]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/ipv4/tcp_input.c
tcp: Make shifting not clear the hints
[net-next-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  *
1246  * FIXME: this could be merged to shift decision code
1247  */
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249                                  u32 start_seq, u32 end_seq)
1250 {
1251         int in_sack, err;
1252         unsigned int pkt_len;
1253         unsigned int mss;
1254
1255         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260                 mss = tcp_skb_mss(skb);
1261                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
1263                 if (!in_sack) {
1264                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265                         if (pkt_len < mss)
1266                                 pkt_len = mss;
1267                 } else {
1268                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269                         if (pkt_len < mss)
1270                                 return -EINVAL;
1271                 }
1272
1273                 /* Round if necessary so that SACKs cover only full MSSes
1274                  * and/or the remaining small portion (if present)
1275                  */
1276                 if (pkt_len > mss) {
1277                         unsigned int new_len = (pkt_len / mss) * mss;
1278                         if (!in_sack && new_len < pkt_len) {
1279                                 new_len += mss;
1280                                 if (new_len > skb->len)
1281                                         return 0;
1282                         }
1283                         pkt_len = new_len;
1284                 }
1285                 err = tcp_fragment(sk, skb, pkt_len, mss);
1286                 if (err < 0)
1287                         return err;
1288         }
1289
1290         return in_sack;
1291 }
1292
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294                            int *reord, int dup_sack, int fack_count,
1295                            u8 *sackedto, int pcount)
1296 {
1297         struct tcp_sock *tp = tcp_sk(sk);
1298         u8 sacked = TCP_SKB_CB(skb)->sacked;
1299         int flag = 0;
1300
1301         /* Account D-SACK for retransmitted packet. */
1302         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304                         tp->undo_retrans--;
1305                 if (sacked & TCPCB_SACKED_ACKED)
1306                         *reord = min(fack_count, *reord);
1307         }
1308
1309         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311                 return flag;
1312
1313         if (!(sacked & TCPCB_SACKED_ACKED)) {
1314                 if (sacked & TCPCB_SACKED_RETRANS) {
1315                         /* If the segment is not tagged as lost,
1316                          * we do not clear RETRANS, believing
1317                          * that retransmission is still in flight.
1318                          */
1319                         if (sacked & TCPCB_LOST) {
1320                                 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321                                 tp->lost_out -= pcount;
1322                                 tp->retrans_out -= pcount;
1323                         }
1324                 } else {
1325                         if (!(sacked & TCPCB_RETRANS)) {
1326                                 /* New sack for not retransmitted frame,
1327                                  * which was in hole. It is reordering.
1328                                  */
1329                                 if (before(TCP_SKB_CB(skb)->seq,
1330                                            tcp_highest_sack_seq(tp)))
1331                                         *reord = min(fack_count, *reord);
1332
1333                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335                                         flag |= FLAG_ONLY_ORIG_SACKED;
1336                         }
1337
1338                         if (sacked & TCPCB_LOST) {
1339                                 *sackedto &= ~TCPCB_LOST;
1340                                 tp->lost_out -= pcount;
1341                         }
1342                 }
1343
1344                 *sackedto |= TCPCB_SACKED_ACKED;
1345                 flag |= FLAG_DATA_SACKED;
1346                 tp->sacked_out += pcount;
1347
1348                 fack_count += pcount;
1349
1350                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq,
1353                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354                         tp->lost_cnt_hint += pcount;
1355
1356                 if (fack_count > tp->fackets_out)
1357                         tp->fackets_out = fack_count;
1358         }
1359
1360         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361          * frames and clear it. undo_retrans is decreased above, L|R frames
1362          * are accounted above as well.
1363          */
1364         if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365                 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366                 tp->retrans_out -= pcount;
1367         }
1368
1369         return flag;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373                            struct sk_buff *skb, unsigned int pcount,
1374                            int shifted, int fack_count, int *reord,
1375                            int *flag, int mss)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         u8 dummy_sacked = TCP_SKB_CB(skb)->sacked;      /* We discard results */
1379
1380         BUG_ON(!pcount);
1381
1382         /* Tweak before seqno plays */
1383         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385                 tp->lost_cnt_hint += pcount;
1386
1387         TCP_SKB_CB(prev)->end_seq += shifted;
1388         TCP_SKB_CB(skb)->seq += shifted;
1389
1390         skb_shinfo(prev)->gso_segs += pcount;
1391         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392         skb_shinfo(skb)->gso_segs -= pcount;
1393
1394         /* When we're adding to gso_segs == 1, gso_size will be zero,
1395          * in theory this shouldn't be necessary but as long as DSACK
1396          * code can come after this skb later on it's better to keep
1397          * setting gso_size to something.
1398          */
1399         if (!skb_shinfo(prev)->gso_size) {
1400                 skb_shinfo(prev)->gso_size = mss;
1401                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402         }
1403
1404         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405         if (skb_shinfo(skb)->gso_segs <= 1) {
1406                 skb_shinfo(skb)->gso_size = 0;
1407                 skb_shinfo(skb)->gso_type = 0;
1408         }
1409
1410         *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1411                                  pcount);
1412
1413         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416         if (skb->len > 0) {
1417                 BUG_ON(!tcp_skb_pcount(skb));
1418                 return 0;
1419         }
1420
1421         /* Whole SKB was eaten :-) */
1422
1423         if (skb == tp->retransmit_skb_hint)
1424                 tp->retransmit_skb_hint = prev;
1425         if (skb == tp->scoreboard_skb_hint)
1426                 tp->scoreboard_skb_hint = prev;
1427         if (skb == tp->lost_skb_hint) {
1428                 tp->lost_skb_hint = prev;
1429                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1430         }
1431
1432         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1433         if (skb == tcp_highest_sack(sk))
1434                 tcp_advance_highest_sack(sk, skb);
1435
1436         tcp_unlink_write_queue(skb, sk);
1437         sk_wmem_free_skb(sk, skb);
1438
1439         return 1;
1440 }
1441
1442 /* I wish gso_size would have a bit more sane initialization than
1443  * something-or-zero which complicates things
1444  */
1445 static int tcp_shift_mss(struct sk_buff *skb)
1446 {
1447         int mss = tcp_skb_mss(skb);
1448
1449         if (!mss)
1450                 mss = skb->len;
1451
1452         return mss;
1453 }
1454
1455 /* Shifting pages past head area doesn't work */
1456 static int skb_can_shift(struct sk_buff *skb)
1457 {
1458         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1459 }
1460
1461 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1462  * skb.
1463  */
1464 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1465                                           u32 start_seq, u32 end_seq,
1466                                           int dup_sack, int *fack_count,
1467                                           int *reord, int *flag)
1468 {
1469         struct tcp_sock *tp = tcp_sk(sk);
1470         struct sk_buff *prev;
1471         int mss;
1472         int pcount = 0;
1473         int len;
1474         int in_sack;
1475
1476         if (!sk_can_gso(sk))
1477                 goto fallback;
1478
1479         /* Normally R but no L won't result in plain S */
1480         if (!dup_sack &&
1481             (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1482                 goto fallback;
1483         if (!skb_can_shift(skb))
1484                 goto fallback;
1485         /* This frame is about to be dropped (was ACKed). */
1486         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1487                 goto fallback;
1488
1489         /* Can only happen with delayed DSACK + discard craziness */
1490         if (unlikely(skb == tcp_write_queue_head(sk)))
1491                 goto fallback;
1492         prev = tcp_write_queue_prev(sk, skb);
1493
1494         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1495                 goto fallback;
1496
1497         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1498                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1499
1500         if (in_sack) {
1501                 len = skb->len;
1502                 pcount = tcp_skb_pcount(skb);
1503                 mss = tcp_shift_mss(skb);
1504
1505                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1506                  * drop this restriction as unnecessary
1507                  */
1508                 if (mss != tcp_shift_mss(prev))
1509                         goto fallback;
1510         } else {
1511                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1512                         goto noop;
1513                 /* CHECKME: This is non-MSS split case only?, this will
1514                  * cause skipped skbs due to advancing loop btw, original
1515                  * has that feature too
1516                  */
1517                 if (tcp_skb_pcount(skb) <= 1)
1518                         goto noop;
1519
1520                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1521                 if (!in_sack) {
1522                         /* TODO: head merge to next could be attempted here
1523                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1524                          * though it might not be worth of the additional hassle
1525                          *
1526                          * ...we can probably just fallback to what was done
1527                          * previously. We could try merging non-SACKed ones
1528                          * as well but it probably isn't going to buy off
1529                          * because later SACKs might again split them, and
1530                          * it would make skb timestamp tracking considerably
1531                          * harder problem.
1532                          */
1533                         goto fallback;
1534                 }
1535
1536                 len = end_seq - TCP_SKB_CB(skb)->seq;
1537                 BUG_ON(len < 0);
1538                 BUG_ON(len > skb->len);
1539
1540                 /* MSS boundaries should be honoured or else pcount will
1541                  * severely break even though it makes things bit trickier.
1542                  * Optimize common case to avoid most of the divides
1543                  */
1544                 mss = tcp_skb_mss(skb);
1545
1546                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1547                  * drop this restriction as unnecessary
1548                  */
1549                 if (mss != tcp_shift_mss(prev))
1550                         goto fallback;
1551
1552                 if (len == mss) {
1553                         pcount = 1;
1554                 } else if (len < mss) {
1555                         goto noop;
1556                 } else {
1557                         pcount = len / mss;
1558                         len = pcount * mss;
1559                 }
1560         }
1561
1562         if (!skb_shift(prev, skb, len))
1563                 goto fallback;
1564         if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1565                              flag, mss))
1566                 goto out;
1567
1568         /* Hole filled allows collapsing with the next as well, this is very
1569          * useful when hole on every nth skb pattern happens
1570          */
1571         if (prev == tcp_write_queue_tail(sk))
1572                 goto out;
1573         skb = tcp_write_queue_next(sk, prev);
1574
1575         if (!skb_can_shift(skb))
1576                 goto out;
1577         if (skb == tcp_send_head(sk))
1578                 goto out;
1579         if ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1580                 goto out;
1581
1582         len = skb->len;
1583         if (skb_shift(prev, skb, len)) {
1584                 pcount += tcp_skb_pcount(skb);
1585                 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1586                                 *fack_count, reord, flag, mss);
1587         }
1588
1589 out:
1590         *fack_count += pcount;
1591         return prev;
1592
1593 noop:
1594         return skb;
1595
1596 fallback:
1597         return NULL;
1598 }
1599
1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601                                         struct tcp_sack_block *next_dup,
1602                                         u32 start_seq, u32 end_seq,
1603                                         int dup_sack_in, int *fack_count,
1604                                         int *reord, int *flag)
1605 {
1606         struct tcp_sock *tp = tcp_sk(sk);
1607         struct sk_buff *tmp;
1608
1609         tcp_for_write_queue_from(skb, sk) {
1610                 int in_sack = 0;
1611                 int dup_sack = dup_sack_in;
1612
1613                 if (skb == tcp_send_head(sk))
1614                         break;
1615
1616                 /* queue is in-order => we can short-circuit the walk early */
1617                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618                         break;
1619
1620                 if ((next_dup != NULL) &&
1621                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622                         in_sack = tcp_match_skb_to_sack(sk, skb,
1623                                                         next_dup->start_seq,
1624                                                         next_dup->end_seq);
1625                         if (in_sack > 0)
1626                                 dup_sack = 1;
1627                 }
1628
1629                 /* skb reference here is a bit tricky to get right, since
1630                  * shifting can eat and free both this skb and the next,
1631                  * so not even _safe variant of the loop is enough.
1632                  */
1633                 if (in_sack <= 0) {
1634                         tmp = tcp_shift_skb_data(sk, skb, start_seq,
1635                                                  end_seq, dup_sack,
1636                                                  fack_count, reord, flag);
1637                         if (tmp != NULL) {
1638                                 if (tmp != skb) {
1639                                         skb = tmp;
1640                                         continue;
1641                                 }
1642
1643                                 in_sack = 0;
1644                         } else {
1645                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1646                                                                 start_seq,
1647                                                                 end_seq);
1648                         }
1649                 }
1650
1651                 if (unlikely(in_sack < 0))
1652                         break;
1653
1654                 if (in_sack) {
1655                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1656                                                  *fack_count,
1657                                                  &(TCP_SKB_CB(skb)->sacked),
1658                                                  tcp_skb_pcount(skb));
1659
1660                         if (!before(TCP_SKB_CB(skb)->seq,
1661                                     tcp_highest_sack_seq(tp)))
1662                                 tcp_advance_highest_sack(sk, skb);
1663                 }
1664
1665                 *fack_count += tcp_skb_pcount(skb);
1666         }
1667         return skb;
1668 }
1669
1670 /* Avoid all extra work that is being done by sacktag while walking in
1671  * a normal way
1672  */
1673 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1674                                         u32 skip_to_seq, int *fack_count)
1675 {
1676         tcp_for_write_queue_from(skb, sk) {
1677                 if (skb == tcp_send_head(sk))
1678                         break;
1679
1680                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681                         break;
1682
1683                 *fack_count += tcp_skb_pcount(skb);
1684         }
1685         return skb;
1686 }
1687
1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689                                                 struct sock *sk,
1690                                                 struct tcp_sack_block *next_dup,
1691                                                 u32 skip_to_seq,
1692                                                 int *fack_count, int *reord,
1693                                                 int *flag)
1694 {
1695         if (next_dup == NULL)
1696                 return skb;
1697
1698         if (before(next_dup->start_seq, skip_to_seq)) {
1699                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1700                 skb = tcp_sacktag_walk(skb, sk, NULL,
1701                                      next_dup->start_seq, next_dup->end_seq,
1702                                      1, fack_count, reord, flag);
1703         }
1704
1705         return skb;
1706 }
1707
1708 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709 {
1710         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1711 }
1712
1713 static int
1714 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715                         u32 prior_snd_una)
1716 {
1717         const struct inet_connection_sock *icsk = inet_csk(sk);
1718         struct tcp_sock *tp = tcp_sk(sk);
1719         unsigned char *ptr = (skb_transport_header(ack_skb) +
1720                               TCP_SKB_CB(ack_skb)->sacked);
1721         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1722         struct tcp_sack_block sp[TCP_NUM_SACKS];
1723         struct tcp_sack_block *cache;
1724         struct sk_buff *skb;
1725         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726         int used_sacks;
1727         int reord = tp->packets_out;
1728         int flag = 0;
1729         int found_dup_sack = 0;
1730         int fack_count;
1731         int i, j;
1732         int first_sack_index;
1733
1734         if (!tp->sacked_out) {
1735                 if (WARN_ON(tp->fackets_out))
1736                         tp->fackets_out = 0;
1737                 tcp_highest_sack_reset(sk);
1738         }
1739
1740         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741                                          num_sacks, prior_snd_una);
1742         if (found_dup_sack)
1743                 flag |= FLAG_DSACKING_ACK;
1744
1745         /* Eliminate too old ACKs, but take into
1746          * account more or less fresh ones, they can
1747          * contain valid SACK info.
