]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/ipv4/tcp_input.c
9f8a80ba17bd3ba9f55d84d5b9491e9e34cf4446
[net-next-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  *
1246  * FIXME: this could be merged to shift decision code
1247  */
1248 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1249                                  u32 start_seq, u32 end_seq)
1250 {
1251         int in_sack, err;
1252         unsigned int pkt_len;
1253         unsigned int mss;
1254
1255         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1256                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257
1258         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1259             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1260                 mss = tcp_skb_mss(skb);
1261                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262
1263                 if (!in_sack) {
1264                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265                         if (pkt_len < mss)
1266                                 pkt_len = mss;
1267                 } else {
1268                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1269                         if (pkt_len < mss)
1270                                 return -EINVAL;
1271                 }
1272
1273                 /* Round if necessary so that SACKs cover only full MSSes
1274                  * and/or the remaining small portion (if present)
1275                  */
1276                 if (pkt_len > mss) {
1277                         unsigned int new_len = (pkt_len / mss) * mss;
1278                         if (!in_sack && new_len < pkt_len) {
1279                                 new_len += mss;
1280                                 if (new_len > skb->len)
1281                                         return 0;
1282                         }
1283                         pkt_len = new_len;
1284                 }
1285                 err = tcp_fragment(sk, skb, pkt_len, mss);
1286                 if (err < 0)
1287                         return err;
1288         }
1289
1290         return in_sack;
1291 }
1292
1293 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1294                            int *reord, int dup_sack, int fack_count,
1295                            u8 *sackedto, int pcount)
1296 {
1297         struct tcp_sock *tp = tcp_sk(sk);
1298         u8 sacked = TCP_SKB_CB(skb)->sacked;
1299         int flag = 0;
1300
1301         /* Account D-SACK for retransmitted packet. */
1302         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1303                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304                         tp->undo_retrans--;
1305                 if (sacked & TCPCB_SACKED_ACKED)
1306                         *reord = min(fack_count, *reord);
1307         }
1308
1309         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311                 return flag;
1312
1313         if (!(sacked & TCPCB_SACKED_ACKED)) {
1314                 if (sacked & TCPCB_SACKED_RETRANS) {
1315                         /* If the segment is not tagged as lost,
1316                          * we do not clear RETRANS, believing
1317                          * that retransmission is still in flight.
1318                          */
1319                         if (sacked & TCPCB_LOST) {
1320                                 *sackedto &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321                                 tp->lost_out -= pcount;
1322                                 tp->retrans_out -= pcount;
1323                         }
1324                 } else {
1325                         if (!(sacked & TCPCB_RETRANS)) {
1326                                 /* New sack for not retransmitted frame,
1327                                  * which was in hole. It is reordering.
1328                                  */
1329                                 if (before(TCP_SKB_CB(skb)->seq,
1330                                            tcp_highest_sack_seq(tp)))
1331                                         *reord = min(fack_count, *reord);
1332
1333                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335                                         flag |= FLAG_ONLY_ORIG_SACKED;
1336                         }
1337
1338                         if (sacked & TCPCB_LOST) {
1339                                 *sackedto &= ~TCPCB_LOST;
1340                                 tp->lost_out -= pcount;
1341                         }
1342                 }
1343
1344                 *sackedto |= TCPCB_SACKED_ACKED;
1345                 flag |= FLAG_DATA_SACKED;
1346                 tp->sacked_out += pcount;
1347
1348                 fack_count += pcount;
1349
1350                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352                     before(TCP_SKB_CB(skb)->seq,
1353                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354                         tp->lost_cnt_hint += pcount;
1355
1356                 if (fack_count > tp->fackets_out)
1357                         tp->fackets_out = fack_count;
1358         }
1359
1360         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361          * frames and clear it. undo_retrans is decreased above, L|R frames
1362          * are accounted above as well.
1363          */
1364         if (dup_sack && (*sackedto & TCPCB_SACKED_RETRANS)) {
1365                 *sackedto &= ~TCPCB_SACKED_RETRANS;
1366                 tp->retrans_out -= pcount;
1367         }
1368
1369         return flag;
1370 }
1371
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1373                            struct sk_buff *skb, unsigned int pcount,
1374                            int shifted, int fack_count, int *reord,
1375                            int *flag, int mss)
1376 {
1377         struct tcp_sock *tp = tcp_sk(sk);
1378         u8 dummy_sacked = TCP_SKB_CB(skb)->sacked;      /* We discard results */
1379
1380         BUG_ON(!pcount);
1381
1382         /* Tweak before seqno plays */
1383         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385                 tp->lost_cnt_hint += pcount;
1386
1387         TCP_SKB_CB(prev)->end_seq += shifted;
1388         TCP_SKB_CB(skb)->seq += shifted;
1389
1390         skb_shinfo(prev)->gso_segs += pcount;
1391         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392         skb_shinfo(skb)->gso_segs -= pcount;
1393
1394         /* When we're adding to gso_segs == 1, gso_size will be zero,
1395          * in theory this shouldn't be necessary but as long as DSACK
1396          * code can come after this skb later on it's better to keep
1397          * setting gso_size to something.
1398          */
1399         if (!skb_shinfo(prev)->gso_size) {
1400                 skb_shinfo(prev)->gso_size = mss;
1401                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402         }
1403
1404         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405         if (skb_shinfo(skb)->gso_segs <= 1) {
1406                 skb_shinfo(skb)->gso_size = 0;
1407                 skb_shinfo(skb)->gso_type = 0;
1408         }
1409
1410         *flag |= tcp_sacktag_one(skb, sk, reord, 0, fack_count, &dummy_sacked,
1411                                  pcount);
1412
1413         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415
1416         if (skb->len > 0) {
1417                 BUG_ON(!tcp_skb_pcount(skb));
1418                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419                 return 0;
1420         }
1421
1422         /* Whole SKB was eaten :-) */
1423
1424         if (skb == tp->retransmit_skb_hint)
1425                 tp->retransmit_skb_hint = prev;
1426         if (skb == tp->scoreboard_skb_hint)
1427                 tp->scoreboard_skb_hint = prev;
1428         if (skb == tp->lost_skb_hint) {
1429                 tp->lost_skb_hint = prev;
1430                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431         }
1432
1433         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434         if (skb == tcp_highest_sack(sk))
1435                 tcp_advance_highest_sack(sk, skb);
1436
1437         tcp_unlink_write_queue(skb, sk);
1438         sk_wmem_free_skb(sk, skb);
1439
1440         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441
1442         return 1;
1443 }
1444
1445 /* I wish gso_size would have a bit more sane initialization than
1446  * something-or-zero which complicates things
1447  */
1448 static int tcp_shift_mss(struct sk_buff *skb)
1449 {
1450         int mss = tcp_skb_mss(skb);
1451
1452         if (!mss)
1453                 mss = skb->len;
1454
1455         return mss;
1456 }
1457
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1460 {
1461         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462 }
1463
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465  * skb.
1466  */
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468                                           u32 start_seq, u32 end_seq,
1469                                           int dup_sack, int *fack_count,
1470                                           int *reord, int *flag)
1471 {
1472         struct tcp_sock *tp = tcp_sk(sk);
1473         struct sk_buff *prev;
1474         int mss;
1475         int pcount = 0;
1476         int len;
1477         int in_sack;
1478
1479         if (!sk_can_gso(sk))
1480                 goto fallback;
1481
1482         /* Normally R but no L won't result in plain S */
1483         if (!dup_sack &&
1484             (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) == TCPCB_SACKED_RETRANS)
1485                 goto fallback;
1486         if (!skb_can_shift(skb))
1487                 goto fallback;
1488         /* This frame is about to be dropped (was ACKed). */
1489         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490                 goto fallback;
1491
1492         /* Can only happen with delayed DSACK + discard craziness */
1493         if (unlikely(skb == tcp_write_queue_head(sk)))
1494                 goto fallback;
1495         prev = tcp_write_queue_prev(sk, skb);
1496
1497         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498                 goto fallback;
1499
1500         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502
1503         if (in_sack) {
1504                 len = skb->len;
1505                 pcount = tcp_skb_pcount(skb);
1506                 mss = tcp_shift_mss(skb);
1507
1508                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509                  * drop this restriction as unnecessary
1510                  */
1511                 if (mss != tcp_shift_mss(prev))
1512                         goto fallback;
1513         } else {
1514                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515                         goto noop;
1516                 /* CHECKME: This is non-MSS split case only?, this will
1517                  * cause skipped skbs due to advancing loop btw, original
1518                  * has that feature too
1519                  */
1520                 if (tcp_skb_pcount(skb) <= 1)
1521                         goto noop;
1522
1523                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524                 if (!in_sack) {
1525                         /* TODO: head merge to next could be attempted here
1526                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527                          * though it might not be worth of the additional hassle
1528                          *
1529                          * ...we can probably just fallback to what was done
1530                          * previously. We could try merging non-SACKed ones
1531                          * as well but it probably isn't going to buy off
1532                          * because later SACKs might again split them, and
1533                          * it would make skb timestamp tracking considerably
1534                          * harder problem.
1535                          */
1536                         goto fallback;
1537                 }
1538
1539                 len = end_seq - TCP_SKB_CB(skb)->seq;
1540                 BUG_ON(len < 0);
1541                 BUG_ON(len > skb->len);
1542
1543                 /* MSS boundaries should be honoured or else pcount will
1544                  * severely break even though it makes things bit trickier.
1545                  * Optimize common case to avoid most of the divides
1546                  */
1547                 mss = tcp_skb_mss(skb);
1548
1549                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550                  * drop this restriction as unnecessary
1551                  */
1552                 if (mss != tcp_shift_mss(prev))
1553                         goto fallback;
1554
1555                 if (len == mss) {
1556                         pcount = 1;
1557                 } else if (len < mss) {
1558                         goto noop;
1559                 } else {
1560                         pcount = len / mss;
1561                         len = pcount * mss;
1562                 }
1563         }
1564
1565         if (!skb_shift(prev, skb, len))
1566                 goto fallback;
1567         if (!tcp_shifted_skb(sk, prev, skb, pcount, len, *fack_count, reord,
1568                              flag, mss))
1569                 goto out;
1570
1571         /* Hole filled allows collapsing with the next as well, this is very
1572          * useful when hole on every nth skb pattern happens
1573          */
1574         if (prev == tcp_write_queue_tail(sk))
1575                 goto out;
1576         skb = tcp_write_queue_next(sk, prev);
1577
1578         if (!skb_can_shift(skb))
1579                 goto out;
1580         if (skb == tcp_send_head(sk))
1581                 goto out;
1582         if ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1583                 goto out;
1584
1585         len = skb->len;
1586         if (skb_shift(prev, skb, len)) {
1587                 pcount += tcp_skb_pcount(skb);
1588                 tcp_shifted_skb(sk, prev, skb, tcp_skb_pcount(skb), len,
1589                                 *fack_count, reord, flag, mss);
1590         }
1591
1592 out:
1593         *fack_count += pcount;
1594         return prev;
1595
1596 noop:
1597         return skb;
1598
1599 fallback:
1600         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1601         return NULL;
1602 }
1603
1604 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1605                                         struct tcp_sack_block *next_dup,
1606                                         u32 start_seq, u32 end_seq,
1607                                         int dup_sack_in, int *fack_count,
1608                                         int *reord, int *flag)
1609 {
1610         struct tcp_sock *tp = tcp_sk(sk);
1611         struct sk_buff *tmp;
1612
1613         tcp_for_write_queue_from(skb, sk) {
1614                 int in_sack = 0;
1615                 int dup_sack = dup_sack_in;
1616
1617                 if (skb == tcp_send_head(sk))
1618                         break;
1619
1620                 /* queue is in-order => we can short-circuit the walk early */
1621                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1622                         break;
1623
1624                 if ((next_dup != NULL) &&
1625                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1626                         in_sack = tcp_match_skb_to_sack(sk, skb,
1627                                                         next_dup->start_seq,
1628                                                         next_dup->end_seq);
1629                         if (in_sack > 0)
1630                                 dup_sack = 1;
1631                 }
1632
1633                 /* skb reference here is a bit tricky to get right, since
1634                  * shifting can eat and free both this skb and the next,
1635                  * so not even _safe variant of the loop is enough.
1636                  */
1637                 if (in_sack <= 0) {
1638                         tmp = tcp_shift_skb_data(sk, skb, start_seq,
1639                                                  end_seq, dup_sack,
1640                                                  fack_count, reord, flag);
1641                         if (tmp != NULL) {
1642                                 if (tmp != skb) {
1643                                         skb = tmp;
1644                                         continue;
1645                                 }
1646
1647                                 in_sack = 0;
1648                         } else {
1649                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1650                                                                 start_seq,
1651                                                                 end_seq);
1652                         }
1653                 }
1654
1655                 if (unlikely(in_sack < 0))
1656                         break;
1657
1658                 if (in_sack) {
1659                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1660                                                  *fack_count,
1661                                                  &(TCP_SKB_CB(skb)->sacked),
1662                                                  tcp_skb_pcount(skb));
1663
1664                         if (!before(TCP_SKB_CB(skb)->seq,
1665                                     tcp_highest_sack_seq(tp)))
1666                                 tcp_advance_highest_sack(sk, skb);
1667                 }
1668
1669                 *fack_count += tcp_skb_pcount(skb);
1670         }
1671         return skb;
1672 }
1673
1674 /* Avoid all extra work that is being done by sacktag while walking in
1675  * a normal way
1676  */
1677 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1678                                         u32 skip_to_seq, int *fack_count)
1679 {
1680         tcp_for_write_queue_from(skb, sk) {
1681                 if (skb == tcp_send_head(sk))
1682                         break;
1683
1684                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1685                         break;
1686
1687                 *fack_count += tcp_skb_pcount(skb);
1688         }
1689         return skb;
1690 }
1691
1692 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1693                                                 struct sock *sk,
1694                                                 struct tcp_sack_block *next_dup,
1695                                                 u32 skip_to_seq,
1696                                                 int *fack_count, int *reord,
1697                                                 int *flag)
1698 {
1699         if (next_dup == NULL)
1700                 return skb;
1701
1702         if (before(next_dup->start_seq, skip_to_seq)) {
1703                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1704                 skb = tcp_sacktag_walk(skb, sk, NULL,
1705                                      next_dup->start_seq, next_dup->end_seq,
1706                                      1, fack_count, reord, flag);
1707         }
1708
1709         return skb;
1710 }
1711
1712 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1713 {
1714         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1715 }
1716
1717 static int
1718 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1719                         u32 prior_snd_una)
1720 {
1721         const struct inet_connection_sock *icsk = inet_csk(sk);
1722         struct tcp_sock *tp = tcp_sk(sk);
1723         unsigned char *ptr = (skb_transport_header(ack_skb) +
1724                               TCP_SKB_CB(ack_skb)->sacked);
1725         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1726         struct tcp_sack_block sp[TCP_NUM_SACKS];
1727         struct tcp_sack_block *cache;
1728         struct sk_buff *skb;
1729         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1730         int used_sacks;
1731         int reord = tp->packets_out;
1732         int flag = 0;
1733         int found_dup_sack = 0;
1734         int fack_count;
1735         int i, j;
1736         int first_sack_index;
1737
1738         if (!tp->sacked_out) {
1739                 if (WARN_ON(tp->fackets_out))
1740                         tp->fackets_out = 0;
1741                 tcp_highest_sack_reset(sk);
1742         }
1743
1744         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1745                                          num_sacks, prior_snd_una);
1746         if (found_dup_sack)
1747                 flag |= FLAG_DSACKING_ACK;
1748
1749         /* Eliminate too old ACKs, but take into
1750          * account more or less fresh ones, they can
1751          * contain valid SACK info.
