]> bbs.cooldavid.org Git - net-next-2.6.git/blob - kernel/trace/ring_buffer.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23
24 #include <asm/local.h>
25 #include "trace.h"
26
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32         int ret;
33
34         ret = trace_seq_printf(s, "# compressed entry header\n");
35         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38         ret = trace_seq_printf(s, "\n");
39         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40                                RINGBUF_TYPE_PADDING);
41         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42                                RINGBUF_TYPE_TIME_EXTEND);
43         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46         return ret;
47 }
48
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145
146 enum {
147         RB_BUFFERS_ON_BIT       = 0,
148         RB_BUFFERS_DISABLED_BIT = 1,
149 };
150
151 enum {
152         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
153         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202         return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT       0
213 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT       1
216 # define RB_ARCH_ALIGNMENT              8U
217 #endif
218
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222 enum {
223         RB_LEN_TIME_EXTEND = 8,
224         RB_LEN_TIME_STAMP = 16,
225 };
226
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234         /* padding has a NULL time_delta */
235         event->type_len = RINGBUF_TYPE_PADDING;
236         event->time_delta = 0;
237 }
238
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242         unsigned length;
243
244         if (event->type_len)
245                 length = event->type_len * RB_ALIGNMENT;
246         else
247                 length = event->array[0];
248         return length + RB_EVNT_HDR_SIZE;
249 }
250
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255         switch (event->type_len) {
256         case RINGBUF_TYPE_PADDING:
257                 if (rb_null_event(event))
258                         /* undefined */
259                         return -1;
260                 return  event->array[0] + RB_EVNT_HDR_SIZE;
261
262         case RINGBUF_TYPE_TIME_EXTEND:
263                 return RB_LEN_TIME_EXTEND;
264
265         case RINGBUF_TYPE_TIME_STAMP:
266                 return RB_LEN_TIME_STAMP;
267
268         case RINGBUF_TYPE_DATA:
269                 return rb_event_data_length(event);
270         default:
271                 BUG();
272         }
273         /* not hit */
274         return 0;
275 }
276
277 /**
278  * ring_buffer_event_length - return the length of the event
279  * @event: the event to get the length of
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283         unsigned length = rb_event_length(event);
284         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285                 return length;
286         length -= RB_EVNT_HDR_SIZE;
287         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                 length -= sizeof(event->array[0]);
289         return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298         /* If length is in len field, then array[0] has the data */
299         if (event->type_len)
300                 return (void *)&event->array[0];
301         /* Otherwise length is in array[0] and array[1] has the data */
302         return (void *)&event->array[1];
303 }
304
305 /**
306  * ring_buffer_event_data - return the data of the event
307  * @event: the event to get the data from
308  */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311         return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314
315 #define for_each_buffer_cpu(buffer, cpu)                \
316         for_each_cpu(cpu, buffer->cpumask)
317
318 #define TS_SHIFT        27
319 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST   (~TS_MASK)
321
322 struct buffer_data_page {
323         u64              time_stamp;    /* page time stamp */
324         local_t          commit;        /* write committed index */
325         unsigned char    data[];        /* data of buffer page */
326 };
327
328 /*
329  * Note, the buffer_page list must be first. The buffer pages
330  * are allocated in cache lines, which means that each buffer
331  * page will be at the beginning of a cache line, and thus
332  * the least significant bits will be zero. We use this to
333  * add flags in the list struct pointers, to make the ring buffer
334  * lockless.
335  */
336 struct buffer_page {
337         struct list_head list;          /* list of buffer pages */
338         local_t          write;         /* index for next write */
339         unsigned         read;          /* index for next read */
340         local_t          entries;       /* entries on this page */
341         struct buffer_data_page *page;  /* Actual data page */
342 };
343
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK           0xfffff
357 #define RB_WRITE_INTCNT         (1 << 20)
358
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361         local_set(&bpage->commit, 0);
362 }
363
364 /**
365  * ring_buffer_page_len - the size of data on the page.
366  * @page: The page to read
367  *
368  * Returns the amount of data on the page, including buffer page header.
369  */
370 size_t ring_buffer_page_len(void *page)
371 {
372         return local_read(&((struct buffer_data_page *)page)->commit)
373                 + BUF_PAGE_HDR_SIZE;
374 }
375
376 /*
377  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378  * this issue out.
379  */
380 static void free_buffer_page(struct buffer_page *bpage)
381 {
382         free_page((unsigned long)bpage->page);
383         kfree(bpage);
384 }
385
386 /*
387  * We need to fit the time_stamp delta into 27 bits.
388  */
389 static inline int test_time_stamp(u64 delta)
390 {
391         if (delta & TS_DELTA_TEST)
392                 return 1;
393         return 0;
394 }
395
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
397
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403
404 int ring_buffer_print_page_header(struct trace_seq *s)
405 {
406         struct buffer_data_page field;
407         int ret;
408
409         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410                                "offset:0;\tsize:%u;\tsigned:%u;\n",
411                                (unsigned int)sizeof(field.time_stamp),
412                                (unsigned int)is_signed_type(u64));
413
414         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
416                                (unsigned int)offsetof(typeof(field), commit),
417                                (unsigned int)sizeof(field.commit),
418                                (unsigned int)is_signed_type(long));
419
420         ret = trace_seq_printf(s, "\tfield: char data;\t"
421                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
422                                (unsigned int)offsetof(typeof(field), data),
423                                (unsigned int)BUF_PAGE_SIZE,
424                                (unsigned int)is_signed_type(char));
425
426         return ret;
427 }
428
429 /*
430  * head_page == tail_page && head == tail then buffer is empty.
431  */
432 struct ring_buffer_per_cpu {
433         int                             cpu;
434         struct ring_buffer              *buffer;
435         spinlock_t                      reader_lock;    /* serialize readers */
436         arch_spinlock_t                 lock;
437         struct lock_class_key           lock_key;
438         struct list_head                *pages;
439         struct buffer_page              *head_page;     /* read from head */
440         struct buffer_page              *tail_page;     /* write to tail */
441         struct buffer_page              *commit_page;   /* committed pages */
442         struct buffer_page              *reader_page;
443         local_t                         commit_overrun;
444         local_t                         overrun;
445         local_t                         entries;
446         local_t                         committing;
447         local_t                         commits;
448         unsigned long                   read;
449         u64                             write_stamp;
450         u64                             read_stamp;
451         atomic_t                        record_disabled;
452 };
453
454 struct ring_buffer {
455         unsigned                        pages;
456         unsigned                        flags;
457         int                             cpus;
458         atomic_t                        record_disabled;
459         cpumask_var_t                   cpumask;
460
461         struct lock_class_key           *reader_lock_key;
462
463         struct mutex                    mutex;
464
465         struct ring_buffer_per_cpu      **buffers;
466
467 #ifdef CONFIG_HOTPLUG_CPU
468         struct notifier_block           cpu_notify;
469 #endif
470         u64                             (*clock)(void);
471 };
472
473 struct ring_buffer_iter {
474         struct ring_buffer_per_cpu      *cpu_buffer;
475         unsigned long                   head;
476         struct buffer_page              *head_page;
477         struct buffer_page              *cache_reader_page;
478         unsigned long                   cache_read;
479         u64                             read_stamp;
480 };
481
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond)                                             \
484         ({                                                              \
485                 int _____ret = unlikely(cond);                          \
486                 if (_____ret) {                                         \
487                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488                                 struct ring_buffer_per_cpu *__b =       \
489                                         (void *)b;                      \
490                                 atomic_inc(&__b->buffer->record_disabled); \
491                         } else                                          \
492                                 atomic_inc(&b->record_disabled);        \
493                         WARN_ON(1);                                     \
494                 }                                                       \
495                 _____ret;                                               \
496         })
497
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
500
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
502 {
503         /* shift to debug/test normalization and TIME_EXTENTS */
504         return buffer->clock() << DEBUG_SHIFT;
505 }
506
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508 {
509         u64 time;
510
511         preempt_disable_notrace();
512         time = rb_time_stamp(buffer);
513         preempt_enable_no_resched_notrace();
514
515         return time;
516 }
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520                                       int cpu, u64 *ts)
521 {
522         /* Just stupid testing the normalize function and deltas */
523         *ts >>= DEBUG_SHIFT;
524 }
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526
527 /*
528  * Making the ring buffer lockless makes things tricky.
529  * Although writes only happen on the CPU that they are on,
530  * and they only need to worry about interrupts. Reads can
531  * happen on any CPU.
532  *
533  * The reader page is always off the ring buffer, but when the
534  * reader finishes with a page, it needs to swap its page with
535  * a new one from the buffer. The reader needs to take from
536  * the head (writes go to the tail). But if a writer is in overwrite
537  * mode and wraps, it must push the head page forward.
538  *
539  * Here lies the problem.
540  *
541  * The reader must be careful to replace only the head page, and
542  * not another one. As described at the top of the file in the
543  * ASCII art, the reader sets its old page to point to the next
544  * page after head. It then sets the page after head to point to
545  * the old reader page. But if the writer moves the head page
546  * during this operation, the reader could end up with the tail.
547  *
548  * We use cmpxchg to help prevent this race. We also do something
549  * special with the page before head. We set the LSB to 1.
550  *
551  * When the writer must push the page forward, it will clear the
552  * bit that points to the head page, move the head, and then set
553  * the bit that points to the new head page.
554  *
555  * We also don't want an interrupt coming in and moving the head
556  * page on another writer. Thus we use the second LSB to catch
557  * that too. Thus:
558  *
559  * head->list->prev->next        bit 1          bit 0
560  *                              -------        -------
561  * Normal page                     0              0
562  * Points to head page             0              1
563  * New head page                   1              0
564  *
565  * Note we can not trust the prev pointer of the head page, because:
566  *
567  * +----+       +-----+        +-----+
568  * |    |------>|  T  |---X--->|  N  |
569  * |    |<------|     |        |     |
570  * +----+       +-----+        +-----+
571  *   ^                           ^ |
572  *   |          +-----+          | |
573  *   +----------|  R  |----------+ |
574  *              |     |<-----------+
575  *              +-----+
576  *
577  * Key:  ---X-->  HEAD flag set in pointer
578  *         T      Tail page
579  *         R      Reader page
580  *         N      Next page
581  *
582  * (see __rb_reserve_next() to see where this happens)
583  *
584  *  What the above shows is that the reader just swapped out
585  *  the reader page with a page in the buffer, but before it
586  *  could make the new header point back to the new page added
587  *  it was preempted by a writer. The writer moved forward onto
588  *  the new page added by the reader and is about to move forward
589  *  again.
590  *
591  *  You can see, it is legitimate for the previous pointer of
592  *  the head (or any page) not to point back to itself. But only
593  *  temporarially.
594  */
595
596 #define RB_PAGE_NORMAL          0UL
597 #define RB_PAGE_HEAD            1UL
598 #define RB_PAGE_UPDATE          2UL
599
600
601 #define RB_FLAG_MASK            3UL
602
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED           4UL
605
606 /*
607  * rb_list_head - remove any bit
608  */
609 static struct list_head *rb_list_head(struct list_head *list)
610 {
611         unsigned long val = (unsigned long)list;
612
613         return (struct list_head *)(val & ~RB_FLAG_MASK);
614 }
615
616 /*
617  * rb_is_head_page - test if the given page is the head page
618  *
619  * Because the reader may move the head_page pointer, we can
620  * not trust what the head page is (it may be pointing to
621  * the reader page). But if the next page is a header page,
622  * its flags will be non zero.
623  */
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626                 struct buffer_page *page, struct list_head *list)
627 {
628         unsigned long val;
629
630         val = (unsigned long)list->next;
631
632         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633                 return RB_PAGE_MOVED;
634
635         return val & RB_FLAG_MASK;
636 }
637
638 /*
639  * rb_is_reader_page
640  *
641  * The unique thing about the reader page, is that, if the
642  * writer is ever on it, the previous pointer never points
643  * back to the reader page.
644  */
645 static int rb_is_reader_page(struct buffer_page *page)
646 {
647         struct list_head *list = page->list.prev;
648
649         return rb_list_head(list->next) != &page->list;
650 }
651
652 /*
653  * rb_set_list_to_head - set a list_head to be pointing to head.
654  */
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656                                 struct list_head *list)
657 {
658         unsigned long *ptr;
659
660         ptr = (unsigned long *)&list->next;
661         *ptr |= RB_PAGE_HEAD;
662         *ptr &= ~RB_PAGE_UPDATE;
663 }
664
665 /*
666  * rb_head_page_activate - sets up head page
667  */
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670         struct buffer_page *head;
671
672         head = cpu_buffer->head_page;
673         if (!head)
674                 return;
675
676         /*
677          * Set the previous list pointer to have the HEAD flag.