1748          */
1749         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750                 return 0;
1751
1752         if (!tp->packets_out)
1753                 goto out;
1754
1755         used_sacks = 0;
1756         first_sack_index = 0;
1757         for (i = 0; i < num_sacks; i++) {
1758                 int dup_sack = !i && found_dup_sack;
1759
1760                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1762
1763                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1764                                             sp[used_sacks].start_seq,
1765                                             sp[used_sacks].end_seq)) {
1766                         int mib_idx;
1767
1768                         if (dup_sack) {
1769                                 if (!tp->undo_marker)
1770                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771                                 else
1772                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773                         } else {
1774                                 /* Don't count olds caused by ACK reordering */
1775                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1777                                         continue;
1778                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1779                         }
1780
1781                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782                         if (i == 0)
1783                                 first_sack_index = -1;
1784                         continue;
1785                 }
1786
1787                 /* Ignore very old stuff early */
1788                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789                         continue;
1790
1791                 used_sacks++;
1792         }
1793
1794         /* order SACK blocks to allow in order walk of the retrans queue */
1795         for (i = used_sacks - 1; i > 0; i--) {
1796                 for (j = 0; j < i; j++) {
1797                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798                                 struct tcp_sack_block tmp;
1799
1800                                 tmp = sp[j];
1801                                 sp[j] = sp[j + 1];
1802                                 sp[j + 1] = tmp;
1803
1804                                 /* Track where the first SACK block goes to */
1805                                 if (j == first_sack_index)
1806                                         first_sack_index = j + 1;
1807                         }
1808                 }
1809         }
1810
1811         skb = tcp_write_queue_head(sk);
1812         fack_count = 0;
1813         i = 0;
1814
1815         if (!tp->sacked_out) {
1816                 /* It's already past, so skip checking against it */
1817                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1818         } else {
1819                 cache = tp->recv_sack_cache;
1820                 /* Skip empty blocks in at head of the cache */
1821                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1822                        !cache->end_seq)
1823                         cache++;
1824         }
1825
1826         while (i < used_sacks) {
1827                 u32 start_seq = sp[i].start_seq;
1828                 u32 end_seq = sp[i].end_seq;
1829                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1830                 struct tcp_sack_block *next_dup = NULL;
1831
1832                 if (found_dup_sack && ((i + 1) == first_sack_index))
1833                         next_dup = &sp[i + 1];
1834
1835                 /* Event "B" in the comment above. */
1836                 if (after(end_seq, tp->high_seq))
1837                         flag |= FLAG_DATA_LOST;
1838
1839                 /* Skip too early cached blocks */
1840                 while (tcp_sack_cache_ok(tp, cache) &&
1841                        !before(start_seq, cache->end_seq))
1842                         cache++;
1843
1844                 /* Can skip some work by looking recv_sack_cache? */
1845                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1846                     after(end_seq, cache->start_seq)) {
1847
1848                         /* Head todo? */
1849                         if (before(start_seq, cache->start_seq)) {
1850                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1851                                                        &fack_count);
1852                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1853                                                        start_seq,
1854                                                        cache->start_seq,
1855                                                        dup_sack, &fack_count,
1856                                                        &reord, &flag);
1857                         }
1858
1859                         /* Rest of the block already fully processed? */
1860                         if (!after(end_seq, cache->end_seq))
1861                                 goto advance_sp;
1862
1863                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1864                                                        cache->end_seq,
1865                                                        &fack_count, &reord,
1866                                                        &flag);
1867
1868                         /* ...tail remains todo... */
1869                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1870                                 /* ...but better entrypoint exists! */
1871                                 skb = tcp_highest_sack(sk);
1872                                 if (skb == NULL)
1873                                         break;
1874                                 fack_count = tp->fackets_out;
1875                                 cache++;
1876                                 goto walk;
1877                         }
1878
1879                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1880                                                &fack_count);
1881                         /* Check overlap against next cached too (past this one already) */
1882                         cache++;
1883                         continue;
1884                 }
1885
1886                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1887                         skb = tcp_highest_sack(sk);
1888                         if (skb == NULL)
1889                                 break;
1890                         fack_count = tp->fackets_out;
1891                 }
1892                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1893
1894 walk:
1895                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1896                                        dup_sack, &fack_count, &reord, &flag);
1897
1898 advance_sp:
1899                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1900                  * due to in-order walk
1901                  */
1902                 if (after(end_seq, tp->frto_highmark))
1903                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1904
1905                 i++;
1906         }
1907
1908         /* Clear the head of the cache sack blocks so we can skip it next time */
1909         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1910                 tp->recv_sack_cache[i].start_seq = 0;
1911                 tp->recv_sack_cache[i].end_seq = 0;
1912         }
1913         for (j = 0; j < used_sacks; j++)
1914                 tp->recv_sack_cache[i++] = sp[j];
1915
1916         tcp_mark_lost_retrans(sk);
1917
1918         tcp_verify_left_out(tp);
1919
1920         if ((reord < tp->fackets_out) &&
1921             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1922             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1923                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1924
1925 out:
1926
1927 #if FASTRETRANS_DEBUG > 0
1928         WARN_ON((int)tp->sacked_out < 0);
1929         WARN_ON((int)tp->lost_out < 0);
1930         WARN_ON((int)tp->retrans_out < 0);
1931         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1932 #endif
1933         return flag;
1934 }
1935
1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1937  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1938  */
1939 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1940 {
1941         u32 holes;
1942
1943         holes = max(tp->lost_out, 1U);
1944         holes = min(holes, tp->packets_out);
1945
1946         if ((tp->sacked_out + holes) > tp->packets_out) {
1947                 tp->sacked_out = tp->packets_out - holes;
1948                 return 1;
1949         }
1950         return 0;
1951 }
1952
1953 /* If we receive more dupacks than we expected counting segments
1954  * in assumption of absent reordering, interpret this as reordering.
1955  * The only another reason could be bug in receiver TCP.
1956  */
1957 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1958 {
1959         struct tcp_sock *tp = tcp_sk(sk);
1960         if (tcp_limit_reno_sacked(tp))
1961                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1962 }
1963
1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1965
1966 static void tcp_add_reno_sack(struct sock *sk)
1967 {
1968         struct tcp_sock *tp = tcp_sk(sk);
1969         tp->sacked_out++;
1970         tcp_check_reno_reordering(sk, 0);
1971         tcp_verify_left_out(tp);
1972 }
1973
1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1975
1976 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1977 {
1978         struct tcp_sock *tp = tcp_sk(sk);
1979
1980         if (acked > 0) {
1981                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1982                 if (acked - 1 >= tp->sacked_out)
1983                         tp->sacked_out = 0;
1984                 else
1985                         tp->sacked_out -= acked - 1;
1986         }
1987         tcp_check_reno_reordering(sk, acked);
1988         tcp_verify_left_out(tp);
1989 }
1990
1991 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1992 {
1993         tp->sacked_out = 0;
1994 }
1995
1996 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1997 {
1998         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1999 }
2000
2001 /* F-RTO can only be used if TCP has never retransmitted anything other than
2002  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2003  */
2004 int tcp_use_frto(struct sock *sk)
2005 {
2006         const struct tcp_sock *tp = tcp_sk(sk);
2007         const struct inet_connection_sock *icsk = inet_csk(sk);
2008         struct sk_buff *skb;
2009
2010         if (!sysctl_tcp_frto)
2011                 return 0;
2012
2013         /* MTU probe and F-RTO won't really play nicely along currently */
2014         if (icsk->icsk_mtup.probe_size)
2015                 return 0;
2016
2017         if (tcp_is_sackfrto(tp))
2018                 return 1;
2019
2020         /* Avoid expensive walking of rexmit queue if possible */
2021         if (tp->retrans_out > 1)
2022                 return 0;
2023
2024         skb = tcp_write_queue_head(sk);
2025         if (tcp_skb_is_last(sk, skb))
2026                 return 1;
2027         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2028         tcp_for_write_queue_from(skb, sk) {
2029                 if (skb == tcp_send_head(sk))
2030                         break;
2031                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2032                         return 0;
2033                 /* Short-circuit when first non-SACKed skb has been checked */
2034                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2035                         break;
2036         }
2037         return 1;
2038 }
2039
2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2041  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2042  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2043  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2044  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2045  * bits are handled if the Loss state is really to be entered (in
2046  * tcp_enter_frto_loss).
2047  *
2048  * Do like tcp_enter_loss() would; when RTO expires the second time it
2049  * does:
2050  *  "Reduce ssthresh if it has not yet been made inside this window."
2051  */
2052 void tcp_enter_frto(struct sock *sk)
2053 {
2054         const struct inet_connection_sock *icsk = inet_csk(sk);
2055         struct tcp_sock *tp = tcp_sk(sk);
2056         struct sk_buff *skb;
2057
2058         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2059             tp->snd_una == tp->high_seq ||
2060             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2061              !icsk->icsk_retransmits)) {
2062                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2063                 /* Our state is too optimistic in ssthresh() call because cwnd
2064                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2065                  * recovery has not yet completed. Pattern would be this: RTO,
2066                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2067                  * up here twice).
2068                  * RFC4138 should be more specific on what to do, even though
2069                  * RTO is quite unlikely to occur after the first Cumulative ACK
2070                  * due to back-off and complexity of triggering events ...
2071                  */
2072                 if (tp->frto_counter) {
2073                         u32 stored_cwnd;
2074                         stored_cwnd = tp->snd_cwnd;
2075                         tp->snd_cwnd = 2;
2076                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077                         tp->snd_cwnd = stored_cwnd;
2078                 } else {
2079                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080                 }
2081                 /* ... in theory, cong.control module could do "any tricks" in
2082                  * ssthresh(), which means that ca_state, lost bits and lost_out
2083                  * counter would have to be faked before the call occurs. We
2084                  * consider that too expensive, unlikely and hacky, so modules
2085                  * using these in ssthresh() must deal these incompatibility
2086                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2087                  */
2088                 tcp_ca_event(sk, CA_EVENT_FRTO);
2089         }
2090
2091         tp->undo_marker = tp->snd_una;
2092         tp->undo_retrans = 0;
2093
2094         skb = tcp_write_queue_head(sk);
2095         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2096                 tp->undo_marker = 0;
2097         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2098                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2099                 tp->retrans_out -= tcp_skb_pcount(skb);
2100         }
2101         tcp_verify_left_out(tp);
2102
2103         /* Too bad if TCP was application limited */
2104         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2105
2106         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2107          * The last condition is necessary at least in tp->frto_counter case.
2108          */
2109         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2110             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2111             after(tp->high_seq, tp->snd_una)) {
2112                 tp->frto_highmark = tp->high_seq;
2113         } else {
2114                 tp->frto_highmark = tp->snd_nxt;
2115         }
2116         tcp_set_ca_state(sk, TCP_CA_Disorder);
2117         tp->high_seq = tp->snd_nxt;
2118         tp->frto_counter = 1;
2119 }
2120
2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2122  * which indicates that we should follow the traditional RTO recovery,
2123  * i.e. mark everything lost and do go-back-N retransmission.
2124  */
2125 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2126 {
2127         struct tcp_sock *tp = tcp_sk(sk);
2128         struct sk_buff *skb;
2129
2130         tp->lost_out = 0;
2131         tp->retrans_out = 0;
2132         if (tcp_is_reno(tp))
2133                 tcp_reset_reno_sack(tp);
2134
2135         tcp_for_write_queue(skb, sk) {
2136                 if (skb == tcp_send_head(sk))
2137                         break;
2138
2139                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2140                 /*
2141                  * Count the retransmission made on RTO correctly (only when
2142                  * waiting for the first ACK and did not get it)...
2143                  */
2144                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2145                         /* For some reason this R-bit might get cleared? */
2146                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2147                                 tp->retrans_out += tcp_skb_pcount(skb);
2148                         /* ...enter this if branch just for the first segment */
2149                         flag |= FLAG_DATA_ACKED;
2150                 } else {
2151                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2152                                 tp->undo_marker = 0;
2153                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2154                 }
2155
2156                 /* Marking forward transmissions that were made after RTO lost
2157                  * can cause unnecessary retransmissions in some scenarios,
2158                  * SACK blocks will mitigate that in some but not in all cases.
2159                  * We used to not mark them but it was causing break-ups with
2160                  * receivers that do only in-order receival.
2161                  *
2162                  * TODO: we could detect presence of such receiver and select
2163                  * different behavior per flow.
2164                  */
2165                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2166                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2167                         tp->lost_out += tcp_skb_pcount(skb);
2168                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2169                 }
2170         }
2171         tcp_verify_left_out(tp);
2172
2173         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2174         tp->snd_cwnd_cnt = 0;
2175         tp->snd_cwnd_stamp = tcp_time_stamp;
2176         tp->frto_counter = 0;
2177         tp->bytes_acked = 0;
2178
2179         tp->reordering = min_t(unsigned int, tp->reordering,
2180                                sysctl_tcp_reordering);
2181         tcp_set_ca_state(sk, TCP_CA_Loss);
2182         tp->high_seq = tp->snd_nxt;
2183         TCP_ECN_queue_cwr(tp);
2184
2185         tcp_clear_all_retrans_hints(tp);
2186 }
2187
2188 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2189 {
2190         tp->retrans_out = 0;
2191         tp->lost_out = 0;
2192
2193         tp->undo_marker = 0;
2194         tp->undo_retrans = 0;
2195 }
2196
2197 void tcp_clear_retrans(struct tcp_sock *tp)
2198 {
2199         tcp_clear_retrans_partial(tp);
2200
2201         tp->fackets_out = 0;
2202         tp->sacked_out = 0;
2203 }
2204
2205 /* Enter Loss state. If "how" is not zero, forget all SACK information
2206  * and reset tags completely, otherwise preserve SACKs. If receiver
2207  * dropped its ofo queue, we will know this due to reneging detection.
2208  */
2209 void tcp_enter_loss(struct sock *sk, int how)
2210 {
2211         const struct inet_connection_sock *icsk = inet_csk(sk);
2212         struct tcp_sock *tp = tcp_sk(sk);
2213         struct sk_buff *skb;
2214
2215         /* Reduce ssthresh if it has not yet been made inside this window. */
2216         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2217             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2218                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2219                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2220                 tcp_ca_event(sk, CA_EVENT_LOSS);
2221         }
2222         tp->snd_cwnd       = 1;
2223         tp->snd_cwnd_cnt   = 0;
2224         tp->snd_cwnd_stamp = tcp_time_stamp;
2225
2226         tp->bytes_acked = 0;
2227         tcp_clear_retrans_partial(tp);
2228
2229         if (tcp_is_reno(tp))
2230                 tcp_reset_reno_sack(tp);
2231
2232         if (!how) {
2233                 /* Push undo marker, if it was plain RTO and nothing
2234                  * was retransmitted. */
2235                 tp->undo_marker = tp->snd_una;
2236         } else {
2237                 tp->sacked_out = 0;
2238                 tp->fackets_out = 0;
2239         }
2240         tcp_clear_all_retrans_hints(tp);
2241
2242         tcp_for_write_queue(skb, sk) {
2243                 if (skb == tcp_send_head(sk))
2244                         break;
2245
2246                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2247                         tp->undo_marker = 0;
2248                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2249                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2250                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2251                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2252                         tp->lost_out += tcp_skb_pcount(skb);
2253                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2254                 }
2255         }
2256         tcp_verify_left_out(tp);
2257
2258         tp->reordering = min_t(unsigned int, tp->reordering,
2259                                sysctl_tcp_reordering);
2260         tcp_set_ca_state(sk, TCP_CA_Loss);
2261         tp->high_seq = tp->snd_nxt;
2262         TCP_ECN_queue_cwr(tp);
2263         /* Abort F-RTO algorithm if one is in progress */
2264         tp->frto_counter = 0;
2265 }
2266
2267 /* If ACK arrived pointing to a remembered SACK, it means that our
2268  * remembered SACKs do not reflect real state of receiver i.e.
2269  * receiver _host_ is heavily congested (or buggy).
2270  *
2271  * Do processing similar to RTO timeout.
2272  */
2273 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2274 {
2275         if (flag & FLAG_SACK_RENEGING) {
2276                 struct inet_connection_sock *icsk = inet_csk(sk);
2277                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2278
2279                 tcp_enter_loss(sk, 1);
2280                 icsk->icsk_retransmits++;
2281                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2282                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2283                                           icsk->icsk_rto, TCP_RTO_MAX);
2284                 return 1;
2285         }
2286         return 0;
2287 }
2288
2289 static inline int tcp_fackets_out(struct tcp_sock *tp)
2290 {
2291         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2292 }
2293
2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2295  * counter when SACK is enabled (without SACK, sacked_out is used for
2296  * that purpose).
2297  *
2298  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2299  * segments up to the highest received SACK block so far and holes in
2300  * between them.
2301  *
2302  * With reordering, holes may still be in flight, so RFC3517 recovery
2303  * uses pure sacked_out (total number of SACKed segments) even though
2304  * it violates the RFC that uses duplicate ACKs, often these are equal
2305  * but when e.g. out-of-window ACKs or packet duplication occurs,
2306  * they differ. Since neither occurs due to loss, TCP should really
2307  * ignore them.
2308  */
2309 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2310 {
2311         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2312 }
2313
2314 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2315 {
2316         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2317 }
2318
2319 static inline int tcp_head_timedout(struct sock *sk)
2320 {
2321         struct tcp_sock *tp = tcp_sk(sk);
2322
2323         return tp->packets_out &&
2324                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2325 }
2326
2327 /* Linux NewReno/SACK/FACK/ECN state machine.
2328  * --------------------------------------
2329  *
2330  * "Open"       Normal state, no dubious events, fast path.
2331  * "Disorder"   In all the respects it is "Open",
2332  *              but requires a bit more attention. It is entered when
2333  *              we see some SACKs or dupacks. It is split of "Open"
2334  *              mainly to move some processing from fast path to slow one.
2335  * "CWR"        CWND was reduced due to some Congestion Notification event.
2336  *              It can be ECN, ICMP source quench, local device congestion.
2337  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2338  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2339  *
2340  * tcp_fastretrans_alert() is entered:
2341  * - each incoming ACK, if state is not "Open"
2342  * - when arrived ACK is unusual, namely:
2343  *      * SACK
2344  *      * Duplicate ACK.
2345  *      * ECN ECE.
2346  *
2347  * Counting packets in flight is pretty simple.
2348  *
2349  *      in_flight = packets_out - left_out + retrans_out
2350  *
2351  *      packets_out is SND.NXT-SND.UNA counted in packets.
2352  *
2353  *      retrans_out is number of retransmitted segments.
2354  *
2355  *      left_out is number of segments left network, but not ACKed yet.
2356  *
2357  *              left_out = sacked_out + lost_out
2358  *
2359  *     sacked_out: Packets, which arrived to receiver out of order
2360  *                 and hence not ACKed. With SACKs this number is simply
2361  *                 amount of SACKed data. Even without SACKs
2362  *                 it is easy to give pretty reliable estimate of this number,
2363  *                 counting duplicate ACKs.
2364  *
2365  *       lost_out: Packets lost by network. TCP has no explicit
2366  *                 "loss notification" feedback from network (for now).
2367  *                 It means that this number can be only _guessed_.
2368  *                 Actually, it is the heuristics to predict lossage that
2369  *                 distinguishes different algorithms.
2370  *
2371  *      F.e. after RTO, when all the queue is considered as lost,
2372  *      lost_out = packets_out and in_flight = retrans_out.
2373  *
2374  *              Essentially, we have now two algorithms counting
2375  *              lost packets.
2376  *
2377  *              FACK: It is the simplest heuristics. As soon as we decided
2378  *              that something is lost, we decide that _all_ not SACKed
2379  *              packets until the most forward SACK are lost. I.e.
2380  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2381  *              It is absolutely correct estimate, if network does not reorder
2382  *              packets. And it loses any connection to reality when reordering
2383  *              takes place. We use FACK by default until reordering
2384  *              is suspected on the path to this destination.
2385  *
2386  *              NewReno: when Recovery is entered, we assume that one segment
2387  *              is lost (classic Reno). While we are in Recovery and
2388  *              a partial ACK arrives, we assume that one more packet
2389  *              is lost (NewReno). This heuristics are the same in NewReno
2390  *              and SACK.
2391  *
2392  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2393  *  deflation etc. CWND is real congestion window, never inflated, changes
2394  *  only according to classic VJ rules.
2395  *
2396  * Really tricky (and requiring careful tuning) part of algorithm
2397  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2398  * The first determines the moment _when_ we should reduce CWND and,
2399  * hence, slow down forward transmission. In fact, it determines the moment
2400  * when we decide that hole is caused by loss, rather than by a reorder.