1752          */
1753         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1754                 return 0;
1755
1756         if (!tp->packets_out)
1757                 goto out;
1758
1759         used_sacks = 0;
1760         first_sack_index = 0;
1761         for (i = 0; i < num_sacks; i++) {
1762                 int dup_sack = !i && found_dup_sack;
1763
1764                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1765                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1766
1767                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1768                                             sp[used_sacks].start_seq,
1769                                             sp[used_sacks].end_seq)) {
1770                         int mib_idx;
1771
1772                         if (dup_sack) {
1773                                 if (!tp->undo_marker)
1774                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1775                                 else
1776                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1777                         } else {
1778                                 /* Don't count olds caused by ACK reordering */
1779                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1780                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1781                                         continue;
1782                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1783                         }
1784
1785                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1786                         if (i == 0)
1787                                 first_sack_index = -1;
1788                         continue;
1789                 }
1790
1791                 /* Ignore very old stuff early */
1792                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1793                         continue;
1794
1795                 used_sacks++;
1796         }
1797
1798         /* order SACK blocks to allow in order walk of the retrans queue */
1799         for (i = used_sacks - 1; i > 0; i--) {
1800                 for (j = 0; j < i; j++) {
1801                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1802                                 struct tcp_sack_block tmp;
1803
1804                                 tmp = sp[j];
1805                                 sp[j] = sp[j + 1];
1806                                 sp[j + 1] = tmp;
1807
1808                                 /* Track where the first SACK block goes to */
1809                                 if (j == first_sack_index)
1810                                         first_sack_index = j + 1;
1811                         }
1812                 }
1813         }
1814
1815         skb = tcp_write_queue_head(sk);
1816         fack_count = 0;
1817         i = 0;
1818
1819         if (!tp->sacked_out) {
1820                 /* It's already past, so skip checking against it */
1821                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1822         } else {
1823                 cache = tp->recv_sack_cache;
1824                 /* Skip empty blocks in at head of the cache */
1825                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1826                        !cache->end_seq)
1827                         cache++;
1828         }
1829
1830         while (i < used_sacks) {
1831                 u32 start_seq = sp[i].start_seq;
1832                 u32 end_seq = sp[i].end_seq;
1833                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1834                 struct tcp_sack_block *next_dup = NULL;
1835
1836                 if (found_dup_sack && ((i + 1) == first_sack_index))
1837                         next_dup = &sp[i + 1];
1838
1839                 /* Event "B" in the comment above. */
1840                 if (after(end_seq, tp->high_seq))
1841                         flag |= FLAG_DATA_LOST;
1842
1843                 /* Skip too early cached blocks */
1844                 while (tcp_sack_cache_ok(tp, cache) &&
1845                        !before(start_seq, cache->end_seq))
1846                         cache++;
1847
1848                 /* Can skip some work by looking recv_sack_cache? */
1849                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1850                     after(end_seq, cache->start_seq)) {
1851
1852                         /* Head todo? */
1853                         if (before(start_seq, cache->start_seq)) {
1854                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1855                                                        &fack_count);
1856                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1857                                                        start_seq,
1858                                                        cache->start_seq,
1859                                                        dup_sack, &fack_count,
1860                                                        &reord, &flag);
1861                         }
1862
1863                         /* Rest of the block already fully processed? */
1864                         if (!after(end_seq, cache->end_seq))
1865                                 goto advance_sp;
1866
1867                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1868                                                        cache->end_seq,
1869                                                        &fack_count, &reord,
1870                                                        &flag);
1871
1872                         /* ...tail remains todo... */
1873                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1874                                 /* ...but better entrypoint exists! */
1875                                 skb = tcp_highest_sack(sk);
1876                                 if (skb == NULL)
1877                                         break;
1878                                 fack_count = tp->fackets_out;
1879                                 cache++;
1880                                 goto walk;
1881                         }
1882
1883                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1884                                                &fack_count);
1885                         /* Check overlap against next cached too (past this one already) */
1886                         cache++;
1887                         continue;
1888                 }
1889
1890                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1891                         skb = tcp_highest_sack(sk);
1892                         if (skb == NULL)
1893                                 break;
1894                         fack_count = tp->fackets_out;
1895                 }
1896                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1897
1898 walk:
1899                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1900                                        dup_sack, &fack_count, &reord, &flag);
1901
1902 advance_sp:
1903                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1904                  * due to in-order walk
1905                  */
1906                 if (after(end_seq, tp->frto_highmark))
1907                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1908
1909                 i++;
1910         }
1911
1912         /* Clear the head of the cache sack blocks so we can skip it next time */
1913         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1914                 tp->recv_sack_cache[i].start_seq = 0;
1915                 tp->recv_sack_cache[i].end_seq = 0;
1916         }
1917         for (j = 0; j < used_sacks; j++)
1918                 tp->recv_sack_cache[i++] = sp[j];
1919
1920         tcp_mark_lost_retrans(sk);
1921
1922         tcp_verify_left_out(tp);
1923
1924         if ((reord < tp->fackets_out) &&
1925             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1926             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1927                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1928
1929 out:
1930
1931 #if FASTRETRANS_DEBUG > 0
1932         WARN_ON((int)tp->sacked_out < 0);
1933         WARN_ON((int)tp->lost_out < 0);
1934         WARN_ON((int)tp->retrans_out < 0);
1935         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1936 #endif
1937         return flag;
1938 }
1939
1940 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1941  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1942  */
1943 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1944 {
1945         u32 holes;
1946
1947         holes = max(tp->lost_out, 1U);
1948         holes = min(holes, tp->packets_out);
1949
1950         if ((tp->sacked_out + holes) > tp->packets_out) {
1951                 tp->sacked_out = tp->packets_out - holes;
1952                 return 1;
1953         }
1954         return 0;
1955 }
1956
1957 /* If we receive more dupacks than we expected counting segments
1958  * in assumption of absent reordering, interpret this as reordering.
1959  * The only another reason could be bug in receiver TCP.
1960  */
1961 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1962 {
1963         struct tcp_sock *tp = tcp_sk(sk);
1964         if (tcp_limit_reno_sacked(tp))
1965                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1966 }
1967
1968 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1969
1970 static void tcp_add_reno_sack(struct sock *sk)
1971 {
1972         struct tcp_sock *tp = tcp_sk(sk);
1973         tp->sacked_out++;
1974         tcp_check_reno_reordering(sk, 0);
1975         tcp_verify_left_out(tp);
1976 }
1977
1978 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1979
1980 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1981 {
1982         struct tcp_sock *tp = tcp_sk(sk);
1983
1984         if (acked > 0) {
1985                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1986                 if (acked - 1 >= tp->sacked_out)
1987                         tp->sacked_out = 0;
1988                 else
1989                         tp->sacked_out -= acked - 1;
1990         }
1991         tcp_check_reno_reordering(sk, acked);
1992         tcp_verify_left_out(tp);
1993 }
1994
1995 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1996 {
1997         tp->sacked_out = 0;
1998 }
1999
2000 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2001 {
2002         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2003 }
2004
2005 /* F-RTO can only be used if TCP has never retransmitted anything other than
2006  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2007  */
2008 int tcp_use_frto(struct sock *sk)
2009 {
2010         const struct tcp_sock *tp = tcp_sk(sk);
2011         const struct inet_connection_sock *icsk = inet_csk(sk);
2012         struct sk_buff *skb;
2013
2014         if (!sysctl_tcp_frto)
2015                 return 0;
2016
2017         /* MTU probe and F-RTO won't really play nicely along currently */
2018         if (icsk->icsk_mtup.probe_size)
2019                 return 0;
2020
2021         if (tcp_is_sackfrto(tp))
2022                 return 1;
2023
2024         /* Avoid expensive walking of rexmit queue if possible */
2025         if (tp->retrans_out > 1)
2026                 return 0;
2027
2028         skb = tcp_write_queue_head(sk);
2029         if (tcp_skb_is_last(sk, skb))
2030                 return 1;
2031         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2032         tcp_for_write_queue_from(skb, sk) {
2033                 if (skb == tcp_send_head(sk))
2034                         break;
2035                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2036                         return 0;
2037                 /* Short-circuit when first non-SACKed skb has been checked */
2038                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2039                         break;
2040         }
2041         return 1;
2042 }
2043
2044 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2045  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2046  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2047  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2048  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2049  * bits are handled if the Loss state is really to be entered (in
2050  * tcp_enter_frto_loss).
2051  *
2052  * Do like tcp_enter_loss() would; when RTO expires the second time it
2053  * does:
2054  *  "Reduce ssthresh if it has not yet been made inside this window."
2055  */
2056 void tcp_enter_frto(struct sock *sk)
2057 {
2058         const struct inet_connection_sock *icsk = inet_csk(sk);
2059         struct tcp_sock *tp = tcp_sk(sk);
2060         struct sk_buff *skb;
2061
2062         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2063             tp->snd_una == tp->high_seq ||
2064             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2065              !icsk->icsk_retransmits)) {
2066                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2067                 /* Our state is too optimistic in ssthresh() call because cwnd
2068                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2069                  * recovery has not yet completed. Pattern would be this: RTO,
2070                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2071                  * up here twice).
2072                  * RFC4138 should be more specific on what to do, even though
2073                  * RTO is quite unlikely to occur after the first Cumulative ACK
2074                  * due to back-off and complexity of triggering events ...
2075                  */
2076                 if (tp->frto_counter) {
2077                         u32 stored_cwnd;
2078                         stored_cwnd = tp->snd_cwnd;
2079                         tp->snd_cwnd = 2;
2080                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081                         tp->snd_cwnd = stored_cwnd;
2082                 } else {
2083                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2084                 }
2085                 /* ... in theory, cong.control module could do "any tricks" in
2086                  * ssthresh(), which means that ca_state, lost bits and lost_out
2087                  * counter would have to be faked before the call occurs. We
2088                  * consider that too expensive, unlikely and hacky, so modules
2089                  * using these in ssthresh() must deal these incompatibility
2090                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2091                  */
2092                 tcp_ca_event(sk, CA_EVENT_FRTO);
2093         }
2094
2095         tp->undo_marker = tp->snd_una;
2096         tp->undo_retrans = 0;
2097
2098         skb = tcp_write_queue_head(sk);
2099         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2100                 tp->undo_marker = 0;
2101         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2102                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2103                 tp->retrans_out -= tcp_skb_pcount(skb);
2104         }
2105         tcp_verify_left_out(tp);
2106
2107         /* Too bad if TCP was application limited */
2108         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2109
2110         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2111          * The last condition is necessary at least in tp->frto_counter case.
2112          */
2113         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2114             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2115             after(tp->high_seq, tp->snd_una)) {
2116                 tp->frto_highmark = tp->high_seq;
2117         } else {
2118                 tp->frto_highmark = tp->snd_nxt;
2119         }
2120         tcp_set_ca_state(sk, TCP_CA_Disorder);
2121         tp->high_seq = tp->snd_nxt;
2122         tp->frto_counter = 1;
2123 }
2124
2125 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2126  * which indicates that we should follow the traditional RTO recovery,
2127  * i.e. mark everything lost and do go-back-N retransmission.
2128  */
2129 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2130 {
2131         struct tcp_sock *tp = tcp_sk(sk);
2132         struct sk_buff *skb;
2133
2134         tp->lost_out = 0;
2135         tp->retrans_out = 0;
2136         if (tcp_is_reno(tp))
2137                 tcp_reset_reno_sack(tp);
2138
2139         tcp_for_write_queue(skb, sk) {
2140                 if (skb == tcp_send_head(sk))
2141                         break;
2142
2143                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2144                 /*
2145                  * Count the retransmission made on RTO correctly (only when
2146                  * waiting for the first ACK and did not get it)...
2147                  */
2148                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2149                         /* For some reason this R-bit might get cleared? */
2150                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2151                                 tp->retrans_out += tcp_skb_pcount(skb);
2152                         /* ...enter this if branch just for the first segment */
2153                         flag |= FLAG_DATA_ACKED;
2154                 } else {
2155                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2156                                 tp->undo_marker = 0;
2157                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2158                 }
2159
2160                 /* Marking forward transmissions that were made after RTO lost
2161                  * can cause unnecessary retransmissions in some scenarios,
2162                  * SACK blocks will mitigate that in some but not in all cases.
2163                  * We used to not mark them but it was causing break-ups with
2164                  * receivers that do only in-order receival.
2165                  *
2166                  * TODO: we could detect presence of such receiver and select
2167                  * different behavior per flow.
2168                  */
2169                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2170                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2171                         tp->lost_out += tcp_skb_pcount(skb);
2172                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2173                 }
2174         }
2175         tcp_verify_left_out(tp);
2176
2177         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2178         tp->snd_cwnd_cnt = 0;
2179         tp->snd_cwnd_stamp = tcp_time_stamp;
2180         tp->frto_counter = 0;
2181         tp->bytes_acked = 0;
2182
2183         tp->reordering = min_t(unsigned int, tp->reordering,
2184                                sysctl_tcp_reordering);
2185         tcp_set_ca_state(sk, TCP_CA_Loss);
2186         tp->high_seq = tp->snd_nxt;
2187         TCP_ECN_queue_cwr(tp);
2188
2189         tcp_clear_all_retrans_hints(tp);
2190 }
2191
2192 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2193 {
2194         tp->retrans_out = 0;
2195         tp->lost_out = 0;
2196
2197         tp->undo_marker = 0;
2198         tp->undo_retrans = 0;
2199 }
2200
2201 void tcp_clear_retrans(struct tcp_sock *tp)
2202 {
2203         tcp_clear_retrans_partial(tp);
2204
2205         tp->fackets_out = 0;
2206         tp->sacked_out = 0;
2207 }
2208
2209 /* Enter Loss state. If "how" is not zero, forget all SACK information
2210  * and reset tags completely, otherwise preserve SACKs. If receiver
2211  * dropped its ofo queue, we will know this due to reneging detection.
2212  */
2213 void tcp_enter_loss(struct sock *sk, int how)
2214 {
2215         const struct inet_connection_sock *icsk = inet_csk(sk);
2216         struct tcp_sock *tp = tcp_sk(sk);
2217         struct sk_buff *skb;
2218
2219         /* Reduce ssthresh if it has not yet been made inside this window. */
2220         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2221             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2222                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2223                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2224                 tcp_ca_event(sk, CA_EVENT_LOSS);
2225         }
2226         tp->snd_cwnd       = 1;
2227         tp->snd_cwnd_cnt   = 0;
2228         tp->snd_cwnd_stamp = tcp_time_stamp;
2229
2230         tp->bytes_acked = 0;
2231         tcp_clear_retrans_partial(tp);
2232
2233         if (tcp_is_reno(tp))
2234                 tcp_reset_reno_sack(tp);
2235
2236         if (!how) {
2237                 /* Push undo marker, if it was plain RTO and nothing
2238                  * was retransmitted. */
2239                 tp->undo_marker = tp->snd_una;
2240         } else {
2241                 tp->sacked_out = 0;
2242                 tp->fackets_out = 0;
2243         }
2244         tcp_clear_all_retrans_hints(tp);
2245
2246         tcp_for_write_queue(skb, sk) {
2247                 if (skb == tcp_send_head(sk))
2248                         break;
2249
2250                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2251                         tp->undo_marker = 0;
2252                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2253                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2254                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2255                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2256                         tp->lost_out += tcp_skb_pcount(skb);
2257                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2258                 }
2259         }
2260         tcp_verify_left_out(tp);
2261
2262         tp->reordering = min_t(unsigned int, tp->reordering,
2263                                sysctl_tcp_reordering);
2264         tcp_set_ca_state(sk, TCP_CA_Loss);
2265         tp->high_seq = tp->snd_nxt;
2266         TCP_ECN_queue_cwr(tp);
2267         /* Abort F-RTO algorithm if one is in progress */
2268         tp->frto_counter = 0;
2269 }
2270
2271 /* If ACK arrived pointing to a remembered SACK, it means that our
2272  * remembered SACKs do not reflect real state of receiver i.e.
2273  * receiver _host_ is heavily congested (or buggy).
2274  *
2275  * Do processing similar to RTO timeout.
2276  */
2277 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2278 {
2279         if (flag & FLAG_SACK_RENEGING) {
2280                 struct inet_connection_sock *icsk = inet_csk(sk);
2281                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2282
2283                 tcp_enter_loss(sk, 1);
2284                 icsk->icsk_retransmits++;
2285                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2286                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2287                                           icsk->icsk_rto, TCP_RTO_MAX);
2288                 return 1;
2289         }
2290         return 0;
2291 }
2292
2293 static inline int tcp_fackets_out(struct tcp_sock *tp)
2294 {
2295         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2296 }
2297
2298 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2299  * counter when SACK is enabled (without SACK, sacked_out is used for
2300  * that purpose).
2301  *
2302  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2303  * segments up to the highest received SACK block so far and holes in
2304  * between them.
2305  *
2306  * With reordering, holes may still be in flight, so RFC3517 recovery
2307  * uses pure sacked_out (total number of SACKed segments) even though
2308  * it violates the RFC that uses duplicate ACKs, often these are equal
2309  * but when e.g. out-of-window ACKs or packet duplication occurs,
2310  * they differ. Since neither occurs due to loss, TCP should really
2311  * ignore them.
2312  */
2313 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2314 {
2315         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2316 }
2317
2318 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2319 {
2320         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2321 }
2322
2323 static inline int tcp_head_timedout(struct sock *sk)
2324 {
2325         struct tcp_sock *tp = tcp_sk(sk);
2326
2327         return tp->packets_out &&
2328                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2329 }
2330
2331 /* Linux NewReno/SACK/FACK/ECN state machine.
2332  * --------------------------------------
2333  *
2334  * "Open"       Normal state, no dubious events, fast path.
2335  * "Disorder"   In all the respects it is "Open",
2336  *              but requires a bit more attention. It is entered when
2337  *              we see some SACKs or dupacks. It is split of "Open"
2338  *              mainly to move some processing from fast path to slow one.
2339  * "CWR"        CWND was reduced due to some Congestion Notification event.
2340  *              It can be ECN, ICMP source quench, local device congestion.
2341  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2342  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2343  *
2344  * tcp_fastretrans_alert() is entered:
2345  * - each incoming ACK, if state is not "Open"
2346  * - when arrived ACK is unusual, namely:
2347  *      * SACK
2348  *      * Duplicate ACK.
2349  *      * ECN ECE.
2350  *
2351  * Counting packets in flight is pretty simple.
2352  *
2353  *      in_flight = packets_out - left_out + retrans_out
2354  *
2355  *      packets_out is SND.NXT-SND.UNA counted in packets.
2356  *
2357  *      retrans_out is number of retransmitted segments.
2358  *
2359  *      left_out is number of segments left network, but not ACKed yet.
2360  *
2361  *              left_out = sacked_out + lost_out
2362  *
2363  *     sacked_out: Packets, which arrived to receiver out of order
2364  *                 and hence not ACKed. With SACKs this number is simply
2365  *                 amount of SACKed data. Even without SACKs
2366  *                 it is easy to give pretty reliable estimate of this number,
2367  *                 counting duplicate ACKs.
2368  *
2369  *       lost_out: Packets lost by network. TCP has no explicit
2370  *                 "loss notification" feedback from network (for now).
2371  *                 It means that this number can be only _guessed_.
2372  *                 Actually, it is the heuristics to predict lossage that
2373  *                 distinguishes different algorithms.
2374  *
2375  *      F.e. after RTO, when all the queue is considered as lost,
2376  *      lost_out = packets_out and in_flight = retrans_out.
2377  *
2378  *              Essentially, we have now two algorithms counting
2379  *              lost packets.
2380  *
2381  *              FACK: It is the simplest heuristics. As soon as we decided
2382  *              that something is lost, we decide that _all_ not SACKed
2383  *              packets until the most forward SACK are lost. I.e.
2384  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2385  *              It is absolutely correct estimate, if network does not reorder
2386  *              packets. And it loses any connection to reality when reordering
2387  *              takes place. We use FACK by default until reordering
2388  *              is suspected on the path to this destination.