678          */
679         rb_set_list_to_head(cpu_buffer, head->list.prev);
680 }
681
682 static void rb_list_head_clear(struct list_head *list)
683 {
684         unsigned long *ptr = (unsigned long *)&list->next;
685
686         *ptr &= ~RB_FLAG_MASK;
687 }
688
689 /*
690  * rb_head_page_dactivate - clears head page ptr (for free list)
691  */
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct list_head *hd;
696
697         /* Go through the whole list and clear any pointers found. */
698         rb_list_head_clear(cpu_buffer->pages);
699
700         list_for_each(hd, cpu_buffer->pages)
701                 rb_list_head_clear(hd);
702 }
703
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705                             struct buffer_page *head,
706                             struct buffer_page *prev,
707                             int old_flag, int new_flag)
708 {
709         struct list_head *list;
710         unsigned long val = (unsigned long)&head->list;
711         unsigned long ret;
712
713         list = &prev->list;
714
715         val &= ~RB_FLAG_MASK;
716
717         ret = cmpxchg((unsigned long *)&list->next,
718                       val | old_flag, val | new_flag);
719
720         /* check if the reader took the page */
721         if ((ret & ~RB_FLAG_MASK) != val)
722                 return RB_PAGE_MOVED;
723
724         return ret & RB_FLAG_MASK;
725 }
726
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728                                    struct buffer_page *head,
729                                    struct buffer_page *prev,
730                                    int old_flag)
731 {
732         return rb_head_page_set(cpu_buffer, head, prev,
733                                 old_flag, RB_PAGE_UPDATE);
734 }
735
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737                                  struct buffer_page *head,
738                                  struct buffer_page *prev,
739                                  int old_flag)
740 {
741         return rb_head_page_set(cpu_buffer, head, prev,
742                                 old_flag, RB_PAGE_HEAD);
743 }
744
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746                                    struct buffer_page *head,
747                                    struct buffer_page *prev,
748                                    int old_flag)
749 {
750         return rb_head_page_set(cpu_buffer, head, prev,
751                                 old_flag, RB_PAGE_NORMAL);
752 }
753
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755                                struct buffer_page **bpage)
756 {
757         struct list_head *p = rb_list_head((*bpage)->list.next);
758
759         *bpage = list_entry(p, struct buffer_page, list);
760 }
761
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764 {
765         struct buffer_page *head;
766         struct buffer_page *page;
767         struct list_head *list;
768         int i;
769
770         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771                 return NULL;
772
773         /* sanity check */
774         list = cpu_buffer->pages;
775         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776                 return NULL;
777
778         page = head = cpu_buffer->head_page;
779         /*
780          * It is possible that the writer moves the header behind
781          * where we started, and we miss in one loop.
782          * A second loop should grab the header, but we'll do
783          * three loops just because I'm paranoid.
784          */
785         for (i = 0; i < 3; i++) {
786                 do {
787                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788                                 cpu_buffer->head_page = page;
789                                 return page;
790                         }
791                         rb_inc_page(cpu_buffer, &page);
792                 } while (page != head);
793         }
794
795         RB_WARN_ON(cpu_buffer, 1);
796
797         return NULL;
798 }
799
800 static int rb_head_page_replace(struct buffer_page *old,
801                                 struct buffer_page *new)
802 {
803         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804         unsigned long val;
805         unsigned long ret;
806
807         val = *ptr & ~RB_FLAG_MASK;
808         val |= RB_PAGE_HEAD;
809
810         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
811
812         return ret == val;
813 }
814
815 /*
816  * rb_tail_page_update - move the tail page forward
817  *
818  * Returns 1 if moved tail page, 0 if someone else did.
819  */
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821                                struct buffer_page *tail_page,
822                                struct buffer_page *next_page)
823 {
824         struct buffer_page *old_tail;
825         unsigned long old_entries;
826         unsigned long old_write;
827         int ret = 0;
828
829         /*
830          * The tail page now needs to be moved forward.
831          *
832          * We need to reset the tail page, but without messing
833          * with possible erasing of data brought in by interrupts
834          * that have moved the tail page and are currently on it.
835          *
836          * We add a counter to the write field to denote this.
837          */
838         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840
841         /*
842          * Just make sure we have seen our old_write and synchronize
843          * with any interrupts that come in.
844          */
845         barrier();
846
847         /*
848          * If the tail page is still the same as what we think
849          * it is, then it is up to us to update the tail
850          * pointer.
851          */
852         if (tail_page == cpu_buffer->tail_page) {
853                 /* Zero the write counter */
854                 unsigned long val = old_write & ~RB_WRITE_MASK;
855                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
856
857                 /*
858                  * This will only succeed if an interrupt did
859                  * not come in and change it. In which case, we
860                  * do not want to modify it.
861                  *
862                  * We add (void) to let the compiler know that we do not care
863                  * about the return value of these functions. We use the
864                  * cmpxchg to only update if an interrupt did not already
865                  * do it for us. If the cmpxchg fails, we don't care.
866                  */
867                 (void)local_cmpxchg(&next_page->write, old_write, val);
868                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
869
870                 /*
871                  * No need to worry about races with clearing out the commit.
872                  * it only can increment when a commit takes place. But that
873                  * only happens in the outer most nested commit.
874                  */
875                 local_set(&next_page->page->commit, 0);
876
877                 old_tail = cmpxchg(&cpu_buffer->tail_page,
878                                    tail_page, next_page);
879
880                 if (old_tail == tail_page)
881                         ret = 1;
882         }
883
884         return ret;
885 }
886
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888                           struct buffer_page *bpage)
889 {
890         unsigned long val = (unsigned long)bpage;
891
892         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893                 return 1;
894
895         return 0;
896 }
897
898 /**
899  * rb_check_list - make sure a pointer to a list has the last bits zero
900  */
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902                          struct list_head *list)
903 {
904         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905                 return 1;
906         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907                 return 1;
908         return 0;
909 }
910
911 /**
912  * check_pages - integrity check of buffer pages
913  * @cpu_buffer: CPU buffer with pages to test
914  *
915  * As a safety measure we check to make sure the data pages have not
916  * been corrupted.
917  */
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919 {
920         struct list_head *head = cpu_buffer->pages;
921         struct buffer_page *bpage, *tmp;
922
923         rb_head_page_deactivate(cpu_buffer);
924
925         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926                 return -1;
927         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928                 return -1;
929
930         if (rb_check_list(cpu_buffer, head))
931                 return -1;
932
933         list_for_each_entry_safe(bpage, tmp, head, list) {
934                 if (RB_WARN_ON(cpu_buffer,
935                                bpage->list.next->prev != &bpage->list))
936                         return -1;
937                 if (RB_WARN_ON(cpu_buffer,
938                                bpage->list.prev->next != &bpage->list))
939                         return -1;
940                 if (rb_check_list(cpu_buffer, &bpage->list))
941                         return -1;
942         }
943
944         rb_head_page_activate(cpu_buffer);
945
946         return 0;
947 }
948
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950                              unsigned nr_pages)
951 {
952         struct buffer_page *bpage, *tmp;
953         unsigned long addr;
954         LIST_HEAD(pages);
955         unsigned i;
956
957         WARN_ON(!nr_pages);
958
959         for (i = 0; i < nr_pages; i++) {
960                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962                 if (!bpage)
963                         goto free_pages;
964
965                 rb_check_bpage(cpu_buffer, bpage);
966
967                 list_add(&bpage->list, &pages);
968
969                 addr = __get_free_page(GFP_KERNEL);
970                 if (!addr)
971                         goto free_pages;
972                 bpage->page = (void *)addr;
973                 rb_init_page(bpage->page);
974         }
975
976         /*
977          * The ring buffer page list is a circular list that does not
978          * start and end with a list head. All page list items point to
979          * other pages.
980          */
981         cpu_buffer->pages = pages.next;
982         list_del(&pages);
983
984         rb_check_pages(cpu_buffer);
985
986         return 0;
987
988  free_pages:
989         list_for_each_entry_safe(bpage, tmp, &pages, list) {
990                 list_del_init(&bpage->list);
991                 free_buffer_page(bpage);
992         }
993         return -ENOMEM;
994 }
995
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998 {
999         struct ring_buffer_per_cpu *cpu_buffer;
1000         struct buffer_page *bpage;
1001         unsigned long addr;
1002         int ret;
1003
1004         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005                                   GFP_KERNEL, cpu_to_node(cpu));
1006         if (!cpu_buffer)
1007                 return NULL;
1008
1009         cpu_buffer->cpu = cpu;
1010         cpu_buffer->buffer = buffer;
1011         spin_lock_init(&cpu_buffer->reader_lock);
1012         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1014
1015         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016                             GFP_KERNEL, cpu_to_node(cpu));
1017         if (!bpage)
1018                 goto fail_free_buffer;
1019
1020         rb_check_bpage(cpu_buffer, bpage);
1021
1022         cpu_buffer->reader_page = bpage;
1023         addr = __get_free_page(GFP_KERNEL);
1024         if (!addr)
1025                 goto fail_free_reader;
1026         bpage->page = (void *)addr;
1027         rb_init_page(bpage->page);
1028
1029         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1030
1031         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032         if (ret < 0)
1033                 goto fail_free_reader;
1034
1035         cpu_buffer->head_page
1036                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1037         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1038
1039         rb_head_page_activate(cpu_buffer);
1040
1041         return cpu_buffer;
1042
1043  fail_free_reader:
1044         free_buffer_page(cpu_buffer->reader_page);
1045
1046  fail_free_buffer:
1047         kfree(cpu_buffer);
1048         return NULL;
1049 }
1050
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053         struct list_head *head = cpu_buffer->pages;
1054         struct buffer_page *bpage, *tmp;
1055
1056         free_buffer_page(cpu_buffer->reader_page);
1057
1058         rb_head_page_deactivate(cpu_buffer);
1059
1060         if (head) {
1061                 list_for_each_entry_safe(bpage, tmp, head, list) {
1062                         list_del_init(&bpage->list);
1063                         free_buffer_page(bpage);
1064                 }
1065                 bpage = list_entry(head, struct buffer_page, list);
1066                 free_buffer_page(bpage);
1067         }
1068
1069         kfree(cpu_buffer);
1070 }
1071
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074                          unsigned long action, void *hcpu);
1075 #endif
1076
1077 /**
1078  * ring_buffer_alloc - allocate a new ring_buffer
1079  * @size: the size in bytes per cpu that is needed.
1080  * @flags: attributes to set for the ring buffer.
1081  *
1082  * Currently the only flag that is available is the RB_FL_OVERWRITE
1083  * flag. This flag means that the buffer will overwrite old data
1084  * when the buffer wraps. If this flag is not set, the buffer will
1085  * drop data when the tail hits the head.
1086  */
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088                                         struct lock_class_key *key)
1089 {
1090         struct ring_buffer *buffer;
1091         int bsize;
1092         int cpu;
1093
1094         /* keep it in its own cache line */
1095         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096                          GFP_KERNEL);
1097         if (!buffer)
1098                 return NULL;
1099
1100         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101                 goto fail_free_buffer;
1102
1103         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104         buffer->flags = flags;
1105         buffer->clock = trace_clock_local;
1106         buffer->reader_lock_key = key;
1107
1108         /* need at least two pages */
1109         if (buffer->pages < 2)
1110                 buffer->pages = 2;
1111
1112         /*
1113          * In case of non-hotplug cpu, if the ring-buffer is allocated
1114          * in early initcall, it will not be notified of secondary cpus.
1115          * In that off case, we need to allocate for all possible cpus.
1116          */
1117 #ifdef CONFIG_HOTPLUG_CPU
1118         get_online_cpus();
1119         cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123         buffer->cpus = nr_cpu_ids;
1124
1125         bsize = sizeof(void *) * nr_cpu_ids;
1126         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127                                   GFP_KERNEL);
1128         if (!buffer->buffers)
1129                 goto fail_free_cpumask;
1130
1131         for_each_buffer_cpu(buffer, cpu) {
1132                 buffer->buffers[cpu] =
1133                         rb_allocate_cpu_buffer(buffer, cpu);
1134                 if (!buffer->buffers[cpu])
1135                         goto fail_free_buffers;
1136         }
1137
1138 #ifdef CONFIG_HOTPLUG_CPU
1139         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140         buffer->cpu_notify.priority = 0;
1141         register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1143
1144         put_online_cpus();
1145         mutex_init(&buffer->mutex);
1146
1147         return buffer;
1148
1149  fail_free_buffers:
1150         for_each_buffer_cpu(buffer, cpu) {
1151                 if (buffer->buffers[cpu])
1152                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1153         }
1154         kfree(buffer->buffers);
1155
1156  fail_free_cpumask:
1157         free_cpumask_var(buffer->cpumask);
1158         put_online_cpus();
1159
1160  fail_free_buffer:
1161         kfree(buffer);
1162         return NULL;
1163 }
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1165
1166 /**
1167  * ring_buffer_free - free a ring buffer.
1168  * @buffer: the buffer to free.
