]> bbs.cooldavid.org Git - net-next-2.6.git/blob - kernel/perf_event.c
perf_events: Fix event scheduling issues introduced by transactional API
[net-next-2.6.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407                   struct perf_cpu_context *cpuctx,
408                   struct perf_event_context *ctx)
409 {
410         if (event->state != PERF_EVENT_STATE_ACTIVE)
411                 return;
412
413         event->state = PERF_EVENT_STATE_INACTIVE;
414         if (event->pending_disable) {
415                 event->pending_disable = 0;
416                 event->state = PERF_EVENT_STATE_OFF;
417         }
418         event->tstamp_stopped = ctx->time;
419         event->pmu->disable(event);
420         event->oncpu = -1;
421
422         if (!is_software_event(event))
423                 cpuctx->active_oncpu--;
424         ctx->nr_active--;
425         if (event->attr.exclusive || !cpuctx->active_oncpu)
426                 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431                 struct perf_cpu_context *cpuctx,
432                 struct perf_event_context *ctx)
433 {
434         struct perf_event *event;
435
436         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437                 return;
438
439         event_sched_out(group_event, cpuctx, ctx);
440
441         /*
442          * Schedule out siblings (if any):
443          */
444         list_for_each_entry(event, &group_event->sibling_list, group_entry)
445                 event_sched_out(event, cpuctx, ctx);
446
447         if (group_event->attr.exclusive)
448                 cpuctx->exclusive = 0;
449 }
450
451 /*
452  * Cross CPU call to remove a performance event
453  *
454  * We disable the event on the hardware level first. After that we
455  * remove it from the context list.
456  */
457 static void __perf_event_remove_from_context(void *info)
458 {
459         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460         struct perf_event *event = info;
461         struct perf_event_context *ctx = event->ctx;
462
463         /*
464          * If this is a task context, we need to check whether it is
465          * the current task context of this cpu. If not it has been
466          * scheduled out before the smp call arrived.
467          */
468         if (ctx->task && cpuctx->task_ctx != ctx)
469                 return;
470
471         raw_spin_lock(&ctx->lock);
472         /*
473          * Protect the list operation against NMI by disabling the
474          * events on a global level.
475          */
476         perf_disable();
477
478         event_sched_out(event, cpuctx, ctx);
479
480         list_del_event(event, ctx);
481
482         if (!ctx->task) {
483                 /*
484                  * Allow more per task events with respect to the
485                  * reservation:
486                  */
487                 cpuctx->max_pertask =
488                         min(perf_max_events - ctx->nr_events,
489                             perf_max_events - perf_reserved_percpu);
490         }
491
492         perf_enable();
493         raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498  * Remove the event from a task's (or a CPU's) list of events.
499  *
500  * Must be called with ctx->mutex held.
501  *
502  * CPU events are removed with a smp call. For task events we only
503  * call when the task is on a CPU.
504  *
505  * If event->ctx is a cloned context, callers must make sure that
506  * every task struct that event->ctx->task could possibly point to
507  * remains valid.  This is OK when called from perf_release since
508  * that only calls us on the top-level context, which can't be a clone.
509  * When called from perf_event_exit_task, it's OK because the
510  * context has been detached from its task.
511  */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514         struct perf_event_context *ctx = event->ctx;
515         struct task_struct *task = ctx->task;
516
517         if (!task) {
518                 /*
519                  * Per cpu events are removed via an smp call and
520                  * the removal is always successful.
521                  */
522                 smp_call_function_single(event->cpu,
523                                          __perf_event_remove_from_context,
524                                          event, 1);
525                 return;
526         }
527
528 retry:
529         task_oncpu_function_call(task, __perf_event_remove_from_context,
530                                  event);
531
532         raw_spin_lock_irq(&ctx->lock);
533         /*
534          * If the context is active we need to retry the smp call.
535          */
536         if (ctx->nr_active && !list_empty(&event->group_entry)) {
537                 raw_spin_unlock_irq(&ctx->lock);
538                 goto retry;
539         }
540
541         /*
542          * The lock prevents that this context is scheduled in so we
543          * can remove the event safely, if the call above did not
544          * succeed.
545          */
546         if (!list_empty(&event->group_entry))
547                 list_del_event(event, ctx);
548         raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552  * Cross CPU call to disable a performance event
553  */
554 static void __perf_event_disable(void *info)
555 {
556         struct perf_event *event = info;
557         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558         struct perf_event_context *ctx = event->ctx;
559
560         /*
561          * If this is a per-task event, need to check whether this
562          * event's task is the current task on this cpu.
563          */
564         if (ctx->task && cpuctx->task_ctx != ctx)
565                 return;
566
567         raw_spin_lock(&ctx->lock);
568
569         /*
570          * If the event is on, turn it off.
571          * If it is in error state, leave it in error state.
572          */
573         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574                 update_context_time(ctx);
575                 update_group_times(event);
576                 if (event == event->group_leader)
577                         group_sched_out(event, cpuctx, ctx);
578                 else
579                         event_sched_out(event, cpuctx, ctx);
580                 event->state = PERF_EVENT_STATE_OFF;
581         }
582
583         raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587  * Disable a event.
588  *
589  * If event->ctx is a cloned context, callers must make sure that
590  * every task struct that event->ctx->task could possibly point to
591  * remains valid.  This condition is satisifed when called through
592  * perf_event_for_each_child or perf_event_for_each because they
593  * hold the top-level event's child_mutex, so any descendant that
594  * goes to exit will block in sync_child_event.
595  * When called from perf_pending_event it's OK because event->ctx
596  * is the current context on this CPU and preemption is disabled,
597  * hence we can't get into perf_event_task_sched_out for this context.
598  */
599 void perf_event_disable(struct perf_event *event)
600 {
601         struct perf_event_context *ctx = event->ctx;
602         struct task_struct *task = ctx->task;
603
604         if (!task) {
605                 /*
606                  * Disable the event on the cpu that it's on
607                  */
608                 smp_call_function_single(event->cpu, __perf_event_disable,
609                                          event, 1);
610                 return;
611         }
612
613  retry:
614         task_oncpu_function_call(task, __perf_event_disable, event);
615
616         raw_spin_lock_irq(&ctx->lock);
617         /*
618          * If the event is still active, we need to retry the cross-call.
619          */
620         if (event->state == PERF_EVENT_STATE_ACTIVE) {
621                 raw_spin_unlock_irq(&ctx->lock);
622                 goto retry;
623         }
624
625         /*
626          * Since we have the lock this context can't be scheduled
627          * in, so we can change the state safely.
628          */
629         if (event->state == PERF_EVENT_STATE_INACTIVE) {
630                 update_group_times(event);
631                 event->state = PERF_EVENT_STATE_OFF;
632         }
633
634         raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639                  struct perf_cpu_context *cpuctx,
640                  struct perf_event_context *ctx)
641 {
642         if (event->state <= PERF_EVENT_STATE_OFF)
643                 return 0;
644
645         event->state = PERF_EVENT_STATE_ACTIVE;
646         event->oncpu = smp_processor_id();
647         /*
648          * The new state must be visible before we turn it on in the hardware:
649          */
650         smp_wmb();
651
652         if (event->pmu->enable(event)) {
653                 event->state = PERF_EVENT_STATE_INACTIVE;
654                 event->oncpu = -1;
655                 return -EAGAIN;
656         }
657
658         event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660         if (!is_software_event(event))
661                 cpuctx->active_oncpu++;
662         ctx->nr_active++;
663
664         if (event->attr.exclusive)
665                 cpuctx->exclusive = 1;
666
667         return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672                struct perf_cpu_context *cpuctx,
673                struct perf_event_context *ctx)
674 {
675         struct perf_event *event, *partial_group = NULL;
676         const struct pmu *pmu = group_event->pmu;
677         bool txn = false;
678         int ret;
679
680         if (group_event->state == PERF_EVENT_STATE_OFF)
681                 return 0;
682
683         /* Check if group transaction availabe */
684         if (pmu->start_txn)
685                 txn = true;
686
687         if (txn)
688                 pmu->start_txn(pmu);
689
690         if (event_sched_in(group_event, cpuctx, ctx)) {
691                 if (txn)
692                         pmu->cancel_txn(pmu);
693                 return -EAGAIN;
694         }
695
696         /*
697          * Schedule in siblings as one group (if any):
698          */
699         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700                 if (event_sched_in(event, cpuctx, ctx)) {
701                         partial_group = event;
702                         goto group_error;
703                 }
704         }
705
706         if (!txn)
707                 return 0;
708
709         ret = pmu->commit_txn(pmu);
710         if (!ret) {
711                 pmu->cancel_txn(pmu);
712                 return 0;
713         }
714
715 group_error:
716         /*
717          * Groups can be scheduled in as one unit only, so undo any
718          * partial group before returning:
719          */
720         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
721                 if (event == partial_group)
722                         break;
723                 event_sched_out(event, cpuctx, ctx);
724         }
725         event_sched_out(group_event, cpuctx, ctx);
726
727         if (txn)
728                 pmu->cancel_txn(pmu);
729
730         return -EAGAIN;
731 }
732
733 /*
734  * Work out whether we can put this event group on the CPU now.
