ndisc_lock);
880
881 struct dst_entry *ndisc_dst_alloc(struct net_device *dev, 
882                                   struct neighbour *neigh,
883                                   struct in6_addr *addr,
884                                   int (*output)(struct sk_buff *))
885 {
886         struct rt6_info *rt;
887         struct inet6_dev *idev = in6_dev_get(dev);
888
889         if (unlikely(idev == NULL))
890                 return NULL;
891
892         rt = ip6_dst_alloc();
893         if (unlikely(rt == NULL)) {
894                 in6_dev_put(idev);
895                 goto out;
896         }
897
898         dev_hold(dev);
899         if (neigh)
900                 neigh_hold(neigh);
901         else
902                 neigh = ndisc_get_neigh(dev, addr);
903
904         rt->rt6i_dev      = dev;
905         rt->rt6i_idev     = idev;
906         rt->rt6i_nexthop  = neigh;
907         atomic_set(&rt->u.dst.__refcnt, 1);
908         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
909         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
910         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
911         rt->u.dst.output  = output;
912
913 #if 0   /* there's no chance to use these for ndisc */
914         rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST 
915                                 ? DST_HOST 
916                                 : 0;
917         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
918         rt->rt6i_dst.plen = 128;
919 #endif
920
921         spin_lock_bh(&ndisc_lock);
922         rt->u.dst.next = ndisc_dst_gc_list;
923         ndisc_dst_gc_list = &rt->u.dst;
924         spin_unlock_bh(&ndisc_lock);
925
926         fib6_force_start_gc();
927
928 out:
929         return (struct dst_entry *)rt;
930 }
931
932 int ndisc_dst_gc(int *more)
933 {
934         struct dst_entry *dst, *next, **pprev;
935         int freed;
936
937         next = NULL;
938         freed = 0;
939
940         spin_lock_bh(&ndisc_lock);
941         pprev = &ndisc_dst_gc_list;
942
943         while ((dst = *pprev) != NULL) {
944                 if (!atomic_read(&dst->__refcnt)) {
945                         *pprev = dst->next;
946                         dst_free(dst);
947                         freed++;
948                 } else {
949                         pprev = &dst->next;
950                         (*more)++;
951                 }
952         }
953
954         spin_unlock_bh(&ndisc_lock);
955
956         return freed;
957 }
958
959 static int ip6_dst_gc(void)
960 {
961         static unsigned expire = 30*HZ;
962         static unsigned long last_gc;
963         unsigned long now = jiffies;
964
965         if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
966             atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
967                 goto out;
968
969         expire++;
970         fib6_run_gc(expire);
971         last_gc = now;
972         if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
973                 expire = ip6_rt_gc_timeout>>1;
974
975 out:
976         expire -= expire>>ip6_rt_gc_elasticity;
977         return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
978 }
979
980 /* Clean host part of a prefix. Not necessary in radix tree,
981    but results in cleaner routing tables.
982
983    Remove it only when all the things will work!
984  */
985
986 static int ipv6_get_mtu(struct net_device *dev)
987 {
988         int mtu = IPV6_MIN_MTU;
989         struct inet6_dev *idev;
990
991         idev = in6_dev_get(dev);
992         if (idev) {
993                 mtu = idev->cnf.mtu6;
994                 in6_dev_put(idev);
995         }
996         return mtu;
997 }
998
999 int ipv6_get_hoplimit(struct net_device *dev)
1000 {
1001         int hoplimit = ipv6_devconf.hop_limit;
1002         struct inet6_dev *idev;
1003
1004         idev = in6_dev_get(dev);
1005         if (idev) {
1006                 hoplimit = idev->cnf.hop_limit;
1007                 in6_dev_put(idev);
1008         }
1009         return hoplimit;
1010 }
1011
1012 /*
1013  *
1014  */
1015
1016 int ip6_route_add(struct fib6_config *cfg)
1017 {
1018         int err;
1019         struct rt6_info *rt = NULL;
1020         struct net_device *dev = NULL;
1021         struct inet6_dev *idev = NULL;
1022         struct fib6_table *table;
1023         int addr_type;
1024
1025         if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1026                 return -EINVAL;
1027 #ifndef CONFIG_IPV6_SUBTREES
1028         if (cfg->fc_src_len)
1029                 return -EINVAL;
1030 #endif
1031         if (cfg->fc_ifindex) {
1032                 err = -ENODEV;
1033                 dev = dev_get_by_index(cfg->fc_ifindex);
1034                 if (!dev)
1035                         goto out;
1036                 idev = in6_dev_get(dev);
1037                 if (!idev)
1038                         goto out;
1039         }
1040
1041         if (cfg->fc_metric == 0)
1042                 cfg->fc_metric = IP6_RT_PRIO_USER;
1043
1044         table = fib6_new_table(cfg->fc_table);
1045         if (table == NULL) {
1046                 err = -ENOBUFS;
1047                 goto out;
1048         }
1049
1050         rt = ip6_dst_alloc();
1051
1052         if (rt == NULL) {
1053                 err = -ENOMEM;
1054                 goto out;
1055         }
1056
1057         rt->u.dst.obsolete = -1;
1058         rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1059
1060         if (cfg->fc_protocol == RTPROT_UNSPEC)
1061                 cfg->fc_protocol = RTPROT_BOOT;
1062         rt->rt6i_protocol = cfg->fc_protocol;
1063
1064         addr_type = ipv6_addr_type(&cfg->fc_dst);
1065
1066         if (addr_type & IPV6_ADDR_MULTICAST)
1067                 rt->u.dst.input = ip6_mc_input;
1068         else
1069                 rt->u.dst.input = ip6_forward;
1070
1071         rt->u.dst.output = ip6_output;
1072
1073         ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1074         rt->rt6i_dst.plen = cfg->fc_dst_len;
1075         if (rt->rt6i_dst.plen == 128)
1076                rt->u.dst.flags = DST_HOST;
1077
1078 #ifdef CONFIG_IPV6_SUBTREES
1079         ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1080         rt->rt6i_src.plen = cfg->fc_src_len;
1081 #endif
1082
1083         rt->rt6i_metric = cfg->fc_metric;
1084
1085         /* We cannot add true routes via loopback here,
1086            they would result in kernel looping; promote them to reject routes
1087          */
1088         if ((cfg->fc_flags & RTF_REJECT) ||
1089             (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1090                 /* hold loopback dev/idev if we haven't done so. */
1091                 if (dev != &loopback_dev) {
1092                         if (dev) {
1093                                 dev_put(dev);
1094                                 in6_dev_put(idev);
1095                         }
1096                         dev = &loopback_dev;
1097                         dev_hold(dev);
1098                         idev = in6_dev_get(dev);
1099                         if (!idev) {
1100                                 err = -ENODEV;
1101                                 goto out;
1102                         }
1103                 }
1104                 rt->u.dst.output = ip6_pkt_discard_out;
1105                 rt->u.dst.input = ip6_pkt_discard;
1106                 rt->u.dst.error = -ENETUNREACH;
1107                 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1108                 goto install_route;
1109         }
1110
1111         if (cfg->fc_flags & RTF_GATEWAY) {
1112                 struct in6_addr *gw_addr;
1113                 int gwa_type;
1114
1115                 gw_addr = &cfg->fc_gateway;
1116                 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1117                 gwa_type = ipv6_addr_type(gw_addr);
1118
1119                 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1120                         struct rt6_info *grt;
1121
1122                         /* IPv6 strictly inhibits using not link-local
1123                            addresses as nexthop address.
