]> bbs.cooldavid.org Git - net-next-2.6.git/blob - kernel/perf_event.c
perf: Drop the skip argument from perf_arch_fetch_regs_caller
[net-next-2.6.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         struct perf_event *group_leader = event->group_leader;
287
288         /*
289          * Depending on whether it is a standalone or sibling event,
290          * add it straight to the context's event list, or to the group
291          * leader's sibling list:
292          */
293         if (group_leader == event) {
294                 struct list_head *list;
295
296                 if (is_software_event(event))
297                         event->group_flags |= PERF_GROUP_SOFTWARE;
298
299                 list = ctx_group_list(event, ctx);
300                 list_add_tail(&event->group_entry, list);
301         } else {
302                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303                     !is_software_event(event))
304                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
306                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307                 group_leader->nr_siblings++;
308         }
309
310         list_add_rcu(&event->event_entry, &ctx->event_list);
311         ctx->nr_events++;
312         if (event->attr.inherit_stat)
313                 ctx->nr_stat++;
314 }
315
316 /*
317  * Remove a event from the lists for its context.
318  * Must be called with ctx->mutex and ctx->lock held.
319  */
320 static void
321 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322 {
323         if (list_empty(&event->group_entry))
324                 return;
325         ctx->nr_events--;
326         if (event->attr.inherit_stat)
327                 ctx->nr_stat--;
328
329         list_del_init(&event->group_entry);
330         list_del_rcu(&event->event_entry);
331
332         if (event->group_leader != event)
333                 event->group_leader->nr_siblings--;
334
335         update_group_times(event);
336
337         /*
338          * If event was in error state, then keep it
339          * that way, otherwise bogus counts will be
340          * returned on read(). The only way to get out
341          * of error state is by explicit re-enabling
342          * of the event
343          */
344         if (event->state > PERF_EVENT_STATE_OFF)
345                 event->state = PERF_EVENT_STATE_OFF;
346 }
347
348 static void
349 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350 {
351         struct perf_event *sibling, *tmp;
352
353         /*
354          * If this was a group event with sibling events then
355          * upgrade the siblings to singleton events by adding them
356          * to the context list directly:
357          */
358         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359                 struct list_head *list;
360
361                 list = ctx_group_list(event, ctx);
362                 list_move_tail(&sibling->group_entry, list);
363                 sibling->group_leader = sibling;
364
365                 /* Inherit group flags from the previous leader */
366                 sibling->group_flags = event->group_flags;
367         }
368 }
369
370 static void
371 event_sched_out(struct perf_event *event,
372                   struct perf_cpu_context *cpuctx,
373                   struct perf_event_context *ctx)
374 {
375         if (event->state != PERF_EVENT_STATE_ACTIVE)
376                 return;
377
378         event->state = PERF_EVENT_STATE_INACTIVE;
379         if (event->pending_disable) {
380                 event->pending_disable = 0;
381                 event->state = PERF_EVENT_STATE_OFF;
382         }
383         event->tstamp_stopped = ctx->time;
384         event->pmu->disable(event);
385         event->oncpu = -1;
386
387         if (!is_software_event(event))
388                 cpuctx->active_oncpu--;
389         ctx->nr_active--;
390         if (event->attr.exclusive || !cpuctx->active_oncpu)
391                 cpuctx->exclusive = 0;
392 }
393
394 static void
395 group_sched_out(struct perf_event *group_event,
396                 struct perf_cpu_context *cpuctx,
397                 struct perf_event_context *ctx)
398 {
399         struct perf_event *event;
400
401         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402                 return;
403
404         event_sched_out(group_event, cpuctx, ctx);
405
406         /*
407          * Schedule out siblings (if any):
408          */
409         list_for_each_entry(event, &group_event->sibling_list, group_entry)
410                 event_sched_out(event, cpuctx, ctx);
411
412         if (group_event->attr.exclusive)
413                 cpuctx->exclusive = 0;
414 }
415
416 /*
417  * Cross CPU call to remove a performance event
418  *
419  * We disable the event on the hardware level first. After that we
420  * remove it from the context list.
421  */
422 static void __perf_event_remove_from_context(void *info)
423 {
424         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425         struct perf_event *event = info;
426         struct perf_event_context *ctx = event->ctx;
427
428         /*
429          * If this is a task context, we need to check whether it is
430          * the current task context of this cpu. If not it has been
431          * scheduled out before the smp call arrived.
432          */
433         if (ctx->task && cpuctx->task_ctx != ctx)
434                 return;
435
436         raw_spin_lock(&ctx->lock);
437         /*
438          * Protect the list operation against NMI by disabling the
439          * events on a global level.
440          */
441         perf_disable();
442
443         event_sched_out(event, cpuctx, ctx);
444
445         list_del_event(event, ctx);
446
447         if (!ctx->task) {
448                 /*
449                  * Allow more per task events with respect to the
450                  * reservation:
451                  */
452                 cpuctx->max_pertask =
453                         min(perf_max_events - ctx->nr_events,
454                             perf_max_events - perf_reserved_percpu);
455         }
456
457         perf_enable();
458         raw_spin_unlock(&ctx->lock);
459 }
460
461
462 /*
463  * Remove the event from a task's (or a CPU's) list of events.
464  *
465  * Must be called with ctx->mutex held.
466  *
467  * CPU events are removed with a smp call. For task events we only
468  * call when the task is on a CPU.
469  *
470  * If event->ctx is a cloned context, callers must make sure that
471  * every task struct that event->ctx->task could possibly point to
472  * remains valid.  This is OK when called from perf_release since
473  * that only calls us on the top-level context, which can't be a clone.
474  * When called from perf_event_exit_task, it's OK because the
475  * context has been detached from its task.
476  */
477 static void perf_event_remove_from_context(struct perf_event *event)
478 {
479         struct perf_event_context *ctx = event->ctx;
480         struct task_struct *task = ctx->task;
481
482         if (!task) {
483                 /*
484                  * Per cpu events are removed via an smp call and
485                  * the removal is always successful.
486                  */
487                 smp_call_function_single(event->cpu,
488                                          __perf_event_remove_from_context,
489                                          event, 1);
490                 return;
491         }
492
493 retry:
494         task_oncpu_function_call(task, __perf_event_remove_from_context,
495                                  event);
496
497         raw_spin_lock_irq(&ctx->lock);
498         /*
499          * If the context is active we need to retry the smp call.
500          */
501         if (ctx->nr_active && !list_empty(&event->group_entry)) {
502                 raw_spin_unlock_irq(&ctx->lock);
503                 goto retry;
504         }
505
506         /*
507          * The lock prevents that this context is scheduled in so we
508          * can remove the event safely, if the call above did not
509          * succeed.
510          */
511         if (!list_empty(&event->group_entry))
512                 list_del_event(event, ctx);
513         raw_spin_unlock_irq(&ctx->lock);
514 }
515
516 /*
517  * Cross CPU call to disable a performance event
518  */
519 static void __perf_event_disable(void *info)
520 {
521         struct perf_event *event = info;
522         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523         struct perf_event_context *ctx = event->ctx;
524
525         /*
526          * If this is a per-task event, need to check whether this
527          * event's task is the current task on this cpu.
528          */
529         if (ctx->task && cpuctx->task_ctx != ctx)
530                 return;
531
532         raw_spin_lock(&ctx->lock);
533
534         /*
535          * If the event is on, turn it off.
536          * If it is in error state, leave it in error state.
537          */
538         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539                 update_context_time(ctx);
540                 update_group_times(event);
541                 if (event == event->group_leader)
542                         group_sched_out(event, cpuctx, ctx);
543                 else
544                         event_sched_out(event, cpuctx, ctx);
545                 event->state = PERF_EVENT_STATE_OFF;
546         }
547
548         raw_spin_unlock(&ctx->lock);
549 }
550
551 /*
552  * Disable a event.
553  *
554  * If event->ctx is a cloned context, callers must make sure that
555  * every task struct that event->ctx->task could possibly point to
556  * remains valid.  This condition is satisifed when called through
557  * perf_event_for_each_child or perf_event_for_each because they
558  * hold the top-level event's child_mutex, so any descendant that
559  * goes to exit will block in sync_child_event.
560  * When called from perf_pending_event it's OK because event->ctx
561  * is the current context on this CPU and preemption is disabled,
562  * hence we can't get into perf_event_task_sched_out for this context.
563  */
564 void perf_event_disable(struct perf_event *event)
565 {
566         struct perf_event_context *ctx = event->ctx;
567         struct task_struct *task = ctx->task;
568
569         if (!task) {
570                 /*
571                  * Disable the event on the cpu that it's on
572                  */
573                 smp_call_function_single(event->cpu, __perf_event_disable,
574                                          event, 1);
575                 return;
576         }
577
578  retry:
579         task_oncpu_function_call(task, __perf_event_disable, event);
580
581         raw_spin_lock_irq(&ctx->lock);
582         /*
583          * If the event is still active, we need to retry the cross-call.
584          */
585         if (event->state == PERF_EVENT_STATE_ACTIVE) {
586                 raw_spin_unlock_irq(&ctx->lock);
587                 goto retry;
588         }
589
590         /*
591          * Since we have the lock this context can't be scheduled
592          * in, so we can change the state safely.
593          */
594         if (event->state == PERF_EVENT_STATE_INACTIVE) {
595                 update_group_times(event);
596                 event->state = PERF_EVENT_STATE_OFF;
597         }
598
599         raw_spin_unlock_irq(&ctx->lock);
600 }
601
602 static int
603 event_sched_in(struct perf_event *event,
604                  struct perf_cpu_context *cpuctx,
605                  struct perf_event_context *ctx)
606 {
607         if (event->state <= PERF_EVENT_STATE_OFF)
608                 return 0;
609
610         event->state = PERF_EVENT_STATE_ACTIVE;
611         event->oncpu = smp_processor_id();
612         /*
613          * The new state must be visible before we turn it on in the hardware:
614          */
615         smp_wmb();
616
617         if (event->pmu->enable(event)) {
618                 event->state = PERF_EVENT_STATE_INACTIVE;
619                 event->oncpu = -1;
620                 return -EAGAIN;
621         }
622
623         event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625         if (!is_software_event(event))
626                 cpuctx->active_oncpu++;
627         ctx->nr_active++;
628
629         if (event->attr.exclusive)
630                 cpuctx->exclusive = 1;
631
632         return 0;
633 }
634
635 static int
636 group_sched_in(struct perf_event *group_event,
637                struct perf_cpu_context *cpuctx,
638                struct perf_event_context *ctx)
639 {
640         struct perf_event *event, *partial_group = NULL;
641         const struct pmu *pmu = group_event->pmu;
642         bool txn = false;
643         int ret;
644
645         if (group_event->state == PERF_EVENT_STATE_OFF)
646                 return 0;
647
648         /* Check if group transaction availabe */
649         if (pmu->start_txn)
650                 txn = true;
651
652         if (txn)
653                 pmu->start_txn(pmu);
654
655         if (event_sched_in(group_event, cpuctx, ctx))
656                 return -EAGAIN;
657
658         /*
659          * Schedule in siblings as one group (if any):
660          */
661         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662                 if (event_sched_in(event, cpuctx, ctx)) {
663                         partial_group = event;
664                         goto group_error;
665                 }
666         }
667
668         if (!txn)
669                 return 0;
670
671         ret = pmu->commit_txn(pmu);
672         if (!ret) {
673                 pmu->cancel_txn(pmu);
674                 return 0;
675         }
676
677 group_error:
678         if (txn)
679                 pmu->cancel_txn(pmu);
680
681         /*
682          * Groups can be scheduled in as one unit only, so undo any
683          * partial group before returning:
684          */
685         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686                 if (event == partial_group)
687                         break;
688                 event_sched_out(event, cpuctx, ctx);
689         }
690         event_sched_out(group_event, cpuctx, ctx);
691
692         return -EAGAIN;
693 }
694
695 /*
696  * Work out whether we can put this event group on the CPU now.
697  */
698 static int group_can_go_on(struct perf_event *event,
699                            struct perf_cpu_context *cpuctx,
700                            int can_add_hw)
701 {
702         /*
703          * Groups consisting entirely of software events can always go on.
704          */
705         if (event->group_flags & PERF_GROUP_SOFTWARE)
706                 return 1;
707         /*
708          * If an exclusive group is already on, no other hardware
709          * events can go on.
710          */
711         if (cpuctx->exclusive)
712                 return 0;
713         /*
714          * If this group is exclusive and there are already
715          * events on the CPU, it can't go on.
716          */
717         if (event->attr.exclusive && cpuctx->active_oncpu)
718                 return 0;
719         /*
720          * Otherwise, try to add it if all previous groups were able
721          * to go on.
722          */
723         return can_add_hw;
724 }
725
726 static void add_event_to_ctx(struct perf_event *event,
727                                struct perf_event_context *ctx)
728 {
729         list_add_event(event, ctx);
730         event->tstamp_enabled = ctx->time;
731         event->tstamp_running = ctx->time;
732         event->tstamp_stopped = ctx->time;
733 }
734
735 /*
736  * Cross CPU call to install and enable a performance event
737  *
738  * Must be called with ctx->mutex held
739  */
740 static void __perf_install_in_context(void *info)
741 {
742         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743         struct perf_event *event = info;
744         struct perf_event_context *ctx = event->ctx;
745         struct perf_event *leader = event->group_leader;
746         int err;
747
748         /*
749          * If this is a task context, we need to check whether it is
750          * the current task context of this cpu. If not it has been
751          * scheduled out before the smp call arrived.
752          * Or possibly this is the right context but it isn't
753          * on this cpu because it had no events.
754          */
755         if (ctx->task && cpuctx->task_ctx != ctx) {
756                 if (cpuctx->task_ctx || ctx->task != current)
757                         return;
758                 cpuctx->task_ctx = ctx;
759         }
760
761         raw_spin_lock(&ctx->lock);
762         ctx->is_active = 1;
763         update_context_time(ctx);
764
765         /*
766          * Protect the list operation against NMI by disabling the
767          * events on a global level. NOP for non NMI based events.
768          */
769         perf_disable();
770
771         add_event_to_ctx(event, ctx);
772
773         if (event->cpu != -1 && event->cpu != smp_processor_id())
774                 goto unlock;
775
776         /*
777          * Don't put the event on if it is disabled or if
778          * it is in a group and the group isn't on.
779          */
780         if (event->state != PERF_EVENT_STATE_INACTIVE ||
781             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782                 goto unlock;
783
784         /*
785          * An exclusive event can't go on if there are already active
786          * hardware events, and no hardware event can go on if there
787          * is already an exclusive event on.
788          */
789         if (!group_can_go_on(event, cpuctx, 1))
790                 err = -EEXIST;
791         else
792                 err = event_sched_in(event, cpuctx, ctx);
793
794         if (err) {
795                 /*
796                  * This event couldn't go on.  If it is in a group
797                  * then we have to pull the whole group off.
798                  * If the event group is pinned then put it in error state.
799                  */
800                 if (leader != event)
801                         group_sched_out(leader, cpuctx, ctx);
802                 if (leader->attr.pinned) {
803                         update_group_times(leader);
804                         leader->state = PERF_EVENT_STATE_ERROR;
805                 }
806         }
807
808         if (!err && !ctx->task && cpuctx->max_pertask)
809                 cpuctx->max_pertask--;
810
811  unlock:
812         perf_enable();
813
814         raw_spin_unlock(&ctx->lock);
815 }
816
817 /*
818  * Attach a performance event to a context
819  *
820  * First we add the event to the list with the hardware enable bit
821  * in event->hw_config cleared.
822  *
823  * If the event is attached to a task which is on a CPU we use a smp
824  * call to enable it in the task context. The task might have been
825  * scheduled away, but we check this in the smp call again.
826  *
827  * Must be called with ctx->mutex held.
828  */
829 static void
830 perf_install_in_context(struct perf_event_context *ctx,
831                         struct perf_event *event,
832                         int cpu)
833 {
834         struct task_struct *task = ctx->task;
835
836         if (!task) {
837                 /*
838                  * Per cpu events are installed via an smp call and
839                  * the install is always successful.
840                  */
841                 smp_call_function_single(cpu, __perf_install_in_context,
842                                          event, 1);
843                 return;
844         }
845
846 retry:
847         task_oncpu_function_call(task, __perf_install_in_context,
848                                  event);
849
850         raw_spin_lock_irq(&ctx->lock);
851         /*
852          * we need to retry the smp call.
853          */
854         if (ctx->is_active && list_empty(&event->group_entry)) {
855                 raw_spin_unlock_irq(&ctx->lock);
856                 goto retry;
857         }
858
859         /*
860          * The lock prevents that this context is scheduled in so we
861          * can add the event safely, if it the call above did not
862          * succeed.
863          */
864         if (list_empty(&event->group_entry))
865                 add_event_to_ctx(event, ctx);
866         raw_spin_unlock_irq(&ctx->lock);
867 }
868
869 /*
870  * Put a event into inactive state and update time fields.
871  * Enabling the leader of a group effectively enables all
872  * the group members that aren't explicitly disabled, so we
873  * have to update their ->tstamp_enabled also.
874  * Note: this works for group members as well as group leaders
875  * since the non-leader members' sibling_lists will be empty.
876  */
877 static void __perf_event_mark_enabled(struct perf_event *event,
878                                         struct perf_event_context *ctx)
879 {
880         struct perf_event *sub;
881
882         event->state = PERF_EVENT_STATE_INACTIVE;
883         event->tstamp_enabled = ctx->time - event->total_time_enabled;
884         list_for_each_entry(sub, &event->sibling_list, group_entry)
885                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886                         sub->tstamp_enabled =
887                                 ctx->time - sub->total_time_enabled;
888 }
889
890 /*
891  * Cross CPU call to enable a performance event
892  */
893 static void __perf_event_enable(void *info)
894 {
895         struct perf_event *event = info;
896         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897         struct perf_event_context *ctx = event->ctx;
898         struct perf_event *leader = event->group_leader;
899         int err;
900
901         /*
902          * If this is a per-task event, need to check whether this
903          * event's task is the current task on this cpu.
904          */
905         if (ctx->task && cpuctx->task_ctx != ctx) {
906                 if (cpuctx->task_ctx || ctx->task != current)
907                         return;
908                 cpuctx->task_ctx = ctx;
909         }
910
911         raw_spin_lock(&ctx->lock);
912         ctx->is_active = 1;
913         update_context_time(ctx);
914
915         if (event->state >= PERF_EVENT_STATE_INACTIVE)
916                 goto unlock;
917         __perf_event_mark_enabled(event, ctx);
918
919         if (event->cpu != -1 && event->cpu != smp_processor_id())
920                 goto unlock;
921
922         /*
923          * If the event is in a group and isn't the group leader,
924          * then don't put it on unless the group is on.
925          */
926         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927                 goto unlock;
928
929         if (!group_can_go_on(event, cpuctx, 1)) {
930                 err = -EEXIST;
931         } else {
932                 perf_disable();
933                 if (event == leader)
934                         err = group_sched_in(event, cpuctx, ctx);
935                 else
936                         err = event_sched_in(event, cpuctx, ctx);
937                 perf_enable();
938         }
939
940         if (err) {
941                 /*
942                  * If this event can't go on and it's part of a
943                  * group, then the whole group has to come off.
944                  */
945                 if (leader != event)
946                         group_sched_out(leader, cpuctx, ctx);
947                 if (leader->attr.pinned) {
948                         update_group_times(leader);
949                         leader->state = PERF_EVENT_STATE_ERROR;
950                 }
951         }
952
953  unlock:
954         raw_spin_unlock(&ctx->lock);
955 }
956
957 /*
958  * Enable a event.
959  *
960  * If event->ctx is a cloned context, callers must make sure that
961  * every task struct that event->ctx->task could possibly point to
962  * remains valid.  This condition is satisfied when called through
963  * perf_event_for_each_child or perf_event_for_each as described
964  * for perf_event_disable.