2389  *
2390  *              NewReno: when Recovery is entered, we assume that one segment
2391  *              is lost (classic Reno). While we are in Recovery and
2392  *              a partial ACK arrives, we assume that one more packet
2393  *              is lost (NewReno). This heuristics are the same in NewReno
2394  *              and SACK.
2395  *
2396  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2397  *  deflation etc. CWND is real congestion window, never inflated, changes
2398  *  only according to classic VJ rules.
2399  *
2400  * Really tricky (and requiring careful tuning) part of algorithm
2401  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2402  * The first determines the moment _when_ we should reduce CWND and,
2403  * hence, slow down forward transmission. In fact, it determines the moment
2404  * when we decide that hole is caused by loss, rather than by a reorder.
2405  *
2406  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2407  * holes, caused by lost packets.
2408  *
2409  * And the most logically complicated part of algorithm is undo
2410  * heuristics. We detect false retransmits due to both too early
2411  * fast retransmit (reordering) and underestimated RTO, analyzing
2412  * timestamps and D-SACKs. When we detect that some segments were
2413  * retransmitted by mistake and CWND reduction was wrong, we undo
2414  * window reduction and abort recovery phase. This logic is hidden
2415  * inside several functions named tcp_try_undo_<something>.
2416  */
2417
2418 /* This function decides, when we should leave Disordered state
2419  * and enter Recovery phase, reducing congestion window.
2420  *
2421  * Main question: may we further continue forward transmission
2422  * with the same cwnd?
2423  */
2424 static int tcp_time_to_recover(struct sock *sk)
2425 {
2426         struct tcp_sock *tp = tcp_sk(sk);
2427         __u32 packets_out;
2428
2429         /* Do not perform any recovery during F-RTO algorithm */
2430         if (tp->frto_counter)
2431                 return 0;
2432
2433         /* Trick#1: The loss is proven. */
2434         if (tp->lost_out)
2435                 return 1;
2436
2437         /* Not-A-Trick#2 : Classic rule... */
2438         if (tcp_dupack_heurestics(tp) > tp->reordering)
2439                 return 1;
2440
2441         /* Trick#3 : when we use RFC2988 timer restart, fast
2442          * retransmit can be triggered by timeout of queue head.
2443          */
2444         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2445                 return 1;
2446
2447         /* Trick#4: It is still not OK... But will it be useful to delay
2448          * recovery more?
2449          */
2450         packets_out = tp->packets_out;
2451         if (packets_out <= tp->reordering &&
2452             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2453             !tcp_may_send_now(sk)) {
2454                 /* We have nothing to send. This connection is limited
2455                  * either by receiver window or by application.
2456                  */
2457                 return 1;
2458         }
2459
2460         return 0;
2461 }
2462
2463 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2464  * is against sacked "cnt", otherwise it's against facked "cnt"
2465  */
2466 static void tcp_mark_head_lost(struct sock *sk, int packets)
2467 {
2468         struct tcp_sock *tp = tcp_sk(sk);
2469         struct sk_buff *skb;
2470         int cnt, oldcnt;
2471         int err;
2472         unsigned int mss;
2473
2474         WARN_ON(packets > tp->packets_out);
2475         if (tp->lost_skb_hint) {
2476                 skb = tp->lost_skb_hint;
2477                 cnt = tp->lost_cnt_hint;
2478         } else {
2479                 skb = tcp_write_queue_head(sk);
2480                 cnt = 0;
2481         }
2482
2483         tcp_for_write_queue_from(skb, sk) {
2484                 if (skb == tcp_send_head(sk))
2485                         break;
2486                 /* TODO: do this better */
2487                 /* this is not the most efficient way to do this... */
2488                 tp->lost_skb_hint = skb;
2489                 tp->lost_cnt_hint = cnt;
2490
2491                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2492                         break;
2493
2494                 oldcnt = cnt;
2495                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2496                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2497                         cnt += tcp_skb_pcount(skb);
2498
2499                 if (cnt > packets) {
2500                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2501                                 break;
2502
2503                         mss = skb_shinfo(skb)->gso_size;
2504                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2505                         if (err < 0)
2506                                 break;
2507                         cnt = packets;
2508                 }
2509
2510                 tcp_skb_mark_lost(tp, skb);
2511         }
2512         tcp_verify_left_out(tp);
2513 }
2514
2515 /* Account newly detected lost packet(s) */
2516
2517 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2518 {
2519         struct tcp_sock *tp = tcp_sk(sk);
2520
2521         if (tcp_is_reno(tp)) {
2522                 tcp_mark_head_lost(sk, 1);
2523         } else if (tcp_is_fack(tp)) {
2524                 int lost = tp->fackets_out - tp->reordering;
2525                 if (lost <= 0)
2526                         lost = 1;
2527                 tcp_mark_head_lost(sk, lost);
2528         } else {
2529                 int sacked_upto = tp->sacked_out - tp->reordering;
2530                 if (sacked_upto < fast_rexmit)
2531                         sacked_upto = fast_rexmit;
2532                 tcp_mark_head_lost(sk, sacked_upto);
2533         }
2534
2535         /* New heuristics: it is possible only after we switched
2536          * to restart timer each time when something is ACKed.
2537          * Hence, we can detect timed out packets during fast
2538          * retransmit without falling to slow start.
2539          */
2540         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2541                 struct sk_buff *skb;
2542
2543                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2544                         : tcp_write_queue_head(sk);
2545
2546                 tcp_for_write_queue_from(skb, sk) {
2547                         if (skb == tcp_send_head(sk))
2548                                 break;
2549                         if (!tcp_skb_timedout(sk, skb))
2550                                 break;
2551
2552                         tcp_skb_mark_lost(tp, skb);
2553                 }
2554
2555                 tp->scoreboard_skb_hint = skb;
2556
2557                 tcp_verify_left_out(tp);
2558         }
2559 }
2560
2561 /* CWND moderation, preventing bursts due to too big ACKs
2562  * in dubious situations.
2563  */
2564 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2565 {
2566         tp->snd_cwnd = min(tp->snd_cwnd,
2567                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2568         tp->snd_cwnd_stamp = tcp_time_stamp;
2569 }
2570
2571 /* Lower bound on congestion window is slow start threshold
2572  * unless congestion avoidance choice decides to overide it.
2573  */
2574 static inline u32 tcp_cwnd_min(const struct sock *sk)
2575 {
2576         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2577
2578         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2579 }
2580
2581 /* Decrease cwnd each second ack. */
2582 static void tcp_cwnd_down(struct sock *sk, int flag)
2583 {
2584         struct tcp_sock *tp = tcp_sk(sk);
2585         int decr = tp->snd_cwnd_cnt + 1;
2586
2587         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2588             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2589                 tp->snd_cwnd_cnt = decr & 1;
2590                 decr >>= 1;
2591
2592                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2593                         tp->snd_cwnd -= decr;
2594
2595                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2596                 tp->snd_cwnd_stamp = tcp_time_stamp;
2597         }
2598 }
2599
2600 /* Nothing was retransmitted or returned timestamp is less
2601  * than timestamp of the first retransmission.
2602  */
2603 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2604 {
2605         return !tp->retrans_stamp ||
2606                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2607                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2608 }
2609
2610 /* Undo procedures. */
2611
2612 #if FASTRETRANS_DEBUG > 1
2613 static void DBGUNDO(struct sock *sk, const char *msg)
2614 {
2615         struct tcp_sock *tp = tcp_sk(sk);
2616         struct inet_sock *inet = inet_sk(sk);
2617
2618         if (sk->sk_family == AF_INET) {
2619                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2620                        msg,
2621                        &inet->daddr, ntohs(inet->dport),
2622                        tp->snd_cwnd, tcp_left_out(tp),
2623                        tp->snd_ssthresh, tp->prior_ssthresh,
2624                        tp->packets_out);
2625         }
2626 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2627         else if (sk->sk_family == AF_INET6) {
2628                 struct ipv6_pinfo *np = inet6_sk(sk);
2629                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2630                        msg,
2631                        &np->daddr, ntohs(inet->dport),
2632                        tp->snd_cwnd, tcp_left_out(tp),
2633                        tp->snd_ssthresh, tp->prior_ssthresh,
2634                        tp->packets_out);
2635         }
2636 #endif
2637 }
2638 #else
2639 #define DBGUNDO(x...) do { } while (0)
2640 #endif
2641
2642 static void tcp_undo_cwr(struct sock *sk, const int undo)
2643 {
2644         struct tcp_sock *tp = tcp_sk(sk);
2645
2646         if (tp->prior_ssthresh) {
2647                 const struct inet_connection_sock *icsk = inet_csk(sk);
2648
2649                 if (icsk->icsk_ca_ops->undo_cwnd)
2650                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2651                 else
2652                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2653
2654                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2655                         tp->snd_ssthresh = tp->prior_ssthresh;
2656                         TCP_ECN_withdraw_cwr(tp);
2657                 }
2658         } else {
2659                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2660         }
2661         tcp_moderate_cwnd(tp);
2662         tp->snd_cwnd_stamp = tcp_time_stamp;
2663 }
2664
2665 static inline int tcp_may_undo(struct tcp_sock *tp)
2666 {
2667         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2668 }
2669
2670 /* People celebrate: "We love our President!" */
2671 static int tcp_try_undo_recovery(struct sock *sk)
2672 {
2673         struct tcp_sock *tp = tcp_sk(sk);
2674
2675         if (tcp_may_undo(tp)) {
2676                 int mib_idx;
2677
2678                 /* Happy end! We did not retransmit anything
2679                  * or our original transmission succeeded.
2680                  */
2681                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2682                 tcp_undo_cwr(sk, 1);
2683                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2684                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2685                 else
2686                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2687
2688                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2689                 tp->undo_marker = 0;
2690         }
2691         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2692                 /* Hold old state until something *above* high_seq
2693                  * is ACKed. For Reno it is MUST to prevent false
2694                  * fast retransmits (RFC2582). SACK TCP is safe. */
2695                 tcp_moderate_cwnd(tp);
2696                 return 1;
2697         }
2698         tcp_set_ca_state(sk, TCP_CA_Open);
2699         return 0;
2700 }
2701
2702 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2703 static void tcp_try_undo_dsack(struct sock *sk)
2704 {
2705         struct tcp_sock *tp = tcp_sk(sk);
2706
2707         if (tp->undo_marker && !tp->undo_retrans) {
2708                 DBGUNDO(sk, "D-SACK");
2709                 tcp_undo_cwr(sk, 1);
2710                 tp->undo_marker = 0;
2711                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2712         }
2713 }
2714
2715 /* Undo during fast recovery after partial ACK. */
2716
2717 static int tcp_try_undo_partial(struct sock *sk, int acked)
2718 {
2719         struct tcp_sock *tp = tcp_sk(sk);
2720         /* Partial ACK arrived. Force Hoe's retransmit. */
2721         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2722
2723         if (tcp_may_undo(tp)) {
2724                 /* Plain luck! Hole if filled with delayed
2725                  * packet, rather than with a retransmit.
2726                  */
2727                 if (tp->retrans_out == 0)
2728                         tp->retrans_stamp = 0;
2729
2730                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2731
2732                 DBGUNDO(sk, "Hoe");
2733                 tcp_undo_cwr(sk, 0);
2734                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2735
2736                 /* So... Do not make Hoe's retransmit yet.
2737                  * If the first packet was delayed, the rest
2738                  * ones are most probably delayed as well.
2739                  */
2740                 failed = 0;
2741         }
2742         return failed;
2743 }
2744
2745 /* Undo during loss recovery after partial ACK. */
2746 static int tcp_try_undo_loss(struct sock *sk)
2747 {
2748         struct tcp_sock *tp = tcp_sk(sk);
2749
2750         if (tcp_may_undo(tp)) {
2751                 struct sk_buff *skb;
2752                 tcp_for_write_queue(skb, sk) {
2753                         if (skb == tcp_send_head(sk))
2754                                 break;
2755                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2756                 }
2757
2758                 tcp_clear_all_retrans_hints(tp);
2759
2760                 DBGUNDO(sk, "partial loss");
2761                 tp->lost_out = 0;
2762                 tcp_undo_cwr(sk, 1);
2763                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2764                 inet_csk(sk)->icsk_retransmits = 0;
2765                 tp->undo_marker = 0;
2766                 if (tcp_is_sack(tp))
2767                         tcp_set_ca_state(sk, TCP_CA_Open);
2768                 return 1;
2769         }
2770         return 0;
2771 }
2772
2773 static inline void tcp_complete_cwr(struct sock *sk)
2774 {
2775         struct tcp_sock *tp = tcp_sk(sk);
2776         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2777         tp->snd_cwnd_stamp = tcp_time_stamp;
2778         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2779 }
2780
2781 static void tcp_try_keep_open(struct sock *sk)
2782 {
2783         struct tcp_sock *tp = tcp_sk(sk);
2784         int state = TCP_CA_Open;
2785
2786         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2787                 state = TCP_CA_Disorder;
2788
2789         if (inet_csk(sk)->icsk_ca_state != state) {
2790                 tcp_set_ca_state(sk, state);
2791                 tp->high_seq = tp->snd_nxt;
2792         }
2793 }
2794
2795 static void tcp_try_to_open(struct sock *sk, int flag)
2796 {
2797         struct tcp_sock *tp = tcp_sk(sk);
2798
2799         tcp_verify_left_out(tp);
2800
2801         if (!tp->frto_counter && tp->retrans_out == 0)
2802                 tp->retrans_stamp = 0;
2803
2804         if (flag & FLAG_ECE)
2805                 tcp_enter_cwr(sk, 1);
2806
2807         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2808                 tcp_try_keep_open(sk);
2809                 tcp_moderate_cwnd(tp);
2810         } else {
2811                 tcp_cwnd_down(sk, flag);
2812         }
2813 }
2814
2815 static void tcp_mtup_probe_failed(struct sock *sk)
2816 {
2817         struct inet_connection_sock *icsk = inet_csk(sk);
2818
2819         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2820         icsk->icsk_mtup.probe_size = 0;
2821 }
2822
2823 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2824 {
2825         struct tcp_sock *tp = tcp_sk(sk);
2826         struct inet_connection_sock *icsk = inet_csk(sk);
2827
2828         /* FIXME: breaks with very large cwnd */
2829         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2830         tp->snd_cwnd = tp->snd_cwnd *
2831                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2832                        icsk->icsk_mtup.probe_size;
2833         tp->snd_cwnd_cnt = 0;
2834         tp->snd_cwnd_stamp = tcp_time_stamp;
2835         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2836
2837         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2838         icsk->icsk_mtup.probe_size = 0;
2839         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2840 }
2841
2842 /* Do a simple retransmit without using the backoff mechanisms in
2843  * tcp_timer. This is used for path mtu discovery.
2844  * The socket is already locked here.
2845  */
2846 void tcp_simple_retransmit(struct sock *sk)
2847 {
2848         const struct inet_connection_sock *icsk = inet_csk(sk);
2849         struct tcp_sock *tp = tcp_sk(sk);
2850         struct sk_buff *skb;
2851         unsigned int mss = tcp_current_mss(sk, 0);
2852         u32 prior_lost = tp->lost_out;
2853
2854         tcp_for_write_queue(skb, sk) {
2855                 if (skb == tcp_send_head(sk))
2856                         break;
2857                 if (skb->len > mss &&
2858                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2859                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2860                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2861                                 tp->retrans_out -= tcp_skb_pcount(skb);
2862                         }
2863                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2864                 }
2865         }
2866
2867         tcp_clear_retrans_hints_partial(tp);
2868
2869         if (prior_lost == tp->lost_out)
2870                 return;
2871
2872         if (tcp_is_reno(tp))
2873                 tcp_limit_reno_sacked(tp);
2874
2875         tcp_verify_left_out(tp);
2876
2877         /* Don't muck with the congestion window here.
2878          * Reason is that we do not increase amount of _data_
2879          * in network, but units changed and effective
2880          * cwnd/ssthresh really reduced now.
2881          */
2882         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2883                 tp->high_seq = tp->snd_nxt;
2884                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2885                 tp->prior_ssthresh = 0;
2886                 tp->undo_marker = 0;
2887                 tcp_set_ca_state(sk, TCP_CA_Loss);
2888         }
2889         tcp_xmit_retransmit_queue(sk);
2890 }
2891
2892 /* Process an event, which can update packets-in-flight not trivially.
2893  * Main goal of this function is to calculate new estimate for left_out,
2894  * taking into account both packets sitting in receiver's buffer and
2895  * packets lost by network.
2896  *
2897  * Besides that it does CWND reduction, when packet loss is detected
2898  * and changes state of machine.
2899  *
2900  * It does _not_ decide what to send, it is made in function
2901  * tcp_xmit_retransmit_queue().
2902  */
2903 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2904 {
2905         struct inet_connection_sock *icsk = inet_csk(sk);
2906         struct tcp_sock *tp = tcp_sk(sk);
2907         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2908         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2909                                     (tcp_fackets_out(tp) > tp->reordering));
2910         int fast_rexmit = 0, mib_idx;
2911
2912         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2913                 tp->sacked_out = 0;
2914         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2915                 tp->fackets_out = 0;
2916
2917         /* Now state machine starts.