1124                            Otherwise, router will not able to send redirects.
1125                            It is very good, but in some (rare!) circumstances
1126                            (SIT, PtP, NBMA NOARP links) it is handy to allow
1127                            some exceptions. --ANK
1128                          */
1129                         err = -EINVAL;
1130                         if (!(gwa_type&IPV6_ADDR_UNICAST))
1131                                 goto out;
1132
1133                         grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1134
1135                         err = -EHOSTUNREACH;
1136                         if (grt == NULL)
1137                                 goto out;
1138                         if (dev) {
1139                                 if (dev != grt->rt6i_dev) {
1140                                         dst_release(&grt->u.dst);
1141                                         goto out;
1142                                 }
1143                         } else {
1144                                 dev = grt->rt6i_dev;
1145                                 idev = grt->rt6i_idev;
1146                                 dev_hold(dev);
1147                                 in6_dev_hold(grt->rt6i_idev);
1148                         }
1149                         if (!(grt->rt6i_flags&RTF_GATEWAY))
1150                                 err = 0;
1151                         dst_release(&grt->u.dst);
1152
1153                         if (err)
1154                                 goto out;
1155                 }
1156                 err = -EINVAL;
1157                 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1158                         goto out;
1159         }
1160
1161         err = -ENODEV;
1162         if (dev == NULL)
1163                 goto out;
1164
1165         if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1166                 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1167                 if (IS_ERR(rt->rt6i_nexthop)) {
1168                         err = PTR_ERR(rt->rt6i_nexthop);
1169                         rt->rt6i_nexthop = NULL;
1170                         goto out;
1171                 }
1172         }
1173
1174         rt->rt6i_flags = cfg->fc_flags;
1175
1176 install_route:
1177         if (cfg->fc_mx) {
1178                 struct nlattr *nla;
1179                 int remaining;
1180
1181                 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1182                         int type = nla->nla_type;
1183
1184                         if (type) {
1185                                 if (type > RTAX_MAX) {
1186                                         err = -EINVAL;
1187                                         goto out;
1188                                 }
1189
1190                                 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1191                         }
1192                 }
1193         }
1194
1195         if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1196                 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1197         if (!rt->u.dst.metrics[RTAX_MTU-1])
1198                 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1199         if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1200                 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1201         rt->u.dst.dev = dev;
1202         rt->rt6i_idev = idev;
1203         rt->rt6i_table = table;
1204         return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1205
1206 out:
1207         if (dev)
1208                 dev_put(dev);
1209         if (idev)
1210                 in6_dev_put(idev);
1211         if (rt)
1212                 dst_free((struct dst_entry *) rt);
1213         return err;
1214 }
1215
1216 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1217 {
1218         int err;
1219         struct fib6_table *table;
1220
1221         if (rt == &ip6_null_entry)
1222                 return -ENOENT;
1223
1224         table = rt->rt6i_table;
1225         write_lock_bh(&table->tb6_lock);
1226
1227         err = fib6_del(rt, info);
1228         dst_release(&rt->u.dst);
1229
1230         write_unlock_bh(&table->tb6_lock);
1231
1232         return err;
1233 }
1234
1235 int ip6_del_rt(struct rt6_info *rt)
1236 {
1237         return __ip6_del_rt(rt, NULL);
1238 }
1239
1240 static int ip6_route_del(struct fib6_config *cfg)
1241 {
1242         struct fib6_table *table;
1243         struct fib6_node *fn;
1244         struct rt6_info *rt;
1245         int err = -ESRCH;
1246
1247         table = fib6_get_table(cfg->fc_table);
1248         if (table == NULL)
1249                 return err;
1250
1251         read_lock_bh(&table->tb6_lock);
1252
1253         fn = fib6_locate(&table->tb6_root,
1254                          &cfg->fc_dst, cfg->fc_dst_len,
1255                          &cfg->fc_src, cfg->fc_src_len);
1256         
1257         if (fn) {
1258                 for (rt = fn->leaf; rt; rt = rt->u.next) {
1259                         if (cfg->fc_ifindex &&
1260                             (rt->rt6i_dev == NULL ||
1261                              rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1262                                 continue;
1263                         if (cfg->fc_flags & RTF_GATEWAY &&
1264                             !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1265                                 continue;
1266                         if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1267                                 continue;
1268                         dst_hold(&rt->u.dst);
1269                         read_unlock_bh(&table->tb6_lock);
1270
1271                         return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1272                 }
1273         }
1274         read_unlock_bh(&table->tb6_lock);
1275
1276         return err;
1277 }
1278
1279 /*
1280  *      Handle redirects
1281  */
1282 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1283                   struct in6_addr *saddr,
1284                   struct neighbour *neigh, u8 *lladdr, int on_link)
1285 {
1286         struct rt6_info *rt, *nrt = NULL;
1287         struct fib6_node *fn;
1288         struct fib6_table *table;
1289         struct netevent_redirect netevent;
1290
1291         /* TODO: Very lazy, might need to check all tables */
1292         table = fib6_get_table(RT6_TABLE_MAIN);
1293         if (table == NULL)
1294                 return;
1295
1296         /*
1297          * Get the "current" route for this destination and
1298          * check if the redirect has come from approriate router.