965  */
966 void perf_event_enable(struct perf_event *event)
967 {
968         struct perf_event_context *ctx = event->ctx;
969         struct task_struct *task = ctx->task;
970
971         if (!task) {
972                 /*
973                  * Enable the event on the cpu that it's on
974                  */
975                 smp_call_function_single(event->cpu, __perf_event_enable,
976                                          event, 1);
977                 return;
978         }
979
980         raw_spin_lock_irq(&ctx->lock);
981         if (event->state >= PERF_EVENT_STATE_INACTIVE)
982                 goto out;
983
984         /*
985          * If the event is in error state, clear that first.
986          * That way, if we see the event in error state below, we
987          * know that it has gone back into error state, as distinct
988          * from the task having been scheduled away before the
989          * cross-call arrived.
990          */
991         if (event->state == PERF_EVENT_STATE_ERROR)
992                 event->state = PERF_EVENT_STATE_OFF;
993
994  retry:
995         raw_spin_unlock_irq(&ctx->lock);
996         task_oncpu_function_call(task, __perf_event_enable, event);
997
998         raw_spin_lock_irq(&ctx->lock);
999
1000         /*
1001          * If the context is active and the event is still off,
1002          * we need to retry the cross-call.
1003          */
1004         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005                 goto retry;
1006
1007         /*
1008          * Since we have the lock this context can't be scheduled
1009          * in, so we can change the state safely.
1010          */
1011         if (event->state == PERF_EVENT_STATE_OFF)
1012                 __perf_event_mark_enabled(event, ctx);
1013
1014  out:
1015         raw_spin_unlock_irq(&ctx->lock);
1016 }
1017
1018 static int perf_event_refresh(struct perf_event *event, int refresh)
1019 {
1020         /*
1021          * not supported on inherited events
1022          */
1023         if (event->attr.inherit)
1024                 return -EINVAL;
1025
1026         atomic_add(refresh, &event->event_limit);
1027         perf_event_enable(event);
1028
1029         return 0;
1030 }
1031
1032 enum event_type_t {
1033         EVENT_FLEXIBLE = 0x1,
1034         EVENT_PINNED = 0x2,
1035         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036 };
1037
1038 static void ctx_sched_out(struct perf_event_context *ctx,
1039                           struct perf_cpu_context *cpuctx,
1040                           enum event_type_t event_type)
1041 {
1042         struct perf_event *event;
1043
1044         raw_spin_lock(&ctx->lock);
1045         ctx->is_active = 0;
1046         if (likely(!ctx->nr_events))
1047                 goto out;
1048         update_context_time(ctx);
1049
1050         perf_disable();
1051         if (!ctx->nr_active)
1052                 goto out_enable;
1053
1054         if (event_type & EVENT_PINNED)
1055                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056                         group_sched_out(event, cpuctx, ctx);
1057
1058         if (event_type & EVENT_FLEXIBLE)
1059                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1060                         group_sched_out(event, cpuctx, ctx);
1061
1062  out_enable:
1063         perf_enable();
1064  out:
1065         raw_spin_unlock(&ctx->lock);
1066 }
1067
1068 /*
1069  * Test whether two contexts are equivalent, i.e. whether they
1070  * have both been cloned from the same version of the same context
1071  * and they both have the same number of enabled events.
1072  * If the number of enabled events is the same, then the set
1073  * of enabled events should be the same, because these are both
1074  * inherited contexts, therefore we can't access individual events
1075  * in them directly with an fd; we can only enable/disable all
1076  * events via prctl, or enable/disable all events in a family
1077  * via ioctl, which will have the same effect on both contexts.
1078  */
1079 static int context_equiv(struct perf_event_context *ctx1,
1080                          struct perf_event_context *ctx2)
1081 {
1082         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083                 && ctx1->parent_gen == ctx2->parent_gen
1084                 && !ctx1->pin_count && !ctx2->pin_count;
1085 }
1086
1087 static void __perf_event_sync_stat(struct perf_event *event,
1088                                      struct perf_event *next_event)
1089 {
1090         u64 value;
1091
1092         if (!event->attr.inherit_stat)
1093                 return;
1094
1095         /*
1096          * Update the event value, we cannot use perf_event_read()
1097          * because we're in the middle of a context switch and have IRQs
1098          * disabled, which upsets smp_call_function_single(), however
1099          * we know the event must be on the current CPU, therefore we
1100          * don't need to use it.
1101          */
1102         switch (event->state) {
1103         case PERF_EVENT_STATE_ACTIVE:
1104                 event->pmu->read(event);
1105                 /* fall-through */
1106
1107         case PERF_EVENT_STATE_INACTIVE:
1108                 update_event_times(event);
1109                 break;
1110
1111         default:
1112                 break;
1113         }
1114
1115         /*
1116          * In order to keep per-task stats reliable we need to flip the event
1117          * values when we flip the contexts.
1118          */
1119         value = atomic64_read(&next_event->count);
1120         value = atomic64_xchg(&event->count, value);
1121         atomic64_set(&next_event->count, value);
1122
1123         swap(event->total_time_enabled, next_event->total_time_enabled);
1124         swap(event->total_time_running, next_event->total_time_running);
1125
1126         /*
1127          * Since we swizzled the values, update the user visible data too.
1128          */
1129         perf_event_update_userpage(event);
1130         perf_event_update_userpage(next_event);
1131 }
1132
1133 #define list_next_entry(pos, member) \
1134         list_entry(pos->member.next, typeof(*pos), member)
1135
1136 static void perf_event_sync_stat(struct perf_event_context *ctx,
1137                                    struct perf_event_context *next_ctx)
1138 {
1139         struct perf_event *event, *next_event;
1140
1141         if (!ctx->nr_stat)
1142                 return;
1143
1144         update_context_time(ctx);
1145
1146         event = list_first_entry(&ctx->event_list,
1147                                    struct perf_event, event_entry);
1148
1149         next_event = list_first_entry(&next_ctx->event_list,
1150                                         struct perf_event, event_entry);
1151
1152         while (&event->event_entry != &ctx->event_list &&
1153                &next_event->event_entry != &next_ctx->event_list) {
1154
1155                 __perf_event_sync_stat(event, next_event);
1156
1157                 event = list_next_entry(event, event_entry);
1158                 next_event = list_next_entry(next_event, event_entry);
1159         }
1160 }
1161
1162 /*
1163  * Called from scheduler to remove the events of the current task,
1164  * with interrupts disabled.
1165  *
1166  * We stop each event and update the event value in event->count.
1167  *
1168  * This does not protect us against NMI, but disable()
1169  * sets the disabled bit in the control field of event _before_
1170  * accessing the event control register. If a NMI hits, then it will
1171  * not restart the event.
1172  */
1173 void perf_event_task_sched_out(struct task_struct *task,
1174                                  struct task_struct *next)
1175 {
1176         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1177         struct perf_event_context *ctx = task->perf_event_ctxp;
1178         struct perf_event_context *next_ctx;
1179         struct perf_event_context *parent;
1180         int do_switch = 1;
1181
1182         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1183
1184         if (likely(!ctx || !cpuctx->task_ctx))
1185                 return;
1186
1187         rcu_read_lock();
1188         parent = rcu_dereference(ctx->parent_ctx);
1189         next_ctx = next->perf_event_ctxp;
1190         if (parent && next_ctx &&
1191             rcu_dereference(next_ctx->parent_ctx) == parent) {
1192                 /*
1193                  * Looks like the two contexts are clones, so we might be
1194                  * able to optimize the context switch.  We lock both
1195                  * contexts and check that they are clones under the
1196                  * lock (including re-checking that neither has been
1197                  * uncloned in the meantime).  It doesn't matter which
1198                  * order we take the locks because no other cpu could
1199                  * be trying to lock both of these tasks.
1200                  */
1201                 raw_spin_lock(&ctx->lock);
1202                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1203                 if (context_equiv(ctx, next_ctx)) {
1204                         /*
1205                          * XXX do we need a memory barrier of sorts
1206                          * wrt to rcu_dereference() of perf_event_ctxp
1207                          */
1208                         task->perf_event_ctxp = next_ctx;
1209                         next->perf_event_ctxp = ctx;
1210                         ctx->task = next;
1211                         next_ctx->task = task;
1212                         do_switch = 0;
1213
1214                         perf_event_sync_stat(ctx, next_ctx);
1215                 }
1216                 raw_spin_unlock(&next_ctx->lock);
1217                 raw_spin_unlock(&ctx->lock);
1218         }
1219         rcu_read_unlock();
1220
1221         if (do_switch) {
1222                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1223                 cpuctx->task_ctx = NULL;
1224         }
1225 }
1226
1227 static void task_ctx_sched_out(struct perf_event_context *ctx,
1228                                enum event_type_t event_type)
1229 {
1230         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232         if (!cpuctx->task_ctx)
1233                 return;
1234
1235         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236                 return;
1237
1238         ctx_sched_out(ctx, cpuctx, event_type);
1239         cpuctx->task_ctx = NULL;
1240 }
1241
1242 /*
1243  * Called with IRQs disabled
1244  */
1245 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1246 {
1247         task_ctx_sched_out(ctx, EVENT_ALL);
1248 }
1249
1250 /*
1251  * Called with IRQs disabled
1252  */
1253 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254                               enum event_type_t event_type)
1255 {
1256         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1257 }
1258
1259 static void
1260 ctx_pinned_sched_in(struct perf_event_context *ctx,
1261                     struct perf_cpu_context *cpuctx)
1262 {
1263         struct perf_event *event;
1264
1265         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266                 if (event->state <= PERF_EVENT_STATE_OFF)
1267                         continue;
1268                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1269                         continue;
1270
1271                 if (group_can_go_on(event, cpuctx, 1))
1272                         group_sched_in(event, cpuctx, ctx);
1273
1274                 /*
1275                  * If this pinned group hasn't been scheduled,
1276                  * put it in error state.
1277                  */
1278                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279                         update_group_times(event);
1280                         event->state = PERF_EVENT_STATE_ERROR;
1281                 }
1282         }
1283 }
1284
1285 static void
1286 ctx_flexible_sched_in(struct perf_event_context *ctx,
1287                       struct perf_cpu_context *cpuctx)
1288 {
1289         struct perf_event *event;
1290         int can_add_hw = 1;
1291
1292         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293                 /* Ignore events in OFF or ERROR state */
1294                 if (event->state <= PERF_EVENT_STATE_OFF)
1295                         continue;
1296                 /*
1297                  * Listen to the 'cpu' scheduling filter constraint
1298                  * of events:
1299                  */
1300                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301                         continue;
1302
1303                 if (group_can_go_on(event, cpuctx, can_add_hw))
1304                         if (group_sched_in(event, cpuctx, ctx))
1305                                 can_add_hw = 0;
1306         }
1307 }
1308
1309 static void
1310 ctx_sched_in(struct perf_event_context *ctx,
1311              struct perf_cpu_context *cpuctx,
1312              enum event_type_t event_type)
1313 {
1314         raw_spin_lock(&ctx->lock);
1315         ctx->is_active = 1;
1316         if (likely(!ctx->nr_events))
1317                 goto out;
1318
1319         ctx->timestamp = perf_clock();
1320
1321         perf_disable();
1322
1323         /*
1324          * First go through the list and put on any pinned groups
1325          * in order to give them the best chance of going on.
1326          */
1327         if (event_type & EVENT_PINNED)
1328                 ctx_pinned_sched_in(ctx, cpuctx);
1329
1330         /* Then walk through the lower prio flexible groups */
1331         if (event_type & EVENT_FLEXIBLE)
1332                 ctx_flexible_sched_in(ctx, cpuctx);
1333
1334         perf_enable();
1335  out:
1336         raw_spin_unlock(&ctx->lock);
1337 }
1338
1339 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340                              enum event_type_t event_type)
1341 {
1342         struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344         ctx_sched_in(ctx, cpuctx, event_type);
1345 }
1346
1347 static void task_ctx_sched_in(struct task_struct *task,
1348                               enum event_type_t event_type)
1349 {
1350         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351         struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353         if (likely(!ctx))
1354                 return;
1355         if (cpuctx->task_ctx == ctx)
1356                 return;
1357         ctx_sched_in(ctx, cpuctx, event_type);
1358         cpuctx->task_ctx = ctx;
1359 }
1360 /*
1361  * Called from scheduler to add the events of the current task
1362  * with interrupts disabled.
1363  *
1364  * We restore the event value and then enable it.
1365  *
1366  * This does not protect us against NMI, but enable()
1367  * sets the enabled bit in the control field of event _before_
1368  * accessing the event control register. If a NMI hits, then it will
1369  * keep the event running.
1370  */
1371 void perf_event_task_sched_in(struct task_struct *task)
1372 {
1373         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374         struct perf_event_context *ctx = task->perf_event_ctxp;
1375
1376         if (likely(!ctx))
1377                 return;
1378
1379         if (cpuctx->task_ctx == ctx)
1380                 return;
1381
1382         perf_disable();
1383
1384         /*
1385          * We want to keep the following priority order:
1386          * cpu pinned (that don't need to move), task pinned,
1387          * cpu flexible, task flexible.
1388          */
1389         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395         cpuctx->task_ctx = ctx;
1396
1397         perf_enable();
1398 }
1399
1400 #define MAX_INTERRUPTS (~0ULL)
1401
1402 static void perf_log_throttle(struct perf_event *event, int enable);
1403
1404 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405 {
1406         u64 frequency = event->attr.sample_freq;
1407         u64 sec = NSEC_PER_SEC;
1408         u64 divisor, dividend;
1409
1410         int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412         count_fls = fls64(count);
1413         nsec_fls = fls64(nsec);
1414         frequency_fls = fls64(frequency);
1415         sec_fls = 30;
1416
1417         /*
1418          * We got @count in @nsec, with a target of sample_freq HZ
1419          * the target period becomes:
1420          *
1421          *             @count * 10^9
1422          * period = -------------------
1423          *          @nsec * sample_freq
1424          *
1425          */
1426
1427         /*
1428          * Reduce accuracy by one bit such that @a and @b converge
1429          * to a similar magnitude.
1430          */
1431 #define REDUCE_FLS(a, b)                \
1432 do {                                    \
1433         if (a##_fls > b##_fls) {        \
1434                 a >>= 1;                \
1435                 a##_fls--;              \
1436         } else {                        \
1437                 b >>= 1;                \
1438                 b##_fls--;              \
1439         }                               \
1440 } while (0)
1441
1442         /*
1443          * Reduce accuracy until either term fits in a u64, then proceed with
1444          * the other, so that finally we can do a u64/u64 division.
1445          */
1446         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447                 REDUCE_FLS(nsec, frequency);
1448                 REDUCE_FLS(sec, count);
1449         }
1450
1451         if (count_fls + sec_fls > 64) {
1452                 divisor = nsec * frequency;
1453
1454                 while (count_fls + sec_fls > 64) {
1455                         REDUCE_FLS(count, sec);
1456                         divisor >>= 1;
1457                 }
1458
1459                 dividend = count * sec;
1460         } else {
1461                 dividend = count * sec;
1462
1463                 while (nsec_fls + frequency_fls > 64) {
1464                         REDUCE_FLS(nsec, frequency);
1465                         dividend >>= 1;
1466                 }
1467
1468                 divisor = nsec * frequency;
1469         }
1470
1471         return div64_u64(dividend, divisor);
1472 }
1473
1474 static void perf_event_stop(struct perf_event *event)
1475 {
1476         if (!event->pmu->stop)
1477                 return event->pmu->disable(event);
1478
1479         return event->pmu->stop(event);
1480 }
1481
1482 static int perf_event_start(struct perf_event *event)
1483 {
1484         if (!event->pmu->start)
1485                 return event->pmu->enable(event);
1486
1487         return event->pmu->start(event);
1488 }
1489
1490 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1491 {
1492         struct hw_perf_event *hwc = &event->hw;
1493         u64 period, sample_period;
1494         s64 delta;
1495
1496         period = perf_calculate_period(event, nsec, count);
1497
1498         delta = (s64)(period - hwc->sample_period);
1499         delta = (delta + 7) / 8; /* low pass filter */
1500
1501         sample_period = hwc->sample_period + delta;
1502
1503         if (!sample_period)
1504                 sample_period = 1;
1505
1506         hwc->sample_period = sample_period;
1507
1508         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509                 perf_disable();
1510                 perf_event_stop(event);
1511                 atomic64_set(&hwc->period_left, 0);
1512                 perf_event_start(event);
1513                 perf_enable();
1514         }
1515 }
1516
1517 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518 {
1519         struct perf_event *event;
1520         struct hw_perf_event *hwc;
1521         u64 interrupts, now;
1522         s64 delta;
1523
1524         raw_spin_lock(&ctx->lock);
1525         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527                         continue;
1528
1529                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530                         continue;
1531
1532                 hwc = &event->hw;
1533
1534                 interrupts = hwc->interrupts;
1535                 hwc->interrupts = 0;
1536
1537                 /*
1538                  * unthrottle events on the tick
1539                  */
1540                 if (interrupts == MAX_INTERRUPTS) {
1541                         perf_log_throttle(event, 1);
1542                         perf_disable();
1543                         event->pmu->unthrottle(event);
1544                         perf_enable();
1545                 }
1546
1547                 if (!event->attr.freq || !event->attr.sample_freq)
1548                         continue;
1549
1550                 perf_disable();
1551                 event->pmu->read(event);
1552                 now = atomic64_read(&event->count);
1553                 delta = now - hwc->freq_count_stamp;
1554                 hwc->freq_count_stamp = now;
1555
1556                 if (delta > 0)
1557                         perf_adjust_period(event, TICK_NSEC, delta);
1558                 perf_enable();
1559         }
1560         raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 /*
1564  * Round-robin a context's events:
1565  */
1566 static void rotate_ctx(struct perf_event_context *ctx)
1567 {
1568         raw_spin_lock(&ctx->lock);
1569
1570         /* Rotate the first entry last of non-pinned groups */
1571         list_rotate_left(&ctx->flexible_groups);
1572
1573         raw_spin_unlock(&ctx->lock);
1574 }
1575
1576 void perf_event_task_tick(struct task_struct *curr)
1577 {
1578         struct perf_cpu_context *cpuctx;
1579         struct perf_event_context *ctx;
1580         int rotate = 0;
1581
1582         if (!atomic_read(&nr_events))
1583                 return;
1584
1585         cpuctx = &__get_cpu_var(perf_cpu_context);
1586         if (cpuctx->ctx.nr_events &&
1587             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588                 rotate = 1;
1589
1590         ctx = curr->perf_event_ctxp;
1591         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592                 rotate = 1;
1593
1594         perf_ctx_adjust_freq(&cpuctx->ctx);
1595         if (ctx)
1596                 perf_ctx_adjust_freq(ctx);
1597
1598         if (!rotate)
1599                 return;
1600
1601         perf_disable();
1602         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1603         if (ctx)
1604                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1605
1606         rotate_ctx(&cpuctx->ctx);
1607         if (ctx)
1608                 rotate_ctx(ctx);
1609
1610         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1611         if (ctx)
1612                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1613         perf_enable();
1614 }
1615
1616 static int event_enable_on_exec(struct perf_event *event,
1617                                 struct perf_event_context *ctx)
1618 {
1619         if (!event->attr.enable_on_exec)
1620                 return 0;
1621
1622         event->attr.enable_on_exec = 0;
1623         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624                 return 0;
1625
1626         __perf_event_mark_enabled(event, ctx);
1627
1628         return 1;
1629 }
1630
1631 /*
1632  * Enable all of a task's events that have been marked enable-on-exec.
1633  * This expects task == current.
