]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/ipv4/tcp_input.c
3f26599ddc88ca0074830ad18c39f9b78ee628ae
[net-next-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732                 unsigned long rtt;
733
734                 if (icsk->icsk_backoff || !tp->srtt) {
735                         /* This session failed to estimate rtt. Why?
736                          * Probably, no packets returned in time.
737                          * Reset our results.
738                          */
739                         if (!(dst_metric_locked(dst, RTAX_RTT)))
740                                 dst->metrics[RTAX_RTT - 1] = 0;
741                         return;
742                 }
743
744                 rtt = dst_metric_rtt(dst, RTAX_RTT);
745                 m = rtt - tp->srtt;
746
747                 /* If newly calculated rtt larger than stored one,
748                  * store new one. Otherwise, use EWMA. Remember,
749                  * rtt overestimation is always better than underestimation.
750                  */
751                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752                         if (m <= 0)
753                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754                         else
755                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756                 }
757
758                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759                         unsigned long var;
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
769                         if (m >= var)
770                                 var = m;
771                         else
772                                 var -= (var - m) >> 2;
773
774                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775                 }
776
777                 if (tp->snd_ssthresh >= 0xFFFF) {
778                         /* Slow start still did not finish. */
779                         if (dst_metric(dst, RTAX_SSTHRESH) &&
780                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783                         if (!dst_metric_locked(dst, RTAX_CWND) &&
784                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787                            icsk->icsk_ca_state == TCP_CA_Open) {
788                         /* Cong. avoidance phase, cwnd is reliable. */
789                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790                                 dst->metrics[RTAX_SSTHRESH-1] =
791                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794                 } else {
795                         /* Else slow start did not finish, cwnd is non-sense,
796                            ssthresh may be also invalid.
797                          */
798                         if (!dst_metric_locked(dst, RTAX_CWND))
799                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800                         if (dst_metric(dst, RTAX_SSTHRESH) &&
801                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804                 }
805
806                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808                             tp->reordering != sysctl_tcp_reordering)
809                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810                 }
811         }
812 }
813
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *      The RFC specifies a window of no more than 4380 bytes
819  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *      is a bit misleading because they use a clamp at 4380 bytes
821  *      rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827         if (!cwnd) {
828                 if (tp->mss_cache > 1460)
829                         cwnd = 2;
830                 else
831                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832         }
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         }
896         if (dst_metric(dst, RTAX_REORDERING) &&
897             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898                 tcp_disable_fack(tp);
899                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900         }
901
902         if (dst_metric(dst, RTAX_RTT) == 0)
903                 goto reset;
904
905         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906                 goto reset;
907
908         /* Initial rtt is determined from SYN,SYN-ACK.
909          * The segment is small and rtt may appear much
910          * less than real one. Use per-dst memory
911          * to make it more realistic.
912          *
913          * A bit of theory. RTT is time passed after "normal" sized packet
914          * is sent until it is ACKed. In normal circumstances sending small
915          * packets force peer to delay ACKs and calculation is correct too.
916          * The algorithm is adaptive and, provided we follow specs, it
917          * NEVER underestimate RTT. BUT! If peer tries to make some clever
918          * tricks sort of "quick acks" for time long enough to decrease RTT
919          * to low value, and then abruptly stops to do it and starts to delay
920          * ACKs, wait for troubles.
921          */
922         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924                 tp->rtt_seq = tp->snd_nxt;
925         }
926         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929         }
930         tcp_set_rto(sk);
931         tcp_bound_rto(sk);
932         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933                 goto reset;
934         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935         tp->snd_cwnd_stamp = tcp_time_stamp;
936         return;
937
938 reset:
939         /* Play conservative. If timestamps are not
940          * supported, TCP will fail to recalculate correct
941          * rtt, if initial rto is too small. FORGET ALL AND RESET!
942          */
943         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944                 tp->srtt = 0;
945                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947         }
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951                                   const int ts)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         if (metric > tp->reordering) {
955                 int mib_idx;
956
957                 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959                 /* This exciting event is worth to be remembered. 8) */
960                 if (ts)
961                         mib_idx = LINUX_MIB_TCPTSREORDER;
962                 else if (tcp_is_reno(tp))
963                         mib_idx = LINUX_MIB_TCPRENOREORDER;
964                 else if (tcp_is_fack(tp))
965                         mib_idx = LINUX_MIB_TCPFACKREORDER;
966                 else
967                         mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973                        tp->reordering,
974                        tp->fackets_out,
975                        tp->sacked_out,
976                        tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978                 tcp_disable_fack(tp);
979         }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985         if ((tp->retransmit_skb_hint == NULL) ||
986             before(TCP_SKB_CB(skb)->seq,
987                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988                 tp->retransmit_skb_hint = skb;
989
990         if (!tp->lost_out ||
991             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998                 tcp_verify_retransmit_hint(tp, skb);
999
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006                                             struct sk_buff *skb)
1007 {
1008         tcp_verify_retransmit_hint(tp, skb);
1009
1010         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011                 tp->lost_out += tcp_skb_pcount(skb);
1012                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013         }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight        Description
1024  * 0    1               - orig segment is in flight.
1025  * S    0               - nothing flies, orig reached receiver.
1026  * L    0               - nothing flies, orig lost by net.
1027  * R    2               - both orig and retransmit are in flight.
1028  * L|R  1               - orig is lost, retransmit is in flight.
1029  * S|R  1               - orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of one of three flavors:
1038  *      A. Scoreboard estimator decided the packet is lost.
1039  *         A'. Reno "three dupacks" marks head of queue lost.
1040  *         A''. Its FACK modfication, head until snd.fack is lost.
1041  *      B. SACK arrives sacking data transmitted after never retransmitted
1042  *         hole was sent out.
1043  *      C. SACK arrives sacking SND.NXT at the moment, when the
1044  *         segment was retransmitted.
1045  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046  *
1047  * It is pleasant to note, that state diagram turns out to be commutative,
1048  * so that we are allowed not to be bothered by order of our actions,
1049  * when multiple events arrive simultaneously. (see the function below).
1050  *
1051  * Reordering detection.
1052  * --------------------
1053  * Reordering metric is maximal distance, which a packet can be displaced
1054  * in packet stream. With SACKs we can estimate it:
1055  *
1056  * 1. SACK fills old hole and the corresponding segment was not
1057  *    ever retransmitted -> reordering. Alas, we cannot use it
1058  *    when segment was retransmitted.
1059  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060  *    for retransmitted and already SACKed segment -> reordering..
1061  * Both of these heuristics are not used in Loss state, when we cannot
1062  * account for retransmits accurately.
1063  *
1064  * SACK block validation.
1065  * ----------------------
1066  *
1067  * SACK block range validation checks that the received SACK block fits to
1068  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069  * Note that SND.UNA is not included to the range though being valid because
1070  * it means that the receiver is rather inconsistent with itself reporting
1071  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072  * perfectly valid, however, in light of RFC2018 which explicitly states
1073  * that "SACK block MUST reflect the newest segment.  Even if the newest
1074  * segment is going to be discarded ...", not that it looks very clever
1075  * in case of head skb. Due to potentional receiver driven attacks, we
1076  * choose to avoid immediate execution of a walk in write queue due to
1077  * reneging and defer head skb's loss recovery to standard loss recovery
1078  * procedure that will eventually trigger (nothing forbids us doing this).
1079  *
1080  * Implements also blockage to start_seq wrap-around. Problem lies in the
1081  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082  * there's no guarantee that it will be before snd_nxt (n). The problem
1083  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084  * wrap (s_w):
1085  *
1086  *         <- outs wnd ->                          <- wrapzone ->
1087  *         u     e      n                         u_w   e_w  s n_w
1088  *         |     |      |                          |     |   |  |
1089  * |<------------+------+----- TCP seqno space --------------+---------->|
1090  * ...-- <2^31 ->|                                           |<--------...
1091  * ...---- >2^31 ------>|                                    |<--------...
1092  *
1093  * Current code wouldn't be vulnerable but it's better still to discard such
1094  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097  * equal to the ideal case (infinite seqno space without wrap caused issues).
1098  *
1099  * With D-SACK the lower bound is extended to cover sequence space below
1100  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101  * again, D-SACK block must not to go across snd_una (for the same reason as
1102  * for the normal SACK blocks, explained above). But there all simplicity
1103  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104  * fully below undo_marker they do not affect behavior in anyway and can
1105  * therefore be safely ignored. In rare cases (which are more or less
1106  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107  * fragmentation and packet reordering past skb's retransmission. To consider
1108  * them correctly, the acceptable range must be extended even more though
1109  * the exact amount is rather hard to quantify. However, tp->max_window can
1110  * be used as an exaggerated estimate.
1111  */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113                                   u32 start_seq, u32 end_seq)
1114 {
1115         /* Too far in future, or reversed (interpretation is ambiguous) */
1116         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117                 return 0;
1118
1119         /* Nasty start_seq wrap-around check (see comments above) */
1120         if (!before(start_seq, tp->snd_nxt))
1121                 return 0;
1122
1123         /* In outstanding window? ...This is valid exit for D-SACKs too.
1124          * start_seq == snd_una is non-sensical (see comments above)
1125          */
1126         if (after(start_seq, tp->snd_una))
1127                 return 1;
1128
1129         if (!is_dsack || !tp->undo_marker)
1130                 return 0;
1131
1132         /* ...Then it's D-SACK, and must reside below snd_una completely */
1133         if (!after(end_seq, tp->snd_una))
1134                 return 0;
1135
1136         if (!before(start_seq, tp->undo_marker))
1137                 return 1;
1138
1139         /* Too old */
1140         if (!after(end_seq, tp->undo_marker))
1141                 return 0;
1142
1143         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144          *   start_seq < undo_marker and end_seq >= undo_marker.
1145          */
1146         return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150  * Event "C". Later note: FACK people cheated me again 8), we have to account
1151  * for reordering! Ugly, but should help.
1152  *
1153  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154  * less than what is now known to be received by the other end (derived from
1155  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156  * retransmitted skbs to avoid some costly processing per ACKs.
1157  */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160         const struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct tcp_sock *tp = tcp_sk(sk);
1162         struct sk_buff *skb;
1163         int cnt = 0;
1164         u32 new_low_seq = tp->snd_nxt;
1165         u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168             !after(received_upto, tp->lost_retrans_low) ||
1169             icsk->icsk_ca_state != TCP_CA_Recovery)
1170                 return;
1171
1172         tcp_for_write_queue(skb, sk) {
1173                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175                 if (skb == tcp_send_head(sk))
1176                         break;
1177                 if (cnt == tp->retrans_out)
1178                         break;
1179                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180                         continue;
1181
1182                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183                         continue;
1184
1185                 if (after(received_upto, ack_seq) &&
1186                     (tcp_is_fack(tp) ||
1187                      !before(received_upto,
1188                              ack_seq + tp->reordering * tp->mss_cache))) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1241  * the incoming SACK may not exactly match but we can find smaller MSS
1242  * aligned portion of it that matches. Therefore we might need to fragment
1243  * which may fail and creates some hassle (caller must handle error case
1244  * returns).
1245  */
1246 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1247                                  u32 start_seq, u32 end_seq)
1248 {
1249         int in_sack, err;
1250         unsigned int pkt_len;
1251
1252         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254
1255         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257
1258                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259
1260                 if (!in_sack)
1261                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1262                 else
1263                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1264                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1265                 if (err < 0)
1266                         return err;
1267         }
1268
1269         return in_sack;
1270 }
1271
1272 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1273                            int *reord, int dup_sack, int fack_count)
1274 {
1275         struct tcp_sock *tp = tcp_sk(sk);
1276         u8 sacked = TCP_SKB_CB(skb)->sacked;
1277         int flag = 0;
1278
1279         /* Account D-SACK for retransmitted packet. */
1280         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1281                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1282                         tp->undo_retrans--;
1283                 if (sacked & TCPCB_SACKED_ACKED)
1284                         *reord = min(fack_count, *reord);
1285         }
1286
1287         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1288         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1289                 return flag;
1290
1291         if (!(sacked & TCPCB_SACKED_ACKED)) {
1292                 if (sacked & TCPCB_SACKED_RETRANS) {
1293                         /* If the segment is not tagged as lost,
1294                          * we do not clear RETRANS, believing
1295                          * that retransmission is still in flight.
1296                          */
1297                         if (sacked & TCPCB_LOST) {
1298                                 TCP_SKB_CB(skb)->sacked &=
1299                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1300                                 tp->lost_out -= tcp_skb_pcount(skb);
1301                                 tp->retrans_out -= tcp_skb_pcount(skb);
1302                         }
1303                 } else {
1304                         if (!(sacked & TCPCB_RETRANS)) {
1305                                 /* New sack for not retransmitted frame,
1306                                  * which was in hole. It is reordering.
1307                                  */
1308                                 if (before(TCP_SKB_CB(skb)->seq,
1309                                            tcp_highest_sack_seq(tp)))
1310                                         *reord = min(fack_count, *reord);
1311
1312                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1313                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1314                                         flag |= FLAG_ONLY_ORIG_SACKED;
1315                         }
1316
1317                         if (sacked & TCPCB_LOST) {
1318                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1319                                 tp->lost_out -= tcp_skb_pcount(skb);
1320                         }
1321                 }
1322
1323                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1324                 flag |= FLAG_DATA_SACKED;
1325                 tp->sacked_out += tcp_skb_pcount(skb);
1326
1327                 fack_count += tcp_skb_pcount(skb);
1328
1329                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1330                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1331                     before(TCP_SKB_CB(skb)->seq,
1332                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1333                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1334
1335                 if (fack_count > tp->fackets_out)
1336                         tp->fackets_out = fack_count;
1337
1338                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1339                         tcp_advance_highest_sack(sk, skb);
1340         }
1341
1342         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1343          * frames and clear it. undo_retrans is decreased above, L|R frames
1344          * are accounted above as well.
1345          */
1346         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1347                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1348                 tp->retrans_out -= tcp_skb_pcount(skb);
1349         }
1350
1351         return flag;
1352 }
1353
1354 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1355                                         struct tcp_sack_block *next_dup,
1356                                         u32 start_seq, u32 end_seq,
1357                                         int dup_sack_in, int *fack_count,
1358                                         int *reord, int *flag)
1359 {
1360         tcp_for_write_queue_from(skb, sk) {
1361                 int in_sack = 0;
1362                 int dup_sack = dup_sack_in;
1363
1364                 if (skb == tcp_send_head(sk))
1365                         break;
1366
1367                 /* queue is in-order => we can short-circuit the walk early */
1368                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1369                         break;
1370
1371                 if ((next_dup != NULL) &&
1372                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1373                         in_sack = tcp_match_skb_to_sack(sk, skb,
1374                                                         next_dup->start_seq,
1375                                                         next_dup->end_seq);
1376                         if (in_sack > 0)
1377                                 dup_sack = 1;
1378                 }
1379
1380                 if (in_sack <= 0)
1381                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1382                                                         end_seq);
1383                 if (unlikely(in_sack < 0))
1384                         break;
1385
1386                 if (in_sack)
1387                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1388                                                  *fack_count);
1389
1390                 *fack_count += tcp_skb_pcount(skb);
1391         }
1392         return skb;
1393 }
1394
1395 /* Avoid all extra work that is being done by sacktag while walking in
1396  * a normal way
1397  */
1398 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1399                                         u32 skip_to_seq, int *fack_count)
1400 {
1401         tcp_for_write_queue_from(skb, sk) {
1402                 if (skb == tcp_send_head(sk))
1403                         break;
1404
1405                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1406                         break;
1407
1408                 *fack_count += tcp_skb_pcount(skb);
1409         }
1410         return skb;
1411 }
1412
1413 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1414                                                 struct sock *sk,
1415                                                 struct tcp_sack_block *next_dup,
1416                                                 u32 skip_to_seq,
1417                                                 int *fack_count, int *reord,
1418                                                 int *flag)
1419 {
1420         if (next_dup == NULL)
1421                 return skb;
1422
1423         if (before(next_dup->start_seq, skip_to_seq)) {
1424                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1425                 skb = tcp_sacktag_walk(skb, sk, NULL,
1426                                      next_dup->start_seq, next_dup->end_seq,
1427                                      1, fack_count, reord, flag);
1428         }
1429
1430         return skb;
1431 }
1432
1433 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1434 {
1435         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1436 }
1437
1438 static int
1439 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1440                         u32 prior_snd_una)
1441 {
1442         const struct inet_connection_sock *icsk = inet_csk(sk);
1443         struct tcp_sock *tp = tcp_sk(sk);
1444         unsigned char *ptr = (skb_transport_header(ack_skb) +
1445                               TCP_SKB_CB(ack_skb)->sacked);
1446         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1447         struct tcp_sack_block sp[TCP_NUM_SACKS];
1448         struct tcp_sack_block *cache;
1449         struct sk_buff *skb;
1450         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1451         int used_sacks;
1452         int reord = tp->packets_out;
1453         int flag = 0;
1454         int found_dup_sack = 0;
1455         int fack_count;
1456         int i, j;
1457         int first_sack_index;
1458
1459         if (!tp->sacked_out) {
1460                 if (WARN_ON(tp->fackets_out))
1461                         tp->fackets_out = 0;
1462                 tcp_highest_sack_reset(sk);
1463         }
1464
1465         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1466                                          num_sacks, prior_snd_una);
1467         if (found_dup_sack)
1468                 flag |= FLAG_DSACKING_ACK;
1469
1470         /* Eliminate too old ACKs, but take into
1471          * account more or less fresh ones, they can
1472          * contain valid SACK info.