1299          *
1300          * RFC 2461 specifies that redirects should only be
1301          * accepted if they come from the nexthop to the target.
1302          * Due to the way the routes are chosen, this notion
1303          * is a bit fuzzy and one might need to check all possible
1304          * routes.
1305          */
1306
1307         read_lock_bh(&table->tb6_lock);
1308         fn = fib6_lookup(&table->tb6_root, dest, src);
1309 restart:
1310         for (rt = fn->leaf; rt; rt = rt->u.next) {
1311                 /*
1312                  * Current route is on-link; redirect is always invalid.
1313                  *
1314                  * Seems, previous statement is not true. It could
1315                  * be node, which looks for us as on-link (f.e. proxy ndisc)
1316                  * But then router serving it might decide, that we should
1317                  * know truth 8)8) --ANK (980726).
1318                  */
1319                 if (rt6_check_expired(rt))
1320                         continue;
1321                 if (!(rt->rt6i_flags & RTF_GATEWAY))
1322                         continue;
1323                 if (neigh->dev != rt->rt6i_dev)
1324                         continue;
1325                 if (!ipv6_addr_equal(saddr, &rt->rt6i_gateway))
1326                         continue;
1327                 break;
1328         }
1329         if (rt)
1330                 dst_hold(&rt->u.dst);
1331         else if (rt6_need_strict(dest)) {
1332                 while ((fn = fn->parent) != NULL) {
1333                         if (fn->fn_flags & RTN_ROOT)
1334                                 break;
1335                         if (fn->fn_flags & RTN_RTINFO)
1336                                 goto restart;
1337                 }
1338         }
1339         read_unlock_bh(&table->tb6_lock);
1340
1341         if (!rt) {
1342                 if (net_ratelimit())
1343                         printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1344                                "for redirect target\n");
1345                 return;
1346         }
1347
1348         /*
1349          *      We have finally decided to accept it.
1350          */
1351
1352         neigh_update(neigh, lladdr, NUD_STALE, 
1353                      NEIGH_UPDATE_F_WEAK_OVERRIDE|
1354                      NEIGH_UPDATE_F_OVERRIDE|
1355                      (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1356                                      NEIGH_UPDATE_F_ISROUTER))
1357                      );
1358
1359         /*
1360          * Redirect received -> path was valid.
1361          * Look, redirects are sent only in response to data packets,
1362          * so that this nexthop apparently is reachable. --ANK
1363          */
1364         dst_confirm(&rt->u.dst);
1365
1366         /* Duplicate redirect: silently ignore. */
1367         if (neigh == rt->u.dst.neighbour)
1368                 goto out;
1369
1370         nrt = ip6_rt_copy(rt);
1371         if (nrt == NULL)
1372                 goto out;
1373
1374         nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1375         if (on_link)
1376                 nrt->rt6i_flags &= ~RTF_GATEWAY;
1377
1378         ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1379         nrt->rt6i_dst.plen = 128;
1380         nrt->u.dst.flags |= DST_HOST;
1381
1382         ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1383         nrt->rt6i_nexthop = neigh_clone(neigh);
1384         /* Reset pmtu, it may be better */
1385         nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1386         nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1387
1388         if (ip6_ins_rt(nrt))
1389                 goto out;
1390
1391         netevent.old = &rt->u.dst;
1392         netevent.new = &nrt->u.dst;
1393         call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1394
1395         if (rt->rt6i_flags&RTF_CACHE) {
1396                 ip6_del_rt(rt);
1397                 return;
1398         }
1399
1400 out:
1401         dst_release(&rt->u.dst);
1402         return;
1403 }
1404
1405 /*
1406  *      Handle ICMP "packet too big" messages
1407  *      i.e. Path MTU discovery
1408  */
1409
1410 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1411                         struct net_device *dev, u32 pmtu)
1412 {
1413         struct rt6_info *rt, *nrt;
1414         int allfrag = 0;
1415
1416         rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1417         if (rt == NULL)
1418                 return;
1419
1420         if (pmtu >= dst_mtu(&rt->u.dst))
1421                 goto out;
1422
1423         if (pmtu < IPV6_MIN_MTU) {
1424                 /*
1425                  * According to RFC2460, PMTU is set to the IPv6 Minimum Link 
1426                  * MTU (1280) and a fragment header should always be included
1427                  * after a node receiving Too Big message reporting PMTU is
1428                  * less than the IPv6 Minimum Link MTU.
1429                  */
1430                 pmtu = IPV6_MIN_MTU;
1431                 allfrag = 1;
1432         }
1433
1434         /* New mtu received -> path was valid.
1435            They are sent only in response to data packets,
1436            so that this nexthop apparently is reachable. --ANK
1437          */
1438         dst_confirm(&rt->u.dst);
1439
1440         /* Host route. If it is static, it would be better
1441            not to override it, but add new one, so that
1442            when cache entry will expire old pmtu
1443            would return automatically.
1444          */
1445         if (rt->rt6i_flags & RTF_CACHE) {
1446                 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1447                 if (allfrag)
1448                         rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1449                 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1450                 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1451                 goto out;
1452         }
1453
1454         /* Network route.
1455            Two cases are possible:
1456            1. It is connected route. Action: COW
1457            2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1458          */
1459         if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1460                 nrt = rt6_alloc_cow(rt, daddr, saddr);
1461         else
1462                 nrt = rt6_alloc_clone(rt, daddr);
1463
1464         if (nrt) {
1465                 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1466                 if (allfrag)
1467                         nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1468
1469                 /* According to RFC 1981, detecting PMTU increase shouldn't be
1470                  * happened within 5 mins, the recommended timer is 10 mins.