2918          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2919         if (flag & FLAG_ECE)
2920                 tp->prior_ssthresh = 0;
2921
2922         /* B. In all the states check for reneging SACKs. */
2923         if (tcp_check_sack_reneging(sk, flag))
2924                 return;
2925
2926         /* C. Process data loss notification, provided it is valid. */
2927         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2928             before(tp->snd_una, tp->high_seq) &&
2929             icsk->icsk_ca_state != TCP_CA_Open &&
2930             tp->fackets_out > tp->reordering) {
2931                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2932                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2933         }
2934
2935         /* D. Check consistency of the current state. */
2936         tcp_verify_left_out(tp);
2937
2938         /* E. Check state exit conditions. State can be terminated
2939          *    when high_seq is ACKed. */
2940         if (icsk->icsk_ca_state == TCP_CA_Open) {
2941                 WARN_ON(tp->retrans_out != 0);
2942                 tp->retrans_stamp = 0;
2943         } else if (!before(tp->snd_una, tp->high_seq)) {
2944                 switch (icsk->icsk_ca_state) {
2945                 case TCP_CA_Loss:
2946                         icsk->icsk_retransmits = 0;
2947                         if (tcp_try_undo_recovery(sk))
2948                                 return;
2949                         break;
2950
2951                 case TCP_CA_CWR:
2952                         /* CWR is to be held something *above* high_seq
2953                          * is ACKed for CWR bit to reach receiver. */
2954                         if (tp->snd_una != tp->high_seq) {
2955                                 tcp_complete_cwr(sk);
2956                                 tcp_set_ca_state(sk, TCP_CA_Open);
2957                         }
2958                         break;
2959
2960                 case TCP_CA_Disorder:
2961                         tcp_try_undo_dsack(sk);
2962                         if (!tp->undo_marker ||
2963                             /* For SACK case do not Open to allow to undo
2964                              * catching for all duplicate ACKs. */
2965                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2966                                 tp->undo_marker = 0;
2967                                 tcp_set_ca_state(sk, TCP_CA_Open);
2968                         }
2969                         break;
2970
2971                 case TCP_CA_Recovery:
2972                         if (tcp_is_reno(tp))
2973                                 tcp_reset_reno_sack(tp);
2974                         if (tcp_try_undo_recovery(sk))
2975                                 return;
2976                         tcp_complete_cwr(sk);
2977                         break;
2978                 }
2979         }
2980
2981         /* F. Process state. */
2982         switch (icsk->icsk_ca_state) {
2983         case TCP_CA_Recovery:
2984                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2985                         if (tcp_is_reno(tp) && is_dupack)
2986                                 tcp_add_reno_sack(sk);
2987                 } else
2988                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2989                 break;
2990         case TCP_CA_Loss:
2991                 if (flag & FLAG_DATA_ACKED)
2992                         icsk->icsk_retransmits = 0;
2993                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2994                         tcp_reset_reno_sack(tp);
2995                 if (!tcp_try_undo_loss(sk)) {
2996                         tcp_moderate_cwnd(tp);
2997                         tcp_xmit_retransmit_queue(sk);
2998                         return;
2999                 }
3000                 if (icsk->icsk_ca_state != TCP_CA_Open)
3001                         return;
3002                 /* Loss is undone; fall through to processing in Open state. */
3003         default:
3004                 if (tcp_is_reno(tp)) {
3005                         if (flag & FLAG_SND_UNA_ADVANCED)
3006                                 tcp_reset_reno_sack(tp);
3007                         if (is_dupack)
3008                                 tcp_add_reno_sack(sk);
3009                 }
3010
3011                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3012                         tcp_try_undo_dsack(sk);
3013
3014                 if (!tcp_time_to_recover(sk)) {
3015                         tcp_try_to_open(sk, flag);
3016                         return;
3017                 }
3018
3019                 /* MTU probe failure: don't reduce cwnd */
3020                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3021                     icsk->icsk_mtup.probe_size &&
3022                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3023                         tcp_mtup_probe_failed(sk);
3024                         /* Restores the reduction we did in tcp_mtup_probe() */
3025                         tp->snd_cwnd++;
3026                         tcp_simple_retransmit(sk);
3027                         return;
3028                 }
3029
3030                 /* Otherwise enter Recovery state */
3031
3032                 if (tcp_is_reno(tp))
3033                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3034                 else
3035                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3036
3037                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3038
3039                 tp->high_seq = tp->snd_nxt;
3040                 tp->prior_ssthresh = 0;
3041                 tp->undo_marker = tp->snd_una;
3042                 tp->undo_retrans = tp->retrans_out;
3043
3044                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3045                         if (!(flag & FLAG_ECE))
3046                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3047                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3048                         TCP_ECN_queue_cwr(tp);
3049                 }
3050
3051                 tp->bytes_acked = 0;
3052                 tp->snd_cwnd_cnt = 0;
3053                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3054                 fast_rexmit = 1;
3055         }
3056
3057         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3058                 tcp_update_scoreboard(sk, fast_rexmit);
3059         tcp_cwnd_down(sk, flag);
3060         tcp_xmit_retransmit_queue(sk);
3061 }
3062
3063 /* Read draft-ietf-tcplw-high-performance before mucking
3064  * with this code. (Supersedes RFC1323)
3065  */
3066 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3067 {
3068         /* RTTM Rule: A TSecr value received in a segment is used to
3069          * update the averaged RTT measurement only if the segment
3070          * acknowledges some new data, i.e., only if it advances the
3071          * left edge of the send window.
3072          *
3073          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3074          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3075          *
3076          * Changed: reset backoff as soon as we see the first valid sample.
3077          * If we do not, we get strongly overestimated rto. With timestamps
3078          * samples are accepted even from very old segments: f.e., when rtt=1
3079          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3080          * answer arrives rto becomes 120 seconds! If at least one of segments
3081          * in window is lost... Voila.                          --ANK (010210)
3082          */
3083         struct tcp_sock *tp = tcp_sk(sk);
3084         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3085         tcp_rtt_estimator(sk, seq_rtt);
3086         tcp_set_rto(sk);
3087         inet_csk(sk)->icsk_backoff = 0;
3088         tcp_bound_rto(sk);
3089 }
3090
3091 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3092 {
3093         /* We don't have a timestamp. Can only use
3094          * packets that are not retransmitted to determine
3095          * rtt estimates. Also, we must not reset the
3096          * backoff for rto until we get a non-retransmitted
3097          * packet. This allows us to deal with a situation
3098          * where the network delay has increased suddenly.
3099          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3100          */
3101
3102         if (flag & FLAG_RETRANS_DATA_ACKED)
3103                 return;
3104
3105         tcp_rtt_estimator(sk, seq_rtt);
3106         tcp_set_rto(sk);
3107         inet_csk(sk)->icsk_backoff = 0;
3108         tcp_bound_rto(sk);
3109 }
3110
3111 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3112                                       const s32 seq_rtt)
3113 {
3114         const struct tcp_sock *tp = tcp_sk(sk);
3115         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3116         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3117                 tcp_ack_saw_tstamp(sk, flag);
3118         else if (seq_rtt >= 0)
3119                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3120 }
3121
3122 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3123 {
3124         const struct inet_connection_sock *icsk = inet_csk(sk);
3125         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3126         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3127 }
3128
3129 /* Restart timer after forward progress on connection.
3130  * RFC2988 recommends to restart timer to now+rto.
3131  */
3132 static void tcp_rearm_rto(struct sock *sk)
3133 {
3134         struct tcp_sock *tp = tcp_sk(sk);
3135
3136         if (!tp->packets_out) {
3137                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3138         } else {
3139                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3140                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3141         }
3142 }
3143
3144 /* If we get here, the whole TSO packet has not been acked. */
3145 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3146 {
3147         struct tcp_sock *tp = tcp_sk(sk);
3148         u32 packets_acked;
3149
3150         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3151
3152         packets_acked = tcp_skb_pcount(skb);
3153         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3154                 return 0;
3155         packets_acked -= tcp_skb_pcount(skb);
3156
3157         if (packets_acked) {
3158                 BUG_ON(tcp_skb_pcount(skb) == 0);
3159                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3160         }
3161
3162         return packets_acked;
3163 }
3164
3165 /* Remove acknowledged frames from the retransmission queue. If our packet
3166  * is before the ack sequence we can discard it as it's confirmed to have
3167  * arrived at the other end.
3168  */
3169 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3170                                u32 prior_snd_una)
3171 {
3172         struct tcp_sock *tp = tcp_sk(sk);
3173         const struct inet_connection_sock *icsk = inet_csk(sk);
3174         struct sk_buff *skb;
3175         u32 now = tcp_time_stamp;
3176         int fully_acked = 1;
3177         int flag = 0;
3178         u32 pkts_acked = 0;
3179         u32 reord = tp->packets_out;
3180         u32 prior_sacked = tp->sacked_out;
3181         s32 seq_rtt = -1;
3182         s32 ca_seq_rtt = -1;
3183         ktime_t last_ackt = net_invalid_timestamp();
3184
3185         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3186                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3187                 u32 end_seq;
3188                 u32 acked_pcount;
3189                 u8 sacked = scb->sacked;
3190
3191                 /* Determine how many packets and what bytes were acked, tso and else */
3192                 if (after(scb->end_seq, tp->snd_una)) {
3193                         if (tcp_skb_pcount(skb) == 1 ||
3194                             !after(tp->snd_una, scb->seq))
3195                                 break;
3196
3197                         acked_pcount = tcp_tso_acked(sk, skb);
3198                         if (!acked_pcount)
3199                                 break;
3200
3201                         fully_acked = 0;
3202                         end_seq = tp->snd_una;
3203                 } else {
3204                         acked_pcount = tcp_skb_pcount(skb);
3205                         end_seq = scb->end_seq;
3206                 }
3207
3208                 /* MTU probing checks */
3209                 if (fully_acked && icsk->icsk_mtup.probe_size &&
3210                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3211                         tcp_mtup_probe_success(sk, skb);
3212                 }
3213
3214                 if (sacked & TCPCB_RETRANS) {
3215                         if (sacked & TCPCB_SACKED_RETRANS)
3216                                 tp->retrans_out -= acked_pcount;
3217                         flag |= FLAG_RETRANS_DATA_ACKED;
3218                         ca_seq_rtt = -1;
3219                         seq_rtt = -1;
3220                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3221                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3222                 } else {
3223                         ca_seq_rtt = now - scb->when;
3224                         last_ackt = skb->tstamp;
3225                         if (seq_rtt < 0) {
3226                                 seq_rtt = ca_seq_rtt;
3227                         }
3228                         if (!(sacked & TCPCB_SACKED_ACKED))
3229                                 reord = min(pkts_acked, reord);
3230                 }
3231
3232                 if (sacked & TCPCB_SACKED_ACKED)
3233                         tp->sacked_out -= acked_pcount;
3234                 if (sacked & TCPCB_LOST)
3235                         tp->lost_out -= acked_pcount;
3236
3237                 tp->packets_out -= acked_pcount;
3238                 pkts_acked += acked_pcount;
3239
3240                 /* Initial outgoing SYN's get put onto the write_queue
3241                  * just like anything else we transmit.  It is not
3242                  * true data, and if we misinform our callers that
3243                  * this ACK acks real data, we will erroneously exit
3244                  * connection startup slow start one packet too
3245                  * quickly.  This is severely frowned upon behavior.
3246                  */
3247                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3248                         flag |= FLAG_DATA_ACKED;
3249                 } else {
3250                         flag |= FLAG_SYN_ACKED;
3251                         tp->retrans_stamp = 0;
3252                 }
3253
3254                 if (!fully_acked)
3255                         break;
3256
3257                 tcp_unlink_write_queue(skb, sk);
3258                 sk_wmem_free_skb(sk, skb);
3259                 tp->scoreboard_skb_hint = NULL;
3260                 if (skb == tp->retransmit_skb_hint)
3261                         tp->retransmit_skb_hint = NULL;
3262                 if (skb == tp->lost_skb_hint)
3263                         tp->lost_skb_hint = NULL;
3264         }
3265
3266         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3267                 tp->snd_up = tp->snd_una;
3268
3269         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3270                 flag |= FLAG_SACK_RENEGING;
3271
3272         if (flag & FLAG_ACKED) {
3273                 const struct tcp_congestion_ops *ca_ops
3274                         = inet_csk(sk)->icsk_ca_ops;
3275
3276                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3277                 tcp_rearm_rto(sk);
3278
3279                 if (tcp_is_reno(tp)) {
3280                         tcp_remove_reno_sacks(sk, pkts_acked);
3281                 } else {
3282                         /* Non-retransmitted hole got filled? That's reordering */
3283                         if (reord < prior_fackets)
3284                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3285
3286                         /* No need to care for underflows here because
3287                          * the lost_skb_hint gets NULLed if we're past it
3288                          * (or something non-trivial happened)
3289                          */
3290                         if (tcp_is_fack(tp))
3291                                 tp->lost_cnt_hint -= pkts_acked;
3292                         else
3293                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3294                 }
3295
3296                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3297
3298                 if (ca_ops->pkts_acked) {
3299                         s32 rtt_us = -1;
3300
3301                         /* Is the ACK triggering packet unambiguous? */
3302                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3303                                 /* High resolution needed and available? */
3304                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3305                                     !ktime_equal(last_ackt,
3306                                                  net_invalid_timestamp()))
3307                                         rtt_us = ktime_us_delta(ktime_get_real(),
3308                                                                 last_ackt);
3309                                 else if (ca_seq_rtt > 0)
3310                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3311                         }
3312
3313                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3314                 }
3315         }
3316
3317 #if FASTRETRANS_DEBUG > 0
3318         WARN_ON((int)tp->sacked_out < 0);
3319         WARN_ON((int)tp->lost_out < 0);
3320         WARN_ON((int)tp->retrans_out < 0);
3321         if (!tp->packets_out && tcp_is_sack(tp)) {
3322                 icsk = inet_csk(sk);
3323                 if (tp->lost_out) {
3324                         printk(KERN_DEBUG "Leak l=%u %d\n",
3325                                tp->lost_out, icsk->icsk_ca_state);
3326                         tp->lost_out = 0;
3327                 }
3328                 if (tp->sacked_out) {
3329                         printk(KERN_DEBUG "Leak s=%u %d\n",
3330                                tp->sacked_out, icsk->icsk_ca_state);
3331                         tp->sacked_out = 0;
3332                 }
3333                 if (tp->retrans_out) {
3334                         printk(KERN_DEBUG "Leak r=%u %d\n",
3335                                tp->retrans_out, icsk->icsk_ca_state);
3336                         tp->retrans_out = 0;
3337                 }
3338         }
3339 #endif
3340         return flag;
3341 }
3342
3343 static void tcp_ack_probe(struct sock *sk)
3344 {
3345         const struct tcp_sock *tp = tcp_sk(sk);
3346         struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348         /* Was it a usable window open? */
3349
3350         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3351                 icsk->icsk_backoff = 0;
3352                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3353                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3354                  * This function is not for random using!
3355                  */
3356         } else {
3357                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3358                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3359                                           TCP_RTO_MAX);
3360         }
3361 }
3362
3363 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3364 {
3365         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3366                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3367 }
3368
3369 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3370 {
3371         const struct tcp_sock *tp = tcp_sk(sk);
3372         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3373                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3374 }
3375
3376 /* Check that window update is acceptable.
3377  * The function assumes that snd_una<=ack<=snd_next.
3378  */
3379 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3380                                         const u32 ack, const u32 ack_seq,
3381                                         const u32 nwin)
3382 {
3383         return (after(ack, tp->snd_una) ||
3384                 after(ack_seq, tp->snd_wl1) ||
3385                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3386 }
3387
3388 /* Update our send window.
3389  *
3390  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3391  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3392  */
3393 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3394                                  u32 ack_seq)
3395 {
3396         struct tcp_sock *tp = tcp_sk(sk);
3397         int flag = 0;
3398         u32 nwin = ntohs(tcp_hdr(skb)->window);
3399
3400         if (likely(!tcp_hdr(skb)->syn))
3401                 nwin <<= tp->rx_opt.snd_wscale;
3402
3403         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3404                 flag |= FLAG_WIN_UPDATE;
3405                 tcp_update_wl(tp, ack, ack_seq);
3406
3407                 if (tp->snd_wnd != nwin) {
3408                         tp->snd_wnd = nwin;
3409
3410                         /* Note, it is the only place, where
3411                          * fast path is recovered for sending TCP.
3412                          */
3413                         tp->pred_flags = 0;
3414                         tcp_fast_path_check(sk);
3415
3416                         if (nwin > tp->max_window) {
3417                                 tp->max_window = nwin;
3418                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3419                         }
3420                 }
3421         }
3422
3423         tp->snd_una = ack;
3424
3425         return flag;
3426 }
3427
3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3429  * continue in congestion avoidance.
3430  */
3431 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3432 {
3433         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3434         tp->snd_cwnd_cnt = 0;
3435         tp->bytes_acked = 0;
3436         TCP_ECN_queue_cwr(tp);
3437         tcp_moderate_cwnd(tp);
3438 }
3439
3440 /* A conservative spurious RTO response algorithm: reduce cwnd using
3441  * rate halving and continue in congestion avoidance.
3442  */
3443 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3444 {
3445         tcp_enter_cwr(sk, 0);
3446 }
3447
3448 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3449 {
3450         if (flag & FLAG_ECE)
3451                 tcp_ratehalving_spur_to_response(sk);
3452         else
3453                 tcp_undo_cwr(sk, 1);
3454 }
3455
3456 /* F-RTO spurious RTO detection algorithm (RFC4138)
3457  *
3458  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3459  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3460  * window (but not to or beyond highest sequence sent before RTO):
3461  *   On First ACK,  send two new segments out.
3462  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3463  *                  algorithm is not part of the F-RTO detection algorithm
3464  *                  given in RFC4138 but can be selected separately).
3465  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3466  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3467  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3468  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3469  *
3470  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3471  * original window even after we transmit two new data segments.
3472  *
3473  * SACK version:
3474  *   on first step, wait until first cumulative ACK arrives, then move to
3475  *   the second step. In second step, the next ACK decides.