1169  */
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1172 {
1173         int cpu;
1174
1175         get_online_cpus();
1176
1177 #ifdef CONFIG_HOTPLUG_CPU
1178         unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1180
1181         for_each_buffer_cpu(buffer, cpu)
1182                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1183
1184         put_online_cpus();
1185
1186         kfree(buffer->buffers);
1187         free_cpumask_var(buffer->cpumask);
1188
1189         kfree(buffer);
1190 }
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1192
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194                            u64 (*clock)(void))
1195 {
1196         buffer->clock = clock;
1197 }
1198
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203 {
1204         struct buffer_page *bpage;
1205         struct list_head *p;
1206         unsigned i;
1207
1208         spin_lock_irq(&cpu_buffer->reader_lock);
1209         rb_head_page_deactivate(cpu_buffer);
1210
1211         for (i = 0; i < nr_pages; i++) {
1212                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213                         return;
1214                 p = cpu_buffer->pages->next;
1215                 bpage = list_entry(p, struct buffer_page, list);
1216                 list_del_init(&bpage->list);
1217                 free_buffer_page(bpage);
1218         }
1219         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220                 return;
1221
1222         rb_reset_cpu(cpu_buffer);
1223         rb_check_pages(cpu_buffer);
1224
1225         spin_unlock_irq(&cpu_buffer->reader_lock);
1226 }
1227
1228 static void
1229 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1230                 struct list_head *pages, unsigned nr_pages)
1231 {
1232         struct buffer_page *bpage;
1233         struct list_head *p;
1234         unsigned i;
1235
1236         spin_lock_irq(&cpu_buffer->reader_lock);
1237         rb_head_page_deactivate(cpu_buffer);
1238
1239         for (i = 0; i < nr_pages; i++) {
1240                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1241                         return;
1242                 p = pages->next;
1243                 bpage = list_entry(p, struct buffer_page, list);
1244                 list_del_init(&bpage->list);
1245                 list_add_tail(&bpage->list, cpu_buffer->pages);
1246         }
1247         rb_reset_cpu(cpu_buffer);
1248         rb_check_pages(cpu_buffer);
1249
1250         spin_unlock_irq(&cpu_buffer->reader_lock);
1251 }
1252
1253 /**
1254  * ring_buffer_resize - resize the ring buffer
1255  * @buffer: the buffer to resize.
1256  * @size: the new size.
1257  *
1258  * Minimum size is 2 * BUF_PAGE_SIZE.
1259  *
1260  * Returns -1 on failure.
1261  */
1262 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263 {
1264         struct ring_buffer_per_cpu *cpu_buffer;
1265         unsigned nr_pages, rm_pages, new_pages;
1266         struct buffer_page *bpage, *tmp;
1267         unsigned long buffer_size;
1268         unsigned long addr;
1269         LIST_HEAD(pages);
1270         int i, cpu;
1271
1272         /*
1273          * Always succeed at resizing a non-existent buffer:
1274          */
1275         if (!buffer)
1276                 return size;
1277
1278         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1279         size *= BUF_PAGE_SIZE;
1280         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281
1282         /* we need a minimum of two pages */
1283         if (size < BUF_PAGE_SIZE * 2)
1284                 size = BUF_PAGE_SIZE * 2;
1285
1286         if (size == buffer_size)
1287                 return size;
1288
1289         atomic_inc(&buffer->record_disabled);
1290
1291         /* Make sure all writers are done with this buffer. */
1292         synchronize_sched();
1293
1294         mutex_lock(&buffer->mutex);
1295         get_online_cpus();
1296
1297         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1298
1299         if (size < buffer_size) {
1300
1301                 /* easy case, just free pages */
1302                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1303                         goto out_fail;
1304
1305                 rm_pages = buffer->pages - nr_pages;
1306
1307                 for_each_buffer_cpu(buffer, cpu) {
1308                         cpu_buffer = buffer->buffers[cpu];
1309                         rb_remove_pages(cpu_buffer, rm_pages);
1310                 }
1311                 goto out;
1312         }
1313
1314         /*
1315          * This is a bit more difficult. We only want to add pages
1316          * when we can allocate enough for all CPUs. We do this
1317          * by allocating all the pages and storing them on a local
1318          * link list. If we succeed in our allocation, then we
1319          * add these pages to the cpu_buffers. Otherwise we just free
1320          * them all and return -ENOMEM;
1321          */
1322         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1323                 goto out_fail;
1324
1325         new_pages = nr_pages - buffer->pages;
1326
1327         for_each_buffer_cpu(buffer, cpu) {
1328                 for (i = 0; i < new_pages; i++) {
1329                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1330                                                   cache_line_size()),
1331                                             GFP_KERNEL, cpu_to_node(cpu));
1332                         if (!bpage)
1333                                 goto free_pages;
1334                         list_add(&bpage->list, &pages);
1335                         addr = __get_free_page(GFP_KERNEL);
1336                         if (!addr)
1337                                 goto free_pages;
1338                         bpage->page = (void *)addr;
1339                         rb_init_page(bpage->page);
1340                 }
1341         }
1342
1343         for_each_buffer_cpu(buffer, cpu) {
1344                 cpu_buffer = buffer->buffers[cpu];
1345                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1346         }
1347
1348         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1349                 goto out_fail;
1350
1351  out:
1352         buffer->pages = nr_pages;
1353         put_online_cpus();
1354         mutex_unlock(&buffer->mutex);
1355
1356         atomic_dec(&buffer->record_disabled);
1357
1358         return size;
1359
1360  free_pages:
1361         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1362                 list_del_init(&bpage->list);
1363                 free_buffer_page(bpage);
1364         }
1365         put_online_cpus();
1366         mutex_unlock(&buffer->mutex);
1367         atomic_dec(&buffer->record_disabled);
1368         return -ENOMEM;
1369
1370         /*
1371          * Something went totally wrong, and we are too paranoid
1372          * to even clean up the mess.
1373          */
1374  out_fail:
1375         put_online_cpus();
1376         mutex_unlock(&buffer->mutex);
1377         atomic_dec(&buffer->record_disabled);
1378         return -1;
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1381
1382 static inline void *
1383 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1384 {
1385         return bpage->data + index;
1386 }
1387
1388 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1389 {
1390         return bpage->page->data + index;
1391 }
1392
1393 static inline struct ring_buffer_event *
1394 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1395 {
1396         return __rb_page_index(cpu_buffer->reader_page,
1397                                cpu_buffer->reader_page->read);
1398 }
1399
1400 static inline struct ring_buffer_event *
1401 rb_iter_head_event(struct ring_buffer_iter *iter)
1402 {
1403         return __rb_page_index(iter->head_page, iter->head);
1404 }
1405
1406 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1407 {
1408         return local_read(&bpage->write) & RB_WRITE_MASK;
1409 }
1410
1411 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1412 {
1413         return local_read(&bpage->page->commit);
1414 }
1415
1416 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1417 {
1418         return local_read(&bpage->entries) & RB_WRITE_MASK;
1419 }
1420
1421 /* Size is determined by what has been commited */
1422 static inline unsigned rb_page_size(struct buffer_page *bpage)
1423 {
1424         return rb_page_commit(bpage);
1425 }
1426
1427 static inline unsigned
1428 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1429 {
1430         return rb_page_commit(cpu_buffer->commit_page);
1431 }
1432
1433 static inline unsigned
1434 rb_event_index(struct ring_buffer_event *event)
1435 {
1436         unsigned long addr = (unsigned long)event;
1437
1438         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1439 }
1440
1441 static inline int
1442 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1443                    struct ring_buffer_event *event)
1444 {
1445         unsigned long addr = (unsigned long)event;
1446         unsigned long index;
1447
1448         index = rb_event_index(event);
1449         addr &= PAGE_MASK;
1450
1451         return cpu_buffer->commit_page->page == (void *)addr &&
1452                 rb_commit_index(cpu_buffer) == index;
1453 }
1454
1455 static void
1456 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458         unsigned long max_count;
1459
1460         /*
1461          * We only race with interrupts and NMIs on this CPU.
1462          * If we own the commit event, then we can commit
1463          * all others that interrupted us, since the interruptions
1464          * are in stack format (they finish before they come
1465          * back to us). This allows us to do a simple loop to
1466          * assign the commit to the tail.
1467          */
1468  again:
1469         max_count = cpu_buffer->buffer->pages * 100;
1470
1471         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1472                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1473                         return;
1474                 if (RB_WARN_ON(cpu_buffer,
1475                                rb_is_reader_page(cpu_buffer->tail_page)))
1476                         return;
1477                 local_set(&cpu_buffer->commit_page->page->commit,
1478                           rb_page_write(cpu_buffer->commit_page));
1479                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1480                 cpu_buffer->write_stamp =
1481                         cpu_buffer->commit_page->page->time_stamp;
1482                 /* add barrier to keep gcc from optimizing too much */
1483                 barrier();
1484         }
1485         while (rb_commit_index(cpu_buffer) !=
1486                rb_page_write(cpu_buffer->commit_page)) {
1487
1488                 local_set(&cpu_buffer->commit_page->page->commit,
1489                           rb_page_write(cpu_buffer->commit_page));
1490                 RB_WARN_ON(cpu_buffer,
1491                            local_read(&cpu_buffer->commit_page->page->commit) &
1492                            ~RB_WRITE_MASK);
1493                 barrier();
1494         }
1495
1496         /* again, keep gcc from optimizing */
1497         barrier();
1498
1499         /*
1500          * If an interrupt came in just after the first while loop
1501          * and pushed the tail page forward, we will be left with
1502          * a dangling commit that will never go forward.
1503          */
1504         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1505                 goto again;
1506 }
1507
1508 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1511         cpu_buffer->reader_page->read = 0;
1512 }
1513
1514 static void rb_inc_iter(struct ring_buffer_iter *iter)
1515 {
1516         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1517
1518         /*
1519          * The iterator could be on the reader page (it starts there).
1520          * But the head could have moved, since the reader was
1521          * found. Check for this case and assign the iterator
1522          * to the head page instead of next.
1523          */
1524         if (iter->head_page == cpu_buffer->reader_page)
1525                 iter->head_page = rb_set_head_page(cpu_buffer);
1526         else
1527                 rb_inc_page(cpu_buffer, &iter->head_page);
1528
1529         iter->read_stamp = iter->head_page->page->time_stamp;
1530         iter->head = 0;
1531 }
1532
1533 /**
1534  * ring_buffer_update_event - update event type and data
1535  * @event: the even to update
1536  * @type: the type of event
1537  * @length: the size of the event field in the ring buffer
1538  *
1539  * Update the type and data fields of the event. The length
1540  * is the actual size that is written to the ring buffer,
1541  * and with this, we can determine what to place into the
1542  * data field.
1543  */
1544 static void
1545 rb_update_event(struct ring_buffer_event *event,
1546                          unsigned type, unsigned length)
1547 {
1548         event->type_len = type;
1549
1550         switch (type) {
1551
1552         case RINGBUF_TYPE_PADDING:
1553         case RINGBUF_TYPE_TIME_EXTEND:
1554         case RINGBUF_TYPE_TIME_STAMP:
1555                 break;
1556
1557         case 0:
1558                 length -= RB_EVNT_HDR_SIZE;
1559                 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1560                         event->array[0] = length;
1561                 else
1562                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1563                 break;
1564         default:
1565                 BUG();
1566         }
1567 }
1568
1569 /*
1570  * rb_handle_head_page - writer hit the head page
1571  *
1572  * Returns: +1 to retry page
1573  *           0 to continue
1574  *          -1 on error
1575  */
1576 static int
1577 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1578                     struct buffer_page *tail_page,
1579                     struct buffer_page *next_page)
1580 {
1581         struct buffer_page *new_head;
1582         int entries;
1583         int type;
1584         int ret;
1585
1586         entries = rb_page_entries(next_page);
1587
1588         /*
1589          * The hard part is here. We need to move the head
1590          * forward, and protect against both readers on
1591          * other CPUs and writers coming in via interrupts.
1592          */
1593         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1594                                        RB_PAGE_HEAD);
1595
1596         /*
1597          * type can be one of four:
1598          *  NORMAL - an interrupt already moved it for us
1599          *  HEAD   - we are the first to get here.
1600          *  UPDATE - we are the interrupt interrupting
1601          *           a current move.
1602          *  MOVED  - a reader on another CPU moved the next
1603          *           pointer to its reader page. Give up
1604          *           and try again.
1605          */
1606
1607         switch (type) {
1608         case RB_PAGE_HEAD:
1609                 /*
1610                  * We changed the head to UPDATE, thus
1611                  * it is our responsibility to update
1612                  * the counters.
1613                  */
1614                 local_add(entries, &cpu_buffer->overrun);
1615
1616                 /*
1617                  * The entries will be zeroed out when we move the
1618                  * tail page.
1619                  */
1620
1621                 /* still more to do */
1622                 break;
1623
1624         case RB_PAGE_UPDATE:
1625                 /*
1626                  * This is an interrupt that interrupt the
1627                  * previous update. Still more to do.
1628                  */
1629                 break;
1630         case RB_PAGE_NORMAL:
1631                 /*
1632                  * An interrupt came in before the update
1633                  * and processed this for us.
1634                  * Nothing left to do.
1635                  */
1636                 return 1;
1637         case RB_PAGE_MOVED:
1638                 /*
1639                  * The reader is on another CPU and just did
1640                  * a swap with our next_page.
1641                  * Try again.
1642                  */
1643                 return 1;
1644         default:
1645                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1646                 return -1;
1647         }
1648
1649         /*
1650          * Now that we are here, the old head pointer is
1651          * set to UPDATE. This will keep the reader from
1652          * swapping the head page with the reader page.
1653          * The reader (on another CPU) will spin till
1654          * we are finished.
1655          *
1656          * We just need to protect against interrupts
1657          * doing the job. We will set the next pointer
1658          * to HEAD. After that, we set the old pointer
1659          * to NORMAL, but only if it was HEAD before.