1471                  * Here this route expiration time is set to ip6_rt_mtu_expires
1472                  * which is 10 mins. After 10 mins the decreased pmtu is expired
1473                  * and detecting PMTU increase will be automatically happened.
1474                  */
1475                 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1476                 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1477
1478                 ip6_ins_rt(nrt);
1479         }
1480 out:
1481         dst_release(&rt->u.dst);
1482 }
1483
1484 /*
1485  *      Misc support functions
1486  */
1487
1488 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1489 {
1490         struct rt6_info *rt = ip6_dst_alloc();
1491
1492         if (rt) {
1493                 rt->u.dst.input = ort->u.dst.input;
1494                 rt->u.dst.output = ort->u.dst.output;
1495
1496                 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1497                 rt->u.dst.dev = ort->u.dst.dev;
1498                 if (rt->u.dst.dev)
1499                         dev_hold(rt->u.dst.dev);
1500                 rt->rt6i_idev = ort->rt6i_idev;
1501                 if (rt->rt6i_idev)
1502                         in6_dev_hold(rt->rt6i_idev);
1503                 rt->u.dst.lastuse = jiffies;
1504                 rt->rt6i_expires = 0;
1505
1506                 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1507                 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1508                 rt->rt6i_metric = 0;
1509
1510                 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1511 #ifdef CONFIG_IPV6_SUBTREES
1512                 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1513 #endif
1514                 rt->rt6i_table = ort->rt6i_table;
1515         }
1516         return rt;
1517 }
1518
1519 #ifdef CONFIG_IPV6_ROUTE_INFO
1520 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1521                                            struct in6_addr *gwaddr, int ifindex)
1522 {
1523         struct fib6_node *fn;
1524         struct rt6_info *rt = NULL;
1525         struct fib6_table *table;
1526
1527         table = fib6_get_table(RT6_TABLE_INFO);
1528         if (table == NULL)
1529                 return NULL;
1530
1531         write_lock_bh(&table->tb6_lock);
1532         fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1533         if (!fn)
1534                 goto out;
1535
1536         for (rt = fn->leaf; rt; rt = rt->u.next) {
1537                 if (rt->rt6i_dev->ifindex != ifindex)
1538                         continue;
1539                 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1540                         continue;
1541                 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1542                         continue;
1543                 dst_hold(&rt->u.dst);
1544                 break;
1545         }
1546 out:
1547         write_unlock_bh(&table->tb6_lock);
1548         return rt;
1549 }
1550
1551 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1552                                            struct in6_addr *gwaddr, int ifindex,
1553                                            unsigned pref)
1554 {
1555         struct fib6_config cfg = {
1556                 .fc_table       = RT6_TABLE_INFO,
1557                 .fc_metric      = 1024,
1558                 .fc_ifindex     = ifindex,
1559                 .fc_dst_len     = prefixlen,
1560                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1561                                   RTF_UP | RTF_PREF(pref),
1562         };
1563
1564         ipv6_addr_copy(&cfg.fc_dst, prefix);
1565         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1566
1567         /* We should treat it as a default route if prefix length is 0. */
1568         if (!prefixlen)
1569                 cfg.fc_flags |= RTF_DEFAULT;
1570
1571         ip6_route_add(&cfg);
1572
1573         return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1574 }
1575 #endif
1576
1577 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1578 {       
1579         struct rt6_info *rt;
1580         struct fib6_table *table;
1581
1582         table = fib6_get_table(RT6_TABLE_DFLT);
1583         if (table == NULL)
1584                 return NULL;
1585
1586         write_lock_bh(&table->tb6_lock);
1587         for (rt = table->tb6_root.leaf; rt; rt=rt->u.next) {
1588                 if (dev == rt->rt6i_dev &&
1589                     ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1590                     ipv6_addr_equal(&rt->rt6i_gateway, addr))
1591                         break;
1592         }
1593         if (rt)
1594                 dst_hold(&rt->u.dst);
1595         write_unlock_bh(&table->tb6_lock);
1596         return rt;
1597 }
1598
1599 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1600                                      struct net_device *dev,
1601                                      unsigned int pref)
1602 {
1603         struct fib6_config cfg = {
1604                 .fc_table       = RT6_TABLE_DFLT,
1605                 .fc_metric      = 1024,
1606                 .fc_ifindex     = dev->ifindex,
1607                 .fc_flags       = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1608                                   RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1609         };
1610
1611         ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1612
1613         ip6_route_add(&cfg);
1614
1615         return rt6_get_dflt_router(gwaddr, dev);
1616 }
1617
1618 void rt6_purge_dflt_routers(void)
1619 {
1620         struct rt6_info *rt;
1621         struct fib6_table *table;
1622
1623         /* NOTE: Keep consistent with rt6_get_dflt_router */
1624         table = fib6_get_table(RT6_TABLE_DFLT);
1625         if (table == NULL)
1626                 return;
1627
1628 restart:
1629         read_lock_bh(&table->tb6_lock);
1630         for (rt = table->tb6_root.leaf; rt; rt = rt->u.next) {
1631                 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1632                         dst_hold(&rt->u.dst);
1633                         read_unlock_bh(&table->tb6_lock);
1634                         ip6_del_rt(rt);
1635                         goto restart;
1636                 }
1637         }
1638         read_unlock_bh(&table->tb6_lock);
1639 }
1640
1641 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1642                                  struct fib6_config *cfg)
1643 {
1644         memset(cfg, 0, sizeof(*cfg));
1645
1646         cfg->fc_table = RT6_TABLE_MAIN;
1647         cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1648         cfg->fc_metric = rtmsg->rtmsg_metric;
1649         cfg->fc_expires = rtmsg->rtmsg_info;
1650         cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1651         cfg->fc_src_len = rtmsg->rtmsg_src_len;
1652         cfg->fc_flags = rtmsg->rtmsg_flags;
1653
1654         ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1655         ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1656         ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1657 }
1658
1659 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1660 {
1661         struct fib6_config cfg;
1662         struct in6_rtmsg rtmsg;
1663         int err;
1664
1665         switch(cmd) {
1666         case SIOCADDRT:         /* Add a route */
1667         case SIOCDELRT:         /* Delete a route */
1668                 if (!capable(CAP_NET_ADMIN))
1669                         return -EPERM;
1670                 err = copy_from_user(&rtmsg, arg,
1671                                      sizeof(struct in6_rtmsg));
1672                 if (err)
1673                         return -EFAULT;
1674
1675                 rtmsg_to_fib6_config(&rtmsg, &cfg);
1676
1677                 rtnl_lock();
1678                 switch (cmd) {
1679                 case SIOCADDRT:
1680                         err = ip6_route_add(&cfg);
1681                         break;
1682                 case SIOCDELRT:
1683                         err = ip6_route_del(&cfg);
1684                         break;
1685                 default:
1686                         err = -EINVAL;
1687                 }
1688                 rtnl_unlock();
1689
1690                 return err;
1691         };
1692
1693         return -EINVAL;
1694 }
1695
1696 /*
1697  *      Drop the packet on the floor
1698  */
1699
1700 static int ip6_pkt_discard(struct sk_buff *skb)
1701 {
1702         int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1703         if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1704                 IP6_INC_STATS(IPSTATS_MIB_INADDRERRORS);
1705
1706         IP6_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
1707         icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOROUTE, 0, skb->dev);
1708         kfree_skb(skb);
1709         return 0;
1710 }
1711
1712 static int ip6_pkt_discard_out(struct sk_buff *skb)
1713 {
1714         skb->dev = skb->dst->dev;
1715         return ip6_pkt_discard(skb);
1716 }
1717
1718 /*
1719  *      Allocate a dst for local (unicast / anycast) address.