735  */
736 static int group_can_go_on(struct perf_event *event,
737                            struct perf_cpu_context *cpuctx,
738                            int can_add_hw)
739 {
740         /*
741          * Groups consisting entirely of software events can always go on.
742          */
743         if (event->group_flags & PERF_GROUP_SOFTWARE)
744                 return 1;
745         /*
746          * If an exclusive group is already on, no other hardware
747          * events can go on.
748          */
749         if (cpuctx->exclusive)
750                 return 0;
751         /*
752          * If this group is exclusive and there are already
753          * events on the CPU, it can't go on.
754          */
755         if (event->attr.exclusive && cpuctx->active_oncpu)
756                 return 0;
757         /*
758          * Otherwise, try to add it if all previous groups were able
759          * to go on.
760          */
761         return can_add_hw;
762 }
763
764 static void add_event_to_ctx(struct perf_event *event,
765                                struct perf_event_context *ctx)
766 {
767         list_add_event(event, ctx);
768         perf_group_attach(event);
769         event->tstamp_enabled = ctx->time;
770         event->tstamp_running = ctx->time;
771         event->tstamp_stopped = ctx->time;
772 }
773
774 /*
775  * Cross CPU call to install and enable a performance event
776  *
777  * Must be called with ctx->mutex held
778  */
779 static void __perf_install_in_context(void *info)
780 {
781         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
782         struct perf_event *event = info;
783         struct perf_event_context *ctx = event->ctx;
784         struct perf_event *leader = event->group_leader;
785         int err;
786
787         /*
788          * If this is a task context, we need to check whether it is
789          * the current task context of this cpu. If not it has been
790          * scheduled out before the smp call arrived.
791          * Or possibly this is the right context but it isn't
792          * on this cpu because it had no events.
793          */
794         if (ctx->task && cpuctx->task_ctx != ctx) {
795                 if (cpuctx->task_ctx || ctx->task != current)
796                         return;
797                 cpuctx->task_ctx = ctx;
798         }
799
800         raw_spin_lock(&ctx->lock);
801         ctx->is_active = 1;
802         update_context_time(ctx);
803
804         /*
805          * Protect the list operation against NMI by disabling the
806          * events on a global level. NOP for non NMI based events.
807          */
808         perf_disable();
809
810         add_event_to_ctx(event, ctx);
811
812         if (event->cpu != -1 && event->cpu != smp_processor_id())
813                 goto unlock;
814
815         /*
816          * Don't put the event on if it is disabled or if
817          * it is in a group and the group isn't on.
818          */
819         if (event->state != PERF_EVENT_STATE_INACTIVE ||
820             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
821                 goto unlock;
822
823         /*
824          * An exclusive event can't go on if there are already active
825          * hardware events, and no hardware event can go on if there
826          * is already an exclusive event on.
827          */
828         if (!group_can_go_on(event, cpuctx, 1))
829                 err = -EEXIST;
830         else
831                 err = event_sched_in(event, cpuctx, ctx);
832
833         if (err) {
834                 /*
835                  * This event couldn't go on.  If it is in a group
836                  * then we have to pull the whole group off.
837                  * If the event group is pinned then put it in error state.
838                  */
839                 if (leader != event)
840                         group_sched_out(leader, cpuctx, ctx);
841                 if (leader->attr.pinned) {
842                         update_group_times(leader);
843                         leader->state = PERF_EVENT_STATE_ERROR;
844                 }
845         }
846
847         if (!err && !ctx->task && cpuctx->max_pertask)
848                 cpuctx->max_pertask--;
849
850  unlock:
851         perf_enable();
852
853         raw_spin_unlock(&ctx->lock);
854 }
855
856 /*
857  * Attach a performance event to a context
858  *
859  * First we add the event to the list with the hardware enable bit
860  * in event->hw_config cleared.
861  *
862  * If the event is attached to a task which is on a CPU we use a smp
863  * call to enable it in the task context. The task might have been
864  * scheduled away, but we check this in the smp call again.
865  *
866  * Must be called with ctx->mutex held.
867  */
868 static void
869 perf_install_in_context(struct perf_event_context *ctx,
870                         struct perf_event *event,
871                         int cpu)
872 {
873         struct task_struct *task = ctx->task;
874
875         if (!task) {
876                 /*
877                  * Per cpu events are installed via an smp call and
878                  * the install is always successful.
879                  */
880                 smp_call_function_single(cpu, __perf_install_in_context,
881                                          event, 1);
882                 return;
883         }
884
885 retry:
886         task_oncpu_function_call(task, __perf_install_in_context,
887                                  event);
888
889         raw_spin_lock_irq(&ctx->lock);
890         /*
891          * we need to retry the smp call.
892          */
893         if (ctx->is_active && list_empty(&event->group_entry)) {
894                 raw_spin_unlock_irq(&ctx->lock);
895                 goto retry;
896         }
897
898         /*
899          * The lock prevents that this context is scheduled in so we
900          * can add the event safely, if it the call above did not
901          * succeed.
902          */
903         if (list_empty(&event->group_entry))
904                 add_event_to_ctx(event, ctx);
905         raw_spin_unlock_irq(&ctx->lock);
906 }
907
908 /*
909  * Put a event into inactive state and update time fields.
910  * Enabling the leader of a group effectively enables all
911  * the group members that aren't explicitly disabled, so we
912  * have to update their ->tstamp_enabled also.
913  * Note: this works for group members as well as group leaders
914  * since the non-leader members' sibling_lists will be empty.
915  */
916 static void __perf_event_mark_enabled(struct perf_event *event,
917                                         struct perf_event_context *ctx)
918 {
919         struct perf_event *sub;
920
921         event->state = PERF_EVENT_STATE_INACTIVE;
922         event->tstamp_enabled = ctx->time - event->total_time_enabled;
923         list_for_each_entry(sub, &event->sibling_list, group_entry)
924                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
925                         sub->tstamp_enabled =
926                                 ctx->time - sub->total_time_enabled;
927 }
928
929 /*
930  * Cross CPU call to enable a performance event
931  */
932 static void __perf_event_enable(void *info)
933 {
934         struct perf_event *event = info;
935         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
936         struct perf_event_context *ctx = event->ctx;
937         struct perf_event *leader = event->group_leader;
938         int err;
939
940         /*
941          * If this is a per-task event, need to check whether this
942          * event's task is the current task on this cpu.
943          */
944         if (ctx->task && cpuctx->task_ctx != ctx) {
945                 if (cpuctx->task_ctx || ctx->task != current)
946                         return;
947                 cpuctx->task_ctx = ctx;
948         }
949
950         raw_spin_lock(&ctx->lock);
951         ctx->is_active = 1;
952         update_context_time(ctx);
953
954         if (event->state >= PERF_EVENT_STATE_INACTIVE)
955                 goto unlock;
956         __perf_event_mark_enabled(event, ctx);
957
958         if (event->cpu != -1 && event->cpu != smp_processor_id())
959                 goto unlock;
960
961         /*
962          * If the event is in a group and isn't the group leader,
963          * then don't put it on unless the group is on.
964          */
965         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
966                 goto unlock;
967
968         if (!group_can_go_on(event, cpuctx, 1)) {
969                 err = -EEXIST;
970         } else {
971                 perf_disable();
972                 if (event == leader)
973                         err = group_sched_in(event, cpuctx, ctx);
974                 else
975                         err = event_sched_in(event, cpuctx, ctx);
976                 perf_enable();
977         }
978
979         if (err) {
980                 /*
981                  * If this event can't go on and it's part of a
982                  * group, then the whole group has to come off.