1660          * otherwise we are an interrupt, and only
1661          * want the outer most commit to reset it.
1662          */
1663         new_head = next_page;
1664         rb_inc_page(cpu_buffer, &new_head);
1665
1666         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1667                                     RB_PAGE_NORMAL);
1668
1669         /*
1670          * Valid returns are:
1671          *  HEAD   - an interrupt came in and already set it.
1672          *  NORMAL - One of two things:
1673          *            1) We really set it.
1674          *            2) A bunch of interrupts came in and moved
1675          *               the page forward again.
1676          */
1677         switch (ret) {
1678         case RB_PAGE_HEAD:
1679         case RB_PAGE_NORMAL:
1680                 /* OK */
1681                 break;
1682         default:
1683                 RB_WARN_ON(cpu_buffer, 1);
1684                 return -1;
1685         }
1686
1687         /*
1688          * It is possible that an interrupt came in,
1689          * set the head up, then more interrupts came in
1690          * and moved it again. When we get back here,
1691          * the page would have been set to NORMAL but we
1692          * just set it back to HEAD.
1693          *
1694          * How do you detect this? Well, if that happened
1695          * the tail page would have moved.
1696          */
1697         if (ret == RB_PAGE_NORMAL) {
1698                 /*
1699                  * If the tail had moved passed next, then we need
1700                  * to reset the pointer.
1701                  */
1702                 if (cpu_buffer->tail_page != tail_page &&
1703                     cpu_buffer->tail_page != next_page)
1704                         rb_head_page_set_normal(cpu_buffer, new_head,
1705                                                 next_page,
1706                                                 RB_PAGE_HEAD);
1707         }
1708
1709         /*
1710          * If this was the outer most commit (the one that
1711          * changed the original pointer from HEAD to UPDATE),
1712          * then it is up to us to reset it to NORMAL.
1713          */
1714         if (type == RB_PAGE_HEAD) {
1715                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1716                                               tail_page,
1717                                               RB_PAGE_UPDATE);
1718                 if (RB_WARN_ON(cpu_buffer,
1719                                ret != RB_PAGE_UPDATE))
1720                         return -1;
1721         }
1722
1723         return 0;
1724 }
1725
1726 static unsigned rb_calculate_event_length(unsigned length)
1727 {
1728         struct ring_buffer_event event; /* Used only for sizeof array */
1729
1730         /* zero length can cause confusions */
1731         if (!length)
1732                 length = 1;
1733
1734         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1735                 length += sizeof(event.array[0]);
1736
1737         length += RB_EVNT_HDR_SIZE;
1738         length = ALIGN(length, RB_ARCH_ALIGNMENT);
1739
1740         return length;
1741 }
1742
1743 static inline void
1744 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1745               struct buffer_page *tail_page,
1746               unsigned long tail, unsigned long length)
1747 {
1748         struct ring_buffer_event *event;
1749
1750         /*
1751          * Only the event that crossed the page boundary
1752          * must fill the old tail_page with padding.
1753          */
1754         if (tail >= BUF_PAGE_SIZE) {
1755                 local_sub(length, &tail_page->write);
1756                 return;
1757         }
1758
1759         event = __rb_page_index(tail_page, tail);
1760         kmemcheck_annotate_bitfield(event, bitfield);
1761
1762         /*
1763          * If this event is bigger than the minimum size, then
1764          * we need to be careful that we don't subtract the
1765          * write counter enough to allow another writer to slip
1766          * in on this page.
1767          * We put in a discarded commit instead, to make sure
1768          * that this space is not used again.
1769          *
1770          * If we are less than the minimum size, we don't need to
1771          * worry about it.
1772          */
1773         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1774                 /* No room for any events */
1775
1776                 /* Mark the rest of the page with padding */
1777                 rb_event_set_padding(event);
1778
1779                 /* Set the write back to the previous setting */
1780                 local_sub(length, &tail_page->write);
1781                 return;
1782         }
1783
1784         /* Put in a discarded event */
1785         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1786         event->type_len = RINGBUF_TYPE_PADDING;
1787         /* time delta must be non zero */
1788         event->time_delta = 1;
1789
1790         /* Set write to end of buffer */
1791         length = (tail + length) - BUF_PAGE_SIZE;
1792         local_sub(length, &tail_page->write);
1793 }
1794
1795 static struct ring_buffer_event *
1796 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1797              unsigned long length, unsigned long tail,
1798              struct buffer_page *tail_page, u64 *ts)
1799 {
1800         struct buffer_page *commit_page = cpu_buffer->commit_page;
1801         struct ring_buffer *buffer = cpu_buffer->buffer;
1802         struct buffer_page *next_page;
1803         int ret;
1804
1805         next_page = tail_page;
1806
1807         rb_inc_page(cpu_buffer, &next_page);
1808
1809         /*
1810          * If for some reason, we had an interrupt storm that made
1811          * it all the way around the buffer, bail, and warn
1812          * about it.
1813          */
1814         if (unlikely(next_page == commit_page)) {
1815                 local_inc(&cpu_buffer->commit_overrun);
1816                 goto out_reset;
1817         }
1818
1819         /*
1820          * This is where the fun begins!
1821          *
1822          * We are fighting against races between a reader that
1823          * could be on another CPU trying to swap its reader
1824          * page with the buffer head.
1825          *
1826          * We are also fighting against interrupts coming in and
1827          * moving the head or tail on us as well.
1828          *
1829          * If the next page is the head page then we have filled
1830          * the buffer, unless the commit page is still on the
1831          * reader page.
1832          */
1833         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1834
1835                 /*
1836                  * If the commit is not on the reader page, then
1837                  * move the header page.
1838                  */
1839                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1840                         /*
1841                          * If we are not in overwrite mode,
1842                          * this is easy, just stop here.
1843                          */
1844                         if (!(buffer->flags & RB_FL_OVERWRITE))
1845                                 goto out_reset;
1846
1847                         ret = rb_handle_head_page(cpu_buffer,
1848                                                   tail_page,
1849                                                   next_page);
1850                         if (ret < 0)
1851                                 goto out_reset;
1852                         if (ret)
1853                                 goto out_again;
1854                 } else {
1855                         /*
1856                          * We need to be careful here too. The
1857                          * commit page could still be on the reader
1858                          * page. We could have a small buffer, and
1859                          * have filled up the buffer with events
1860                          * from interrupts and such, and wrapped.
1861                          *
1862                          * Note, if the tail page is also the on the
1863                          * reader_page, we let it move out.
1864                          */
1865                         if (unlikely((cpu_buffer->commit_page !=
1866                                       cpu_buffer->tail_page) &&
1867                                      (cpu_buffer->commit_page ==
1868                                       cpu_buffer->reader_page))) {
1869                                 local_inc(&cpu_buffer->commit_overrun);
1870                                 goto out_reset;
1871                         }
1872                 }
1873         }
1874
1875         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1876         if (ret) {
1877                 /*
1878                  * Nested commits always have zero deltas, so
1879                  * just reread the time stamp
1880                  */
1881                 *ts = rb_time_stamp(buffer);
1882                 next_page->page->time_stamp = *ts;
1883         }
1884
1885  out_again:
1886
1887         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1888
1889         /* fail and let the caller try again */
1890         return ERR_PTR(-EAGAIN);
1891
1892  out_reset:
1893         /* reset write */
1894         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1895
1896         return NULL;
1897 }
1898
1899 static struct ring_buffer_event *
1900 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1901                   unsigned type, unsigned long length, u64 *ts)
1902 {
1903         struct buffer_page *tail_page;
1904         struct ring_buffer_event *event;
1905         unsigned long tail, write;
1906
1907         tail_page = cpu_buffer->tail_page;
1908         write = local_add_return(length, &tail_page->write);
1909
1910         /* set write to only the index of the write */
1911         write &= RB_WRITE_MASK;
1912         tail = write - length;
1913
1914         /* See if we shot pass the end of this buffer page */
1915         if (write > BUF_PAGE_SIZE)
1916                 return rb_move_tail(cpu_buffer, length, tail,
1917                                     tail_page, ts);
1918
1919         /* We reserved something on the buffer */
1920
1921         event = __rb_page_index(tail_page, tail);
1922         kmemcheck_annotate_bitfield(event, bitfield);
1923         rb_update_event(event, type, length);
1924
1925         /* The passed in type is zero for DATA */
1926         if (likely(!type))
1927                 local_inc(&tail_page->entries);
1928
1929         /*
1930          * If this is the first commit on the page, then update
1931          * its timestamp.
1932          */
1933         if (!tail)
1934                 tail_page->page->time_stamp = *ts;
1935
1936         return event;
1937 }
1938
1939 static inline int
1940 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1941                   struct ring_buffer_event *event)
1942 {
1943         unsigned long new_index, old_index;
1944         struct buffer_page *bpage;
1945         unsigned long index;
1946         unsigned long addr;
1947
1948         new_index = rb_event_index(event);
1949         old_index = new_index + rb_event_length(event);
1950         addr = (unsigned long)event;
1951         addr &= PAGE_MASK;
1952
1953         bpage = cpu_buffer->tail_page;
1954
1955         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1956                 unsigned long write_mask =
1957                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1958                 /*
1959                  * This is on the tail page. It is possible that
1960                  * a write could come in and move the tail page
1961                  * and write to the next page. That is fine
1962                  * because we just shorten what is on this page.
1963                  */
1964                 old_index += write_mask;
1965                 new_index += write_mask;
1966                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1967                 if (index == old_index)
1968                         return 1;
1969         }
1970
1971         /* could not discard */
1972         return 0;
1973 }
1974
1975 static int
1976 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1977                   u64 *ts, u64 *delta)
1978 {
1979         struct ring_buffer_event *event;
1980         static int once;
1981         int ret;
1982
1983         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1984                 printk(KERN_WARNING "Delta way too big! %llu"
1985                        " ts=%llu write stamp = %llu\n",
1986                        (unsigned long long)*delta,
1987                        (unsigned long long)*ts,
1988                        (unsigned long long)cpu_buffer->write_stamp);
1989                 WARN_ON(1);
1990         }
1991
1992         /*
1993          * The delta is too big, we to add a
1994          * new timestamp.
1995          */
1996         event = __rb_reserve_next(cpu_buffer,
1997                                   RINGBUF_TYPE_TIME_EXTEND,
1998                                   RB_LEN_TIME_EXTEND,
1999                                   ts);
2000         if (!event)
2001                 return -EBUSY;
2002
2003         if (PTR_ERR(event) == -EAGAIN)
2004                 return -EAGAIN;
2005
2006         /* Only a commited time event can update the write stamp */
2007         if (rb_event_is_commit(cpu_buffer, event)) {
2008                 /*
2009                  * If this is the first on the page, then it was
2010                  * updated with the page itself. Try to discard it
2011                  * and if we can't just make it zero.
2012                  */
2013                 if (rb_event_index(event)) {
2014                         event->time_delta = *delta & TS_MASK;
2015                         event->array[0] = *delta >> TS_SHIFT;
2016                 } else {
2017                         /* try to discard, since we do not need this */
2018                         if (!rb_try_to_discard(cpu_buffer, event)) {
2019                                 /* nope, just zero it */
2020                                 event->time_delta = 0;
2021                                 event->array[0] = 0;
2022                         }
2023                 }
2024                 cpu_buffer->write_stamp = *ts;
2025                 /* let the caller know this was the commit */
2026                 ret = 1;
2027         } else {
2028                 /* Try to discard the event */
2029                 if (!rb_try_to_discard(cpu_buffer, event)) {
2030                         /* Darn, this is just wasted space */
2031                         event->time_delta = 0;
2032                         event->array[0] = 0;
2033                 }
2034                 ret = 0;
2035         }
2036
2037         *delta = 0;
2038
2039         return ret;
2040 }
2041
2042 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2043 {
2044         local_inc(&cpu_buffer->committing);
2045         local_inc(&cpu_buffer->commits);
2046 }
2047
2048 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2049 {
2050         unsigned long commits;
2051
2052         if (RB_WARN_ON(cpu_buffer,
2053                        !local_read(&cpu_buffer->committing)))
2054                 return;
2055
2056  again:
2057         commits = local_read(&cpu_buffer->commits);
2058         /* synchronize with interrupts */
2059         barrier();
2060         if (local_read(&cpu_buffer->committing) == 1)
2061                 rb_set_commit_to_write(cpu_buffer);
2062
2063         local_dec(&cpu_buffer->committing);
2064
2065         /* synchronize with interrupts */
2066         barrier();
2067
2068         /*
2069          * Need to account for interrupts coming in between the
2070          * updating of the commit page and the clearing of the
2071          * committing counter.
2072          */
2073         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2074             !local_read(&cpu_buffer->committing)) {
2075                 local_inc(&cpu_buffer->committing);
2076                 goto again;
2077         }
2078 }
2079
2080 static struct ring_buffer_event *
2081 rb_reserve_next_event(struct ring_buffer *buffer,
2082                       struct ring_buffer_per_cpu *cpu_buffer,
2083                       unsigned long length)
2084 {
2085         struct ring_buffer_event *event;
2086         u64 ts, delta = 0;
2087         int commit = 0;
2088         int nr_loops = 0;
2089
2090         rb_start_commit(cpu_buffer);
2091
2092 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2093         /*
2094          * Due to the ability to swap a cpu buffer from a buffer
2095          * it is possible it was swapped before we committed.