1720  */
1721
1722 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1723                                     const struct in6_addr *addr,
1724                                     int anycast)
1725 {
1726         struct rt6_info *rt = ip6_dst_alloc();
1727
1728         if (rt == NULL)
1729                 return ERR_PTR(-ENOMEM);
1730
1731         dev_hold(&loopback_dev);
1732         in6_dev_hold(idev);
1733
1734         rt->u.dst.flags = DST_HOST;
1735         rt->u.dst.input = ip6_input;
1736         rt->u.dst.output = ip6_output;
1737         rt->rt6i_dev = &loopback_dev;
1738         rt->rt6i_idev = idev;
1739         rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1740         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1741         rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1742         rt->u.dst.obsolete = -1;
1743
1744         rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1745         if (anycast)
1746                 rt->rt6i_flags |= RTF_ANYCAST;
1747         else
1748                 rt->rt6i_flags |= RTF_LOCAL;
1749         rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1750         if (rt->rt6i_nexthop == NULL) {
1751                 dst_free((struct dst_entry *) rt);
1752                 return ERR_PTR(-ENOMEM);
1753         }
1754
1755         ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1756         rt->rt6i_dst.plen = 128;
1757         rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1758
1759         atomic_set(&rt->u.dst.__refcnt, 1);
1760
1761         return rt;
1762 }
1763
1764 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1765 {
1766         if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1767             rt != &ip6_null_entry) {
1768                 RT6_TRACE("deleted by ifdown %p\n", rt);
1769                 return -1;
1770         }
1771         return 0;
1772 }
1773
1774 void rt6_ifdown(struct net_device *dev)
1775 {
1776         fib6_clean_all(fib6_ifdown, 0, dev);
1777 }
1778
1779 struct rt6_mtu_change_arg
1780 {
1781         struct net_device *dev;
1782         unsigned mtu;
1783 };
1784
1785 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1786 {
1787         struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1788         struct inet6_dev *idev;
1789
1790         /* In IPv6 pmtu discovery is not optional,
1791            so that RTAX_MTU lock cannot disable it.
1792            We still use this lock to block changes
1793            caused by addrconf/ndisc.
1794         */
1795
1796         idev = __in6_dev_get(arg->dev);
1797         if (idev == NULL)
1798                 return 0;
1799
1800         /* For administrative MTU increase, there is no way to discover
1801            IPv6 PMTU increase, so PMTU increase should be updated here.
1802            Since RFC 1981 doesn't include administrative MTU increase
1803            update PMTU increase is a MUST. (i.e. jumbo frame)