983                  */
984                 if (leader != event)
985                         group_sched_out(leader, cpuctx, ctx);
986                 if (leader->attr.pinned) {
987                         update_group_times(leader);
988                         leader->state = PERF_EVENT_STATE_ERROR;
989                 }
990         }
991
992  unlock:
993         raw_spin_unlock(&ctx->lock);
994 }
995
996 /*
997  * Enable a event.
998  *
999  * If event->ctx is a cloned context, callers must make sure that
1000  * every task struct that event->ctx->task could possibly point to
1001  * remains valid.  This condition is satisfied when called through
1002  * perf_event_for_each_child or perf_event_for_each as described
1003  * for perf_event_disable.
1004  */
1005 void perf_event_enable(struct perf_event *event)
1006 {
1007         struct perf_event_context *ctx = event->ctx;
1008         struct task_struct *task = ctx->task;
1009
1010         if (!task) {
1011                 /*
1012                  * Enable the event on the cpu that it's on
1013                  */
1014                 smp_call_function_single(event->cpu, __perf_event_enable,
1015                                          event, 1);
1016                 return;
1017         }
1018
1019         raw_spin_lock_irq(&ctx->lock);
1020         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1021                 goto out;
1022
1023         /*
1024          * If the event is in error state, clear that first.
1025          * That way, if we see the event in error state below, we
1026          * know that it has gone back into error state, as distinct
1027          * from the task having been scheduled away before the
1028          * cross-call arrived.
1029          */
1030         if (event->state == PERF_EVENT_STATE_ERROR)
1031                 event->state = PERF_EVENT_STATE_OFF;
1032
1033  retry:
1034         raw_spin_unlock_irq(&ctx->lock);
1035         task_oncpu_function_call(task, __perf_event_enable, event);
1036
1037         raw_spin_lock_irq(&ctx->lock);
1038
1039         /*
1040          * If the context is active and the event is still off,
1041          * we need to retry the cross-call.
1042          */
1043         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1044                 goto retry;
1045
1046         /*
1047          * Since we have the lock this context can't be scheduled
1048          * in, so we can change the state safely.
1049          */
1050         if (event->state == PERF_EVENT_STATE_OFF)
1051                 __perf_event_mark_enabled(event, ctx);
1052
1053  out:
1054         raw_spin_unlock_irq(&ctx->lock);
1055 }
1056
1057 static int perf_event_refresh(struct perf_event *event, int refresh)
1058 {
1059         /*
1060          * not supported on inherited events
1061          */
1062         if (event->attr.inherit)
1063                 return -EINVAL;
1064
1065         atomic_add(refresh, &event->event_limit);
1066         perf_event_enable(event);
1067
1068         return 0;
1069 }
1070
1071 enum event_type_t {
1072         EVENT_FLEXIBLE = 0x1,
1073         EVENT_PINNED = 0x2,
1074         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1075 };
1076
1077 static void ctx_sched_out(struct perf_event_context *ctx,
1078                           struct perf_cpu_context *cpuctx,
1079                           enum event_type_t event_type)
1080 {
1081         struct perf_event *event;
1082
1083         raw_spin_lock(&ctx->lock);
1084         ctx->is_active = 0;
1085         if (likely(!ctx->nr_events))
1086                 goto out;
1087         update_context_time(ctx);
1088
1089         perf_disable();
1090         if (!ctx->nr_active)
1091                 goto out_enable;
1092
1093         if (event_type & EVENT_PINNED)
1094                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1095                         group_sched_out(event, cpuctx, ctx);
1096
1097         if (event_type & EVENT_FLEXIBLE)
1098                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1099                         group_sched_out(event, cpuctx, ctx);
1100
1101  out_enable:
1102         perf_enable();
1103  out:
1104         raw_spin_unlock(&ctx->lock);
1105 }
1106
1107 /*
1108  * Test whether two contexts are equivalent, i.e. whether they
1109  * have both been cloned from the same version of the same context
1110  * and they both have the same number of enabled events.
1111  * If the number of enabled events is the same, then the set
1112  * of enabled events should be the same, because these are both
1113  * inherited contexts, therefore we can't access individual events
1114  * in them directly with an fd; we can only enable/disable all
1115  * events via prctl, or enable/disable all events in a family
1116  * via ioctl, which will have the same effect on both contexts.
1117  */
1118 static int context_equiv(struct perf_event_context *ctx1,
1119                          struct perf_event_context *ctx2)
1120 {
1121         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1122                 && ctx1->parent_gen == ctx2->parent_gen
1123                 && !ctx1->pin_count && !ctx2->pin_count;
1124 }
1125
1126 static void __perf_event_sync_stat(struct perf_event *event,
1127                                      struct perf_event *next_event)
1128 {
1129         u64 value;
1130
1131         if (!event->attr.inherit_stat)
1132                 return;
1133
1134         /*
1135          * Update the event value, we cannot use perf_event_read()
1136          * because we're in the middle of a context switch and have IRQs
1137          * disabled, which upsets smp_call_function_single(), however
1138          * we know the event must be on the current CPU, therefore we
1139          * don't need to use it.
1140          */
1141         switch (event->state) {
1142         case PERF_EVENT_STATE_ACTIVE:
1143                 event->pmu->read(event);
1144                 /* fall-through */
1145
1146         case PERF_EVENT_STATE_INACTIVE:
1147                 update_event_times(event);
1148                 break;
1149
1150         default:
1151                 break;
1152         }
1153
1154         /*
1155          * In order to keep per-task stats reliable we need to flip the event
1156          * values when we flip the contexts.
1157          */
1158         value = atomic64_read(&next_event->count);
1159         value = atomic64_xchg(&event->count, value);
1160         atomic64_set(&next_event->count, value);
1161
1162         swap(event->total_time_enabled, next_event->total_time_enabled);
1163         swap(event->total_time_running, next_event->total_time_running);
1164
1165         /*
1166          * Since we swizzled the values, update the user visible data too.
1167          */
1168         perf_event_update_userpage(event);
1169         perf_event_update_userpage(next_event);
1170 }
1171
1172 #define list_next_entry(pos, member) \
1173         list_entry(pos->member.next, typeof(*pos), member)
1174
1175 static void perf_event_sync_stat(struct perf_event_context *ctx,
1176                                    struct perf_event_context *next_ctx)
1177 {
1178         struct perf_event *event, *next_event;
1179
1180         if (!ctx->nr_stat)
1181                 return;
1182
1183         update_context_time(ctx);
1184
1185         event = list_first_entry(&ctx->event_list,
1186                                    struct perf_event, event_entry);
1187
1188         next_event = list_first_entry(&next_ctx->event_list,
1189                                         struct perf_event, event_entry);
1190
1191         while (&event->event_entry != &ctx->event_list &&
1192                &next_event->event_entry != &next_ctx->event_list) {
1193
1194                 __perf_event_sync_stat(event, next_event);
1195
1196                 event = list_next_entry(event, event_entry);
1197                 next_event = list_next_entry(next_event, event_entry);
1198         }
1199 }
1200
1201 /*
1202  * Called from scheduler to remove the events of the current task,
1203  * with interrupts disabled.
1204  *
1205  * We stop each event and update the event value in event->count.
1206  *
1207  * This does not protect us against NMI, but disable()
1208  * sets the disabled bit in the control field of event _before_
1209  * accessing the event control register. If a NMI hits, then it will
1210  * not restart the event.
1211  */
1212 void perf_event_task_sched_out(struct task_struct *task,
1213                                  struct task_struct *next)
1214 {
1215         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216         struct perf_event_context *ctx = task->perf_event_ctxp;
1217         struct perf_event_context *next_ctx;
1218         struct perf_event_context *parent;
1219         int do_switch = 1;
1220
1221         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1222
1223         if (likely(!ctx || !cpuctx->task_ctx))
1224                 return;
1225
1226         rcu_read_lock();
1227         parent = rcu_dereference(ctx->parent_ctx);
1228         next_ctx = next->perf_event_ctxp;
1229         if (parent && next_ctx &&
1230             rcu_dereference(next_ctx->parent_ctx) == parent) {
1231                 /*
1232                  * Looks like the two contexts are clones, so we might be
1233                  * able to optimize the context switch.  We lock both
1234                  * contexts and check that they are clones under the
1235                  * lock (including re-checking that neither has been
1236                  * uncloned in the meantime).  It doesn't matter which
1237                  * order we take the locks because no other cpu could
1238                  * be trying to lock both of these tasks.