2096          * (committing stops a swap). We check for it here and
2097          * if it happened, we have to fail the write.
2098          */
2099         barrier();
2100         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2101                 local_dec(&cpu_buffer->committing);
2102                 local_dec(&cpu_buffer->commits);
2103                 return NULL;
2104         }
2105 #endif
2106
2107         length = rb_calculate_event_length(length);
2108  again:
2109         /*
2110          * We allow for interrupts to reenter here and do a trace.
2111          * If one does, it will cause this original code to loop
2112          * back here. Even with heavy interrupts happening, this
2113          * should only happen a few times in a row. If this happens
2114          * 1000 times in a row, there must be either an interrupt
2115          * storm or we have something buggy.
2116          * Bail!
2117          */
2118         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2119                 goto out_fail;
2120
2121         ts = rb_time_stamp(cpu_buffer->buffer);
2122
2123         /*
2124          * Only the first commit can update the timestamp.
2125          * Yes there is a race here. If an interrupt comes in
2126          * just after the conditional and it traces too, then it
2127          * will also check the deltas. More than one timestamp may
2128          * also be made. But only the entry that did the actual
2129          * commit will be something other than zero.
2130          */
2131         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2132                    rb_page_write(cpu_buffer->tail_page) ==
2133                    rb_commit_index(cpu_buffer))) {
2134                 u64 diff;
2135
2136                 diff = ts - cpu_buffer->write_stamp;
2137
2138                 /* make sure this diff is calculated here */
2139                 barrier();
2140
2141                 /* Did the write stamp get updated already? */
2142                 if (unlikely(ts < cpu_buffer->write_stamp))
2143                         goto get_event;
2144
2145                 delta = diff;
2146                 if (unlikely(test_time_stamp(delta))) {
2147
2148                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2149                         if (commit == -EBUSY)
2150                                 goto out_fail;
2151
2152                         if (commit == -EAGAIN)
2153                                 goto again;
2154
2155                         RB_WARN_ON(cpu_buffer, commit < 0);
2156                 }
2157         }
2158
2159  get_event:
2160         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2161         if (unlikely(PTR_ERR(event) == -EAGAIN))
2162                 goto again;
2163
2164         if (!event)
2165                 goto out_fail;
2166
2167         if (!rb_event_is_commit(cpu_buffer, event))
2168                 delta = 0;
2169
2170         event->time_delta = delta;
2171
2172         return event;
2173
2174  out_fail:
2175         rb_end_commit(cpu_buffer);
2176         return NULL;
2177 }
2178
2179 #ifdef CONFIG_TRACING
2180
2181 #define TRACE_RECURSIVE_DEPTH 16
2182
2183 static int trace_recursive_lock(void)
2184 {
2185         current->trace_recursion++;
2186
2187         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2188                 return 0;
2189
2190         /* Disable all tracing before we do anything else */
2191         tracing_off_permanent();
2192
2193         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2194                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2195                     current->trace_recursion,
2196                     hardirq_count() >> HARDIRQ_SHIFT,
2197                     softirq_count() >> SOFTIRQ_SHIFT,
2198                     in_nmi());
2199
2200         WARN_ON_ONCE(1);
2201         return -1;
2202 }
2203
2204 static void trace_recursive_unlock(void)
2205 {
2206         WARN_ON_ONCE(!current->trace_recursion);
2207
2208         current->trace_recursion--;
2209 }
2210
2211 #else
2212
2213 #define trace_recursive_lock()          (0)
2214 #define trace_recursive_unlock()        do { } while (0)
2215
2216 #endif
2217
2218 static DEFINE_PER_CPU(int, rb_need_resched);
2219
2220 /**
2221  * ring_buffer_lock_reserve - reserve a part of the buffer
2222  * @buffer: the ring buffer to reserve from
2223  * @length: the length of the data to reserve (excluding event header)
2224  *
2225  * Returns a reseverd event on the ring buffer to copy directly to.
2226  * The user of this interface will need to get the body to write into
2227  * and can use the ring_buffer_event_data() interface.
2228  *
2229  * The length is the length of the data needed, not the event length
2230  * which also includes the event header.
2231  *
2232  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2233  * If NULL is returned, then nothing has been allocated or locked.
2234  */
2235 struct ring_buffer_event *
2236 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2237 {
2238         struct ring_buffer_per_cpu *cpu_buffer;
2239         struct ring_buffer_event *event;
2240         int cpu, resched;
2241
2242         if (ring_buffer_flags != RB_BUFFERS_ON)
2243                 return NULL;
2244
2245         /* If we are tracing schedule, we don't want to recurse */
2246         resched = ftrace_preempt_disable();
2247
2248         if (atomic_read(&buffer->record_disabled))
2249                 goto out_nocheck;
2250
2251         if (trace_recursive_lock())
2252                 goto out_nocheck;
2253
2254         cpu = raw_smp_processor_id();
2255
2256         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2257                 goto out;
2258
2259         cpu_buffer = buffer->buffers[cpu];
2260
2261         if (atomic_read(&cpu_buffer->record_disabled))
2262                 goto out;
2263
2264         if (length > BUF_MAX_DATA_SIZE)
2265                 goto out;
2266
2267         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2268         if (!event)
2269                 goto out;
2270
2271         /*
2272          * Need to store resched state on this cpu.
2273          * Only the first needs to.
2274          */
2275
2276         if (preempt_count() == 1)
2277                 per_cpu(rb_need_resched, cpu) = resched;
2278
2279         return event;
2280
2281  out:
2282         trace_recursive_unlock();
2283
2284  out_nocheck:
2285         ftrace_preempt_enable(resched);
2286         return NULL;
2287 }
2288 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2289
2290 static void
2291 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2292                       struct ring_buffer_event *event)
2293 {
2294         /*
2295          * The event first in the commit queue updates the
2296          * time stamp.
2297          */
2298         if (rb_event_is_commit(cpu_buffer, event))
2299                 cpu_buffer->write_stamp += event->time_delta;
2300 }
2301
2302 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2303                       struct ring_buffer_event *event)
2304 {
2305         local_inc(&cpu_buffer->entries);
2306         rb_update_write_stamp(cpu_buffer, event);
2307         rb_end_commit(cpu_buffer);
2308 }
2309
2310 /**
2311  * ring_buffer_unlock_commit - commit a reserved
2312  * @buffer: The buffer to commit to
2313  * @event: The event pointer to commit.
2314  *
2315  * This commits the data to the ring buffer, and releases any locks held.
2316  *
2317  * Must be paired with ring_buffer_lock_reserve.
2318  */
2319 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2320                               struct ring_buffer_event *event)
2321 {
2322         struct ring_buffer_per_cpu *cpu_buffer;
2323         int cpu = raw_smp_processor_id();
2324
2325         cpu_buffer = buffer->buffers[cpu];
2326
2327         rb_commit(cpu_buffer, event);
2328
2329         trace_recursive_unlock();
2330
2331         /*
2332          * Only the last preempt count needs to restore preemption.
2333          */
2334         if (preempt_count() == 1)
2335                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2336         else
2337                 preempt_enable_no_resched_notrace();
2338
2339         return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2342
2343 static inline void rb_event_discard(struct ring_buffer_event *event)
2344 {
2345         /* array[0] holds the actual length for the discarded event */
2346         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2347         event->type_len = RINGBUF_TYPE_PADDING;
2348         /* time delta must be non zero */
2349         if (!event->time_delta)
2350                 event->time_delta = 1;
2351 }
2352
2353 /*
2354  * Decrement the entries to the page that an event is on.
2355  * The event does not even need to exist, only the pointer
2356  * to the page it is on. This may only be called before the commit
2357  * takes place.
2358  */
2359 static inline void
2360 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2361                    struct ring_buffer_event *event)
2362 {
2363         unsigned long addr = (unsigned long)event;
2364         struct buffer_page *bpage = cpu_buffer->commit_page;
2365         struct buffer_page *start;
2366
2367         addr &= PAGE_MASK;
2368
2369         /* Do the likely case first */
2370         if (likely(bpage->page == (void *)addr)) {
2371                 local_dec(&bpage->entries);
2372                 return;
2373         }
2374
2375         /*
2376          * Because the commit page may be on the reader page we
2377          * start with the next page and check the end loop there.
2378          */
2379         rb_inc_page(cpu_buffer, &bpage);
2380         start = bpage;
2381         do {
2382                 if (bpage->page == (void *)addr) {
2383                         local_dec(&bpage->entries);
2384                         return;
2385                 }
2386                 rb_inc_page(cpu_buffer, &bpage);
2387         } while (bpage != start);
2388
2389         /* commit not part of this buffer?? */
2390         RB_WARN_ON(cpu_buffer, 1);
2391 }
2392
2393 /**
2394  * ring_buffer_commit_discard - discard an event that has not been committed
2395  * @buffer: the ring buffer
2396  * @event: non committed event to discard
2397  *
2398  * Sometimes an event that is in the ring buffer needs to be ignored.
2399  * This function lets the user discard an event in the ring buffer
2400  * and then that event will not be read later.
2401  *
2402  * This function only works if it is called before the the item has been
2403  * committed. It will try to free the event from the ring buffer
2404  * if another event has not been added behind it.
2405  *
2406  * If another event has been added behind it, it will set the event
2407  * up as discarded, and perform the commit.
2408  *
2409  * If this function is called, do not call ring_buffer_unlock_commit on
2410  * the event.
2411  */
2412 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2413                                 struct ring_buffer_event *event)
2414 {
2415         struct ring_buffer_per_cpu *cpu_buffer;
2416         int cpu;
2417
2418         /* The event is discarded regardless */
2419         rb_event_discard(event);
2420
2421         cpu = smp_processor_id();
2422         cpu_buffer = buffer->buffers[cpu];
2423
2424         /*
2425          * This must only be called if the event has not been
2426          * committed yet. Thus we can assume that preemption
2427          * is still disabled.
2428          */
2429         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2430
2431         rb_decrement_entry(cpu_buffer, event);
2432         if (rb_try_to_discard(cpu_buffer, event))
2433                 goto out;
2434
2435         /*
2436          * The commit is still visible by the reader, so we
2437          * must still update the timestamp.
2438          */
2439         rb_update_write_stamp(cpu_buffer, event);
2440  out:
2441         rb_end_commit(cpu_buffer);
2442
2443         trace_recursive_unlock();
2444
2445         /*
2446          * Only the last preempt count needs to restore preemption.
2447          */
2448         if (preempt_count() == 1)
2449                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2450         else
2451                 preempt_enable_no_resched_notrace();
2452
2453 }
2454 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2455
2456 /**
2457  * ring_buffer_write - write data to the buffer without reserving
2458  * @buffer: The ring buffer to write to.
2459  * @length: The length of the data being written (excluding the event header)
2460  * @data: The data to write to the buffer.
2461  *
2462  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2463  * one function. If you already have the data to write to the buffer, it
2464  * may be easier to simply call this function.
2465  *
2466  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2467  * and not the length of the event which would hold the header.
2468  */
2469 int ring_buffer_write(struct ring_buffer *buffer,
2470                         unsigned long length,
2471                         void *data)
2472 {
2473         struct ring_buffer_per_cpu *cpu_buffer;
2474         struct ring_buffer_event *event;
2475         void *body;
2476         int ret = -EBUSY;
2477         int cpu, resched;
2478
2479         if (ring_buffer_flags != RB_BUFFERS_ON)
2480                 return -EBUSY;
2481
2482         resched = ftrace_preempt_disable();
2483
2484         if (atomic_read(&buffer->record_disabled))
2485                 goto out;
2486
2487         cpu = raw_smp_processor_id();
2488
2489         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2490                 goto out;
2491
2492         cpu_buffer = buffer->buffers[cpu];
2493
2494         if (atomic_read(&cpu_buffer->record_disabled))
2495                 goto out;
2496
2497         if (length > BUF_MAX_DATA_SIZE)
2498                 goto out;
2499
2500         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2501         if (!event)
2502                 goto out;
2503
2504         body = rb_event_data(event);
2505
2506         memcpy(body, data, length);
2507
2508         rb_commit(cpu_buffer, event);
2509
2510         ret = 0;
2511  out:
2512         ftrace_preempt_enable(resched);
2513
2514         return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_write);
2517
2518 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2519 {
2520         struct buffer_page *reader = cpu_buffer->reader_page;
2521         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2522         struct buffer_page *commit = cpu_buffer->commit_page;
2523
2524         /* In case of error, head will be NULL */
2525         if (unlikely(!head))
2526                 return 1;
2527
2528         return reader->read == rb_page_commit(reader) &&
2529                 (commit == reader ||
2530                  (commit == head &&
2531                   head->read == rb_page_commit(commit)));
2532 }
2533
2534 /**
2535  * ring_buffer_record_disable - stop all writes into the buffer
2536  * @buffer: The ring buffer to stop writes to.
2537  *
2538  * This prevents all writes to the buffer. Any attempt to write
2539  * to the buffer after this will fail and return NULL.
2540  *
2541  * The caller should call synchronize_sched() after this.