2401  *
2402  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2403  * holes, caused by lost packets.
2404  *
2405  * And the most logically complicated part of algorithm is undo
2406  * heuristics. We detect false retransmits due to both too early
2407  * fast retransmit (reordering) and underestimated RTO, analyzing
2408  * timestamps and D-SACKs. When we detect that some segments were
2409  * retransmitted by mistake and CWND reduction was wrong, we undo
2410  * window reduction and abort recovery phase. This logic is hidden
2411  * inside several functions named tcp_try_undo_<something>.
2412  */
2413
2414 /* This function decides, when we should leave Disordered state
2415  * and enter Recovery phase, reducing congestion window.
2416  *
2417  * Main question: may we further continue forward transmission
2418  * with the same cwnd?
2419  */
2420 static int tcp_time_to_recover(struct sock *sk)
2421 {
2422         struct tcp_sock *tp = tcp_sk(sk);
2423         __u32 packets_out;
2424
2425         /* Do not perform any recovery during F-RTO algorithm */
2426         if (tp->frto_counter)
2427                 return 0;
2428
2429         /* Trick#1: The loss is proven. */
2430         if (tp->lost_out)
2431                 return 1;
2432
2433         /* Not-A-Trick#2 : Classic rule... */
2434         if (tcp_dupack_heurestics(tp) > tp->reordering)
2435                 return 1;
2436
2437         /* Trick#3 : when we use RFC2988 timer restart, fast
2438          * retransmit can be triggered by timeout of queue head.
2439          */
2440         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2441                 return 1;
2442
2443         /* Trick#4: It is still not OK... But will it be useful to delay
2444          * recovery more?
2445          */
2446         packets_out = tp->packets_out;
2447         if (packets_out <= tp->reordering &&
2448             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2449             !tcp_may_send_now(sk)) {
2450                 /* We have nothing to send. This connection is limited
2451                  * either by receiver window or by application.
2452                  */
2453                 return 1;
2454         }
2455
2456         return 0;
2457 }
2458
2459 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2460  * is against sacked "cnt", otherwise it's against facked "cnt"
2461  */
2462 static void tcp_mark_head_lost(struct sock *sk, int packets)
2463 {
2464         struct tcp_sock *tp = tcp_sk(sk);
2465         struct sk_buff *skb;
2466         int cnt, oldcnt;
2467         int err;
2468         unsigned int mss;
2469
2470         WARN_ON(packets > tp->packets_out);
2471         if (tp->lost_skb_hint) {
2472                 skb = tp->lost_skb_hint;
2473                 cnt = tp->lost_cnt_hint;
2474         } else {
2475                 skb = tcp_write_queue_head(sk);
2476                 cnt = 0;
2477         }
2478
2479         tcp_for_write_queue_from(skb, sk) {
2480                 if (skb == tcp_send_head(sk))
2481                         break;
2482                 /* TODO: do this better */
2483                 /* this is not the most efficient way to do this... */
2484                 tp->lost_skb_hint = skb;
2485                 tp->lost_cnt_hint = cnt;
2486
2487                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2488                         break;
2489
2490                 oldcnt = cnt;
2491                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2492                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2493                         cnt += tcp_skb_pcount(skb);
2494
2495                 if (cnt > packets) {
2496                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2497                                 break;
2498
2499                         mss = skb_shinfo(skb)->gso_size;
2500                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2501                         if (err < 0)
2502                                 break;
2503                         cnt = packets;
2504                 }
2505
2506                 tcp_skb_mark_lost(tp, skb);
2507         }
2508         tcp_verify_left_out(tp);
2509 }
2510
2511 /* Account newly detected lost packet(s) */
2512
2513 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2514 {
2515         struct tcp_sock *tp = tcp_sk(sk);
2516
2517         if (tcp_is_reno(tp)) {
2518                 tcp_mark_head_lost(sk, 1);
2519         } else if (tcp_is_fack(tp)) {
2520                 int lost = tp->fackets_out - tp->reordering;
2521                 if (lost <= 0)
2522                         lost = 1;
2523                 tcp_mark_head_lost(sk, lost);
2524         } else {
2525                 int sacked_upto = tp->sacked_out - tp->reordering;
2526                 if (sacked_upto < fast_rexmit)
2527                         sacked_upto = fast_rexmit;
2528                 tcp_mark_head_lost(sk, sacked_upto);
2529         }
2530
2531         /* New heuristics: it is possible only after we switched
2532          * to restart timer each time when something is ACKed.
2533          * Hence, we can detect timed out packets during fast
2534          * retransmit without falling to slow start.
2535          */
2536         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2537                 struct sk_buff *skb;
2538
2539                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2540                         : tcp_write_queue_head(sk);
2541
2542                 tcp_for_write_queue_from(skb, sk) {
2543                         if (skb == tcp_send_head(sk))
2544                                 break;
2545                         if (!tcp_skb_timedout(sk, skb))
2546                                 break;
2547
2548                         tcp_skb_mark_lost(tp, skb);
2549                 }
2550
2551                 tp->scoreboard_skb_hint = skb;
2552
2553                 tcp_verify_left_out(tp);
2554         }
2555 }
2556
2557 /* CWND moderation, preventing bursts due to too big ACKs
2558  * in dubious situations.
2559  */
2560 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2561 {
2562         tp->snd_cwnd = min(tp->snd_cwnd,
2563                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2564         tp->snd_cwnd_stamp = tcp_time_stamp;
2565 }
2566
2567 /* Lower bound on congestion window is slow start threshold
2568  * unless congestion avoidance choice decides to overide it.
2569  */
2570 static inline u32 tcp_cwnd_min(const struct sock *sk)
2571 {
2572         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2573
2574         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2575 }
2576
2577 /* Decrease cwnd each second ack. */
2578 static void tcp_cwnd_down(struct sock *sk, int flag)
2579 {
2580         struct tcp_sock *tp = tcp_sk(sk);
2581         int decr = tp->snd_cwnd_cnt + 1;
2582
2583         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2584             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2585                 tp->snd_cwnd_cnt = decr & 1;
2586                 decr >>= 1;
2587
2588                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2589                         tp->snd_cwnd -= decr;
2590
2591                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2592                 tp->snd_cwnd_stamp = tcp_time_stamp;
2593         }
2594 }
2595
2596 /* Nothing was retransmitted or returned timestamp is less
2597  * than timestamp of the first retransmission.
2598  */
2599 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2600 {
2601         return !tp->retrans_stamp ||
2602                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2603                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2604 }
2605
2606 /* Undo procedures. */
2607
2608 #if FASTRETRANS_DEBUG > 1
2609 static void DBGUNDO(struct sock *sk, const char *msg)
2610 {
2611         struct tcp_sock *tp = tcp_sk(sk);
2612         struct inet_sock *inet = inet_sk(sk);
2613
2614         if (sk->sk_family == AF_INET) {
2615                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2616                        msg,
2617                        &inet->daddr, ntohs(inet->dport),
2618                        tp->snd_cwnd, tcp_left_out(tp),
2619                        tp->snd_ssthresh, tp->prior_ssthresh,
2620                        tp->packets_out);
2621         }
2622 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2623         else if (sk->sk_family == AF_INET6) {
2624                 struct ipv6_pinfo *np = inet6_sk(sk);
2625                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2626                        msg,
2627                        &np->daddr, ntohs(inet->dport),
2628                        tp->snd_cwnd, tcp_left_out(tp),
2629                        tp->snd_ssthresh, tp->prior_ssthresh,
2630                        tp->packets_out);
2631         }
2632 #endif
2633 }
2634 #else
2635 #define DBGUNDO(x...) do { } while (0)
2636 #endif
2637
2638 static void tcp_undo_cwr(struct sock *sk, const int undo)
2639 {
2640         struct tcp_sock *tp = tcp_sk(sk);
2641
2642         if (tp->prior_ssthresh) {
2643                 const struct inet_connection_sock *icsk = inet_csk(sk);
2644
2645                 if (icsk->icsk_ca_ops->undo_cwnd)
2646                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2647                 else
2648                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2649
2650                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2651                         tp->snd_ssthresh = tp->prior_ssthresh;
2652                         TCP_ECN_withdraw_cwr(tp);
2653                 }
2654         } else {
2655                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2656         }
2657         tcp_moderate_cwnd(tp);
2658         tp->snd_cwnd_stamp = tcp_time_stamp;
2659 }
2660
2661 static inline int tcp_may_undo(struct tcp_sock *tp)
2662 {
2663         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2664 }
2665
2666 /* People celebrate: "We love our President!" */
2667 static int tcp_try_undo_recovery(struct sock *sk)
2668 {
2669         struct tcp_sock *tp = tcp_sk(sk);
2670
2671         if (tcp_may_undo(tp)) {
2672                 int mib_idx;
2673
2674                 /* Happy end! We did not retransmit anything
2675                  * or our original transmission succeeded.
2676                  */
2677                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2678                 tcp_undo_cwr(sk, 1);
2679                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2680                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2681                 else
2682                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2683
2684                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2685                 tp->undo_marker = 0;
2686         }
2687         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2688                 /* Hold old state until something *above* high_seq
2689                  * is ACKed. For Reno it is MUST to prevent false
2690                  * fast retransmits (RFC2582). SACK TCP is safe. */
2691                 tcp_moderate_cwnd(tp);
2692                 return 1;
2693         }
2694         tcp_set_ca_state(sk, TCP_CA_Open);
2695         return 0;
2696 }
2697
2698 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2699 static void tcp_try_undo_dsack(struct sock *sk)
2700 {
2701         struct tcp_sock *tp = tcp_sk(sk);
2702
2703         if (tp->undo_marker && !tp->undo_retrans) {
2704                 DBGUNDO(sk, "D-SACK");
2705                 tcp_undo_cwr(sk, 1);
2706                 tp->undo_marker = 0;
2707                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2708         }
2709 }
2710
2711 /* Undo during fast recovery after partial ACK. */
2712
2713 static int tcp_try_undo_partial(struct sock *sk, int acked)
2714 {
2715         struct tcp_sock *tp = tcp_sk(sk);
2716         /* Partial ACK arrived. Force Hoe's retransmit. */
2717         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2718
2719         if (tcp_may_undo(tp)) {
2720                 /* Plain luck! Hole if filled with delayed
2721                  * packet, rather than with a retransmit.
2722                  */
2723                 if (tp->retrans_out == 0)
2724                         tp->retrans_stamp = 0;
2725
2726                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2727
2728                 DBGUNDO(sk, "Hoe");
2729                 tcp_undo_cwr(sk, 0);
2730                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2731
2732                 /* So... Do not make Hoe's retransmit yet.
2733                  * If the first packet was delayed, the rest
2734                  * ones are most probably delayed as well.
2735                  */
2736                 failed = 0;
2737         }
2738         return failed;
2739 }
2740
2741 /* Undo during loss recovery after partial ACK. */
2742 static int tcp_try_undo_loss(struct sock *sk)
2743 {
2744         struct tcp_sock *tp = tcp_sk(sk);
2745
2746         if (tcp_may_undo(tp)) {
2747                 struct sk_buff *skb;
2748                 tcp_for_write_queue(skb, sk) {
2749                         if (skb == tcp_send_head(sk))
2750                                 break;
2751                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2752                 }
2753
2754                 tcp_clear_all_retrans_hints(tp);
2755
2756                 DBGUNDO(sk, "partial loss");
2757                 tp->lost_out = 0;
2758                 tcp_undo_cwr(sk, 1);
2759                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2760                 inet_csk(sk)->icsk_retransmits = 0;
2761                 tp->undo_marker = 0;
2762                 if (tcp_is_sack(tp))
2763                         tcp_set_ca_state(sk, TCP_CA_Open);
2764                 return 1;
2765         }
2766         return 0;
2767 }
2768
2769 static inline void tcp_complete_cwr(struct sock *sk)
2770 {
2771         struct tcp_sock *tp = tcp_sk(sk);
2772         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2773         tp->snd_cwnd_stamp = tcp_time_stamp;
2774         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2775 }
2776
2777 static void tcp_try_keep_open(struct sock *sk)
2778 {
2779         struct tcp_sock *tp = tcp_sk(sk);
2780         int state = TCP_CA_Open;
2781
2782         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2783                 state = TCP_CA_Disorder;
2784
2785         if (inet_csk(sk)->icsk_ca_state != state) {
2786                 tcp_set_ca_state(sk, state);
2787                 tp->high_seq = tp->snd_nxt;
2788         }
2789 }
2790
2791 static void tcp_try_to_open(struct sock *sk, int flag)
2792 {
2793         struct tcp_sock *tp = tcp_sk(sk);
2794
2795         tcp_verify_left_out(tp);
2796
2797         if (!tp->frto_counter && tp->retrans_out == 0)
2798                 tp->retrans_stamp = 0;
2799
2800         if (flag & FLAG_ECE)
2801                 tcp_enter_cwr(sk, 1);
2802
2803         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2804                 tcp_try_keep_open(sk);
2805                 tcp_moderate_cwnd(tp);
2806         } else {
2807                 tcp_cwnd_down(sk, flag);
2808         }
2809 }
2810
2811 static void tcp_mtup_probe_failed(struct sock *sk)
2812 {
2813         struct inet_connection_sock *icsk = inet_csk(sk);
2814
2815         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2816         icsk->icsk_mtup.probe_size = 0;
2817 }
2818
2819 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2820 {
2821         struct tcp_sock *tp = tcp_sk(sk);
2822         struct inet_connection_sock *icsk = inet_csk(sk);
2823
2824         /* FIXME: breaks with very large cwnd */
2825         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2826         tp->snd_cwnd = tp->snd_cwnd *
2827                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2828                        icsk->icsk_mtup.probe_size;
2829         tp->snd_cwnd_cnt = 0;
2830         tp->snd_cwnd_stamp = tcp_time_stamp;
2831         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2832
2833         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2834         icsk->icsk_mtup.probe_size = 0;
2835         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2836 }
2837
2838 /* Do a simple retransmit without using the backoff mechanisms in
2839  * tcp_timer. This is used for path mtu discovery.
2840  * The socket is already locked here.
2841  */
2842 void tcp_simple_retransmit(struct sock *sk)
2843 {
2844         const struct inet_connection_sock *icsk = inet_csk(sk);
2845         struct tcp_sock *tp = tcp_sk(sk);
2846         struct sk_buff *skb;
2847         unsigned int mss = tcp_current_mss(sk, 0);
2848         u32 prior_lost = tp->lost_out;
2849
2850         tcp_for_write_queue(skb, sk) {
2851                 if (skb == tcp_send_head(sk))
2852                         break;
2853                 if (skb->len > mss &&
2854                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2855                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2856                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2857                                 tp->retrans_out -= tcp_skb_pcount(skb);
2858                         }
2859                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2860                 }
2861         }
2862
2863         tcp_clear_retrans_hints_partial(tp);
2864
2865         if (prior_lost == tp->lost_out)
2866                 return;
2867
2868         if (tcp_is_reno(tp))
2869                 tcp_limit_reno_sacked(tp);
2870
2871         tcp_verify_left_out(tp);
2872
2873         /* Don't muck with the congestion window here.
2874          * Reason is that we do not increase amount of _data_
2875          * in network, but units changed and effective
2876          * cwnd/ssthresh really reduced now.
2877          */
2878         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2879                 tp->high_seq = tp->snd_nxt;
2880                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2881                 tp->prior_ssthresh = 0;
2882                 tp->undo_marker = 0;
2883                 tcp_set_ca_state(sk, TCP_CA_Loss);
2884         }
2885         tcp_xmit_retransmit_queue(sk);
2886 }
2887
2888 /* Process an event, which can update packets-in-flight not trivially.
2889  * Main goal of this function is to calculate new estimate for left_out,
2890  * taking into account both packets sitting in receiver's buffer and
2891  * packets lost by network.
2892  *
2893  * Besides that it does CWND reduction, when packet loss is detected
2894  * and changes state of machine.
2895  *
2896  * It does _not_ decide what to send, it is made in function
2897  * tcp_xmit_retransmit_queue().
2898  */
2899 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2900 {
2901         struct inet_connection_sock *icsk = inet_csk(sk);
2902         struct tcp_sock *tp = tcp_sk(sk);
2903         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2904         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2905                                     (tcp_fackets_out(tp) > tp->reordering));
2906         int fast_rexmit = 0, mib_idx;
2907
2908         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2909                 tp->sacked_out = 0;
2910         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2911                 tp->fackets_out = 0;
2912
2913         /* Now state machine starts.