1804          */
1805         /*
1806            If new MTU is less than route PMTU, this new MTU will be the
1807            lowest MTU in the path, update the route PMTU to reflect PMTU
1808            decreases; if new MTU is greater than route PMTU, and the
1809            old MTU is the lowest MTU in the path, update the route PMTU
1810            to reflect the increase. In this case if the other nodes' MTU
1811            also have the lowest MTU, TOO BIG MESSAGE will be lead to
1812            PMTU discouvery.
1813          */
1814         if (rt->rt6i_dev == arg->dev &&
1815             !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1816             (dst_mtu(&rt->u.dst) > arg->mtu ||
1817              (dst_mtu(&rt->u.dst) < arg->mtu &&
1818               dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1819                 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1820         rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1821         return 0;
1822 }
1823
1824 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1825 {
1826         struct rt6_mtu_change_arg arg = {
1827                 .dev = dev,
1828                 .mtu = mtu,
1829         };
1830
1831         fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1832 }
1833
1834 static struct nla_policy rtm_ipv6_policy[RTA_MAX+1] __read_mostly = {
1835         [RTA_GATEWAY]           = { .minlen = sizeof(struct in6_addr) },
1836         [RTA_OIF]               = { .type = NLA_U32 },
1837         [RTA_IIF]               = { .type = NLA_U32 },
1838         [RTA_PRIORITY]          = { .type = NLA_U32 },
1839         [RTA_METRICS]           = { .type = NLA_NESTED },
1840 };
1841
1842 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1843                               struct fib6_config *cfg)
1844 {
1845         struct rtmsg *rtm;
1846         struct nlattr *tb[RTA_MAX+1];
1847         int err;
1848
1849         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1850         if (err < 0)
1851                 goto errout;
1852
1853         err = -EINVAL;
1854         rtm = nlmsg_data(nlh);
1855         memset(cfg, 0, sizeof(*cfg));
1856
1857         cfg->fc_table = rtm->rtm_table;
1858         cfg->fc_dst_len = rtm->rtm_dst_len;
1859         cfg->fc_src_len = rtm->rtm_src_len;
1860         cfg->fc_flags = RTF_UP;
1861         cfg->fc_protocol = rtm->rtm_protocol;
1862
1863         if (rtm->rtm_type == RTN_UNREACHABLE)
1864                 cfg->fc_flags |= RTF_REJECT;
1865
1866         cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1867         cfg->fc_nlinfo.nlh = nlh;
1868
1869         if (tb[RTA_GATEWAY]) {
1870                 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1871                 cfg->fc_flags |= RTF_GATEWAY;
1872         }
1873
1874         if (tb[RTA_DST]) {
1875                 int plen = (rtm->rtm_dst_len + 7) >> 3;
1876
1877                 if (nla_len(tb[RTA_DST]) < plen)
1878                         goto errout;
1879
1880                 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1881         }
1882
1883         if (tb[RTA_SRC]) {
1884                 int plen = (rtm->rtm_src_len + 7) >> 3;
1885
1886                 if (nla_len(tb[RTA_SRC]) < plen)
1887                         goto errout;
1888
1889                 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1890         }
1891
1892         if (tb[RTA_OIF])
1893                 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1894
1895         if (tb[RTA_PRIORITY])
1896                 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1897
1898         if (tb[RTA_METRICS]) {
1899                 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1900                 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1901         }
1902
1903         if (tb[RTA_TABLE])
1904                 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
1905
1906         err = 0;
1907 errout:
1908         return err;
1909 }
1910
1911 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1912 {
1913         struct fib6_config cfg;
1914         int err;
1915
1916         err = rtm_to_fib6_config(skb, nlh, &cfg);
1917         if (err < 0)
1918                 return err;
1919
1920         return ip6_route_del(&cfg);
1921 }
1922
1923 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1924 {
1925         struct fib6_config cfg;
1926         int err;
1927
1928         err = rtm_to_fib6_config(skb, nlh, &cfg);
1929         if (err < 0)
1930                 return err;
1931
1932         return ip6_route_add(&cfg);
1933 }
1934
1935 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
1936                          struct in6_addr *dst, struct in6_addr *src,
1937                          int iif, int type, u32 pid, u32 seq,
1938                          int prefix, unsigned int flags)
1939 {
1940         struct rtmsg *rtm;
1941         struct nlmsghdr *nlh;
1942         struct rta_cacheinfo ci;
1943         u32 table;
1944
1945         if (prefix) {   /* user wants prefix routes only */
1946                 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
1947                         /* success since this is not a prefix route */
1948                         return 1;
1949                 }
1950         }
1951
1952         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
1953         if (nlh == NULL)
1954                 return -ENOBUFS;
1955
1956         rtm = nlmsg_data(nlh);
1957         rtm->rtm_family = AF_INET6;
1958         rtm->rtm_dst_len = rt->rt6i_dst.plen;
1959         rtm->rtm_src_len = rt->rt6i_src.plen;
1960         rtm->rtm_tos = 0;
1961         if (rt->rt6i_table)
1962                 table = rt->rt6i_table->tb6_id;
1963         else
1964                 table = RT6_TABLE_UNSPEC;
1965         rtm->rtm_table = table;
1966         NLA_PUT_U32(skb, RTA_TABLE, table);
1967         if (rt->rt6i_flags&RTF_REJECT)
1968                 rtm->rtm_type = RTN_UNREACHABLE;
1969         else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
1970                 rtm->rtm_type = RTN_LOCAL;
1971         else
1972                 rtm->rtm_type = RTN_UNICAST;
1973         rtm->rtm_flags = 0;
1974         rtm->rtm_scope = RT_SCOPE_UNIVERSE;
1975         rtm->rtm_protocol = rt->rt6i_protocol;
1976         if (rt->rt6i_flags&RTF_DYNAMIC)
1977                 rtm->rtm_protocol = RTPROT_REDIRECT;
1978         else if (rt->rt6i_flags & RTF_ADDRCONF)
1979                 rtm->rtm_protocol = RTPROT_KERNEL;
1980         else if (rt->rt6i_flags&RTF_DEFAULT)
1981                 rtm->rtm_protocol = RTPROT_RA;
1982
1983         if (rt->rt6i_flags&RTF_CACHE)
1984                 rtm->rtm_flags |= RTM_F_CLONED;
1985
1986         if (dst) {
1987                 NLA_PUT(skb, RTA_DST, 16, dst);
1988                 rtm->rtm_dst_len = 128;
1989         } else if (rtm->rtm_dst_len)
1990                 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
1991 #ifdef CONFIG_IPV6_SUBTREES
1992         if (src) {
1993                 NLA_PUT(skb, RTA_SRC, 16, src);
1994                 rtm->rtm_src_len = 128;
1995         } else if (rtm->rtm_src_len)
1996                 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
1997 #endif
1998         if (iif)
1999                 NLA_PUT_U32(skb, RTA_IIF, iif);
2000         else if (dst) {
2001                 struct in6_addr saddr_buf;
2002                 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2003                         NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2004         }
2005
2006         if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2007                 goto nla_put_failure;
2008
2009         if (rt->u.dst.neighbour)
2010                 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2011
2012         if (rt->u.dst.dev)
2013                 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2014
2015         NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2016         ci.rta_lastuse = jiffies_to_clock_t(jiffies - rt->u.dst.lastuse);
2017         if (rt->rt6i_expires)
2018                 ci.rta_expires = jiffies_to_clock_t(rt->rt6i_expires - jiffies);
2019         else
2020                 ci.rta_expires = 0;
2021         ci.rta_used = rt->u.dst.__use;
2022         ci.rta_clntref = atomic_read(&rt->u.dst.__refcnt);
2023         ci.rta_error = rt->u.dst.error;
2024         ci.rta_id = 0;
2025         ci.rta_ts = 0;
2026         ci.rta_tsage = 0;
2027         NLA_PUT(skb, RTA_CACHEINFO, sizeof(ci), &ci);
2028
2029         return nlmsg_end(skb, nlh);
2030
2031 nla_put_failure:
2032         return nlmsg_cancel(skb, nlh);
2033 }
2034
2035 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2036 {
2037         struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2038         int prefix;
2039
2040         if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2041                 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2042                 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2043         } else
2044                 prefix = 0;
2045
2046         return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2047                      NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2048                      prefix, NLM_F_MULTI);
2049 }
2050
2051 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2052 {
2053         struct nlattr *tb[RTA_MAX+1];
2054         struct rt6_info *rt;
2055         struct sk_buff *skb;
2056         struct rtmsg *rtm;
2057         struct flowi fl;
2058         int err, iif = 0;
2059
2060         err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2061         if (err < 0)
2062                 goto errout;
2063
2064         err = -EINVAL;
2065         memset(&fl, 0, sizeof(fl));
2066
2067         if (tb[RTA_SRC]) {
2068                 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2069                         goto errout;
2070
2071                 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2072         }
2073
2074         if (tb[RTA_DST]) {
2075                 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2076                         goto errout;
2077
2078                 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2079         }
2080
2081         if (tb[RTA_IIF])
2082                 iif = nla_get_u32(tb[RTA_IIF]);
2083
2084         if (tb[RTA_OIF])
2085                 fl.oif = nla_get_u32(tb[RTA_OIF]);
2086
2087         if (iif) {
2088                 struct net_device *dev;
2089                 dev = __dev_get_by_index(iif);
2090                 if (!dev) {
2091                         err = -ENODEV;
2092                         goto errout;
2093                 }
2094         }
2095
2096         skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2097         if (skb == NULL) {
2098                 err = -ENOBUFS;
2099                 goto errout;
2100         }
2101
2102         /* Reserve room for dummy headers, this skb can pass
2103            through good chunk of routing engine.