3476  *
3477  * F-RTO is implemented (mainly) in four functions:
3478  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3479  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3480  *     called when tcp_use_frto() showed green light
3481  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3482  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3483  *     to prove that the RTO is indeed spurious. It transfers the control
3484  *     from F-RTO to the conventional RTO recovery
3485  */
3486 static int tcp_process_frto(struct sock *sk, int flag)
3487 {
3488         struct tcp_sock *tp = tcp_sk(sk);
3489
3490         tcp_verify_left_out(tp);
3491
3492         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3493         if (flag & FLAG_DATA_ACKED)
3494                 inet_csk(sk)->icsk_retransmits = 0;
3495
3496         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3497             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3498                 tp->undo_marker = 0;
3499
3500         if (!before(tp->snd_una, tp->frto_highmark)) {
3501                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3502                 return 1;
3503         }
3504
3505         if (!tcp_is_sackfrto(tp)) {
3506                 /* RFC4138 shortcoming in step 2; should also have case c):
3507                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3508                  * data, winupdate
3509                  */
3510                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3511                         return 1;
3512
3513                 if (!(flag & FLAG_DATA_ACKED)) {
3514                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3515                                             flag);
3516                         return 1;
3517                 }
3518         } else {
3519                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3520                         /* Prevent sending of new data. */
3521                         tp->snd_cwnd = min(tp->snd_cwnd,
3522                                            tcp_packets_in_flight(tp));
3523                         return 1;
3524                 }
3525
3526                 if ((tp->frto_counter >= 2) &&
3527                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3528                      ((flag & FLAG_DATA_SACKED) &&
3529                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3530                         /* RFC4138 shortcoming (see comment above) */
3531                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3532                             (flag & FLAG_NOT_DUP))
3533                                 return 1;
3534
3535                         tcp_enter_frto_loss(sk, 3, flag);
3536                         return 1;
3537                 }
3538         }
3539
3540         if (tp->frto_counter == 1) {
3541                 /* tcp_may_send_now needs to see updated state */
3542                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3543                 tp->frto_counter = 2;
3544
3545                 if (!tcp_may_send_now(sk))
3546                         tcp_enter_frto_loss(sk, 2, flag);
3547
3548                 return 1;
3549         } else {
3550                 switch (sysctl_tcp_frto_response) {
3551                 case 2:
3552                         tcp_undo_spur_to_response(sk, flag);
3553                         break;
3554                 case 1:
3555                         tcp_conservative_spur_to_response(tp);
3556                         break;
3557                 default:
3558                         tcp_ratehalving_spur_to_response(sk);
3559                         break;
3560                 }
3561                 tp->frto_counter = 0;
3562                 tp->undo_marker = 0;
3563                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3564         }
3565         return 0;
3566 }
3567
3568 /* This routine deals with incoming acks, but not outgoing ones. */
3569 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3570 {
3571         struct inet_connection_sock *icsk = inet_csk(sk);
3572         struct tcp_sock *tp = tcp_sk(sk);
3573         u32 prior_snd_una = tp->snd_una;
3574         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3575         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3576         u32 prior_in_flight;
3577         u32 prior_fackets;
3578         int prior_packets;
3579         int frto_cwnd = 0;
3580
3581         /* If the ack is newer than sent or older than previous acks
3582          * then we can probably ignore it.
3583          */
3584         if (after(ack, tp->snd_nxt))
3585                 goto uninteresting_ack;
3586
3587         if (before(ack, prior_snd_una))
3588                 goto old_ack;
3589
3590         if (after(ack, prior_snd_una))
3591                 flag |= FLAG_SND_UNA_ADVANCED;
3592
3593         if (sysctl_tcp_abc) {
3594                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3595                         tp->bytes_acked += ack - prior_snd_una;
3596                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3597                         /* we assume just one segment left network */
3598                         tp->bytes_acked += min(ack - prior_snd_una,
3599                                                tp->mss_cache);
3600         }
3601
3602         prior_fackets = tp->fackets_out;
3603         prior_in_flight = tcp_packets_in_flight(tp);
3604
3605         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3606                 /* Window is constant, pure forward advance.
3607                  * No more checks are required.
3608                  * Note, we use the fact that SND.UNA>=SND.WL2.
3609                  */
3610                 tcp_update_wl(tp, ack, ack_seq);
3611                 tp->snd_una = ack;
3612                 flag |= FLAG_WIN_UPDATE;
3613
3614                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3615
3616                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3617         } else {
3618                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3619                         flag |= FLAG_DATA;
3620                 else
3621                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3622
3623                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3624
3625                 if (TCP_SKB_CB(skb)->sacked)
3626                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3627
3628                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3629                         flag |= FLAG_ECE;
3630
3631                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3632         }
3633
3634         /* We passed data and got it acked, remove any soft error
3635          * log. Something worked...
3636          */
3637         sk->sk_err_soft = 0;
3638         icsk->icsk_probes_out = 0;
3639         tp->rcv_tstamp = tcp_time_stamp;
3640         prior_packets = tp->packets_out;
3641         if (!prior_packets)
3642                 goto no_queue;
3643
3644         /* See if we can take anything off of the retransmit queue. */
3645         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3646
3647         if (tp->frto_counter)
3648                 frto_cwnd = tcp_process_frto(sk, flag);
3649         /* Guarantee sacktag reordering detection against wrap-arounds */
3650         if (before(tp->frto_highmark, tp->snd_una))
3651                 tp->frto_highmark = 0;
3652
3653         if (tcp_ack_is_dubious(sk, flag)) {
3654                 /* Advance CWND, if state allows this. */
3655                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3656                     tcp_may_raise_cwnd(sk, flag))
3657                         tcp_cong_avoid(sk, ack, prior_in_flight);
3658                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3659                                       flag);
3660         } else {
3661                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3662                         tcp_cong_avoid(sk, ack, prior_in_flight);
3663         }
3664
3665         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3666                 dst_confirm(sk->sk_dst_cache);
3667
3668         return 1;
3669
3670 no_queue:
3671         /* If this ack opens up a zero window, clear backoff.  It was
3672          * being used to time the probes, and is probably far higher than
3673          * it needs to be for normal retransmission.
3674          */
3675         if (tcp_send_head(sk))
3676                 tcp_ack_probe(sk);
3677         return 1;
3678
3679 old_ack:
3680         if (TCP_SKB_CB(skb)->sacked) {
3681                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3682                 if (icsk->icsk_ca_state == TCP_CA_Open)
3683                         tcp_try_keep_open(sk);
3684         }
3685
3686 uninteresting_ack:
3687         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3688         return 0;
3689 }
3690
3691 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3692  * But, this can also be called on packets in the established flow when
3693  * the fast version below fails.
3694  */
3695 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3696                        int estab)
3697 {
3698         unsigned char *ptr;
3699         struct tcphdr *th = tcp_hdr(skb);
3700         int length = (th->doff * 4) - sizeof(struct tcphdr);
3701
3702         ptr = (unsigned char *)(th + 1);
3703         opt_rx->saw_tstamp = 0;
3704
3705         while (length > 0) {
3706                 int opcode = *ptr++;
3707                 int opsize;
3708
3709                 switch (opcode) {
3710                 case TCPOPT_EOL:
3711                         return;
3712                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3713                         length--;
3714                         continue;
3715                 default:
3716                         opsize = *ptr++;
3717                         if (opsize < 2) /* "silly options" */
3718                                 return;
3719                         if (opsize > length)
3720                                 return; /* don't parse partial options */
3721                         switch (opcode) {
3722                         case TCPOPT_MSS:
3723                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3724                                         u16 in_mss = get_unaligned_be16(ptr);
3725                                         if (in_mss) {
3726                                                 if (opt_rx->user_mss &&
3727                                                     opt_rx->user_mss < in_mss)
3728                                                         in_mss = opt_rx->user_mss;
3729                                                 opt_rx->mss_clamp = in_mss;
3730                                         }
3731                                 }
3732                                 break;
3733                         case TCPOPT_WINDOW:
3734                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3735                                     !estab && sysctl_tcp_window_scaling) {
3736                                         __u8 snd_wscale = *(__u8 *)ptr;
3737                                         opt_rx->wscale_ok = 1;
3738                                         if (snd_wscale > 14) {
3739                                                 if (net_ratelimit())
3740                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3741                                                                "scaling value %d >14 received.\n",
3742                                                                snd_wscale);
3743                                                 snd_wscale = 14;
3744                                         }
3745                                         opt_rx->snd_wscale = snd_wscale;
3746                                 }
3747                                 break;
3748                         case TCPOPT_TIMESTAMP:
3749                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3750                                     ((estab && opt_rx->tstamp_ok) ||
3751                                      (!estab && sysctl_tcp_timestamps))) {
3752                                         opt_rx->saw_tstamp = 1;
3753                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3754                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3755                                 }
3756                                 break;
3757                         case TCPOPT_SACK_PERM:
3758                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3759                                     !estab && sysctl_tcp_sack) {
3760                                         opt_rx->sack_ok = 1;
3761                                         tcp_sack_reset(opt_rx);
3762                                 }
3763                                 break;
3764
3765                         case TCPOPT_SACK:
3766                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3767                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3768                                    opt_rx->sack_ok) {
3769                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3770                                 }
3771                                 break;
3772 #ifdef CONFIG_TCP_MD5SIG
3773                         case TCPOPT_MD5SIG:
3774                                 /*
3775                                  * The MD5 Hash has already been
3776                                  * checked (see tcp_v{4,6}_do_rcv()).
3777                                  */
3778                                 break;
3779 #endif
3780                         }
3781
3782                         ptr += opsize-2;
3783                         length -= opsize;
3784                 }
3785         }
3786 }
3787
3788 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3789 {
3790         __be32 *ptr = (__be32 *)(th + 1);
3791
3792         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3793                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3794                 tp->rx_opt.saw_tstamp = 1;
3795                 ++ptr;
3796                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3797                 ++ptr;
3798                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3799                 return 1;
3800         }
3801         return 0;
3802 }
3803
3804 /* Fast parse options. This hopes to only see timestamps.
3805  * If it is wrong it falls back on tcp_parse_options().
3806  */
3807 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3808                                   struct tcp_sock *tp)
3809 {
3810         if (th->doff == sizeof(struct tcphdr) >> 2) {
3811                 tp->rx_opt.saw_tstamp = 0;
3812                 return 0;
3813         } else if (tp->rx_opt.tstamp_ok &&
3814                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3815                 if (tcp_parse_aligned_timestamp(tp, th))
3816                         return 1;
3817         }
3818         tcp_parse_options(skb, &tp->rx_opt, 1);
3819         return 1;
3820 }
3821
3822 #ifdef CONFIG_TCP_MD5SIG
3823 /*
3824  * Parse MD5 Signature option
3825  */
3826 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3827 {
3828         int length = (th->doff << 2) - sizeof (*th);
3829         u8 *ptr = (u8*)(th + 1);
3830
3831         /* If the TCP option is too short, we can short cut */
3832         if (length < TCPOLEN_MD5SIG)
3833                 return NULL;
3834
3835         while (length > 0) {
3836                 int opcode = *ptr++;
3837                 int opsize;
3838
3839                 switch(opcode) {
3840                 case TCPOPT_EOL:
3841                         return NULL;
3842                 case TCPOPT_NOP:
3843                         length--;
3844                         continue;
3845                 default:
3846                         opsize = *ptr++;
3847                         if (opsize < 2 || opsize > length)
3848                                 return NULL;
3849                         if (opcode == TCPOPT_MD5SIG)
3850                                 return ptr;
3851                 }
3852                 ptr += opsize - 2;
3853                 length -= opsize;
3854         }
3855         return NULL;
3856 }
3857 #endif
3858
3859 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3860 {
3861         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3862         tp->rx_opt.ts_recent_stamp = get_seconds();
3863 }
3864
3865 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3866 {
3867         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3868                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3869                  * extra check below makes sure this can only happen
3870                  * for pure ACK frames.  -DaveM
3871                  *
3872                  * Not only, also it occurs for expired timestamps.
3873                  */
3874
3875                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3876                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3877                         tcp_store_ts_recent(tp);
3878         }
3879 }
3880
3881 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3882  *
3883  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3884  * it can pass through stack. So, the following predicate verifies that
3885  * this segment is not used for anything but congestion avoidance or
3886  * fast retransmit. Moreover, we even are able to eliminate most of such
3887  * second order effects, if we apply some small "replay" window (~RTO)
3888  * to timestamp space.
3889  *
3890  * All these measures still do not guarantee that we reject wrapped ACKs
3891  * on networks with high bandwidth, when sequence space is recycled fastly,
3892  * but it guarantees that such events will be very rare and do not affect
3893  * connection seriously. This doesn't look nice, but alas, PAWS is really
3894  * buggy extension.
3895  *
3896  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3897  * states that events when retransmit arrives after original data are rare.
3898  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3899  * the biggest problem on large power networks even with minor reordering.
3900  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3901  * up to bandwidth of 18Gigabit/sec. 8) ]
3902  */
3903
3904 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3905 {
3906         struct tcp_sock *tp = tcp_sk(sk);
3907         struct tcphdr *th = tcp_hdr(skb);
3908         u32 seq = TCP_SKB_CB(skb)->seq;
3909         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3910
3911         return (/* 1. Pure ACK with correct sequence number. */
3912                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3913
3914                 /* 2. ... and duplicate ACK. */
3915                 ack == tp->snd_una &&
3916
3917                 /* 3. ... and does not update window. */
3918                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3919
3920                 /* 4. ... and sits in replay window. */
3921                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3922 }
3923
3924 static inline int tcp_paws_discard(const struct sock *sk,
3925                                    const struct sk_buff *skb)
3926 {
3927         const struct tcp_sock *tp = tcp_sk(sk);
3928         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3929                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3930                 !tcp_disordered_ack(sk, skb));
3931 }
3932
3933 /* Check segment sequence number for validity.
3934  *
3935  * Segment controls are considered valid, if the segment
3936  * fits to the window after truncation to the window. Acceptability
3937  * of data (and SYN, FIN, of course) is checked separately.
3938  * See tcp_data_queue(), for example.
3939  *
3940  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3941  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3942  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3943  * (borrowed from freebsd)
3944  */
3945
3946 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3947 {
3948         return  !before(end_seq, tp->rcv_wup) &&
3949                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3950 }
3951
3952 /* When we get a reset we do this. */
3953 static void tcp_reset(struct sock *sk)
3954 {
3955         /* We want the right error as BSD sees it (and indeed as we do). */
3956         switch (sk->sk_state) {
3957         case TCP_SYN_SENT:
3958                 sk->sk_err = ECONNREFUSED;
3959                 break;
3960         case TCP_CLOSE_WAIT:
3961                 sk->sk_err = EPIPE;
3962                 break;
3963         case TCP_CLOSE:
3964                 return;
3965         default:
3966                 sk->sk_err = ECONNRESET;
3967         }
3968
3969         if (!sock_flag(sk, SOCK_DEAD))
3970                 sk->sk_error_report(sk);
3971
3972         tcp_done(sk);
3973 }
3974
3975 /*
3976  *      Process the FIN bit. This now behaves as it is supposed to work
3977  *      and the FIN takes effect when it is validly part of sequence
3978  *      space. Not before when we get holes.
3979  *
3980  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3981  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3982  *      TIME-WAIT)
3983  *
3984  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3985  *      close and we go into CLOSING (and later onto TIME-WAIT)
3986  *
3987  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3988  */
3989 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3990 {
3991         struct tcp_sock *tp = tcp_sk(sk);
3992
3993         inet_csk_schedule_ack(sk);
3994
3995         sk->sk_shutdown |= RCV_SHUTDOWN;
3996         sock_set_flag(sk, SOCK_DONE);
3997
3998         switch (sk->sk_state) {
3999         case TCP_SYN_RECV:
4000         case TCP_ESTABLISHED:
4001                 /* Move to CLOSE_WAIT */
4002                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4003                 inet_csk(sk)->icsk_ack.pingpong = 1;
4004                 break;
4005
4006         case TCP_CLOSE_WAIT:
4007         case TCP_CLOSING:
4008                 /* Received a retransmission of the FIN, do
4009                  * nothing.
4010                  */
4011                 break;
4012         case TCP_LAST_ACK:
4013                 /* RFC793: Remain in the LAST-ACK state. */
4014                 break;
4015
4016         case TCP_FIN_WAIT1:
4017                 /* This case occurs when a simultaneous close
4018                  * happens, we must ack the received FIN and
4019                  * enter the CLOSING state.
4020                  */
4021                 tcp_send_ack(sk);
4022                 tcp_set_state(sk, TCP_CLOSING);
4023                 break;
4024         case TCP_FIN_WAIT2:
4025                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4026                 tcp_send_ack(sk);
4027                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4028                 break;
4029         default:
4030                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4031                  * cases we should never reach this piece of code.
4032                  */
4033                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4034                        __func__, sk->sk_state);
4035                 break;
4036         }
4037
4038         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4039          * Probably, we should reset in this case. For now drop them.
4040          */
4041         __skb_queue_purge(&tp->out_of_order_queue);
4042         if (tcp_is_sack(tp))
4043                 tcp_sack_reset(&tp->rx_opt);
4044         sk_mem_reclaim(sk);
4045
4046         if (!sock_flag(sk, SOCK_DEAD)) {
4047                 sk->sk_state_change(sk);
4048
4049                 /* Do not send POLL_HUP for half duplex close. */
4050                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4051                     sk->sk_state == TCP_CLOSE)
4052                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4053                 else
4054                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4055         }
4056 }
4057
4058 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4059                                   u32 end_seq)
4060 {
4061         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4062                 if (before(seq, sp->start_seq))
4063                         sp->start_seq = seq;
4064                 if (after(end_seq, sp->end_seq))
4065                         sp->end_seq = end_seq;
4066                 return 1;
4067         }
4068         return 0;
4069 }
4070
4071 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4072 {
4073         struct tcp_sock *tp = tcp_sk(sk);
4074
4075         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4076                 int mib_idx;
4077
4078                 if (before(seq, tp->rcv_nxt))
4079                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4080                 else
4081                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4082
4083                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4084
4085                 tp->rx_opt.dsack = 1;
4086                 tp->duplicate_sack[0].start_seq = seq;
4087                 tp->duplicate_sack[0].end_seq = end_seq;
4088                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4089         }
4090 }
4091
4092 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4093 {
4094         struct tcp_sock *tp = tcp_sk(sk);
4095
4096         if (!tp->rx_opt.dsack)
4097                 tcp_dsack_set(sk, seq, end_seq);
4098         else
4099                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4100 }
4101
4102 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4103 {
4104         struct tcp_sock *tp = tcp_sk(sk);
4105
4106         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4107             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4108                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4109                 tcp_enter_quickack_mode(sk);
4110
4111                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4112                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4113
4114                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4115                                 end_seq = tp->rcv_nxt;
4116                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4117                 }
4118         }
4119
4120         tcp_send_ack(sk);
4121 }
4122
4123 /* These routines update the SACK block as out-of-order packets arrive or
4124  * in-order packets close up the sequence space.