2914          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2915         if (flag & FLAG_ECE)
2916                 tp->prior_ssthresh = 0;
2917
2918         /* B. In all the states check for reneging SACKs. */
2919         if (tcp_check_sack_reneging(sk, flag))
2920                 return;
2921
2922         /* C. Process data loss notification, provided it is valid. */
2923         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2924             before(tp->snd_una, tp->high_seq) &&
2925             icsk->icsk_ca_state != TCP_CA_Open &&
2926             tp->fackets_out > tp->reordering) {
2927                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2928                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2929         }
2930
2931         /* D. Check consistency of the current state. */
2932         tcp_verify_left_out(tp);
2933
2934         /* E. Check state exit conditions. State can be terminated
2935          *    when high_seq is ACKed. */
2936         if (icsk->icsk_ca_state == TCP_CA_Open) {
2937                 WARN_ON(tp->retrans_out != 0);
2938                 tp->retrans_stamp = 0;
2939         } else if (!before(tp->snd_una, tp->high_seq)) {
2940                 switch (icsk->icsk_ca_state) {
2941                 case TCP_CA_Loss:
2942                         icsk->icsk_retransmits = 0;
2943                         if (tcp_try_undo_recovery(sk))
2944                                 return;
2945                         break;
2946
2947                 case TCP_CA_CWR:
2948                         /* CWR is to be held something *above* high_seq
2949                          * is ACKed for CWR bit to reach receiver. */
2950                         if (tp->snd_una != tp->high_seq) {
2951                                 tcp_complete_cwr(sk);
2952                                 tcp_set_ca_state(sk, TCP_CA_Open);
2953                         }
2954                         break;
2955
2956                 case TCP_CA_Disorder:
2957                         tcp_try_undo_dsack(sk);
2958                         if (!tp->undo_marker ||
2959                             /* For SACK case do not Open to allow to undo
2960                              * catching for all duplicate ACKs. */
2961                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2962                                 tp->undo_marker = 0;
2963                                 tcp_set_ca_state(sk, TCP_CA_Open);
2964                         }
2965                         break;
2966
2967                 case TCP_CA_Recovery:
2968                         if (tcp_is_reno(tp))
2969                                 tcp_reset_reno_sack(tp);
2970                         if (tcp_try_undo_recovery(sk))
2971                                 return;
2972                         tcp_complete_cwr(sk);
2973                         break;
2974                 }
2975         }
2976
2977         /* F. Process state. */
2978         switch (icsk->icsk_ca_state) {
2979         case TCP_CA_Recovery:
2980                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2981                         if (tcp_is_reno(tp) && is_dupack)
2982                                 tcp_add_reno_sack(sk);
2983                 } else
2984                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2985                 break;
2986         case TCP_CA_Loss:
2987                 if (flag & FLAG_DATA_ACKED)
2988                         icsk->icsk_retransmits = 0;
2989                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2990                         tcp_reset_reno_sack(tp);
2991                 if (!tcp_try_undo_loss(sk)) {
2992                         tcp_moderate_cwnd(tp);
2993                         tcp_xmit_retransmit_queue(sk);
2994                         return;
2995                 }
2996                 if (icsk->icsk_ca_state != TCP_CA_Open)
2997                         return;
2998                 /* Loss is undone; fall through to processing in Open state. */
2999         default:
3000                 if (tcp_is_reno(tp)) {
3001                         if (flag & FLAG_SND_UNA_ADVANCED)
3002                                 tcp_reset_reno_sack(tp);
3003                         if (is_dupack)
3004                                 tcp_add_reno_sack(sk);
3005                 }
3006
3007                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3008                         tcp_try_undo_dsack(sk);
3009
3010                 if (!tcp_time_to_recover(sk)) {
3011                         tcp_try_to_open(sk, flag);
3012                         return;
3013                 }
3014
3015                 /* MTU probe failure: don't reduce cwnd */
3016                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3017                     icsk->icsk_mtup.probe_size &&
3018                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3019                         tcp_mtup_probe_failed(sk);
3020                         /* Restores the reduction we did in tcp_mtup_probe() */
3021                         tp->snd_cwnd++;
3022                         tcp_simple_retransmit(sk);
3023                         return;
3024                 }
3025
3026                 /* Otherwise enter Recovery state */
3027
3028                 if (tcp_is_reno(tp))
3029                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3030                 else
3031                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3032
3033                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3034
3035                 tp->high_seq = tp->snd_nxt;
3036                 tp->prior_ssthresh = 0;
3037                 tp->undo_marker = tp->snd_una;
3038                 tp->undo_retrans = tp->retrans_out;
3039
3040                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3041                         if (!(flag & FLAG_ECE))
3042                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3043                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3044                         TCP_ECN_queue_cwr(tp);
3045                 }
3046
3047                 tp->bytes_acked = 0;
3048                 tp->snd_cwnd_cnt = 0;
3049                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3050                 fast_rexmit = 1;
3051         }
3052
3053         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3054                 tcp_update_scoreboard(sk, fast_rexmit);
3055         tcp_cwnd_down(sk, flag);
3056         tcp_xmit_retransmit_queue(sk);
3057 }
3058
3059 /* Read draft-ietf-tcplw-high-performance before mucking
3060  * with this code. (Supersedes RFC1323)
3061  */
3062 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3063 {
3064         /* RTTM Rule: A TSecr value received in a segment is used to
3065          * update the averaged RTT measurement only if the segment
3066          * acknowledges some new data, i.e., only if it advances the
3067          * left edge of the send window.
3068          *
3069          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3070          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3071          *
3072          * Changed: reset backoff as soon as we see the first valid sample.
3073          * If we do not, we get strongly overestimated rto. With timestamps
3074          * samples are accepted even from very old segments: f.e., when rtt=1
3075          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3076          * answer arrives rto becomes 120 seconds! If at least one of segments
3077          * in window is lost... Voila.                          --ANK (010210)
3078          */
3079         struct tcp_sock *tp = tcp_sk(sk);
3080         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3081         tcp_rtt_estimator(sk, seq_rtt);
3082         tcp_set_rto(sk);
3083         inet_csk(sk)->icsk_backoff = 0;
3084         tcp_bound_rto(sk);
3085 }
3086
3087 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3088 {
3089         /* We don't have a timestamp. Can only use
3090          * packets that are not retransmitted to determine
3091          * rtt estimates. Also, we must not reset the
3092          * backoff for rto until we get a non-retransmitted
3093          * packet. This allows us to deal with a situation
3094          * where the network delay has increased suddenly.
3095          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3096          */
3097
3098         if (flag & FLAG_RETRANS_DATA_ACKED)
3099                 return;
3100
3101         tcp_rtt_estimator(sk, seq_rtt);
3102         tcp_set_rto(sk);
3103         inet_csk(sk)->icsk_backoff = 0;
3104         tcp_bound_rto(sk);
3105 }
3106
3107 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3108                                       const s32 seq_rtt)
3109 {
3110         const struct tcp_sock *tp = tcp_sk(sk);
3111         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3112         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3113                 tcp_ack_saw_tstamp(sk, flag);
3114         else if (seq_rtt >= 0)
3115                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3116 }
3117
3118 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3119 {
3120         const struct inet_connection_sock *icsk = inet_csk(sk);
3121         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3122         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3123 }
3124
3125 /* Restart timer after forward progress on connection.
3126  * RFC2988 recommends to restart timer to now+rto.
3127  */
3128 static void tcp_rearm_rto(struct sock *sk)
3129 {
3130         struct tcp_sock *tp = tcp_sk(sk);
3131
3132         if (!tp->packets_out) {
3133                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3134         } else {
3135                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3136                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3137         }
3138 }
3139
3140 /* If we get here, the whole TSO packet has not been acked. */
3141 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3142 {
3143         struct tcp_sock *tp = tcp_sk(sk);
3144         u32 packets_acked;
3145
3146         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3147
3148         packets_acked = tcp_skb_pcount(skb);
3149         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3150                 return 0;
3151         packets_acked -= tcp_skb_pcount(skb);
3152
3153         if (packets_acked) {
3154                 BUG_ON(tcp_skb_pcount(skb) == 0);
3155                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3156         }
3157
3158         return packets_acked;
3159 }
3160
3161 /* Remove acknowledged frames from the retransmission queue. If our packet
3162  * is before the ack sequence we can discard it as it's confirmed to have
3163  * arrived at the other end.
3164  */
3165 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3166                                u32 prior_snd_una)
3167 {
3168         struct tcp_sock *tp = tcp_sk(sk);
3169         const struct inet_connection_sock *icsk = inet_csk(sk);
3170         struct sk_buff *skb;
3171         u32 now = tcp_time_stamp;
3172         int fully_acked = 1;
3173         int flag = 0;
3174         u32 pkts_acked = 0;
3175         u32 reord = tp->packets_out;
3176         u32 prior_sacked = tp->sacked_out;
3177         s32 seq_rtt = -1;
3178         s32 ca_seq_rtt = -1;
3179         ktime_t last_ackt = net_invalid_timestamp();
3180
3181         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3182                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3183                 u32 end_seq;
3184                 u32 acked_pcount;
3185                 u8 sacked = scb->sacked;
3186
3187                 /* Determine how many packets and what bytes were acked, tso and else */
3188                 if (after(scb->end_seq, tp->snd_una)) {
3189                         if (tcp_skb_pcount(skb) == 1 ||
3190                             !after(tp->snd_una, scb->seq))
3191                                 break;
3192
3193                         acked_pcount = tcp_tso_acked(sk, skb);
3194                         if (!acked_pcount)
3195                                 break;
3196
3197                         fully_acked = 0;
3198                         end_seq = tp->snd_una;
3199                 } else {
3200                         acked_pcount = tcp_skb_pcount(skb);
3201                         end_seq = scb->end_seq;
3202                 }
3203
3204                 /* MTU probing checks */
3205                 if (fully_acked && icsk->icsk_mtup.probe_size &&
3206                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3207                         tcp_mtup_probe_success(sk, skb);
3208                 }
3209
3210                 if (sacked & TCPCB_RETRANS) {
3211                         if (sacked & TCPCB_SACKED_RETRANS)
3212                                 tp->retrans_out -= acked_pcount;
3213                         flag |= FLAG_RETRANS_DATA_ACKED;
3214                         ca_seq_rtt = -1;
3215                         seq_rtt = -1;
3216                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3217                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3218                 } else {
3219                         ca_seq_rtt = now - scb->when;
3220                         last_ackt = skb->tstamp;
3221                         if (seq_rtt < 0) {
3222                                 seq_rtt = ca_seq_rtt;
3223                         }
3224                         if (!(sacked & TCPCB_SACKED_ACKED))
3225                                 reord = min(pkts_acked, reord);
3226                 }
3227
3228                 if (sacked & TCPCB_SACKED_ACKED)
3229                         tp->sacked_out -= acked_pcount;
3230                 if (sacked & TCPCB_LOST)
3231                         tp->lost_out -= acked_pcount;
3232
3233                 tp->packets_out -= acked_pcount;
3234                 pkts_acked += acked_pcount;
3235
3236                 /* Initial outgoing SYN's get put onto the write_queue
3237                  * just like anything else we transmit.  It is not
3238                  * true data, and if we misinform our callers that
3239                  * this ACK acks real data, we will erroneously exit
3240                  * connection startup slow start one packet too
3241                  * quickly.  This is severely frowned upon behavior.
3242                  */
3243                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3244                         flag |= FLAG_DATA_ACKED;
3245                 } else {
3246                         flag |= FLAG_SYN_ACKED;
3247                         tp->retrans_stamp = 0;
3248                 }
3249
3250                 if (!fully_acked)
3251                         break;
3252
3253                 tcp_unlink_write_queue(skb, sk);
3254                 sk_wmem_free_skb(sk, skb);
3255                 tp->scoreboard_skb_hint = NULL;
3256                 if (skb == tp->retransmit_skb_hint)
3257                         tp->retransmit_skb_hint = NULL;
3258                 if (skb == tp->lost_skb_hint)
3259                         tp->lost_skb_hint = NULL;
3260         }
3261
3262         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3263                 tp->snd_up = tp->snd_una;
3264
3265         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3266                 flag |= FLAG_SACK_RENEGING;
3267
3268         if (flag & FLAG_ACKED) {
3269                 const struct tcp_congestion_ops *ca_ops
3270                         = inet_csk(sk)->icsk_ca_ops;
3271
3272                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3273                 tcp_rearm_rto(sk);
3274
3275                 if (tcp_is_reno(tp)) {
3276                         tcp_remove_reno_sacks(sk, pkts_acked);
3277                 } else {
3278                         /* Non-retransmitted hole got filled? That's reordering */
3279                         if (reord < prior_fackets)
3280                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3281
3282                         /* No need to care for underflows here because
3283                          * the lost_skb_hint gets NULLed if we're past it
3284                          * (or something non-trivial happened)
3285                          */
3286                         if (tcp_is_fack(tp))
3287                                 tp->lost_cnt_hint -= pkts_acked;
3288                         else
3289                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3290                 }
3291
3292                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3293
3294                 if (ca_ops->pkts_acked) {
3295                         s32 rtt_us = -1;
3296
3297                         /* Is the ACK triggering packet unambiguous? */
3298                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3299                                 /* High resolution needed and available? */
3300                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3301                                     !ktime_equal(last_ackt,
3302                                                  net_invalid_timestamp()))
3303                                         rtt_us = ktime_us_delta(ktime_get_real(),
3304                                                                 last_ackt);
3305                                 else if (ca_seq_rtt > 0)
3306                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3307                         }
3308
3309                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3310                 }
3311         }
3312
3313 #if FASTRETRANS_DEBUG > 0
3314         WARN_ON((int)tp->sacked_out < 0);
3315         WARN_ON((int)tp->lost_out < 0);
3316         WARN_ON((int)tp->retrans_out < 0);
3317         if (!tp->packets_out && tcp_is_sack(tp)) {
3318                 icsk = inet_csk(sk);
3319                 if (tp->lost_out) {
3320                         printk(KERN_DEBUG "Leak l=%u %d\n",
3321                                tp->lost_out, icsk->icsk_ca_state);
3322                         tp->lost_out = 0;
3323                 }
3324                 if (tp->sacked_out) {
3325                         printk(KERN_DEBUG "Leak s=%u %d\n",
3326                                tp->sacked_out, icsk->icsk_ca_state);
3327                         tp->sacked_out = 0;
3328                 }
3329                 if (tp->retrans_out) {
3330                         printk(KERN_DEBUG "Leak r=%u %d\n",
3331                                tp->retrans_out, icsk->icsk_ca_state);
3332                         tp->retrans_out = 0;
3333                 }
3334         }
3335 #endif
3336         return flag;
3337 }
3338
3339 static void tcp_ack_probe(struct sock *sk)
3340 {
3341         const struct tcp_sock *tp = tcp_sk(sk);
3342         struct inet_connection_sock *icsk = inet_csk(sk);
3343
3344         /* Was it a usable window open? */
3345
3346         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3347                 icsk->icsk_backoff = 0;
3348                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3349                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3350                  * This function is not for random using!
3351                  */
3352         } else {
3353                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3354                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3355                                           TCP_RTO_MAX);
3356         }
3357 }
3358
3359 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3360 {
3361         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3362                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3363 }
3364
3365 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3366 {
3367         const struct tcp_sock *tp = tcp_sk(sk);
3368         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3369                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3370 }
3371
3372 /* Check that window update is acceptable.
3373  * The function assumes that snd_una<=ack<=snd_next.
3374  */
3375 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3376                                         const u32 ack, const u32 ack_seq,
3377                                         const u32 nwin)
3378 {
3379         return (after(ack, tp->snd_una) ||
3380                 after(ack_seq, tp->snd_wl1) ||
3381                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3382 }
3383
3384 /* Update our send window.
3385  *
3386  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3387  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3388  */
3389 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3390                                  u32 ack_seq)
3391 {
3392         struct tcp_sock *tp = tcp_sk(sk);
3393         int flag = 0;
3394         u32 nwin = ntohs(tcp_hdr(skb)->window);
3395
3396         if (likely(!tcp_hdr(skb)->syn))
3397                 nwin <<= tp->rx_opt.snd_wscale;
3398
3399         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3400                 flag |= FLAG_WIN_UPDATE;
3401                 tcp_update_wl(tp, ack, ack_seq);
3402
3403                 if (tp->snd_wnd != nwin) {
3404                         tp->snd_wnd = nwin;
3405
3406                         /* Note, it is the only place, where
3407                          * fast path is recovered for sending TCP.
3408                          */
3409                         tp->pred_flags = 0;
3410                         tcp_fast_path_check(sk);
3411
3412                         if (nwin > tp->max_window) {
3413                                 tp->max_window = nwin;
3414                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3415                         }
3416                 }
3417         }
3418
3419         tp->snd_una = ack;
3420
3421         return flag;
3422 }
3423
3424 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3425  * continue in congestion avoidance.
3426  */
3427 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3428 {
3429         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3430         tp->snd_cwnd_cnt = 0;
3431         tp->bytes_acked = 0;
3432         TCP_ECN_queue_cwr(tp);
3433         tcp_moderate_cwnd(tp);
3434 }
3435
3436 /* A conservative spurious RTO response algorithm: reduce cwnd using
3437  * rate halving and continue in congestion avoidance.
3438  */
3439 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3440 {
3441         tcp_enter_cwr(sk, 0);
3442 }
3443
3444 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3445 {
3446         if (flag & FLAG_ECE)
3447                 tcp_ratehalving_spur_to_response(sk);
3448         else
3449                 tcp_undo_cwr(sk, 1);
3450 }
3451
3452 /* F-RTO spurious RTO detection algorithm (RFC4138)
3453  *
3454  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3455  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3456  * window (but not to or beyond highest sequence sent before RTO):
3457  *   On First ACK,  send two new segments out.
3458  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3459  *                  algorithm is not part of the F-RTO detection algorithm
3460  *                  given in RFC4138 but can be selected separately).
3461  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3462  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3463  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3464  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3465  *
3466  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3467  * original window even after we transmit two new data segments.
3468  *
3469  * SACK version:
3470  *   on first step, wait until first cumulative ACK arrives, then move to
3471  *   the second step. In second step, the next ACK decides.