2104          */
2105         skb->mac.raw = skb->data;
2106         skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2107
2108         rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2109         skb->dst = &rt->u.dst;
2110
2111         err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2112                             RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2113                             nlh->nlmsg_seq, 0, 0);
2114         if (err < 0) {
2115                 kfree_skb(skb);
2116                 goto errout;
2117         }
2118
2119         err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2120 errout:
2121         return err;
2122 }
2123
2124 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2125 {
2126         struct sk_buff *skb;
2127         u32 pid = 0, seq = 0;
2128         struct nlmsghdr *nlh = NULL;
2129         int payload = sizeof(struct rtmsg) + 256;
2130         int err = -ENOBUFS;
2131
2132         if (info) {
2133                 pid = info->pid;
2134                 nlh = info->nlh;
2135                 if (nlh)
2136                         seq = nlh->nlmsg_seq;
2137         }
2138
2139         skb = nlmsg_new(nlmsg_total_size(payload), gfp_any());
2140         if (skb == NULL)
2141                 goto errout;
2142
2143         err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2144         if (err < 0) {
2145                 kfree_skb(skb);
2146                 goto errout;
2147         }
2148
2149         err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2150 errout:
2151         if (err < 0)
2152                 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2153 }
2154
2155 /*
2156  *      /proc
2157  */
2158
2159 #ifdef CONFIG_PROC_FS
2160
2161 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2162
2163 struct rt6_proc_arg
2164 {
2165         char *buffer;
2166         int offset;
2167         int length;
2168         int skip;
2169         int len;
2170 };
2171
2172 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2173 {
2174         struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2175         int i;
2176
2177         if (arg->skip < arg->offset / RT6_INFO_LEN) {
2178                 arg->skip++;
2179                 return 0;
2180         }
2181
2182         if (arg->len >= arg->length)
2183                 return 0;
2184
2185         for (i=0; i<16; i++) {
2186                 sprintf(arg->buffer + arg->len, "%02x",
2187                         rt->rt6i_dst.addr.s6_addr[i]);
2188                 arg->len += 2;
2189         }
2190         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2191                             rt->rt6i_dst.plen);
2192
2193 #ifdef CONFIG_IPV6_SUBTREES
2194         for (i=0; i<16; i++) {
2195                 sprintf(arg->buffer + arg->len, "%02x",
2196                         rt->rt6i_src.addr.s6_addr[i]);
2197                 arg->len += 2;
2198         }
2199         arg->len += sprintf(arg->buffer + arg->len, " %02x ",
2200                             rt->rt6i_src.plen);
2201 #else
2202         sprintf(arg->buffer + arg->len,
2203                 "00000000000000000000000000000000 00 ");
2204         arg->len += 36;
2205 #endif
2206
2207         if (rt->rt6i_nexthop) {
2208                 for (i=0; i<16; i++) {
2209                         sprintf(arg->buffer + arg->len, "%02x",
2210                                 rt->rt6i_nexthop->primary_key[i]);
2211                         arg->len += 2;
2212                 }
2213         } else {
2214                 sprintf(arg->buffer + arg->len,
2215                         "00000000000000000000000000000000");
2216                 arg->len += 32;
2217         }
2218         arg->len += sprintf(arg->buffer + arg->len,
2219                             " %08x %08x %08x %08x %8s\n",
2220                             rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2221                             rt->u.dst.__use, rt->rt6i_flags, 
2222                             rt->rt6i_dev ? rt->rt6i_dev->name : "");
2223         return 0;
2224 }
2225
2226 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2227 {
2228         struct rt6_proc_arg arg = {
2229                 .buffer = buffer,
2230                 .offset = offset,
2231                 .length = length,
2232         };
2233
2234         fib6_clean_all(rt6_info_route, 0, &arg);
2235
2236         *start = buffer;
2237         if (offset)
2238                 *start += offset % RT6_INFO_LEN;
2239
2240         arg.len -= offset % RT6_INFO_LEN;
2241
2242         if (arg.len > length)
2243                 arg.len = length;
2244         if (arg.len < 0)
2245                 arg.len = 0;
2246
2247         return arg.len;
2248 }
2249
2250 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2251 {
2252         seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2253                       rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2254                       rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2255                       rt6_stats.fib_rt_cache,
2256                       atomic_read(&ip6_dst_ops.entries),
2257                       rt6_stats.fib_discarded_routes);
2258
2259         return 0;
2260 }
2261
2262 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2263 {
2264         return single_open(file, rt6_stats_seq_show, NULL);
2265 }
2266
2267 static struct file_operations rt6_stats_seq_fops = {
2268         .owner   = THIS_MODULE,
2269         .open    = rt6_stats_seq_open,
2270         .read    = seq_read,
2271         .llseek  = seq_lseek,
2272         .release = single_release,
2273 };
2274 #endif  /* CONFIG_PROC_FS */
2275
2276 #ifdef CONFIG_SYSCTL
2277
2278 static int flush_delay;
2279
2280 static
2281 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2282                               void __user *buffer, size_t *lenp, loff_t *ppos)
2283 {
2284         if (write) {
2285                 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2286                 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2287                 return 0;