2542  */
2543 void ring_buffer_record_disable(struct ring_buffer *buffer)
2544 {
2545         atomic_inc(&buffer->record_disabled);
2546 }
2547 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2548
2549 /**
2550  * ring_buffer_record_enable - enable writes to the buffer
2551  * @buffer: The ring buffer to enable writes
2552  *
2553  * Note, multiple disables will need the same number of enables
2554  * to truly enable the writing (much like preempt_disable).
2555  */
2556 void ring_buffer_record_enable(struct ring_buffer *buffer)
2557 {
2558         atomic_dec(&buffer->record_disabled);
2559 }
2560 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2561
2562 /**
2563  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2564  * @buffer: The ring buffer to stop writes to.
2565  * @cpu: The CPU buffer to stop
2566  *
2567  * This prevents all writes to the buffer. Any attempt to write
2568  * to the buffer after this will fail and return NULL.
2569  *
2570  * The caller should call synchronize_sched() after this.
2571  */
2572 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2573 {
2574         struct ring_buffer_per_cpu *cpu_buffer;
2575
2576         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2577                 return;
2578
2579         cpu_buffer = buffer->buffers[cpu];
2580         atomic_inc(&cpu_buffer->record_disabled);
2581 }
2582 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2583
2584 /**
2585  * ring_buffer_record_enable_cpu - enable writes to the buffer
2586  * @buffer: The ring buffer to enable writes
2587  * @cpu: The CPU to enable.
2588  *
2589  * Note, multiple disables will need the same number of enables
2590  * to truly enable the writing (much like preempt_disable).
2591  */
2592 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2593 {
2594         struct ring_buffer_per_cpu *cpu_buffer;
2595
2596         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2597                 return;
2598
2599         cpu_buffer = buffer->buffers[cpu];
2600         atomic_dec(&cpu_buffer->record_disabled);
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2603
2604 /**
2605  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2606  * @buffer: The ring buffer
2607  * @cpu: The per CPU buffer to get the entries from.
2608  */
2609 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2610 {
2611         struct ring_buffer_per_cpu *cpu_buffer;
2612         unsigned long ret;
2613
2614         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2615                 return 0;
2616
2617         cpu_buffer = buffer->buffers[cpu];
2618         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2619                 - cpu_buffer->read;
2620
2621         return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2624
2625 /**
2626  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2627  * @buffer: The ring buffer
2628  * @cpu: The per CPU buffer to get the number of overruns from
2629  */
2630 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2631 {
2632         struct ring_buffer_per_cpu *cpu_buffer;
2633         unsigned long ret;
2634
2635         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636                 return 0;
2637
2638         cpu_buffer = buffer->buffers[cpu];
2639         ret = local_read(&cpu_buffer->overrun);
2640
2641         return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2644
2645 /**
2646  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2647  * @buffer: The ring buffer
2648  * @cpu: The per CPU buffer to get the number of overruns from
2649  */
2650 unsigned long
2651 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2652 {
2653         struct ring_buffer_per_cpu *cpu_buffer;
2654         unsigned long ret;
2655
2656         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2657                 return 0;
2658
2659         cpu_buffer = buffer->buffers[cpu];
2660         ret = local_read(&cpu_buffer->commit_overrun);
2661
2662         return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2665
2666 /**
2667  * ring_buffer_entries - get the number of entries in a buffer
2668  * @buffer: The ring buffer
2669  *
2670  * Returns the total number of entries in the ring buffer
2671  * (all CPU entries)
2672  */
2673 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2674 {
2675         struct ring_buffer_per_cpu *cpu_buffer;
2676         unsigned long entries = 0;
2677         int cpu;
2678
2679         /* if you care about this being correct, lock the buffer */
2680         for_each_buffer_cpu(buffer, cpu) {
2681                 cpu_buffer = buffer->buffers[cpu];
2682                 entries += (local_read(&cpu_buffer->entries) -
2683                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2684         }
2685
2686         return entries;
2687 }
2688 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2689
2690 /**
2691  * ring_buffer_overruns - get the number of overruns in buffer
2692  * @buffer: The ring buffer
2693  *
2694  * Returns the total number of overruns in the ring buffer
2695  * (all CPU entries)
2696  */
2697 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2698 {
2699         struct ring_buffer_per_cpu *cpu_buffer;
2700         unsigned long overruns = 0;
2701         int cpu;
2702
2703         /* if you care about this being correct, lock the buffer */
2704         for_each_buffer_cpu(buffer, cpu) {
2705                 cpu_buffer = buffer->buffers[cpu];
2706                 overruns += local_read(&cpu_buffer->overrun);
2707         }
2708
2709         return overruns;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2712
2713 static void rb_iter_reset(struct ring_buffer_iter *iter)
2714 {
2715         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2716
2717         /* Iterator usage is expected to have record disabled */
2718         if (list_empty(&cpu_buffer->reader_page->list)) {
2719                 iter->head_page = rb_set_head_page(cpu_buffer);
2720                 if (unlikely(!iter->head_page))
2721                         return;
2722                 iter->head = iter->head_page->read;
2723         } else {
2724                 iter->head_page = cpu_buffer->reader_page;
2725                 iter->head = cpu_buffer->reader_page->read;
2726         }
2727         if (iter->head)
2728                 iter->read_stamp = cpu_buffer->read_stamp;
2729         else
2730                 iter->read_stamp = iter->head_page->page->time_stamp;
2731         iter->cache_reader_page = cpu_buffer->reader_page;
2732         iter->cache_read = cpu_buffer->read;
2733 }
2734
2735 /**
2736  * ring_buffer_iter_reset - reset an iterator
2737  * @iter: The iterator to reset
2738  *
2739  * Resets the iterator, so that it will start from the beginning
2740  * again.
2741  */
2742 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2743 {
2744         struct ring_buffer_per_cpu *cpu_buffer;
2745         unsigned long flags;
2746
2747         if (!iter)
2748                 return;
2749
2750         cpu_buffer = iter->cpu_buffer;
2751
2752         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2753         rb_iter_reset(iter);
2754         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2757
2758 /**
2759  * ring_buffer_iter_empty - check if an iterator has no more to read
2760  * @iter: The iterator to check
2761  */
2762 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2763 {
2764         struct ring_buffer_per_cpu *cpu_buffer;
2765
2766         cpu_buffer = iter->cpu_buffer;
2767
2768         return iter->head_page == cpu_buffer->commit_page &&
2769                 iter->head == rb_commit_index(cpu_buffer);
2770 }
2771 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2772
2773 static void
2774 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2775                      struct ring_buffer_event *event)
2776 {
2777         u64 delta;
2778
2779         switch (event->type_len) {
2780         case RINGBUF_TYPE_PADDING:
2781                 return;
2782
2783         case RINGBUF_TYPE_TIME_EXTEND:
2784                 delta = event->array[0];
2785                 delta <<= TS_SHIFT;
2786                 delta += event->time_delta;
2787                 cpu_buffer->read_stamp += delta;
2788                 return;
2789
2790         case RINGBUF_TYPE_TIME_STAMP:
2791                 /* FIXME: not implemented */
2792                 return;
2793
2794         case RINGBUF_TYPE_DATA:
2795                 cpu_buffer->read_stamp += event->time_delta;
2796                 return;
2797
2798         default:
2799                 BUG();
2800         }
2801         return;
2802 }
2803
2804 static void
2805 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2806                           struct ring_buffer_event *event)
2807 {
2808         u64 delta;
2809
2810         switch (event->type_len) {
2811         case RINGBUF_TYPE_PADDING:
2812                 return;
2813
2814         case RINGBUF_TYPE_TIME_EXTEND:
2815                 delta = event->array[0];
2816                 delta <<= TS_SHIFT;
2817                 delta += event->time_delta;
2818                 iter->read_stamp += delta;
2819                 return;
2820
2821         case RINGBUF_TYPE_TIME_STAMP:
2822                 /* FIXME: not implemented */
2823                 return;
2824
2825         case RINGBUF_TYPE_DATA:
2826                 iter->read_stamp += event->time_delta;
2827                 return;
2828
2829         default:
2830                 BUG();
2831         }
2832         return;
2833 }
2834
2835 static struct buffer_page *
2836 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2837 {
2838         struct buffer_page *reader = NULL;
2839         unsigned long flags;
2840         int nr_loops = 0;
2841         int ret;
2842
2843         local_irq_save(flags);
2844         arch_spin_lock(&cpu_buffer->lock);
2845
2846  again:
2847         /*
2848          * This should normally only loop twice. But because the
2849          * start of the reader inserts an empty page, it causes
2850          * a case where we will loop three times. There should be no
2851          * reason to loop four times (that I know of).
2852          */
2853         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2854                 reader = NULL;
2855                 goto out;
2856         }
2857
2858         reader = cpu_buffer->reader_page;
2859
2860         /* If there's more to read, return this page */
2861         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2862                 goto out;
2863
2864         /* Never should we have an index greater than the size */
2865         if (RB_WARN_ON(cpu_buffer,
2866                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2867                 goto out;
2868
2869         /* check if we caught up to the tail */
2870         reader = NULL;
2871         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2872                 goto out;
2873
2874         /*
2875          * Reset the reader page to size zero.
2876          */
2877         local_set(&cpu_buffer->reader_page->write, 0);
2878         local_set(&cpu_buffer->reader_page->entries, 0);
2879         local_set(&cpu_buffer->reader_page->page->commit, 0);
2880
2881  spin:
2882         /*
2883          * Splice the empty reader page into the list around the head.
2884          */
2885         reader = rb_set_head_page(cpu_buffer);
2886         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2887         cpu_buffer->reader_page->list.prev = reader->list.prev;
2888
2889         /*
2890          * cpu_buffer->pages just needs to point to the buffer, it
2891          *  has no specific buffer page to point to. Lets move it out
2892          *  of our way so we don't accidently swap it.
2893          */
2894         cpu_buffer->pages = reader->list.prev;
2895
2896         /* The reader page will be pointing to the new head */
2897         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2898
2899         /*
2900          * Here's the tricky part.
2901          *
2902          * We need to move the pointer past the header page.
2903          * But we can only do that if a writer is not currently
2904          * moving it. The page before the header page has the
2905          * flag bit '1' set if it is pointing to the page we want.
2906          * but if the writer is in the process of moving it
2907          * than it will be '2' or already moved '0'.
2908          */
2909
2910         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2911
2912         /*
2913          * If we did not convert it, then we must try again.
2914          */
2915         if (!ret)
2916                 goto spin;
2917
2918         /*
2919          * Yeah! We succeeded in replacing the page.
2920          *
2921          * Now make the new head point back to the reader page.
2922          */
2923         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2924         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2925
2926         /* Finally update the reader page to the new head */
2927         cpu_buffer->reader_page = reader;
2928         rb_reset_reader_page(cpu_buffer);
2929
2930         goto again;
2931
2932  out:
2933         arch_spin_unlock(&cpu_buffer->lock);
2934         local_irq_restore(flags);
2935
2936         return reader;
2937 }
2938
2939 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2940 {
2941         struct ring_buffer_event *event;
2942         struct buffer_page *reader;
2943         unsigned length;
2944
2945         reader = rb_get_reader_page(cpu_buffer);
2946
2947         /* This function should not be called when buffer is empty */
2948         if (RB_WARN_ON(cpu_buffer, !reader))
2949                 return;
2950
2951         event = rb_reader_event(cpu_buffer);
2952
2953         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2954                 cpu_buffer->read++;
2955
2956         rb_update_read_stamp(cpu_buffer, event);
2957
2958         length = rb_event_length(event);
2959         cpu_buffer->reader_page->read += length;
2960 }
2961
2962 static void rb_advance_iter(struct ring_buffer_iter *iter)
2963 {
2964         struct ring_buffer *buffer;
2965         struct ring_buffer_per_cpu *cpu_buffer;
2966         struct ring_buffer_event *event;
2967         unsigned length;
2968
2969         cpu_buffer = iter->cpu_buffer;
2970         buffer = cpu_buffer->buffer;
2971
2972         /*
2973          * Check if we are at the end of the buffer.
2974          */
2975         if (iter->head >= rb_page_size(iter->head_page)) {
2976                 /* discarded commits can make the page empty */
2977                 if (iter->head_page == cpu_buffer->commit_page)
2978                         return;
2979                 rb_inc_iter(iter);
2980                 return;
2981         }
2982
2983         event = rb_iter_head_event(iter);
2984
2985         length = rb_event_length(event);
2986
2987         /*
2988          * This should not be called to advance the header if we are
2989          * at the tail of the buffer.
2990          */
2991         if (RB_WARN_ON(cpu_buffer,
2992                        (iter->head_page == cpu_buffer->commit_page) &&
2993                        (iter->head + length > rb_commit_index(cpu_buffer))))
2994                 return;
2995
2996         rb_update_iter_read_stamp(iter, event);
2997
2998         iter->head += length;
2999
3000         /* check for end of page padding */
3001         if ((iter->head >= rb_page_size(iter->head_page)) &&
3002             (iter->head_page != cpu_buffer->commit_page))
3003                 rb_advance_iter(iter);
3004 }
3005
3006 static struct ring_buffer_event *
3007 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3008 {
3009         struct ring_buffer_event *event;
3010         struct buffer_page *reader;
3011         int nr_loops = 0;
3012
3013  again:
3014         /*
3015          * We repeat when a timestamp is encountered. It is possible
3016          * to get multiple timestamps from an interrupt entering just
3017          * as one timestamp is about to be written, or from discarded
3018          * commits. The most that we can have is the number on a single page.