3472  *
3473  * F-RTO is implemented (mainly) in four functions:
3474  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3475  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3476  *     called when tcp_use_frto() showed green light
3477  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3478  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3479  *     to prove that the RTO is indeed spurious. It transfers the control
3480  *     from F-RTO to the conventional RTO recovery
3481  */
3482 static int tcp_process_frto(struct sock *sk, int flag)
3483 {
3484         struct tcp_sock *tp = tcp_sk(sk);
3485
3486         tcp_verify_left_out(tp);
3487
3488         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3489         if (flag & FLAG_DATA_ACKED)
3490                 inet_csk(sk)->icsk_retransmits = 0;
3491
3492         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3493             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3494                 tp->undo_marker = 0;
3495
3496         if (!before(tp->snd_una, tp->frto_highmark)) {
3497                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3498                 return 1;
3499         }
3500
3501         if (!tcp_is_sackfrto(tp)) {
3502                 /* RFC4138 shortcoming in step 2; should also have case c):
3503                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3504                  * data, winupdate
3505                  */
3506                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3507                         return 1;
3508
3509                 if (!(flag & FLAG_DATA_ACKED)) {
3510                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3511                                             flag);
3512                         return 1;
3513                 }
3514         } else {
3515                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3516                         /* Prevent sending of new data. */
3517                         tp->snd_cwnd = min(tp->snd_cwnd,
3518                                            tcp_packets_in_flight(tp));
3519                         return 1;
3520                 }
3521
3522                 if ((tp->frto_counter >= 2) &&
3523                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3524                      ((flag & FLAG_DATA_SACKED) &&
3525                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3526                         /* RFC4138 shortcoming (see comment above) */
3527                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3528                             (flag & FLAG_NOT_DUP))
3529                                 return 1;
3530
3531                         tcp_enter_frto_loss(sk, 3, flag);
3532                         return 1;
3533                 }
3534         }
3535
3536         if (tp->frto_counter == 1) {
3537                 /* tcp_may_send_now needs to see updated state */
3538                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3539                 tp->frto_counter = 2;
3540
3541                 if (!tcp_may_send_now(sk))
3542                         tcp_enter_frto_loss(sk, 2, flag);
3543
3544                 return 1;
3545         } else {
3546                 switch (sysctl_tcp_frto_response) {
3547                 case 2:
3548                         tcp_undo_spur_to_response(sk, flag);
3549                         break;
3550                 case 1:
3551                         tcp_conservative_spur_to_response(tp);
3552                         break;
3553                 default:
3554                         tcp_ratehalving_spur_to_response(sk);
3555                         break;
3556                 }
3557                 tp->frto_counter = 0;
3558                 tp->undo_marker = 0;
3559                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3560         }
3561         return 0;
3562 }
3563
3564 /* This routine deals with incoming acks, but not outgoing ones. */
3565 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3566 {
3567         struct inet_connection_sock *icsk = inet_csk(sk);
3568         struct tcp_sock *tp = tcp_sk(sk);
3569         u32 prior_snd_una = tp->snd_una;
3570         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3571         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3572         u32 prior_in_flight;
3573         u32 prior_fackets;
3574         int prior_packets;
3575         int frto_cwnd = 0;
3576
3577         /* If the ack is newer than sent or older than previous acks
3578          * then we can probably ignore it.
3579          */
3580         if (after(ack, tp->snd_nxt))
3581                 goto uninteresting_ack;
3582
3583         if (before(ack, prior_snd_una))
3584                 goto old_ack;
3585
3586         if (after(ack, prior_snd_una))
3587                 flag |= FLAG_SND_UNA_ADVANCED;
3588
3589         if (sysctl_tcp_abc) {
3590                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3591                         tp->bytes_acked += ack - prior_snd_una;
3592                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3593                         /* we assume just one segment left network */
3594                         tp->bytes_acked += min(ack - prior_snd_una,
3595                                                tp->mss_cache);
3596         }
3597
3598         prior_fackets = tp->fackets_out;
3599         prior_in_flight = tcp_packets_in_flight(tp);
3600
3601         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3602                 /* Window is constant, pure forward advance.
3603                  * No more checks are required.
3604                  * Note, we use the fact that SND.UNA>=SND.WL2.
3605                  */
3606                 tcp_update_wl(tp, ack, ack_seq);
3607                 tp->snd_una = ack;
3608                 flag |= FLAG_WIN_UPDATE;
3609
3610                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3611
3612                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3613         } else {
3614                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3615                         flag |= FLAG_DATA;
3616                 else
3617                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3618
3619                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3620
3621                 if (TCP_SKB_CB(skb)->sacked)
3622                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3623
3624                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3625                         flag |= FLAG_ECE;
3626
3627                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3628         }
3629
3630         /* We passed data and got it acked, remove any soft error
3631          * log. Something worked...
3632          */
3633         sk->sk_err_soft = 0;
3634         icsk->icsk_probes_out = 0;
3635         tp->rcv_tstamp = tcp_time_stamp;
3636         prior_packets = tp->packets_out;
3637         if (!prior_packets)
3638                 goto no_queue;
3639
3640         /* See if we can take anything off of the retransmit queue. */
3641         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3642
3643         if (tp->frto_counter)
3644                 frto_cwnd = tcp_process_frto(sk, flag);
3645         /* Guarantee sacktag reordering detection against wrap-arounds */
3646         if (before(tp->frto_highmark, tp->snd_una))
3647                 tp->frto_highmark = 0;
3648
3649         if (tcp_ack_is_dubious(sk, flag)) {
3650                 /* Advance CWND, if state allows this. */
3651                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3652                     tcp_may_raise_cwnd(sk, flag))
3653                         tcp_cong_avoid(sk, ack, prior_in_flight);
3654                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3655                                       flag);
3656         } else {
3657                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3658                         tcp_cong_avoid(sk, ack, prior_in_flight);
3659         }
3660
3661         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3662                 dst_confirm(sk->sk_dst_cache);
3663
3664         return 1;
3665
3666 no_queue:
3667         /* If this ack opens up a zero window, clear backoff.  It was
3668          * being used to time the probes, and is probably far higher than
3669          * it needs to be for normal retransmission.
3670          */
3671         if (tcp_send_head(sk))
3672                 tcp_ack_probe(sk);
3673         return 1;
3674
3675 old_ack:
3676         if (TCP_SKB_CB(skb)->sacked) {
3677                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3678                 if (icsk->icsk_ca_state == TCP_CA_Open)
3679                         tcp_try_keep_open(sk);
3680         }
3681
3682 uninteresting_ack:
3683         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3684         return 0;
3685 }
3686
3687 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3688  * But, this can also be called on packets in the established flow when
3689  * the fast version below fails.
3690  */
3691 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3692                        int estab)
3693 {
3694         unsigned char *ptr;
3695         struct tcphdr *th = tcp_hdr(skb);
3696         int length = (th->doff * 4) - sizeof(struct tcphdr);
3697
3698         ptr = (unsigned char *)(th + 1);
3699         opt_rx->saw_tstamp = 0;
3700
3701         while (length > 0) {
3702                 int opcode = *ptr++;
3703                 int opsize;
3704
3705                 switch (opcode) {
3706                 case TCPOPT_EOL:
3707                         return;
3708                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3709                         length--;
3710                         continue;
3711                 default:
3712                         opsize = *ptr++;
3713                         if (opsize < 2) /* "silly options" */
3714                                 return;
3715                         if (opsize > length)
3716                                 return; /* don't parse partial options */
3717                         switch (opcode) {
3718                         case TCPOPT_MSS:
3719                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3720                                         u16 in_mss = get_unaligned_be16(ptr);
3721                                         if (in_mss) {
3722                                                 if (opt_rx->user_mss &&
3723                                                     opt_rx->user_mss < in_mss)
3724                                                         in_mss = opt_rx->user_mss;
3725                                                 opt_rx->mss_clamp = in_mss;
3726                                         }
3727                                 }
3728                                 break;
3729                         case TCPOPT_WINDOW:
3730                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3731                                     !estab && sysctl_tcp_window_scaling) {
3732                                         __u8 snd_wscale = *(__u8 *)ptr;
3733                                         opt_rx->wscale_ok = 1;
3734                                         if (snd_wscale > 14) {
3735                                                 if (net_ratelimit())
3736                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3737                                                                "scaling value %d >14 received.\n",
3738                                                                snd_wscale);
3739                                                 snd_wscale = 14;
3740                                         }
3741                                         opt_rx->snd_wscale = snd_wscale;
3742                                 }
3743                                 break;
3744                         case TCPOPT_TIMESTAMP:
3745                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3746                                     ((estab && opt_rx->tstamp_ok) ||
3747                                      (!estab && sysctl_tcp_timestamps))) {
3748                                         opt_rx->saw_tstamp = 1;
3749                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3750                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3751                                 }
3752                                 break;
3753                         case TCPOPT_SACK_PERM:
3754                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3755                                     !estab && sysctl_tcp_sack) {
3756                                         opt_rx->sack_ok = 1;
3757                                         tcp_sack_reset(opt_rx);
3758                                 }
3759                                 break;
3760
3761                         case TCPOPT_SACK:
3762                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3763                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3764                                    opt_rx->sack_ok) {
3765                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3766                                 }
3767                                 break;
3768 #ifdef CONFIG_TCP_MD5SIG
3769                         case TCPOPT_MD5SIG:
3770                                 /*
3771                                  * The MD5 Hash has already been
3772                                  * checked (see tcp_v{4,6}_do_rcv()).
3773                                  */
3774                                 break;
3775 #endif
3776                         }
3777
3778                         ptr += opsize-2;
3779                         length -= opsize;
3780                 }
3781         }
3782 }
3783
3784 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3785 {
3786         __be32 *ptr = (__be32 *)(th + 1);
3787
3788         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3789                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3790                 tp->rx_opt.saw_tstamp = 1;
3791                 ++ptr;
3792                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3793                 ++ptr;
3794                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3795                 return 1;
3796         }
3797         return 0;
3798 }
3799
3800 /* Fast parse options. This hopes to only see timestamps.
3801  * If it is wrong it falls back on tcp_parse_options().
3802  */
3803 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3804                                   struct tcp_sock *tp)
3805 {
3806         if (th->doff == sizeof(struct tcphdr) >> 2) {
3807                 tp->rx_opt.saw_tstamp = 0;
3808                 return 0;
3809         } else if (tp->rx_opt.tstamp_ok &&
3810                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3811                 if (tcp_parse_aligned_timestamp(tp, th))
3812                         return 1;
3813         }
3814         tcp_parse_options(skb, &tp->rx_opt, 1);
3815         return 1;
3816 }
3817
3818 #ifdef CONFIG_TCP_MD5SIG
3819 /*
3820  * Parse MD5 Signature option
3821  */
3822 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3823 {
3824         int length = (th->doff << 2) - sizeof (*th);
3825         u8 *ptr = (u8*)(th + 1);
3826
3827         /* If the TCP option is too short, we can short cut */
3828         if (length < TCPOLEN_MD5SIG)
3829                 return NULL;
3830
3831         while (length > 0) {
3832                 int opcode = *ptr++;
3833                 int opsize;
3834
3835                 switch(opcode) {
3836                 case TCPOPT_EOL:
3837                         return NULL;
3838                 case TCPOPT_NOP:
3839                         length--;
3840                         continue;
3841                 default:
3842                         opsize = *ptr++;
3843                         if (opsize < 2 || opsize > length)
3844                                 return NULL;
3845                         if (opcode == TCPOPT_MD5SIG)
3846                                 return ptr;
3847                 }
3848                 ptr += opsize - 2;
3849                 length -= opsize;
3850         }
3851         return NULL;
3852 }
3853 #endif
3854
3855 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3856 {
3857         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3858         tp->rx_opt.ts_recent_stamp = get_seconds();
3859 }
3860
3861 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3862 {
3863         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3864                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3865                  * extra check below makes sure this can only happen
3866                  * for pure ACK frames.  -DaveM
3867                  *
3868                  * Not only, also it occurs for expired timestamps.
3869                  */
3870
3871                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3872                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3873                         tcp_store_ts_recent(tp);
3874         }
3875 }
3876
3877 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3878  *
3879  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3880  * it can pass through stack. So, the following predicate verifies that
3881  * this segment is not used for anything but congestion avoidance or
3882  * fast retransmit. Moreover, we even are able to eliminate most of such
3883  * second order effects, if we apply some small "replay" window (~RTO)
3884  * to timestamp space.
3885  *
3886  * All these measures still do not guarantee that we reject wrapped ACKs
3887  * on networks with high bandwidth, when sequence space is recycled fastly,
3888  * but it guarantees that such events will be very rare and do not affect
3889  * connection seriously. This doesn't look nice, but alas, PAWS is really
3890  * buggy extension.
3891  *
3892  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3893  * states that events when retransmit arrives after original data are rare.
3894  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3895  * the biggest problem on large power networks even with minor reordering.
3896  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3897  * up to bandwidth of 18Gigabit/sec. 8) ]
3898  */
3899
3900 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3901 {
3902         struct tcp_sock *tp = tcp_sk(sk);
3903         struct tcphdr *th = tcp_hdr(skb);
3904         u32 seq = TCP_SKB_CB(skb)->seq;
3905         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3906
3907         return (/* 1. Pure ACK with correct sequence number. */
3908                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3909
3910                 /* 2. ... and duplicate ACK. */
3911                 ack == tp->snd_una &&
3912
3913                 /* 3. ... and does not update window. */
3914                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3915
3916                 /* 4. ... and sits in replay window. */
3917                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3918 }
3919
3920 static inline int tcp_paws_discard(const struct sock *sk,
3921                                    const struct sk_buff *skb)
3922 {
3923         const struct tcp_sock *tp = tcp_sk(sk);
3924         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3925                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3926                 !tcp_disordered_ack(sk, skb));
3927 }
3928
3929 /* Check segment sequence number for validity.
3930  *
3931  * Segment controls are considered valid, if the segment
3932  * fits to the window after truncation to the window. Acceptability
3933  * of data (and SYN, FIN, of course) is checked separately.
3934  * See tcp_data_queue(), for example.
3935  *
3936  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3937  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3938  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3939  * (borrowed from freebsd)
3940  */
3941
3942 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3943 {
3944         return  !before(end_seq, tp->rcv_wup) &&
3945                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3946 }
3947
3948 /* When we get a reset we do this. */
3949 static void tcp_reset(struct sock *sk)
3950 {
3951         /* We want the right error as BSD sees it (and indeed as we do). */
3952         switch (sk->sk_state) {
3953         case TCP_SYN_SENT:
3954                 sk->sk_err = ECONNREFUSED;
3955                 break;
3956         case TCP_CLOSE_WAIT:
3957                 sk->sk_err = EPIPE;
3958                 break;
3959         case TCP_CLOSE:
3960                 return;
3961         default:
3962                 sk->sk_err = ECONNRESET;
3963         }
3964
3965         if (!sock_flag(sk, SOCK_DEAD))
3966                 sk->sk_error_report(sk);
3967
3968         tcp_done(sk);
3969 }
3970
3971 /*
3972  *      Process the FIN bit. This now behaves as it is supposed to work
3973  *      and the FIN takes effect when it is validly part of sequence
3974  *      space. Not before when we get holes.
3975  *
3976  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3977  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3978  *      TIME-WAIT)
3979  *
3980  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3981  *      close and we go into CLOSING (and later onto TIME-WAIT)
3982  *
3983  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3984  */
3985 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3986 {
3987         struct tcp_sock *tp = tcp_sk(sk);
3988
3989         inet_csk_schedule_ack(sk);
3990
3991         sk->sk_shutdown |= RCV_SHUTDOWN;
3992         sock_set_flag(sk, SOCK_DONE);
3993
3994         switch (sk->sk_state) {
3995         case TCP_SYN_RECV:
3996         case TCP_ESTABLISHED:
3997                 /* Move to CLOSE_WAIT */
3998                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3999                 inet_csk(sk)->icsk_ack.pingpong = 1;
4000                 break;
4001
4002         case TCP_CLOSE_WAIT:
4003         case TCP_CLOSING:
4004                 /* Received a retransmission of the FIN, do
4005                  * nothing.
4006                  */
4007                 break;
4008         case TCP_LAST_ACK:
4009                 /* RFC793: Remain in the LAST-ACK state. */
4010                 break;
4011
4012         case TCP_FIN_WAIT1:
4013                 /* This case occurs when a simultaneous close
4014                  * happens, we must ack the received FIN and
4015                  * enter the CLOSING state.
4016                  */
4017                 tcp_send_ack(sk);
4018                 tcp_set_state(sk, TCP_CLOSING);
4019                 break;
4020         case TCP_FIN_WAIT2:
4021                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4022                 tcp_send_ack(sk);
4023                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4024                 break;
4025         default:
4026                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4027                  * cases we should never reach this piece of code.
4028                  */
4029                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4030                        __func__, sk->sk_state);
4031                 break;
4032         }
4033
4034         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4035          * Probably, we should reset in this case. For now drop them.
4036          */
4037         __skb_queue_purge(&tp->out_of_order_queue);
4038         if (tcp_is_sack(tp))
4039                 tcp_sack_reset(&tp->rx_opt);
4040         sk_mem_reclaim(sk);
4041
4042         if (!sock_flag(sk, SOCK_DEAD)) {
4043                 sk->sk_state_change(sk);
4044
4045                 /* Do not send POLL_HUP for half duplex close. */
4046                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4047                     sk->sk_state == TCP_CLOSE)
4048                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4049                 else
4050                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4051         }
4052 }
4053
4054 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4055                                   u32 end_seq)
4056 {
4057         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4058                 if (before(seq, sp->start_seq))
4059                         sp->start_seq = seq;
4060                 if (after(end_seq, sp->end_seq))
4061                         sp->end_seq = end_seq;
4062                 return 1;
4063         }
4064         return 0;
4065 }
4066
4067 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4068 {
4069         struct tcp_sock *tp = tcp_sk(sk);
4070
4071         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4072                 int mib_idx;
4073
4074                 if (before(seq, tp->rcv_nxt))
4075                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4076                 else
4077                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4078
4079                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4080
4081                 tp->rx_opt.dsack = 1;
4082                 tp->duplicate_sack[0].start_seq = seq;
4083                 tp->duplicate_sack[0].end_seq = end_seq;
4084                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4085         }
4086 }
4087
4088 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4089 {
4090         struct tcp_sock *tp = tcp_sk(sk);
4091
4092         if (!tp->rx_opt.dsack)
4093                 tcp_dsack_set(sk, seq, end_seq);
4094         else
4095                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4096 }
4097
4098 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4099 {
4100         struct tcp_sock *tp = tcp_sk(sk);
4101
4102         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4103             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4104                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4105                 tcp_enter_quickack_mode(sk);
4106
4107                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4108                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4109
4110                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4111                                 end_seq = tp->rcv_nxt;
4112                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4113                 }
4114         }
4115
4116         tcp_send_ack(sk);
4117 }
4118
4119 /* These routines update the SACK block as out-of-order packets arrive or
4120  * in-order packets close up the sequence space.