1634  */
1635 static void perf_event_enable_on_exec(struct task_struct *task)
1636 {
1637         struct perf_event_context *ctx;
1638         struct perf_event *event;
1639         unsigned long flags;
1640         int enabled = 0;
1641         int ret;
1642
1643         local_irq_save(flags);
1644         ctx = task->perf_event_ctxp;
1645         if (!ctx || !ctx->nr_events)
1646                 goto out;
1647
1648         __perf_event_task_sched_out(ctx);
1649
1650         raw_spin_lock(&ctx->lock);
1651
1652         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653                 ret = event_enable_on_exec(event, ctx);
1654                 if (ret)
1655                         enabled = 1;
1656         }
1657
1658         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659                 ret = event_enable_on_exec(event, ctx);
1660                 if (ret)
1661                         enabled = 1;
1662         }
1663
1664         /*
1665          * Unclone this context if we enabled any event.
1666          */
1667         if (enabled)
1668                 unclone_ctx(ctx);
1669
1670         raw_spin_unlock(&ctx->lock);
1671
1672         perf_event_task_sched_in(task);
1673  out:
1674         local_irq_restore(flags);
1675 }
1676
1677 /*
1678  * Cross CPU call to read the hardware event
1679  */
1680 static void __perf_event_read(void *info)
1681 {
1682         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683         struct perf_event *event = info;
1684         struct perf_event_context *ctx = event->ctx;
1685
1686         /*
1687          * If this is a task context, we need to check whether it is
1688          * the current task context of this cpu.  If not it has been
1689          * scheduled out before the smp call arrived.  In that case
1690          * event->count would have been updated to a recent sample
1691          * when the event was scheduled out.
1692          */
1693         if (ctx->task && cpuctx->task_ctx != ctx)
1694                 return;
1695
1696         raw_spin_lock(&ctx->lock);
1697         update_context_time(ctx);
1698         update_event_times(event);
1699         raw_spin_unlock(&ctx->lock);
1700
1701         event->pmu->read(event);
1702 }
1703
1704 static u64 perf_event_read(struct perf_event *event)
1705 {
1706         /*
1707          * If event is enabled and currently active on a CPU, update the
1708          * value in the event structure:
1709          */
1710         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711                 smp_call_function_single(event->oncpu,
1712                                          __perf_event_read, event, 1);
1713         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1714                 struct perf_event_context *ctx = event->ctx;
1715                 unsigned long flags;
1716
1717                 raw_spin_lock_irqsave(&ctx->lock, flags);
1718                 update_context_time(ctx);
1719                 update_event_times(event);
1720                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1721         }
1722
1723         return atomic64_read(&event->count);
1724 }
1725
1726 /*
1727  * Initialize the perf_event context in a task_struct:
1728  */
1729 static void
1730 __perf_event_init_context(struct perf_event_context *ctx,
1731                             struct task_struct *task)
1732 {
1733         raw_spin_lock_init(&ctx->lock);
1734         mutex_init(&ctx->mutex);
1735         INIT_LIST_HEAD(&ctx->pinned_groups);
1736         INIT_LIST_HEAD(&ctx->flexible_groups);
1737         INIT_LIST_HEAD(&ctx->event_list);
1738         atomic_set(&ctx->refcount, 1);
1739         ctx->task = task;
1740 }
1741
1742 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743 {
1744         struct perf_event_context *ctx;
1745         struct perf_cpu_context *cpuctx;
1746         struct task_struct *task;
1747         unsigned long flags;
1748         int err;
1749
1750         if (pid == -1 && cpu != -1) {
1751                 /* Must be root to operate on a CPU event: */
1752                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753                         return ERR_PTR(-EACCES);
1754
1755                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1756                         return ERR_PTR(-EINVAL);
1757
1758                 /*
1759                  * We could be clever and allow to attach a event to an
1760                  * offline CPU and activate it when the CPU comes up, but
1761                  * that's for later.
1762                  */
1763                 if (!cpu_online(cpu))
1764                         return ERR_PTR(-ENODEV);
1765
1766                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767                 ctx = &cpuctx->ctx;
1768                 get_ctx(ctx);
1769
1770                 return ctx;
1771         }
1772
1773         rcu_read_lock();
1774         if (!pid)
1775                 task = current;
1776         else
1777                 task = find_task_by_vpid(pid);
1778         if (task)
1779                 get_task_struct(task);
1780         rcu_read_unlock();
1781
1782         if (!task)
1783                 return ERR_PTR(-ESRCH);
1784
1785         /*
1786          * Can't attach events to a dying task.
1787          */
1788         err = -ESRCH;
1789         if (task->flags & PF_EXITING)
1790                 goto errout;
1791
1792         /* Reuse ptrace permission checks for now. */
1793         err = -EACCES;
1794         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795                 goto errout;
1796
1797  retry:
1798         ctx = perf_lock_task_context(task, &flags);
1799         if (ctx) {
1800                 unclone_ctx(ctx);
1801                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1802         }
1803
1804         if (!ctx) {
1805                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1806                 err = -ENOMEM;
1807                 if (!ctx)
1808                         goto errout;
1809                 __perf_event_init_context(ctx, task);
1810                 get_ctx(ctx);
1811                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812                         /*
1813                          * We raced with some other task; use
1814                          * the context they set.
1815                          */
1816                         kfree(ctx);
1817                         goto retry;
1818                 }
1819                 get_task_struct(task);
1820         }
1821
1822         put_task_struct(task);
1823         return ctx;
1824
1825  errout:
1826         put_task_struct(task);
1827         return ERR_PTR(err);
1828 }
1829
1830 static void perf_event_free_filter(struct perf_event *event);
1831
1832 static void free_event_rcu(struct rcu_head *head)
1833 {
1834         struct perf_event *event;
1835
1836         event = container_of(head, struct perf_event, rcu_head);
1837         if (event->ns)
1838                 put_pid_ns(event->ns);
1839         perf_event_free_filter(event);
1840         kfree(event);
1841 }
1842
1843 static void perf_pending_sync(struct perf_event *event);
1844
1845 static void free_event(struct perf_event *event)
1846 {
1847         perf_pending_sync(event);
1848
1849         if (!event->parent) {
1850                 atomic_dec(&nr_events);
1851                 if (event->attr.mmap)
1852                         atomic_dec(&nr_mmap_events);
1853                 if (event->attr.comm)
1854                         atomic_dec(&nr_comm_events);
1855                 if (event->attr.task)
1856                         atomic_dec(&nr_task_events);
1857         }
1858
1859         if (event->output) {
1860                 fput(event->output->filp);
1861                 event->output = NULL;
1862         }
1863
1864         if (event->destroy)
1865                 event->destroy(event);
1866
1867         put_ctx(event->ctx);
1868         call_rcu(&event->rcu_head, free_event_rcu);
1869 }
1870
1871 int perf_event_release_kernel(struct perf_event *event)
1872 {
1873         struct perf_event_context *ctx = event->ctx;
1874
1875         /*
1876          * Remove from the PMU, can't get re-enabled since we got
1877          * here because the last ref went.
1878          */
1879         perf_event_disable(event);
1880
1881         WARN_ON_ONCE(ctx->parent_ctx);
1882         /*
1883          * There are two ways this annotation is useful:
1884          *
1885          *  1) there is a lock recursion from perf_event_exit_task
1886          *     see the comment there.
1887          *
1888          *  2) there is a lock-inversion with mmap_sem through
1889          *     perf_event_read_group(), which takes faults while
1890          *     holding ctx->mutex, however this is called after
1891          *     the last filedesc died, so there is no possibility
1892          *     to trigger the AB-BA case.
1893          */
1894         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1895         raw_spin_lock_irq(&ctx->lock);
1896         list_del_event(event, ctx);
1897         perf_destroy_group(event, ctx);
1898         raw_spin_unlock_irq(&ctx->lock);
1899         mutex_unlock(&ctx->mutex);
1900
1901         mutex_lock(&event->owner->perf_event_mutex);
1902         list_del_init(&event->owner_entry);
1903         mutex_unlock(&event->owner->perf_event_mutex);
1904         put_task_struct(event->owner);
1905
1906         free_event(event);
1907
1908         return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
1912 /*
1913  * Called when the last reference to the file is gone.
1914  */
1915 static int perf_release(struct inode *inode, struct file *file)
1916 {
1917         struct perf_event *event = file->private_data;
1918
1919         file->private_data = NULL;
1920
1921         return perf_event_release_kernel(event);
1922 }
1923
1924 static int perf_event_read_size(struct perf_event *event)
1925 {
1926         int entry = sizeof(u64); /* value */
1927         int size = 0;
1928         int nr = 1;
1929
1930         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931                 size += sizeof(u64);
1932
1933         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934                 size += sizeof(u64);
1935
1936         if (event->attr.read_format & PERF_FORMAT_ID)
1937                 entry += sizeof(u64);
1938
1939         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940                 nr += event->group_leader->nr_siblings;
1941                 size += sizeof(u64);
1942         }
1943
1944         size += entry * nr;
1945
1946         return size;
1947 }
1948
1949 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1950 {
1951         struct perf_event *child;
1952         u64 total = 0;
1953
1954         *enabled = 0;
1955         *running = 0;
1956
1957         mutex_lock(&event->child_mutex);
1958         total += perf_event_read(event);
1959         *enabled += event->total_time_enabled +
1960                         atomic64_read(&event->child_total_time_enabled);
1961         *running += event->total_time_running +
1962                         atomic64_read(&event->child_total_time_running);
1963
1964         list_for_each_entry(child, &event->child_list, child_list) {
1965                 total += perf_event_read(child);
1966                 *enabled += child->total_time_enabled;
1967                 *running += child->total_time_running;
1968         }
1969         mutex_unlock(&event->child_mutex);
1970
1971         return total;
1972 }
1973 EXPORT_SYMBOL_GPL(perf_event_read_value);
1974
1975 static int perf_event_read_group(struct perf_event *event,
1976                                    u64 read_format, char __user *buf)
1977 {
1978         struct perf_event *leader = event->group_leader, *sub;
1979         int n = 0, size = 0, ret = -EFAULT;
1980         struct perf_event_context *ctx = leader->ctx;
1981         u64 values[5];
1982         u64 count, enabled, running;
1983
1984         mutex_lock(&ctx->mutex);
1985         count = perf_event_read_value(leader, &enabled, &running);
1986
1987         values[n++] = 1 + leader->nr_siblings;
1988         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989                 values[n++] = enabled;
1990         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991                 values[n++] = running;
1992         values[n++] = count;
1993         if (read_format & PERF_FORMAT_ID)
1994                 values[n++] = primary_event_id(leader);
1995
1996         size = n * sizeof(u64);
1997
1998         if (copy_to_user(buf, values, size))
1999                 goto unlock;
2000
2001         ret = size;
2002
2003         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2004                 n = 0;
2005
2006                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2007                 if (read_format & PERF_FORMAT_ID)
2008                         values[n++] = primary_event_id(sub);
2009
2010                 size = n * sizeof(u64);
2011
2012                 if (copy_to_user(buf + ret, values, size)) {
2013                         ret = -EFAULT;
2014                         goto unlock;
2015                 }
2016
2017                 ret += size;
2018         }
2019 unlock:
2020         mutex_unlock(&ctx->mutex);
2021
2022         return ret;
2023 }
2024
2025 static int perf_event_read_one(struct perf_event *event,
2026                                  u64 read_format, char __user *buf)
2027 {
2028         u64 enabled, running;
2029         u64 values[4];
2030         int n = 0;
2031
2032         values[n++] = perf_event_read_value(event, &enabled, &running);
2033         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034                 values[n++] = enabled;
2035         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036                 values[n++] = running;
2037         if (read_format & PERF_FORMAT_ID)
2038                 values[n++] = primary_event_id(event);
2039
2040         if (copy_to_user(buf, values, n * sizeof(u64)))
2041                 return -EFAULT;
2042
2043         return n * sizeof(u64);
2044 }
2045
2046 /*
2047  * Read the performance event - simple non blocking version for now
2048  */
2049 static ssize_t
2050 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051 {
2052         u64 read_format = event->attr.read_format;
2053         int ret;
2054
2055         /*
2056          * Return end-of-file for a read on a event that is in
2057          * error state (i.e. because it was pinned but it couldn't be
2058          * scheduled on to the CPU at some point).
2059          */
2060         if (event->state == PERF_EVENT_STATE_ERROR)
2061                 return 0;
2062
2063         if (count < perf_event_read_size(event))
2064                 return -ENOSPC;
2065
2066         WARN_ON_ONCE(event->ctx->parent_ctx);
2067         if (read_format & PERF_FORMAT_GROUP)
2068                 ret = perf_event_read_group(event, read_format, buf);
2069         else
2070                 ret = perf_event_read_one(event, read_format, buf);
2071
2072         return ret;
2073 }
2074
2075 static ssize_t
2076 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077 {
2078         struct perf_event *event = file->private_data;
2079
2080         return perf_read_hw(event, buf, count);
2081 }
2082
2083 static unsigned int perf_poll(struct file *file, poll_table *wait)
2084 {
2085         struct perf_event *event = file->private_data;
2086         struct perf_mmap_data *data;
2087         unsigned int events = POLL_HUP;
2088
2089         rcu_read_lock();
2090         data = rcu_dereference(event->data);
2091         if (data)
2092                 events = atomic_xchg(&data->poll, 0);
2093         rcu_read_unlock();
2094
2095         poll_wait(file, &event->waitq, wait);
2096
2097         return events;
2098 }
2099
2100 static void perf_event_reset(struct perf_event *event)
2101 {
2102         (void)perf_event_read(event);
2103         atomic64_set(&event->count, 0);
2104         perf_event_update_userpage(event);
2105 }
2106
2107 /*
2108  * Holding the top-level event's child_mutex means that any
2109  * descendant process that has inherited this event will block
2110  * in sync_child_event if it goes to exit, thus satisfying the
2111  * task existence requirements of perf_event_enable/disable.
2112  */
2113 static void perf_event_for_each_child(struct perf_event *event,
2114                                         void (*func)(struct perf_event *))
2115 {
2116         struct perf_event *child;
2117
2118         WARN_ON_ONCE(event->ctx->parent_ctx);
2119         mutex_lock(&event->child_mutex);
2120         func(event);
2121         list_for_each_entry(child, &event->child_list, child_list)
2122                 func(child);
2123         mutex_unlock(&event->child_mutex);
2124 }
2125
2126 static void perf_event_for_each(struct perf_event *event,
2127                                   void (*func)(struct perf_event *))
2128 {
2129         struct perf_event_context *ctx = event->ctx;
2130         struct perf_event *sibling;
2131
2132         WARN_ON_ONCE(ctx->parent_ctx);
2133         mutex_lock(&ctx->mutex);
2134         event = event->group_leader;
2135
2136         perf_event_for_each_child(event, func);
2137         func(event);
2138         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139                 perf_event_for_each_child(event, func);
2140         mutex_unlock(&ctx->mutex);
2141 }
2142
2143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144 {
2145         struct perf_event_context *ctx = event->ctx;
2146         unsigned long size;
2147         int ret = 0;
2148         u64 value;
2149
2150         if (!event->attr.sample_period)
2151                 return -EINVAL;
2152
2153         size = copy_from_user(&value, arg, sizeof(value));
2154         if (size != sizeof(value))
2155                 return -EFAULT;
2156
2157         if (!value)
2158                 return -EINVAL;
2159
2160         raw_spin_lock_irq(&ctx->lock);
2161         if (event->attr.freq) {
2162                 if (value > sysctl_perf_event_sample_rate) {
2163                         ret = -EINVAL;
2164                         goto unlock;
2165                 }
2166
2167                 event->attr.sample_freq = value;
2168         } else {
2169                 event->attr.sample_period = value;
2170                 event->hw.sample_period = value;
2171         }
2172 unlock:
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         return ret;
2176 }
2177
2178 static int perf_event_set_output(struct perf_event *event, int output_fd);
2179 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2180
2181 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182 {
2183         struct perf_event *event = file->private_data;
2184         void (*func)(struct perf_event *);
2185         u32 flags = arg;
2186
2187         switch (cmd) {
2188         case PERF_EVENT_IOC_ENABLE:
2189                 func = perf_event_enable;
2190                 break;
2191         case PERF_EVENT_IOC_DISABLE:
2192                 func = perf_event_disable;
2193                 break;
2194         case PERF_EVENT_IOC_RESET:
2195                 func = perf_event_reset;
2196                 break;
2197
2198         case PERF_EVENT_IOC_REFRESH:
2199                 return perf_event_refresh(event, arg);
2200
2201         case PERF_EVENT_IOC_PERIOD:
2202                 return perf_event_period(event, (u64 __user *)arg);
2203
2204         case PERF_EVENT_IOC_SET_OUTPUT:
2205                 return perf_event_set_output(event, arg);
2206
2207         case PERF_EVENT_IOC_SET_FILTER:
2208                 return perf_event_set_filter(event, (void __user *)arg);
2209
2210         default:
2211                 return -ENOTTY;
2212         }
2213
2214         if (flags & PERF_IOC_FLAG_GROUP)
2215                 perf_event_for_each(event, func);
2216         else
2217                 perf_event_for_each_child(event, func);
2218
2219         return 0;
2220 }
2221
2222 int perf_event_task_enable(void)
2223 {
2224         struct perf_event *event;
2225
2226         mutex_lock(&current->perf_event_mutex);
2227         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228                 perf_event_for_each_child(event, perf_event_enable);
2229         mutex_unlock(&current->perf_event_mutex);
2230
2231         return 0;
2232 }
2233
2234 int perf_event_task_disable(void)
2235 {
2236         struct perf_event *event;
2237
2238         mutex_lock(&current->perf_event_mutex);
2239         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240                 perf_event_for_each_child(event, perf_event_disable);
2241         mutex_unlock(&current->perf_event_mutex);
2242
2243         return 0;
2244 }
2245
2246 #ifndef PERF_EVENT_INDEX_OFFSET
2247 # define PERF_EVENT_INDEX_OFFSET 0
2248 #endif
2249
2250 static int perf_event_index(struct perf_event *event)
2251 {
2252         if (event->state != PERF_EVENT_STATE_ACTIVE)
2253                 return 0;
2254
2255         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256 }
2257
2258 /*
2259  * Callers need to ensure there can be no nesting of this function, otherwise
2260  * the seqlock logic goes bad. We can not serialize this because the arch
2261  * code calls this from NMI context.
2262  */
2263 void perf_event_update_userpage(struct perf_event *event)
2264 {
2265         struct perf_event_mmap_page *userpg;
2266         struct perf_mmap_data *data;
2267
2268         rcu_read_lock();
2269         data = rcu_dereference(event->data);
2270         if (!data)
2271                 goto unlock;
2272
2273         userpg = data->user_page;
2274
2275         /*
2276          * Disable preemption so as to not let the corresponding user-space
2277          * spin too long if we get preempted.