3019          */
3020         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3021                 return NULL;
3022
3023         reader = rb_get_reader_page(cpu_buffer);
3024         if (!reader)
3025                 return NULL;
3026
3027         event = rb_reader_event(cpu_buffer);
3028
3029         switch (event->type_len) {
3030         case RINGBUF_TYPE_PADDING:
3031                 if (rb_null_event(event))
3032                         RB_WARN_ON(cpu_buffer, 1);
3033                 /*
3034                  * Because the writer could be discarding every
3035                  * event it creates (which would probably be bad)
3036                  * if we were to go back to "again" then we may never
3037                  * catch up, and will trigger the warn on, or lock
3038                  * the box. Return the padding, and we will release
3039                  * the current locks, and try again.
3040                  */
3041                 return event;
3042
3043         case RINGBUF_TYPE_TIME_EXTEND:
3044                 /* Internal data, OK to advance */
3045                 rb_advance_reader(cpu_buffer);
3046                 goto again;
3047
3048         case RINGBUF_TYPE_TIME_STAMP:
3049                 /* FIXME: not implemented */
3050                 rb_advance_reader(cpu_buffer);
3051                 goto again;
3052
3053         case RINGBUF_TYPE_DATA:
3054                 if (ts) {
3055                         *ts = cpu_buffer->read_stamp + event->time_delta;
3056                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3057                                                          cpu_buffer->cpu, ts);
3058                 }
3059                 return event;
3060
3061         default:
3062                 BUG();
3063         }
3064
3065         return NULL;
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3068
3069 static struct ring_buffer_event *
3070 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3071 {
3072         struct ring_buffer *buffer;
3073         struct ring_buffer_per_cpu *cpu_buffer;
3074         struct ring_buffer_event *event;
3075         int nr_loops = 0;
3076
3077         cpu_buffer = iter->cpu_buffer;
3078         buffer = cpu_buffer->buffer;
3079
3080         /*
3081          * Check if someone performed a consuming read to
3082          * the buffer. A consuming read invalidates the iterator
3083          * and we need to reset the iterator in this case.
3084          */
3085         if (unlikely(iter->cache_read != cpu_buffer->read ||
3086                      iter->cache_reader_page != cpu_buffer->reader_page))
3087                 rb_iter_reset(iter);
3088
3089  again:
3090         if (ring_buffer_iter_empty(iter))
3091                 return NULL;
3092
3093         /*
3094          * We repeat when a timestamp is encountered.
3095          * We can get multiple timestamps by nested interrupts or also
3096          * if filtering is on (discarding commits). Since discarding
3097          * commits can be frequent we can get a lot of timestamps.
3098          * But we limit them by not adding timestamps if they begin
3099          * at the start of a page.
3100          */
3101         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3102                 return NULL;
3103
3104         if (rb_per_cpu_empty(cpu_buffer))
3105                 return NULL;
3106
3107         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3108                 rb_inc_iter(iter);
3109                 goto again;
3110         }
3111
3112         event = rb_iter_head_event(iter);
3113
3114         switch (event->type_len) {
3115         case RINGBUF_TYPE_PADDING:
3116                 if (rb_null_event(event)) {
3117                         rb_inc_iter(iter);
3118                         goto again;
3119                 }
3120                 rb_advance_iter(iter);
3121                 return event;
3122
3123         case RINGBUF_TYPE_TIME_EXTEND:
3124                 /* Internal data, OK to advance */
3125                 rb_advance_iter(iter);
3126                 goto again;
3127
3128         case RINGBUF_TYPE_TIME_STAMP:
3129                 /* FIXME: not implemented */
3130                 rb_advance_iter(iter);
3131                 goto again;
3132
3133         case RINGBUF_TYPE_DATA:
3134                 if (ts) {
3135                         *ts = iter->read_stamp + event->time_delta;
3136                         ring_buffer_normalize_time_stamp(buffer,
3137                                                          cpu_buffer->cpu, ts);
3138                 }
3139                 return event;
3140
3141         default:
3142                 BUG();
3143         }
3144
3145         return NULL;
3146 }
3147 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3148
3149 static inline int rb_ok_to_lock(void)
3150 {
3151         /*
3152          * If an NMI die dumps out the content of the ring buffer
3153          * do not grab locks. We also permanently disable the ring
3154          * buffer too. A one time deal is all you get from reading
3155          * the ring buffer from an NMI.
3156          */
3157         if (likely(!in_nmi()))
3158                 return 1;
3159
3160         tracing_off_permanent();
3161         return 0;
3162 }
3163
3164 /**
3165  * ring_buffer_peek - peek at the next event to be read
3166  * @buffer: The ring buffer to read
3167  * @cpu: The cpu to peak at
3168  * @ts: The timestamp counter of this event.
3169  *
3170  * This will return the event that will be read next, but does
3171  * not consume the data.
3172  */
3173 struct ring_buffer_event *
3174 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3175 {
3176         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3177         struct ring_buffer_event *event;
3178         unsigned long flags;
3179         int dolock;
3180
3181         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182                 return NULL;
3183
3184         dolock = rb_ok_to_lock();
3185  again:
3186         local_irq_save(flags);
3187         if (dolock)
3188                 spin_lock(&cpu_buffer->reader_lock);
3189         event = rb_buffer_peek(cpu_buffer, ts);
3190         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3191                 rb_advance_reader(cpu_buffer);
3192         if (dolock)
3193                 spin_unlock(&cpu_buffer->reader_lock);
3194         local_irq_restore(flags);
3195
3196         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3197                 goto again;
3198
3199         return event;
3200 }
3201
3202 /**
3203  * ring_buffer_iter_peek - peek at the next event to be read
3204  * @iter: The ring buffer iterator
3205  * @ts: The timestamp counter of this event.
3206  *
3207  * This will return the event that will be read next, but does
3208  * not increment the iterator.
3209  */
3210 struct ring_buffer_event *
3211 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3212 {
3213         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3214         struct ring_buffer_event *event;
3215         unsigned long flags;
3216
3217  again:
3218         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3219         event = rb_iter_peek(iter, ts);
3220         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3221
3222         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3223                 goto again;
3224
3225         return event;
3226 }
3227
3228 /**
3229  * ring_buffer_consume - return an event and consume it
3230  * @buffer: The ring buffer to get the next event from
3231  *
3232  * Returns the next event in the ring buffer, and that event is consumed.
3233  * Meaning, that sequential reads will keep returning a different event,
3234  * and eventually empty the ring buffer if the producer is slower.
3235  */
3236 struct ring_buffer_event *
3237 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3238 {
3239         struct ring_buffer_per_cpu *cpu_buffer;
3240         struct ring_buffer_event *event = NULL;
3241         unsigned long flags;
3242         int dolock;
3243
3244         dolock = rb_ok_to_lock();
3245
3246  again:
3247         /* might be called in atomic */
3248         preempt_disable();
3249
3250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251                 goto out;
3252
3253         cpu_buffer = buffer->buffers[cpu];
3254         local_irq_save(flags);
3255         if (dolock)
3256                 spin_lock(&cpu_buffer->reader_lock);
3257
3258         event = rb_buffer_peek(cpu_buffer, ts);
3259         if (event)
3260                 rb_advance_reader(cpu_buffer);
3261
3262         if (dolock)
3263                 spin_unlock(&cpu_buffer->reader_lock);
3264         local_irq_restore(flags);
3265
3266  out:
3267         preempt_enable();
3268
3269         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3270                 goto again;
3271
3272         return event;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3275
3276 /**
3277  * ring_buffer_read_start - start a non consuming read of the buffer
3278  * @buffer: The ring buffer to read from
3279  * @cpu: The cpu buffer to iterate over
3280  *
3281  * This starts up an iteration through the buffer. It also disables
3282  * the recording to the buffer until the reading is finished.
3283  * This prevents the reading from being corrupted. This is not
3284  * a consuming read, so a producer is not expected.
3285  *
3286  * Must be paired with ring_buffer_finish.
3287  */
3288 struct ring_buffer_iter *
3289 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3290 {
3291         struct ring_buffer_per_cpu *cpu_buffer;
3292         struct ring_buffer_iter *iter;
3293         unsigned long flags;
3294
3295         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296                 return NULL;
3297
3298         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3299         if (!iter)
3300                 return NULL;
3301
3302         cpu_buffer = buffer->buffers[cpu];
3303
3304         iter->cpu_buffer = cpu_buffer;
3305
3306         atomic_inc(&cpu_buffer->record_disabled);
3307         synchronize_sched();
3308
3309         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3310         arch_spin_lock(&cpu_buffer->lock);
3311         rb_iter_reset(iter);
3312         arch_spin_unlock(&cpu_buffer->lock);
3313         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3314
3315         return iter;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3318
3319 /**
3320  * ring_buffer_finish - finish reading the iterator of the buffer
3321  * @iter: The iterator retrieved by ring_buffer_start
3322  *
3323  * This re-enables the recording to the buffer, and frees the
3324  * iterator.
3325  */
3326 void
3327 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3328 {
3329         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330
3331         atomic_dec(&cpu_buffer->record_disabled);
3332         kfree(iter);
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3335
3336 /**
3337  * ring_buffer_read - read the next item in the ring buffer by the iterator
3338  * @iter: The ring buffer iterator
3339  * @ts: The time stamp of the event read.
3340  *
3341  * This reads the next event in the ring buffer and increments the iterator.
3342  */
3343 struct ring_buffer_event *
3344 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3345 {
3346         struct ring_buffer_event *event;
3347         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348         unsigned long flags;
3349
3350         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3351  again:
3352         event = rb_iter_peek(iter, ts);
3353         if (!event)
3354                 goto out;
3355
3356         if (event->type_len == RINGBUF_TYPE_PADDING)
3357                 goto again;
3358
3359         rb_advance_iter(iter);
3360  out:
3361         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3362
3363         return event;
3364 }
3365 EXPORT_SYMBOL_GPL(ring_buffer_read);
3366
3367 /**
3368  * ring_buffer_size - return the size of the ring buffer (in bytes)
3369  * @buffer: The ring buffer.
3370  */
3371 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3372 {
3373         return BUF_PAGE_SIZE * buffer->pages;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_size);
3376
3377 static void
3378 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3379 {
3380         rb_head_page_deactivate(cpu_buffer);
3381
3382         cpu_buffer->head_page
3383                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3384         local_set(&cpu_buffer->head_page->write, 0);
3385         local_set(&cpu_buffer->head_page->entries, 0);
3386         local_set(&cpu_buffer->head_page->page->commit, 0);
3387
3388         cpu_buffer->head_page->read = 0;
3389
3390         cpu_buffer->tail_page = cpu_buffer->head_page;
3391         cpu_buffer->commit_page = cpu_buffer->head_page;
3392
3393         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3394         local_set(&cpu_buffer->reader_page->write, 0);
3395         local_set(&cpu_buffer->reader_page->entries, 0);
3396         local_set(&cpu_buffer->reader_page->page->commit, 0);
3397         cpu_buffer->reader_page->read = 0;
3398
3399         local_set(&cpu_buffer->commit_overrun, 0);
3400         local_set(&cpu_buffer->overrun, 0);
3401         local_set(&cpu_buffer->entries, 0);
3402         local_set(&cpu_buffer->committing, 0);
3403         local_set(&cpu_buffer->commits, 0);
3404         cpu_buffer->read = 0;
3405
3406         cpu_buffer->write_stamp = 0;
3407         cpu_buffer->read_stamp = 0;
3408
3409         rb_head_page_activate(cpu_buffer);
3410 }
3411
3412 /**
3413  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3414  * @buffer: The ring buffer to reset a per cpu buffer of
3415  * @cpu: The CPU buffer to be reset
3416  */
3417 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3418 {
3419         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3420         unsigned long flags;
3421
3422         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3423                 return;
3424
3425         atomic_inc(&cpu_buffer->record_disabled);
3426
3427         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428
3429         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3430                 goto out;
3431
3432         arch_spin_lock(&cpu_buffer->lock);
3433
3434         rb_reset_cpu(cpu_buffer);
3435
3436         arch_spin_unlock(&cpu_buffer->lock);
3437
3438  out:
3439         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441         atomic_dec(&cpu_buffer->record_disabled);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3444
3445 /**
3446  * ring_buffer_reset - reset a ring buffer
3447  * @buffer: The ring buffer to reset all cpu buffers
3448  */
3449 void ring_buffer_reset(struct ring_buffer *buffer)
3450 {
3451         int cpu;
3452
3453         for_each_buffer_cpu(buffer, cpu)
3454                 ring_buffer_reset_cpu(buffer, cpu);
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3457
3458 /**
3459  * rind_buffer_empty - is the ring buffer empty?