1473          */
1474         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1475                 return 0;
1476
1477         if (!tp->packets_out)
1478                 goto out;
1479
1480         used_sacks = 0;
1481         first_sack_index = 0;
1482         for (i = 0; i < num_sacks; i++) {
1483                 int dup_sack = !i && found_dup_sack;
1484
1485                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1486                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1487
1488                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1489                                             sp[used_sacks].start_seq,
1490                                             sp[used_sacks].end_seq)) {
1491                         int mib_idx;
1492
1493                         if (dup_sack) {
1494                                 if (!tp->undo_marker)
1495                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1496                                 else
1497                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1498                         } else {
1499                                 /* Don't count olds caused by ACK reordering */
1500                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1501                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1502                                         continue;
1503                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1504                         }
1505
1506                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1507                         if (i == 0)
1508                                 first_sack_index = -1;
1509                         continue;
1510                 }
1511
1512                 /* Ignore very old stuff early */
1513                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1514                         continue;
1515
1516                 used_sacks++;
1517         }
1518
1519         /* order SACK blocks to allow in order walk of the retrans queue */
1520         for (i = used_sacks - 1; i > 0; i--) {
1521                 for (j = 0; j < i; j++) {
1522                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1523                                 struct tcp_sack_block tmp;
1524
1525                                 tmp = sp[j];
1526                                 sp[j] = sp[j + 1];
1527                                 sp[j + 1] = tmp;
1528
1529                                 /* Track where the first SACK block goes to */
1530                                 if (j == first_sack_index)
1531                                         first_sack_index = j + 1;
1532                         }
1533                 }
1534         }
1535
1536         skb = tcp_write_queue_head(sk);
1537         fack_count = 0;
1538         i = 0;
1539
1540         if (!tp->sacked_out) {
1541                 /* It's already past, so skip checking against it */
1542                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1543         } else {
1544                 cache = tp->recv_sack_cache;
1545                 /* Skip empty blocks in at head of the cache */
1546                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1547                        !cache->end_seq)
1548                         cache++;
1549         }
1550
1551         while (i < used_sacks) {
1552                 u32 start_seq = sp[i].start_seq;
1553                 u32 end_seq = sp[i].end_seq;
1554                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1555                 struct tcp_sack_block *next_dup = NULL;
1556
1557                 if (found_dup_sack && ((i + 1) == first_sack_index))
1558                         next_dup = &sp[i + 1];
1559
1560                 /* Event "B" in the comment above. */
1561                 if (after(end_seq, tp->high_seq))
1562                         flag |= FLAG_DATA_LOST;
1563
1564                 /* Skip too early cached blocks */
1565                 while (tcp_sack_cache_ok(tp, cache) &&
1566                        !before(start_seq, cache->end_seq))
1567                         cache++;
1568
1569                 /* Can skip some work by looking recv_sack_cache? */
1570                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1571                     after(end_seq, cache->start_seq)) {
1572
1573                         /* Head todo? */
1574                         if (before(start_seq, cache->start_seq)) {
1575                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1576                                                        &fack_count);
1577                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1578                                                        start_seq,
1579                                                        cache->start_seq,
1580                                                        dup_sack, &fack_count,
1581                                                        &reord, &flag);
1582                         }
1583
1584                         /* Rest of the block already fully processed? */
1585                         if (!after(end_seq, cache->end_seq))
1586                                 goto advance_sp;
1587
1588                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1589                                                        cache->end_seq,
1590                                                        &fack_count, &reord,
1591                                                        &flag);
1592
1593                         /* ...tail remains todo... */
1594                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1595                                 /* ...but better entrypoint exists! */
1596                                 skb = tcp_highest_sack(sk);
1597                                 if (skb == NULL)
1598                                         break;
1599                                 fack_count = tp->fackets_out;
1600                                 cache++;
1601                                 goto walk;
1602                         }
1603
1604                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1605                                                &fack_count);
1606                         /* Check overlap against next cached too (past this one already) */
1607                         cache++;
1608                         continue;
1609                 }
1610
1611                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1612                         skb = tcp_highest_sack(sk);
1613                         if (skb == NULL)
1614                                 break;
1615                         fack_count = tp->fackets_out;
1616                 }
1617                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1618
1619 walk:
1620                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1621                                        dup_sack, &fack_count, &reord, &flag);
1622
1623 advance_sp:
1624                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1625                  * due to in-order walk
1626                  */
1627                 if (after(end_seq, tp->frto_highmark))
1628                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1629
1630                 i++;
1631         }
1632
1633         /* Clear the head of the cache sack blocks so we can skip it next time */
1634         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1635                 tp->recv_sack_cache[i].start_seq = 0;
1636                 tp->recv_sack_cache[i].end_seq = 0;
1637         }
1638         for (j = 0; j < used_sacks; j++)
1639                 tp->recv_sack_cache[i++] = sp[j];
1640
1641         tcp_mark_lost_retrans(sk);
1642
1643         tcp_verify_left_out(tp);
1644
1645         if ((reord < tp->fackets_out) &&
1646             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1647             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1648                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1649
1650 out:
1651
1652 #if FASTRETRANS_DEBUG > 0
1653         WARN_ON((int)tp->sacked_out < 0);
1654         WARN_ON((int)tp->lost_out < 0);
1655         WARN_ON((int)tp->retrans_out < 0);
1656         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1657 #endif
1658         return flag;
1659 }
1660
1661 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1662  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1663  */
1664 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1665 {
1666         u32 holes;
1667
1668         holes = max(tp->lost_out, 1U);
1669         holes = min(holes, tp->packets_out);
1670
1671         if ((tp->sacked_out + holes) > tp->packets_out) {
1672                 tp->sacked_out = tp->packets_out - holes;
1673                 return 1;
1674         }
1675         return 0;
1676 }
1677
1678 /* If we receive more dupacks than we expected counting segments
1679  * in assumption of absent reordering, interpret this as reordering.
1680  * The only another reason could be bug in receiver TCP.
1681  */
1682 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1683 {
1684         struct tcp_sock *tp = tcp_sk(sk);
1685         if (tcp_limit_reno_sacked(tp))
1686                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1687 }
1688
1689 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1690
1691 static void tcp_add_reno_sack(struct sock *sk)
1692 {
1693         struct tcp_sock *tp = tcp_sk(sk);
1694         tp->sacked_out++;
1695         tcp_check_reno_reordering(sk, 0);
1696         tcp_verify_left_out(tp);
1697 }
1698
1699 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1700
1701 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1702 {
1703         struct tcp_sock *tp = tcp_sk(sk);
1704
1705         if (acked > 0) {
1706                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1707                 if (acked - 1 >= tp->sacked_out)
1708                         tp->sacked_out = 0;
1709                 else
1710                         tp->sacked_out -= acked - 1;
1711         }
1712         tcp_check_reno_reordering(sk, acked);
1713         tcp_verify_left_out(tp);
1714 }
1715
1716 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1717 {
1718         tp->sacked_out = 0;
1719 }
1720
1721 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1722 {
1723         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1724 }
1725
1726 /* F-RTO can only be used if TCP has never retransmitted anything other than
1727  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1728  */
1729 int tcp_use_frto(struct sock *sk)
1730 {
1731         const struct tcp_sock *tp = tcp_sk(sk);
1732         const struct inet_connection_sock *icsk = inet_csk(sk);
1733         struct sk_buff *skb;
1734
1735         if (!sysctl_tcp_frto)
1736                 return 0;
1737
1738         /* MTU probe and F-RTO won't really play nicely along currently */
1739         if (icsk->icsk_mtup.probe_size)
1740                 return 0;
1741
1742         if (tcp_is_sackfrto(tp))
1743                 return 1;
1744
1745         /* Avoid expensive walking of rexmit queue if possible */
1746         if (tp->retrans_out > 1)
1747                 return 0;
1748
1749         skb = tcp_write_queue_head(sk);
1750         if (tcp_skb_is_last(sk, skb))
1751                 return 1;
1752         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1753         tcp_for_write_queue_from(skb, sk) {
1754                 if (skb == tcp_send_head(sk))
1755                         break;
1756                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1757                         return 0;
1758                 /* Short-circuit when first non-SACKed skb has been checked */
1759                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1760                         break;
1761         }
1762         return 1;
1763 }
1764
1765 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1766  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1767  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1768  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1769  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1770  * bits are handled if the Loss state is really to be entered (in
1771  * tcp_enter_frto_loss).
1772  *
1773  * Do like tcp_enter_loss() would; when RTO expires the second time it
1774  * does:
1775  *  "Reduce ssthresh if it has not yet been made inside this window."
1776  */
1777 void tcp_enter_frto(struct sock *sk)
1778 {
1779         const struct inet_connection_sock *icsk = inet_csk(sk);
1780         struct tcp_sock *tp = tcp_sk(sk);
1781         struct sk_buff *skb;
1782
1783         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1784             tp->snd_una == tp->high_seq ||
1785             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1786              !icsk->icsk_retransmits)) {
1787                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1788                 /* Our state is too optimistic in ssthresh() call because cwnd
1789                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1790                  * recovery has not yet completed. Pattern would be this: RTO,
1791                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1792                  * up here twice).
1793                  * RFC4138 should be more specific on what to do, even though
1794                  * RTO is quite unlikely to occur after the first Cumulative ACK
1795                  * due to back-off and complexity of triggering events ...
1796                  */
1797                 if (tp->frto_counter) {
1798                         u32 stored_cwnd;
1799                         stored_cwnd = tp->snd_cwnd;
1800                         tp->snd_cwnd = 2;
1801                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1802                         tp->snd_cwnd = stored_cwnd;
1803                 } else {
1804                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1805                 }
1806                 /* ... in theory, cong.control module could do "any tricks" in
1807                  * ssthresh(), which means that ca_state, lost bits and lost_out
1808                  * counter would have to be faked before the call occurs. We
1809                  * consider that too expensive, unlikely and hacky, so modules
1810                  * using these in ssthresh() must deal these incompatibility
1811                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1812                  */
1813                 tcp_ca_event(sk, CA_EVENT_FRTO);
1814         }
1815
1816         tp->undo_marker = tp->snd_una;
1817         tp->undo_retrans = 0;
1818
1819         skb = tcp_write_queue_head(sk);
1820         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1821                 tp->undo_marker = 0;
1822         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1823                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824                 tp->retrans_out -= tcp_skb_pcount(skb);
1825         }
1826         tcp_verify_left_out(tp);
1827
1828         /* Too bad if TCP was application limited */
1829         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1830
1831         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1832          * The last condition is necessary at least in tp->frto_counter case.
1833          */
1834         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1835             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1836             after(tp->high_seq, tp->snd_una)) {
1837                 tp->frto_highmark = tp->high_seq;
1838         } else {
1839                 tp->frto_highmark = tp->snd_nxt;
1840         }
1841         tcp_set_ca_state(sk, TCP_CA_Disorder);
1842         tp->high_seq = tp->snd_nxt;
1843         tp->frto_counter = 1;
1844 }
1845
1846 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1847  * which indicates that we should follow the traditional RTO recovery,
1848  * i.e. mark everything lost and do go-back-N retransmission.
1849  */
1850 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1851 {
1852         struct tcp_sock *tp = tcp_sk(sk);
1853         struct sk_buff *skb;
1854
1855         tp->lost_out = 0;
1856         tp->retrans_out = 0;
1857         if (tcp_is_reno(tp))
1858                 tcp_reset_reno_sack(tp);
1859
1860         tcp_for_write_queue(skb, sk) {
1861                 if (skb == tcp_send_head(sk))
1862                         break;
1863
1864                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1865                 /*
1866                  * Count the retransmission made on RTO correctly (only when
1867                  * waiting for the first ACK and did not get it)...
1868                  */
1869                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1870                         /* For some reason this R-bit might get cleared? */
1871                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1872                                 tp->retrans_out += tcp_skb_pcount(skb);
1873                         /* ...enter this if branch just for the first segment */
1874                         flag |= FLAG_DATA_ACKED;
1875                 } else {
1876                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1877                                 tp->undo_marker = 0;
1878                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1879                 }
1880
1881                 /* Marking forward transmissions that were made after RTO lost
1882                  * can cause unnecessary retransmissions in some scenarios,
1883                  * SACK blocks will mitigate that in some but not in all cases.
1884                  * We used to not mark them but it was causing break-ups with
1885                  * receivers that do only in-order receival.
1886                  *
1887                  * TODO: we could detect presence of such receiver and select
1888                  * different behavior per flow.
1889                  */
1890                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1891                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1892                         tp->lost_out += tcp_skb_pcount(skb);
1893                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1894                 }
1895         }
1896         tcp_verify_left_out(tp);
1897
1898         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1899         tp->snd_cwnd_cnt = 0;
1900         tp->snd_cwnd_stamp = tcp_time_stamp;
1901         tp->frto_counter = 0;
1902         tp->bytes_acked = 0;
1903
1904         tp->reordering = min_t(unsigned int, tp->reordering,
1905                                sysctl_tcp_reordering);
1906         tcp_set_ca_state(sk, TCP_CA_Loss);
1907         tp->high_seq = tp->snd_nxt;
1908         TCP_ECN_queue_cwr(tp);
1909
1910         tcp_clear_all_retrans_hints(tp);
1911 }
1912
1913 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1914 {
1915         tp->retrans_out = 0;
1916         tp->lost_out = 0;
1917
1918         tp->undo_marker = 0;
1919         tp->undo_retrans = 0;
1920 }
1921
1922 void tcp_clear_retrans(struct tcp_sock *tp)
1923 {
1924         tcp_clear_retrans_partial(tp);
1925
1926         tp->fackets_out = 0;
1927         tp->sacked_out = 0;
1928 }
1929
1930 /* Enter Loss state. If "how" is not zero, forget all SACK information
1931  * and reset tags completely, otherwise preserve SACKs. If receiver
1932  * dropped its ofo queue, we will know this due to reneging detection.
1933  */
1934 void tcp_enter_loss(struct sock *sk, int how)
1935 {
1936         const struct inet_connection_sock *icsk = inet_csk(sk);
1937         struct tcp_sock *tp = tcp_sk(sk);
1938         struct sk_buff *skb;
1939
1940         /* Reduce ssthresh if it has not yet been made inside this window. */
1941         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1942             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1943                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1944                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1945                 tcp_ca_event(sk, CA_EVENT_LOSS);
1946         }
1947         tp->snd_cwnd       = 1;
1948         tp->snd_cwnd_cnt   = 0;
1949         tp->snd_cwnd_stamp = tcp_time_stamp;
1950
1951         tp->bytes_acked = 0;
1952         tcp_clear_retrans_partial(tp);
1953
1954         if (tcp_is_reno(tp))
1955                 tcp_reset_reno_sack(tp);
1956
1957         if (!how) {
1958                 /* Push undo marker, if it was plain RTO and nothing
1959                  * was retransmitted. */
1960                 tp->undo_marker = tp->snd_una;
1961         } else {
1962                 tp->sacked_out = 0;
1963                 tp->fackets_out = 0;
1964         }
1965         tcp_clear_all_retrans_hints(tp);
1966
1967         tcp_for_write_queue(skb, sk) {
1968                 if (skb == tcp_send_head(sk))
1969                         break;
1970
1971                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1972                         tp->undo_marker = 0;
1973                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1974                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1975                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1976                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1977                         tp->lost_out += tcp_skb_pcount(skb);
1978                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1979                 }
1980         }
1981         tcp_verify_left_out(tp);
1982
1983         tp->reordering = min_t(unsigned int, tp->reordering,
1984                                sysctl_tcp_reordering);
1985         tcp_set_ca_state(sk, TCP_CA_Loss);
1986         tp->high_seq = tp->snd_nxt;
1987         TCP_ECN_queue_cwr(tp);
1988         /* Abort F-RTO algorithm if one is in progress */
1989         tp->frto_counter = 0;
1990 }
1991
1992 /* If ACK arrived pointing to a remembered SACK, it means that our
1993  * remembered SACKs do not reflect real state of receiver i.e.
1994  * receiver _host_ is heavily congested (or buggy).
1995  *
1996  * Do processing similar to RTO timeout.
1997  */
1998 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1999 {
2000         if (flag & FLAG_SACK_RENEGING) {
2001                 struct inet_connection_sock *icsk = inet_csk(sk);
2002                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2003
2004                 tcp_enter_loss(sk, 1);
2005                 icsk->icsk_retransmits++;
2006                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2007                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2008                                           icsk->icsk_rto, TCP_RTO_MAX);
2009                 return 1;
2010         }
2011         return 0;
2012 }
2013
2014 static inline int tcp_fackets_out(struct tcp_sock *tp)
2015 {
2016         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2017 }
2018
2019 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2020  * counter when SACK is enabled (without SACK, sacked_out is used for
2021  * that purpose).
2022  *
2023  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2024  * segments up to the highest received SACK block so far and holes in
2025  * between them.
2026  *
2027  * With reordering, holes may still be in flight, so RFC3517 recovery
2028  * uses pure sacked_out (total number of SACKed segments) even though
2029  * it violates the RFC that uses duplicate ACKs, often these are equal
2030  * but when e.g. out-of-window ACKs or packet duplication occurs,
2031  * they differ. Since neither occurs due to loss, TCP should really
2032  * ignore them.
2033  */
2034 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2035 {
2036         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2037 }
2038
2039 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2040 {
2041         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2042 }
2043
2044 static inline int tcp_head_timedout(struct sock *sk)
2045 {
2046         struct tcp_sock *tp = tcp_sk(sk);
2047
2048         return tp->packets_out &&
2049                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2050 }
2051
2052 /* Linux NewReno/SACK/FACK/ECN state machine.
2053  * --------------------------------------
2054  *
2055  * "Open"       Normal state, no dubious events, fast path.
2056  * "Disorder"   In all the respects it is "Open",
2057  *              but requires a bit more attention. It is entered when
2058  *              we see some SACKs or dupacks. It is split of "Open"
2059  *              mainly to move some processing from fast path to slow one.
2060  * "CWR"        CWND was reduced due to some Congestion Notification event.
2061  *              It can be ECN, ICMP source quench, local device congestion.
2062  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2063  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2064  *
2065  * tcp_fastretrans_alert() is entered:
2066  * - each incoming ACK, if state is not "Open"
2067  * - when arrived ACK is unusual, namely:
2068  *      * SACK
2069  *      * Duplicate ACK.
2070  *      * ECN ECE.
2071  *
2072  * Counting packets in flight is pretty simple.
2073  *
2074  *      in_flight = packets_out - left_out + retrans_out
2075  *
2076  *      packets_out is SND.NXT-SND.UNA counted in packets.
2077  *
2078  *      retrans_out is number of retransmitted segments.
2079  *
2080  *      left_out is number of segments left network, but not ACKed yet.