2278          */
2279         preempt_disable();
2280         ++userpg->lock;
2281         barrier();
2282         userpg->index = perf_event_index(event);
2283         userpg->offset = atomic64_read(&event->count);
2284         if (event->state == PERF_EVENT_STATE_ACTIVE)
2285                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287         userpg->time_enabled = event->total_time_enabled +
2288                         atomic64_read(&event->child_total_time_enabled);
2289
2290         userpg->time_running = event->total_time_running +
2291                         atomic64_read(&event->child_total_time_running);
2292
2293         barrier();
2294         ++userpg->lock;
2295         preempt_enable();
2296 unlock:
2297         rcu_read_unlock();
2298 }
2299
2300 #ifndef CONFIG_PERF_USE_VMALLOC
2301
2302 /*
2303  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2304  */
2305
2306 static struct page *
2307 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2308 {
2309         if (pgoff > data->nr_pages)
2310                 return NULL;
2311
2312         if (pgoff == 0)
2313                 return virt_to_page(data->user_page);
2314
2315         return virt_to_page(data->data_pages[pgoff - 1]);
2316 }
2317
2318 static void *perf_mmap_alloc_page(int cpu)
2319 {
2320         struct page *page;
2321         int node;
2322
2323         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2324         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2325         if (!page)
2326                 return NULL;
2327
2328         return page_address(page);
2329 }
2330
2331 static struct perf_mmap_data *
2332 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2333 {
2334         struct perf_mmap_data *data;
2335         unsigned long size;
2336         int i;
2337
2338         WARN_ON(atomic_read(&event->mmap_count));
2339
2340         size = sizeof(struct perf_mmap_data);
2341         size += nr_pages * sizeof(void *);
2342
2343         data = kzalloc(size, GFP_KERNEL);
2344         if (!data)
2345                 goto fail;
2346
2347         data->user_page = perf_mmap_alloc_page(event->cpu);
2348         if (!data->user_page)
2349                 goto fail_user_page;
2350
2351         for (i = 0; i < nr_pages; i++) {
2352                 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2353                 if (!data->data_pages[i])
2354                         goto fail_data_pages;
2355         }
2356
2357         data->nr_pages = nr_pages;
2358
2359         return data;
2360
2361 fail_data_pages:
2362         for (i--; i >= 0; i--)
2363                 free_page((unsigned long)data->data_pages[i]);
2364
2365         free_page((unsigned long)data->user_page);
2366
2367 fail_user_page:
2368         kfree(data);
2369
2370 fail:
2371         return NULL;
2372 }
2373
2374 static void perf_mmap_free_page(unsigned long addr)
2375 {
2376         struct page *page = virt_to_page((void *)addr);
2377
2378         page->mapping = NULL;
2379         __free_page(page);
2380 }
2381
2382 static void perf_mmap_data_free(struct perf_mmap_data *data)
2383 {
2384         int i;
2385
2386         perf_mmap_free_page((unsigned long)data->user_page);
2387         for (i = 0; i < data->nr_pages; i++)
2388                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2389         kfree(data);
2390 }
2391
2392 static inline int page_order(struct perf_mmap_data *data)
2393 {
2394         return 0;
2395 }
2396
2397 #else
2398
2399 /*
2400  * Back perf_mmap() with vmalloc memory.
2401  *
2402  * Required for architectures that have d-cache aliasing issues.
2403  */
2404
2405 static inline int page_order(struct perf_mmap_data *data)
2406 {
2407         return data->page_order;
2408 }
2409
2410 static struct page *
2411 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2412 {
2413         if (pgoff > (1UL << page_order(data)))
2414                 return NULL;
2415
2416         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2417 }
2418
2419 static void perf_mmap_unmark_page(void *addr)
2420 {
2421         struct page *page = vmalloc_to_page(addr);
2422
2423         page->mapping = NULL;
2424 }
2425
2426 static void perf_mmap_data_free_work(struct work_struct *work)
2427 {
2428         struct perf_mmap_data *data;
2429         void *base;
2430         int i, nr;
2431
2432         data = container_of(work, struct perf_mmap_data, work);
2433         nr = 1 << page_order(data);
2434
2435         base = data->user_page;
2436         for (i = 0; i < nr + 1; i++)
2437                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2438
2439         vfree(base);
2440         kfree(data);
2441 }
2442
2443 static void perf_mmap_data_free(struct perf_mmap_data *data)
2444 {
2445         schedule_work(&data->work);
2446 }
2447
2448 static struct perf_mmap_data *
2449 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2450 {
2451         struct perf_mmap_data *data;
2452         unsigned long size;
2453         void *all_buf;
2454
2455         WARN_ON(atomic_read(&event->mmap_count));
2456
2457         size = sizeof(struct perf_mmap_data);
2458         size += sizeof(void *);
2459
2460         data = kzalloc(size, GFP_KERNEL);
2461         if (!data)
2462                 goto fail;
2463
2464         INIT_WORK(&data->work, perf_mmap_data_free_work);
2465
2466         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2467         if (!all_buf)
2468                 goto fail_all_buf;
2469
2470         data->user_page = all_buf;
2471         data->data_pages[0] = all_buf + PAGE_SIZE;
2472         data->page_order = ilog2(nr_pages);
2473         data->nr_pages = 1;
2474
2475         return data;
2476
2477 fail_all_buf:
2478         kfree(data);
2479
2480 fail:
2481         return NULL;
2482 }
2483
2484 #endif
2485
2486 static unsigned long perf_data_size(struct perf_mmap_data *data)
2487 {
2488         return data->nr_pages << (PAGE_SHIFT + page_order(data));
2489 }
2490
2491 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2492 {
2493         struct perf_event *event = vma->vm_file->private_data;
2494         struct perf_mmap_data *data;
2495         int ret = VM_FAULT_SIGBUS;
2496
2497         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2498                 if (vmf->pgoff == 0)
2499                         ret = 0;
2500                 return ret;
2501         }
2502
2503         rcu_read_lock();
2504         data = rcu_dereference(event->data);
2505         if (!data)
2506                 goto unlock;
2507
2508         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2509                 goto unlock;
2510
2511         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2512         if (!vmf->page)
2513                 goto unlock;
2514
2515         get_page(vmf->page);
2516         vmf->page->mapping = vma->vm_file->f_mapping;
2517         vmf->page->index   = vmf->pgoff;
2518
2519         ret = 0;
2520 unlock:
2521         rcu_read_unlock();
2522
2523         return ret;
2524 }
2525
2526 static void
2527 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2528 {
2529         long max_size = perf_data_size(data);
2530
2531         if (event->attr.watermark) {
2532                 data->watermark = min_t(long, max_size,
2533                                         event->attr.wakeup_watermark);
2534         }
2535
2536         if (!data->watermark)
2537                 data->watermark = max_size / 2;
2538
2539
2540         rcu_assign_pointer(event->data, data);
2541 }
2542
2543 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2544 {
2545         struct perf_mmap_data *data;
2546
2547         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2548         perf_mmap_data_free(data);
2549 }
2550
2551 static void perf_mmap_data_release(struct perf_event *event)
2552 {
2553         struct perf_mmap_data *data = event->data;
2554
2555         WARN_ON(atomic_read(&event->mmap_count));
2556
2557         rcu_assign_pointer(event->data, NULL);
2558         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2559 }
2560
2561 static void perf_mmap_open(struct vm_area_struct *vma)
2562 {
2563         struct perf_event *event = vma->vm_file->private_data;
2564
2565         atomic_inc(&event->mmap_count);
2566 }
2567
2568 static void perf_mmap_close(struct vm_area_struct *vma)
2569 {
2570         struct perf_event *event = vma->vm_file->private_data;
2571
2572         WARN_ON_ONCE(event->ctx->parent_ctx);
2573         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2574                 unsigned long size = perf_data_size(event->data);
2575                 struct user_struct *user = current_user();
2576
2577                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2578                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2579                 perf_mmap_data_release(event);
2580                 mutex_unlock(&event->mmap_mutex);
2581         }
2582 }
2583
2584 static const struct vm_operations_struct perf_mmap_vmops = {
2585         .open           = perf_mmap_open,
2586         .close          = perf_mmap_close,
2587         .fault          = perf_mmap_fault,
2588         .page_mkwrite   = perf_mmap_fault,
2589 };
2590
2591 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2592 {
2593         struct perf_event *event = file->private_data;
2594         unsigned long user_locked, user_lock_limit;
2595         struct user_struct *user = current_user();
2596         unsigned long locked, lock_limit;
2597         struct perf_mmap_data *data;
2598         unsigned long vma_size;
2599         unsigned long nr_pages;
2600         long user_extra, extra;
2601         int ret = 0;
2602
2603         /*
2604          * Don't allow mmap() of inherited per-task counters. This would
2605          * create a performance issue due to all children writing to the
2606          * same buffer.
2607          */
2608         if (event->cpu == -1 && event->attr.inherit)
2609                 return -EINVAL;
2610
2611         if (!(vma->vm_flags & VM_SHARED))
2612                 return -EINVAL;
2613
2614         vma_size = vma->vm_end - vma->vm_start;
2615         nr_pages = (vma_size / PAGE_SIZE) - 1;
2616
2617         /*
2618          * If we have data pages ensure they're a power-of-two number, so we
2619          * can do bitmasks instead of modulo.
2620          */
2621         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2622                 return -EINVAL;
2623
2624         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2625                 return -EINVAL;
2626
2627         if (vma->vm_pgoff != 0)
2628                 return -EINVAL;
2629
2630         WARN_ON_ONCE(event->ctx->parent_ctx);
2631         mutex_lock(&event->mmap_mutex);
2632         if (event->output) {
2633                 ret = -EINVAL;
2634                 goto unlock;
2635         }
2636
2637         if (atomic_inc_not_zero(&event->mmap_count)) {
2638                 if (nr_pages != event->data->nr_pages)
2639                         ret = -EINVAL;
2640                 goto unlock;
2641         }
2642
2643         user_extra = nr_pages + 1;
2644         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2645
2646         /*
2647          * Increase the limit linearly with more CPUs:
2648          */
2649         user_lock_limit *= num_online_cpus();
2650
2651         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2652
2653         extra = 0;
2654         if (user_locked > user_lock_limit)
2655                 extra = user_locked - user_lock_limit;
2656
2657         lock_limit = rlimit(RLIMIT_MEMLOCK);
2658         lock_limit >>= PAGE_SHIFT;
2659         locked = vma->vm_mm->locked_vm + extra;
2660
2661         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2662                 !capable(CAP_IPC_LOCK)) {
2663                 ret = -EPERM;
2664                 goto unlock;
2665         }
2666
2667         WARN_ON(event->data);
2668
2669         data = perf_mmap_data_alloc(event, nr_pages);
2670         ret = -ENOMEM;
2671         if (!data)
2672                 goto unlock;
2673
2674         ret = 0;
2675         perf_mmap_data_init(event, data);
2676
2677         atomic_set(&event->mmap_count, 1);
2678         atomic_long_add(user_extra, &user->locked_vm);
2679         vma->vm_mm->locked_vm += extra;
2680         event->data->nr_locked = extra;
2681         if (vma->vm_flags & VM_WRITE)
2682                 event->data->writable = 1;
2683
2684 unlock:
2685         mutex_unlock(&event->mmap_mutex);
2686
2687         vma->vm_flags |= VM_RESERVED;
2688         vma->vm_ops = &perf_mmap_vmops;
2689
2690         return ret;
2691 }
2692
2693 static int perf_fasync(int fd, struct file *filp, int on)
2694 {
2695         struct inode *inode = filp->f_path.dentry->d_inode;
2696         struct perf_event *event = filp->private_data;
2697         int retval;
2698
2699         mutex_lock(&inode->i_mutex);
2700         retval = fasync_helper(fd, filp, on, &event->fasync);
2701         mutex_unlock(&inode->i_mutex);
2702
2703         if (retval < 0)
2704                 return retval;
2705
2706         return 0;
2707 }
2708
2709 static const struct file_operations perf_fops = {
2710         .llseek                 = no_llseek,
2711         .release                = perf_release,
2712         .read                   = perf_read,
2713         .poll                   = perf_poll,
2714         .unlocked_ioctl         = perf_ioctl,
2715         .compat_ioctl           = perf_ioctl,
2716         .mmap                   = perf_mmap,
2717         .fasync                 = perf_fasync,
2718 };
2719
2720 /*
2721  * Perf event wakeup
2722  *
2723  * If there's data, ensure we set the poll() state and publish everything
2724  * to user-space before waking everybody up.
2725  */
2726
2727 void perf_event_wakeup(struct perf_event *event)
2728 {
2729         wake_up_all(&event->waitq);
2730
2731         if (event->pending_kill) {
2732                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2733                 event->pending_kill = 0;
2734         }
2735 }
2736
2737 /*
2738  * Pending wakeups
2739  *
2740  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2741  *
2742  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2743  * single linked list and use cmpxchg() to add entries lockless.
2744  */
2745
2746 static void perf_pending_event(struct perf_pending_entry *entry)
2747 {
2748         struct perf_event *event = container_of(entry,
2749                         struct perf_event, pending);
2750
2751         if (event->pending_disable) {
2752                 event->pending_disable = 0;
2753                 __perf_event_disable(event);
2754         }
2755
2756         if (event->pending_wakeup) {
2757                 event->pending_wakeup = 0;
2758                 perf_event_wakeup(event);
2759         }
2760 }
2761
2762 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2763
2764 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2765         PENDING_TAIL,
2766 };
2767
2768 static void perf_pending_queue(struct perf_pending_entry *entry,
2769                                void (*func)(struct perf_pending_entry *))
2770 {
2771         struct perf_pending_entry **head;
2772
2773         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2774                 return;
2775
2776         entry->func = func;
2777
2778         head = &get_cpu_var(perf_pending_head);
2779
2780         do {
2781                 entry->next = *head;
2782         } while (cmpxchg(head, entry->next, entry) != entry->next);
2783
2784         set_perf_event_pending();
2785
2786         put_cpu_var(perf_pending_head);
2787 }
2788
2789 static int __perf_pending_run(void)
2790 {
2791         struct perf_pending_entry *list;
2792         int nr = 0;
2793
2794         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2795         while (list != PENDING_TAIL) {
2796                 void (*func)(struct perf_pending_entry *);
2797                 struct perf_pending_entry *entry = list;
2798
2799                 list = list->next;
2800
2801                 func = entry->func;
2802                 entry->next = NULL;
2803                 /*
2804                  * Ensure we observe the unqueue before we issue the wakeup,
2805                  * so that we won't be waiting forever.
2806                  * -- see perf_not_pending().
2807                  */
2808                 smp_wmb();
2809
2810                 func(entry);
2811                 nr++;
2812         }
2813
2814         return nr;
2815 }
2816
2817 static inline int perf_not_pending(struct perf_event *event)
2818 {
2819         /*
2820          * If we flush on whatever cpu we run, there is a chance we don't
2821          * need to wait.
2822          */
2823         get_cpu();
2824         __perf_pending_run();
2825         put_cpu();
2826
2827         /*
2828          * Ensure we see the proper queue state before going to sleep
2829          * so that we do not miss the wakeup. -- see perf_pending_handle()
2830          */
2831         smp_rmb();
2832         return event->pending.next == NULL;
2833 }
2834
2835 static void perf_pending_sync(struct perf_event *event)
2836 {
2837         wait_event(event->waitq, perf_not_pending(event));
2838 }
2839
2840 void perf_event_do_pending(void)
2841 {
2842         __perf_pending_run();
2843 }
2844
2845 /*
2846  * Callchain support -- arch specific
2847  */
2848
2849 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2850 {
2851         return NULL;
2852 }
2853
2854
2855 /*
2856  * We assume there is only KVM supporting the callbacks.
2857  * Later on, we might change it to a list if there is
2858  * another virtualization implementation supporting the callbacks.
2859  */
2860 struct perf_guest_info_callbacks *perf_guest_cbs;
2861
2862 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2863 {
2864         perf_guest_cbs = cbs;
2865         return 0;
2866 }
2867 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2868
2869 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2870 {
2871         perf_guest_cbs = NULL;
2872         return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2875
2876 /*
2877  * Output
2878  */
2879 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2880                               unsigned long offset, unsigned long head)
2881 {
2882         unsigned long mask;
2883
2884         if (!data->writable)
2885                 return true;
2886
2887         mask = perf_data_size(data) - 1;
2888
2889         offset = (offset - tail) & mask;
2890         head   = (head   - tail) & mask;
2891
2892         if ((int)(head - offset) < 0)
2893                 return false;
2894
2895         return true;
2896 }
2897
2898 static void perf_output_wakeup(struct perf_output_handle *handle)
2899 {
2900         atomic_set(&handle->data->poll, POLL_IN);
2901
2902         if (handle->nmi) {
2903                 handle->event->pending_wakeup = 1;
2904                 perf_pending_queue(&handle->event->pending,
2905                                    perf_pending_event);
2906         } else
2907                 perf_event_wakeup(handle->event);
2908 }
2909
2910 /*
2911  * We need to ensure a later event_id doesn't publish a head when a former
2912  * event isn't done writing. However since we need to deal with NMIs we
2913  * cannot fully serialize things.
2914  *
2915  * We only publish the head (and generate a wakeup) when the outer-most
2916  * event completes.
2917  */
2918 static void perf_output_get_handle(struct perf_output_handle *handle)
2919 {
2920         struct perf_mmap_data *data = handle->data;
2921
2922         preempt_disable();
2923         local_inc(&data->nest);
2924         handle->wakeup = local_read(&data->wakeup);
2925 }
2926
2927 static void perf_output_put_handle(struct perf_output_handle *handle)
2928 {
2929         struct perf_mmap_data *data = handle->data;
2930         unsigned long head;
2931
2932 again:
2933         head = local_read(&data->head);
2934
2935         /*
2936          * IRQ/NMI can happen here, which means we can miss a head update.
2937          */
2938
2939         if (!local_dec_and_test(&data->nest))
2940                 goto out;
2941
2942         /*
2943          * Publish the known good head. Rely on the full barrier implied
2944          * by atomic_dec_and_test() order the data->head read and this
2945          * write.
2946          */
2947         data->user_page->data_head = head;
2948
2949         /*
2950          * Now check if we missed an update, rely on the (compiler)
2951          * barrier in atomic_dec_and_test() to re-read data->head.
2952          */
2953         if (unlikely(head != local_read(&data->head))) {
2954                 local_inc(&data->nest);
2955                 goto again;
2956         }
2957
2958         if (handle->wakeup != local_read(&data->wakeup))
2959                 perf_output_wakeup(handle);
2960
2961  out:
2962         preempt_enable();
2963 }
2964
2965 __always_inline void perf_output_copy(struct perf_output_handle *handle,
2966                       const void *buf, unsigned int len)
2967 {
2968         do {
2969                 unsigned long size = min_t(unsigned long, handle->size, len);
2970
2971                 memcpy(handle->addr, buf, size);
2972
2973                 len -= size;
2974                 handle->addr += size;
2975                 handle->size -= size;
2976                 if (!handle->size) {
2977                         struct perf_mmap_data *data = handle->data;
2978
2979                         handle->page++;
2980                         handle->page &= data->nr_pages - 1;
2981                         handle->addr = data->data_pages[handle->page];
2982                         handle->size = PAGE_SIZE << page_order(data);
2983                 }
2984         } while (len);
2985 }
2986
2987 int perf_output_begin(struct perf_output_handle *handle,
2988                       struct perf_event *event, unsigned int size,
2989                       int nmi, int sample)
2990 {
2991         struct perf_event *output_event;
2992         struct perf_mmap_data *data;
2993         unsigned long tail, offset, head;
2994         int have_lost;
2995         struct {
2996                 struct perf_event_header header;
2997                 u64                      id;
2998                 u64                      lost;
2999         } lost_event;
3000
3001         rcu_read_lock();
3002         /*
3003          * For inherited events we send all the output towards the parent.
3004          */
3005         if (event->parent)
3006                 event = event->parent;
3007
3008         output_event = rcu_dereference(event->output);
3009         if (output_event)
3010                 event = output_event;
3011
3012         data = rcu_dereference(event->data);
3013         if (!data)
3014                 goto out;
3015
3016         handle->data    = data;
3017         handle->event   = event;
3018         handle->nmi     = nmi;
3019         handle->sample  = sample;
3020
3021         if (!data->nr_pages)
3022                 goto out;
3023
3024         have_lost = local_read(&data->lost);
3025         if (have_lost)
3026                 size += sizeof(lost_event);
3027
3028         perf_output_get_handle(handle);
3029
3030         do {
3031                 /*
3032                  * Userspace could choose to issue a mb() before updating the
3033                  * tail pointer. So that all reads will be completed before the
3034                  * write is issued.