4125  */
4126 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4127 {
4128         int this_sack;
4129         struct tcp_sack_block *sp = &tp->selective_acks[0];
4130         struct tcp_sack_block *swalk = sp + 1;
4131
4132         /* See if the recent change to the first SACK eats into
4133          * or hits the sequence space of other SACK blocks, if so coalesce.
4134          */
4135         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4136                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4137                         int i;
4138
4139                         /* Zap SWALK, by moving every further SACK up by one slot.
4140                          * Decrease num_sacks.
4141                          */
4142                         tp->rx_opt.num_sacks--;
4143                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4144                                                tp->rx_opt.dsack;
4145                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4146                                 sp[i] = sp[i + 1];
4147                         continue;
4148                 }
4149                 this_sack++, swalk++;
4150         }
4151 }
4152
4153 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4154                                  struct tcp_sack_block *sack2)
4155 {
4156         __u32 tmp;
4157
4158         tmp = sack1->start_seq;
4159         sack1->start_seq = sack2->start_seq;
4160         sack2->start_seq = tmp;
4161
4162         tmp = sack1->end_seq;
4163         sack1->end_seq = sack2->end_seq;
4164         sack2->end_seq = tmp;
4165 }
4166
4167 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4168 {
4169         struct tcp_sock *tp = tcp_sk(sk);
4170         struct tcp_sack_block *sp = &tp->selective_acks[0];
4171         int cur_sacks = tp->rx_opt.num_sacks;
4172         int this_sack;
4173
4174         if (!cur_sacks)
4175                 goto new_sack;
4176
4177         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4178                 if (tcp_sack_extend(sp, seq, end_seq)) {
4179                         /* Rotate this_sack to the first one. */
4180                         for (; this_sack > 0; this_sack--, sp--)
4181                                 tcp_sack_swap(sp, sp - 1);
4182                         if (cur_sacks > 1)
4183                                 tcp_sack_maybe_coalesce(tp);
4184                         return;
4185                 }
4186         }
4187
4188         /* Could not find an adjacent existing SACK, build a new one,
4189          * put it at the front, and shift everyone else down.  We
4190          * always know there is at least one SACK present already here.
4191          *
4192          * If the sack array is full, forget about the last one.
4193          */
4194         if (this_sack >= TCP_NUM_SACKS) {
4195                 this_sack--;
4196                 tp->rx_opt.num_sacks--;
4197                 sp--;
4198         }
4199         for (; this_sack > 0; this_sack--, sp--)
4200                 *sp = *(sp - 1);
4201
4202 new_sack:
4203         /* Build the new head SACK, and we're done. */
4204         sp->start_seq = seq;
4205         sp->end_seq = end_seq;
4206         tp->rx_opt.num_sacks++;
4207         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4208 }
4209
4210 /* RCV.NXT advances, some SACKs should be eaten. */
4211
4212 static void tcp_sack_remove(struct tcp_sock *tp)
4213 {
4214         struct tcp_sack_block *sp = &tp->selective_acks[0];
4215         int num_sacks = tp->rx_opt.num_sacks;
4216         int this_sack;
4217
4218         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4219         if (skb_queue_empty(&tp->out_of_order_queue)) {
4220                 tp->rx_opt.num_sacks = 0;
4221                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4222                 return;
4223         }
4224
4225         for (this_sack = 0; this_sack < num_sacks;) {
4226                 /* Check if the start of the sack is covered by RCV.NXT. */
4227                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4228                         int i;
4229
4230                         /* RCV.NXT must cover all the block! */
4231                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4232
4233                         /* Zap this SACK, by moving forward any other SACKS. */
4234                         for (i=this_sack+1; i < num_sacks; i++)
4235                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4236                         num_sacks--;
4237                         continue;
4238                 }
4239                 this_sack++;
4240                 sp++;
4241         }
4242         if (num_sacks != tp->rx_opt.num_sacks) {
4243                 tp->rx_opt.num_sacks = num_sacks;
4244                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4245                                        tp->rx_opt.dsack;
4246         }
4247 }
4248
4249 /* This one checks to see if we can put data from the
4250  * out_of_order queue into the receive_queue.
4251  */
4252 static void tcp_ofo_queue(struct sock *sk)
4253 {
4254         struct tcp_sock *tp = tcp_sk(sk);
4255         __u32 dsack_high = tp->rcv_nxt;
4256         struct sk_buff *skb;
4257
4258         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4259                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4260                         break;
4261
4262                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4263                         __u32 dsack = dsack_high;
4264                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4265                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4266                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4267                 }
4268
4269                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4270                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4271                         __skb_unlink(skb, &tp->out_of_order_queue);
4272                         __kfree_skb(skb);
4273                         continue;
4274                 }
4275                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4276                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4277                            TCP_SKB_CB(skb)->end_seq);
4278
4279                 __skb_unlink(skb, &tp->out_of_order_queue);
4280                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4281                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4282                 if (tcp_hdr(skb)->fin)
4283                         tcp_fin(skb, sk, tcp_hdr(skb));
4284         }
4285 }
4286
4287 static int tcp_prune_ofo_queue(struct sock *sk);
4288 static int tcp_prune_queue(struct sock *sk);
4289
4290 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4291 {
4292         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4293             !sk_rmem_schedule(sk, size)) {
4294
4295                 if (tcp_prune_queue(sk) < 0)
4296                         return -1;
4297
4298                 if (!sk_rmem_schedule(sk, size)) {
4299                         if (!tcp_prune_ofo_queue(sk))
4300                                 return -1;
4301
4302                         if (!sk_rmem_schedule(sk, size))
4303                                 return -1;
4304                 }
4305         }
4306         return 0;
4307 }
4308
4309 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4310 {
4311         struct tcphdr *th = tcp_hdr(skb);
4312         struct tcp_sock *tp = tcp_sk(sk);
4313         int eaten = -1;
4314
4315         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4316                 goto drop;
4317
4318         __skb_pull(skb, th->doff * 4);
4319
4320         TCP_ECN_accept_cwr(tp, skb);
4321
4322         if (tp->rx_opt.dsack) {
4323                 tp->rx_opt.dsack = 0;
4324                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4325         }
4326
4327         /*  Queue data for delivery to the user.
4328          *  Packets in sequence go to the receive queue.
4329          *  Out of sequence packets to the out_of_order_queue.
4330          */
4331         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4332                 if (tcp_receive_window(tp) == 0)
4333                         goto out_of_window;
4334
4335                 /* Ok. In sequence. In window. */
4336                 if (tp->ucopy.task == current &&
4337                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4338                     sock_owned_by_user(sk) && !tp->urg_data) {
4339                         int chunk = min_t(unsigned int, skb->len,
4340                                           tp->ucopy.len);
4341
4342                         __set_current_state(TASK_RUNNING);
4343
4344                         local_bh_enable();
4345                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4346                                 tp->ucopy.len -= chunk;
4347                                 tp->copied_seq += chunk;
4348                                 eaten = (chunk == skb->len && !th->fin);
4349                                 tcp_rcv_space_adjust(sk);
4350                         }
4351                         local_bh_disable();
4352                 }
4353
4354                 if (eaten <= 0) {
4355 queue_and_out:
4356                         if (eaten < 0 &&
4357                             tcp_try_rmem_schedule(sk, skb->truesize))
4358                                 goto drop;
4359
4360                         skb_set_owner_r(skb, sk);
4361                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4362                 }
4363                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4364                 if (skb->len)
4365                         tcp_event_data_recv(sk, skb);
4366                 if (th->fin)
4367                         tcp_fin(skb, sk, th);
4368
4369                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4370                         tcp_ofo_queue(sk);
4371
4372                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4373                          * gap in queue is filled.
4374                          */
4375                         if (skb_queue_empty(&tp->out_of_order_queue))
4376                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4377                 }
4378
4379                 if (tp->rx_opt.num_sacks)
4380                         tcp_sack_remove(tp);
4381
4382                 tcp_fast_path_check(sk);
4383
4384                 if (eaten > 0)
4385                         __kfree_skb(skb);
4386                 else if (!sock_flag(sk, SOCK_DEAD))
4387                         sk->sk_data_ready(sk, 0);
4388                 return;
4389         }
4390
4391         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4392                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4393                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4394                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4395
4396 out_of_window:
4397                 tcp_enter_quickack_mode(sk);
4398                 inet_csk_schedule_ack(sk);
4399 drop:
4400                 __kfree_skb(skb);
4401                 return;
4402         }
4403
4404         /* Out of window. F.e. zero window probe. */
4405         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4406                 goto out_of_window;
4407
4408         tcp_enter_quickack_mode(sk);
4409
4410         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4411                 /* Partial packet, seq < rcv_next < end_seq */
4412                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4413                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4414                            TCP_SKB_CB(skb)->end_seq);
4415
4416                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4417
4418                 /* If window is closed, drop tail of packet. But after
4419                  * remembering D-SACK for its head made in previous line.
4420                  */
4421                 if (!tcp_receive_window(tp))
4422                         goto out_of_window;
4423                 goto queue_and_out;
4424         }
4425
4426         TCP_ECN_check_ce(tp, skb);
4427
4428         if (tcp_try_rmem_schedule(sk, skb->truesize))
4429                 goto drop;
4430
4431         /* Disable header prediction. */
4432         tp->pred_flags = 0;
4433         inet_csk_schedule_ack(sk);
4434
4435         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4436                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4437
4438         skb_set_owner_r(skb, sk);
4439
4440         if (!skb_peek(&tp->out_of_order_queue)) {
4441                 /* Initial out of order segment, build 1 SACK. */
4442                 if (tcp_is_sack(tp)) {
4443                         tp->rx_opt.num_sacks = 1;
4444                         tp->rx_opt.dsack     = 0;
4445                         tp->rx_opt.eff_sacks = 1;
4446                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4447                         tp->selective_acks[0].end_seq =
4448                                                 TCP_SKB_CB(skb)->end_seq;
4449                 }
4450                 __skb_queue_head(&tp->out_of_order_queue, skb);
4451         } else {
4452                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4453                 u32 seq = TCP_SKB_CB(skb)->seq;
4454                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4455
4456                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4457                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4458
4459                         if (!tp->rx_opt.num_sacks ||
4460                             tp->selective_acks[0].end_seq != seq)
4461                                 goto add_sack;
4462
4463                         /* Common case: data arrive in order after hole. */
4464                         tp->selective_acks[0].end_seq = end_seq;
4465                         return;
4466                 }
4467
4468                 /* Find place to insert this segment. */
4469                 do {
4470                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4471                                 break;
4472                 } while ((skb1 = skb1->prev) !=
4473                          (struct sk_buff *)&tp->out_of_order_queue);
4474
4475                 /* Do skb overlap to previous one? */
4476                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4477                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4478                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4479                                 /* All the bits are present. Drop. */
4480                                 __kfree_skb(skb);
4481                                 tcp_dsack_set(sk, seq, end_seq);
4482                                 goto add_sack;
4483                         }
4484                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485                                 /* Partial overlap. */
4486                                 tcp_dsack_set(sk, seq,
4487                                               TCP_SKB_CB(skb1)->end_seq);
4488                         } else {
4489                                 skb1 = skb1->prev;
4490                         }
4491                 }
4492                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4493
4494                 /* And clean segments covered by new one as whole. */
4495                 while ((skb1 = skb->next) !=
4496                        (struct sk_buff *)&tp->out_of_order_queue &&
4497                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4498                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4499                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500                                                  end_seq);
4501                                 break;
4502                         }
4503                         __skb_unlink(skb1, &tp->out_of_order_queue);
4504                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4505                                          TCP_SKB_CB(skb1)->end_seq);
4506                         __kfree_skb(skb1);
4507                 }
4508
4509 add_sack:
4510                 if (tcp_is_sack(tp))
4511                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4512         }
4513 }
4514
4515 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4516                                         struct sk_buff_head *list)
4517 {
4518         struct sk_buff *next = skb->next;
4519
4520         __skb_unlink(skb, list);
4521         __kfree_skb(skb);
4522         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4523
4524         return next;
4525 }
4526
4527 /* Collapse contiguous sequence of skbs head..tail with
4528  * sequence numbers start..end.
4529  * Segments with FIN/SYN are not collapsed (only because this
4530  * simplifies code)
4531  */
4532 static void
4533 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4534              struct sk_buff *head, struct sk_buff *tail,
4535              u32 start, u32 end)
4536 {
4537         struct sk_buff *skb;
4538
4539         /* First, check that queue is collapsible and find
4540          * the point where collapsing can be useful. */
4541         for (skb = head; skb != tail;) {
4542                 /* No new bits? It is possible on ofo queue. */
4543                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4544                         skb = tcp_collapse_one(sk, skb, list);
4545                         continue;
4546                 }
4547
4548                 /* The first skb to collapse is:
4549                  * - not SYN/FIN and
4550                  * - bloated or contains data before "start" or
4551                  *   overlaps to the next one.
4552                  */
4553                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4554                     (tcp_win_from_space(skb->truesize) > skb->len ||
4555                      before(TCP_SKB_CB(skb)->seq, start) ||
4556                      (skb->next != tail &&
4557                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4558                         break;
4559
4560                 /* Decided to skip this, advance start seq. */
4561                 start = TCP_SKB_CB(skb)->end_seq;
4562                 skb = skb->next;
4563         }
4564         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4565                 return;
4566
4567         while (before(start, end)) {
4568                 struct sk_buff *nskb;
4569                 unsigned int header = skb_headroom(skb);
4570                 int copy = SKB_MAX_ORDER(header, 0);
4571
4572                 /* Too big header? This can happen with IPv6. */
4573                 if (copy < 0)
4574                         return;
4575                 if (end - start < copy)
4576                         copy = end - start;
4577                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4578                 if (!nskb)
4579                         return;
4580
4581                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4582                 skb_set_network_header(nskb, (skb_network_header(skb) -
4583                                               skb->head));
4584                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4585                                                 skb->head));
4586                 skb_reserve(nskb, header);
4587                 memcpy(nskb->head, skb->head, header);
4588                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4589                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4590                 __skb_queue_before(list, skb, nskb);
4591                 skb_set_owner_r(nskb, sk);
4592
4593                 /* Copy data, releasing collapsed skbs. */
4594                 while (copy > 0) {
4595                         int offset = start - TCP_SKB_CB(skb)->seq;
4596                         int size = TCP_SKB_CB(skb)->end_seq - start;
4597
4598                         BUG_ON(offset < 0);
4599                         if (size > 0) {
4600                                 size = min(copy, size);
4601                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4602                                         BUG();
4603                                 TCP_SKB_CB(nskb)->end_seq += size;
4604                                 copy -= size;
4605                                 start += size;
4606                         }
4607                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4608                                 skb = tcp_collapse_one(sk, skb, list);
4609                                 if (skb == tail ||
4610                                     tcp_hdr(skb)->syn ||
4611                                     tcp_hdr(skb)->fin)
4612                                         return;
4613                         }
4614                 }
4615         }
4616 }
4617
4618 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4619  * and tcp_collapse() them until all the queue is collapsed.
4620  */
4621 static void tcp_collapse_ofo_queue(struct sock *sk)
4622 {
4623         struct tcp_sock *tp = tcp_sk(sk);
4624         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4625         struct sk_buff *head;
4626         u32 start, end;
4627
4628         if (skb == NULL)
4629                 return;
4630
4631         start = TCP_SKB_CB(skb)->seq;
4632         end = TCP_SKB_CB(skb)->end_seq;
4633         head = skb;
4634
4635         for (;;) {
4636                 skb = skb->next;
4637
4638                 /* Segment is terminated when we see gap or when
4639                  * we are at the end of all the queue. */
4640                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4641                     after(TCP_SKB_CB(skb)->seq, end) ||
4642                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4643                         tcp_collapse(sk, &tp->out_of_order_queue,
4644                                      head, skb, start, end);
4645                         head = skb;
4646                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4647                                 break;
4648                         /* Start new segment */
4649                         start = TCP_SKB_CB(skb)->seq;
4650                         end = TCP_SKB_CB(skb)->end_seq;
4651                 } else {
4652                         if (before(TCP_SKB_CB(skb)->seq, start))
4653                                 start = TCP_SKB_CB(skb)->seq;
4654                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4655                                 end = TCP_SKB_CB(skb)->end_seq;
4656                 }
4657         }
4658 }
4659
4660 /*
4661  * Purge the out-of-order queue.
4662  * Return true if queue was pruned.
4663  */
4664 static int tcp_prune_ofo_queue(struct sock *sk)
4665 {
4666         struct tcp_sock *tp = tcp_sk(sk);
4667         int res = 0;
4668
4669         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4670                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4671                 __skb_queue_purge(&tp->out_of_order_queue);
4672
4673                 /* Reset SACK state.  A conforming SACK implementation will
4674                  * do the same at a timeout based retransmit.  When a connection
4675                  * is in a sad state like this, we care only about integrity
4676                  * of the connection not performance.
4677                  */
4678                 if (tp->rx_opt.sack_ok)
4679                         tcp_sack_reset(&tp->rx_opt);
4680                 sk_mem_reclaim(sk);
4681                 res = 1;
4682         }
4683         return res;
4684 }
4685
4686 /* Reduce allocated memory if we can, trying to get
4687  * the socket within its memory limits again.
4688  *
4689  * Return less than zero if we should start dropping frames
4690  * until the socket owning process reads some of the data
4691  * to stabilize the situation.