2081  *
2082  *              left_out = sacked_out + lost_out
2083  *
2084  *     sacked_out: Packets, which arrived to receiver out of order
2085  *                 and hence not ACKed. With SACKs this number is simply
2086  *                 amount of SACKed data. Even without SACKs
2087  *                 it is easy to give pretty reliable estimate of this number,
2088  *                 counting duplicate ACKs.
2089  *
2090  *       lost_out: Packets lost by network. TCP has no explicit
2091  *                 "loss notification" feedback from network (for now).
2092  *                 It means that this number can be only _guessed_.
2093  *                 Actually, it is the heuristics to predict lossage that
2094  *                 distinguishes different algorithms.
2095  *
2096  *      F.e. after RTO, when all the queue is considered as lost,
2097  *      lost_out = packets_out and in_flight = retrans_out.
2098  *
2099  *              Essentially, we have now two algorithms counting
2100  *              lost packets.
2101  *
2102  *              FACK: It is the simplest heuristics. As soon as we decided
2103  *              that something is lost, we decide that _all_ not SACKed
2104  *              packets until the most forward SACK are lost. I.e.
2105  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2106  *              It is absolutely correct estimate, if network does not reorder
2107  *              packets. And it loses any connection to reality when reordering
2108  *              takes place. We use FACK by default until reordering
2109  *              is suspected on the path to this destination.
2110  *
2111  *              NewReno: when Recovery is entered, we assume that one segment
2112  *              is lost (classic Reno). While we are in Recovery and
2113  *              a partial ACK arrives, we assume that one more packet
2114  *              is lost (NewReno). This heuristics are the same in NewReno
2115  *              and SACK.
2116  *
2117  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2118  *  deflation etc. CWND is real congestion window, never inflated, changes
2119  *  only according to classic VJ rules.
2120  *
2121  * Really tricky (and requiring careful tuning) part of algorithm
2122  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2123  * The first determines the moment _when_ we should reduce CWND and,
2124  * hence, slow down forward transmission. In fact, it determines the moment
2125  * when we decide that hole is caused by loss, rather than by a reorder.
2126  *
2127  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2128  * holes, caused by lost packets.
2129  *
2130  * And the most logically complicated part of algorithm is undo
2131  * heuristics. We detect false retransmits due to both too early
2132  * fast retransmit (reordering) and underestimated RTO, analyzing
2133  * timestamps and D-SACKs. When we detect that some segments were
2134  * retransmitted by mistake and CWND reduction was wrong, we undo
2135  * window reduction and abort recovery phase. This logic is hidden
2136  * inside several functions named tcp_try_undo_<something>.
2137  */
2138
2139 /* This function decides, when we should leave Disordered state
2140  * and enter Recovery phase, reducing congestion window.
2141  *
2142  * Main question: may we further continue forward transmission
2143  * with the same cwnd?
2144  */
2145 static int tcp_time_to_recover(struct sock *sk)
2146 {
2147         struct tcp_sock *tp = tcp_sk(sk);
2148         __u32 packets_out;
2149
2150         /* Do not perform any recovery during F-RTO algorithm */
2151         if (tp->frto_counter)
2152                 return 0;
2153
2154         /* Trick#1: The loss is proven. */
2155         if (tp->lost_out)
2156                 return 1;
2157
2158         /* Not-A-Trick#2 : Classic rule... */
2159         if (tcp_dupack_heurestics(tp) > tp->reordering)
2160                 return 1;
2161
2162         /* Trick#3 : when we use RFC2988 timer restart, fast
2163          * retransmit can be triggered by timeout of queue head.
2164          */
2165         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2166                 return 1;
2167
2168         /* Trick#4: It is still not OK... But will it be useful to delay
2169          * recovery more?
2170          */
2171         packets_out = tp->packets_out;
2172         if (packets_out <= tp->reordering &&
2173             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2174             !tcp_may_send_now(sk)) {
2175                 /* We have nothing to send. This connection is limited
2176                  * either by receiver window or by application.
2177                  */
2178                 return 1;
2179         }
2180
2181         return 0;
2182 }
2183
2184 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2185  * is against sacked "cnt", otherwise it's against facked "cnt"
2186  */
2187 static void tcp_mark_head_lost(struct sock *sk, int packets)
2188 {
2189         struct tcp_sock *tp = tcp_sk(sk);
2190         struct sk_buff *skb;
2191         int cnt, oldcnt;
2192         int err;
2193         unsigned int mss;
2194
2195         WARN_ON(packets > tp->packets_out);
2196         if (tp->lost_skb_hint) {
2197                 skb = tp->lost_skb_hint;
2198                 cnt = tp->lost_cnt_hint;
2199         } else {
2200                 skb = tcp_write_queue_head(sk);
2201                 cnt = 0;
2202         }
2203
2204         tcp_for_write_queue_from(skb, sk) {
2205                 if (skb == tcp_send_head(sk))
2206                         break;
2207                 /* TODO: do this better */
2208                 /* this is not the most efficient way to do this... */
2209                 tp->lost_skb_hint = skb;
2210                 tp->lost_cnt_hint = cnt;
2211
2212                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2213                         break;
2214
2215                 oldcnt = cnt;
2216                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2217                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2218                         cnt += tcp_skb_pcount(skb);
2219
2220                 if (cnt > packets) {
2221                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2222                                 break;
2223
2224                         mss = skb_shinfo(skb)->gso_size;
2225                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2226                         if (err < 0)
2227                                 break;
2228                         cnt = packets;
2229                 }
2230
2231                 tcp_skb_mark_lost(tp, skb);
2232         }
2233         tcp_verify_left_out(tp);
2234 }
2235
2236 /* Account newly detected lost packet(s) */
2237
2238 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2239 {
2240         struct tcp_sock *tp = tcp_sk(sk);
2241
2242         if (tcp_is_reno(tp)) {
2243                 tcp_mark_head_lost(sk, 1);
2244         } else if (tcp_is_fack(tp)) {
2245                 int lost = tp->fackets_out - tp->reordering;
2246                 if (lost <= 0)
2247                         lost = 1;
2248                 tcp_mark_head_lost(sk, lost);
2249         } else {
2250                 int sacked_upto = tp->sacked_out - tp->reordering;
2251                 if (sacked_upto < fast_rexmit)
2252                         sacked_upto = fast_rexmit;
2253                 tcp_mark_head_lost(sk, sacked_upto);
2254         }
2255
2256         /* New heuristics: it is possible only after we switched
2257          * to restart timer each time when something is ACKed.
2258          * Hence, we can detect timed out packets during fast
2259          * retransmit without falling to slow start.
2260          */
2261         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2262                 struct sk_buff *skb;
2263
2264                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2265                         : tcp_write_queue_head(sk);
2266
2267                 tcp_for_write_queue_from(skb, sk) {
2268                         if (skb == tcp_send_head(sk))
2269                                 break;
2270                         if (!tcp_skb_timedout(sk, skb))
2271                                 break;
2272
2273                         tcp_skb_mark_lost(tp, skb);
2274                 }
2275
2276                 tp->scoreboard_skb_hint = skb;
2277
2278                 tcp_verify_left_out(tp);
2279         }
2280 }
2281
2282 /* CWND moderation, preventing bursts due to too big ACKs
2283  * in dubious situations.
2284  */
2285 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2286 {
2287         tp->snd_cwnd = min(tp->snd_cwnd,
2288                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2289         tp->snd_cwnd_stamp = tcp_time_stamp;
2290 }
2291
2292 /* Lower bound on congestion window is slow start threshold
2293  * unless congestion avoidance choice decides to overide it.
2294  */
2295 static inline u32 tcp_cwnd_min(const struct sock *sk)
2296 {
2297         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2298
2299         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2300 }
2301
2302 /* Decrease cwnd each second ack. */
2303 static void tcp_cwnd_down(struct sock *sk, int flag)
2304 {
2305         struct tcp_sock *tp = tcp_sk(sk);
2306         int decr = tp->snd_cwnd_cnt + 1;
2307
2308         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2309             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2310                 tp->snd_cwnd_cnt = decr & 1;
2311                 decr >>= 1;
2312
2313                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2314                         tp->snd_cwnd -= decr;
2315
2316                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2317                 tp->snd_cwnd_stamp = tcp_time_stamp;
2318         }
2319 }
2320
2321 /* Nothing was retransmitted or returned timestamp is less
2322  * than timestamp of the first retransmission.
2323  */
2324 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2325 {
2326         return !tp->retrans_stamp ||
2327                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2328                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2329 }
2330
2331 /* Undo procedures. */
2332
2333 #if FASTRETRANS_DEBUG > 1
2334 static void DBGUNDO(struct sock *sk, const char *msg)
2335 {
2336         struct tcp_sock *tp = tcp_sk(sk);
2337         struct inet_sock *inet = inet_sk(sk);
2338
2339         if (sk->sk_family == AF_INET) {
2340                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2341                        msg,
2342                        &inet->daddr, ntohs(inet->dport),
2343                        tp->snd_cwnd, tcp_left_out(tp),
2344                        tp->snd_ssthresh, tp->prior_ssthresh,
2345                        tp->packets_out);
2346         }
2347 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2348         else if (sk->sk_family == AF_INET6) {
2349                 struct ipv6_pinfo *np = inet6_sk(sk);
2350                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2351                        msg,
2352                        &np->daddr, ntohs(inet->dport),
2353                        tp->snd_cwnd, tcp_left_out(tp),
2354                        tp->snd_ssthresh, tp->prior_ssthresh,
2355                        tp->packets_out);
2356         }
2357 #endif
2358 }
2359 #else
2360 #define DBGUNDO(x...) do { } while (0)
2361 #endif
2362
2363 static void tcp_undo_cwr(struct sock *sk, const int undo)
2364 {
2365         struct tcp_sock *tp = tcp_sk(sk);
2366
2367         if (tp->prior_ssthresh) {
2368                 const struct inet_connection_sock *icsk = inet_csk(sk);
2369
2370                 if (icsk->icsk_ca_ops->undo_cwnd)
2371                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2372                 else
2373                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2374
2375                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2376                         tp->snd_ssthresh = tp->prior_ssthresh;
2377                         TCP_ECN_withdraw_cwr(tp);
2378                 }
2379         } else {
2380                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2381         }
2382         tcp_moderate_cwnd(tp);
2383         tp->snd_cwnd_stamp = tcp_time_stamp;
2384 }
2385
2386 static inline int tcp_may_undo(struct tcp_sock *tp)
2387 {
2388         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2389 }
2390
2391 /* People celebrate: "We love our President!" */
2392 static int tcp_try_undo_recovery(struct sock *sk)
2393 {
2394         struct tcp_sock *tp = tcp_sk(sk);
2395
2396         if (tcp_may_undo(tp)) {
2397                 int mib_idx;
2398
2399                 /* Happy end! We did not retransmit anything
2400                  * or our original transmission succeeded.
2401                  */
2402                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2403                 tcp_undo_cwr(sk, 1);
2404                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2405                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2406                 else
2407                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2408
2409                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2410                 tp->undo_marker = 0;
2411         }
2412         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2413                 /* Hold old state until something *above* high_seq
2414                  * is ACKed. For Reno it is MUST to prevent false
2415                  * fast retransmits (RFC2582). SACK TCP is safe. */
2416                 tcp_moderate_cwnd(tp);
2417                 return 1;
2418         }
2419         tcp_set_ca_state(sk, TCP_CA_Open);
2420         return 0;
2421 }
2422
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static void tcp_try_undo_dsack(struct sock *sk)
2425 {
2426         struct tcp_sock *tp = tcp_sk(sk);
2427
2428         if (tp->undo_marker && !tp->undo_retrans) {
2429                 DBGUNDO(sk, "D-SACK");
2430                 tcp_undo_cwr(sk, 1);
2431                 tp->undo_marker = 0;
2432                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2433         }
2434 }
2435
2436 /* Undo during fast recovery after partial ACK. */
2437
2438 static int tcp_try_undo_partial(struct sock *sk, int acked)
2439 {
2440         struct tcp_sock *tp = tcp_sk(sk);
2441         /* Partial ACK arrived. Force Hoe's retransmit. */
2442         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2443
2444         if (tcp_may_undo(tp)) {
2445                 /* Plain luck! Hole if filled with delayed
2446                  * packet, rather than with a retransmit.
2447                  */
2448                 if (tp->retrans_out == 0)
2449                         tp->retrans_stamp = 0;
2450
2451                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2452
2453                 DBGUNDO(sk, "Hoe");
2454                 tcp_undo_cwr(sk, 0);
2455                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2456
2457                 /* So... Do not make Hoe's retransmit yet.
2458                  * If the first packet was delayed, the rest
2459                  * ones are most probably delayed as well.
2460                  */
2461                 failed = 0;
2462         }
2463         return failed;
2464 }
2465
2466 /* Undo during loss recovery after partial ACK. */
2467 static int tcp_try_undo_loss(struct sock *sk)
2468 {
2469         struct tcp_sock *tp = tcp_sk(sk);
2470
2471         if (tcp_may_undo(tp)) {
2472                 struct sk_buff *skb;
2473                 tcp_for_write_queue(skb, sk) {
2474                         if (skb == tcp_send_head(sk))
2475                                 break;
2476                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477                 }
2478
2479                 tcp_clear_all_retrans_hints(tp);
2480
2481                 DBGUNDO(sk, "partial loss");
2482                 tp->lost_out = 0;
2483                 tcp_undo_cwr(sk, 1);
2484                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2485                 inet_csk(sk)->icsk_retransmits = 0;
2486                 tp->undo_marker = 0;
2487                 if (tcp_is_sack(tp))
2488                         tcp_set_ca_state(sk, TCP_CA_Open);
2489                 return 1;
2490         }
2491         return 0;
2492 }
2493
2494 static inline void tcp_complete_cwr(struct sock *sk)
2495 {
2496         struct tcp_sock *tp = tcp_sk(sk);
2497         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2498         tp->snd_cwnd_stamp = tcp_time_stamp;
2499         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2500 }
2501
2502 static void tcp_try_keep_open(struct sock *sk)
2503 {
2504         struct tcp_sock *tp = tcp_sk(sk);
2505         int state = TCP_CA_Open;
2506
2507         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2508                 state = TCP_CA_Disorder;
2509
2510         if (inet_csk(sk)->icsk_ca_state != state) {
2511                 tcp_set_ca_state(sk, state);
2512                 tp->high_seq = tp->snd_nxt;
2513         }
2514 }
2515
2516 static void tcp_try_to_open(struct sock *sk, int flag)
2517 {
2518         struct tcp_sock *tp = tcp_sk(sk);
2519
2520         tcp_verify_left_out(tp);
2521
2522         if (!tp->frto_counter && tp->retrans_out == 0)
2523                 tp->retrans_stamp = 0;
2524
2525         if (flag & FLAG_ECE)
2526                 tcp_enter_cwr(sk, 1);
2527
2528         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2529                 tcp_try_keep_open(sk);
2530                 tcp_moderate_cwnd(tp);
2531         } else {
2532                 tcp_cwnd_down(sk, flag);
2533         }
2534 }
2535
2536 static void tcp_mtup_probe_failed(struct sock *sk)
2537 {
2538         struct inet_connection_sock *icsk = inet_csk(sk);
2539
2540         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2541         icsk->icsk_mtup.probe_size = 0;
2542 }
2543
2544 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2545 {
2546         struct tcp_sock *tp = tcp_sk(sk);
2547         struct inet_connection_sock *icsk = inet_csk(sk);
2548
2549         /* FIXME: breaks with very large cwnd */
2550         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2551         tp->snd_cwnd = tp->snd_cwnd *
2552                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2553                        icsk->icsk_mtup.probe_size;
2554         tp->snd_cwnd_cnt = 0;
2555         tp->snd_cwnd_stamp = tcp_time_stamp;
2556         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2557
2558         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2559         icsk->icsk_mtup.probe_size = 0;
2560         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2561 }
2562
2563 /* Do a simple retransmit without using the backoff mechanisms in
2564  * tcp_timer. This is used for path mtu discovery.
2565  * The socket is already locked here.
2566  */
2567 void tcp_simple_retransmit(struct sock *sk)
2568 {
2569         const struct inet_connection_sock *icsk = inet_csk(sk);
2570         struct tcp_sock *tp = tcp_sk(sk);
2571         struct sk_buff *skb;
2572         unsigned int mss = tcp_current_mss(sk, 0);
2573         u32 prior_lost = tp->lost_out;
2574
2575         tcp_for_write_queue(skb, sk) {
2576                 if (skb == tcp_send_head(sk))
2577                         break;
2578                 if (skb->len > mss &&
2579                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2580                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2581                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2582                                 tp->retrans_out -= tcp_skb_pcount(skb);
2583                         }
2584                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2585                 }
2586         }
2587
2588         tcp_clear_retrans_hints_partial(tp);
2589
2590         if (prior_lost == tp->lost_out)
2591                 return;
2592
2593         if (tcp_is_reno(tp))
2594                 tcp_limit_reno_sacked(tp);
2595
2596         tcp_verify_left_out(tp);
2597
2598         /* Don't muck with the congestion window here.
2599          * Reason is that we do not increase amount of _data_
2600          * in network, but units changed and effective
2601          * cwnd/ssthresh really reduced now.
2602          */
2603         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2604                 tp->high_seq = tp->snd_nxt;
2605                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2606                 tp->prior_ssthresh = 0;
2607                 tp->undo_marker = 0;
2608                 tcp_set_ca_state(sk, TCP_CA_Loss);
2609         }
2610         tcp_xmit_retransmit_queue(sk);
2611 }
2612
2613 /* Process an event, which can update packets-in-flight not trivially.
2614  * Main goal of this function is to calculate new estimate for left_out,
2615  * taking into account both packets sitting in receiver's buffer and
2616  * packets lost by network.
2617  *
2618  * Besides that it does CWND reduction, when packet loss is detected
2619  * and changes state of machine.
2620  *
2621  * It does _not_ decide what to send, it is made in function
2622  * tcp_xmit_retransmit_queue().