3035                  */
3036                 tail = ACCESS_ONCE(data->user_page->data_tail);
3037                 smp_rmb();
3038                 offset = head = local_read(&data->head);
3039                 head += size;
3040                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3041                         goto fail;
3042         } while (local_cmpxchg(&data->head, offset, head) != offset);
3043
3044         if (head - local_read(&data->wakeup) > data->watermark)
3045                 local_add(data->watermark, &data->wakeup);
3046
3047         handle->page = offset >> (PAGE_SHIFT + page_order(data));
3048         handle->page &= data->nr_pages - 1;
3049         handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3050         handle->addr = data->data_pages[handle->page];
3051         handle->addr += handle->size;
3052         handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3053
3054         if (have_lost) {
3055                 lost_event.header.type = PERF_RECORD_LOST;
3056                 lost_event.header.misc = 0;
3057                 lost_event.header.size = sizeof(lost_event);
3058                 lost_event.id          = event->id;
3059                 lost_event.lost        = local_xchg(&data->lost, 0);
3060
3061                 perf_output_put(handle, lost_event);
3062         }
3063
3064         return 0;
3065
3066 fail:
3067         local_inc(&data->lost);
3068         perf_output_put_handle(handle);
3069 out:
3070         rcu_read_unlock();
3071
3072         return -ENOSPC;
3073 }
3074
3075 void perf_output_end(struct perf_output_handle *handle)
3076 {
3077         struct perf_event *event = handle->event;
3078         struct perf_mmap_data *data = handle->data;
3079
3080         int wakeup_events = event->attr.wakeup_events;
3081
3082         if (handle->sample && wakeup_events) {
3083                 int events = local_inc_return(&data->events);
3084                 if (events >= wakeup_events) {
3085                         local_sub(wakeup_events, &data->events);
3086                         local_inc(&data->wakeup);
3087                 }
3088         }
3089
3090         perf_output_put_handle(handle);
3091         rcu_read_unlock();
3092 }
3093
3094 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3095 {
3096         /*
3097          * only top level events have the pid namespace they were created in
3098          */
3099         if (event->parent)
3100                 event = event->parent;
3101
3102         return task_tgid_nr_ns(p, event->ns);
3103 }
3104
3105 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3106 {
3107         /*
3108          * only top level events have the pid namespace they were created in
3109          */
3110         if (event->parent)
3111                 event = event->parent;
3112
3113         return task_pid_nr_ns(p, event->ns);
3114 }
3115
3116 static void perf_output_read_one(struct perf_output_handle *handle,
3117                                  struct perf_event *event)
3118 {
3119         u64 read_format = event->attr.read_format;
3120         u64 values[4];
3121         int n = 0;
3122
3123         values[n++] = atomic64_read(&event->count);
3124         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3125                 values[n++] = event->total_time_enabled +
3126                         atomic64_read(&event->child_total_time_enabled);
3127         }
3128         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3129                 values[n++] = event->total_time_running +
3130                         atomic64_read(&event->child_total_time_running);
3131         }
3132         if (read_format & PERF_FORMAT_ID)
3133                 values[n++] = primary_event_id(event);
3134
3135         perf_output_copy(handle, values, n * sizeof(u64));
3136 }
3137
3138 /*
3139  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3140  */
3141 static void perf_output_read_group(struct perf_output_handle *handle,
3142                             struct perf_event *event)
3143 {
3144         struct perf_event *leader = event->group_leader, *sub;
3145         u64 read_format = event->attr.read_format;
3146         u64 values[5];
3147         int n = 0;
3148
3149         values[n++] = 1 + leader->nr_siblings;
3150
3151         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3152                 values[n++] = leader->total_time_enabled;
3153
3154         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3155                 values[n++] = leader->total_time_running;
3156
3157         if (leader != event)
3158                 leader->pmu->read(leader);
3159
3160         values[n++] = atomic64_read(&leader->count);
3161         if (read_format & PERF_FORMAT_ID)
3162                 values[n++] = primary_event_id(leader);
3163
3164         perf_output_copy(handle, values, n * sizeof(u64));
3165
3166         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3167                 n = 0;
3168
3169                 if (sub != event)
3170                         sub->pmu->read(sub);
3171
3172                 values[n++] = atomic64_read(&sub->count);
3173                 if (read_format & PERF_FORMAT_ID)
3174                         values[n++] = primary_event_id(sub);
3175
3176                 perf_output_copy(handle, values, n * sizeof(u64));
3177         }
3178 }
3179
3180 static void perf_output_read(struct perf_output_handle *handle,
3181                              struct perf_event *event)
3182 {
3183         if (event->attr.read_format & PERF_FORMAT_GROUP)
3184                 perf_output_read_group(handle, event);
3185         else
3186                 perf_output_read_one(handle, event);
3187 }
3188
3189 void perf_output_sample(struct perf_output_handle *handle,
3190                         struct perf_event_header *header,
3191                         struct perf_sample_data *data,
3192                         struct perf_event *event)
3193 {
3194         u64 sample_type = data->type;
3195
3196         perf_output_put(handle, *header);
3197
3198         if (sample_type & PERF_SAMPLE_IP)
3199                 perf_output_put(handle, data->ip);
3200
3201         if (sample_type & PERF_SAMPLE_TID)
3202                 perf_output_put(handle, data->tid_entry);
3203
3204         if (sample_type & PERF_SAMPLE_TIME)
3205                 perf_output_put(handle, data->time);
3206
3207         if (sample_type & PERF_SAMPLE_ADDR)
3208                 perf_output_put(handle, data->addr);
3209
3210         if (sample_type & PERF_SAMPLE_ID)
3211                 perf_output_put(handle, data->id);
3212
3213         if (sample_type & PERF_SAMPLE_STREAM_ID)
3214                 perf_output_put(handle, data->stream_id);
3215
3216         if (sample_type & PERF_SAMPLE_CPU)
3217                 perf_output_put(handle, data->cpu_entry);
3218
3219         if (sample_type & PERF_SAMPLE_PERIOD)
3220                 perf_output_put(handle, data->period);
3221
3222         if (sample_type & PERF_SAMPLE_READ)
3223                 perf_output_read(handle, event);
3224
3225         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3226                 if (data->callchain) {
3227                         int size = 1;
3228
3229                         if (data->callchain)
3230                                 size += data->callchain->nr;
3231
3232                         size *= sizeof(u64);
3233
3234                         perf_output_copy(handle, data->callchain, size);
3235                 } else {
3236                         u64 nr = 0;
3237                         perf_output_put(handle, nr);
3238                 }
3239         }
3240
3241         if (sample_type & PERF_SAMPLE_RAW) {
3242                 if (data->raw) {
3243                         perf_output_put(handle, data->raw->size);
3244                         perf_output_copy(handle, data->raw->data,
3245                                          data->raw->size);
3246                 } else {
3247                         struct {
3248                                 u32     size;
3249                                 u32     data;
3250                         } raw = {
3251                                 .size = sizeof(u32),
3252                                 .data = 0,
3253                         };
3254                         perf_output_put(handle, raw);
3255                 }
3256         }
3257 }
3258
3259 void perf_prepare_sample(struct perf_event_header *header,
3260                          struct perf_sample_data *data,
3261                          struct perf_event *event,
3262                          struct pt_regs *regs)
3263 {
3264         u64 sample_type = event->attr.sample_type;
3265
3266         data->type = sample_type;
3267
3268         header->type = PERF_RECORD_SAMPLE;
3269         header->size = sizeof(*header);
3270
3271         header->misc = 0;
3272         header->misc |= perf_misc_flags(regs);
3273
3274         if (sample_type & PERF_SAMPLE_IP) {
3275                 data->ip = perf_instruction_pointer(regs);
3276
3277                 header->size += sizeof(data->ip);
3278         }
3279
3280         if (sample_type & PERF_SAMPLE_TID) {
3281                 /* namespace issues */
3282                 data->tid_entry.pid = perf_event_pid(event, current);
3283                 data->tid_entry.tid = perf_event_tid(event, current);
3284
3285                 header->size += sizeof(data->tid_entry);
3286         }
3287
3288         if (sample_type & PERF_SAMPLE_TIME) {
3289                 data->time = perf_clock();
3290
3291                 header->size += sizeof(data->time);
3292         }
3293
3294         if (sample_type & PERF_SAMPLE_ADDR)
3295                 header->size += sizeof(data->addr);
3296
3297         if (sample_type & PERF_SAMPLE_ID) {
3298                 data->id = primary_event_id(event);
3299
3300                 header->size += sizeof(data->id);
3301         }
3302
3303         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3304                 data->stream_id = event->id;
3305
3306                 header->size += sizeof(data->stream_id);
3307         }
3308
3309         if (sample_type & PERF_SAMPLE_CPU) {
3310                 data->cpu_entry.cpu             = raw_smp_processor_id();
3311                 data->cpu_entry.reserved        = 0;
3312
3313                 header->size += sizeof(data->cpu_entry);
3314         }
3315
3316         if (sample_type & PERF_SAMPLE_PERIOD)
3317                 header->size += sizeof(data->period);
3318
3319         if (sample_type & PERF_SAMPLE_READ)
3320                 header->size += perf_event_read_size(event);
3321
3322         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3323                 int size = 1;
3324
3325                 data->callchain = perf_callchain(regs);
3326
3327                 if (data->callchain)
3328                         size += data->callchain->nr;
3329
3330                 header->size += size * sizeof(u64);
3331         }
3332
3333         if (sample_type & PERF_SAMPLE_RAW) {
3334                 int size = sizeof(u32);
3335
3336                 if (data->raw)
3337                         size += data->raw->size;
3338                 else
3339                         size += sizeof(u32);
3340
3341                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3342                 header->size += size;
3343         }
3344 }
3345
3346 static void perf_event_output(struct perf_event *event, int nmi,
3347                                 struct perf_sample_data *data,
3348                                 struct pt_regs *regs)
3349 {
3350         struct perf_output_handle handle;
3351         struct perf_event_header header;
3352
3353         perf_prepare_sample(&header, data, event, regs);
3354
3355         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3356                 return;
3357
3358         perf_output_sample(&handle, &header, data, event);
3359
3360         perf_output_end(&handle);
3361 }
3362
3363 /*
3364  * read event_id
3365  */
3366
3367 struct perf_read_event {
3368         struct perf_event_header        header;
3369
3370         u32                             pid;
3371         u32                             tid;
3372 };
3373
3374 static void
3375 perf_event_read_event(struct perf_event *event,
3376                         struct task_struct *task)
3377 {
3378         struct perf_output_handle handle;
3379         struct perf_read_event read_event = {
3380                 .header = {
3381                         .type = PERF_RECORD_READ,
3382                         .misc = 0,
3383                         .size = sizeof(read_event) + perf_event_read_size(event),
3384                 },
3385                 .pid = perf_event_pid(event, task),
3386                 .tid = perf_event_tid(event, task),
3387         };
3388         int ret;
3389
3390         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3391         if (ret)
3392                 return;
3393
3394         perf_output_put(&handle, read_event);
3395         perf_output_read(&handle, event);
3396
3397         perf_output_end(&handle);
3398 }
3399
3400 /*
3401  * task tracking -- fork/exit
3402  *
3403  * enabled by: attr.comm | attr.mmap | attr.task
3404  */
3405
3406 struct perf_task_event {
3407         struct task_struct              *task;
3408         struct perf_event_context       *task_ctx;
3409
3410         struct {
3411                 struct perf_event_header        header;
3412
3413                 u32                             pid;
3414                 u32                             ppid;
3415                 u32                             tid;
3416                 u32                             ptid;
3417                 u64                             time;
3418         } event_id;
3419 };
3420
3421 static void perf_event_task_output(struct perf_event *event,
3422                                      struct perf_task_event *task_event)
3423 {
3424         struct perf_output_handle handle;
3425         struct task_struct *task = task_event->task;
3426         int size, ret;
3427
3428         size  = task_event->event_id.header.size;
3429         ret = perf_output_begin(&handle, event, size, 0, 0);
3430
3431         if (ret)
3432                 return;
3433
3434         task_event->event_id.pid = perf_event_pid(event, task);
3435         task_event->event_id.ppid = perf_event_pid(event, current);
3436
3437         task_event->event_id.tid = perf_event_tid(event, task);
3438         task_event->event_id.ptid = perf_event_tid(event, current);
3439
3440         perf_output_put(&handle, task_event->event_id);
3441
3442         perf_output_end(&handle);
3443 }
3444
3445 static int perf_event_task_match(struct perf_event *event)
3446 {
3447         if (event->state < PERF_EVENT_STATE_INACTIVE)
3448                 return 0;
3449
3450         if (event->cpu != -1 && event->cpu != smp_processor_id())
3451                 return 0;
3452
3453         if (event->attr.comm || event->attr.mmap || event->attr.task)
3454                 return 1;
3455
3456         return 0;
3457 }
3458
3459 static void perf_event_task_ctx(struct perf_event_context *ctx,
3460                                   struct perf_task_event *task_event)
3461 {
3462         struct perf_event *event;
3463
3464         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3465                 if (perf_event_task_match(event))
3466                         perf_event_task_output(event, task_event);
3467         }
3468 }
3469
3470 static void perf_event_task_event(struct perf_task_event *task_event)
3471 {
3472         struct perf_cpu_context *cpuctx;
3473         struct perf_event_context *ctx = task_event->task_ctx;
3474
3475         rcu_read_lock();
3476         cpuctx = &get_cpu_var(perf_cpu_context);
3477         perf_event_task_ctx(&cpuctx->ctx, task_event);
3478         if (!ctx)
3479                 ctx = rcu_dereference(current->perf_event_ctxp);
3480         if (ctx)
3481                 perf_event_task_ctx(ctx, task_event);
3482         put_cpu_var(perf_cpu_context);
3483         rcu_read_unlock();
3484 }
3485
3486 static void perf_event_task(struct task_struct *task,
3487                               struct perf_event_context *task_ctx,
3488                               int new)
3489 {
3490         struct perf_task_event task_event;
3491
3492         if (!atomic_read(&nr_comm_events) &&
3493             !atomic_read(&nr_mmap_events) &&
3494             !atomic_read(&nr_task_events))
3495                 return;
3496
3497         task_event = (struct perf_task_event){
3498                 .task     = task,
3499                 .task_ctx = task_ctx,
3500                 .event_id    = {
3501                         .header = {
3502                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3503                                 .misc = 0,
3504                                 .size = sizeof(task_event.event_id),
3505                         },
3506                         /* .pid  */
3507                         /* .ppid */
3508                         /* .tid  */
3509                         /* .ptid */
3510                         .time = perf_clock(),
3511                 },
3512         };
3513
3514         perf_event_task_event(&task_event);
3515 }
3516
3517 void perf_event_fork(struct task_struct *task)
3518 {
3519         perf_event_task(task, NULL, 1);
3520 }
3521
3522 /*
3523  * comm tracking
3524  */
3525
3526 struct perf_comm_event {
3527         struct task_struct      *task;
3528         char                    *comm;
3529         int                     comm_size;
3530
3531         struct {
3532                 struct perf_event_header        header;
3533
3534                 u32                             pid;
3535                 u32                             tid;
3536         } event_id;
3537 };
3538
3539 static void perf_event_comm_output(struct perf_event *event,
3540                                      struct perf_comm_event *comm_event)
3541 {
3542         struct perf_output_handle handle;
3543         int size = comm_event->event_id.header.size;
3544         int ret = perf_output_begin(&handle, event, size, 0, 0);
3545
3546         if (ret)
3547                 return;
3548
3549         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3550         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3551
3552         perf_output_put(&handle, comm_event->event_id);
3553         perf_output_copy(&handle, comm_event->comm,
3554                                    comm_event->comm_size);
3555         perf_output_end(&handle);
3556 }
3557
3558 static int perf_event_comm_match(struct perf_event *event)
3559 {
3560         if (event->state < PERF_EVENT_STATE_INACTIVE)
3561                 return 0;
3562
3563         if (event->cpu != -1 && event->cpu != smp_processor_id())
3564                 return 0;
3565
3566         if (event->attr.comm)
3567                 return 1;
3568
3569         return 0;
3570 }
3571
3572 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3573                                   struct perf_comm_event *comm_event)
3574 {
3575         struct perf_event *event;
3576
3577         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3578                 if (perf_event_comm_match(event))
3579                         perf_event_comm_output(event, comm_event);
3580         }
3581 }
3582
3583 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3584 {
3585         struct perf_cpu_context *cpuctx;
3586         struct perf_event_context *ctx;
3587         unsigned int size;
3588         char comm[TASK_COMM_LEN];
3589
3590         memset(comm, 0, sizeof(comm));
3591         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3592         size = ALIGN(strlen(comm)+1, sizeof(u64));
3593
3594         comm_event->comm = comm;
3595         comm_event->comm_size = size;
3596
3597         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3598
3599         rcu_read_lock();
3600         cpuctx = &get_cpu_var(perf_cpu_context);
3601         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3602         ctx = rcu_dereference(current->perf_event_ctxp);
3603         if (ctx)
3604                 perf_event_comm_ctx(ctx, comm_event);
3605         put_cpu_var(perf_cpu_context);
3606         rcu_read_unlock();
3607 }
3608
3609 void perf_event_comm(struct task_struct *task)
3610 {
3611         struct perf_comm_event comm_event;
3612
3613         if (task->perf_event_ctxp)
3614                 perf_event_enable_on_exec(task);
3615
3616         if (!atomic_read(&nr_comm_events))
3617                 return;
3618
3619         comm_event = (struct perf_comm_event){
3620                 .task   = task,
3621                 /* .comm      */
3622                 /* .comm_size */
3623                 .event_id  = {
3624                         .header = {
3625                                 .type = PERF_RECORD_COMM,
3626                                 .misc = 0,
3627                                 /* .size */
3628                         },
3629                         /* .pid */
3630                         /* .tid */
3631                 },
3632         };
3633
3634         perf_event_comm_event(&comm_event);
3635 }
3636
3637 /*
3638  * mmap tracking
3639  */
3640
3641 struct perf_mmap_event {
3642         struct vm_area_struct   *vma;
3643
3644         const char              *file_name;
3645         int                     file_size;
3646
3647         struct {
3648                 struct perf_event_header        header;
3649
3650                 u32                             pid;
3651                 u32                             tid;
3652                 u64                             start;
3653                 u64                             len;
3654                 u64                             pgoff;
3655         } event_id;
3656 };
3657
3658 static void perf_event_mmap_output(struct perf_event *event,
3659                                      struct perf_mmap_event *mmap_event)
3660 {
3661         struct perf_output_handle handle;
3662         int size = mmap_event->event_id.header.size;
3663         int ret = perf_output_begin(&handle, event, size, 0, 0);
3664
3665         if (ret)
3666                 return;
3667
3668         mmap_event->event_id.pid = perf_event_pid(event, current);
3669         mmap_event->event_id.tid = perf_event_tid(event, current);
3670
3671         perf_output_put(&handle, mmap_event->event_id);
3672         perf_output_copy(&handle, mmap_event->file_name,
3673                                    mmap_event->file_size);
3674         perf_output_end(&handle);
3675 }
3676
3677 static int perf_event_mmap_match(struct perf_event *event,
3678                                    struct perf_mmap_event *mmap_event)
3679 {
3680         if (event->state < PERF_EVENT_STATE_INACTIVE)
3681                 return 0;
3682
3683         if (event->cpu != -1 && event->cpu != smp_processor_id())
3684                 return 0;
3685
3686         if (event->attr.mmap)
3687                 return 1;
3688
3689         return 0;
3690 }
3691
3692 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3693                                   struct perf_mmap_event *mmap_event)
3694 {
3695         struct perf_event *event;
3696
3697         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3698                 if (perf_event_mmap_match(event, mmap_event))
3699                         perf_event_mmap_output(event, mmap_event);
3700         }
3701 }
3702
3703 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3704 {
3705         struct perf_cpu_context *cpuctx;
3706         struct perf_event_context *ctx;
3707         struct vm_area_struct *vma = mmap_event->vma;
3708         struct file *file = vma->vm_file;
3709         unsigned int size;
3710         char tmp[16];
3711         char *buf = NULL;
3712         const char *name;
3713
3714         memset(tmp, 0, sizeof(tmp));
3715
3716         if (file) {
3717                 /*
3718                  * d_path works from the end of the buffer backwards, so we
3719                  * need to add enough zero bytes after the string to handle
3720                  * the 64bit alignment we do later.