3460  * @buffer: The ring buffer to test
3461  */
3462 int ring_buffer_empty(struct ring_buffer *buffer)
3463 {
3464         struct ring_buffer_per_cpu *cpu_buffer;
3465         unsigned long flags;
3466         int dolock;
3467         int cpu;
3468         int ret;
3469
3470         dolock = rb_ok_to_lock();
3471
3472         /* yes this is racy, but if you don't like the race, lock the buffer */
3473         for_each_buffer_cpu(buffer, cpu) {
3474                 cpu_buffer = buffer->buffers[cpu];
3475                 local_irq_save(flags);
3476                 if (dolock)
3477                         spin_lock(&cpu_buffer->reader_lock);
3478                 ret = rb_per_cpu_empty(cpu_buffer);
3479                 if (dolock)
3480                         spin_unlock(&cpu_buffer->reader_lock);
3481                 local_irq_restore(flags);
3482
3483                 if (!ret)
3484                         return 0;
3485         }
3486
3487         return 1;
3488 }
3489 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3490
3491 /**
3492  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3493  * @buffer: The ring buffer
3494  * @cpu: The CPU buffer to test
3495  */
3496 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3497 {
3498         struct ring_buffer_per_cpu *cpu_buffer;
3499         unsigned long flags;
3500         int dolock;
3501         int ret;
3502
3503         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3504                 return 1;
3505
3506         dolock = rb_ok_to_lock();
3507
3508         cpu_buffer = buffer->buffers[cpu];
3509         local_irq_save(flags);
3510         if (dolock)
3511                 spin_lock(&cpu_buffer->reader_lock);
3512         ret = rb_per_cpu_empty(cpu_buffer);
3513         if (dolock)
3514                 spin_unlock(&cpu_buffer->reader_lock);
3515         local_irq_restore(flags);
3516
3517         return ret;
3518 }
3519 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3520
3521 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3522 /**
3523  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3524  * @buffer_a: One buffer to swap with
3525  * @buffer_b: The other buffer to swap with
3526  *
3527  * This function is useful for tracers that want to take a "snapshot"
3528  * of a CPU buffer and has another back up buffer lying around.
3529  * it is expected that the tracer handles the cpu buffer not being
3530  * used at the moment.
3531  */
3532 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3533                          struct ring_buffer *buffer_b, int cpu)
3534 {
3535         struct ring_buffer_per_cpu *cpu_buffer_a;
3536         struct ring_buffer_per_cpu *cpu_buffer_b;
3537         int ret = -EINVAL;
3538
3539         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3540             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3541                 goto out;
3542
3543         /* At least make sure the two buffers are somewhat the same */
3544         if (buffer_a->pages != buffer_b->pages)
3545                 goto out;
3546
3547         ret = -EAGAIN;
3548
3549         if (ring_buffer_flags != RB_BUFFERS_ON)
3550                 goto out;
3551
3552         if (atomic_read(&buffer_a->record_disabled))
3553                 goto out;
3554
3555         if (atomic_read(&buffer_b->record_disabled))
3556                 goto out;
3557
3558         cpu_buffer_a = buffer_a->buffers[cpu];
3559         cpu_buffer_b = buffer_b->buffers[cpu];
3560
3561         if (atomic_read(&cpu_buffer_a->record_disabled))
3562                 goto out;
3563
3564         if (atomic_read(&cpu_buffer_b->record_disabled))
3565                 goto out;
3566
3567         /*
3568          * We can't do a synchronize_sched here because this
3569          * function can be called in atomic context.
3570          * Normally this will be called from the same CPU as cpu.
3571          * If not it's up to the caller to protect this.
3572          */
3573         atomic_inc(&cpu_buffer_a->record_disabled);
3574         atomic_inc(&cpu_buffer_b->record_disabled);
3575
3576         ret = -EBUSY;
3577         if (local_read(&cpu_buffer_a->committing))
3578                 goto out_dec;
3579         if (local_read(&cpu_buffer_b->committing))
3580                 goto out_dec;
3581
3582         buffer_a->buffers[cpu] = cpu_buffer_b;
3583         buffer_b->buffers[cpu] = cpu_buffer_a;
3584
3585         cpu_buffer_b->buffer = buffer_a;
3586         cpu_buffer_a->buffer = buffer_b;
3587
3588         ret = 0;
3589
3590 out_dec:
3591         atomic_dec(&cpu_buffer_a->record_disabled);
3592         atomic_dec(&cpu_buffer_b->record_disabled);
3593 out:
3594         return ret;
3595 }
3596 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3597 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3598
3599 /**
3600  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3601  * @buffer: the buffer to allocate for.
3602  *
3603  * This function is used in conjunction with ring_buffer_read_page.
3604  * When reading a full page from the ring buffer, these functions
3605  * can be used to speed up the process. The calling function should
3606  * allocate a few pages first with this function. Then when it
3607  * needs to get pages from the ring buffer, it passes the result
3608  * of this function into ring_buffer_read_page, which will swap
3609  * the page that was allocated, with the read page of the buffer.
3610  *
3611  * Returns:
3612  *  The page allocated, or NULL on error.
3613  */
3614 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3615 {
3616         struct buffer_data_page *bpage;
3617         unsigned long addr;
3618
3619         addr = __get_free_page(GFP_KERNEL);
3620         if (!addr)
3621                 return NULL;
3622
3623         bpage = (void *)addr;
3624
3625         rb_init_page(bpage);
3626
3627         return bpage;
3628 }
3629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3630
3631 /**
3632  * ring_buffer_free_read_page - free an allocated read page
3633  * @buffer: the buffer the page was allocate for
3634  * @data: the page to free
3635  *
3636  * Free a page allocated from ring_buffer_alloc_read_page.
3637  */
3638 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3639 {
3640         free_page((unsigned long)data);
3641 }
3642 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3643
3644 /**
3645  * ring_buffer_read_page - extract a page from the ring buffer
3646  * @buffer: buffer to extract from
3647  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3648  * @len: amount to extract
3649  * @cpu: the cpu of the buffer to extract
3650  * @full: should the extraction only happen when the page is full.
3651  *
3652  * This function will pull out a page from the ring buffer and consume it.
3653  * @data_page must be the address of the variable that was returned
3654  * from ring_buffer_alloc_read_page. This is because the page might be used
3655  * to swap with a page in the ring buffer.
3656  *
3657  * for example:
3658  *      rpage = ring_buffer_alloc_read_page(buffer);
3659  *      if (!rpage)
3660  *              return error;
3661  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3662  *      if (ret >= 0)
3663  *              process_page(rpage, ret);
3664  *
3665  * When @full is set, the function will not return true unless
3666  * the writer is off the reader page.
3667  *
3668  * Note: it is up to the calling functions to handle sleeps and wakeups.
3669  *  The ring buffer can be used anywhere in the kernel and can not
3670  *  blindly call wake_up. The layer that uses the ring buffer must be
3671  *  responsible for that.
3672  *
3673  * Returns:
3674  *  >=0 if data has been transferred, returns the offset of consumed data.
3675  *  <0 if no data has been transferred.
3676  */
3677 int ring_buffer_read_page(struct ring_buffer *buffer,
3678                           void **data_page, size_t len, int cpu, int full)
3679 {
3680         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3681         struct ring_buffer_event *event;
3682         struct buffer_data_page *bpage;
3683         struct buffer_page *reader;
3684         unsigned long flags;
3685         unsigned int commit;
3686         unsigned int read;
3687         u64 save_timestamp;
3688         int ret = -1;
3689
3690         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3691                 goto out;
3692
3693         /*
3694          * If len is not big enough to hold the page header, then
3695          * we can not copy anything.
3696          */
3697         if (len <= BUF_PAGE_HDR_SIZE)
3698                 goto out;
3699
3700         len -= BUF_PAGE_HDR_SIZE;
3701
3702         if (!data_page)
3703                 goto out;
3704
3705         bpage = *data_page;
3706         if (!bpage)
3707                 goto out;
3708
3709         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3710
3711         reader = rb_get_reader_page(cpu_buffer);
3712         if (!reader)
3713                 goto out_unlock;
3714
3715         event = rb_reader_event(cpu_buffer);
3716
3717         read = reader->read;
3718         commit = rb_page_commit(reader);
3719
3720         /*
3721          * If this page has been partially read or
3722          * if len is not big enough to read the rest of the page or
3723          * a writer is still on the page, then
3724          * we must copy the data from the page to the buffer.
3725          * Otherwise, we can simply swap the page with the one passed in.
3726          */
3727         if (read || (len < (commit - read)) ||
3728             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3729                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3730                 unsigned int rpos = read;
3731                 unsigned int pos = 0;
3732                 unsigned int size;
3733
3734                 if (full)
3735                         goto out_unlock;
3736
3737                 if (len > (commit - read))
3738                         len = (commit - read);
3739
3740                 size = rb_event_length(event);
3741
3742                 if (len < size)
3743                         goto out_unlock;
3744
3745                 /* save the current timestamp, since the user will need it */
3746                 save_timestamp = cpu_buffer->read_stamp;
3747
3748                 /* Need to copy one event at a time */
3749                 do {
3750                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3751
3752                         len -= size;
3753
3754                         rb_advance_reader(cpu_buffer);
3755                         rpos = reader->read;
3756                         pos += size;
3757
3758                         event = rb_reader_event(cpu_buffer);
3759                         size = rb_event_length(event);
3760                 } while (len > size);
3761
3762                 /* update bpage */
3763                 local_set(&bpage->commit, pos);
3764                 bpage->time_stamp = save_timestamp;
3765
3766                 /* we copied everything to the beginning */
3767                 read = 0;
3768         } else {
3769                 /* update the entry counter */
3770                 cpu_buffer->read += rb_page_entries(reader);
3771
3772                 /* swap the pages */
3773                 rb_init_page(bpage);
3774                 bpage = reader->page;
3775                 reader->page = *data_page;
3776                 local_set(&reader->write, 0);
3777                 local_set(&reader->entries, 0);
3778                 reader->read = 0;
3779                 *data_page = bpage;
3780         }
3781         ret = read;
3782
3783  out_unlock:
3784         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3785
3786  out:
3787         return ret;
3788 }
3789 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3790
3791 #ifdef CONFIG_TRACING
3792 static ssize_t
3793 rb_simple_read(struct file *filp, char __user *ubuf,
3794                size_t cnt, loff_t *ppos)
3795 {
3796         unsigned long *p = filp->private_data;
3797         char buf[64];
3798         int r;
3799
3800         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3801                 r = sprintf(buf, "permanently disabled\n");
3802         else
3803                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3804
3805         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3806 }
3807
3808 static ssize_t
3809 rb_simple_write(struct file *filp, const char __user *ubuf,
3810                 size_t cnt, loff_t *ppos)
3811 {
3812         unsigned long *p = filp->private_data;
3813         char buf[64];
3814         unsigned long val;
3815         int ret;
3816
3817         if (cnt >= sizeof(buf))
3818                 return -EINVAL;
3819
3820         if (copy_from_user(&buf, ubuf, cnt))
3821                 return -EFAULT;
3822
3823         buf[cnt] = 0;
3824
3825         ret = strict_strtoul(buf, 10, &val);
3826         if (ret < 0)
3827                 return ret;
3828
3829         if (val)
3830                 set_bit(RB_BUFFERS_ON_BIT, p);
3831         else
3832                 clear_bit(RB_BUFFERS_ON_BIT, p);
3833
3834         (*ppos)++;
3835
3836         return cnt;
3837 }
3838
3839 static const struct file_operations rb_simple_fops = {
3840         .open           = tracing_open_generic,
3841         .read           = rb_simple_read,
3842         .write          = rb_simple_write,
3843 };
3844
3845
3846 static __init int rb_init_debugfs(void)
3847 {
3848         struct dentry *d_tracer;
3849
3850         d_tracer = tracing_init_dentry();
3851
3852         trace_create_file("tracing_on", 0644, d_tracer,
3853                             &ring_buffer_flags, &rb_simple_fops);
3854
3855         return 0;
3856 }
3857
3858 fs_initcall(rb_init_debugfs);
3859 #endif
3860
3861 #ifdef CONFIG_HOTPLUG_CPU
3862 static int rb_cpu_notify(struct notifier_block *self,
3863                          unsigned long action, void *hcpu)
3864 {
3865         struct ring_buffer *buffer =
3866                 container_of(self, struct ring_buffer, cpu_notify);
3867         long cpu = (long)hcpu;
3868
3869         switch (action) {
3870         case CPU_UP_PREPARE:
3871         case CPU_UP_PREPARE_FROZEN:
3872                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3873                         return NOTIFY_OK;
3874
3875                 buffer->buffers[cpu] =
3876                         rb_allocate_cpu_buffer(buffer, cpu);
3877                 if (!buffer->buffers[cpu]) {
3878                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3879                              cpu);
3880                         return NOTIFY_OK;
3881                 }
3882                 smp_wmb();
3883                 cpumask_set_cpu(cpu, buffer->cpumask);
3884                 break;
3885         case CPU_DOWN_PREPARE:
3886         case CPU_DOWN_PREPARE_FROZEN:
3887                 /*
3888                  * Do nothing.
3889                  *  If we were to free the buffer, then the user would
3890                  *  lose any trace that was in the buffer.
3891                  */
3892                 break;
3893         default:
3894                 break;
3895         }
3896         return NOTIFY_OK;
3897 }
3898 #endif