2623  */
2624 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2625 {
2626         struct inet_connection_sock *icsk = inet_csk(sk);
2627         struct tcp_sock *tp = tcp_sk(sk);
2628         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2629         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2630                                     (tcp_fackets_out(tp) > tp->reordering));
2631         int fast_rexmit = 0, mib_idx;
2632
2633         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2634                 tp->sacked_out = 0;
2635         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2636                 tp->fackets_out = 0;
2637
2638         /* Now state machine starts.
2639          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2640         if (flag & FLAG_ECE)
2641                 tp->prior_ssthresh = 0;
2642
2643         /* B. In all the states check for reneging SACKs. */
2644         if (tcp_check_sack_reneging(sk, flag))
2645                 return;
2646
2647         /* C. Process data loss notification, provided it is valid. */
2648         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2649             before(tp->snd_una, tp->high_seq) &&
2650             icsk->icsk_ca_state != TCP_CA_Open &&
2651             tp->fackets_out > tp->reordering) {
2652                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2653                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2654         }
2655
2656         /* D. Check consistency of the current state. */
2657         tcp_verify_left_out(tp);
2658
2659         /* E. Check state exit conditions. State can be terminated
2660          *    when high_seq is ACKed. */
2661         if (icsk->icsk_ca_state == TCP_CA_Open) {
2662                 WARN_ON(tp->retrans_out != 0);
2663                 tp->retrans_stamp = 0;
2664         } else if (!before(tp->snd_una, tp->high_seq)) {
2665                 switch (icsk->icsk_ca_state) {
2666                 case TCP_CA_Loss:
2667                         icsk->icsk_retransmits = 0;
2668                         if (tcp_try_undo_recovery(sk))
2669                                 return;
2670                         break;
2671
2672                 case TCP_CA_CWR:
2673                         /* CWR is to be held something *above* high_seq
2674                          * is ACKed for CWR bit to reach receiver. */
2675                         if (tp->snd_una != tp->high_seq) {
2676                                 tcp_complete_cwr(sk);
2677                                 tcp_set_ca_state(sk, TCP_CA_Open);
2678                         }
2679                         break;
2680
2681                 case TCP_CA_Disorder:
2682                         tcp_try_undo_dsack(sk);
2683                         if (!tp->undo_marker ||
2684                             /* For SACK case do not Open to allow to undo
2685                              * catching for all duplicate ACKs. */
2686                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2687                                 tp->undo_marker = 0;
2688                                 tcp_set_ca_state(sk, TCP_CA_Open);
2689                         }
2690                         break;
2691
2692                 case TCP_CA_Recovery:
2693                         if (tcp_is_reno(tp))
2694                                 tcp_reset_reno_sack(tp);
2695                         if (tcp_try_undo_recovery(sk))
2696                                 return;
2697                         tcp_complete_cwr(sk);
2698                         break;
2699                 }
2700         }
2701
2702         /* F. Process state. */
2703         switch (icsk->icsk_ca_state) {
2704         case TCP_CA_Recovery:
2705                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2706                         if (tcp_is_reno(tp) && is_dupack)
2707                                 tcp_add_reno_sack(sk);
2708                 } else
2709                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2710                 break;
2711         case TCP_CA_Loss:
2712                 if (flag & FLAG_DATA_ACKED)
2713                         icsk->icsk_retransmits = 0;
2714                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2715                         tcp_reset_reno_sack(tp);
2716                 if (!tcp_try_undo_loss(sk)) {
2717                         tcp_moderate_cwnd(tp);
2718                         tcp_xmit_retransmit_queue(sk);
2719                         return;
2720                 }
2721                 if (icsk->icsk_ca_state != TCP_CA_Open)
2722                         return;
2723                 /* Loss is undone; fall through to processing in Open state. */
2724         default:
2725                 if (tcp_is_reno(tp)) {
2726                         if (flag & FLAG_SND_UNA_ADVANCED)
2727                                 tcp_reset_reno_sack(tp);
2728                         if (is_dupack)
2729                                 tcp_add_reno_sack(sk);
2730                 }
2731
2732                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2733                         tcp_try_undo_dsack(sk);
2734
2735                 if (!tcp_time_to_recover(sk)) {
2736                         tcp_try_to_open(sk, flag);
2737                         return;
2738                 }
2739
2740                 /* MTU probe failure: don't reduce cwnd */
2741                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2742                     icsk->icsk_mtup.probe_size &&
2743                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2744                         tcp_mtup_probe_failed(sk);
2745                         /* Restores the reduction we did in tcp_mtup_probe() */
2746                         tp->snd_cwnd++;
2747                         tcp_simple_retransmit(sk);
2748                         return;
2749                 }
2750
2751                 /* Otherwise enter Recovery state */
2752
2753                 if (tcp_is_reno(tp))
2754                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2755                 else
2756                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2757
2758                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2759
2760                 tp->high_seq = tp->snd_nxt;
2761                 tp->prior_ssthresh = 0;
2762                 tp->undo_marker = tp->snd_una;
2763                 tp->undo_retrans = tp->retrans_out;
2764
2765                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2766                         if (!(flag & FLAG_ECE))
2767                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2768                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2769                         TCP_ECN_queue_cwr(tp);
2770                 }
2771
2772                 tp->bytes_acked = 0;
2773                 tp->snd_cwnd_cnt = 0;
2774                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2775                 fast_rexmit = 1;
2776         }
2777
2778         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2779                 tcp_update_scoreboard(sk, fast_rexmit);
2780         tcp_cwnd_down(sk, flag);
2781         tcp_xmit_retransmit_queue(sk);
2782 }
2783
2784 /* Read draft-ietf-tcplw-high-performance before mucking
2785  * with this code. (Supersedes RFC1323)
2786  */
2787 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2788 {
2789         /* RTTM Rule: A TSecr value received in a segment is used to
2790          * update the averaged RTT measurement only if the segment
2791          * acknowledges some new data, i.e., only if it advances the
2792          * left edge of the send window.
2793          *
2794          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2795          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2796          *
2797          * Changed: reset backoff as soon as we see the first valid sample.
2798          * If we do not, we get strongly overestimated rto. With timestamps
2799          * samples are accepted even from very old segments: f.e., when rtt=1
2800          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2801          * answer arrives rto becomes 120 seconds! If at least one of segments
2802          * in window is lost... Voila.                          --ANK (010210)
2803          */
2804         struct tcp_sock *tp = tcp_sk(sk);
2805         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2806         tcp_rtt_estimator(sk, seq_rtt);
2807         tcp_set_rto(sk);
2808         inet_csk(sk)->icsk_backoff = 0;
2809         tcp_bound_rto(sk);
2810 }
2811
2812 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2813 {
2814         /* We don't have a timestamp. Can only use
2815          * packets that are not retransmitted to determine
2816          * rtt estimates. Also, we must not reset the
2817          * backoff for rto until we get a non-retransmitted
2818          * packet. This allows us to deal with a situation
2819          * where the network delay has increased suddenly.
2820          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2821          */
2822
2823         if (flag & FLAG_RETRANS_DATA_ACKED)
2824                 return;
2825
2826         tcp_rtt_estimator(sk, seq_rtt);
2827         tcp_set_rto(sk);
2828         inet_csk(sk)->icsk_backoff = 0;
2829         tcp_bound_rto(sk);
2830 }
2831
2832 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2833                                       const s32 seq_rtt)
2834 {
2835         const struct tcp_sock *tp = tcp_sk(sk);
2836         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2837         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2838                 tcp_ack_saw_tstamp(sk, flag);
2839         else if (seq_rtt >= 0)
2840                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2841 }
2842
2843 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2844 {
2845         const struct inet_connection_sock *icsk = inet_csk(sk);
2846         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2847         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2848 }
2849
2850 /* Restart timer after forward progress on connection.
2851  * RFC2988 recommends to restart timer to now+rto.
2852  */
2853 static void tcp_rearm_rto(struct sock *sk)
2854 {
2855         struct tcp_sock *tp = tcp_sk(sk);
2856
2857         if (!tp->packets_out) {
2858                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2859         } else {
2860                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2861                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2862         }
2863 }
2864
2865 /* If we get here, the whole TSO packet has not been acked. */
2866 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2867 {
2868         struct tcp_sock *tp = tcp_sk(sk);
2869         u32 packets_acked;
2870
2871         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2872
2873         packets_acked = tcp_skb_pcount(skb);
2874         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2875                 return 0;
2876         packets_acked -= tcp_skb_pcount(skb);
2877
2878         if (packets_acked) {
2879                 BUG_ON(tcp_skb_pcount(skb) == 0);
2880                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2881         }
2882
2883         return packets_acked;
2884 }
2885
2886 /* Remove acknowledged frames from the retransmission queue. If our packet
2887  * is before the ack sequence we can discard it as it's confirmed to have
2888  * arrived at the other end.
2889  */
2890 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2891                                u32 prior_snd_una)
2892 {
2893         struct tcp_sock *tp = tcp_sk(sk);
2894         const struct inet_connection_sock *icsk = inet_csk(sk);
2895         struct sk_buff *skb;
2896         u32 now = tcp_time_stamp;
2897         int fully_acked = 1;
2898         int flag = 0;
2899         u32 pkts_acked = 0;
2900         u32 reord = tp->packets_out;
2901         u32 prior_sacked = tp->sacked_out;
2902         s32 seq_rtt = -1;
2903         s32 ca_seq_rtt = -1;
2904         ktime_t last_ackt = net_invalid_timestamp();
2905
2906         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2907                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2908                 u32 end_seq;
2909                 u32 acked_pcount;
2910                 u8 sacked = scb->sacked;
2911
2912                 /* Determine how many packets and what bytes were acked, tso and else */
2913                 if (after(scb->end_seq, tp->snd_una)) {
2914                         if (tcp_skb_pcount(skb) == 1 ||
2915                             !after(tp->snd_una, scb->seq))
2916                                 break;
2917
2918                         acked_pcount = tcp_tso_acked(sk, skb);
2919                         if (!acked_pcount)
2920                                 break;
2921
2922                         fully_acked = 0;
2923                         end_seq = tp->snd_una;
2924                 } else {
2925                         acked_pcount = tcp_skb_pcount(skb);
2926                         end_seq = scb->end_seq;
2927                 }
2928
2929                 /* MTU probing checks */
2930                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2931                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2932                         tcp_mtup_probe_success(sk, skb);
2933                 }
2934
2935                 if (sacked & TCPCB_RETRANS) {
2936                         if (sacked & TCPCB_SACKED_RETRANS)
2937                                 tp->retrans_out -= acked_pcount;
2938                         flag |= FLAG_RETRANS_DATA_ACKED;
2939                         ca_seq_rtt = -1;
2940                         seq_rtt = -1;
2941                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2942                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2943                 } else {
2944                         ca_seq_rtt = now - scb->when;
2945                         last_ackt = skb->tstamp;
2946                         if (seq_rtt < 0) {
2947                                 seq_rtt = ca_seq_rtt;
2948                         }
2949                         if (!(sacked & TCPCB_SACKED_ACKED))
2950                                 reord = min(pkts_acked, reord);
2951                 }
2952
2953                 if (sacked & TCPCB_SACKED_ACKED)
2954                         tp->sacked_out -= acked_pcount;
2955                 if (sacked & TCPCB_LOST)
2956                         tp->lost_out -= acked_pcount;
2957
2958                 tp->packets_out -= acked_pcount;
2959                 pkts_acked += acked_pcount;
2960
2961                 /* Initial outgoing SYN's get put onto the write_queue
2962                  * just like anything else we transmit.  It is not
2963                  * true data, and if we misinform our callers that
2964                  * this ACK acks real data, we will erroneously exit
2965                  * connection startup slow start one packet too
2966                  * quickly.  This is severely frowned upon behavior.
2967                  */
2968                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2969                         flag |= FLAG_DATA_ACKED;
2970                 } else {
2971                         flag |= FLAG_SYN_ACKED;
2972                         tp->retrans_stamp = 0;
2973                 }
2974
2975                 if (!fully_acked)
2976                         break;
2977
2978                 tcp_unlink_write_queue(skb, sk);
2979                 sk_wmem_free_skb(sk, skb);
2980                 tp->scoreboard_skb_hint = NULL;
2981                 if (skb == tp->retransmit_skb_hint)
2982                         tp->retransmit_skb_hint = NULL;
2983                 if (skb == tp->lost_skb_hint)
2984                         tp->lost_skb_hint = NULL;
2985         }
2986
2987         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
2988                 tp->snd_up = tp->snd_una;
2989
2990         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2991                 flag |= FLAG_SACK_RENEGING;
2992
2993         if (flag & FLAG_ACKED) {
2994                 const struct tcp_congestion_ops *ca_ops
2995                         = inet_csk(sk)->icsk_ca_ops;
2996
2997                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2998                 tcp_rearm_rto(sk);
2999
3000                 if (tcp_is_reno(tp)) {
3001                         tcp_remove_reno_sacks(sk, pkts_acked);
3002                 } else {
3003                         /* Non-retransmitted hole got filled? That's reordering */
3004                         if (reord < prior_fackets)
3005                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3006
3007                         /* No need to care for underflows here because
3008                          * the lost_skb_hint gets NULLed if we're past it
3009                          * (or something non-trivial happened)
3010                          */
3011                         if (tcp_is_fack(tp))
3012                                 tp->lost_cnt_hint -= pkts_acked;
3013                         else
3014                                 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3015                 }
3016
3017                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3018
3019                 if (ca_ops->pkts_acked) {
3020                         s32 rtt_us = -1;
3021
3022                         /* Is the ACK triggering packet unambiguous? */
3023                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3024                                 /* High resolution needed and available? */
3025                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3026                                     !ktime_equal(last_ackt,
3027                                                  net_invalid_timestamp()))
3028                                         rtt_us = ktime_us_delta(ktime_get_real(),
3029                                                                 last_ackt);
3030                                 else if (ca_seq_rtt > 0)
3031                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3032                         }
3033
3034                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3035                 }
3036         }
3037
3038 #if FASTRETRANS_DEBUG > 0
3039         WARN_ON((int)tp->sacked_out < 0);
3040         WARN_ON((int)tp->lost_out < 0);
3041         WARN_ON((int)tp->retrans_out < 0);
3042         if (!tp->packets_out && tcp_is_sack(tp)) {
3043                 icsk = inet_csk(sk);
3044                 if (tp->lost_out) {
3045                         printk(KERN_DEBUG "Leak l=%u %d\n",
3046                                tp->lost_out, icsk->icsk_ca_state);
3047                         tp->lost_out = 0;
3048                 }
3049                 if (tp->sacked_out) {
3050                         printk(KERN_DEBUG "Leak s=%u %d\n",
3051                                tp->sacked_out, icsk->icsk_ca_state);
3052                         tp->sacked_out = 0;
3053                 }
3054                 if (tp->retrans_out) {
3055                         printk(KERN_DEBUG "Leak r=%u %d\n",
3056                                tp->retrans_out, icsk->icsk_ca_state);
3057                         tp->retrans_out = 0;
3058                 }
3059         }
3060 #endif
3061         return flag;
3062 }
3063
3064 static void tcp_ack_probe(struct sock *sk)
3065 {
3066         const struct tcp_sock *tp = tcp_sk(sk);
3067         struct inet_connection_sock *icsk = inet_csk(sk);
3068
3069         /* Was it a usable window open? */
3070
3071         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3072                 icsk->icsk_backoff = 0;
3073                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3074                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3075                  * This function is not for random using!
3076                  */
3077         } else {
3078                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3079                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3080                                           TCP_RTO_MAX);
3081         }
3082 }
3083
3084 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3085 {
3086         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3087                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3088 }
3089
3090 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3091 {
3092         const struct tcp_sock *tp = tcp_sk(sk);
3093         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3094                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3095 }
3096
3097 /* Check that window update is acceptable.
3098  * The function assumes that snd_una<=ack<=snd_next.
3099  */
3100 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3101                                         const u32 ack, const u32 ack_seq,
3102                                         const u32 nwin)
3103 {
3104         return (after(ack, tp->snd_una) ||
3105                 after(ack_seq, tp->snd_wl1) ||
3106                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3107 }
3108
3109 /* Update our send window.
3110  *
3111  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3112  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3113  */
3114 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3115                                  u32 ack_seq)
3116 {
3117         struct tcp_sock *tp = tcp_sk(sk);
3118         int flag = 0;
3119         u32 nwin = ntohs(tcp_hdr(skb)->window);
3120
3121         if (likely(!tcp_hdr(skb)->syn))
3122                 nwin <<= tp->rx_opt.snd_wscale;
3123
3124         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3125                 flag |= FLAG_WIN_UPDATE;
3126                 tcp_update_wl(tp, ack, ack_seq);
3127
3128                 if (tp->snd_wnd != nwin) {
3129                         tp->snd_wnd = nwin;
3130
3131                         /* Note, it is the only place, where
3132                          * fast path is recovered for sending TCP.
3133                          */
3134                         tp->pred_flags = 0;
3135                         tcp_fast_path_check(sk);
3136
3137                         if (nwin > tp->max_window) {
3138                                 tp->max_window = nwin;
3139                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3140                         }
3141                 }
3142         }
3143
3144         tp->snd_una = ack;
3145
3146         return flag;
3147 }
3148
3149 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3150  * continue in congestion avoidance.
3151  */
3152 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3153 {
3154         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3155         tp->snd_cwnd_cnt = 0;
3156         tp->bytes_acked = 0;
3157         TCP_ECN_queue_cwr(tp);
3158         tcp_moderate_cwnd(tp);
3159 }
3160
3161 /* A conservative spurious RTO response algorithm: reduce cwnd using
3162  * rate halving and continue in congestion avoidance.
3163  */
3164 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3165 {
3166         tcp_enter_cwr(sk, 0);
3167 }
3168
3169 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3170 {
3171         if (flag & FLAG_ECE)
3172                 tcp_ratehalving_spur_to_response(sk);
3173         else
3174                 tcp_undo_cwr(sk, 1);
3175 }
3176
3177 /* F-RTO spurious RTO detection algorithm (RFC4138)
3178  *
3179  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3180  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3181  * window (but not to or beyond highest sequence sent before RTO):
3182  *   On First ACK,  send two new segments out.