3721                  */
3722                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3723                 if (!buf) {
3724                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3725                         goto got_name;
3726                 }
3727                 name = d_path(&file->f_path, buf, PATH_MAX);
3728                 if (IS_ERR(name)) {
3729                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3730                         goto got_name;
3731                 }
3732         } else {
3733                 if (arch_vma_name(mmap_event->vma)) {
3734                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3735                                        sizeof(tmp));
3736                         goto got_name;
3737                 }
3738
3739                 if (!vma->vm_mm) {
3740                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3741                         goto got_name;
3742                 }
3743
3744                 name = strncpy(tmp, "//anon", sizeof(tmp));
3745                 goto got_name;
3746         }
3747
3748 got_name:
3749         size = ALIGN(strlen(name)+1, sizeof(u64));
3750
3751         mmap_event->file_name = name;
3752         mmap_event->file_size = size;
3753
3754         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3755
3756         rcu_read_lock();
3757         cpuctx = &get_cpu_var(perf_cpu_context);
3758         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3759         ctx = rcu_dereference(current->perf_event_ctxp);
3760         if (ctx)
3761                 perf_event_mmap_ctx(ctx, mmap_event);
3762         put_cpu_var(perf_cpu_context);
3763         rcu_read_unlock();
3764
3765         kfree(buf);
3766 }
3767
3768 void __perf_event_mmap(struct vm_area_struct *vma)
3769 {
3770         struct perf_mmap_event mmap_event;
3771
3772         if (!atomic_read(&nr_mmap_events))
3773                 return;
3774
3775         mmap_event = (struct perf_mmap_event){
3776                 .vma    = vma,
3777                 /* .file_name */
3778                 /* .file_size */
3779                 .event_id  = {
3780                         .header = {
3781                                 .type = PERF_RECORD_MMAP,
3782                                 .misc = PERF_RECORD_MISC_USER,
3783                                 /* .size */
3784                         },
3785                         /* .pid */
3786                         /* .tid */
3787                         .start  = vma->vm_start,
3788                         .len    = vma->vm_end - vma->vm_start,
3789                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3790                 },
3791         };
3792
3793         perf_event_mmap_event(&mmap_event);
3794 }
3795
3796 /*
3797  * IRQ throttle logging
3798  */
3799
3800 static void perf_log_throttle(struct perf_event *event, int enable)
3801 {
3802         struct perf_output_handle handle;
3803         int ret;
3804
3805         struct {
3806                 struct perf_event_header        header;
3807                 u64                             time;
3808                 u64                             id;
3809                 u64                             stream_id;
3810         } throttle_event = {
3811                 .header = {
3812                         .type = PERF_RECORD_THROTTLE,
3813                         .misc = 0,
3814                         .size = sizeof(throttle_event),
3815                 },
3816                 .time           = perf_clock(),
3817                 .id             = primary_event_id(event),
3818                 .stream_id      = event->id,
3819         };
3820
3821         if (enable)
3822                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3823
3824         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3825         if (ret)
3826                 return;
3827
3828         perf_output_put(&handle, throttle_event);
3829         perf_output_end(&handle);
3830 }
3831
3832 /*
3833  * Generic event overflow handling, sampling.
3834  */
3835
3836 static int __perf_event_overflow(struct perf_event *event, int nmi,
3837                                    int throttle, struct perf_sample_data *data,
3838                                    struct pt_regs *regs)
3839 {
3840         int events = atomic_read(&event->event_limit);
3841         struct hw_perf_event *hwc = &event->hw;
3842         int ret = 0;
3843
3844         throttle = (throttle && event->pmu->unthrottle != NULL);
3845
3846         if (!throttle) {
3847                 hwc->interrupts++;
3848         } else {
3849                 if (hwc->interrupts != MAX_INTERRUPTS) {
3850                         hwc->interrupts++;
3851                         if (HZ * hwc->interrupts >
3852                                         (u64)sysctl_perf_event_sample_rate) {
3853                                 hwc->interrupts = MAX_INTERRUPTS;
3854                                 perf_log_throttle(event, 0);
3855                                 ret = 1;
3856                         }
3857                 } else {
3858                         /*
3859                          * Keep re-disabling events even though on the previous
3860                          * pass we disabled it - just in case we raced with a
3861                          * sched-in and the event got enabled again:
3862                          */
3863                         ret = 1;
3864                 }
3865         }
3866
3867         if (event->attr.freq) {
3868                 u64 now = perf_clock();
3869                 s64 delta = now - hwc->freq_time_stamp;
3870
3871                 hwc->freq_time_stamp = now;
3872
3873                 if (delta > 0 && delta < 2*TICK_NSEC)
3874                         perf_adjust_period(event, delta, hwc->last_period);
3875         }
3876
3877         /*
3878          * XXX event_limit might not quite work as expected on inherited
3879          * events
3880          */
3881
3882         event->pending_kill = POLL_IN;
3883         if (events && atomic_dec_and_test(&event->event_limit)) {
3884                 ret = 1;
3885                 event->pending_kill = POLL_HUP;
3886                 if (nmi) {
3887                         event->pending_disable = 1;
3888                         perf_pending_queue(&event->pending,
3889                                            perf_pending_event);
3890                 } else
3891                         perf_event_disable(event);
3892         }
3893
3894         if (event->overflow_handler)
3895                 event->overflow_handler(event, nmi, data, regs);
3896         else
3897                 perf_event_output(event, nmi, data, regs);
3898
3899         return ret;
3900 }
3901
3902 int perf_event_overflow(struct perf_event *event, int nmi,
3903                           struct perf_sample_data *data,
3904                           struct pt_regs *regs)
3905 {
3906         return __perf_event_overflow(event, nmi, 1, data, regs);
3907 }
3908
3909 /*
3910  * Generic software event infrastructure
3911  */
3912
3913 /*
3914  * We directly increment event->count and keep a second value in
3915  * event->hw.period_left to count intervals. This period event
3916  * is kept in the range [-sample_period, 0] so that we can use the
3917  * sign as trigger.
3918  */
3919
3920 static u64 perf_swevent_set_period(struct perf_event *event)
3921 {
3922         struct hw_perf_event *hwc = &event->hw;
3923         u64 period = hwc->last_period;
3924         u64 nr, offset;
3925         s64 old, val;
3926
3927         hwc->last_period = hwc->sample_period;
3928
3929 again:
3930         old = val = atomic64_read(&hwc->period_left);
3931         if (val < 0)
3932                 return 0;
3933
3934         nr = div64_u64(period + val, period);
3935         offset = nr * period;
3936         val -= offset;
3937         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3938                 goto again;
3939
3940         return nr;
3941 }
3942
3943 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3944                                     int nmi, struct perf_sample_data *data,
3945                                     struct pt_regs *regs)
3946 {
3947         struct hw_perf_event *hwc = &event->hw;
3948         int throttle = 0;
3949
3950         data->period = event->hw.last_period;
3951         if (!overflow)
3952                 overflow = perf_swevent_set_period(event);
3953
3954         if (hwc->interrupts == MAX_INTERRUPTS)
3955                 return;
3956
3957         for (; overflow; overflow--) {
3958                 if (__perf_event_overflow(event, nmi, throttle,
3959                                             data, regs)) {
3960                         /*
3961                          * We inhibit the overflow from happening when
3962                          * hwc->interrupts == MAX_INTERRUPTS.
3963                          */
3964                         break;
3965                 }
3966                 throttle = 1;
3967         }
3968 }
3969
3970 static void perf_swevent_unthrottle(struct perf_event *event)
3971 {
3972         /*
3973          * Nothing to do, we already reset hwc->interrupts.
3974          */
3975 }
3976
3977 static void perf_swevent_add(struct perf_event *event, u64 nr,
3978                                int nmi, struct perf_sample_data *data,
3979                                struct pt_regs *regs)
3980 {
3981         struct hw_perf_event *hwc = &event->hw;
3982
3983         atomic64_add(nr, &event->count);
3984
3985         if (!regs)
3986                 return;
3987
3988         if (!hwc->sample_period)
3989                 return;
3990
3991         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3992                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3993
3994         if (atomic64_add_negative(nr, &hwc->period_left))
3995                 return;
3996
3997         perf_swevent_overflow(event, 0, nmi, data, regs);
3998 }
3999
4000 static int perf_exclude_event(struct perf_event *event,
4001                               struct pt_regs *regs)
4002 {
4003         if (regs) {
4004                 if (event->attr.exclude_user && user_mode(regs))
4005                         return 1;
4006
4007                 if (event->attr.exclude_kernel && !user_mode(regs))
4008                         return 1;
4009         }
4010
4011         return 0;
4012 }
4013
4014 static int perf_swevent_match(struct perf_event *event,
4015                                 enum perf_type_id type,
4016                                 u32 event_id,
4017                                 struct perf_sample_data *data,
4018                                 struct pt_regs *regs)
4019 {
4020         if (event->attr.type != type)
4021                 return 0;
4022
4023         if (event->attr.config != event_id)
4024                 return 0;
4025
4026         if (perf_exclude_event(event, regs))
4027                 return 0;
4028
4029         return 1;
4030 }
4031
4032 static inline u64 swevent_hash(u64 type, u32 event_id)
4033 {
4034         u64 val = event_id | (type << 32);
4035
4036         return hash_64(val, SWEVENT_HLIST_BITS);
4037 }
4038
4039 static inline struct hlist_head *
4040 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4041 {
4042         u64 hash = swevent_hash(type, event_id);
4043
4044         return &hlist->heads[hash];
4045 }
4046
4047 /* For the read side: events when they trigger */
4048 static inline struct hlist_head *
4049 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4050 {
4051         struct swevent_hlist *hlist;
4052
4053         hlist = rcu_dereference(ctx->swevent_hlist);
4054         if (!hlist)
4055                 return NULL;
4056
4057         return __find_swevent_head(hlist, type, event_id);
4058 }
4059
4060 /* For the event head insertion and removal in the hlist */
4061 static inline struct hlist_head *
4062 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4063 {
4064         struct swevent_hlist *hlist;
4065         u32 event_id = event->attr.config;
4066         u64 type = event->attr.type;
4067
4068         /*
4069          * Event scheduling is always serialized against hlist allocation
4070          * and release. Which makes the protected version suitable here.
4071          * The context lock guarantees that.
4072          */
4073         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4074                                           lockdep_is_held(&event->ctx->lock));
4075         if (!hlist)
4076                 return NULL;
4077
4078         return __find_swevent_head(hlist, type, event_id);
4079 }
4080
4081 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4082                                     u64 nr, int nmi,
4083                                     struct perf_sample_data *data,
4084                                     struct pt_regs *regs)
4085 {
4086         struct perf_cpu_context *cpuctx;
4087         struct perf_event *event;
4088         struct hlist_node *node;
4089         struct hlist_head *head;
4090
4091         cpuctx = &__get_cpu_var(perf_cpu_context);
4092
4093         rcu_read_lock();
4094
4095         head = find_swevent_head_rcu(cpuctx, type, event_id);
4096
4097         if (!head)
4098                 goto end;
4099
4100         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4101                 if (perf_swevent_match(event, type, event_id, data, regs))
4102                         perf_swevent_add(event, nr, nmi, data, regs);
4103         }
4104 end:
4105         rcu_read_unlock();
4106 }
4107
4108 int perf_swevent_get_recursion_context(void)
4109 {
4110         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4111         int rctx;
4112
4113         if (in_nmi())
4114                 rctx = 3;
4115         else if (in_irq())
4116                 rctx = 2;
4117         else if (in_softirq())
4118                 rctx = 1;
4119         else
4120                 rctx = 0;
4121
4122         if (cpuctx->recursion[rctx])
4123                 return -1;
4124
4125         cpuctx->recursion[rctx]++;
4126         barrier();
4127
4128         return rctx;
4129 }
4130 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4131
4132 void perf_swevent_put_recursion_context(int rctx)
4133 {
4134         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4135         barrier();
4136         cpuctx->recursion[rctx]--;
4137 }
4138 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4139
4140
4141 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4142                             struct pt_regs *regs, u64 addr)
4143 {
4144         struct perf_sample_data data;
4145         int rctx;
4146
4147         preempt_disable_notrace();
4148         rctx = perf_swevent_get_recursion_context();
4149         if (rctx < 0)
4150                 return;
4151
4152         perf_sample_data_init(&data, addr);
4153
4154         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4155
4156         perf_swevent_put_recursion_context(rctx);
4157         preempt_enable_notrace();
4158 }
4159
4160 static void perf_swevent_read(struct perf_event *event)
4161 {
4162 }
4163
4164 static int perf_swevent_enable(struct perf_event *event)
4165 {
4166         struct hw_perf_event *hwc = &event->hw;
4167         struct perf_cpu_context *cpuctx;
4168         struct hlist_head *head;
4169
4170         cpuctx = &__get_cpu_var(perf_cpu_context);
4171
4172         if (hwc->sample_period) {
4173                 hwc->last_period = hwc->sample_period;
4174                 perf_swevent_set_period(event);
4175         }
4176
4177         head = find_swevent_head(cpuctx, event);
4178         if (WARN_ON_ONCE(!head))
4179                 return -EINVAL;
4180
4181         hlist_add_head_rcu(&event->hlist_entry, head);
4182
4183         return 0;
4184 }
4185
4186 static void perf_swevent_disable(struct perf_event *event)
4187 {
4188         hlist_del_rcu(&event->hlist_entry);
4189 }
4190
4191 static const struct pmu perf_ops_generic = {
4192         .enable         = perf_swevent_enable,
4193         .disable        = perf_swevent_disable,
4194         .read           = perf_swevent_read,
4195         .unthrottle     = perf_swevent_unthrottle,
4196 };
4197
4198 /*
4199  * hrtimer based swevent callback
4200  */
4201
4202 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4203 {
4204         enum hrtimer_restart ret = HRTIMER_RESTART;
4205         struct perf_sample_data data;
4206         struct pt_regs *regs;
4207         struct perf_event *event;
4208         u64 period;
4209
4210         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4211         event->pmu->read(event);
4212
4213         perf_sample_data_init(&data, 0);
4214         data.period = event->hw.last_period;
4215         regs = get_irq_regs();
4216
4217         if (regs && !perf_exclude_event(event, regs)) {
4218                 if (!(event->attr.exclude_idle && current->pid == 0))
4219                         if (perf_event_overflow(event, 0, &data, regs))
4220                                 ret = HRTIMER_NORESTART;
4221         }
4222
4223         period = max_t(u64, 10000, event->hw.sample_period);
4224         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4225
4226         return ret;
4227 }
4228
4229 static void perf_swevent_start_hrtimer(struct perf_event *event)
4230 {
4231         struct hw_perf_event *hwc = &event->hw;
4232
4233         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4234         hwc->hrtimer.function = perf_swevent_hrtimer;
4235         if (hwc->sample_period) {
4236                 u64 period;
4237
4238                 if (hwc->remaining) {
4239                         if (hwc->remaining < 0)
4240                                 period = 10000;
4241                         else
4242                                 period = hwc->remaining;
4243                         hwc->remaining = 0;
4244                 } else {
4245                         period = max_t(u64, 10000, hwc->sample_period);
4246                 }
4247                 __hrtimer_start_range_ns(&hwc->hrtimer,
4248                                 ns_to_ktime(period), 0,
4249                                 HRTIMER_MODE_REL, 0);
4250         }
4251 }
4252
4253 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4254 {
4255         struct hw_perf_event *hwc = &event->hw;
4256
4257         if (hwc->sample_period) {
4258                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4259                 hwc->remaining = ktime_to_ns(remaining);
4260
4261                 hrtimer_cancel(&hwc->hrtimer);
4262         }
4263 }
4264
4265 /*
4266  * Software event: cpu wall time clock
4267  */
4268
4269 static void cpu_clock_perf_event_update(struct perf_event *event)
4270 {
4271         int cpu = raw_smp_processor_id();
4272         s64 prev;
4273         u64 now;
4274
4275         now = cpu_clock(cpu);
4276         prev = atomic64_xchg(&event->hw.prev_count, now);
4277         atomic64_add(now - prev, &event->count);
4278 }
4279
4280 static int cpu_clock_perf_event_enable(struct perf_event *event)
4281 {
4282         struct hw_perf_event *hwc = &event->hw;
4283         int cpu = raw_smp_processor_id();
4284
4285         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4286         perf_swevent_start_hrtimer(event);
4287
4288         return 0;
4289 }
4290
4291 static void cpu_clock_perf_event_disable(struct perf_event *event)
4292 {
4293         perf_swevent_cancel_hrtimer(event);
4294         cpu_clock_perf_event_update(event);
4295 }
4296
4297 static void cpu_clock_perf_event_read(struct perf_event *event)
4298 {
4299         cpu_clock_perf_event_update(event);
4300 }
4301
4302 static const struct pmu perf_ops_cpu_clock = {
4303         .enable         = cpu_clock_perf_event_enable,
4304         .disable        = cpu_clock_perf_event_disable,
4305         .read           = cpu_clock_perf_event_read,
4306 };
4307
4308 /*
4309  * Software event: task time clock
4310  */
4311
4312 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4313 {
4314         u64 prev;
4315         s64 delta;
4316
4317         prev = atomic64_xchg(&event->hw.prev_count, now);
4318         delta = now - prev;
4319         atomic64_add(delta, &event->count);
4320 }
4321
4322 static int task_clock_perf_event_enable(struct perf_event *event)
4323 {
4324         struct hw_perf_event *hwc = &event->hw;
4325         u64 now;
4326
4327         now = event->ctx->time;
4328
4329         atomic64_set(&hwc->prev_count, now);
4330
4331         perf_swevent_start_hrtimer(event);
4332
4333         return 0;
4334 }
4335
4336 static void task_clock_perf_event_disable(struct perf_event *event)
4337 {
4338         perf_swevent_cancel_hrtimer(event);
4339         task_clock_perf_event_update(event, event->ctx->time);
4340
4341 }
4342
4343 static void task_clock_perf_event_read(struct perf_event *event)
4344 {
4345         u64 time;
4346
4347         if (!in_nmi()) {
4348                 update_context_time(event->ctx);
4349                 time = event->ctx->time;
4350         } else {
4351                 u64 now = perf_clock();
4352                 u64 delta = now - event->ctx->timestamp;
4353                 time = event->ctx->time + delta;
4354         }
4355
4356         task_clock_perf_event_update(event, time);
4357 }
4358
4359 static const struct pmu perf_ops_task_clock = {
4360         .enable         = task_clock_perf_event_enable,
4361         .disable        = task_clock_perf_event_disable,
4362         .read           = task_clock_perf_event_read,
4363 };
4364
4365 /* Deref the hlist from the update side */
4366 static inline struct swevent_hlist *
4367 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4368 {
4369         return rcu_dereference_protected(cpuctx->swevent_hlist,
4370                                          lockdep_is_held(&cpuctx->hlist_mutex));
4371 }
4372
4373 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4374 {
4375         struct swevent_hlist *hlist;
4376
4377         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4378         kfree(hlist);
4379 }
4380
4381 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4382 {
4383         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4384
4385         if (!hlist)
4386                 return;
4387
4388         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4389         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4390 }
4391
4392 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4393 {
4394         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4395
4396         mutex_lock(&cpuctx->hlist_mutex);
4397
4398         if (!--cpuctx->hlist_refcount)
4399                 swevent_hlist_release(cpuctx);
4400
4401         mutex_unlock(&cpuctx->hlist_mutex);
4402 }
4403
4404 static void swevent_hlist_put(struct perf_event *event)
4405 {
4406         int cpu;
4407
4408         if (event->cpu != -1) {
4409                 swevent_hlist_put_cpu(event, event->cpu);
4410                 return;
4411         }
4412
4413         for_each_possible_cpu(cpu)
4414                 swevent_hlist_put_cpu(event, cpu);
4415 }
4416
4417 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4418 {
4419         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4420         int err = 0;
4421
4422         mutex_lock(&cpuctx->hlist_mutex);
4423
4424         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4425                 struct swevent_hlist *hlist;
4426
4427                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4428                 if (!hlist) {
4429                         err = -ENOMEM;
4430                         goto exit;
4431                 }
4432                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4433         }
4434         cpuctx->hlist_refcount++;
4435  exit:
4436         mutex_unlock(&cpuctx->hlist_mutex);
4437
4438         return err;
4439 }
4440
4441 static int swevent_hlist_get(struct perf_event *event)
4442 {
4443         int err;
4444         int cpu, failed_cpu;
4445
4446         if (event->cpu != -1)
4447                 return swevent_hlist_get_cpu(event, event->cpu);
4448
4449         get_online_cpus();
4450         for_each_possible_cpu(cpu) {
4451                 err = swevent_hlist_get_cpu(event, cpu);
4452                 if (err) {
4453                         failed_cpu = cpu;
4454                         goto fail;
4455                 }
4456         }
4457         put_online_cpus();
4458
4459         return 0;
4460  fail:
4461         for_each_possible_cpu(cpu) {
4462                 if (cpu == failed_cpu)
4463                         break;
4464                 swevent_hlist_put_cpu(event, cpu);
4465         }
4466
4467         put_online_cpus();
4468         return err;
4469 }
4470
4471 #ifdef CONFIG_EVENT_TRACING
4472
4473 static const struct pmu perf_ops_tracepoint = {
4474         .enable         = perf_trace_enable,
4475         .disable        = perf_trace_disable,
4476         .read           = perf_swevent_read,
4477         .unthrottle     = perf_swevent_unthrottle,
4478 };
4479
4480 static int perf_tp_filter_match(struct perf_event *event,
4481                                 struct perf_sample_data *data)
4482 {
4483         void *record = data->raw->data;
4484
4485         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4486                 return 1;
4487         return 0;
4488 }
4489
4490 static int perf_tp_event_match(struct perf_event *event,
4491                                 struct perf_sample_data *data,
4492                                 struct pt_regs *regs)
4493 {
4494         /*
4495          * All tracepoints are from kernel-space.