2288         } else
2289                 return -EINVAL;
2290 }
2291
2292 ctl_table ipv6_route_table[] = {
2293         {
2294                 .ctl_name       =       NET_IPV6_ROUTE_FLUSH, 
2295                 .procname       =       "flush",
2296                 .data           =       &flush_delay,
2297                 .maxlen         =       sizeof(int),
2298                 .mode           =       0200,
2299                 .proc_handler   =       &ipv6_sysctl_rtcache_flush
2300         },
2301         {
2302                 .ctl_name       =       NET_IPV6_ROUTE_GC_THRESH,
2303                 .procname       =       "gc_thresh",
2304                 .data           =       &ip6_dst_ops.gc_thresh,
2305                 .maxlen         =       sizeof(int),
2306                 .mode           =       0644,
2307                 .proc_handler   =       &proc_dointvec,
2308         },
2309         {
2310                 .ctl_name       =       NET_IPV6_ROUTE_MAX_SIZE,
2311                 .procname       =       "max_size",
2312                 .data           =       &ip6_rt_max_size,
2313                 .maxlen         =       sizeof(int),
2314                 .mode           =       0644,
2315                 .proc_handler   =       &proc_dointvec,
2316         },
2317         {
2318                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2319                 .procname       =       "gc_min_interval",
2320                 .data           =       &ip6_rt_gc_min_interval,
2321                 .maxlen         =       sizeof(int),
2322                 .mode           =       0644,
2323                 .proc_handler   =       &proc_dointvec_jiffies,
2324                 .strategy       =       &sysctl_jiffies,
2325         },
2326         {
2327                 .ctl_name       =       NET_IPV6_ROUTE_GC_TIMEOUT,
2328                 .procname       =       "gc_timeout",
2329                 .data           =       &ip6_rt_gc_timeout,
2330                 .maxlen         =       sizeof(int),
2331                 .mode           =       0644,
2332                 .proc_handler   =       &proc_dointvec_jiffies,
2333                 .strategy       =       &sysctl_jiffies,
2334         },
2335         {
2336                 .ctl_name       =       NET_IPV6_ROUTE_GC_INTERVAL,
2337                 .procname       =       "gc_interval",
2338                 .data           =       &ip6_rt_gc_interval,
2339                 .maxlen         =       sizeof(int),
2340                 .mode           =       0644,
2341                 .proc_handler   =       &proc_dointvec_jiffies,
2342                 .strategy       =       &sysctl_jiffies,
2343         },
2344         {
2345                 .ctl_name       =       NET_IPV6_ROUTE_GC_ELASTICITY,
2346                 .procname       =       "gc_elasticity",
2347                 .data           =       &ip6_rt_gc_elasticity,
2348                 .maxlen         =       sizeof(int),
2349                 .mode           =       0644,
2350                 .proc_handler   =       &proc_dointvec_jiffies,
2351                 .strategy       =       &sysctl_jiffies,
2352         },
2353         {
2354                 .ctl_name       =       NET_IPV6_ROUTE_MTU_EXPIRES,
2355                 .procname       =       "mtu_expires",
2356                 .data           =       &ip6_rt_mtu_expires,
2357                 .maxlen         =       sizeof(int),
2358                 .mode           =       0644,
2359                 .proc_handler   =       &proc_dointvec_jiffies,
2360                 .strategy       =       &sysctl_jiffies,
2361         },
2362         {
2363                 .ctl_name       =       NET_IPV6_ROUTE_MIN_ADVMSS,
2364                 .procname       =       "min_adv_mss",
2365                 .data           =       &ip6_rt_min_advmss,
2366                 .maxlen         =       sizeof(int),
2367                 .mode           =       0644,
2368                 .proc_handler   =       &proc_dointvec_jiffies,
2369                 .strategy       =       &sysctl_jiffies,
2370         },
2371         {
2372                 .ctl_name       =       NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2373                 .procname       =       "gc_min_interval_ms",
2374                 .data           =       &ip6_rt_gc_min_interval,
2375                 .maxlen         =       sizeof(int),
2376                 .mode           =       0644,
2377                 .proc_handler   =       &proc_dointvec_ms_jiffies,
2378                 .strategy       =       &sysctl_ms_jiffies,
2379         },
2380         { .ctl_name = 0 }
2381 };
2382
2383 #endif
2384
2385 void __init ip6_route_init(void)
2386 {
2387         struct proc_dir_entry *p;
2388
2389         ip6_dst_ops.kmem_cachep = kmem_cache_create("ip6_dst_cache",
2390                                                      sizeof(struct rt6_info),
2391                                                      0, SLAB_HWCACHE_ALIGN,
2392                                                      NULL, NULL);
2393         if (!ip6_dst_ops.kmem_cachep)
2394                 panic("cannot create ip6_dst_cache");
2395
2396         fib6_init();
2397 #ifdef  CONFIG_PROC_FS
2398         p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2399         if (p)
2400                 p->owner = THIS_MODULE;
2401
2402         proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2403 #endif
2404 #ifdef CONFIG_XFRM
2405         xfrm6_init();
2406 #endif
2407 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2408         fib6_rules_init();
2409 #endif
2410 }
2411
2412 void ip6_route_cleanup(void)
2413 {
2414 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2415         fib6_rules_cleanup();
2416 #endif
2417 #ifdef CONFIG_PROC_FS
2418         proc_net_remove("ipv6_route");
2419         proc_net_remove("rt6_stats");
2420 #endif
2421 #ifdef CONFIG_XFRM
2422         xfrm6_fini();
2423 #endif
2424         rt6_ifdown(NULL);
2425         fib6_gc_cleanup();
2426         kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2427 }