3183  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3184  *                  algorithm is not part of the F-RTO detection algorithm
3185  *                  given in RFC4138 but can be selected separately).
3186  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3187  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3188  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3189  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3190  *
3191  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3192  * original window even after we transmit two new data segments.
3193  *
3194  * SACK version:
3195  *   on first step, wait until first cumulative ACK arrives, then move to
3196  *   the second step. In second step, the next ACK decides.
3197  *
3198  * F-RTO is implemented (mainly) in four functions:
3199  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3200  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3201  *     called when tcp_use_frto() showed green light
3202  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3203  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3204  *     to prove that the RTO is indeed spurious. It transfers the control
3205  *     from F-RTO to the conventional RTO recovery
3206  */
3207 static int tcp_process_frto(struct sock *sk, int flag)
3208 {
3209         struct tcp_sock *tp = tcp_sk(sk);
3210
3211         tcp_verify_left_out(tp);
3212
3213         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3214         if (flag & FLAG_DATA_ACKED)
3215                 inet_csk(sk)->icsk_retransmits = 0;
3216
3217         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3218             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3219                 tp->undo_marker = 0;
3220
3221         if (!before(tp->snd_una, tp->frto_highmark)) {
3222                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3223                 return 1;
3224         }
3225
3226         if (!tcp_is_sackfrto(tp)) {
3227                 /* RFC4138 shortcoming in step 2; should also have case c):
3228                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3229                  * data, winupdate
3230                  */
3231                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3232                         return 1;
3233
3234                 if (!(flag & FLAG_DATA_ACKED)) {
3235                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3236                                             flag);
3237                         return 1;
3238                 }
3239         } else {
3240                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3241                         /* Prevent sending of new data. */
3242                         tp->snd_cwnd = min(tp->snd_cwnd,
3243                                            tcp_packets_in_flight(tp));
3244                         return 1;
3245                 }
3246
3247                 if ((tp->frto_counter >= 2) &&
3248                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3249                      ((flag & FLAG_DATA_SACKED) &&
3250                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3251                         /* RFC4138 shortcoming (see comment above) */
3252                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3253                             (flag & FLAG_NOT_DUP))
3254                                 return 1;
3255
3256                         tcp_enter_frto_loss(sk, 3, flag);
3257                         return 1;
3258                 }
3259         }
3260
3261         if (tp->frto_counter == 1) {
3262                 /* tcp_may_send_now needs to see updated state */
3263                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3264                 tp->frto_counter = 2;
3265
3266                 if (!tcp_may_send_now(sk))
3267                         tcp_enter_frto_loss(sk, 2, flag);
3268
3269                 return 1;
3270         } else {
3271                 switch (sysctl_tcp_frto_response) {
3272                 case 2:
3273                         tcp_undo_spur_to_response(sk, flag);
3274                         break;
3275                 case 1:
3276                         tcp_conservative_spur_to_response(tp);
3277                         break;
3278                 default:
3279                         tcp_ratehalving_spur_to_response(sk);
3280                         break;
3281                 }
3282                 tp->frto_counter = 0;
3283                 tp->undo_marker = 0;
3284                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3285         }
3286         return 0;
3287 }
3288
3289 /* This routine deals with incoming acks, but not outgoing ones. */
3290 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3291 {
3292         struct inet_connection_sock *icsk = inet_csk(sk);
3293         struct tcp_sock *tp = tcp_sk(sk);
3294         u32 prior_snd_una = tp->snd_una;
3295         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3296         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3297         u32 prior_in_flight;
3298         u32 prior_fackets;
3299         int prior_packets;
3300         int frto_cwnd = 0;
3301
3302         /* If the ack is newer than sent or older than previous acks
3303          * then we can probably ignore it.
3304          */
3305         if (after(ack, tp->snd_nxt))
3306                 goto uninteresting_ack;
3307
3308         if (before(ack, prior_snd_una))
3309                 goto old_ack;
3310
3311         if (after(ack, prior_snd_una))
3312                 flag |= FLAG_SND_UNA_ADVANCED;
3313
3314         if (sysctl_tcp_abc) {
3315                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3316                         tp->bytes_acked += ack - prior_snd_una;
3317                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3318                         /* we assume just one segment left network */
3319                         tp->bytes_acked += min(ack - prior_snd_una,
3320                                                tp->mss_cache);
3321         }
3322
3323         prior_fackets = tp->fackets_out;
3324         prior_in_flight = tcp_packets_in_flight(tp);
3325
3326         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3327                 /* Window is constant, pure forward advance.
3328                  * No more checks are required.
3329                  * Note, we use the fact that SND.UNA>=SND.WL2.
3330                  */
3331                 tcp_update_wl(tp, ack, ack_seq);
3332                 tp->snd_una = ack;
3333                 flag |= FLAG_WIN_UPDATE;
3334
3335                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3336
3337                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3338         } else {
3339                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3340                         flag |= FLAG_DATA;
3341                 else
3342                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3343
3344                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3345
3346                 if (TCP_SKB_CB(skb)->sacked)
3347                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3348
3349                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3350                         flag |= FLAG_ECE;
3351
3352                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3353         }
3354
3355         /* We passed data and got it acked, remove any soft error
3356          * log. Something worked...
3357          */
3358         sk->sk_err_soft = 0;
3359         icsk->icsk_probes_out = 0;
3360         tp->rcv_tstamp = tcp_time_stamp;
3361         prior_packets = tp->packets_out;
3362         if (!prior_packets)
3363                 goto no_queue;
3364
3365         /* See if we can take anything off of the retransmit queue. */
3366         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3367
3368         if (tp->frto_counter)
3369                 frto_cwnd = tcp_process_frto(sk, flag);
3370         /* Guarantee sacktag reordering detection against wrap-arounds */
3371         if (before(tp->frto_highmark, tp->snd_una))
3372                 tp->frto_highmark = 0;
3373
3374         if (tcp_ack_is_dubious(sk, flag)) {
3375                 /* Advance CWND, if state allows this. */
3376                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3377                     tcp_may_raise_cwnd(sk, flag))
3378                         tcp_cong_avoid(sk, ack, prior_in_flight);
3379                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3380                                       flag);
3381         } else {
3382                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3383                         tcp_cong_avoid(sk, ack, prior_in_flight);
3384         }
3385
3386         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3387                 dst_confirm(sk->sk_dst_cache);
3388
3389         return 1;
3390
3391 no_queue:
3392         /* If this ack opens up a zero window, clear backoff.  It was
3393          * being used to time the probes, and is probably far higher than
3394          * it needs to be for normal retransmission.
3395          */
3396         if (tcp_send_head(sk))
3397                 tcp_ack_probe(sk);
3398         return 1;
3399
3400 old_ack:
3401         if (TCP_SKB_CB(skb)->sacked) {
3402                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3403                 if (icsk->icsk_ca_state == TCP_CA_Open)
3404                         tcp_try_keep_open(sk);
3405         }
3406
3407 uninteresting_ack:
3408         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3409         return 0;
3410 }
3411
3412 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3413  * But, this can also be called on packets in the established flow when
3414  * the fast version below fails.
3415  */
3416 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3417                        int estab)
3418 {
3419         unsigned char *ptr;
3420         struct tcphdr *th = tcp_hdr(skb);
3421         int length = (th->doff * 4) - sizeof(struct tcphdr);
3422
3423         ptr = (unsigned char *)(th + 1);
3424         opt_rx->saw_tstamp = 0;
3425
3426         while (length > 0) {
3427                 int opcode = *ptr++;
3428                 int opsize;
3429
3430                 switch (opcode) {
3431                 case TCPOPT_EOL:
3432                         return;
3433                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3434                         length--;
3435                         continue;
3436                 default:
3437                         opsize = *ptr++;
3438                         if (opsize < 2) /* "silly options" */
3439                                 return;
3440                         if (opsize > length)
3441                                 return; /* don't parse partial options */
3442                         switch (opcode) {
3443                         case TCPOPT_MSS:
3444                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3445                                         u16 in_mss = get_unaligned_be16(ptr);
3446                                         if (in_mss) {
3447                                                 if (opt_rx->user_mss &&
3448                                                     opt_rx->user_mss < in_mss)
3449                                                         in_mss = opt_rx->user_mss;
3450                                                 opt_rx->mss_clamp = in_mss;
3451                                         }
3452                                 }
3453                                 break;
3454                         case TCPOPT_WINDOW:
3455                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3456                                     !estab && sysctl_tcp_window_scaling) {
3457                                         __u8 snd_wscale = *(__u8 *)ptr;
3458                                         opt_rx->wscale_ok = 1;
3459                                         if (snd_wscale > 14) {
3460                                                 if (net_ratelimit())
3461                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3462                                                                "scaling value %d >14 received.\n",
3463                                                                snd_wscale);
3464                                                 snd_wscale = 14;
3465                                         }
3466                                         opt_rx->snd_wscale = snd_wscale;
3467                                 }
3468                                 break;
3469                         case TCPOPT_TIMESTAMP:
3470                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3471                                     ((estab && opt_rx->tstamp_ok) ||
3472                                      (!estab && sysctl_tcp_timestamps))) {
3473                                         opt_rx->saw_tstamp = 1;
3474                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3475                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3476                                 }
3477                                 break;
3478                         case TCPOPT_SACK_PERM:
3479                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3480                                     !estab && sysctl_tcp_sack) {
3481                                         opt_rx->sack_ok = 1;
3482                                         tcp_sack_reset(opt_rx);
3483                                 }
3484                                 break;
3485
3486                         case TCPOPT_SACK:
3487                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3488                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3489                                    opt_rx->sack_ok) {
3490                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3491                                 }
3492                                 break;
3493 #ifdef CONFIG_TCP_MD5SIG
3494                         case TCPOPT_MD5SIG:
3495                                 /*
3496                                  * The MD5 Hash has already been
3497                                  * checked (see tcp_v{4,6}_do_rcv()).
3498                                  */
3499                                 break;
3500 #endif
3501                         }
3502
3503                         ptr += opsize-2;
3504                         length -= opsize;
3505                 }
3506         }
3507 }
3508
3509 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3510 {
3511         __be32 *ptr = (__be32 *)(th + 1);
3512
3513         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3514                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3515                 tp->rx_opt.saw_tstamp = 1;
3516                 ++ptr;
3517                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3518                 ++ptr;
3519                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3520                 return 1;
3521         }
3522         return 0;
3523 }
3524
3525 /* Fast parse options. This hopes to only see timestamps.
3526  * If it is wrong it falls back on tcp_parse_options().
3527  */
3528 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3529                                   struct tcp_sock *tp)
3530 {
3531         if (th->doff == sizeof(struct tcphdr) >> 2) {
3532                 tp->rx_opt.saw_tstamp = 0;
3533                 return 0;
3534         } else if (tp->rx_opt.tstamp_ok &&
3535                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3536                 if (tcp_parse_aligned_timestamp(tp, th))
3537                         return 1;
3538         }
3539         tcp_parse_options(skb, &tp->rx_opt, 1);
3540         return 1;
3541 }
3542
3543 #ifdef CONFIG_TCP_MD5SIG
3544 /*
3545  * Parse MD5 Signature option
3546  */
3547 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3548 {
3549         int length = (th->doff << 2) - sizeof (*th);
3550         u8 *ptr = (u8*)(th + 1);
3551
3552         /* If the TCP option is too short, we can short cut */
3553         if (length < TCPOLEN_MD5SIG)
3554                 return NULL;
3555
3556         while (length > 0) {
3557                 int opcode = *ptr++;
3558                 int opsize;
3559
3560                 switch(opcode) {
3561                 case TCPOPT_EOL:
3562                         return NULL;
3563                 case TCPOPT_NOP:
3564                         length--;
3565                         continue;
3566                 default:
3567                         opsize = *ptr++;
3568                         if (opsize < 2 || opsize > length)
3569                                 return NULL;
3570                         if (opcode == TCPOPT_MD5SIG)
3571                                 return ptr;
3572                 }
3573                 ptr += opsize - 2;
3574                 length -= opsize;
3575         }
3576         return NULL;
3577 }
3578 #endif
3579
3580 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3581 {
3582         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3583         tp->rx_opt.ts_recent_stamp = get_seconds();
3584 }
3585
3586 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3587 {
3588         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3589                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3590                  * extra check below makes sure this can only happen
3591                  * for pure ACK frames.  -DaveM
3592                  *
3593                  * Not only, also it occurs for expired timestamps.
3594                  */
3595
3596                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3597                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3598                         tcp_store_ts_recent(tp);
3599         }
3600 }
3601
3602 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3603  *
3604  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3605  * it can pass through stack. So, the following predicate verifies that
3606  * this segment is not used for anything but congestion avoidance or
3607  * fast retransmit. Moreover, we even are able to eliminate most of such
3608  * second order effects, if we apply some small "replay" window (~RTO)
3609  * to timestamp space.
3610  *
3611  * All these measures still do not guarantee that we reject wrapped ACKs
3612  * on networks with high bandwidth, when sequence space is recycled fastly,
3613  * but it guarantees that such events will be very rare and do not affect
3614  * connection seriously. This doesn't look nice, but alas, PAWS is really
3615  * buggy extension.
3616  *
3617  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3618  * states that events when retransmit arrives after original data are rare.
3619  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3620  * the biggest problem on large power networks even with minor reordering.
3621  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3622  * up to bandwidth of 18Gigabit/sec. 8) ]
3623  */
3624
3625 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3626 {
3627         struct tcp_sock *tp = tcp_sk(sk);
3628         struct tcphdr *th = tcp_hdr(skb);
3629         u32 seq = TCP_SKB_CB(skb)->seq;
3630         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3631
3632         return (/* 1. Pure ACK with correct sequence number. */
3633                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3634
3635                 /* 2. ... and duplicate ACK. */
3636                 ack == tp->snd_una &&
3637
3638                 /* 3. ... and does not update window. */
3639                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3640
3641                 /* 4. ... and sits in replay window. */
3642                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3643 }
3644
3645 static inline int tcp_paws_discard(const struct sock *sk,
3646                                    const struct sk_buff *skb)
3647 {
3648         const struct tcp_sock *tp = tcp_sk(sk);
3649         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3650                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3651                 !tcp_disordered_ack(sk, skb));
3652 }
3653
3654 /* Check segment sequence number for validity.
3655  *
3656  * Segment controls are considered valid, if the segment
3657  * fits to the window after truncation to the window. Acceptability
3658  * of data (and SYN, FIN, of course) is checked separately.
3659  * See tcp_data_queue(), for example.
3660  *
3661  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3662  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3663  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3664  * (borrowed from freebsd)
3665  */
3666
3667 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3668 {
3669         return  !before(end_seq, tp->rcv_wup) &&
3670                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3671 }
3672
3673 /* When we get a reset we do this. */
3674 static void tcp_reset(struct sock *sk)
3675 {
3676         /* We want the right error as BSD sees it (and indeed as we do). */
3677         switch (sk->sk_state) {
3678         case TCP_SYN_SENT:
3679                 sk->sk_err = ECONNREFUSED;
3680                 break;
3681         case TCP_CLOSE_WAIT:
3682                 sk->sk_err = EPIPE;
3683                 break;
3684         case TCP_CLOSE:
3685                 return;
3686         default:
3687                 sk->sk_err = ECONNRESET;
3688         }
3689
3690         if (!sock_flag(sk, SOCK_DEAD))
3691                 sk->sk_error_report(sk);
3692
3693         tcp_done(sk);
3694 }
3695
3696 /*
3697  *      Process the FIN bit. This now behaves as it is supposed to work
3698  *      and the FIN takes effect when it is validly part of sequence
3699  *      space. Not before when we get holes.
3700  *
3701  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3702  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3703  *      TIME-WAIT)
3704  *
3705  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3706  *      close and we go into CLOSING (and later onto TIME-WAIT)
3707  *
3708  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3709  */
3710 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3711 {
3712         struct tcp_sock *tp = tcp_sk(sk);
3713
3714         inet_csk_schedule_ack(sk);
3715
3716         sk->sk_shutdown |= RCV_SHUTDOWN;
3717         sock_set_flag(sk, SOCK_DONE);
3718
3719         switch (sk->sk_state) {
3720         case TCP_SYN_RECV:
3721         case TCP_ESTABLISHED:
3722                 /* Move to CLOSE_WAIT */
3723                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3724                 inet_csk(sk)->icsk_ack.pingpong = 1;
3725                 break;
3726
3727         case TCP_CLOSE_WAIT:
3728         case TCP_CLOSING:
3729                 /* Received a retransmission of the FIN, do
3730                  * nothing.
3731                  */
3732                 break;
3733         case TCP_LAST_ACK:
3734                 /* RFC793: Remain in the LAST-ACK state. */
3735                 break;
3736
3737         case TCP_FIN_WAIT1:
3738                 /* This case occurs when a simultaneous close
3739                  * happens, we must ack the received FIN and
3740                  * enter the CLOSING state.
3741                  */
3742                 tcp_send_ack(sk);
3743                 tcp_set_state(sk, TCP_CLOSING);
3744                 break;
3745         case TCP_FIN_WAIT2:
3746                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3747                 tcp_send_ack(sk);
3748                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3749                 break;
3750         default:
3751                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3752                  * cases we should never reach this piece of code.
3753                  */
3754                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3755                        __func__, sk->sk_state);
3756                 break;
3757         }
3758
3759         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3760          * Probably, we should reset in this case. For now drop them.