1239                  */
1240                 raw_spin_lock(&ctx->lock);
1241                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1242                 if (context_equiv(ctx, next_ctx)) {
1243                         /*
1244                          * XXX do we need a memory barrier of sorts
1245                          * wrt to rcu_dereference() of perf_event_ctxp
1246                          */
1247                         task->perf_event_ctxp = next_ctx;
1248                         next->perf_event_ctxp = ctx;
1249                         ctx->task = next;
1250                         next_ctx->task = task;
1251                         do_switch = 0;
1252
1253                         perf_event_sync_stat(ctx, next_ctx);
1254                 }
1255                 raw_spin_unlock(&next_ctx->lock);
1256                 raw_spin_unlock(&ctx->lock);
1257         }
1258         rcu_read_unlock();
1259
1260         if (do_switch) {
1261                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1262                 cpuctx->task_ctx = NULL;
1263         }
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267                                enum event_type_t event_type)
1268 {
1269         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1270
1271         if (!cpuctx->task_ctx)
1272                 return;
1273
1274         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275                 return;
1276
1277         ctx_sched_out(ctx, cpuctx, event_type);
1278         cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282  * Called with IRQs disabled
1283  */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286         task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290  * Called with IRQs disabled
1291  */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293                               enum event_type_t event_type)
1294 {
1295         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300                     struct perf_cpu_context *cpuctx)
1301 {
1302         struct perf_event *event;
1303
1304         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305                 if (event->state <= PERF_EVENT_STATE_OFF)
1306                         continue;
1307                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308                         continue;
1309
1310                 if (group_can_go_on(event, cpuctx, 1))
1311                         group_sched_in(event, cpuctx, ctx);
1312
1313                 /*
1314                  * If this pinned group hasn't been scheduled,
1315                  * put it in error state.
1316                  */
1317                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318                         update_group_times(event);
1319                         event->state = PERF_EVENT_STATE_ERROR;
1320                 }
1321         }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326                       struct perf_cpu_context *cpuctx)
1327 {
1328         struct perf_event *event;
1329         int can_add_hw = 1;
1330
1331         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332                 /* Ignore events in OFF or ERROR state */
1333                 if (event->state <= PERF_EVENT_STATE_OFF)
1334                         continue;
1335                 /*
1336                  * Listen to the 'cpu' scheduling filter constraint
1337                  * of events:
1338                  */
1339                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340                         continue;
1341
1342                 if (group_can_go_on(event, cpuctx, can_add_hw))
1343                         if (group_sched_in(event, cpuctx, ctx))
1344                                 can_add_hw = 0;
1345         }
1346 }
1347
1348 static void
1349 ctx_sched_in(struct perf_event_context *ctx,
1350              struct perf_cpu_context *cpuctx,
1351              enum event_type_t event_type)
1352 {
1353         raw_spin_lock(&ctx->lock);
1354         ctx->is_active = 1;
1355         if (likely(!ctx->nr_events))
1356                 goto out;
1357
1358         ctx->timestamp = perf_clock();
1359
1360         perf_disable();
1361
1362         /*
1363          * First go through the list and put on any pinned groups
1364          * in order to give them the best chance of going on.
1365          */
1366         if (event_type & EVENT_PINNED)
1367                 ctx_pinned_sched_in(ctx, cpuctx);
1368
1369         /* Then walk through the lower prio flexible groups */
1370         if (event_type & EVENT_FLEXIBLE)
1371                 ctx_flexible_sched_in(ctx, cpuctx);
1372
1373         perf_enable();
1374  out:
1375         raw_spin_unlock(&ctx->lock);
1376 }
1377
1378 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1379                              enum event_type_t event_type)
1380 {
1381         struct perf_event_context *ctx = &cpuctx->ctx;
1382
1383         ctx_sched_in(ctx, cpuctx, event_type);
1384 }
1385
1386 static void task_ctx_sched_in(struct task_struct *task,
1387                               enum event_type_t event_type)
1388 {
1389         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1390         struct perf_event_context *ctx = task->perf_event_ctxp;
1391
1392         if (likely(!ctx))
1393                 return;
1394         if (cpuctx->task_ctx == ctx)
1395                 return;
1396         ctx_sched_in(ctx, cpuctx, event_type);
1397         cpuctx->task_ctx = ctx;
1398 }
1399 /*
1400  * Called from scheduler to add the events of the current task
1401  * with interrupts disabled.
1402  *
1403  * We restore the event value and then enable it.
1404  *
1405  * This does not protect us against NMI, but enable()
1406  * sets the enabled bit in the control field of event _before_
1407  * accessing the event control register. If a NMI hits, then it will
1408  * keep the event running.
1409  */
1410 void perf_event_task_sched_in(struct task_struct *task)
1411 {
1412         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1413         struct perf_event_context *ctx = task->perf_event_ctxp;
1414
1415         if (likely(!ctx))
1416                 return;
1417
1418         if (cpuctx->task_ctx == ctx)
1419                 return;
1420
1421         perf_disable();
1422
1423         /*
1424          * We want to keep the following priority order:
1425          * cpu pinned (that don't need to move), task pinned,
1426          * cpu flexible, task flexible.
1427          */
1428         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1429
1430         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1431         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1432         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1433
1434         cpuctx->task_ctx = ctx;
1435
1436         perf_enable();
1437 }
1438
1439 #define MAX_INTERRUPTS (~0ULL)
1440
1441 static void perf_log_throttle(struct perf_event *event, int enable);
1442
1443 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1444 {
1445         u64 frequency = event->attr.sample_freq;
1446         u64 sec = NSEC_PER_SEC;
1447         u64 divisor, dividend;
1448
1449         int count_fls, nsec_fls, frequency_fls, sec_fls;
1450
1451         count_fls = fls64(count);
1452         nsec_fls = fls64(nsec);
1453         frequency_fls = fls64(frequency);
1454         sec_fls = 30;
1455
1456         /*
1457          * We got @count in @nsec, with a target of sample_freq HZ
1458          * the target period becomes:
1459          *
1460          *             @count * 10^9
1461          * period = -------------------
1462          *          @nsec * sample_freq
1463          *
1464          */
1465
1466         /*
1467          * Reduce accuracy by one bit such that @a and @b converge
1468          * to a similar magnitude.
1469          */
1470 #define REDUCE_FLS(a, b)                \
1471 do {                                    \
1472         if (a##_fls > b##_fls) {        \
1473                 a >>= 1;                \
1474                 a##_fls--;              \
1475         } else {                        \
1476                 b >>= 1;                \
1477                 b##_fls--;              \
1478         }                               \
1479 } while (0)
1480
1481         /*
1482          * Reduce accuracy until either term fits in a u64, then proceed with
1483          * the other, so that finally we can do a u64/u64 division.