4692  */
4693 static int tcp_prune_queue(struct sock *sk)
4694 {
4695         struct tcp_sock *tp = tcp_sk(sk);
4696
4697         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4698
4699         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4700
4701         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4702                 tcp_clamp_window(sk);
4703         else if (tcp_memory_pressure)
4704                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4705
4706         tcp_collapse_ofo_queue(sk);
4707         tcp_collapse(sk, &sk->sk_receive_queue,
4708                      sk->sk_receive_queue.next,
4709                      (struct sk_buff *)&sk->sk_receive_queue,
4710                      tp->copied_seq, tp->rcv_nxt);
4711         sk_mem_reclaim(sk);
4712
4713         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4714                 return 0;
4715
4716         /* Collapsing did not help, destructive actions follow.
4717          * This must not ever occur. */
4718
4719         tcp_prune_ofo_queue(sk);
4720
4721         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4722                 return 0;
4723
4724         /* If we are really being abused, tell the caller to silently
4725          * drop receive data on the floor.  It will get retransmitted
4726          * and hopefully then we'll have sufficient space.
4727          */
4728         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4729
4730         /* Massive buffer overcommit. */
4731         tp->pred_flags = 0;
4732         return -1;
4733 }
4734
4735 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4736  * As additional protections, we do not touch cwnd in retransmission phases,
4737  * and if application hit its sndbuf limit recently.
4738  */
4739 void tcp_cwnd_application_limited(struct sock *sk)
4740 {
4741         struct tcp_sock *tp = tcp_sk(sk);
4742
4743         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4744             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4745                 /* Limited by application or receiver window. */
4746                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4747                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4748                 if (win_used < tp->snd_cwnd) {
4749                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4750                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4751                 }
4752                 tp->snd_cwnd_used = 0;
4753         }
4754         tp->snd_cwnd_stamp = tcp_time_stamp;
4755 }
4756
4757 static int tcp_should_expand_sndbuf(struct sock *sk)
4758 {
4759         struct tcp_sock *tp = tcp_sk(sk);
4760
4761         /* If the user specified a specific send buffer setting, do
4762          * not modify it.
4763          */
4764         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4765                 return 0;
4766
4767         /* If we are under global TCP memory pressure, do not expand.  */
4768         if (tcp_memory_pressure)
4769                 return 0;
4770
4771         /* If we are under soft global TCP memory pressure, do not expand.  */
4772         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4773                 return 0;
4774
4775         /* If we filled the congestion window, do not expand.  */
4776         if (tp->packets_out >= tp->snd_cwnd)
4777                 return 0;
4778
4779         return 1;
4780 }
4781
4782 /* When incoming ACK allowed to free some skb from write_queue,
4783  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4784  * on the exit from tcp input handler.
4785  *
4786  * PROBLEM: sndbuf expansion does not work well with largesend.
4787  */
4788 static void tcp_new_space(struct sock *sk)
4789 {
4790         struct tcp_sock *tp = tcp_sk(sk);
4791
4792         if (tcp_should_expand_sndbuf(sk)) {
4793                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4794                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4795                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4796                                      tp->reordering + 1);
4797                 sndmem *= 2 * demanded;
4798                 if (sndmem > sk->sk_sndbuf)
4799                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4800                 tp->snd_cwnd_stamp = tcp_time_stamp;
4801         }
4802
4803         sk->sk_write_space(sk);
4804 }
4805
4806 static void tcp_check_space(struct sock *sk)
4807 {
4808         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4809                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4810                 if (sk->sk_socket &&
4811                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4812                         tcp_new_space(sk);
4813         }
4814 }
4815
4816 static inline void tcp_data_snd_check(struct sock *sk)
4817 {
4818         tcp_push_pending_frames(sk);
4819         tcp_check_space(sk);
4820 }
4821
4822 /*
4823  * Check if sending an ack is needed.
4824  */
4825 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4826 {
4827         struct tcp_sock *tp = tcp_sk(sk);
4828
4829             /* More than one full frame received... */
4830         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4831              /* ... and right edge of window advances far enough.
4832               * (tcp_recvmsg() will send ACK otherwise). Or...
4833               */
4834              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4835             /* We ACK each frame or... */
4836             tcp_in_quickack_mode(sk) ||
4837             /* We have out of order data. */
4838             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4839                 /* Then ack it now */
4840                 tcp_send_ack(sk);
4841         } else {
4842                 /* Else, send delayed ack. */
4843                 tcp_send_delayed_ack(sk);
4844         }
4845 }
4846
4847 static inline void tcp_ack_snd_check(struct sock *sk)
4848 {
4849         if (!inet_csk_ack_scheduled(sk)) {
4850                 /* We sent a data segment already. */
4851                 return;
4852         }
4853         __tcp_ack_snd_check(sk, 1);
4854 }
4855
4856 /*
4857  *      This routine is only called when we have urgent data
4858  *      signaled. Its the 'slow' part of tcp_urg. It could be
4859  *      moved inline now as tcp_urg is only called from one
4860  *      place. We handle URGent data wrong. We have to - as
4861  *      BSD still doesn't use the correction from RFC961.
4862  *      For 1003.1g we should support a new option TCP_STDURG to permit
4863  *      either form (or just set the sysctl tcp_stdurg).
4864  */
4865
4866 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4867 {
4868         struct tcp_sock *tp = tcp_sk(sk);
4869         u32 ptr = ntohs(th->urg_ptr);
4870
4871         if (ptr && !sysctl_tcp_stdurg)
4872                 ptr--;
4873         ptr += ntohl(th->seq);
4874
4875         /* Ignore urgent data that we've already seen and read. */
4876         if (after(tp->copied_seq, ptr))
4877                 return;
4878
4879         /* Do not replay urg ptr.
4880          *
4881          * NOTE: interesting situation not covered by specs.
4882          * Misbehaving sender may send urg ptr, pointing to segment,
4883          * which we already have in ofo queue. We are not able to fetch
4884          * such data and will stay in TCP_URG_NOTYET until will be eaten
4885          * by recvmsg(). Seems, we are not obliged to handle such wicked
4886          * situations. But it is worth to think about possibility of some
4887          * DoSes using some hypothetical application level deadlock.
4888          */
4889         if (before(ptr, tp->rcv_nxt))
4890                 return;
4891
4892         /* Do we already have a newer (or duplicate) urgent pointer? */
4893         if (tp->urg_data && !after(ptr, tp->urg_seq))
4894                 return;
4895
4896         /* Tell the world about our new urgent pointer. */
4897         sk_send_sigurg(sk);
4898
4899         /* We may be adding urgent data when the last byte read was
4900          * urgent. To do this requires some care. We cannot just ignore
4901          * tp->copied_seq since we would read the last urgent byte again
4902          * as data, nor can we alter copied_seq until this data arrives
4903          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4904          *
4905          * NOTE. Double Dutch. Rendering to plain English: author of comment
4906          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4907          * and expect that both A and B disappear from stream. This is _wrong_.
4908          * Though this happens in BSD with high probability, this is occasional.
4909          * Any application relying on this is buggy. Note also, that fix "works"
4910          * only in this artificial test. Insert some normal data between A and B and we will
4911          * decline of BSD again. Verdict: it is better to remove to trap
4912          * buggy users.
4913          */
4914         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4915             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4916                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4917                 tp->copied_seq++;
4918                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4919                         __skb_unlink(skb, &sk->sk_receive_queue);
4920                         __kfree_skb(skb);
4921                 }
4922         }
4923
4924         tp->urg_data = TCP_URG_NOTYET;
4925         tp->urg_seq = ptr;
4926
4927         /* Disable header prediction. */
4928         tp->pred_flags = 0;
4929 }
4930
4931 /* This is the 'fast' part of urgent handling. */
4932 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4933 {
4934         struct tcp_sock *tp = tcp_sk(sk);
4935
4936         /* Check if we get a new urgent pointer - normally not. */
4937         if (th->urg)
4938                 tcp_check_urg(sk, th);
4939
4940         /* Do we wait for any urgent data? - normally not... */
4941         if (tp->urg_data == TCP_URG_NOTYET) {
4942                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4943                           th->syn;
4944
4945                 /* Is the urgent pointer pointing into this packet? */
4946                 if (ptr < skb->len) {
4947                         u8 tmp;
4948                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4949                                 BUG();
4950                         tp->urg_data = TCP_URG_VALID | tmp;
4951                         if (!sock_flag(sk, SOCK_DEAD))
4952                                 sk->sk_data_ready(sk, 0);
4953                 }
4954         }
4955 }
4956
4957 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4958 {
4959         struct tcp_sock *tp = tcp_sk(sk);
4960         int chunk = skb->len - hlen;
4961         int err;
4962
4963         local_bh_enable();
4964         if (skb_csum_unnecessary(skb))
4965                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4966         else
4967                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4968                                                        tp->ucopy.iov);
4969
4970         if (!err) {
4971                 tp->ucopy.len -= chunk;
4972                 tp->copied_seq += chunk;
4973                 tcp_rcv_space_adjust(sk);
4974         }
4975
4976         local_bh_disable();
4977         return err;
4978 }
4979
4980 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4981                                             struct sk_buff *skb)
4982 {
4983         __sum16 result;
4984
4985         if (sock_owned_by_user(sk)) {
4986                 local_bh_enable();
4987                 result = __tcp_checksum_complete(skb);
4988                 local_bh_disable();
4989         } else {
4990                 result = __tcp_checksum_complete(skb);
4991         }
4992         return result;
4993 }
4994
4995 static inline int tcp_checksum_complete_user(struct sock *sk,
4996                                              struct sk_buff *skb)
4997 {
4998         return !skb_csum_unnecessary(skb) &&
4999                __tcp_checksum_complete_user(sk, skb);
5000 }
5001
5002 #ifdef CONFIG_NET_DMA
5003 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5004                                   int hlen)
5005 {
5006         struct tcp_sock *tp = tcp_sk(sk);
5007         int chunk = skb->len - hlen;
5008         int dma_cookie;
5009         int copied_early = 0;
5010
5011         if (tp->ucopy.wakeup)
5012                 return 0;
5013
5014         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5015                 tp->ucopy.dma_chan = get_softnet_dma();
5016
5017         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5018
5019                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5020                                                          skb, hlen,
5021                                                          tp->ucopy.iov, chunk,
5022                                                          tp->ucopy.pinned_list);
5023
5024                 if (dma_cookie < 0)
5025                         goto out;
5026
5027                 tp->ucopy.dma_cookie = dma_cookie;
5028                 copied_early = 1;
5029
5030                 tp->ucopy.len -= chunk;
5031                 tp->copied_seq += chunk;
5032                 tcp_rcv_space_adjust(sk);
5033
5034                 if ((tp->ucopy.len == 0) ||
5035                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5036                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5037                         tp->ucopy.wakeup = 1;
5038                         sk->sk_data_ready(sk, 0);
5039                 }
5040         } else if (chunk > 0) {
5041                 tp->ucopy.wakeup = 1;
5042                 sk->sk_data_ready(sk, 0);
5043         }
5044 out:
5045         return copied_early;
5046 }
5047 #endif /* CONFIG_NET_DMA */
5048
5049 /* Does PAWS and seqno based validation of an incoming segment, flags will
5050  * play significant role here.
5051  */
5052 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5053                               struct tcphdr *th, int syn_inerr)
5054 {
5055         struct tcp_sock *tp = tcp_sk(sk);
5056
5057         /* RFC1323: H1. Apply PAWS check first. */
5058         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5059             tcp_paws_discard(sk, skb)) {
5060                 if (!th->rst) {
5061                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5062                         tcp_send_dupack(sk, skb);
5063                         goto discard;
5064                 }
5065                 /* Reset is accepted even if it did not pass PAWS. */
5066         }
5067
5068         /* Step 1: check sequence number */
5069         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5070                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5071                  * (RST) segments are validated by checking their SEQ-fields."
5072                  * And page 69: "If an incoming segment is not acceptable,
5073                  * an acknowledgment should be sent in reply (unless the RST
5074                  * bit is set, if so drop the segment and return)".
5075                  */
5076                 if (!th->rst)
5077                         tcp_send_dupack(sk, skb);
5078                 goto discard;
5079         }
5080
5081         /* Step 2: check RST bit */
5082         if (th->rst) {
5083                 tcp_reset(sk);
5084                 goto discard;
5085         }
5086
5087         /* ts_recent update must be made after we are sure that the packet
5088          * is in window.
5089          */
5090         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5091
5092         /* step 3: check security and precedence [ignored] */
5093
5094         /* step 4: Check for a SYN in window. */
5095         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5096                 if (syn_inerr)
5097                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5098                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5099                 tcp_reset(sk);
5100                 return -1;
5101         }
5102
5103         return 1;
5104
5105 discard:
5106         __kfree_skb(skb);
5107         return 0;
5108 }
5109
5110 /*
5111  *      TCP receive function for the ESTABLISHED state.
5112  *
5113  *      It is split into a fast path and a slow path. The fast path is
5114  *      disabled when:
5115  *      - A zero window was announced from us - zero window probing
5116  *        is only handled properly in the slow path.
5117  *      - Out of order segments arrived.
5118  *      - Urgent data is expected.
5119  *      - There is no buffer space left
5120  *      - Unexpected TCP flags/window values/header lengths are received
5121  *        (detected by checking the TCP header against pred_flags)
5122  *      - Data is sent in both directions. Fast path only supports pure senders
5123  *        or pure receivers (this means either the sequence number or the ack
5124  *        value must stay constant)
5125  *      - Unexpected TCP option.
5126  *
5127  *      When these conditions are not satisfied it drops into a standard
5128  *      receive procedure patterned after RFC793 to handle all cases.
5129  *      The first three cases are guaranteed by proper pred_flags setting,
5130  *      the rest is checked inline. Fast processing is turned on in
5131  *      tcp_data_queue when everything is OK.
5132  */
5133 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5134                         struct tcphdr *th, unsigned len)
5135 {
5136         struct tcp_sock *tp = tcp_sk(sk);
5137         int res;
5138
5139         /*
5140          *      Header prediction.
5141          *      The code loosely follows the one in the famous
5142          *      "30 instruction TCP receive" Van Jacobson mail.
5143          *
5144          *      Van's trick is to deposit buffers into socket queue
5145          *      on a device interrupt, to call tcp_recv function
5146          *      on the receive process context and checksum and copy
5147          *      the buffer to user space. smart...
5148          *
5149          *      Our current scheme is not silly either but we take the
5150          *      extra cost of the net_bh soft interrupt processing...
5151          *      We do checksum and copy also but from device to kernel.
5152          */
5153
5154         tp->rx_opt.saw_tstamp = 0;
5155
5156         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5157          *      if header_prediction is to be made
5158          *      'S' will always be tp->tcp_header_len >> 2
5159          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5160          *  turn it off (when there are holes in the receive
5161          *       space for instance)
5162          *      PSH flag is ignored.
5163          */
5164
5165         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5166             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5167                 int tcp_header_len = tp->tcp_header_len;
5168
5169                 /* Timestamp header prediction: tcp_header_len
5170                  * is automatically equal to th->doff*4 due to pred_flags
5171                  * match.
5172                  */
5173
5174                 /* Check timestamp */
5175                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5176                         /* No? Slow path! */
5177                         if (!tcp_parse_aligned_timestamp(tp, th))
5178                                 goto slow_path;
5179
5180                         /* If PAWS failed, check it more carefully in slow path */
5181                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5182                                 goto slow_path;
5183
5184                         /* DO NOT update ts_recent here, if checksum fails
5185                          * and timestamp was corrupted part, it will result
5186                          * in a hung connection since we will drop all
5187                          * future packets due to the PAWS test.
5188                          */
5189                 }
5190
5191                 if (len <= tcp_header_len) {
5192                         /* Bulk data transfer: sender */
5193                         if (len == tcp_header_len) {
5194                                 /* Predicted packet is in window by definition.
5195                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5196                                  * Hence, check seq<=rcv_wup reduces to:
5197                                  */
5198                                 if (tcp_header_len ==
5199                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5200                                     tp->rcv_nxt == tp->rcv_wup)
5201                                         tcp_store_ts_recent(tp);
5202
5203                                 /* We know that such packets are checksummed
5204                                  * on entry.
5205                                  */
5206                                 tcp_ack(sk, skb, 0);
5207                                 __kfree_skb(skb);
5208                                 tcp_data_snd_check(sk);
5209                                 return 0;
5210                         } else { /* Header too small */
5211                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5212                                 goto discard;
5213                         }
5214                 } else {
5215                         int eaten = 0;
5216                         int copied_early = 0;
5217
5218                         if (tp->copied_seq == tp->rcv_nxt &&
5219                             len - tcp_header_len <= tp->ucopy.len) {
5220 #ifdef CONFIG_NET_DMA
5221                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5222                                         copied_early = 1;
5223                                         eaten = 1;
5224                                 }
5225 #endif
5226                                 if (tp->ucopy.task == current &&
5227                                     sock_owned_by_user(sk) && !copied_early) {
5228                                         __set_current_state(TASK_RUNNING);
5229
5230                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5231                                                 eaten = 1;
5232                                 }
5233                                 if (eaten) {
5234                                         /* Predicted packet is in window by definition.
5235                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5236                                          * Hence, check seq<=rcv_wup reduces to:
5237                                          */
5238                                         if (tcp_header_len ==
5239                                             (sizeof(struct tcphdr) +
5240                                              TCPOLEN_TSTAMP_ALIGNED) &&
5241                                             tp->rcv_nxt == tp->rcv_wup)
5242                                                 tcp_store_ts_recent(tp);
5243
5244                                         tcp_rcv_rtt_measure_ts(sk, skb);
5245
5246                                         __skb_pull(skb, tcp_header_len);
5247                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5248                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5249                                 }
5250                                 if (copied_early)
5251                                         tcp_cleanup_rbuf(sk, skb->len);
5252                         }
5253                         if (!eaten) {
5254                                 if (tcp_checksum_complete_user(sk, skb))
5255                                         goto csum_error;
5256
5257                                 /* Predicted packet is in window by definition.