4496          */
4497         if (event->attr.exclude_kernel)
4498                 return 0;
4499
4500         if (!perf_tp_filter_match(event, data))
4501                 return 0;
4502
4503         return 1;
4504 }
4505
4506 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4507                    struct pt_regs *regs, struct hlist_head *head)
4508 {
4509         struct perf_sample_data data;
4510         struct perf_event *event;
4511         struct hlist_node *node;
4512
4513         struct perf_raw_record raw = {
4514                 .size = entry_size,
4515                 .data = record,
4516         };
4517
4518         perf_sample_data_init(&data, addr);
4519         data.raw = &raw;
4520
4521         rcu_read_lock();
4522         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4523                 if (perf_tp_event_match(event, &data, regs))
4524                         perf_swevent_add(event, count, 1, &data, regs);
4525         }
4526         rcu_read_unlock();
4527 }
4528 EXPORT_SYMBOL_GPL(perf_tp_event);
4529
4530 static void tp_perf_event_destroy(struct perf_event *event)
4531 {
4532         perf_trace_destroy(event);
4533 }
4534
4535 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4536 {
4537         int err;
4538
4539         /*
4540          * Raw tracepoint data is a severe data leak, only allow root to
4541          * have these.
4542          */
4543         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4544                         perf_paranoid_tracepoint_raw() &&
4545                         !capable(CAP_SYS_ADMIN))
4546                 return ERR_PTR(-EPERM);
4547
4548         err = perf_trace_init(event);
4549         if (err)
4550                 return NULL;
4551
4552         event->destroy = tp_perf_event_destroy;
4553
4554         return &perf_ops_tracepoint;
4555 }
4556
4557 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4558 {
4559         char *filter_str;
4560         int ret;
4561
4562         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4563                 return -EINVAL;
4564
4565         filter_str = strndup_user(arg, PAGE_SIZE);
4566         if (IS_ERR(filter_str))
4567                 return PTR_ERR(filter_str);
4568
4569         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4570
4571         kfree(filter_str);
4572         return ret;
4573 }
4574
4575 static void perf_event_free_filter(struct perf_event *event)
4576 {
4577         ftrace_profile_free_filter(event);
4578 }
4579
4580 #else
4581
4582 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4583 {
4584         return NULL;
4585 }
4586
4587 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4588 {
4589         return -ENOENT;
4590 }
4591
4592 static void perf_event_free_filter(struct perf_event *event)
4593 {
4594 }
4595
4596 #endif /* CONFIG_EVENT_TRACING */
4597
4598 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4599 static void bp_perf_event_destroy(struct perf_event *event)
4600 {
4601         release_bp_slot(event);
4602 }
4603
4604 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4605 {
4606         int err;
4607
4608         err = register_perf_hw_breakpoint(bp);
4609         if (err)
4610                 return ERR_PTR(err);
4611
4612         bp->destroy = bp_perf_event_destroy;
4613
4614         return &perf_ops_bp;
4615 }
4616
4617 void perf_bp_event(struct perf_event *bp, void *data)
4618 {
4619         struct perf_sample_data sample;
4620         struct pt_regs *regs = data;
4621
4622         perf_sample_data_init(&sample, bp->attr.bp_addr);
4623
4624         if (!perf_exclude_event(bp, regs))
4625                 perf_swevent_add(bp, 1, 1, &sample, regs);
4626 }
4627 #else
4628 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4629 {
4630         return NULL;
4631 }
4632
4633 void perf_bp_event(struct perf_event *bp, void *regs)
4634 {
4635 }
4636 #endif
4637
4638 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4639
4640 static void sw_perf_event_destroy(struct perf_event *event)
4641 {
4642         u64 event_id = event->attr.config;
4643
4644         WARN_ON(event->parent);
4645
4646         atomic_dec(&perf_swevent_enabled[event_id]);
4647         swevent_hlist_put(event);
4648 }
4649
4650 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4651 {
4652         const struct pmu *pmu = NULL;
4653         u64 event_id = event->attr.config;
4654
4655         /*
4656          * Software events (currently) can't in general distinguish
4657          * between user, kernel and hypervisor events.
4658          * However, context switches and cpu migrations are considered
4659          * to be kernel events, and page faults are never hypervisor
4660          * events.
4661          */
4662         switch (event_id) {
4663         case PERF_COUNT_SW_CPU_CLOCK:
4664                 pmu = &perf_ops_cpu_clock;
4665
4666                 break;
4667         case PERF_COUNT_SW_TASK_CLOCK:
4668                 /*
4669                  * If the user instantiates this as a per-cpu event,
4670                  * use the cpu_clock event instead.
4671                  */
4672                 if (event->ctx->task)
4673                         pmu = &perf_ops_task_clock;
4674                 else
4675                         pmu = &perf_ops_cpu_clock;
4676
4677                 break;
4678         case PERF_COUNT_SW_PAGE_FAULTS:
4679         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4680         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4681         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4682         case PERF_COUNT_SW_CPU_MIGRATIONS:
4683         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4684         case PERF_COUNT_SW_EMULATION_FAULTS:
4685                 if (!event->parent) {
4686                         int err;
4687
4688                         err = swevent_hlist_get(event);
4689                         if (err)
4690                                 return ERR_PTR(err);
4691
4692                         atomic_inc(&perf_swevent_enabled[event_id]);
4693                         event->destroy = sw_perf_event_destroy;
4694                 }
4695                 pmu = &perf_ops_generic;
4696                 break;
4697         }
4698
4699         return pmu;
4700 }
4701
4702 /*
4703  * Allocate and initialize a event structure
4704  */
4705 static struct perf_event *
4706 perf_event_alloc(struct perf_event_attr *attr,
4707                    int cpu,
4708                    struct perf_event_context *ctx,
4709                    struct perf_event *group_leader,
4710                    struct perf_event *parent_event,
4711                    perf_overflow_handler_t overflow_handler,
4712                    gfp_t gfpflags)
4713 {
4714         const struct pmu *pmu;
4715         struct perf_event *event;
4716         struct hw_perf_event *hwc;
4717         long err;
4718
4719         event = kzalloc(sizeof(*event), gfpflags);
4720         if (!event)
4721                 return ERR_PTR(-ENOMEM);
4722
4723         /*
4724          * Single events are their own group leaders, with an
4725          * empty sibling list:
4726          */
4727         if (!group_leader)
4728                 group_leader = event;
4729
4730         mutex_init(&event->child_mutex);
4731         INIT_LIST_HEAD(&event->child_list);
4732
4733         INIT_LIST_HEAD(&event->group_entry);
4734         INIT_LIST_HEAD(&event->event_entry);
4735         INIT_LIST_HEAD(&event->sibling_list);
4736         init_waitqueue_head(&event->waitq);
4737
4738         mutex_init(&event->mmap_mutex);
4739
4740         event->cpu              = cpu;
4741         event->attr             = *attr;
4742         event->group_leader     = group_leader;
4743         event->pmu              = NULL;
4744         event->ctx              = ctx;
4745         event->oncpu            = -1;
4746
4747         event->parent           = parent_event;
4748
4749         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4750         event->id               = atomic64_inc_return(&perf_event_id);
4751
4752         event->state            = PERF_EVENT_STATE_INACTIVE;
4753
4754         if (!overflow_handler && parent_event)
4755                 overflow_handler = parent_event->overflow_handler;
4756         
4757         event->overflow_handler = overflow_handler;
4758
4759         if (attr->disabled)
4760                 event->state = PERF_EVENT_STATE_OFF;
4761
4762         pmu = NULL;
4763
4764         hwc = &event->hw;
4765         hwc->sample_period = attr->sample_period;
4766         if (attr->freq && attr->sample_freq)
4767                 hwc->sample_period = 1;
4768         hwc->last_period = hwc->sample_period;
4769
4770         atomic64_set(&hwc->period_left, hwc->sample_period);
4771
4772         /*
4773          * we currently do not support PERF_FORMAT_GROUP on inherited events
4774          */
4775         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4776                 goto done;
4777
4778         switch (attr->type) {
4779         case PERF_TYPE_RAW:
4780         case PERF_TYPE_HARDWARE:
4781         case PERF_TYPE_HW_CACHE:
4782                 pmu = hw_perf_event_init(event);
4783                 break;
4784
4785         case PERF_TYPE_SOFTWARE:
4786                 pmu = sw_perf_event_init(event);
4787                 break;
4788
4789         case PERF_TYPE_TRACEPOINT:
4790                 pmu = tp_perf_event_init(event);
4791                 break;
4792
4793         case PERF_TYPE_BREAKPOINT:
4794                 pmu = bp_perf_event_init(event);
4795                 break;
4796
4797
4798         default:
4799                 break;
4800         }
4801 done:
4802         err = 0;
4803         if (!pmu)
4804                 err = -EINVAL;
4805         else if (IS_ERR(pmu))
4806                 err = PTR_ERR(pmu);
4807
4808         if (err) {
4809                 if (event->ns)
4810                         put_pid_ns(event->ns);
4811                 kfree(event);
4812                 return ERR_PTR(err);
4813         }
4814
4815         event->pmu = pmu;
4816
4817         if (!event->parent) {
4818                 atomic_inc(&nr_events);
4819                 if (event->attr.mmap)
4820                         atomic_inc(&nr_mmap_events);
4821                 if (event->attr.comm)
4822                         atomic_inc(&nr_comm_events);
4823                 if (event->attr.task)
4824                         atomic_inc(&nr_task_events);
4825         }
4826
4827         return event;
4828 }
4829
4830 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4831                           struct perf_event_attr *attr)
4832 {
4833         u32 size;
4834         int ret;
4835
4836         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4837                 return -EFAULT;
4838
4839         /*
4840          * zero the full structure, so that a short copy will be nice.
4841          */
4842         memset(attr, 0, sizeof(*attr));
4843
4844         ret = get_user(size, &uattr->size);
4845         if (ret)
4846                 return ret;
4847
4848         if (size > PAGE_SIZE)   /* silly large */
4849                 goto err_size;
4850
4851         if (!size)              /* abi compat */
4852                 size = PERF_ATTR_SIZE_VER0;
4853
4854         if (size < PERF_ATTR_SIZE_VER0)
4855                 goto err_size;
4856
4857         /*
4858          * If we're handed a bigger struct than we know of,
4859          * ensure all the unknown bits are 0 - i.e. new
4860          * user-space does not rely on any kernel feature
4861          * extensions we dont know about yet.
4862          */
4863         if (size > sizeof(*attr)) {
4864                 unsigned char __user *addr;
4865                 unsigned char __user *end;
4866                 unsigned char val;
4867
4868                 addr = (void __user *)uattr + sizeof(*attr);
4869                 end  = (void __user *)uattr + size;
4870
4871                 for (; addr < end; addr++) {
4872                         ret = get_user(val, addr);
4873                         if (ret)
4874                                 return ret;
4875                         if (val)
4876                                 goto err_size;
4877                 }
4878                 size = sizeof(*attr);
4879         }
4880
4881         ret = copy_from_user(attr, uattr, size);
4882         if (ret)
4883                 return -EFAULT;
4884
4885         /*
4886          * If the type exists, the corresponding creation will verify
4887          * the attr->config.
4888          */
4889         if (attr->type >= PERF_TYPE_MAX)
4890                 return -EINVAL;
4891
4892         if (attr->__reserved_1)
4893                 return -EINVAL;
4894
4895         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4896                 return -EINVAL;
4897
4898         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4899                 return -EINVAL;
4900
4901 out:
4902         return ret;
4903
4904 err_size:
4905         put_user(sizeof(*attr), &uattr->size);
4906         ret = -E2BIG;
4907         goto out;
4908 }
4909
4910 static int perf_event_set_output(struct perf_event *event, int output_fd)
4911 {
4912         struct perf_event *output_event = NULL;
4913         struct file *output_file = NULL;
4914         struct perf_event *old_output;
4915         int fput_needed = 0;
4916         int ret = -EINVAL;
4917
4918         /*
4919          * Don't allow output of inherited per-task events. This would
4920          * create performance issues due to cross cpu access.
4921          */
4922         if (event->cpu == -1 && event->attr.inherit)
4923                 return -EINVAL;
4924
4925         if (!output_fd)
4926                 goto set;
4927
4928         output_file = fget_light(output_fd, &fput_needed);
4929         if (!output_file)
4930                 return -EBADF;
4931
4932         if (output_file->f_op != &perf_fops)
4933                 goto out;
4934
4935         output_event = output_file->private_data;
4936
4937         /* Don't chain output fds */
4938         if (output_event->output)
4939                 goto out;
4940
4941         /* Don't set an output fd when we already have an output channel */
4942         if (event->data)
4943                 goto out;
4944
4945         /*
4946          * Don't allow cross-cpu buffers
4947          */
4948         if (output_event->cpu != event->cpu)
4949                 goto out;
4950
4951         /*
4952          * If its not a per-cpu buffer, it must be the same task.
4953          */
4954         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
4955                 goto out;
4956
4957         atomic_long_inc(&output_file->f_count);
4958
4959 set:
4960         mutex_lock(&event->mmap_mutex);
4961         old_output = event->output;
4962         rcu_assign_pointer(event->output, output_event);
4963         mutex_unlock(&event->mmap_mutex);
4964
4965         if (old_output) {
4966                 /*
4967                  * we need to make sure no existing perf_output_*()
4968                  * is still referencing this event.
4969                  */
4970                 synchronize_rcu();
4971                 fput(old_output->filp);
4972         }
4973
4974         ret = 0;
4975 out:
4976         fput_light(output_file, fput_needed);
4977         return ret;
4978 }
4979
4980 /**
4981  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4982  *
4983  * @attr_uptr:  event_id type attributes for monitoring/sampling
4984  * @pid:                target pid
4985  * @cpu:                target cpu
4986  * @group_fd:           group leader event fd
4987  */
4988 SYSCALL_DEFINE5(perf_event_open,
4989                 struct perf_event_attr __user *, attr_uptr,
4990                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4991 {
4992         struct perf_event *event, *group_leader;
4993         struct perf_event_attr attr;
4994         struct perf_event_context *ctx;
4995         struct file *event_file = NULL;
4996         struct file *group_file = NULL;
4997         int fput_needed = 0;
4998         int fput_needed2 = 0;
4999         int err;
5000
5001         /* for future expandability... */
5002         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5003                 return -EINVAL;
5004
5005         err = perf_copy_attr(attr_uptr, &attr);
5006         if (err)
5007                 return err;
5008
5009         if (!attr.exclude_kernel) {
5010                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5011                         return -EACCES;
5012         }
5013
5014         if (attr.freq) {
5015                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5016                         return -EINVAL;
5017         }
5018
5019         /*
5020          * Get the target context (task or percpu):
5021          */
5022         ctx = find_get_context(pid, cpu);
5023         if (IS_ERR(ctx))
5024                 return PTR_ERR(ctx);
5025
5026         /*
5027          * Look up the group leader (we will attach this event to it):
5028          */
5029         group_leader = NULL;
5030         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5031                 err = -EINVAL;
5032                 group_file = fget_light(group_fd, &fput_needed);
5033                 if (!group_file)
5034                         goto err_put_context;
5035                 if (group_file->f_op != &perf_fops)
5036                         goto err_put_context;
5037
5038                 group_leader = group_file->private_data;
5039                 /*
5040                  * Do not allow a recursive hierarchy (this new sibling
5041                  * becoming part of another group-sibling):
5042                  */
5043                 if (group_leader->group_leader != group_leader)
5044                         goto err_put_context;
5045                 /*
5046                  * Do not allow to attach to a group in a different
5047                  * task or CPU context:
5048                  */
5049                 if (group_leader->ctx != ctx)
5050                         goto err_put_context;
5051                 /*
5052                  * Only a group leader can be exclusive or pinned
5053                  */
5054                 if (attr.exclusive || attr.pinned)
5055                         goto err_put_context;
5056         }
5057
5058         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5059                                      NULL, NULL, GFP_KERNEL);
5060         err = PTR_ERR(event);
5061         if (IS_ERR(event))
5062                 goto err_put_context;
5063
5064         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5065         if (err < 0)
5066                 goto err_free_put_context;
5067
5068         event_file = fget_light(err, &fput_needed2);
5069         if (!event_file)
5070                 goto err_free_put_context;
5071
5072         if (flags & PERF_FLAG_FD_OUTPUT) {
5073                 err = perf_event_set_output(event, group_fd);
5074                 if (err)
5075                         goto err_fput_free_put_context;
5076         }
5077
5078         event->filp = event_file;
5079         WARN_ON_ONCE(ctx->parent_ctx);
5080         mutex_lock(&ctx->mutex);
5081         perf_install_in_context(ctx, event, cpu);
5082         ++ctx->generation;
5083         mutex_unlock(&ctx->mutex);
5084
5085         event->owner = current;
5086         get_task_struct(current);
5087         mutex_lock(&current->perf_event_mutex);
5088         list_add_tail(&event->owner_entry, &current->perf_event_list);
5089         mutex_unlock(&current->perf_event_mutex);
5090
5091 err_fput_free_put_context:
5092         fput_light(event_file, fput_needed2);
5093
5094 err_free_put_context:
5095         if (err < 0)
5096                 free_event(event);
5097
5098 err_put_context:
5099         if (err < 0)
5100                 put_ctx(ctx);
5101
5102         fput_light(group_file, fput_needed);
5103
5104         return err;
5105 }
5106
5107 /**
5108  * perf_event_create_kernel_counter
5109  *
5110  * @attr: attributes of the counter to create
5111  * @cpu: cpu in which the counter is bound
5112  * @pid: task to profile
5113  */
5114 struct perf_event *
5115 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5116                                  pid_t pid,
5117                                  perf_overflow_handler_t overflow_handler)
5118 {
5119         struct perf_event *event;
5120         struct perf_event_context *ctx;
5121         int err;
5122
5123         /*
5124          * Get the target context (task or percpu):
5125          */
5126
5127         ctx = find_get_context(pid, cpu);
5128         if (IS_ERR(ctx)) {
5129                 err = PTR_ERR(ctx);
5130                 goto err_exit;
5131         }
5132
5133         event = perf_event_alloc(attr, cpu, ctx, NULL,
5134                                  NULL, overflow_handler, GFP_KERNEL);
5135         if (IS_ERR(event)) {
5136                 err = PTR_ERR(event);
5137                 goto err_put_context;
5138         }
5139
5140         event->filp = NULL;
5141         WARN_ON_ONCE(ctx->parent_ctx);
5142         mutex_lock(&ctx->mutex);
5143         perf_install_in_context(ctx, event, cpu);
5144         ++ctx->generation;
5145         mutex_unlock(&ctx->mutex);
5146
5147         event->owner = current;
5148         get_task_struct(current);
5149         mutex_lock(&current->perf_event_mutex);
5150         list_add_tail(&event->owner_entry, &current->perf_event_list);
5151         mutex_unlock(&current->perf_event_mutex);
5152
5153         return event;
5154
5155  err_put_context:
5156         put_ctx(ctx);
5157  err_exit:
5158         return ERR_PTR(err);
5159 }
5160 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5161
5162 /*
5163  * inherit a event from parent task to child task:
5164  */
5165 static struct perf_event *
5166 inherit_event(struct perf_event *parent_event,
5167               struct task_struct *parent,
5168               struct perf_event_context *parent_ctx,
5169               struct task_struct *child,
5170               struct perf_event *group_leader,
5171               struct perf_event_context *child_ctx)
5172 {
5173         struct perf_event *child_event;
5174
5175         /*
5176          * Instead of creating recursive hierarchies of events,
5177          * we link inherited events back to the original parent,
5178          * which has a filp for sure, which we use as the reference
5179          * count:
5180          */
5181         if (parent_event->parent)
5182                 parent_event = parent_event->parent;
5183
5184         child_event = perf_event_alloc(&parent_event->attr,
5185                                            parent_event->cpu, child_ctx,
5186                                            group_leader, parent_event,
5187                                            NULL, GFP_KERNEL);
5188         if (IS_ERR(child_event))
5189                 return child_event;
5190         get_ctx(child_ctx);
5191
5192         /*
5193          * Make the child state follow the state of the parent event,
5194          * not its attr.disabled bit.  We hold the parent's mutex,
5195          * so we won't race with perf_event_{en, dis}able_family.