1484          */
1485         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1486                 REDUCE_FLS(nsec, frequency);
1487                 REDUCE_FLS(sec, count);
1488         }
1489
1490         if (count_fls + sec_fls > 64) {
1491                 divisor = nsec * frequency;
1492
1493                 while (count_fls + sec_fls > 64) {
1494                         REDUCE_FLS(count, sec);
1495                         divisor >>= 1;
1496                 }
1497
1498                 dividend = count * sec;
1499         } else {
1500                 dividend = count * sec;
1501
1502                 while (nsec_fls + frequency_fls > 64) {
1503                         REDUCE_FLS(nsec, frequency);
1504                         dividend >>= 1;
1505                 }
1506
1507                 divisor = nsec * frequency;
1508         }
1509
1510         return div64_u64(dividend, divisor);
1511 }
1512
1513 static void perf_event_stop(struct perf_event *event)
1514 {
1515         if (!event->pmu->stop)
1516                 return event->pmu->disable(event);
1517
1518         return event->pmu->stop(event);
1519 }
1520
1521 static int perf_event_start(struct perf_event *event)
1522 {
1523         if (!event->pmu->start)
1524                 return event->pmu->enable(event);
1525
1526         return event->pmu->start(event);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531         struct hw_perf_event *hwc = &event->hw;
1532         u64 period, sample_period;
1533         s64 delta;
1534
1535         period = perf_calculate_period(event, nsec, count);
1536
1537         delta = (s64)(period - hwc->sample_period);
1538         delta = (delta + 7) / 8; /* low pass filter */
1539
1540         sample_period = hwc->sample_period + delta;
1541
1542         if (!sample_period)
1543                 sample_period = 1;
1544
1545         hwc->sample_period = sample_period;
1546
1547         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1548                 perf_disable();
1549                 perf_event_stop(event);
1550                 atomic64_set(&hwc->period_left, 0);
1551                 perf_event_start(event);
1552                 perf_enable();
1553         }
1554 }
1555
1556 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1557 {
1558         struct perf_event *event;
1559         struct hw_perf_event *hwc;
1560         u64 interrupts, now;
1561         s64 delta;
1562
1563         raw_spin_lock(&ctx->lock);
1564         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1565                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1566                         continue;
1567
1568                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1569                         continue;
1570
1571                 hwc = &event->hw;
1572
1573                 interrupts = hwc->interrupts;
1574                 hwc->interrupts = 0;
1575
1576                 /*
1577                  * unthrottle events on the tick
1578                  */
1579                 if (interrupts == MAX_INTERRUPTS) {
1580                         perf_log_throttle(event, 1);
1581                         perf_disable();
1582                         event->pmu->unthrottle(event);
1583                         perf_enable();
1584                 }
1585
1586                 if (!event->attr.freq || !event->attr.sample_freq)
1587                         continue;
1588
1589                 perf_disable();
1590                 event->pmu->read(event);
1591                 now = atomic64_read(&event->count);
1592                 delta = now - hwc->freq_count_stamp;
1593                 hwc->freq_count_stamp = now;
1594
1595                 if (delta > 0)
1596                         perf_adjust_period(event, TICK_NSEC, delta);
1597                 perf_enable();
1598         }
1599         raw_spin_unlock(&ctx->lock);
1600 }
1601
1602 /*
1603  * Round-robin a context's events:
1604  */
1605 static void rotate_ctx(struct perf_event_context *ctx)
1606 {
1607         raw_spin_lock(&ctx->lock);
1608
1609         /* Rotate the first entry last of non-pinned groups */
1610         list_rotate_left(&ctx->flexible_groups);
1611
1612         raw_spin_unlock(&ctx->lock);
1613 }
1614
1615 void perf_event_task_tick(struct task_struct *curr)
1616 {
1617         struct perf_cpu_context *cpuctx;
1618         struct perf_event_context *ctx;
1619         int rotate = 0;
1620
1621         if (!atomic_read(&nr_events))
1622                 return;
1623
1624         cpuctx = &__get_cpu_var(perf_cpu_context);
1625         if (cpuctx->ctx.nr_events &&
1626             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1627                 rotate = 1;
1628
1629         ctx = curr->perf_event_ctxp;
1630         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1631                 rotate = 1;
1632
1633         perf_ctx_adjust_freq(&cpuctx->ctx);
1634         if (ctx)
1635                 perf_ctx_adjust_freq(ctx);
1636
1637         if (!rotate)
1638                 return;
1639
1640         perf_disable();
1641         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1642         if (ctx)
1643                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1644
1645         rotate_ctx(&cpuctx->ctx);
1646         if (ctx)
1647                 rotate_ctx(ctx);
1648
1649         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1650         if (ctx)
1651                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1652         perf_enable();
1653 }
1654
1655 static int event_enable_on_exec(struct perf_event *event,
1656                                 struct perf_event_context *ctx)
1657 {
1658         if (!event->attr.enable_on_exec)
1659                 return 0;
1660
1661         event->attr.enable_on_exec = 0;
1662         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1663                 return 0;
1664
1665         __perf_event_mark_enabled(event, ctx);
1666
1667         return 1;
1668 }
1669
1670 /*
1671  * Enable all of a task's events that have been marked enable-on-exec.
1672  * This expects task == current.
1673  */
1674 static void perf_event_enable_on_exec(struct task_struct *task)
1675 {
1676         struct perf_event_context *ctx;
1677         struct perf_event *event;
1678         unsigned long flags;
1679         int enabled = 0;
1680         int ret;
1681
1682         local_irq_save(flags);
1683         ctx = task->perf_event_ctxp;
1684         if (!ctx || !ctx->nr_events)
1685                 goto out;
1686
1687         __perf_event_task_sched_out(ctx);
1688
1689         raw_spin_lock(&ctx->lock);
1690
1691         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1692                 ret = event_enable_on_exec(event, ctx);
1693                 if (ret)
1694                         enabled = 1;
1695         }
1696
1697         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1698                 ret = event_enable_on_exec(event, ctx);
1699                 if (ret)
1700                         enabled = 1;
1701         }
1702
1703         /*
1704          * Unclone this context if we enabled any event.
1705          */
1706         if (enabled)
1707                 unclone_ctx(ctx);
1708
1709         raw_spin_unlock(&ctx->lock);
1710
1711         perf_event_task_sched_in(task);
1712  out:
1713         local_irq_restore(flags);
1714 }
1715
1716 /*
1717  * Cross CPU call to read the hardware event
1718  */
1719 static void __perf_event_read(void *info)
1720 {
1721         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1722         struct perf_event *event = info;
1723         struct perf_event_context *ctx = event->ctx;
1724
1725         /*
1726          * If this is a task context, we need to check whether it is
1727          * the current task context of this cpu.  If not it has been
1728          * scheduled out before the smp call arrived.  In that case
1729          * event->count would have been updated to a recent sample
1730          * when the event was scheduled out.
1731          */
1732         if (ctx->task && cpuctx->task_ctx != ctx)
1733                 return;
1734
1735         raw_spin_lock(&ctx->lock);
1736         update_context_time(ctx);
1737         update_event_times(event);
1738         raw_spin_unlock(&ctx->lock);
1739
1740         event->pmu->read(event);
1741 }
1742
1743 static u64 perf_event_read(struct perf_event *event)
1744 {
1745         /*
1746          * If event is enabled and currently active on a CPU, update the
1747          * value in the event structure:
1748          */
1749         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1750                 smp_call_function_single(event->oncpu,
1751                                          __perf_event_read, event, 1);
1752         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1753                 struct perf_event_context *ctx = event->ctx;
1754                 unsigned long flags;
1755
1756                 raw_spin_lock_irqsave(&ctx->lock, flags);
1757                 update_context_time(ctx);
1758                 update_event_times(event);
1759                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1760         }
1761
1762         return atomic64_read(&event->count);
1763 }
1764
1765 /*
1766  * Initialize the perf_event context in a task_struct:
1767  */
1768 static void
1769 __perf_event_init_context(struct perf_event_context *ctx,
1770                             struct task_struct *task)
1771 {
1772         raw_spin_lock_init(&ctx->lock);
1773         mutex_init(&ctx->mutex);
1774         INIT_LIST_HEAD(&ctx->pinned_groups);
1775         INIT_LIST_HEAD(&ctx->flexible_groups);
1776         INIT_LIST_HEAD(&ctx->event_list);
1777         atomic_set(&ctx->refcount, 1);
1778         ctx->task = task;
1779 }
1780
1781 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1782 {
1783         struct perf_event_context *ctx;
1784         struct perf_cpu_context *cpuctx;
1785         struct task_struct *task;
1786         unsigned long flags;
1787         int err;
1788
1789         if (pid == -1 && cpu != -1) {
1790                 /* Must be root to operate on a CPU event: */
1791                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1792                         return ERR_PTR(-EACCES);
1793
1794                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1795                         return ERR_PTR(-EINVAL);
1796
1797                 /*
1798                  * We could be clever and allow to attach a event to an
1799                  * offline CPU and activate it when the CPU comes up, but
1800                  * that's for later.
1801                  */
1802                 if (!cpu_online(cpu))
1803                         return ERR_PTR(-ENODEV);
1804
1805                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1806                 ctx = &cpuctx->ctx;
1807                 get_ctx(ctx);
1808
1809                 return ctx;
1810         }
1811
1812         rcu_read_lock();
1813         if (!pid)
1814                 task = current;
1815         else
1816                 task = find_task_by_vpid(pid);
1817         if (task)
1818                 get_task_struct(task);
1819         rcu_read_unlock();
1820
1821         if (!task)
1822                 return ERR_PTR(-ESRCH);
1823
1824         /*
1825          * Can't attach events to a dying task.