3761          */
3762         __skb_queue_purge(&tp->out_of_order_queue);
3763         if (tcp_is_sack(tp))
3764                 tcp_sack_reset(&tp->rx_opt);
3765         sk_mem_reclaim(sk);
3766
3767         if (!sock_flag(sk, SOCK_DEAD)) {
3768                 sk->sk_state_change(sk);
3769
3770                 /* Do not send POLL_HUP for half duplex close. */
3771                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3772                     sk->sk_state == TCP_CLOSE)
3773                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3774                 else
3775                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3776         }
3777 }
3778
3779 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3780                                   u32 end_seq)
3781 {
3782         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3783                 if (before(seq, sp->start_seq))
3784                         sp->start_seq = seq;
3785                 if (after(end_seq, sp->end_seq))
3786                         sp->end_seq = end_seq;
3787                 return 1;
3788         }
3789         return 0;
3790 }
3791
3792 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3793 {
3794         struct tcp_sock *tp = tcp_sk(sk);
3795
3796         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3797                 int mib_idx;
3798
3799                 if (before(seq, tp->rcv_nxt))
3800                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3801                 else
3802                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3803
3804                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3805
3806                 tp->rx_opt.dsack = 1;
3807                 tp->duplicate_sack[0].start_seq = seq;
3808                 tp->duplicate_sack[0].end_seq = end_seq;
3809                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3810         }
3811 }
3812
3813 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3814 {
3815         struct tcp_sock *tp = tcp_sk(sk);
3816
3817         if (!tp->rx_opt.dsack)
3818                 tcp_dsack_set(sk, seq, end_seq);
3819         else
3820                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3821 }
3822
3823 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3824 {
3825         struct tcp_sock *tp = tcp_sk(sk);
3826
3827         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3828             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3829                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3830                 tcp_enter_quickack_mode(sk);
3831
3832                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3833                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3834
3835                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3836                                 end_seq = tp->rcv_nxt;
3837                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3838                 }
3839         }
3840
3841         tcp_send_ack(sk);
3842 }
3843
3844 /* These routines update the SACK block as out-of-order packets arrive or
3845  * in-order packets close up the sequence space.
3846  */
3847 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3848 {
3849         int this_sack;
3850         struct tcp_sack_block *sp = &tp->selective_acks[0];
3851         struct tcp_sack_block *swalk = sp + 1;
3852
3853         /* See if the recent change to the first SACK eats into
3854          * or hits the sequence space of other SACK blocks, if so coalesce.
3855          */
3856         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3857                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3858                         int i;
3859
3860                         /* Zap SWALK, by moving every further SACK up by one slot.
3861                          * Decrease num_sacks.
3862                          */
3863                         tp->rx_opt.num_sacks--;
3864                         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3865                                                tp->rx_opt.dsack;
3866                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3867                                 sp[i] = sp[i + 1];
3868                         continue;
3869                 }
3870                 this_sack++, swalk++;
3871         }
3872 }
3873
3874 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3875                                  struct tcp_sack_block *sack2)
3876 {
3877         __u32 tmp;
3878
3879         tmp = sack1->start_seq;
3880         sack1->start_seq = sack2->start_seq;
3881         sack2->start_seq = tmp;
3882
3883         tmp = sack1->end_seq;
3884         sack1->end_seq = sack2->end_seq;
3885         sack2->end_seq = tmp;
3886 }
3887
3888 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3889 {
3890         struct tcp_sock *tp = tcp_sk(sk);
3891         struct tcp_sack_block *sp = &tp->selective_acks[0];
3892         int cur_sacks = tp->rx_opt.num_sacks;
3893         int this_sack;
3894
3895         if (!cur_sacks)
3896                 goto new_sack;
3897
3898         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3899                 if (tcp_sack_extend(sp, seq, end_seq)) {
3900                         /* Rotate this_sack to the first one. */
3901                         for (; this_sack > 0; this_sack--, sp--)
3902                                 tcp_sack_swap(sp, sp - 1);
3903                         if (cur_sacks > 1)
3904                                 tcp_sack_maybe_coalesce(tp);
3905                         return;
3906                 }
3907         }
3908
3909         /* Could not find an adjacent existing SACK, build a new one,
3910          * put it at the front, and shift everyone else down.  We
3911          * always know there is at least one SACK present already here.
3912          *
3913          * If the sack array is full, forget about the last one.
3914          */
3915         if (this_sack >= TCP_NUM_SACKS) {
3916                 this_sack--;
3917                 tp->rx_opt.num_sacks--;
3918                 sp--;
3919         }
3920         for (; this_sack > 0; this_sack--, sp--)
3921                 *sp = *(sp - 1);
3922
3923 new_sack:
3924         /* Build the new head SACK, and we're done. */
3925         sp->start_seq = seq;
3926         sp->end_seq = end_seq;
3927         tp->rx_opt.num_sacks++;
3928         tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3929 }
3930
3931 /* RCV.NXT advances, some SACKs should be eaten. */
3932
3933 static void tcp_sack_remove(struct tcp_sock *tp)
3934 {
3935         struct tcp_sack_block *sp = &tp->selective_acks[0];
3936         int num_sacks = tp->rx_opt.num_sacks;
3937         int this_sack;
3938
3939         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3940         if (skb_queue_empty(&tp->out_of_order_queue)) {
3941                 tp->rx_opt.num_sacks = 0;
3942                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3943                 return;
3944         }
3945
3946         for (this_sack = 0; this_sack < num_sacks;) {
3947                 /* Check if the start of the sack is covered by RCV.NXT. */
3948                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3949                         int i;
3950
3951                         /* RCV.NXT must cover all the block! */
3952                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3953
3954                         /* Zap this SACK, by moving forward any other SACKS. */
3955                         for (i=this_sack+1; i < num_sacks; i++)
3956                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3957                         num_sacks--;
3958                         continue;
3959                 }
3960                 this_sack++;
3961                 sp++;
3962         }
3963         if (num_sacks != tp->rx_opt.num_sacks) {
3964                 tp->rx_opt.num_sacks = num_sacks;
3965                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3966                                        tp->rx_opt.dsack;
3967         }
3968 }
3969
3970 /* This one checks to see if we can put data from the
3971  * out_of_order queue into the receive_queue.
3972  */
3973 static void tcp_ofo_queue(struct sock *sk)
3974 {
3975         struct tcp_sock *tp = tcp_sk(sk);
3976         __u32 dsack_high = tp->rcv_nxt;
3977         struct sk_buff *skb;
3978
3979         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3980                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3981                         break;
3982
3983                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3984                         __u32 dsack = dsack_high;
3985                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3986                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3987                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3988                 }
3989
3990                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3991                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3992                         __skb_unlink(skb, &tp->out_of_order_queue);
3993                         __kfree_skb(skb);
3994                         continue;
3995                 }
3996                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3997                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3998                            TCP_SKB_CB(skb)->end_seq);
3999
4000                 __skb_unlink(skb, &tp->out_of_order_queue);
4001                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4002                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4003                 if (tcp_hdr(skb)->fin)
4004                         tcp_fin(skb, sk, tcp_hdr(skb));
4005         }
4006 }
4007
4008 static int tcp_prune_ofo_queue(struct sock *sk);
4009 static int tcp_prune_queue(struct sock *sk);
4010
4011 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4012 {
4013         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4014             !sk_rmem_schedule(sk, size)) {
4015
4016                 if (tcp_prune_queue(sk) < 0)
4017                         return -1;
4018
4019                 if (!sk_rmem_schedule(sk, size)) {
4020                         if (!tcp_prune_ofo_queue(sk))
4021                                 return -1;
4022
4023                         if (!sk_rmem_schedule(sk, size))
4024                                 return -1;
4025                 }
4026         }
4027         return 0;
4028 }
4029
4030 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4031 {
4032         struct tcphdr *th = tcp_hdr(skb);
4033         struct tcp_sock *tp = tcp_sk(sk);
4034         int eaten = -1;
4035
4036         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4037                 goto drop;
4038
4039         __skb_pull(skb, th->doff * 4);
4040
4041         TCP_ECN_accept_cwr(tp, skb);
4042
4043         if (tp->rx_opt.dsack) {
4044                 tp->rx_opt.dsack = 0;
4045                 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4046         }
4047
4048         /*  Queue data for delivery to the user.
4049          *  Packets in sequence go to the receive queue.
4050          *  Out of sequence packets to the out_of_order_queue.
4051          */
4052         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4053                 if (tcp_receive_window(tp) == 0)
4054                         goto out_of_window;
4055
4056                 /* Ok. In sequence. In window. */
4057                 if (tp->ucopy.task == current &&
4058                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4059                     sock_owned_by_user(sk) && !tp->urg_data) {
4060                         int chunk = min_t(unsigned int, skb->len,
4061                                           tp->ucopy.len);
4062
4063                         __set_current_state(TASK_RUNNING);
4064
4065                         local_bh_enable();
4066                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4067                                 tp->ucopy.len -= chunk;
4068                                 tp->copied_seq += chunk;
4069                                 eaten = (chunk == skb->len && !th->fin);
4070                                 tcp_rcv_space_adjust(sk);
4071                         }
4072                         local_bh_disable();
4073                 }
4074
4075                 if (eaten <= 0) {
4076 queue_and_out:
4077                         if (eaten < 0 &&
4078                             tcp_try_rmem_schedule(sk, skb->truesize))
4079                                 goto drop;
4080
4081                         skb_set_owner_r(skb, sk);
4082                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4083                 }
4084                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4085                 if (skb->len)
4086                         tcp_event_data_recv(sk, skb);
4087                 if (th->fin)
4088                         tcp_fin(skb, sk, th);
4089
4090                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4091                         tcp_ofo_queue(sk);
4092
4093                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4094                          * gap in queue is filled.
4095                          */
4096                         if (skb_queue_empty(&tp->out_of_order_queue))
4097                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4098                 }
4099
4100                 if (tp->rx_opt.num_sacks)
4101                         tcp_sack_remove(tp);
4102
4103                 tcp_fast_path_check(sk);
4104
4105                 if (eaten > 0)
4106                         __kfree_skb(skb);
4107                 else if (!sock_flag(sk, SOCK_DEAD))
4108                         sk->sk_data_ready(sk, 0);
4109                 return;
4110         }
4111
4112         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4113                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4114                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4115                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4116
4117 out_of_window:
4118                 tcp_enter_quickack_mode(sk);
4119                 inet_csk_schedule_ack(sk);
4120 drop:
4121                 __kfree_skb(skb);
4122                 return;
4123         }
4124
4125         /* Out of window. F.e. zero window probe. */
4126         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4127                 goto out_of_window;
4128
4129         tcp_enter_quickack_mode(sk);
4130
4131         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4132                 /* Partial packet, seq < rcv_next < end_seq */
4133                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4134                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4135                            TCP_SKB_CB(skb)->end_seq);
4136
4137                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4138
4139                 /* If window is closed, drop tail of packet. But after
4140                  * remembering D-SACK for its head made in previous line.
4141                  */
4142                 if (!tcp_receive_window(tp))
4143                         goto out_of_window;
4144                 goto queue_and_out;
4145         }
4146
4147         TCP_ECN_check_ce(tp, skb);
4148
4149         if (tcp_try_rmem_schedule(sk, skb->truesize))
4150                 goto drop;
4151
4152         /* Disable header prediction. */
4153         tp->pred_flags = 0;
4154         inet_csk_schedule_ack(sk);
4155
4156         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4157                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4158
4159         skb_set_owner_r(skb, sk);
4160
4161         if (!skb_peek(&tp->out_of_order_queue)) {
4162                 /* Initial out of order segment, build 1 SACK. */
4163                 if (tcp_is_sack(tp)) {
4164                         tp->rx_opt.num_sacks = 1;
4165                         tp->rx_opt.dsack     = 0;
4166                         tp->rx_opt.eff_sacks = 1;
4167                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4168                         tp->selective_acks[0].end_seq =
4169                                                 TCP_SKB_CB(skb)->end_seq;
4170                 }
4171                 __skb_queue_head(&tp->out_of_order_queue, skb);
4172         } else {
4173                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4174                 u32 seq = TCP_SKB_CB(skb)->seq;
4175                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4176
4177                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4178                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4179
4180                         if (!tp->rx_opt.num_sacks ||
4181                             tp->selective_acks[0].end_seq != seq)
4182                                 goto add_sack;
4183
4184                         /* Common case: data arrive in order after hole. */
4185                         tp->selective_acks[0].end_seq = end_seq;
4186                         return;
4187                 }
4188
4189                 /* Find place to insert this segment. */
4190                 do {
4191                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4192                                 break;
4193                 } while ((skb1 = skb1->prev) !=
4194                          (struct sk_buff *)&tp->out_of_order_queue);
4195
4196                 /* Do skb overlap to previous one? */
4197                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4198                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4199                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4200                                 /* All the bits are present. Drop. */
4201                                 __kfree_skb(skb);
4202                                 tcp_dsack_set(sk, seq, end_seq);
4203                                 goto add_sack;
4204                         }
4205                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4206                                 /* Partial overlap. */
4207                                 tcp_dsack_set(sk, seq,
4208                                               TCP_SKB_CB(skb1)->end_seq);
4209                         } else {
4210                                 skb1 = skb1->prev;
4211                         }
4212                 }
4213                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4214
4215                 /* And clean segments covered by new one as whole. */
4216                 while ((skb1 = skb->next) !=
4217                        (struct sk_buff *)&tp->out_of_order_queue &&
4218                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4219                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4220                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4221                                                  end_seq);
4222                                 break;
4223                         }
4224                         __skb_unlink(skb1, &tp->out_of_order_queue);
4225                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4226                                          TCP_SKB_CB(skb1)->end_seq);
4227                         __kfree_skb(skb1);
4228                 }
4229
4230 add_sack:
4231                 if (tcp_is_sack(tp))
4232                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4233         }
4234 }
4235
4236 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4237                                         struct sk_buff_head *list)
4238 {
4239         struct sk_buff *next = skb->next;
4240
4241         __skb_unlink(skb, list);
4242         __kfree_skb(skb);
4243         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4244
4245         return next;
4246 }
4247
4248 /* Collapse contiguous sequence of skbs head..tail with
4249  * sequence numbers start..end.
4250  * Segments with FIN/SYN are not collapsed (only because this
4251  * simplifies code)
4252  */
4253 static void
4254 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4255              struct sk_buff *head, struct sk_buff *tail,
4256              u32 start, u32 end)
4257 {
4258         struct sk_buff *skb;
4259
4260         /* First, check that queue is collapsible and find
4261          * the point where collapsing can be useful. */
4262         for (skb = head; skb != tail;) {
4263                 /* No new bits? It is possible on ofo queue. */
4264                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4265                         skb = tcp_collapse_one(sk, skb, list);
4266                         continue;
4267                 }
4268
4269                 /* The first skb to collapse is:
4270                  * - not SYN/FIN and
4271                  * - bloated or contains data before "start" or
4272                  *   overlaps to the next one.
4273                  */
4274                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4275                     (tcp_win_from_space(skb->truesize) > skb->len ||
4276                      before(TCP_SKB_CB(skb)->seq, start) ||
4277                      (skb->next != tail &&
4278                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4279                         break;
4280
4281                 /* Decided to skip this, advance start seq. */
4282                 start = TCP_SKB_CB(skb)->end_seq;
4283                 skb = skb->next;
4284         }
4285         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4286                 return;
4287
4288         while (before(start, end)) {
4289                 struct sk_buff *nskb;
4290                 unsigned int header = skb_headroom(skb);
4291                 int copy = SKB_MAX_ORDER(header, 0);
4292
4293                 /* Too big header? This can happen with IPv6. */
4294                 if (copy < 0)
4295                         return;
4296                 if (end - start < copy)
4297                         copy = end - start;
4298                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4299                 if (!nskb)
4300                         return;
4301
4302                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4303                 skb_set_network_header(nskb, (skb_network_header(skb) -
4304                                               skb->head));
4305                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4306                                                 skb->head));
4307                 skb_reserve(nskb, header);
4308                 memcpy(nskb->head, skb->head, header);
4309                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4310                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4311                 __skb_queue_before(list, skb, nskb);
4312                 skb_set_owner_r(nskb, sk);
4313
4314                 /* Copy data, releasing collapsed skbs. */
4315                 while (copy > 0) {
4316                         int offset = start - TCP_SKB_CB(skb)->seq;
4317                         int size = TCP_SKB_CB(skb)->end_seq - start;
4318
4319                         BUG_ON(offset < 0);
4320                         if (size > 0) {
4321                                 size = min(copy, size);
4322                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4323                                         BUG();
4324                                 TCP_SKB_CB(nskb)->end_seq += size;
4325                                 copy -= size;
4326                                 start += size;
4327                         }
4328                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4329                                 skb = tcp_collapse_one(sk, skb, list);
4330                                 if (skb == tail ||
4331                                     tcp_hdr(skb)->syn ||
4332                                     tcp_hdr(skb)->fin)
4333                                         return;
4334                         }
4335                 }
4336         }
4337 }
4338
4339 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4340  * and tcp_collapse() them until all the queue is collapsed.
4341  */
4342 static void tcp_collapse_ofo_queue(struct sock *sk)
4343 {
4344         struct tcp_sock *tp = tcp_sk(sk);
4345         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4346         struct sk_buff *head;
4347         u32 start, end;
4348
4349         if (skb == NULL)
4350                 return;
4351
4352         start = TCP_SKB_CB(skb)->seq;
4353         end = TCP_SKB_CB(skb)->end_seq;
4354         head = skb;
4355
4356         for (;;) {
4357                 skb = skb->next;
4358
4359                 /* Segment is terminated when we see gap or when
4360                  * we are at the end of all the queue. */
4361                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4362                     after(TCP_SKB_CB(skb)->seq, end) ||
4363                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4364                         tcp_collapse(sk, &tp->out_of_order_queue,
4365                                      head, skb, start, end);
4366                         head = skb;
4367                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4368                                 break;
4369                         /* Start new segment */
4370                         start = TCP_SKB_CB(skb)->seq;
4371                         end = TCP_SKB_CB(skb)->end_seq;
4372                 } else {
4373                         if (before(TCP_SKB_CB(skb)->seq, start))
4374                                 start = TCP_SKB_CB(skb)->seq;
4375                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4376                                 end = TCP_SKB_CB(skb)->end_seq;
4377                 }
4378         }
4379 }
4380
4381 /*
4382  * Purge the out-of-order queue.
4383  * Return true if queue was pruned.
4384  */
4385 static int tcp_prune_ofo_queue(struct sock *sk)
4386 {
4387         struct tcp_sock *tp = tcp_sk(sk);
4388         int res = 0;
4389
4390         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4391                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4392                 __skb_queue_purge(&tp->out_of_order_queue);
4393
4394                 /* Reset SACK state.  A conforming SACK implementation will
4395                  * do the same at a timeout based retransmit.  When a connection
4396                  * is in a sad state like this, we care only about integrity
4397                  * of the connection not performance.