4121  */
4122 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4123 {
4124         int this_sack;
4125         struct tcp_sack_block *sp = &tp->selective_acks[0];
4126         struct tcp_sack_block *swalk = sp + 1;
4127
4128         /* See if the recent change to the first SACK eats into
4129          * or hits the sequence space of other SACK blocks, if so coalesce.
4130          */
4131         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4132                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4133                         int i;
4134
4135                         /* Zap SWALK, by moving every further SACK up by one slot.
4136                          * Decrease num_sacks.
4137                          */
4138                         tp->rx_opt.num_sacks--;
4139                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4140                                                tp->rx_opt.dsack;
4141                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4142                                 sp[i] = sp[i + 1];
4143                         continue;
4144                 }
4145                 this_sack++, swalk++;
4146         }
4147 }
4148
4149 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4150                                  struct tcp_sack_block *sack2)
4151 {
4152         __u32 tmp;
4153
4154         tmp = sack1->start_seq;
4155         sack1->start_seq = sack2->start_seq;
4156         sack2->start_seq = tmp;
4157
4158         tmp = sack1->end_seq;
4159         sack1->end_seq = sack2->end_seq;
4160         sack2->end_seq = tmp;
4161 }
4162
4163 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4164 {
4165         struct tcp_sock *tp = tcp_sk(sk);
4166         struct tcp_sack_block *sp = &tp->selective_acks[0];
4167         int cur_sacks = tp->rx_opt.num_sacks;
4168         int this_sack;
4169
4170         if (!cur_sacks)
4171                 goto new_sack;
4172
4173         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4174                 if (tcp_sack_extend(sp, seq, end_seq)) {
4175                         /* Rotate this_sack to the first one. */
4176                         for (; this_sack > 0; this_sack--, sp--)
4177                                 tcp_sack_swap(sp, sp - 1);
4178                         if (cur_sacks > 1)
4179                                 tcp_sack_maybe_coalesce(tp);
4180                         return;
4181                 }
4182         }
4183
4184         /* Could not find an adjacent existing SACK, build a new one,
4185          * put it at the front, and shift everyone else down.  We
4186          * always know there is at least one SACK present already here.
4187          *
4188          * If the sack array is full, forget about the last one.
4189          */
4190         if (this_sack >= TCP_NUM_SACKS) {
4191                 this_sack--;
4192                 tp->rx_opt.num_sacks--;
4193                 sp--;
4194         }
4195         for (; this_sack > 0; this_sack--, sp--)
4196                 *sp = *(sp - 1);
4197
4198 new_sack:
4199         /* Build the new head SACK, and we're done. */
4200         sp->start_seq = seq;
4201         sp->end_seq = end_seq;
4202         tp->rx_opt.num_sacks++;
4203         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4204 }
4205
4206 /* RCV.NXT advances, some SACKs should be eaten. */
4207
4208 static void tcp_sack_remove(struct tcp_sock *tp)
4209 {
4210         struct tcp_sack_block *sp = &tp->selective_acks[0];
4211         int num_sacks = tp->rx_opt.num_sacks;
4212         int this_sack;
4213
4214         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4215         if (skb_queue_empty(&tp->out_of_order_queue)) {
4216                 tp->rx_opt.num_sacks = 0;
4217                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4218                 return;
4219         }
4220
4221         for (this_sack = 0; this_sack < num_sacks;) {
4222                 /* Check if the start of the sack is covered by RCV.NXT. */
4223                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4224                         int i;
4225
4226                         /* RCV.NXT must cover all the block! */
4227                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4228
4229                         /* Zap this SACK, by moving forward any other SACKS. */
4230                         for (i=this_sack+1; i < num_sacks; i++)
4231                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4232                         num_sacks--;
4233                         continue;
4234                 }
4235                 this_sack++;
4236                 sp++;
4237         }
4238         if (num_sacks != tp->rx_opt.num_sacks) {
4239                 tp->rx_opt.num_sacks = num_sacks;
4240                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4241                                        tp->rx_opt.dsack;
4242         }
4243 }
4244
4245 /* This one checks to see if we can put data from the
4246  * out_of_order queue into the receive_queue.
4247  */
4248 static void tcp_ofo_queue(struct sock *sk)
4249 {
4250         struct tcp_sock *tp = tcp_sk(sk);
4251         __u32 dsack_high = tp->rcv_nxt;
4252         struct sk_buff *skb;
4253
4254         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4255                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4256                         break;
4257
4258                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4259                         __u32 dsack = dsack_high;
4260                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4261                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4262                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4263                 }
4264
4265                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4266                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4267                         __skb_unlink(skb, &tp->out_of_order_queue);
4268                         __kfree_skb(skb);
4269                         continue;
4270                 }
4271                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4272                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4273                            TCP_SKB_CB(skb)->end_seq);
4274
4275                 __skb_unlink(skb, &tp->out_of_order_queue);
4276                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4277                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4278                 if (tcp_hdr(skb)->fin)
4279                         tcp_fin(skb, sk, tcp_hdr(skb));
4280         }
4281 }
4282
4283 static int tcp_prune_ofo_queue(struct sock *sk);
4284 static int tcp_prune_queue(struct sock *sk);
4285
4286 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4287 {
4288         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4289             !sk_rmem_schedule(sk, size)) {
4290
4291                 if (tcp_prune_queue(sk) < 0)
4292                         return -1;
4293
4294                 if (!sk_rmem_schedule(sk, size)) {
4295                         if (!tcp_prune_ofo_queue(sk))
4296                                 return -1;
4297
4298                         if (!sk_rmem_schedule(sk, size))
4299                                 return -1;
4300                 }
4301         }
4302         return 0;
4303 }
4304
4305 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4306 {
4307         struct tcphdr *th = tcp_hdr(skb);
4308         struct tcp_sock *tp = tcp_sk(sk);
4309         int eaten = -1;
4310
4311         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4312                 goto drop;
4313
4314         __skb_pull(skb, th->doff * 4);
4315
4316         TCP_ECN_accept_cwr(tp, skb);
4317
4318         if (tp->rx_opt.dsack) {
4319                 tp->rx_opt.dsack = 0;
4320                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4321         }
4322
4323         /*  Queue data for delivery to the user.
4324          *  Packets in sequence go to the receive queue.
4325          *  Out of sequence packets to the out_of_order_queue.
4326          */
4327         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4328                 if (tcp_receive_window(tp) == 0)
4329                         goto out_of_window;
4330
4331                 /* Ok. In sequence. In window. */
4332                 if (tp->ucopy.task == current &&
4333                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4334                     sock_owned_by_user(sk) && !tp->urg_data) {
4335                         int chunk = min_t(unsigned int, skb->len,
4336                                           tp->ucopy.len);
4337
4338                         __set_current_state(TASK_RUNNING);
4339
4340                         local_bh_enable();
4341                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4342                                 tp->ucopy.len -= chunk;
4343                                 tp->copied_seq += chunk;
4344                                 eaten = (chunk == skb->len && !th->fin);
4345                                 tcp_rcv_space_adjust(sk);
4346                         }
4347                         local_bh_disable();
4348                 }
4349
4350                 if (eaten <= 0) {
4351 queue_and_out:
4352                         if (eaten < 0 &&
4353                             tcp_try_rmem_schedule(sk, skb->truesize))
4354                                 goto drop;
4355
4356                         skb_set_owner_r(skb, sk);
4357                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4358                 }
4359                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4360                 if (skb->len)
4361                         tcp_event_data_recv(sk, skb);
4362                 if (th->fin)
4363                         tcp_fin(skb, sk, th);
4364
4365                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4366                         tcp_ofo_queue(sk);
4367
4368                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4369                          * gap in queue is filled.
4370                          */
4371                         if (skb_queue_empty(&tp->out_of_order_queue))
4372                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4373                 }
4374
4375                 if (tp->rx_opt.num_sacks)
4376                         tcp_sack_remove(tp);
4377
4378                 tcp_fast_path_check(sk);
4379
4380                 if (eaten > 0)
4381                         __kfree_skb(skb);
4382                 else if (!sock_flag(sk, SOCK_DEAD))
4383                         sk->sk_data_ready(sk, 0);
4384                 return;
4385         }
4386
4387         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4388                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4389                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4390                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4391
4392 out_of_window:
4393                 tcp_enter_quickack_mode(sk);
4394                 inet_csk_schedule_ack(sk);
4395 drop:
4396                 __kfree_skb(skb);
4397                 return;
4398         }
4399
4400         /* Out of window. F.e. zero window probe. */
4401         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4402                 goto out_of_window;
4403
4404         tcp_enter_quickack_mode(sk);
4405
4406         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4407                 /* Partial packet, seq < rcv_next < end_seq */
4408                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4409                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4410                            TCP_SKB_CB(skb)->end_seq);
4411
4412                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4413
4414                 /* If window is closed, drop tail of packet. But after
4415                  * remembering D-SACK for its head made in previous line.
4416                  */
4417                 if (!tcp_receive_window(tp))
4418                         goto out_of_window;
4419                 goto queue_and_out;
4420         }
4421
4422         TCP_ECN_check_ce(tp, skb);
4423
4424         if (tcp_try_rmem_schedule(sk, skb->truesize))
4425                 goto drop;
4426
4427         /* Disable header prediction. */
4428         tp->pred_flags = 0;
4429         inet_csk_schedule_ack(sk);
4430
4431         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4432                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4433
4434         skb_set_owner_r(skb, sk);
4435
4436         if (!skb_peek(&tp->out_of_order_queue)) {
4437                 /* Initial out of order segment, build 1 SACK. */
4438                 if (tcp_is_sack(tp)) {
4439                         tp->rx_opt.num_sacks = 1;
4440                         tp->rx_opt.dsack     = 0;
4441                         tp->rx_opt.eff_sacks = 1;
4442                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4443                         tp->selective_acks[0].end_seq =
4444                                                 TCP_SKB_CB(skb)->end_seq;
4445                 }
4446                 __skb_queue_head(&tp->out_of_order_queue, skb);
4447         } else {
4448                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4449                 u32 seq = TCP_SKB_CB(skb)->seq;
4450                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4451
4452                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4453                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4454
4455                         if (!tp->rx_opt.num_sacks ||
4456                             tp->selective_acks[0].end_seq != seq)
4457                                 goto add_sack;
4458
4459                         /* Common case: data arrive in order after hole. */
4460                         tp->selective_acks[0].end_seq = end_seq;
4461                         return;
4462                 }
4463
4464                 /* Find place to insert this segment. */
4465                 do {
4466                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4467                                 break;
4468                 } while ((skb1 = skb1->prev) !=
4469                          (struct sk_buff *)&tp->out_of_order_queue);
4470
4471                 /* Do skb overlap to previous one? */
4472                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4473                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4474                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4475                                 /* All the bits are present. Drop. */
4476                                 __kfree_skb(skb);
4477                                 tcp_dsack_set(sk, seq, end_seq);
4478                                 goto add_sack;
4479                         }
4480                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4481                                 /* Partial overlap. */
4482                                 tcp_dsack_set(sk, seq,
4483                                               TCP_SKB_CB(skb1)->end_seq);
4484                         } else {
4485                                 skb1 = skb1->prev;
4486                         }
4487                 }
4488                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4489
4490                 /* And clean segments covered by new one as whole. */
4491                 while ((skb1 = skb->next) !=
4492                        (struct sk_buff *)&tp->out_of_order_queue &&
4493                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4494                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4495                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496                                                  end_seq);
4497                                 break;
4498                         }
4499                         __skb_unlink(skb1, &tp->out_of_order_queue);
4500                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4501                                          TCP_SKB_CB(skb1)->end_seq);
4502                         __kfree_skb(skb1);
4503                 }
4504
4505 add_sack:
4506                 if (tcp_is_sack(tp))
4507                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508         }
4509 }
4510
4511 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4512                                         struct sk_buff_head *list)
4513 {
4514         struct sk_buff *next = skb->next;
4515
4516         __skb_unlink(skb, list);
4517         __kfree_skb(skb);
4518         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4519
4520         return next;
4521 }
4522
4523 /* Collapse contiguous sequence of skbs head..tail with
4524  * sequence numbers start..end.
4525  * Segments with FIN/SYN are not collapsed (only because this
4526  * simplifies code)
4527  */
4528 static void
4529 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4530              struct sk_buff *head, struct sk_buff *tail,
4531              u32 start, u32 end)
4532 {
4533         struct sk_buff *skb;
4534
4535         /* First, check that queue is collapsible and find
4536          * the point where collapsing can be useful. */
4537         for (skb = head; skb != tail;) {
4538                 /* No new bits? It is possible on ofo queue. */
4539                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4540                         skb = tcp_collapse_one(sk, skb, list);
4541                         continue;
4542                 }
4543
4544                 /* The first skb to collapse is:
4545                  * - not SYN/FIN and
4546                  * - bloated or contains data before "start" or
4547                  *   overlaps to the next one.
4548                  */
4549                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4550                     (tcp_win_from_space(skb->truesize) > skb->len ||
4551                      before(TCP_SKB_CB(skb)->seq, start) ||
4552                      (skb->next != tail &&
4553                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4554                         break;
4555
4556                 /* Decided to skip this, advance start seq. */
4557                 start = TCP_SKB_CB(skb)->end_seq;
4558                 skb = skb->next;
4559         }
4560         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4561                 return;
4562
4563         while (before(start, end)) {
4564                 struct sk_buff *nskb;
4565                 unsigned int header = skb_headroom(skb);
4566                 int copy = SKB_MAX_ORDER(header, 0);
4567
4568                 /* Too big header? This can happen with IPv6. */
4569                 if (copy < 0)
4570                         return;
4571                 if (end - start < copy)
4572                         copy = end - start;
4573                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4574                 if (!nskb)
4575                         return;
4576
4577                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4578                 skb_set_network_header(nskb, (skb_network_header(skb) -
4579                                               skb->head));
4580                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4581                                                 skb->head));
4582                 skb_reserve(nskb, header);
4583                 memcpy(nskb->head, skb->head, header);
4584                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4585                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4586                 __skb_queue_before(list, skb, nskb);
4587                 skb_set_owner_r(nskb, sk);
4588
4589                 /* Copy data, releasing collapsed skbs. */
4590                 while (copy > 0) {
4591                         int offset = start - TCP_SKB_CB(skb)->seq;
4592                         int size = TCP_SKB_CB(skb)->end_seq - start;
4593
4594                         BUG_ON(offset < 0);
4595                         if (size > 0) {
4596                                 size = min(copy, size);
4597                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4598                                         BUG();
4599                                 TCP_SKB_CB(nskb)->end_seq += size;
4600                                 copy -= size;
4601                                 start += size;
4602                         }
4603                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4604                                 skb = tcp_collapse_one(sk, skb, list);
4605                                 if (skb == tail ||
4606                                     tcp_hdr(skb)->syn ||
4607                                     tcp_hdr(skb)->fin)
4608                                         return;
4609                         }
4610                 }
4611         }
4612 }
4613
4614 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4615  * and tcp_collapse() them until all the queue is collapsed.
4616  */
4617 static void tcp_collapse_ofo_queue(struct sock *sk)
4618 {
4619         struct tcp_sock *tp = tcp_sk(sk);
4620         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4621         struct sk_buff *head;
4622         u32 start, end;
4623
4624         if (skb == NULL)
4625                 return;
4626
4627         start = TCP_SKB_CB(skb)->seq;
4628         end = TCP_SKB_CB(skb)->end_seq;
4629         head = skb;
4630
4631         for (;;) {
4632                 skb = skb->next;
4633
4634                 /* Segment is terminated when we see gap or when
4635                  * we are at the end of all the queue. */
4636                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4637                     after(TCP_SKB_CB(skb)->seq, end) ||
4638                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4639                         tcp_collapse(sk, &tp->out_of_order_queue,
4640                                      head, skb, start, end);
4641                         head = skb;
4642                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4643                                 break;
4644                         /* Start new segment */
4645                         start = TCP_SKB_CB(skb)->seq;
4646                         end = TCP_SKB_CB(skb)->end_seq;
4647                 } else {
4648                         if (before(TCP_SKB_CB(skb)->seq, start))
4649                                 start = TCP_SKB_CB(skb)->seq;
4650                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4651                                 end = TCP_SKB_CB(skb)->end_seq;
4652                 }
4653         }
4654 }
4655
4656 /*
4657  * Purge the out-of-order queue.
4658  * Return true if queue was pruned.
4659  */
4660 static int tcp_prune_ofo_queue(struct sock *sk)
4661 {
4662         struct tcp_sock *tp = tcp_sk(sk);
4663         int res = 0;
4664
4665         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4666                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4667                 __skb_queue_purge(&tp->out_of_order_queue);
4668
4669                 /* Reset SACK state.  A conforming SACK implementation will
4670                  * do the same at a timeout based retransmit.  When a connection
4671                  * is in a sad state like this, we care only about integrity
4672                  * of the connection not performance.
4673                  */
4674                 if (tp->rx_opt.sack_ok)
4675                         tcp_sack_reset(&tp->rx_opt);
4676                 sk_mem_reclaim(sk);
4677                 res = 1;
4678         }
4679         return res;
4680 }
4681
4682 /* Reduce allocated memory if we can, trying to get
4683  * the socket within its memory limits again.
4684  *
4685  * Return less than zero if we should start dropping frames
4686  * until the socket owning process reads some of the data
4687  * to stabilize the situation.