1826          */
1827         err = -ESRCH;
1828         if (task->flags & PF_EXITING)
1829                 goto errout;
1830
1831         /* Reuse ptrace permission checks for now. */
1832         err = -EACCES;
1833         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1834                 goto errout;
1835
1836  retry:
1837         ctx = perf_lock_task_context(task, &flags);
1838         if (ctx) {
1839                 unclone_ctx(ctx);
1840                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1841         }
1842
1843         if (!ctx) {
1844                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1845                 err = -ENOMEM;
1846                 if (!ctx)
1847                         goto errout;
1848                 __perf_event_init_context(ctx, task);
1849                 get_ctx(ctx);
1850                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1851                         /*
1852                          * We raced with some other task; use
1853                          * the context they set.
1854                          */
1855                         kfree(ctx);
1856                         goto retry;
1857                 }
1858                 get_task_struct(task);
1859         }
1860
1861         put_task_struct(task);
1862         return ctx;
1863
1864  errout:
1865         put_task_struct(task);
1866         return ERR_PTR(err);
1867 }
1868
1869 static void perf_event_free_filter(struct perf_event *event);
1870
1871 static void free_event_rcu(struct rcu_head *head)
1872 {
1873         struct perf_event *event;
1874
1875         event = container_of(head, struct perf_event, rcu_head);
1876         if (event->ns)
1877                 put_pid_ns(event->ns);
1878         perf_event_free_filter(event);
1879         kfree(event);
1880 }
1881
1882 static void perf_pending_sync(struct perf_event *event);
1883 static void perf_mmap_data_put(struct perf_mmap_data *data);
1884
1885 static void free_event(struct perf_event *event)
1886 {
1887         perf_pending_sync(event);
1888
1889         if (!event->parent) {
1890                 atomic_dec(&nr_events);
1891                 if (event->attr.mmap)
1892                         atomic_dec(&nr_mmap_events);
1893                 if (event->attr.comm)
1894                         atomic_dec(&nr_comm_events);
1895                 if (event->attr.task)
1896                         atomic_dec(&nr_task_events);
1897         }
1898
1899         if (event->data) {
1900                 perf_mmap_data_put(event->data);
1901                 event->data = NULL;
1902         }
1903
1904         if (event->destroy)
1905                 event->destroy(event);
1906
1907         put_ctx(event->ctx);
1908         call_rcu(&event->rcu_head, free_event_rcu);
1909 }
1910
1911 int perf_event_release_kernel(struct perf_event *event)
1912 {
1913         struct perf_event_context *ctx = event->ctx;
1914
1915         /*
1916          * Remove from the PMU, can't get re-enabled since we got
1917          * here because the last ref went.
1918          */
1919         perf_event_disable(event);
1920
1921         WARN_ON_ONCE(ctx->parent_ctx);
1922         /*
1923          * There are two ways this annotation is useful:
1924          *
1925          *  1) there is a lock recursion from perf_event_exit_task
1926          *     see the comment there.
1927          *
1928          *  2) there is a lock-inversion with mmap_sem through
1929          *     perf_event_read_group(), which takes faults while
1930          *     holding ctx->mutex, however this is called after
1931          *     the last filedesc died, so there is no possibility
1932          *     to trigger the AB-BA case.
1933          */
1934         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1935         raw_spin_lock_irq(&ctx->lock);
1936         perf_group_detach(event);
1937         list_del_event(event, ctx);
1938         raw_spin_unlock_irq(&ctx->lock);
1939         mutex_unlock(&ctx->mutex);
1940
1941         mutex_lock(&event->owner->perf_event_mutex);
1942         list_del_init(&event->owner_entry);
1943         mutex_unlock(&event->owner->perf_event_mutex);
1944         put_task_struct(event->owner);
1945
1946         free_event(event);
1947
1948         return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1951
1952 /*
1953  * Called when the last reference to the file is gone.
1954  */
1955 static int perf_release(struct inode *inode, struct file *file)
1956 {
1957         struct perf_event *event = file->private_data;
1958
1959         file->private_data = NULL;
1960
1961         return perf_event_release_kernel(event);
1962 }
1963
1964 static int perf_event_read_size(struct perf_event *event)
1965 {
1966         int entry = sizeof(u64); /* value */
1967         int size = 0;
1968         int nr = 1;
1969
1970         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1971                 size += sizeof(u64);
1972
1973         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1974                 size += sizeof(u64);
1975
1976         if (event->attr.read_format & PERF_FORMAT_ID)
1977                 entry += sizeof(u64);
1978
1979         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1980                 nr += event->group_leader->nr_siblings;
1981                 size += sizeof(u64);
1982         }
1983
1984         size += entry * nr;
1985
1986         return size;
1987 }
1988
1989 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1990 {
1991         struct perf_event *child;
1992         u64 total = 0;
1993
1994         *enabled = 0;
1995         *running = 0;
1996
1997         mutex_lock(&event->child_mutex);
1998         total += perf_event_read(event);
1999         *enabled += event->total_time_enabled +
2000                         atomic64_read(&event->child_total_time_enabled);
2001         *running += event->total_time_running +
2002                         atomic64_read(&event->child_total_time_running);
2003
2004         list_for_each_entry(child, &event->child_list, child_list) {
2005                 total += perf_event_read(child);
2006                 *enabled += child->total_time_enabled;
2007                 *running += child->total_time_running;
2008         }
2009         mutex_unlock(&event->child_mutex);
2010
2011         return total;
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_read_value);
2014
2015 static int perf_event_read_group(struct perf_event *event,
2016                                    u64 read_format, char __user *buf)
2017 {
2018         struct perf_event *leader = event->group_leader, *sub;
2019         int n = 0, size = 0, ret = -EFAULT;
2020         struct perf_event_context *ctx = leader->ctx;
2021         u64 values[5];
2022         u64 count, enabled, running;
2023
2024         mutex_lock(&ctx->mutex);
2025         count = perf_event_read_value(leader, &enabled, &running);
2026
2027         values[n++] = 1 + leader->nr_siblings;
2028         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2029                 values[n++] = enabled;
2030         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2031                 values[n++] = running;
2032         values[n++] = count;
2033         if (read_format & PERF_FORMAT_ID)
2034                 values[n++] = primary_event_id(leader);
2035
2036         size = n * sizeof(u64);
2037
2038         if (copy_to_user(buf, values, size))
2039                 goto unlock;
2040
2041         ret = size;
2042
2043         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2044                 n = 0;
2045
2046                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2047                 if (read_format & PERF_FORMAT_ID)
2048                         values[n++] = primary_event_id(sub);
2049
2050                 size = n * sizeof(u64);
2051
2052                 if (copy_to_user(buf + ret, values, size)) {
2053                         ret = -EFAULT;
2054                         goto unlock;
2055                 }
2056
2057                 ret += size;
2058         }
2059 unlock:
2060         mutex_unlock(&ctx->mutex);
2061
2062         return ret;
2063 }
2064
2065 static int perf_event_read_one(struct perf_event *event,
2066                                  u64 read_format, char __user *buf)
2067 {
2068         u64 enabled, running;
2069         u64 values[4];
2070         int n = 0;
2071
2072         values[n++] = perf_event_read_value(event, &enabled, &running);
2073         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2074                 values[n++] = enabled;
2075         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2076                 values[n++] = running;
2077         if (read_format & PERF_FORMAT_ID)
2078                 values[n++] = primary_event_id(event);
2079
2080         if (copy_to_user(buf, values, n * sizeof(u64)))
2081                 return -EFAULT;
2082
2083         return n * sizeof(u64);
2084 }
2085
2086 /*
2087  * Read the performance event - simple non blocking version for now
2088  */
2089 static ssize_t
2090 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2091 {
2092         u64 read_format = event->attr.read_format;
2093         int ret;
2094
2095         /*
2096          * Return end-of-file for a read on a event that is in
2097          * error state (i.e. because it was pinned but it couldn't be
2098          * scheduled on to the CPU at some point).