5196          */
5197         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5198                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5199         else
5200                 child_event->state = PERF_EVENT_STATE_OFF;
5201
5202         if (parent_event->attr.freq) {
5203                 u64 sample_period = parent_event->hw.sample_period;
5204                 struct hw_perf_event *hwc = &child_event->hw;
5205
5206                 hwc->sample_period = sample_period;
5207                 hwc->last_period   = sample_period;
5208
5209                 atomic64_set(&hwc->period_left, sample_period);
5210         }
5211
5212         child_event->overflow_handler = parent_event->overflow_handler;
5213
5214         /*
5215          * Link it up in the child's context:
5216          */
5217         add_event_to_ctx(child_event, child_ctx);
5218
5219         /*
5220          * Get a reference to the parent filp - we will fput it
5221          * when the child event exits. This is safe to do because
5222          * we are in the parent and we know that the filp still
5223          * exists and has a nonzero count:
5224          */
5225         atomic_long_inc(&parent_event->filp->f_count);
5226
5227         /*
5228          * Link this into the parent event's child list
5229          */
5230         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5231         mutex_lock(&parent_event->child_mutex);
5232         list_add_tail(&child_event->child_list, &parent_event->child_list);
5233         mutex_unlock(&parent_event->child_mutex);
5234
5235         return child_event;
5236 }
5237
5238 static int inherit_group(struct perf_event *parent_event,
5239               struct task_struct *parent,
5240               struct perf_event_context *parent_ctx,
5241               struct task_struct *child,
5242               struct perf_event_context *child_ctx)
5243 {
5244         struct perf_event *leader;
5245         struct perf_event *sub;
5246         struct perf_event *child_ctr;
5247
5248         leader = inherit_event(parent_event, parent, parent_ctx,
5249                                  child, NULL, child_ctx);
5250         if (IS_ERR(leader))
5251                 return PTR_ERR(leader);
5252         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5253                 child_ctr = inherit_event(sub, parent, parent_ctx,
5254                                             child, leader, child_ctx);
5255                 if (IS_ERR(child_ctr))
5256                         return PTR_ERR(child_ctr);
5257         }
5258         return 0;
5259 }
5260
5261 static void sync_child_event(struct perf_event *child_event,
5262                                struct task_struct *child)
5263 {
5264         struct perf_event *parent_event = child_event->parent;
5265         u64 child_val;
5266
5267         if (child_event->attr.inherit_stat)
5268                 perf_event_read_event(child_event, child);
5269
5270         child_val = atomic64_read(&child_event->count);
5271
5272         /*
5273          * Add back the child's count to the parent's count:
5274          */
5275         atomic64_add(child_val, &parent_event->count);
5276         atomic64_add(child_event->total_time_enabled,
5277                      &parent_event->child_total_time_enabled);
5278         atomic64_add(child_event->total_time_running,
5279                      &parent_event->child_total_time_running);
5280
5281         /*
5282          * Remove this event from the parent's list
5283          */
5284         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5285         mutex_lock(&parent_event->child_mutex);
5286         list_del_init(&child_event->child_list);
5287         mutex_unlock(&parent_event->child_mutex);
5288
5289         /*
5290          * Release the parent event, if this was the last
5291          * reference to it.
5292          */
5293         fput(parent_event->filp);
5294 }
5295
5296 static void
5297 __perf_event_exit_task(struct perf_event *child_event,
5298                          struct perf_event_context *child_ctx,
5299                          struct task_struct *child)
5300 {
5301         struct perf_event *parent_event;
5302
5303         perf_event_remove_from_context(child_event);
5304
5305         parent_event = child_event->parent;
5306         /*
5307          * It can happen that parent exits first, and has events
5308          * that are still around due to the child reference. These
5309          * events need to be zapped - but otherwise linger.
5310          */
5311         if (parent_event) {
5312                 sync_child_event(child_event, child);
5313                 free_event(child_event);
5314         }
5315 }
5316
5317 /*
5318  * When a child task exits, feed back event values to parent events.
5319  */
5320 void perf_event_exit_task(struct task_struct *child)
5321 {
5322         struct perf_event *child_event, *tmp;
5323         struct perf_event_context *child_ctx;
5324         unsigned long flags;
5325
5326         if (likely(!child->perf_event_ctxp)) {
5327                 perf_event_task(child, NULL, 0);
5328                 return;
5329         }
5330
5331         local_irq_save(flags);
5332         /*
5333          * We can't reschedule here because interrupts are disabled,
5334          * and either child is current or it is a task that can't be
5335          * scheduled, so we are now safe from rescheduling changing
5336          * our context.
5337          */
5338         child_ctx = child->perf_event_ctxp;
5339         __perf_event_task_sched_out(child_ctx);
5340
5341         /*
5342          * Take the context lock here so that if find_get_context is
5343          * reading child->perf_event_ctxp, we wait until it has
5344          * incremented the context's refcount before we do put_ctx below.
5345          */
5346         raw_spin_lock(&child_ctx->lock);
5347         child->perf_event_ctxp = NULL;
5348         /*
5349          * If this context is a clone; unclone it so it can't get
5350          * swapped to another process while we're removing all
5351          * the events from it.
5352          */
5353         unclone_ctx(child_ctx);
5354         update_context_time(child_ctx);
5355         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5356
5357         /*
5358          * Report the task dead after unscheduling the events so that we
5359          * won't get any samples after PERF_RECORD_EXIT. We can however still
5360          * get a few PERF_RECORD_READ events.
5361          */
5362         perf_event_task(child, child_ctx, 0);
5363
5364         /*
5365          * We can recurse on the same lock type through:
5366          *
5367          *   __perf_event_exit_task()
5368          *     sync_child_event()
5369          *       fput(parent_event->filp)
5370          *         perf_release()
5371          *           mutex_lock(&ctx->mutex)
5372          *
5373          * But since its the parent context it won't be the same instance.
5374          */
5375         mutex_lock(&child_ctx->mutex);
5376
5377 again:
5378         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5379                                  group_entry)
5380                 __perf_event_exit_task(child_event, child_ctx, child);
5381
5382         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5383                                  group_entry)
5384                 __perf_event_exit_task(child_event, child_ctx, child);
5385
5386         /*
5387          * If the last event was a group event, it will have appended all
5388          * its siblings to the list, but we obtained 'tmp' before that which
5389          * will still point to the list head terminating the iteration.
5390          */
5391         if (!list_empty(&child_ctx->pinned_groups) ||
5392             !list_empty(&child_ctx->flexible_groups))
5393                 goto again;
5394
5395         mutex_unlock(&child_ctx->mutex);
5396
5397         put_ctx(child_ctx);
5398 }
5399
5400 static void perf_free_event(struct perf_event *event,
5401                             struct perf_event_context *ctx)
5402 {
5403         struct perf_event *parent = event->parent;
5404
5405         if (WARN_ON_ONCE(!parent))
5406                 return;
5407
5408         mutex_lock(&parent->child_mutex);
5409         list_del_init(&event->child_list);
5410         mutex_unlock(&parent->child_mutex);
5411
5412         fput(parent->filp);
5413
5414         list_del_event(event, ctx);
5415         free_event(event);
5416 }
5417
5418 /*
5419  * free an unexposed, unused context as created by inheritance by
5420  * init_task below, used by fork() in case of fail.
5421  */
5422 void perf_event_free_task(struct task_struct *task)
5423 {
5424         struct perf_event_context *ctx = task->perf_event_ctxp;
5425         struct perf_event *event, *tmp;
5426
5427         if (!ctx)
5428                 return;
5429
5430         mutex_lock(&ctx->mutex);
5431 again:
5432         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5433                 perf_free_event(event, ctx);
5434
5435         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5436                                  group_entry)
5437                 perf_free_event(event, ctx);
5438
5439         if (!list_empty(&ctx->pinned_groups) ||
5440             !list_empty(&ctx->flexible_groups))
5441                 goto again;
5442
5443         mutex_unlock(&ctx->mutex);
5444
5445         put_ctx(ctx);
5446 }
5447
5448 static int
5449 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5450                    struct perf_event_context *parent_ctx,
5451                    struct task_struct *child,
5452                    int *inherited_all)
5453 {
5454         int ret;
5455         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5456
5457         if (!event->attr.inherit) {
5458                 *inherited_all = 0;
5459                 return 0;
5460         }
5461
5462         if (!child_ctx) {
5463                 /*
5464                  * This is executed from the parent task context, so
5465                  * inherit events that have been marked for cloning.
5466                  * First allocate and initialize a context for the
5467                  * child.
5468                  */
5469
5470                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5471                                     GFP_KERNEL);
5472                 if (!child_ctx)
5473                         return -ENOMEM;
5474
5475                 __perf_event_init_context(child_ctx, child);
5476                 child->perf_event_ctxp = child_ctx;
5477                 get_task_struct(child);
5478         }
5479
5480         ret = inherit_group(event, parent, parent_ctx,
5481                             child, child_ctx);
5482
5483         if (ret)
5484                 *inherited_all = 0;
5485
5486         return ret;
5487 }
5488
5489
5490 /*
5491  * Initialize the perf_event context in task_struct
5492  */
5493 int perf_event_init_task(struct task_struct *child)
5494 {
5495         struct perf_event_context *child_ctx, *parent_ctx;
5496         struct perf_event_context *cloned_ctx;
5497         struct perf_event *event;
5498         struct task_struct *parent = current;
5499         int inherited_all = 1;
5500         int ret = 0;
5501
5502         child->perf_event_ctxp = NULL;
5503
5504         mutex_init(&child->perf_event_mutex);
5505         INIT_LIST_HEAD(&child->perf_event_list);
5506
5507         if (likely(!parent->perf_event_ctxp))
5508                 return 0;
5509
5510         /*
5511          * If the parent's context is a clone, pin it so it won't get
5512          * swapped under us.
5513          */
5514         parent_ctx = perf_pin_task_context(parent);
5515
5516         /*
5517          * No need to check if parent_ctx != NULL here; since we saw
5518          * it non-NULL earlier, the only reason for it to become NULL
5519          * is if we exit, and since we're currently in the middle of
5520          * a fork we can't be exiting at the same time.
5521          */
5522
5523         /*
5524          * Lock the parent list. No need to lock the child - not PID
5525          * hashed yet and not running, so nobody can access it.
5526          */
5527         mutex_lock(&parent_ctx->mutex);
5528
5529         /*
5530          * We dont have to disable NMIs - we are only looking at
5531          * the list, not manipulating it:
5532          */
5533         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5534                 ret = inherit_task_group(event, parent, parent_ctx, child,
5535                                          &inherited_all);
5536                 if (ret)
5537                         break;
5538         }
5539
5540         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5541                 ret = inherit_task_group(event, parent, parent_ctx, child,
5542                                          &inherited_all);
5543                 if (ret)
5544                         break;
5545         }
5546
5547         child_ctx = child->perf_event_ctxp;
5548
5549         if (child_ctx && inherited_all) {
5550                 /*
5551                  * Mark the child context as a clone of the parent
5552                  * context, or of whatever the parent is a clone of.
5553                  * Note that if the parent is a clone, it could get
5554                  * uncloned at any point, but that doesn't matter
5555                  * because the list of events and the generation
5556                  * count can't have changed since we took the mutex.
5557                  */
5558                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5559                 if (cloned_ctx) {
5560                         child_ctx->parent_ctx = cloned_ctx;
5561                         child_ctx->parent_gen = parent_ctx->parent_gen;
5562                 } else {
5563                         child_ctx->parent_ctx = parent_ctx;
5564                         child_ctx->parent_gen = parent_ctx->generation;
5565                 }
5566                 get_ctx(child_ctx->parent_ctx);
5567         }
5568
5569         mutex_unlock(&parent_ctx->mutex);
5570
5571         perf_unpin_context(parent_ctx);
5572
5573         return ret;
5574 }
5575
5576 static void __init perf_event_init_all_cpus(void)
5577 {
5578         int cpu;
5579         struct perf_cpu_context *cpuctx;
5580
5581         for_each_possible_cpu(cpu) {
5582                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5583                 mutex_init(&cpuctx->hlist_mutex);
5584                 __perf_event_init_context(&cpuctx->ctx, NULL);
5585         }
5586 }
5587
5588 static void __cpuinit perf_event_init_cpu(int cpu)
5589 {
5590         struct perf_cpu_context *cpuctx;
5591
5592         cpuctx = &per_cpu(perf_cpu_context, cpu);
5593
5594         spin_lock(&perf_resource_lock);
5595         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5596         spin_unlock(&perf_resource_lock);
5597
5598         mutex_lock(&cpuctx->hlist_mutex);
5599         if (cpuctx->hlist_refcount > 0) {
5600                 struct swevent_hlist *hlist;
5601
5602                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5603                 WARN_ON_ONCE(!hlist);
5604                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5605         }
5606         mutex_unlock(&cpuctx->hlist_mutex);
5607 }
5608
5609 #ifdef CONFIG_HOTPLUG_CPU
5610 static void __perf_event_exit_cpu(void *info)
5611 {
5612         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5613         struct perf_event_context *ctx = &cpuctx->ctx;
5614         struct perf_event *event, *tmp;
5615
5616         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5617                 __perf_event_remove_from_context(event);
5618         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5619                 __perf_event_remove_from_context(event);
5620 }
5621 static void perf_event_exit_cpu(int cpu)
5622 {
5623         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5624         struct perf_event_context *ctx = &cpuctx->ctx;
5625
5626         mutex_lock(&cpuctx->hlist_mutex);
5627         swevent_hlist_release(cpuctx);
5628         mutex_unlock(&cpuctx->hlist_mutex);
5629
5630         mutex_lock(&ctx->mutex);
5631         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5632         mutex_unlock(&ctx->mutex);
5633 }
5634 #else
5635 static inline void perf_event_exit_cpu(int cpu) { }
5636 #endif
5637
5638 static int __cpuinit
5639 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5640 {
5641         unsigned int cpu = (long)hcpu;
5642
5643         switch (action) {
5644
5645         case CPU_UP_PREPARE:
5646         case CPU_UP_PREPARE_FROZEN:
5647                 perf_event_init_cpu(cpu);
5648                 break;
5649
5650         case CPU_DOWN_PREPARE:
5651         case CPU_DOWN_PREPARE_FROZEN:
5652                 perf_event_exit_cpu(cpu);
5653                 break;
5654
5655         default:
5656                 break;
5657         }
5658
5659         return NOTIFY_OK;
5660 }
5661
5662 /*
5663  * This has to have a higher priority than migration_notifier in sched.c.
5664  */
5665 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5666         .notifier_call          = perf_cpu_notify,
5667         .priority               = 20,
5668 };
5669
5670 void __init perf_event_init(void)
5671 {
5672         perf_event_init_all_cpus();
5673         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5674                         (void *)(long)smp_processor_id());
5675         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5676                         (void *)(long)smp_processor_id());
5677         register_cpu_notifier(&perf_cpu_nb);
5678 }
5679
5680 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5681                                         struct sysdev_class_attribute *attr,
5682                                         char *buf)
5683 {
5684         return sprintf(buf, "%d\n", perf_reserved_percpu);
5685 }
5686
5687 static ssize_t
5688 perf_set_reserve_percpu(struct sysdev_class *class,
5689                         struct sysdev_class_attribute *attr,
5690                         const char *buf,
5691                         size_t count)
5692 {
5693         struct perf_cpu_context *cpuctx;
5694         unsigned long val;
5695         int err, cpu, mpt;
5696
5697         err = strict_strtoul(buf, 10, &val);
5698         if (err)
5699                 return err;
5700         if (val > perf_max_events)
5701                 return -EINVAL;
5702
5703         spin_lock(&perf_resource_lock);
5704         perf_reserved_percpu = val;
5705         for_each_online_cpu(cpu) {
5706                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5707                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5708                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5709                           perf_max_events - perf_reserved_percpu);
5710                 cpuctx->max_pertask = mpt;
5711                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5712         }
5713         spin_unlock(&perf_resource_lock);
5714
5715         return count;
5716 }
5717
5718 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5719                                     struct sysdev_class_attribute *attr,
5720                                     char *buf)
5721 {
5722         return sprintf(buf, "%d\n", perf_overcommit);
5723 }
5724
5725 static ssize_t
5726 perf_set_overcommit(struct sysdev_class *class,
5727                     struct sysdev_class_attribute *attr,
5728                     const char *buf, size_t count)
5729 {
5730         unsigned long val;
5731         int err;
5732
5733         err = strict_strtoul(buf, 10, &val);
5734         if (err)
5735                 return err;
5736         if (val > 1)
5737                 return -EINVAL;
5738
5739         spin_lock(&perf_resource_lock);
5740         perf_overcommit = val;
5741         spin_unlock(&perf_resource_lock);
5742
5743         return count;
5744 }
5745
5746 static SYSDEV_CLASS_ATTR(
5747                                 reserve_percpu,
5748                                 0644,
5749                                 perf_show_reserve_percpu,
5750                                 perf_set_reserve_percpu
5751                         );
5752
5753 static SYSDEV_CLASS_ATTR(
5754                                 overcommit,
5755                                 0644,
5756                                 perf_show_overcommit,
5757                                 perf_set_overcommit
5758                         );
5759
5760 static struct attribute *perfclass_attrs[] = {
5761         &attr_reserve_percpu.attr,
5762         &attr_overcommit.attr,
5763         NULL
5764 };
5765
5766 static struct attribute_group perfclass_attr_group = {
5767         .attrs                  = perfclass_attrs,
5768         .name                   = "perf_events",
5769 };
5770
5771 static int __init perf_event_sysfs_init(void)
5772 {
5773         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5774                                   &perfclass_attr_group);
5775 }
5776 device_initcall(perf_event_sysfs_init);