4688  */
4689 static int tcp_prune_queue(struct sock *sk)
4690 {
4691         struct tcp_sock *tp = tcp_sk(sk);
4692
4693         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4694
4695         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4696
4697         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4698                 tcp_clamp_window(sk);
4699         else if (tcp_memory_pressure)
4700                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4701
4702         tcp_collapse_ofo_queue(sk);
4703         tcp_collapse(sk, &sk->sk_receive_queue,
4704                      sk->sk_receive_queue.next,
4705                      (struct sk_buff *)&sk->sk_receive_queue,
4706                      tp->copied_seq, tp->rcv_nxt);
4707         sk_mem_reclaim(sk);
4708
4709         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4710                 return 0;
4711
4712         /* Collapsing did not help, destructive actions follow.
4713          * This must not ever occur. */
4714
4715         tcp_prune_ofo_queue(sk);
4716
4717         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4718                 return 0;
4719
4720         /* If we are really being abused, tell the caller to silently
4721          * drop receive data on the floor.  It will get retransmitted
4722          * and hopefully then we'll have sufficient space.
4723          */
4724         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4725
4726         /* Massive buffer overcommit. */
4727         tp->pred_flags = 0;
4728         return -1;
4729 }
4730
4731 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4732  * As additional protections, we do not touch cwnd in retransmission phases,
4733  * and if application hit its sndbuf limit recently.
4734  */
4735 void tcp_cwnd_application_limited(struct sock *sk)
4736 {
4737         struct tcp_sock *tp = tcp_sk(sk);
4738
4739         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4740             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4741                 /* Limited by application or receiver window. */
4742                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4743                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4744                 if (win_used < tp->snd_cwnd) {
4745                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4746                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4747                 }
4748                 tp->snd_cwnd_used = 0;
4749         }
4750         tp->snd_cwnd_stamp = tcp_time_stamp;
4751 }
4752
4753 static int tcp_should_expand_sndbuf(struct sock *sk)
4754 {
4755         struct tcp_sock *tp = tcp_sk(sk);
4756
4757         /* If the user specified a specific send buffer setting, do
4758          * not modify it.
4759          */
4760         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4761                 return 0;
4762
4763         /* If we are under global TCP memory pressure, do not expand.  */
4764         if (tcp_memory_pressure)
4765                 return 0;
4766
4767         /* If we are under soft global TCP memory pressure, do not expand.  */
4768         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4769                 return 0;
4770
4771         /* If we filled the congestion window, do not expand.  */
4772         if (tp->packets_out >= tp->snd_cwnd)
4773                 return 0;
4774
4775         return 1;
4776 }
4777
4778 /* When incoming ACK allowed to free some skb from write_queue,
4779  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4780  * on the exit from tcp input handler.
4781  *
4782  * PROBLEM: sndbuf expansion does not work well with largesend.
4783  */
4784 static void tcp_new_space(struct sock *sk)
4785 {
4786         struct tcp_sock *tp = tcp_sk(sk);
4787
4788         if (tcp_should_expand_sndbuf(sk)) {
4789                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4790                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4791                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4792                                      tp->reordering + 1);
4793                 sndmem *= 2 * demanded;
4794                 if (sndmem > sk->sk_sndbuf)
4795                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4796                 tp->snd_cwnd_stamp = tcp_time_stamp;
4797         }
4798
4799         sk->sk_write_space(sk);
4800 }
4801
4802 static void tcp_check_space(struct sock *sk)
4803 {
4804         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4805                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4806                 if (sk->sk_socket &&
4807                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4808                         tcp_new_space(sk);
4809         }
4810 }
4811
4812 static inline void tcp_data_snd_check(struct sock *sk)
4813 {
4814         tcp_push_pending_frames(sk);
4815         tcp_check_space(sk);
4816 }
4817
4818 /*
4819  * Check if sending an ack is needed.
4820  */
4821 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4822 {
4823         struct tcp_sock *tp = tcp_sk(sk);
4824
4825             /* More than one full frame received... */
4826         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4827              /* ... and right edge of window advances far enough.
4828               * (tcp_recvmsg() will send ACK otherwise). Or...
4829               */
4830              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4831             /* We ACK each frame or... */
4832             tcp_in_quickack_mode(sk) ||
4833             /* We have out of order data. */
4834             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4835                 /* Then ack it now */
4836                 tcp_send_ack(sk);
4837         } else {
4838                 /* Else, send delayed ack. */
4839                 tcp_send_delayed_ack(sk);
4840         }
4841 }
4842
4843 static inline void tcp_ack_snd_check(struct sock *sk)
4844 {
4845         if (!inet_csk_ack_scheduled(sk)) {
4846                 /* We sent a data segment already. */
4847                 return;
4848         }
4849         __tcp_ack_snd_check(sk, 1);
4850 }
4851
4852 /*
4853  *      This routine is only called when we have urgent data
4854  *      signaled. Its the 'slow' part of tcp_urg. It could be
4855  *      moved inline now as tcp_urg is only called from one
4856  *      place. We handle URGent data wrong. We have to - as
4857  *      BSD still doesn't use the correction from RFC961.
4858  *      For 1003.1g we should support a new option TCP_STDURG to permit
4859  *      either form (or just set the sysctl tcp_stdurg).
4860  */
4861
4862 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4863 {
4864         struct tcp_sock *tp = tcp_sk(sk);
4865         u32 ptr = ntohs(th->urg_ptr);
4866
4867         if (ptr && !sysctl_tcp_stdurg)
4868                 ptr--;
4869         ptr += ntohl(th->seq);
4870
4871         /* Ignore urgent data that we've already seen and read. */
4872         if (after(tp->copied_seq, ptr))
4873                 return;
4874
4875         /* Do not replay urg ptr.
4876          *
4877          * NOTE: interesting situation not covered by specs.
4878          * Misbehaving sender may send urg ptr, pointing to segment,
4879          * which we already have in ofo queue. We are not able to fetch
4880          * such data and will stay in TCP_URG_NOTYET until will be eaten
4881          * by recvmsg(). Seems, we are not obliged to handle such wicked
4882          * situations. But it is worth to think about possibility of some
4883          * DoSes using some hypothetical application level deadlock.
4884          */
4885         if (before(ptr, tp->rcv_nxt))
4886                 return;
4887
4888         /* Do we already have a newer (or duplicate) urgent pointer? */
4889         if (tp->urg_data && !after(ptr, tp->urg_seq))
4890                 return;
4891
4892         /* Tell the world about our new urgent pointer. */
4893         sk_send_sigurg(sk);
4894
4895         /* We may be adding urgent data when the last byte read was
4896          * urgent. To do this requires some care. We cannot just ignore
4897          * tp->copied_seq since we would read the last urgent byte again
4898          * as data, nor can we alter copied_seq until this data arrives
4899          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4900          *
4901          * NOTE. Double Dutch. Rendering to plain English: author of comment
4902          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4903          * and expect that both A and B disappear from stream. This is _wrong_.
4904          * Though this happens in BSD with high probability, this is occasional.
4905          * Any application relying on this is buggy. Note also, that fix "works"
4906          * only in this artificial test. Insert some normal data between A and B and we will
4907          * decline of BSD again. Verdict: it is better to remove to trap
4908          * buggy users.
4909          */
4910         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4911             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4912                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4913                 tp->copied_seq++;
4914                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4915                         __skb_unlink(skb, &sk->sk_receive_queue);
4916                         __kfree_skb(skb);
4917                 }
4918         }
4919
4920         tp->urg_data = TCP_URG_NOTYET;
4921         tp->urg_seq = ptr;
4922
4923         /* Disable header prediction. */
4924         tp->pred_flags = 0;
4925 }
4926
4927 /* This is the 'fast' part of urgent handling. */
4928 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4929 {
4930         struct tcp_sock *tp = tcp_sk(sk);
4931
4932         /* Check if we get a new urgent pointer - normally not. */
4933         if (th->urg)
4934                 tcp_check_urg(sk, th);
4935
4936         /* Do we wait for any urgent data? - normally not... */
4937         if (tp->urg_data == TCP_URG_NOTYET) {
4938                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4939                           th->syn;
4940
4941                 /* Is the urgent pointer pointing into this packet? */
4942                 if (ptr < skb->len) {
4943                         u8 tmp;
4944                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4945                                 BUG();
4946                         tp->urg_data = TCP_URG_VALID | tmp;
4947                         if (!sock_flag(sk, SOCK_DEAD))
4948                                 sk->sk_data_ready(sk, 0);
4949                 }
4950         }
4951 }
4952
4953 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4954 {
4955         struct tcp_sock *tp = tcp_sk(sk);
4956         int chunk = skb->len - hlen;
4957         int err;
4958
4959         local_bh_enable();
4960         if (skb_csum_unnecessary(skb))
4961                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4962         else
4963                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4964                                                        tp->ucopy.iov);
4965
4966         if (!err) {
4967                 tp->ucopy.len -= chunk;
4968                 tp->copied_seq += chunk;
4969                 tcp_rcv_space_adjust(sk);
4970         }
4971
4972         local_bh_disable();
4973         return err;
4974 }
4975
4976 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4977                                             struct sk_buff *skb)
4978 {
4979         __sum16 result;
4980
4981         if (sock_owned_by_user(sk)) {
4982                 local_bh_enable();
4983                 result = __tcp_checksum_complete(skb);
4984                 local_bh_disable();
4985         } else {
4986                 result = __tcp_checksum_complete(skb);
4987         }
4988         return result;
4989 }
4990
4991 static inline int tcp_checksum_complete_user(struct sock *sk,
4992                                              struct sk_buff *skb)
4993 {
4994         return !skb_csum_unnecessary(skb) &&
4995                __tcp_checksum_complete_user(sk, skb);
4996 }
4997
4998 #ifdef CONFIG_NET_DMA
4999 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5000                                   int hlen)
5001 {
5002         struct tcp_sock *tp = tcp_sk(sk);
5003         int chunk = skb->len - hlen;
5004         int dma_cookie;
5005         int copied_early = 0;
5006
5007         if (tp->ucopy.wakeup)
5008                 return 0;
5009
5010         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5011                 tp->ucopy.dma_chan = get_softnet_dma();
5012
5013         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5014
5015                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5016                                                          skb, hlen,
5017                                                          tp->ucopy.iov, chunk,
5018                                                          tp->ucopy.pinned_list);
5019
5020                 if (dma_cookie < 0)
5021                         goto out;
5022
5023                 tp->ucopy.dma_cookie = dma_cookie;
5024                 copied_early = 1;
5025
5026                 tp->ucopy.len -= chunk;
5027                 tp->copied_seq += chunk;
5028                 tcp_rcv_space_adjust(sk);
5029
5030                 if ((tp->ucopy.len == 0) ||
5031                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5032                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5033                         tp->ucopy.wakeup = 1;
5034                         sk->sk_data_ready(sk, 0);
5035                 }
5036         } else if (chunk > 0) {
5037                 tp->ucopy.wakeup = 1;
5038                 sk->sk_data_ready(sk, 0);
5039         }
5040 out:
5041         return copied_early;
5042 }
5043 #endif /* CONFIG_NET_DMA */
5044
5045 /* Does PAWS and seqno based validation of an incoming segment, flags will
5046  * play significant role here.
5047  */
5048 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5049                               struct tcphdr *th, int syn_inerr)
5050 {
5051         struct tcp_sock *tp = tcp_sk(sk);
5052
5053         /* RFC1323: H1. Apply PAWS check first. */
5054         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5055             tcp_paws_discard(sk, skb)) {
5056                 if (!th->rst) {
5057                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5058                         tcp_send_dupack(sk, skb);
5059                         goto discard;
5060                 }
5061                 /* Reset is accepted even if it did not pass PAWS. */
5062         }
5063
5064         /* Step 1: check sequence number */
5065         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5066                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5067                  * (RST) segments are validated by checking their SEQ-fields."
5068                  * And page 69: "If an incoming segment is not acceptable,
5069                  * an acknowledgment should be sent in reply (unless the RST
5070                  * bit is set, if so drop the segment and return)".
5071                  */
5072                 if (!th->rst)
5073                         tcp_send_dupack(sk, skb);
5074                 goto discard;
5075         }
5076
5077         /* Step 2: check RST bit */
5078         if (th->rst) {
5079                 tcp_reset(sk);
5080                 goto discard;
5081         }
5082
5083         /* ts_recent update must be made after we are sure that the packet
5084          * is in window.
5085          */
5086         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5087
5088         /* step 3: check security and precedence [ignored] */
5089
5090         /* step 4: Check for a SYN in window. */
5091         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5092                 if (syn_inerr)
5093                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5094                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5095                 tcp_reset(sk);
5096                 return -1;
5097         }
5098
5099         return 1;
5100
5101 discard:
5102         __kfree_skb(skb);
5103         return 0;
5104 }
5105
5106 /*
5107  *      TCP receive function for the ESTABLISHED state.
5108  *
5109  *      It is split into a fast path and a slow path. The fast path is
5110  *      disabled when:
5111  *      - A zero window was announced from us - zero window probing
5112  *        is only handled properly in the slow path.
5113  *      - Out of order segments arrived.
5114  *      - Urgent data is expected.
5115  *      - There is no buffer space left
5116  *      - Unexpected TCP flags/window values/header lengths are received
5117  *        (detected by checking the TCP header against pred_flags)
5118  *      - Data is sent in both directions. Fast path only supports pure senders
5119  *        or pure receivers (this means either the sequence number or the ack
5120  *        value must stay constant)
5121  *      - Unexpected TCP option.
5122  *
5123  *      When these conditions are not satisfied it drops into a standard
5124  *      receive procedure patterned after RFC793 to handle all cases.
5125  *      The first three cases are guaranteed by proper pred_flags setting,
5126  *      the rest is checked inline. Fast processing is turned on in
5127  *      tcp_data_queue when everything is OK.
5128  */
5129 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5130                         struct tcphdr *th, unsigned len)
5131 {
5132         struct tcp_sock *tp = tcp_sk(sk);
5133         int res;
5134
5135         /*
5136          *      Header prediction.
5137          *      The code loosely follows the one in the famous
5138          *      "30 instruction TCP receive" Van Jacobson mail.
5139          *
5140          *      Van's trick is to deposit buffers into socket queue
5141          *      on a device interrupt, to call tcp_recv function
5142          *      on the receive process context and checksum and copy
5143          *      the buffer to user space. smart...
5144          *
5145          *      Our current scheme is not silly either but we take the
5146          *      extra cost of the net_bh soft interrupt processing...
5147          *      We do checksum and copy also but from device to kernel.
5148          */
5149
5150         tp->rx_opt.saw_tstamp = 0;
5151
5152         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5153          *      if header_prediction is to be made
5154          *      'S' will always be tp->tcp_header_len >> 2
5155          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5156          *  turn it off (when there are holes in the receive
5157          *       space for instance)
5158          *      PSH flag is ignored.
5159          */
5160
5161         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5162             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5163                 int tcp_header_len = tp->tcp_header_len;
5164
5165                 /* Timestamp header prediction: tcp_header_len
5166                  * is automatically equal to th->doff*4 due to pred_flags
5167                  * match.
5168                  */
5169
5170                 /* Check timestamp */
5171                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5172                         /* No? Slow path! */
5173                         if (!tcp_parse_aligned_timestamp(tp, th))
5174                                 goto slow_path;
5175
5176                         /* If PAWS failed, check it more carefully in slow path */
5177                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5178                                 goto slow_path;
5179
5180                         /* DO NOT update ts_recent here, if checksum fails
5181                          * and timestamp was corrupted part, it will result
5182                          * in a hung connection since we will drop all
5183                          * future packets due to the PAWS test.
5184                          */
5185                 }
5186
5187                 if (len <= tcp_header_len) {
5188                         /* Bulk data transfer: sender */
5189                         if (len == tcp_header_len) {
5190                                 /* Predicted packet is in window by definition.
5191                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5192                                  * Hence, check seq<=rcv_wup reduces to:
5193                                  */
5194                                 if (tcp_header_len ==
5195                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5196                                     tp->rcv_nxt == tp->rcv_wup)
5197                                         tcp_store_ts_recent(tp);
5198
5199                                 /* We know that such packets are checksummed
5200                                  * on entry.
5201                                  */
5202                                 tcp_ack(sk, skb, 0);
5203                                 __kfree_skb(skb);
5204                                 tcp_data_snd_check(sk);
5205                                 return 0;
5206                         } else { /* Header too small */
5207                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5208                                 goto discard;
5209                         }
5210                 } else {
5211                         int eaten = 0;
5212                         int copied_early = 0;
5213
5214                         if (tp->copied_seq == tp->rcv_nxt &&
5215                             len - tcp_header_len <= tp->ucopy.len) {
5216 #ifdef CONFIG_NET_DMA
5217                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5218                                         copied_early = 1;
5219                                         eaten = 1;
5220                                 }
5221 #endif
5222                                 if (tp->ucopy.task == current &&
5223                                     sock_owned_by_user(sk) && !copied_early) {
5224                                         __set_current_state(TASK_RUNNING);
5225
5226                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5227                                                 eaten = 1;
5228                                 }
5229                                 if (eaten) {
5230                                         /* Predicted packet is in window by definition.
5231                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5232                                          * Hence, check seq<=rcv_wup reduces to:
5233                                          */
5234                                         if (tcp_header_len ==
5235                                             (sizeof(struct tcphdr) +
5236                                              TCPOLEN_TSTAMP_ALIGNED) &&
5237                                             tp->rcv_nxt == tp->rcv_wup)
5238                                                 tcp_store_ts_recent(tp);
5239
5240                                         tcp_rcv_rtt_measure_ts(sk, skb);
5241
5242                                         __skb_pull(skb, tcp_header_len);
5243                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5244                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5245                                 }
5246                                 if (copied_early)
5247                                         tcp_cleanup_rbuf(sk, skb->len);
5248                         }
5249                         if (!eaten) {
5250                                 if (tcp_checksum_complete_user(sk, skb))
5251                                         goto csum_error;
5252
5253                                 /* Predicted packet is in window by definition.