2099          */
2100         if (event->state == PERF_EVENT_STATE_ERROR)
2101                 return 0;
2102
2103         if (count < perf_event_read_size(event))
2104                 return -ENOSPC;
2105
2106         WARN_ON_ONCE(event->ctx->parent_ctx);
2107         if (read_format & PERF_FORMAT_GROUP)
2108                 ret = perf_event_read_group(event, read_format, buf);
2109         else
2110                 ret = perf_event_read_one(event, read_format, buf);
2111
2112         return ret;
2113 }
2114
2115 static ssize_t
2116 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2117 {
2118         struct perf_event *event = file->private_data;
2119
2120         return perf_read_hw(event, buf, count);
2121 }
2122
2123 static unsigned int perf_poll(struct file *file, poll_table *wait)
2124 {
2125         struct perf_event *event = file->private_data;
2126         struct perf_mmap_data *data;
2127         unsigned int events = POLL_HUP;
2128
2129         rcu_read_lock();
2130         data = rcu_dereference(event->data);
2131         if (data)
2132                 events = atomic_xchg(&data->poll, 0);
2133         rcu_read_unlock();
2134
2135         poll_wait(file, &event->waitq, wait);
2136
2137         return events;
2138 }
2139
2140 static void perf_event_reset(struct perf_event *event)
2141 {
2142         (void)perf_event_read(event);
2143         atomic64_set(&event->count, 0);
2144         perf_event_update_userpage(event);
2145 }
2146
2147 /*
2148  * Holding the top-level event's child_mutex means that any
2149  * descendant process that has inherited this event will block
2150  * in sync_child_event if it goes to exit, thus satisfying the
2151  * task existence requirements of perf_event_enable/disable.
2152  */
2153 static void perf_event_for_each_child(struct perf_event *event,
2154                                         void (*func)(struct perf_event *))
2155 {
2156         struct perf_event *child;
2157
2158         WARN_ON_ONCE(event->ctx->parent_ctx);
2159         mutex_lock(&event->child_mutex);
2160         func(event);
2161         list_for_each_entry(child, &event->child_list, child_list)
2162                 func(child);
2163         mutex_unlock(&event->child_mutex);
2164 }
2165
2166 static void perf_event_for_each(struct perf_event *event,
2167                                   void (*func)(struct perf_event *))
2168 {
2169         struct perf_event_context *ctx = event->ctx;
2170         struct perf_event *sibling;
2171
2172         WARN_ON_ONCE(ctx->parent_ctx);
2173         mutex_lock(&ctx->mutex);
2174         event = event->group_leader;
2175
2176         perf_event_for_each_child(event, func);
2177         func(event);
2178         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2179                 perf_event_for_each_child(event, func);
2180         mutex_unlock(&ctx->mutex);
2181 }
2182
2183 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2184 {
2185         struct perf_event_context *ctx = event->ctx;
2186         unsigned long size;
2187         int ret = 0;
2188         u64 value;
2189
2190         if (!event->attr.sample_period)
2191                 return -EINVAL;
2192
2193         size = copy_from_user(&value, arg, sizeof(value));
2194         if (size != sizeof(value))
2195                 return -EFAULT;
2196
2197         if (!value)
2198                 return -EINVAL;
2199
2200         raw_spin_lock_irq(&ctx->lock);
2201         if (event->attr.freq) {
2202                 if (value > sysctl_perf_event_sample_rate) {
2203                         ret = -EINVAL;
2204                         goto unlock;
2205                 }
2206
2207                 event->attr.sample_freq = value;
2208         } else {
2209                 event->attr.sample_period = value;
2210                 event->hw.sample_period = value;
2211         }
2212 unlock:
2213         raw_spin_unlock_irq(&ctx->lock);
2214
2215         return ret;
2216 }
2217
2218 static const struct file_operations perf_fops;
2219
2220 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2221 {
2222         struct file *file;
2223
2224         file = fget_light(fd, fput_needed);
2225         if (!file)
2226                 return ERR_PTR(-EBADF);
2227
2228         if (file->f_op != &perf_fops) {
2229                 fput_light(file, *fput_needed);
2230                 *fput_needed = 0;
2231                 return ERR_PTR(-EBADF);
2232         }
2233
2234         return file->private_data;
2235 }
2236
2237 static int perf_event_set_output(struct perf_event *event,
2238                                  struct perf_event *output_event);
2239 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2240
2241 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2242 {
2243         struct perf_event *event = file->private_data;
2244         void (*func)(struct perf_event *);
2245         u32 flags = arg;
2246
2247         switch (cmd) {
2248         case PERF_EVENT_IOC_ENABLE:
2249                 func = perf_event_enable;
2250                 break;
2251         case PERF_EVENT_IOC_DISABLE:
2252                 func = perf_event_disable;
2253                 break;
2254         case PERF_EVENT_IOC_RESET:
2255                 func = perf_event_reset;
2256                 break;
2257
2258         case PERF_EVENT_IOC_REFRESH:
2259                 return perf_event_refresh(event, arg);
2260
2261         case PERF_EVENT_IOC_PERIOD:
2262                 return perf_event_period(event, (u64 __user *)arg);
2263
2264         case PERF_EVENT_IOC_SET_OUTPUT:
2265         {
2266                 struct perf_event *output_event = NULL;
2267                 int fput_needed = 0;
2268                 int ret;
2269
2270                 if (arg != -1) {
2271                         output_event = perf_fget_light(arg, &fput_needed);
2272                         if (IS_ERR(output_event))
2273                                 return PTR_ERR(output_event);
2274                 }
2275
2276                 ret = perf_event_set_output(event, output_event);
2277                 if (output_event)
2278                         fput_light(output_event->filp, fput_needed);
2279
2280                 return ret;
2281         }
2282
2283         case PERF_EVENT_IOC_SET_FILTER:
2284                 return perf_event_set_filter(event, (void __user *)arg);
2285
2286         default:
2287                 return -ENOTTY;
2288         }
2289
2290         if (flags & PERF_IOC_FLAG_GROUP)
2291                 perf_event_for_each(event, func);
2292         else
2293                 perf_event_for_each_child(event, func);
2294
2295         return 0;
2296 }
2297
2298 int perf_event_task_enable(void)
2299 {
2300         struct perf_event *event;
2301
2302         mutex_lock(&current->perf_event_mutex);
2303         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2304                 perf_event_for_each_child(event, perf_event_enable);
2305         mutex_unlock(&current->perf_event_mutex);
2306
2307         return 0;
2308 }
2309
2310 int perf_event_task_disable(void)
2311 {
2312         struct perf_event *event;
2313
2314         mutex_lock(&current->perf_event_mutex);
2315         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2316                 perf_event_for_each_child(event, perf_event_disable);
2317         mutex_unlock(&current->perf_event_mutex);
2318
2319         return 0;
2320 }
2321
2322 #ifndef PERF_EVENT_INDEX_OFFSET
2323 # define PERF_EVENT_INDEX_OFFSET 0
2324 #endif
2325
2326 static int perf_event_index(struct perf_event *event)
2327 {
2328         if (event->state != PERF_EVENT_STATE_ACTIVE)
2329                 return 0;
2330
2331         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2332 }
2333
2334 /*
2335  * Callers need to ensure there can be no nesting of this function, otherwise
2336  * the seqlock logic goes bad. We can not serialize this because the arch
2337  * code calls this from NMI context.
2338  */
2339 void perf_event_update_userpage(struct perf_event *event)
2340 {
2341         struct perf_event_mmap_page *userpg;
2342         struct perf_mmap_data *data;
2343
2344         rcu_read_lock();
2345         data = rcu_dereference(event->data);
2346         if (!data)
2347                 goto unlock;
2348
2349         userpg = data->user_page;
2350
2351         /*
2352          * Disable preemption so as to not let the corresponding user-space
2353          * spin too long if we get preempted.