4398                  */
4399                 if (tp->rx_opt.sack_ok)
4400                         tcp_sack_reset(&tp->rx_opt);
4401                 sk_mem_reclaim(sk);
4402                 res = 1;
4403         }
4404         return res;
4405 }
4406
4407 /* Reduce allocated memory if we can, trying to get
4408  * the socket within its memory limits again.
4409  *
4410  * Return less than zero if we should start dropping frames
4411  * until the socket owning process reads some of the data
4412  * to stabilize the situation.
4413  */
4414 static int tcp_prune_queue(struct sock *sk)
4415 {
4416         struct tcp_sock *tp = tcp_sk(sk);
4417
4418         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4419
4420         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4421
4422         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4423                 tcp_clamp_window(sk);
4424         else if (tcp_memory_pressure)
4425                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4426
4427         tcp_collapse_ofo_queue(sk);
4428         tcp_collapse(sk, &sk->sk_receive_queue,
4429                      sk->sk_receive_queue.next,
4430                      (struct sk_buff *)&sk->sk_receive_queue,
4431                      tp->copied_seq, tp->rcv_nxt);
4432         sk_mem_reclaim(sk);
4433
4434         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4435                 return 0;
4436
4437         /* Collapsing did not help, destructive actions follow.
4438          * This must not ever occur. */
4439
4440         tcp_prune_ofo_queue(sk);
4441
4442         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4443                 return 0;
4444
4445         /* If we are really being abused, tell the caller to silently
4446          * drop receive data on the floor.  It will get retransmitted
4447          * and hopefully then we'll have sufficient space.
4448          */
4449         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4450
4451         /* Massive buffer overcommit. */
4452         tp->pred_flags = 0;
4453         return -1;
4454 }
4455
4456 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4457  * As additional protections, we do not touch cwnd in retransmission phases,
4458  * and if application hit its sndbuf limit recently.
4459  */
4460 void tcp_cwnd_application_limited(struct sock *sk)
4461 {
4462         struct tcp_sock *tp = tcp_sk(sk);
4463
4464         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4465             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4466                 /* Limited by application or receiver window. */
4467                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4468                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4469                 if (win_used < tp->snd_cwnd) {
4470                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4471                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4472                 }
4473                 tp->snd_cwnd_used = 0;
4474         }
4475         tp->snd_cwnd_stamp = tcp_time_stamp;
4476 }
4477
4478 static int tcp_should_expand_sndbuf(struct sock *sk)
4479 {
4480         struct tcp_sock *tp = tcp_sk(sk);
4481
4482         /* If the user specified a specific send buffer setting, do
4483          * not modify it.
4484          */
4485         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4486                 return 0;
4487
4488         /* If we are under global TCP memory pressure, do not expand.  */
4489         if (tcp_memory_pressure)
4490                 return 0;
4491
4492         /* If we are under soft global TCP memory pressure, do not expand.  */
4493         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4494                 return 0;
4495
4496         /* If we filled the congestion window, do not expand.  */
4497         if (tp->packets_out >= tp->snd_cwnd)
4498                 return 0;
4499
4500         return 1;
4501 }
4502
4503 /* When incoming ACK allowed to free some skb from write_queue,
4504  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4505  * on the exit from tcp input handler.
4506  *
4507  * PROBLEM: sndbuf expansion does not work well with largesend.
4508  */
4509 static void tcp_new_space(struct sock *sk)
4510 {
4511         struct tcp_sock *tp = tcp_sk(sk);
4512
4513         if (tcp_should_expand_sndbuf(sk)) {
4514                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4515                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4516                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4517                                      tp->reordering + 1);
4518                 sndmem *= 2 * demanded;
4519                 if (sndmem > sk->sk_sndbuf)
4520                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4521                 tp->snd_cwnd_stamp = tcp_time_stamp;
4522         }
4523
4524         sk->sk_write_space(sk);
4525 }
4526
4527 static void tcp_check_space(struct sock *sk)
4528 {
4529         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4530                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4531                 if (sk->sk_socket &&
4532                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4533                         tcp_new_space(sk);
4534         }
4535 }
4536
4537 static inline void tcp_data_snd_check(struct sock *sk)
4538 {
4539         tcp_push_pending_frames(sk);
4540         tcp_check_space(sk);
4541 }
4542
4543 /*
4544  * Check if sending an ack is needed.
4545  */
4546 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4547 {
4548         struct tcp_sock *tp = tcp_sk(sk);
4549
4550             /* More than one full frame received... */
4551         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4552              /* ... and right edge of window advances far enough.
4553               * (tcp_recvmsg() will send ACK otherwise). Or...
4554               */
4555              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4556             /* We ACK each frame or... */
4557             tcp_in_quickack_mode(sk) ||
4558             /* We have out of order data. */
4559             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4560                 /* Then ack it now */
4561                 tcp_send_ack(sk);
4562         } else {
4563                 /* Else, send delayed ack. */
4564                 tcp_send_delayed_ack(sk);
4565         }
4566 }
4567
4568 static inline void tcp_ack_snd_check(struct sock *sk)
4569 {
4570         if (!inet_csk_ack_scheduled(sk)) {
4571                 /* We sent a data segment already. */
4572                 return;
4573         }
4574         __tcp_ack_snd_check(sk, 1);
4575 }
4576
4577 /*
4578  *      This routine is only called when we have urgent data
4579  *      signaled. Its the 'slow' part of tcp_urg. It could be
4580  *      moved inline now as tcp_urg is only called from one
4581  *      place. We handle URGent data wrong. We have to - as
4582  *      BSD still doesn't use the correction from RFC961.
4583  *      For 1003.1g we should support a new option TCP_STDURG to permit
4584  *      either form (or just set the sysctl tcp_stdurg).
4585  */
4586
4587 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4588 {
4589         struct tcp_sock *tp = tcp_sk(sk);
4590         u32 ptr = ntohs(th->urg_ptr);
4591
4592         if (ptr && !sysctl_tcp_stdurg)
4593                 ptr--;
4594         ptr += ntohl(th->seq);
4595
4596         /* Ignore urgent data that we've already seen and read. */
4597         if (after(tp->copied_seq, ptr))
4598                 return;
4599
4600         /* Do not replay urg ptr.
4601          *
4602          * NOTE: interesting situation not covered by specs.
4603          * Misbehaving sender may send urg ptr, pointing to segment,
4604          * which we already have in ofo queue. We are not able to fetch
4605          * such data and will stay in TCP_URG_NOTYET until will be eaten
4606          * by recvmsg(). Seems, we are not obliged to handle such wicked
4607          * situations. But it is worth to think about possibility of some
4608          * DoSes using some hypothetical application level deadlock.
4609          */
4610         if (before(ptr, tp->rcv_nxt))
4611                 return;
4612
4613         /* Do we already have a newer (or duplicate) urgent pointer? */
4614         if (tp->urg_data && !after(ptr, tp->urg_seq))
4615                 return;
4616
4617         /* Tell the world about our new urgent pointer. */
4618         sk_send_sigurg(sk);
4619
4620         /* We may be adding urgent data when the last byte read was
4621          * urgent. To do this requires some care. We cannot just ignore
4622          * tp->copied_seq since we would read the last urgent byte again
4623          * as data, nor can we alter copied_seq until this data arrives
4624          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4625          *
4626          * NOTE. Double Dutch. Rendering to plain English: author of comment
4627          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4628          * and expect that both A and B disappear from stream. This is _wrong_.
4629          * Though this happens in BSD with high probability, this is occasional.
4630          * Any application relying on this is buggy. Note also, that fix "works"
4631          * only in this artificial test. Insert some normal data between A and B and we will
4632          * decline of BSD again. Verdict: it is better to remove to trap
4633          * buggy users.
4634          */
4635         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4636             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4637                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4638                 tp->copied_seq++;
4639                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4640                         __skb_unlink(skb, &sk->sk_receive_queue);
4641                         __kfree_skb(skb);
4642                 }
4643         }
4644
4645         tp->urg_data = TCP_URG_NOTYET;
4646         tp->urg_seq = ptr;
4647
4648         /* Disable header prediction. */
4649         tp->pred_flags = 0;
4650 }
4651
4652 /* This is the 'fast' part of urgent handling. */
4653 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4654 {
4655         struct tcp_sock *tp = tcp_sk(sk);
4656
4657         /* Check if we get a new urgent pointer - normally not. */
4658         if (th->urg)
4659                 tcp_check_urg(sk, th);
4660
4661         /* Do we wait for any urgent data? - normally not... */
4662         if (tp->urg_data == TCP_URG_NOTYET) {
4663                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4664                           th->syn;
4665
4666                 /* Is the urgent pointer pointing into this packet? */
4667                 if (ptr < skb->len) {
4668                         u8 tmp;
4669                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4670                                 BUG();
4671                         tp->urg_data = TCP_URG_VALID | tmp;
4672                         if (!sock_flag(sk, SOCK_DEAD))
4673                                 sk->sk_data_ready(sk, 0);
4674                 }
4675         }
4676 }
4677
4678 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4679 {
4680         struct tcp_sock *tp = tcp_sk(sk);
4681         int chunk = skb->len - hlen;
4682         int err;
4683
4684         local_bh_enable();
4685         if (skb_csum_unnecessary(skb))
4686                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4687         else
4688                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4689                                                        tp->ucopy.iov);
4690
4691         if (!err) {
4692                 tp->ucopy.len -= chunk;
4693                 tp->copied_seq += chunk;
4694                 tcp_rcv_space_adjust(sk);
4695         }
4696
4697         local_bh_disable();
4698         return err;
4699 }
4700
4701 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4702                                             struct sk_buff *skb)
4703 {
4704         __sum16 result;
4705
4706         if (sock_owned_by_user(sk)) {
4707                 local_bh_enable();
4708                 result = __tcp_checksum_complete(skb);
4709                 local_bh_disable();
4710         } else {
4711                 result = __tcp_checksum_complete(skb);
4712         }
4713         return result;
4714 }
4715
4716 static inline int tcp_checksum_complete_user(struct sock *sk,
4717                                              struct sk_buff *skb)
4718 {
4719         return !skb_csum_unnecessary(skb) &&
4720                __tcp_checksum_complete_user(sk, skb);
4721 }
4722
4723 #ifdef CONFIG_NET_DMA
4724 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4725                                   int hlen)
4726 {
4727         struct tcp_sock *tp = tcp_sk(sk);
4728         int chunk = skb->len - hlen;
4729         int dma_cookie;
4730         int copied_early = 0;
4731
4732         if (tp->ucopy.wakeup)
4733                 return 0;
4734
4735         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4736                 tp->ucopy.dma_chan = get_softnet_dma();
4737
4738         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4739
4740                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4741                                                          skb, hlen,
4742                                                          tp->ucopy.iov, chunk,
4743                                                          tp->ucopy.pinned_list);
4744
4745                 if (dma_cookie < 0)
4746                         goto out;
4747
4748                 tp->ucopy.dma_cookie = dma_cookie;
4749                 copied_early = 1;
4750
4751                 tp->ucopy.len -= chunk;
4752                 tp->copied_seq += chunk;
4753                 tcp_rcv_space_adjust(sk);
4754
4755                 if ((tp->ucopy.len == 0) ||
4756                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4757                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4758                         tp->ucopy.wakeup = 1;
4759                         sk->sk_data_ready(sk, 0);
4760                 }
4761         } else if (chunk > 0) {
4762                 tp->ucopy.wakeup = 1;
4763                 sk->sk_data_ready(sk, 0);
4764         }
4765 out:
4766         return copied_early;
4767 }
4768 #endif /* CONFIG_NET_DMA */
4769
4770 /* Does PAWS and seqno based validation of an incoming segment, flags will
4771  * play significant role here.
4772  */
4773 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4774                               struct tcphdr *th, int syn_inerr)
4775 {
4776         struct tcp_sock *tp = tcp_sk(sk);
4777
4778         /* RFC1323: H1. Apply PAWS check first. */
4779         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4780             tcp_paws_discard(sk, skb)) {
4781                 if (!th->rst) {
4782                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4783                         tcp_send_dupack(sk, skb);
4784                         goto discard;
4785                 }
4786                 /* Reset is accepted even if it did not pass PAWS. */
4787         }
4788
4789         /* Step 1: check sequence number */
4790         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4791                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4792                  * (RST) segments are validated by checking their SEQ-fields."
4793                  * And page 69: "If an incoming segment is not acceptable,
4794                  * an acknowledgment should be sent in reply (unless the RST
4795                  * bit is set, if so drop the segment and return)".
4796                  */
4797                 if (!th->rst)
4798                         tcp_send_dupack(sk, skb);
4799                 goto discard;
4800         }
4801
4802         /* Step 2: check RST bit */
4803         if (th->rst) {
4804                 tcp_reset(sk);
4805                 goto discard;
4806         }
4807
4808         /* ts_recent update must be made after we are sure that the packet
4809          * is in window.
4810          */
4811         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4812
4813         /* step 3: check security and precedence [ignored] */
4814
4815         /* step 4: Check for a SYN in window. */
4816         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4817                 if (syn_inerr)
4818                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4819                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4820                 tcp_reset(sk);
4821                 return -1;
4822         }
4823
4824         return 1;
4825
4826 discard:
4827         __kfree_skb(skb);
4828         return 0;
4829 }
4830
4831 /*
4832  *      TCP receive function for the ESTABLISHED state.
4833  *
4834  *      It is split into a fast path and a slow path. The fast path is
4835  *      disabled when:
4836  *      - A zero window was announced from us - zero window probing
4837  *        is only handled properly in the slow path.
4838  *      - Out of order segments arrived.
4839  *      - Urgent data is expected.
4840  *      - There is no buffer space left
4841  *      - Unexpected TCP flags/window values/header lengths are received
4842  *        (detected by checking the TCP header against pred_flags)
4843  *      - Data is sent in both directions. Fast path only supports pure senders
4844  *        or pure receivers (this means either the sequence number or the ack
4845  *        value must stay constant)
4846  *      - Unexpected TCP option.
4847  *
4848  *      When these conditions are not satisfied it drops into a standard
4849  *      receive procedure patterned after RFC793 to handle all cases.
4850  *      The first three cases are guaranteed by proper pred_flags setting,
4851  *      the rest is checked inline. Fast processing is turned on in
4852  *      tcp_data_queue when everything is OK.
4853  */
4854 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4855                         struct tcphdr *th, unsigned len)
4856 {
4857         struct tcp_sock *tp = tcp_sk(sk);
4858         int res;
4859
4860         /*
4861          *      Header prediction.
4862          *      The code loosely follows the one in the famous
4863          *      "30 instruction TCP receive" Van Jacobson mail.
4864          *
4865          *      Van's trick is to deposit buffers into socket queue
4866          *      on a device interrupt, to call tcp_recv function
4867          *      on the receive process context and checksum and copy
4868          *      the buffer to user space. smart...
4869          *
4870          *      Our current scheme is not silly either but we take the
4871          *      extra cost of the net_bh soft interrupt processing...
4872          *      We do checksum and copy also but from device to kernel.
4873          */
4874
4875         tp->rx_opt.saw_tstamp = 0;
4876
4877         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4878          *      if header_prediction is to be made
4879          *      'S' will always be tp->tcp_header_len >> 2
4880          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4881          *  turn it off (when there are holes in the receive
4882          *       space for instance)
4883          *      PSH flag is ignored.
4884          */
4885
4886         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4887             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4888                 int tcp_header_len = tp->tcp_header_len;
4889
4890                 /* Timestamp header prediction: tcp_header_len
4891                  * is automatically equal to th->doff*4 due to pred_flags
4892                  * match.
4893                  */
4894
4895                 /* Check timestamp */
4896                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4897                         /* No? Slow path! */
4898                         if (!tcp_parse_aligned_timestamp(tp, th))
4899                                 goto slow_path;
4900
4901                         /* If PAWS failed, check it more carefully in slow path */
4902                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4903                                 goto slow_path;
4904
4905                         /* DO NOT update ts_recent here, if checksum fails
4906                          * and timestamp was corrupted part, it will result
4907                          * in a hung connection since we will drop all
4908                          * future packets due to the PAWS test.
4909                          */
4910                 }
4911
4912                 if (len <= tcp_header_len) {
4913                         /* Bulk data transfer: sender */
4914                         if (len == tcp_header_len) {
4915                                 /* Predicted packet is in window by definition.
4916                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4917                                  * Hence, check seq<=rcv_wup reduces to:
4918                                  */
4919                                 if (tcp_header_len ==
4920                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4921                                     tp->rcv_nxt == tp->rcv_wup)
4922                                         tcp_store_ts_recent(tp);
4923
4924                                 /* We know that such packets are checksummed
4925                                  * on entry.
4926                                  */
4927                                 tcp_ack(sk, skb, 0);
4928                                 __kfree_skb(skb);
4929                                 tcp_data_snd_check(sk);
4930                                 return 0;
4931                         } else { /* Header too small */
4932                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4933                                 goto discard;
4934                         }
4935                 } else {
4936                         int eaten = 0;
4937                         int copied_early = 0;
4938
4939                         if (tp->copied_seq == tp->rcv_nxt &&
4940                             len - tcp_header_len <= tp->ucopy.len) {
4941 #ifdef CONFIG_NET_DMA
4942                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4943                                         copied_early = 1;
4944                                         eaten = 1;
4945                                 }
4946 #endif
4947                                 if (tp->ucopy.task == current &&
4948                                     sock_owned_by_user(sk) && !copied_early) {
4949                                         __set_current_state(TASK_RUNNING);
4950
4951                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4952                                                 eaten = 1;
4953                                 }
4954                                 if (eaten) {
4955                                         /* Predicted packet is in window by definition.
4956                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4957                                          * Hence, check seq<=rcv_wup reduces to:
4958                                          */
4959                                         if (tcp_header_len ==
4960                                             (sizeof(struct tcphdr) +
4961                                              TCPOLEN_TSTAMP_ALIGNED) &&
4962                                             tp->rcv_nxt == tp->rcv_wup)
4963                                                 tcp_store_ts_recent(tp);
4964
4965                                         tcp_rcv_rtt_measure_ts(sk, skb);
4966
4967                                         __skb_pull(skb, tcp_header_len);
4968                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4969                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4970                                 }
4971                                 if (copied_early)
4972                                         tcp_cleanup_rbuf(sk, skb->len);
4973                         }
4974                         if (!eaten) {
4975                                 if (tcp_checksum_complete_user(sk, skb))
4976                                         goto csum_error;
4977
4978                                 /* Predicted packet is in window by definition.