5254                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5255                                  * Hence, check seq<=rcv_wup reduces to:
5256                                  */
5257                                 if (tcp_header_len ==
5258                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5259                                     tp->rcv_nxt == tp->rcv_wup)
5260                                         tcp_store_ts_recent(tp);
5261
5262                                 tcp_rcv_rtt_measure_ts(sk, skb);
5263
5264                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5265                                         goto step5;
5266
5267                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5268
5269                                 /* Bulk data transfer: receiver */
5270                                 __skb_pull(skb, tcp_header_len);
5271                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5272                                 skb_set_owner_r(skb, sk);
5273                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5274                         }
5275
5276                         tcp_event_data_recv(sk, skb);
5277
5278                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5279                                 /* Well, only one small jumplet in fast path... */
5280                                 tcp_ack(sk, skb, FLAG_DATA);
5281                                 tcp_data_snd_check(sk);
5282                                 if (!inet_csk_ack_scheduled(sk))
5283                                         goto no_ack;
5284                         }
5285
5286                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5287                                 __tcp_ack_snd_check(sk, 0);
5288 no_ack:
5289 #ifdef CONFIG_NET_DMA
5290                         if (copied_early)
5291                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5292                         else
5293 #endif
5294                         if (eaten)
5295                                 __kfree_skb(skb);
5296                         else
5297                                 sk->sk_data_ready(sk, 0);
5298                         return 0;
5299                 }
5300         }
5301
5302 slow_path:
5303         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5304                 goto csum_error;
5305
5306         /*
5307          *      Standard slow path.
5308          */
5309
5310         res = tcp_validate_incoming(sk, skb, th, 1);
5311         if (res <= 0)
5312                 return -res;
5313
5314 step5:
5315         if (th->ack)
5316                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5317
5318         tcp_rcv_rtt_measure_ts(sk, skb);
5319
5320         /* Process urgent data. */
5321         tcp_urg(sk, skb, th);
5322
5323         /* step 7: process the segment text */
5324         tcp_data_queue(sk, skb);
5325
5326         tcp_data_snd_check(sk);
5327         tcp_ack_snd_check(sk);
5328         return 0;
5329
5330 csum_error:
5331         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5332
5333 discard:
5334         __kfree_skb(skb);
5335         return 0;
5336 }
5337
5338 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5339                                          struct tcphdr *th, unsigned len)
5340 {
5341         struct tcp_sock *tp = tcp_sk(sk);
5342         struct inet_connection_sock *icsk = inet_csk(sk);
5343         int saved_clamp = tp->rx_opt.mss_clamp;
5344
5345         tcp_parse_options(skb, &tp->rx_opt, 0);
5346
5347         if (th->ack) {
5348                 /* rfc793:
5349                  * "If the state is SYN-SENT then
5350                  *    first check the ACK bit
5351                  *      If the ACK bit is set
5352                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5353                  *        a reset (unless the RST bit is set, if so drop
5354                  *        the segment and return)"
5355                  *
5356                  *  We do not send data with SYN, so that RFC-correct
5357                  *  test reduces to:
5358                  */
5359                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5360                         goto reset_and_undo;
5361
5362                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5363                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5364                              tcp_time_stamp)) {
5365                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5366                         goto reset_and_undo;
5367                 }
5368
5369                 /* Now ACK is acceptable.
5370                  *
5371                  * "If the RST bit is set
5372                  *    If the ACK was acceptable then signal the user "error:
5373                  *    connection reset", drop the segment, enter CLOSED state,
5374                  *    delete TCB, and return."
5375                  */
5376
5377                 if (th->rst) {
5378                         tcp_reset(sk);
5379                         goto discard;
5380                 }
5381
5382                 /* rfc793:
5383                  *   "fifth, if neither of the SYN or RST bits is set then
5384                  *    drop the segment and return."
5385                  *
5386                  *    See note below!
5387                  *                                        --ANK(990513)
5388                  */
5389                 if (!th->syn)
5390                         goto discard_and_undo;
5391
5392                 /* rfc793:
5393                  *   "If the SYN bit is on ...
5394                  *    are acceptable then ...
5395                  *    (our SYN has been ACKed), change the connection
5396                  *    state to ESTABLISHED..."
5397                  */
5398
5399                 TCP_ECN_rcv_synack(tp, th);
5400
5401                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5402                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5403
5404                 /* Ok.. it's good. Set up sequence numbers and
5405                  * move to established.
5406                  */
5407                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5408                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5409
5410                 /* RFC1323: The window in SYN & SYN/ACK segments is
5411                  * never scaled.
5412                  */
5413                 tp->snd_wnd = ntohs(th->window);
5414                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5415
5416                 if (!tp->rx_opt.wscale_ok) {
5417                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5418                         tp->window_clamp = min(tp->window_clamp, 65535U);
5419                 }
5420
5421                 if (tp->rx_opt.saw_tstamp) {
5422                         tp->rx_opt.tstamp_ok       = 1;
5423                         tp->tcp_header_len =
5424                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5425                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5426                         tcp_store_ts_recent(tp);
5427                 } else {
5428                         tp->tcp_header_len = sizeof(struct tcphdr);
5429                 }
5430
5431                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5432                         tcp_enable_fack(tp);
5433
5434                 tcp_mtup_init(sk);
5435                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5436                 tcp_initialize_rcv_mss(sk);
5437
5438                 /* Remember, tcp_poll() does not lock socket!
5439                  * Change state from SYN-SENT only after copied_seq
5440                  * is initialized. */
5441                 tp->copied_seq = tp->rcv_nxt;
5442                 smp_mb();
5443                 tcp_set_state(sk, TCP_ESTABLISHED);
5444
5445                 security_inet_conn_established(sk, skb);
5446
5447                 /* Make sure socket is routed, for correct metrics.  */
5448                 icsk->icsk_af_ops->rebuild_header(sk);
5449
5450                 tcp_init_metrics(sk);
5451
5452                 tcp_init_congestion_control(sk);
5453
5454                 /* Prevent spurious tcp_cwnd_restart() on first data
5455                  * packet.
5456                  */
5457                 tp->lsndtime = tcp_time_stamp;
5458
5459                 tcp_init_buffer_space(sk);
5460
5461                 if (sock_flag(sk, SOCK_KEEPOPEN))
5462                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5463
5464                 if (!tp->rx_opt.snd_wscale)
5465                         __tcp_fast_path_on(tp, tp->snd_wnd);
5466                 else
5467                         tp->pred_flags = 0;
5468
5469                 if (!sock_flag(sk, SOCK_DEAD)) {
5470                         sk->sk_state_change(sk);
5471                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5472                 }
5473
5474                 if (sk->sk_write_pending ||
5475                     icsk->icsk_accept_queue.rskq_defer_accept ||
5476                     icsk->icsk_ack.pingpong) {
5477                         /* Save one ACK. Data will be ready after
5478                          * several ticks, if write_pending is set.
5479                          *
5480                          * It may be deleted, but with this feature tcpdumps
5481                          * look so _wonderfully_ clever, that I was not able
5482                          * to stand against the temptation 8)     --ANK
5483                          */
5484                         inet_csk_schedule_ack(sk);
5485                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5486                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5487                         tcp_incr_quickack(sk);
5488                         tcp_enter_quickack_mode(sk);
5489                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5490                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5491
5492 discard:
5493                         __kfree_skb(skb);
5494                         return 0;
5495                 } else {
5496                         tcp_send_ack(sk);
5497                 }
5498                 return -1;
5499         }
5500
5501         /* No ACK in the segment */
5502
5503         if (th->rst) {
5504                 /* rfc793:
5505                  * "If the RST bit is set
5506                  *
5507                  *      Otherwise (no ACK) drop the segment and return."
5508                  */
5509
5510                 goto discard_and_undo;
5511         }
5512
5513         /* PAWS check. */
5514         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5515             tcp_paws_check(&tp->rx_opt, 0))
5516                 goto discard_and_undo;
5517
5518         if (th->syn) {
5519                 /* We see SYN without ACK. It is attempt of
5520                  * simultaneous connect with crossed SYNs.
5521                  * Particularly, it can be connect to self.
5522                  */
5523                 tcp_set_state(sk, TCP_SYN_RECV);
5524
5525                 if (tp->rx_opt.saw_tstamp) {
5526                         tp->rx_opt.tstamp_ok = 1;
5527                         tcp_store_ts_recent(tp);
5528                         tp->tcp_header_len =
5529                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5530                 } else {
5531                         tp->tcp_header_len = sizeof(struct tcphdr);
5532                 }
5533
5534                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5535                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5536
5537                 /* RFC1323: The window in SYN & SYN/ACK segments is
5538                  * never scaled.
5539                  */
5540                 tp->snd_wnd    = ntohs(th->window);
5541                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5542                 tp->max_window = tp->snd_wnd;
5543
5544                 TCP_ECN_rcv_syn(tp, th);
5545
5546                 tcp_mtup_init(sk);
5547                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5548                 tcp_initialize_rcv_mss(sk);
5549
5550                 tcp_send_synack(sk);
5551 #if 0
5552                 /* Note, we could accept data and URG from this segment.
5553                  * There are no obstacles to make this.
5554                  *
5555                  * However, if we ignore data in ACKless segments sometimes,
5556                  * we have no reasons to accept it sometimes.
5557                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5558                  * is not flawless. So, discard packet for sanity.
5559                  * Uncomment this return to process the data.
5560                  */
5561                 return -1;
5562 #else
5563                 goto discard;
5564 #endif
5565         }
5566         /* "fifth, if neither of the SYN or RST bits is set then
5567          * drop the segment and return."
5568          */
5569
5570 discard_and_undo:
5571         tcp_clear_options(&tp->rx_opt);
5572         tp->rx_opt.mss_clamp = saved_clamp;
5573         goto discard;
5574
5575 reset_and_undo:
5576         tcp_clear_options(&tp->rx_opt);
5577         tp->rx_opt.mss_clamp = saved_clamp;
5578         return 1;
5579 }
5580
5581 /*
5582  *      This function implements the receiving procedure of RFC 793 for
5583  *      all states except ESTABLISHED and TIME_WAIT.
5584  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5585  *      address independent.
5586  */
5587
5588 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5589                           struct tcphdr *th, unsigned len)
5590 {
5591         struct tcp_sock *tp = tcp_sk(sk);
5592         struct inet_connection_sock *icsk = inet_csk(sk);
5593         int queued = 0;
5594         int res;
5595
5596         tp->rx_opt.saw_tstamp = 0;
5597
5598         switch (sk->sk_state) {
5599         case TCP_CLOSE:
5600                 goto discard;
5601
5602         case TCP_LISTEN:
5603                 if (th->ack)
5604                         return 1;
5605
5606                 if (th->rst)
5607                         goto discard;
5608
5609                 if (th->syn) {
5610                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5611                                 return 1;
5612
5613                         /* Now we have several options: In theory there is
5614                          * nothing else in the frame. KA9Q has an option to
5615                          * send data with the syn, BSD accepts data with the
5616                          * syn up to the [to be] advertised window and
5617                          * Solaris 2.1 gives you a protocol error. For now
5618                          * we just ignore it, that fits the spec precisely
5619                          * and avoids incompatibilities. It would be nice in
5620                          * future to drop through and process the data.
5621                          *
5622                          * Now that TTCP is starting to be used we ought to
5623                          * queue this data.
5624                          * But, this leaves one open to an easy denial of
5625                          * service attack, and SYN cookies can't defend
5626                          * against this problem. So, we drop the data
5627                          * in the interest of security over speed unless
5628                          * it's still in use.
5629                          */
5630                         kfree_skb(skb);
5631                         return 0;
5632                 }
5633                 goto discard;
5634
5635         case TCP_SYN_SENT:
5636                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5637                 if (queued >= 0)
5638                         return queued;
5639
5640                 /* Do step6 onward by hand. */
5641                 tcp_urg(sk, skb, th);
5642                 __kfree_skb(skb);
5643                 tcp_data_snd_check(sk);
5644                 return 0;
5645         }
5646
5647         res = tcp_validate_incoming(sk, skb, th, 0);
5648         if (res <= 0)
5649                 return -res;
5650
5651         /* step 5: check the ACK field */
5652         if (th->ack) {
5653                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5654
5655                 switch (sk->sk_state) {
5656                 case TCP_SYN_RECV:
5657                         if (acceptable) {
5658                                 tp->copied_seq = tp->rcv_nxt;
5659                                 smp_mb();
5660                                 tcp_set_state(sk, TCP_ESTABLISHED);
5661                                 sk->sk_state_change(sk);
5662
5663                                 /* Note, that this wakeup is only for marginal
5664                                  * crossed SYN case. Passively open sockets
5665                                  * are not waked up, because sk->sk_sleep ==
5666                                  * NULL and sk->sk_socket == NULL.
5667                                  */
5668                                 if (sk->sk_socket)
5669                                         sk_wake_async(sk,
5670                                                       SOCK_WAKE_IO, POLL_OUT);
5671
5672                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5673                                 tp->snd_wnd = ntohs(th->window) <<
5674                                               tp->rx_opt.snd_wscale;
5675                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5676                                             TCP_SKB_CB(skb)->seq);
5677
5678                                 /* tcp_ack considers this ACK as duplicate
5679                                  * and does not calculate rtt.
5680                                  * Fix it at least with timestamps.
5681                                  */
5682                                 if (tp->rx_opt.saw_tstamp &&
5683                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5684                                         tcp_ack_saw_tstamp(sk, 0);
5685
5686                                 if (tp->rx_opt.tstamp_ok)
5687                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5688
5689                                 /* Make sure socket is routed, for
5690                                  * correct metrics.
5691                                  */
5692                                 icsk->icsk_af_ops->rebuild_header(sk);
5693
5694                                 tcp_init_metrics(sk);
5695
5696                                 tcp_init_congestion_control(sk);
5697
5698                                 /* Prevent spurious tcp_cwnd_restart() on
5699                                  * first data packet.
5700                                  */
5701                                 tp->lsndtime = tcp_time_stamp;
5702
5703                                 tcp_mtup_init(sk);
5704                                 tcp_initialize_rcv_mss(sk);
5705                                 tcp_init_buffer_space(sk);
5706                                 tcp_fast_path_on(tp);
5707                         } else {
5708                                 return 1;
5709                         }
5710                         break;
5711
5712                 case TCP_FIN_WAIT1:
5713                         if (tp->snd_una == tp->write_seq) {
5714                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5715                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5716                                 dst_confirm(sk->sk_dst_cache);
5717
5718                                 if (!sock_flag(sk, SOCK_DEAD))
5719                                         /* Wake up lingering close() */
5720                                         sk->sk_state_change(sk);
5721                                 else {
5722                                         int tmo;
5723
5724                                         if (tp->linger2 < 0 ||
5725                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5726                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5727                                                 tcp_done(sk);
5728                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5729                                                 return 1;
5730                                         }
5731
5732                                         tmo = tcp_fin_time(sk);
5733                                         if (tmo > TCP_TIMEWAIT_LEN) {
5734                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5735                                         } else if (th->fin || sock_owned_by_user(sk)) {
5736                                                 /* Bad case. We could lose such FIN otherwise.
5737                                                  * It is not a big problem, but it looks confusing
5738                                                  * and not so rare event. We still can lose it now,
5739                                                  * if it spins in bh_lock_sock(), but it is really
5740                                                  * marginal case.
5741                                                  */
5742                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5743                                         } else {
5744                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5745                                                 goto discard;
5746                                         }
5747                                 }
5748                         }
5749                         break;
5750
5751                 case TCP_CLOSING:
5752                         if (tp->snd_una == tp->write_seq) {
5753                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5754                                 goto discard;
5755                         }
5756                         break;
5757
5758                 case TCP_LAST_ACK:
5759                         if (tp->snd_una == tp->write_seq) {
5760                                 tcp_update_metrics(sk);
5761                                 tcp_done(sk);
5762                                 goto discard;
5763                         }
5764                         break;
5765                 }
5766         } else
5767                 goto discard;
5768
5769         /* step 6: check the URG bit */
5770         tcp_urg(sk, skb, th);
5771
5772         /* step 7: process the segment text */
5773         switch (sk->sk_state) {
5774         case TCP_CLOSE_WAIT:
5775         case TCP_CLOSING:
5776         case TCP_LAST_ACK:
5777                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5778                         break;
5779         case TCP_FIN_WAIT1:
5780         case TCP_FIN_WAIT2:
5781                 /* RFC 793 says to queue data in these states,
5782                  * RFC 1122 says we MUST send a reset.
5783                  * BSD 4.4 also does reset.
5784                  */
5785                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5786                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5787                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5788                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5789                                 tcp_reset(sk);
5790                                 return 1;
5791                         }
5792                 }
5793                 /* Fall through */
5794         case TCP_ESTABLISHED:
5795                 tcp_data_queue(sk, skb);
5796                 queued = 1;
5797                 break;
5798         }
5799
5800         /* tcp_data could move socket to TIME-WAIT */
5801         if (sk->sk_state != TCP_CLOSE) {
5802                 tcp_data_snd_check(sk);
5803                 tcp_ack_snd_check(sk);
5804         }
5805
5806         if (!queued) {
5807 discard:
5808                 __kfree_skb(skb);
5809         }
5810         return 0;
5811 }
5812
5813 EXPORT_SYMBOL(sysctl_tcp_ecn);
5814 EXPORT_SYMBOL(sysctl_tcp_reordering);
5815 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5816 EXPORT_SYMBOL(tcp_parse_options);
5817 #ifdef CONFIG_TCP_MD5SIG
5818 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5819 #endif
5820 EXPORT_SYMBOL(tcp_rcv_established);
5821 EXPORT_SYMBOL(tcp_rcv_state_process);
5822 EXPORT_SYMBOL(tcp_initialize_rcv_mss);