5258                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5259                                  * Hence, check seq<=rcv_wup reduces to:
5260                                  */
5261                                 if (tcp_header_len ==
5262                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5263                                     tp->rcv_nxt == tp->rcv_wup)
5264                                         tcp_store_ts_recent(tp);
5265
5266                                 tcp_rcv_rtt_measure_ts(sk, skb);
5267
5268                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5269                                         goto step5;
5270
5271                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5272
5273                                 /* Bulk data transfer: receiver */
5274                                 __skb_pull(skb, tcp_header_len);
5275                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5276                                 skb_set_owner_r(skb, sk);
5277                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5278                         }
5279
5280                         tcp_event_data_recv(sk, skb);
5281
5282                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5283                                 /* Well, only one small jumplet in fast path... */
5284                                 tcp_ack(sk, skb, FLAG_DATA);
5285                                 tcp_data_snd_check(sk);
5286                                 if (!inet_csk_ack_scheduled(sk))
5287                                         goto no_ack;
5288                         }
5289
5290                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5291                                 __tcp_ack_snd_check(sk, 0);
5292 no_ack:
5293 #ifdef CONFIG_NET_DMA
5294                         if (copied_early)
5295                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5296                         else
5297 #endif
5298                         if (eaten)
5299                                 __kfree_skb(skb);
5300                         else
5301                                 sk->sk_data_ready(sk, 0);
5302                         return 0;
5303                 }
5304         }
5305
5306 slow_path:
5307         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5308                 goto csum_error;
5309
5310         /*
5311          *      Standard slow path.
5312          */
5313
5314         res = tcp_validate_incoming(sk, skb, th, 1);
5315         if (res <= 0)
5316                 return -res;
5317
5318 step5:
5319         if (th->ack)
5320                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5321
5322         tcp_rcv_rtt_measure_ts(sk, skb);
5323
5324         /* Process urgent data. */
5325         tcp_urg(sk, skb, th);
5326
5327         /* step 7: process the segment text */
5328         tcp_data_queue(sk, skb);
5329
5330         tcp_data_snd_check(sk);
5331         tcp_ack_snd_check(sk);
5332         return 0;
5333
5334 csum_error:
5335         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5336
5337 discard:
5338         __kfree_skb(skb);
5339         return 0;
5340 }
5341
5342 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5343                                          struct tcphdr *th, unsigned len)
5344 {
5345         struct tcp_sock *tp = tcp_sk(sk);
5346         struct inet_connection_sock *icsk = inet_csk(sk);
5347         int saved_clamp = tp->rx_opt.mss_clamp;
5348
5349         tcp_parse_options(skb, &tp->rx_opt, 0);
5350
5351         if (th->ack) {
5352                 /* rfc793:
5353                  * "If the state is SYN-SENT then
5354                  *    first check the ACK bit
5355                  *      If the ACK bit is set
5356                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5357                  *        a reset (unless the RST bit is set, if so drop
5358                  *        the segment and return)"
5359                  *
5360                  *  We do not send data with SYN, so that RFC-correct
5361                  *  test reduces to:
5362                  */
5363                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5364                         goto reset_and_undo;
5365
5366                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5367                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5368                              tcp_time_stamp)) {
5369                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5370                         goto reset_and_undo;
5371                 }
5372
5373                 /* Now ACK is acceptable.
5374                  *
5375                  * "If the RST bit is set
5376                  *    If the ACK was acceptable then signal the user "error:
5377                  *    connection reset", drop the segment, enter CLOSED state,
5378                  *    delete TCB, and return."
5379                  */
5380
5381                 if (th->rst) {
5382                         tcp_reset(sk);
5383                         goto discard;
5384                 }
5385
5386                 /* rfc793:
5387                  *   "fifth, if neither of the SYN or RST bits is set then
5388                  *    drop the segment and return."
5389                  *
5390                  *    See note below!
5391                  *                                        --ANK(990513)
5392                  */
5393                 if (!th->syn)
5394                         goto discard_and_undo;
5395
5396                 /* rfc793:
5397                  *   "If the SYN bit is on ...
5398                  *    are acceptable then ...
5399                  *    (our SYN has been ACKed), change the connection
5400                  *    state to ESTABLISHED..."
5401                  */
5402
5403                 TCP_ECN_rcv_synack(tp, th);
5404
5405                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5406                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5407
5408                 /* Ok.. it's good. Set up sequence numbers and
5409                  * move to established.
5410                  */
5411                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5412                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5413
5414                 /* RFC1323: The window in SYN & SYN/ACK segments is
5415                  * never scaled.
5416                  */
5417                 tp->snd_wnd = ntohs(th->window);
5418                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5419
5420                 if (!tp->rx_opt.wscale_ok) {
5421                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5422                         tp->window_clamp = min(tp->window_clamp, 65535U);
5423                 }
5424
5425                 if (tp->rx_opt.saw_tstamp) {
5426                         tp->rx_opt.tstamp_ok       = 1;
5427                         tp->tcp_header_len =
5428                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5429                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5430                         tcp_store_ts_recent(tp);
5431                 } else {
5432                         tp->tcp_header_len = sizeof(struct tcphdr);
5433                 }
5434
5435                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5436                         tcp_enable_fack(tp);
5437
5438                 tcp_mtup_init(sk);
5439                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5440                 tcp_initialize_rcv_mss(sk);
5441
5442                 /* Remember, tcp_poll() does not lock socket!
5443                  * Change state from SYN-SENT only after copied_seq
5444                  * is initialized. */
5445                 tp->copied_seq = tp->rcv_nxt;
5446                 smp_mb();
5447                 tcp_set_state(sk, TCP_ESTABLISHED);
5448
5449                 security_inet_conn_established(sk, skb);
5450
5451                 /* Make sure socket is routed, for correct metrics.  */
5452                 icsk->icsk_af_ops->rebuild_header(sk);
5453
5454                 tcp_init_metrics(sk);
5455
5456                 tcp_init_congestion_control(sk);
5457
5458                 /* Prevent spurious tcp_cwnd_restart() on first data
5459                  * packet.
5460                  */
5461                 tp->lsndtime = tcp_time_stamp;
5462
5463                 tcp_init_buffer_space(sk);
5464
5465                 if (sock_flag(sk, SOCK_KEEPOPEN))
5466                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5467
5468                 if (!tp->rx_opt.snd_wscale)
5469                         __tcp_fast_path_on(tp, tp->snd_wnd);
5470                 else
5471                         tp->pred_flags = 0;
5472
5473                 if (!sock_flag(sk, SOCK_DEAD)) {
5474                         sk->sk_state_change(sk);
5475                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5476                 }
5477
5478                 if (sk->sk_write_pending ||
5479                     icsk->icsk_accept_queue.rskq_defer_accept ||
5480                     icsk->icsk_ack.pingpong) {
5481                         /* Save one ACK. Data will be ready after
5482                          * several ticks, if write_pending is set.
5483                          *
5484                          * It may be deleted, but with this feature tcpdumps
5485                          * look so _wonderfully_ clever, that I was not able
5486                          * to stand against the temptation 8)     --ANK
5487                          */
5488                         inet_csk_schedule_ack(sk);
5489                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5490                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5491                         tcp_incr_quickack(sk);
5492                         tcp_enter_quickack_mode(sk);
5493                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5494                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5495
5496 discard:
5497                         __kfree_skb(skb);
5498                         return 0;
5499                 } else {
5500                         tcp_send_ack(sk);
5501                 }
5502                 return -1;
5503         }
5504
5505         /* No ACK in the segment */
5506
5507         if (th->rst) {
5508                 /* rfc793:
5509                  * "If the RST bit is set
5510                  *
5511                  *      Otherwise (no ACK) drop the segment and return."
5512                  */
5513
5514                 goto discard_and_undo;
5515         }
5516
5517         /* PAWS check. */
5518         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5519             tcp_paws_check(&tp->rx_opt, 0))
5520                 goto discard_and_undo;
5521
5522         if (th->syn) {
5523                 /* We see SYN without ACK. It is attempt of
5524                  * simultaneous connect with crossed SYNs.
5525                  * Particularly, it can be connect to self.
5526                  */
5527                 tcp_set_state(sk, TCP_SYN_RECV);
5528
5529                 if (tp->rx_opt.saw_tstamp) {
5530                         tp->rx_opt.tstamp_ok = 1;
5531                         tcp_store_ts_recent(tp);
5532                         tp->tcp_header_len =
5533                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5534                 } else {
5535                         tp->tcp_header_len = sizeof(struct tcphdr);
5536                 }
5537
5538                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5539                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5540
5541                 /* RFC1323: The window in SYN & SYN/ACK segments is
5542                  * never scaled.
5543                  */
5544                 tp->snd_wnd    = ntohs(th->window);
5545                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5546                 tp->max_window = tp->snd_wnd;
5547
5548                 TCP_ECN_rcv_syn(tp, th);
5549
5550                 tcp_mtup_init(sk);
5551                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5552                 tcp_initialize_rcv_mss(sk);
5553
5554                 tcp_send_synack(sk);
5555 #if 0
5556                 /* Note, we could accept data and URG from this segment.
5557                  * There are no obstacles to make this.
5558                  *
5559                  * However, if we ignore data in ACKless segments sometimes,
5560                  * we have no reasons to accept it sometimes.
5561                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5562                  * is not flawless. So, discard packet for sanity.
5563                  * Uncomment this return to process the data.
5564                  */
5565                 return -1;
5566 #else
5567                 goto discard;
5568 #endif
5569         }
5570         /* "fifth, if neither of the SYN or RST bits is set then
5571          * drop the segment and return."
5572          */
5573
5574 discard_and_undo:
5575         tcp_clear_options(&tp->rx_opt);
5576         tp->rx_opt.mss_clamp = saved_clamp;
5577         goto discard;
5578
5579 reset_and_undo:
5580         tcp_clear_options(&tp->rx_opt);
5581         tp->rx_opt.mss_clamp = saved_clamp;
5582         return 1;
5583 }
5584
5585 /*
5586  *      This function implements the receiving procedure of RFC 793 for
5587  *      all states except ESTABLISHED and TIME_WAIT.
5588  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5589  *      address independent.
5590  */
5591
5592 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5593                           struct tcphdr *th, unsigned len)
5594 {
5595         struct tcp_sock *tp = tcp_sk(sk);
5596         struct inet_connection_sock *icsk = inet_csk(sk);
5597         int queued = 0;
5598         int res;
5599
5600         tp->rx_opt.saw_tstamp = 0;
5601
5602         switch (sk->sk_state) {
5603         case TCP_CLOSE:
5604                 goto discard;
5605
5606         case TCP_LISTEN:
5607                 if (th->ack)
5608                         return 1;
5609
5610                 if (th->rst)
5611                         goto discard;
5612
5613                 if (th->syn) {
5614                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5615                                 return 1;
5616
5617                         /* Now we have several options: In theory there is
5618                          * nothing else in the frame. KA9Q has an option to
5619                          * send data with the syn, BSD accepts data with the
5620                          * syn up to the [to be] advertised window and
5621                          * Solaris 2.1 gives you a protocol error. For now
5622                          * we just ignore it, that fits the spec precisely
5623                          * and avoids incompatibilities. It would be nice in
5624                          * future to drop through and process the data.
5625                          *
5626                          * Now that TTCP is starting to be used we ought to
5627                          * queue this data.
5628                          * But, this leaves one open to an easy denial of
5629                          * service attack, and SYN cookies can't defend
5630                          * against this problem. So, we drop the data
5631                          * in the interest of security over speed unless
5632                          * it's still in use.
5633                          */
5634                         kfree_skb(skb);
5635                         return 0;
5636                 }
5637                 goto discard;
5638
5639         case TCP_SYN_SENT:
5640                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5641                 if (queued >= 0)
5642                         return queued;
5643
5644                 /* Do step6 onward by hand. */
5645                 tcp_urg(sk, skb, th);
5646                 __kfree_skb(skb);
5647                 tcp_data_snd_check(sk);
5648                 return 0;
5649         }
5650
5651         res = tcp_validate_incoming(sk, skb, th, 0);
5652         if (res <= 0)
5653                 return -res;
5654
5655         /* step 5: check the ACK field */
5656         if (th->ack) {
5657                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5658
5659                 switch (sk->sk_state) {
5660                 case TCP_SYN_RECV:
5661                         if (acceptable) {
5662                                 tp->copied_seq = tp->rcv_nxt;
5663                                 smp_mb();
5664                                 tcp_set_state(sk, TCP_ESTABLISHED);
5665                                 sk->sk_state_change(sk);
5666
5667                                 /* Note, that this wakeup is only for marginal
5668                                  * crossed SYN case. Passively open sockets
5669                                  * are not waked up, because sk->sk_sleep ==
5670                                  * NULL and sk->sk_socket == NULL.
5671                                  */
5672                                 if (sk->sk_socket)
5673                                         sk_wake_async(sk,
5674                                                       SOCK_WAKE_IO, POLL_OUT);
5675
5676                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5677                                 tp->snd_wnd = ntohs(th->window) <<
5678                                               tp->rx_opt.snd_wscale;
5679                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5680                                             TCP_SKB_CB(skb)->seq);
5681
5682                                 /* tcp_ack considers this ACK as duplicate
5683                                  * and does not calculate rtt.
5684                                  * Fix it at least with timestamps.
5685                                  */
5686                                 if (tp->rx_opt.saw_tstamp &&
5687                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5688                                         tcp_ack_saw_tstamp(sk, 0);
5689
5690                                 if (tp->rx_opt.tstamp_ok)
5691                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5692
5693                                 /* Make sure socket is routed, for
5694                                  * correct metrics.
5695                                  */
5696                                 icsk->icsk_af_ops->rebuild_header(sk);
5697
5698                                 tcp_init_metrics(sk);
5699
5700                                 tcp_init_congestion_control(sk);
5701
5702                                 /* Prevent spurious tcp_cwnd_restart() on
5703                                  * first data packet.
5704                                  */
5705                                 tp->lsndtime = tcp_time_stamp;
5706
5707                                 tcp_mtup_init(sk);
5708                                 tcp_initialize_rcv_mss(sk);
5709                                 tcp_init_buffer_space(sk);
5710                                 tcp_fast_path_on(tp);
5711                         } else {
5712                                 return 1;
5713                         }
5714                         break;
5715
5716                 case TCP_FIN_WAIT1:
5717                         if (tp->snd_una == tp->write_seq) {
5718                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5719                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5720                                 dst_confirm(sk->sk_dst_cache);
5721
5722                                 if (!sock_flag(sk, SOCK_DEAD))
5723                                         /* Wake up lingering close() */
5724                                         sk->sk_state_change(sk);
5725                                 else {
5726                                         int tmo;
5727
5728                                         if (tp->linger2 < 0 ||
5729                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5730                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5731                                                 tcp_done(sk);
5732                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5733                                                 return 1;
5734                                         }
5735
5736                                         tmo = tcp_fin_time(sk);
5737                                         if (tmo > TCP_TIMEWAIT_LEN) {
5738                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5739                                         } else if (th->fin || sock_owned_by_user(sk)) {
5740                                                 /* Bad case. We could lose such FIN otherwise.
5741                                                  * It is not a big problem, but it looks confusing
5742                                                  * and not so rare event. We still can lose it now,
5743                                                  * if it spins in bh_lock_sock(), but it is really
5744                                                  * marginal case.
5745                                                  */
5746                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5747                                         } else {
5748                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5749                                                 goto discard;
5750                                         }
5751                                 }
5752                         }
5753                         break;
5754
5755                 case TCP_CLOSING:
5756                         if (tp->snd_una == tp->write_seq) {
5757                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5758                                 goto discard;
5759                         }
5760                         break;
5761
5762                 case TCP_LAST_ACK:
5763                         if (tp->snd_una == tp->write_seq) {
5764                                 tcp_update_metrics(sk);
5765                                 tcp_done(sk);
5766                                 goto discard;
5767                         }
5768                         break;
5769                 }
5770         } else
5771                 goto discard;
5772
5773         /* step 6: check the URG bit */
5774         tcp_urg(sk, skb, th);
5775
5776         /* step 7: process the segment text */
5777         switch (sk->sk_state) {
5778         case TCP_CLOSE_WAIT:
5779         case TCP_CLOSING:
5780         case TCP_LAST_ACK:
5781                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5782                         break;
5783         case TCP_FIN_WAIT1:
5784         case TCP_FIN_WAIT2:
5785                 /* RFC 793 says to queue data in these states,
5786                  * RFC 1122 says we MUST send a reset.
5787                  * BSD 4.4 also does reset.
5788                  */
5789                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5790                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5791                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5792                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5793                                 tcp_reset(sk);
5794                                 return 1;
5795                         }
5796                 }
5797                 /* Fall through */
5798         case TCP_ESTABLISHED:
5799                 tcp_data_queue(sk, skb);
5800                 queued = 1;
5801                 break;
5802         }
5803
5804         /* tcp_data could move socket to TIME-WAIT */
5805         if (sk->sk_state != TCP_CLOSE) {
5806                 tcp_data_snd_check(sk);
5807                 tcp_ack_snd_check(sk);
5808         }
5809
5810         if (!queued) {
5811 discard:
5812                 __kfree_skb(skb);
5813         }
5814         return 0;
5815 }
5816
5817 EXPORT_SYMBOL(sysctl_tcp_ecn);
5818 EXPORT_SYMBOL(sysctl_tcp_reordering);
5819 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5820 EXPORT_SYMBOL(tcp_parse_options);
5821 #ifdef CONFIG_TCP_MD5SIG
5822 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5823 #endif
5824 EXPORT_SYMBOL(tcp_rcv_established);
5825 EXPORT_SYMBOL(tcp_rcv_state_process);
5826 EXPORT_SYMBOL(tcp_initialize_rcv_mss);