4979                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4980                                  * Hence, check seq<=rcv_wup reduces to:
4981                                  */
4982                                 if (tcp_header_len ==
4983                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4984                                     tp->rcv_nxt == tp->rcv_wup)
4985                                         tcp_store_ts_recent(tp);
4986
4987                                 tcp_rcv_rtt_measure_ts(sk, skb);
4988
4989                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4990                                         goto step5;
4991
4992                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4993
4994                                 /* Bulk data transfer: receiver */
4995                                 __skb_pull(skb, tcp_header_len);
4996                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4997                                 skb_set_owner_r(skb, sk);
4998                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4999                         }
5000
5001                         tcp_event_data_recv(sk, skb);
5002
5003                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5004                                 /* Well, only one small jumplet in fast path... */
5005                                 tcp_ack(sk, skb, FLAG_DATA);
5006                                 tcp_data_snd_check(sk);
5007                                 if (!inet_csk_ack_scheduled(sk))
5008                                         goto no_ack;
5009                         }
5010
5011                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5012                                 __tcp_ack_snd_check(sk, 0);
5013 no_ack:
5014 #ifdef CONFIG_NET_DMA
5015                         if (copied_early)
5016                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5017                         else
5018 #endif
5019                         if (eaten)
5020                                 __kfree_skb(skb);
5021                         else
5022                                 sk->sk_data_ready(sk, 0);
5023                         return 0;
5024                 }
5025         }
5026
5027 slow_path:
5028         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5029                 goto csum_error;
5030
5031         /*
5032          *      Standard slow path.
5033          */
5034
5035         res = tcp_validate_incoming(sk, skb, th, 1);
5036         if (res <= 0)
5037                 return -res;
5038
5039 step5:
5040         if (th->ack)
5041                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5042
5043         tcp_rcv_rtt_measure_ts(sk, skb);
5044
5045         /* Process urgent data. */
5046         tcp_urg(sk, skb, th);
5047
5048         /* step 7: process the segment text */
5049         tcp_data_queue(sk, skb);
5050
5051         tcp_data_snd_check(sk);
5052         tcp_ack_snd_check(sk);
5053         return 0;
5054
5055 csum_error:
5056         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5057
5058 discard:
5059         __kfree_skb(skb);
5060         return 0;
5061 }
5062
5063 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5064                                          struct tcphdr *th, unsigned len)
5065 {
5066         struct tcp_sock *tp = tcp_sk(sk);
5067         struct inet_connection_sock *icsk = inet_csk(sk);
5068         int saved_clamp = tp->rx_opt.mss_clamp;
5069
5070         tcp_parse_options(skb, &tp->rx_opt, 0);
5071
5072         if (th->ack) {
5073                 /* rfc793:
5074                  * "If the state is SYN-SENT then
5075                  *    first check the ACK bit
5076                  *      If the ACK bit is set
5077                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5078                  *        a reset (unless the RST bit is set, if so drop
5079                  *        the segment and return)"
5080                  *
5081                  *  We do not send data with SYN, so that RFC-correct
5082                  *  test reduces to:
5083                  */
5084                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5085                         goto reset_and_undo;
5086
5087                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5088                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5089                              tcp_time_stamp)) {
5090                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5091                         goto reset_and_undo;
5092                 }
5093
5094                 /* Now ACK is acceptable.
5095                  *
5096                  * "If the RST bit is set
5097                  *    If the ACK was acceptable then signal the user "error:
5098                  *    connection reset", drop the segment, enter CLOSED state,
5099                  *    delete TCB, and return."
5100                  */
5101
5102                 if (th->rst) {
5103                         tcp_reset(sk);
5104                         goto discard;
5105                 }
5106
5107                 /* rfc793:
5108                  *   "fifth, if neither of the SYN or RST bits is set then
5109                  *    drop the segment and return."
5110                  *
5111                  *    See note below!
5112                  *                                        --ANK(990513)
5113                  */
5114                 if (!th->syn)
5115                         goto discard_and_undo;
5116
5117                 /* rfc793:
5118                  *   "If the SYN bit is on ...
5119                  *    are acceptable then ...
5120                  *    (our SYN has been ACKed), change the connection
5121                  *    state to ESTABLISHED..."
5122                  */
5123
5124                 TCP_ECN_rcv_synack(tp, th);
5125
5126                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5127                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5128
5129                 /* Ok.. it's good. Set up sequence numbers and
5130                  * move to established.
5131                  */
5132                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5133                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5134
5135                 /* RFC1323: The window in SYN & SYN/ACK segments is
5136                  * never scaled.
5137                  */
5138                 tp->snd_wnd = ntohs(th->window);
5139                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5140
5141                 if (!tp->rx_opt.wscale_ok) {
5142                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5143                         tp->window_clamp = min(tp->window_clamp, 65535U);
5144                 }
5145
5146                 if (tp->rx_opt.saw_tstamp) {
5147                         tp->rx_opt.tstamp_ok       = 1;
5148                         tp->tcp_header_len =
5149                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5150                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5151                         tcp_store_ts_recent(tp);
5152                 } else {
5153                         tp->tcp_header_len = sizeof(struct tcphdr);
5154                 }
5155
5156                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5157                         tcp_enable_fack(tp);
5158
5159                 tcp_mtup_init(sk);
5160                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5161                 tcp_initialize_rcv_mss(sk);
5162
5163                 /* Remember, tcp_poll() does not lock socket!
5164                  * Change state from SYN-SENT only after copied_seq
5165                  * is initialized. */
5166                 tp->copied_seq = tp->rcv_nxt;
5167                 smp_mb();
5168                 tcp_set_state(sk, TCP_ESTABLISHED);
5169
5170                 security_inet_conn_established(sk, skb);
5171
5172                 /* Make sure socket is routed, for correct metrics.  */
5173                 icsk->icsk_af_ops->rebuild_header(sk);
5174
5175                 tcp_init_metrics(sk);
5176
5177                 tcp_init_congestion_control(sk);
5178
5179                 /* Prevent spurious tcp_cwnd_restart() on first data
5180                  * packet.
5181                  */
5182                 tp->lsndtime = tcp_time_stamp;
5183
5184                 tcp_init_buffer_space(sk);
5185
5186                 if (sock_flag(sk, SOCK_KEEPOPEN))
5187                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5188
5189                 if (!tp->rx_opt.snd_wscale)
5190                         __tcp_fast_path_on(tp, tp->snd_wnd);
5191                 else
5192                         tp->pred_flags = 0;
5193
5194                 if (!sock_flag(sk, SOCK_DEAD)) {
5195                         sk->sk_state_change(sk);
5196                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5197                 }
5198
5199                 if (sk->sk_write_pending ||
5200                     icsk->icsk_accept_queue.rskq_defer_accept ||
5201                     icsk->icsk_ack.pingpong) {
5202                         /* Save one ACK. Data will be ready after
5203                          * several ticks, if write_pending is set.
5204                          *
5205                          * It may be deleted, but with this feature tcpdumps
5206                          * look so _wonderfully_ clever, that I was not able
5207                          * to stand against the temptation 8)     --ANK
5208                          */
5209                         inet_csk_schedule_ack(sk);
5210                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5211                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5212                         tcp_incr_quickack(sk);
5213                         tcp_enter_quickack_mode(sk);
5214                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5215                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5216
5217 discard:
5218                         __kfree_skb(skb);
5219                         return 0;
5220                 } else {
5221                         tcp_send_ack(sk);
5222                 }
5223                 return -1;
5224         }
5225
5226         /* No ACK in the segment */
5227
5228         if (th->rst) {
5229                 /* rfc793:
5230                  * "If the RST bit is set
5231                  *
5232                  *      Otherwise (no ACK) drop the segment and return."
5233                  */
5234
5235                 goto discard_and_undo;
5236         }
5237
5238         /* PAWS check. */
5239         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5240             tcp_paws_check(&tp->rx_opt, 0))
5241                 goto discard_and_undo;
5242
5243         if (th->syn) {
5244                 /* We see SYN without ACK. It is attempt of
5245                  * simultaneous connect with crossed SYNs.
5246                  * Particularly, it can be connect to self.
5247                  */
5248                 tcp_set_state(sk, TCP_SYN_RECV);
5249
5250                 if (tp->rx_opt.saw_tstamp) {
5251                         tp->rx_opt.tstamp_ok = 1;
5252                         tcp_store_ts_recent(tp);
5253                         tp->tcp_header_len =
5254                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5255                 } else {
5256                         tp->tcp_header_len = sizeof(struct tcphdr);
5257                 }
5258
5259                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5260                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5261
5262                 /* RFC1323: The window in SYN & SYN/ACK segments is
5263                  * never scaled.
5264                  */
5265                 tp->snd_wnd    = ntohs(th->window);
5266                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5267                 tp->max_window = tp->snd_wnd;
5268
5269                 TCP_ECN_rcv_syn(tp, th);
5270
5271                 tcp_mtup_init(sk);
5272                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5273                 tcp_initialize_rcv_mss(sk);
5274
5275                 tcp_send_synack(sk);
5276 #if 0
5277                 /* Note, we could accept data and URG from this segment.
5278                  * There are no obstacles to make this.
5279                  *
5280                  * However, if we ignore data in ACKless segments sometimes,
5281                  * we have no reasons to accept it sometimes.
5282                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5283                  * is not flawless. So, discard packet for sanity.
5284                  * Uncomment this return to process the data.
5285                  */
5286                 return -1;
5287 #else
5288                 goto discard;
5289 #endif
5290         }
5291         /* "fifth, if neither of the SYN or RST bits is set then
5292          * drop the segment and return."
5293          */
5294
5295 discard_and_undo:
5296         tcp_clear_options(&tp->rx_opt);
5297         tp->rx_opt.mss_clamp = saved_clamp;
5298         goto discard;
5299
5300 reset_and_undo:
5301         tcp_clear_options(&tp->rx_opt);
5302         tp->rx_opt.mss_clamp = saved_clamp;
5303         return 1;
5304 }
5305
5306 /*
5307  *      This function implements the receiving procedure of RFC 793 for
5308  *      all states except ESTABLISHED and TIME_WAIT.
5309  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5310  *      address independent.
5311  */
5312
5313 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5314                           struct tcphdr *th, unsigned len)
5315 {
5316         struct tcp_sock *tp = tcp_sk(sk);
5317         struct inet_connection_sock *icsk = inet_csk(sk);
5318         int queued = 0;
5319         int res;
5320
5321         tp->rx_opt.saw_tstamp = 0;
5322
5323         switch (sk->sk_state) {
5324         case TCP_CLOSE:
5325                 goto discard;
5326
5327         case TCP_LISTEN:
5328                 if (th->ack)
5329                         return 1;
5330
5331                 if (th->rst)
5332                         goto discard;
5333
5334                 if (th->syn) {
5335                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5336                                 return 1;
5337
5338                         /* Now we have several options: In theory there is
5339                          * nothing else in the frame. KA9Q has an option to
5340                          * send data with the syn, BSD accepts data with the
5341                          * syn up to the [to be] advertised window and
5342                          * Solaris 2.1 gives you a protocol error. For now
5343                          * we just ignore it, that fits the spec precisely
5344                          * and avoids incompatibilities. It would be nice in
5345                          * future to drop through and process the data.
5346                          *
5347                          * Now that TTCP is starting to be used we ought to
5348                          * queue this data.
5349                          * But, this leaves one open to an easy denial of
5350                          * service attack, and SYN cookies can't defend
5351                          * against this problem. So, we drop the data
5352                          * in the interest of security over speed unless
5353                          * it's still in use.
5354                          */
5355                         kfree_skb(skb);
5356                         return 0;
5357                 }
5358                 goto discard;
5359
5360         case TCP_SYN_SENT:
5361                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5362                 if (queued >= 0)
5363                         return queued;
5364
5365                 /* Do step6 onward by hand. */
5366                 tcp_urg(sk, skb, th);
5367                 __kfree_skb(skb);
5368                 tcp_data_snd_check(sk);
5369                 return 0;
5370         }
5371
5372         res = tcp_validate_incoming(sk, skb, th, 0);
5373         if (res <= 0)
5374                 return -res;
5375
5376         /* step 5: check the ACK field */
5377         if (th->ack) {
5378                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5379
5380                 switch (sk->sk_state) {
5381                 case TCP_SYN_RECV:
5382                         if (acceptable) {
5383                                 tp->copied_seq = tp->rcv_nxt;
5384                                 smp_mb();
5385                                 tcp_set_state(sk, TCP_ESTABLISHED);
5386                                 sk->sk_state_change(sk);
5387
5388                                 /* Note, that this wakeup is only for marginal
5389                                  * crossed SYN case. Passively open sockets
5390                                  * are not waked up, because sk->sk_sleep ==
5391                                  * NULL and sk->sk_socket == NULL.
5392                                  */
5393                                 if (sk->sk_socket)
5394                                         sk_wake_async(sk,
5395                                                       SOCK_WAKE_IO, POLL_OUT);
5396
5397                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5398                                 tp->snd_wnd = ntohs(th->window) <<
5399                                               tp->rx_opt.snd_wscale;
5400                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5401                                             TCP_SKB_CB(skb)->seq);
5402
5403                                 /* tcp_ack considers this ACK as duplicate
5404                                  * and does not calculate rtt.
5405                                  * Fix it at least with timestamps.
5406                                  */
5407                                 if (tp->rx_opt.saw_tstamp &&
5408                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5409                                         tcp_ack_saw_tstamp(sk, 0);
5410
5411                                 if (tp->rx_opt.tstamp_ok)
5412                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5413
5414                                 /* Make sure socket is routed, for
5415                                  * correct metrics.
5416                                  */
5417                                 icsk->icsk_af_ops->rebuild_header(sk);
5418
5419                                 tcp_init_metrics(sk);
5420
5421                                 tcp_init_congestion_control(sk);
5422
5423                                 /* Prevent spurious tcp_cwnd_restart() on
5424                                  * first data packet.
5425                                  */
5426                                 tp->lsndtime = tcp_time_stamp;
5427
5428                                 tcp_mtup_init(sk);
5429                                 tcp_initialize_rcv_mss(sk);
5430                                 tcp_init_buffer_space(sk);
5431                                 tcp_fast_path_on(tp);
5432                         } else {
5433                                 return 1;
5434                         }
5435                         break;
5436
5437                 case TCP_FIN_WAIT1:
5438                         if (tp->snd_una == tp->write_seq) {
5439                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5440                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5441                                 dst_confirm(sk->sk_dst_cache);
5442
5443                                 if (!sock_flag(sk, SOCK_DEAD))
5444                                         /* Wake up lingering close() */
5445                                         sk->sk_state_change(sk);
5446                                 else {
5447                                         int tmo;
5448
5449                                         if (tp->linger2 < 0 ||
5450                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5451                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5452                                                 tcp_done(sk);
5453                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5454                                                 return 1;
5455                                         }
5456
5457                                         tmo = tcp_fin_time(sk);
5458                                         if (tmo > TCP_TIMEWAIT_LEN) {
5459                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5460                                         } else if (th->fin || sock_owned_by_user(sk)) {
5461                                                 /* Bad case. We could lose such FIN otherwise.
5462                                                  * It is not a big problem, but it looks confusing
5463                                                  * and not so rare event. We still can lose it now,
5464                                                  * if it spins in bh_lock_sock(), but it is really
5465                                                  * marginal case.
5466                                                  */
5467                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5468                                         } else {
5469                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5470                                                 goto discard;
5471                                         }
5472                                 }
5473                         }
5474                         break;
5475
5476                 case TCP_CLOSING:
5477                         if (tp->snd_una == tp->write_seq) {
5478                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5479                                 goto discard;
5480                         }
5481                         break;
5482
5483                 case TCP_LAST_ACK:
5484                         if (tp->snd_una == tp->write_seq) {
5485                                 tcp_update_metrics(sk);
5486                                 tcp_done(sk);
5487                                 goto discard;
5488                         }
5489                         break;
5490                 }
5491         } else
5492                 goto discard;
5493
5494         /* step 6: check the URG bit */
5495         tcp_urg(sk, skb, th);
5496
5497         /* step 7: process the segment text */
5498         switch (sk->sk_state) {
5499         case TCP_CLOSE_WAIT:
5500         case TCP_CLOSING:
5501         case TCP_LAST_ACK:
5502                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5503                         break;
5504         case TCP_FIN_WAIT1:
5505         case TCP_FIN_WAIT2:
5506                 /* RFC 793 says to queue data in these states,
5507                  * RFC 1122 says we MUST send a reset.
5508                  * BSD 4.4 also does reset.
5509                  */
5510                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5511                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5512                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5513                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5514                                 tcp_reset(sk);
5515                                 return 1;
5516                         }
5517                 }
5518                 /* Fall through */
5519         case TCP_ESTABLISHED:
5520                 tcp_data_queue(sk, skb);
5521                 queued = 1;
5522                 break;
5523         }
5524
5525         /* tcp_data could move socket to TIME-WAIT */
5526         if (sk->sk_state != TCP_CLOSE) {
5527                 tcp_data_snd_check(sk);
5528                 tcp_ack_snd_check(sk);
5529         }
5530
5531         if (!queued) {
5532 discard:
5533                 __kfree_skb(skb);
5534         }
5535         return 0;
5536 }
5537
5538 EXPORT_SYMBOL(sysctl_tcp_ecn);
5539 EXPORT_SYMBOL(sysctl_tcp_reordering);
5540 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5541 EXPORT_SYMBOL(tcp_parse_options);
5542 #ifdef CONFIG_TCP_MD5SIG
5543 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5544 #endif
5545 EXPORT_SYMBOL(tcp_rcv_established);
5546 EXPORT_SYMBOL(tcp_rcv_state_process);
5547 EXPORT_SYMBOL(tcp_initialize_rcv_mss);