2354          */
2355         preempt_disable();
2356         ++userpg->lock;
2357         barrier();
2358         userpg->index = perf_event_index(event);
2359         userpg->offset = atomic64_read(&event->count);
2360         if (event->state == PERF_EVENT_STATE_ACTIVE)
2361                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2362
2363         userpg->time_enabled = event->total_time_enabled +
2364                         atomic64_read(&event->child_total_time_enabled);
2365
2366         userpg->time_running = event->total_time_running +
2367                         atomic64_read(&event->child_total_time_running);
2368
2369         barrier();
2370         ++userpg->lock;
2371         preempt_enable();
2372 unlock:
2373         rcu_read_unlock();
2374 }
2375
2376 #ifndef CONFIG_PERF_USE_VMALLOC
2377
2378 /*
2379  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2380  */
2381
2382 static struct page *
2383 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2384 {
2385         if (pgoff > data->nr_pages)
2386                 return NULL;
2387
2388         if (pgoff == 0)
2389                 return virt_to_page(data->user_page);
2390
2391         return virt_to_page(data->data_pages[pgoff - 1]);
2392 }
2393
2394 static void *perf_mmap_alloc_page(int cpu)
2395 {
2396         struct page *page;
2397         int node;
2398
2399         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2400         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2401         if (!page)
2402                 return NULL;
2403
2404         return page_address(page);
2405 }
2406
2407 static struct perf_mmap_data *
2408 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2409 {
2410         struct perf_mmap_data *data;
2411         unsigned long size;
2412         int i;
2413
2414         size = sizeof(struct perf_mmap_data);
2415         size += nr_pages * sizeof(void *);
2416
2417         data = kzalloc(size, GFP_KERNEL);
2418         if (!data)
2419                 goto fail;
2420
2421         data->user_page = perf_mmap_alloc_page(event->cpu);
2422         if (!data->user_page)
2423                 goto fail_user_page;
2424
2425         for (i = 0; i < nr_pages; i++) {
2426                 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2427                 if (!data->data_pages[i])
2428                         goto fail_data_pages;
2429         }
2430
2431         data->nr_pages = nr_pages;
2432
2433         return data;
2434
2435 fail_data_pages:
2436         for (i--; i >= 0; i--)
2437                 free_page((unsigned long)data->data_pages[i]);
2438
2439         free_page((unsigned long)data->user_page);
2440
2441 fail_user_page:
2442         kfree(data);
2443
2444 fail:
2445         return NULL;
2446 }
2447
2448 static void perf_mmap_free_page(unsigned long addr)
2449 {
2450         struct page *page = virt_to_page((void *)addr);
2451
2452         page->mapping = NULL;
2453         __free_page(page);
2454 }
2455
2456 static void perf_mmap_data_free(struct perf_mmap_data *data)
2457 {
2458         int i;
2459
2460         perf_mmap_free_page((unsigned long)data->user_page);
2461         for (i = 0; i < data->nr_pages; i++)
2462                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2463         kfree(data);
2464 }
2465
2466 static inline int page_order(struct perf_mmap_data *data)
2467 {
2468         return 0;
2469 }
2470
2471 #else
2472
2473 /*
2474  * Back perf_mmap() with vmalloc memory.
2475  *
2476  * Required for architectures that have d-cache aliasing issues.
2477  */
2478
2479 static inline int page_order(struct perf_mmap_data *data)
2480 {
2481         return data->page_order;
2482 }
2483
2484 static struct page *
2485 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2486 {
2487         if (pgoff > (1UL << page_order(data)))
2488                 return NULL;
2489
2490         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2491 }
2492
2493 static void perf_mmap_unmark_page(void *addr)
2494 {
2495         struct page *page = vmalloc_to_page(addr);
2496
2497         page->mapping = NULL;
2498 }
2499
2500 static void perf_mmap_data_free_work(struct work_struct *work)
2501 {
2502         struct perf_mmap_data *data;
2503         void *base;
2504         int i, nr;
2505
2506         data = container_of(work, struct perf_mmap_data, work);
2507         nr = 1 << page_order(data);
2508
2509         base = data->user_page;
2510         for (i = 0; i < nr + 1; i++)
2511                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2512
2513         vfree(base);
2514         kfree(data);
2515 }
2516
2517 static void perf_mmap_data_free(struct perf_mmap_data *data)
2518 {
2519         schedule_work(&data->work);
2520 }
2521
2522 static struct perf_mmap_data *
2523 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2524 {
2525         struct perf_mmap_data *data;
2526         unsigned long size;
2527         void *all_buf;
2528
2529         size = sizeof(struct perf_mmap_data);
2530         size += sizeof(void *);
2531
2532         data = kzalloc(size, GFP_KERNEL);
2533         if (!data)
2534                 goto fail;
2535
2536         INIT_WORK(&data->work, perf_mmap_data_free_work);
2537
2538         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2539         if (!all_buf)
2540                 goto fail_all_buf;
2541
2542         data->user_page = all_buf;
2543         data->data_pages[0] = all_buf + PAGE_SIZE;
2544         data->page_order = ilog2(nr_pages);
2545         data->nr_pages = 1;
2546
2547         return data;
2548
2549 fail_all_buf:
2550         kfree(data);
2551
2552 fail:
2553         return NULL;
2554 }
2555
2556 #endif
2557
2558 static unsigned long perf_data_size(struct perf_mmap_data *data)
2559 {
2560         return data->nr_pages << (PAGE_SHIFT + page_order(data));
2561 }
2562
2563 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2564 {
2565         struct perf_event *event = vma->vm_file->private_data;
2566         struct perf_mmap_data *data;
2567         int ret = VM_FAULT_SIGBUS;
2568
2569         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2570                 if (vmf->pgoff == 0)
2571                         ret = 0;
2572                 return ret;
2573         }
2574
2575         rcu_read_lock();
2576         data = rcu_dereference(event->data);
2577         if (!data)
2578                 goto unlock;
2579
2580         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2581                 goto unlock;
2582
2583         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2584         if (!vmf->page)
2585                 goto unlock;
2586
2587         get_page(vmf->page);
2588         vmf->page->mapping = vma->vm_file->f_mapping;
2589         vmf->page->index   = vmf->pgoff;
2590
2591         ret = 0;
2592 unlock:
2593         rcu_read_unlock();
2594
2595         return ret;
2596 }
2597
2598 static void
2599 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2600 {
2601         long max_size = perf_data_size(data);
2602
2603         if (event->attr.watermark) {
2604                 data->watermark = min_t(long, max_size,
2605                                         event->attr.wakeup_watermark);
2606         }
2607
2608         if (!data->watermark)
2609                 data->watermark = max_size / 2;
2610
2611         atomic_set(&data->refcount, 1);
2612         rcu_assign_pointer(event->data, data);
2613 }
2614
2615 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2616 {
2617         struct perf_mmap_data *data;
2618
2619         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2620         perf_mmap_data_free(data);
2621 }
2622
2623 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2624 {
2625         struct perf_mmap_data *data;
2626
2627         rcu_read_lock();
2628         data = rcu_dereference(event->data);
2629         if (data) {
2630                 if (!atomic_inc_not_zero(&data->refcount))
2631                         data = NULL;
2632         }
2633         rcu_read_unlock();
2634
2635         return data;
2636 }
2637
2638 static void perf_mmap_data_put(struct perf_mmap_data *data)
2639 {
2640         if (!atomic_dec_and_test(&data->refcount))
2641                 return;
2642
2643         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2644 }
2645
2646 static void perf_mmap_open(struct vm_area_struct *vma)
2647 {
2648         struct perf_event *event = vma->vm_file->private_data;
2649
2650         atomic_inc(&event->mmap_count);
2651 }
2652
2653 static void perf_mmap_close(struct vm_area_struct *vma)
2654 {
2655         struct perf_event *event = vma->vm_file->private_data;
2656
2657         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2658                 unsigned long size = perf_data_size(event->data);
2659                 struct user_struct *user = event->mmap_user;
2660                 struct perf_mmap_data *data = event->data;
2661
2662                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2663                 vma->vm_mm->locked_vm -= event->mmap_locked;
2664                 rcu_assign_pointer(event->data, NULL);
2665                 mutex_unlock(&event->mmap_mutex);
2666
2667                 perf_mmap_data_put(data);
2668                 free_uid(user);
2669         }
2670 }
2671
2672 static const struct vm_operations_struct perf_mmap_vmops = {
2673         .open           = perf_mmap_open,
2674         .close          = perf_mmap_close,
2675         .fault          = perf_mmap_fault,
2676         .page_mkwrite   = perf_mmap_fault,
2677 };
2678
2679 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2680 {
2681         struct perf_event *event = file->private_data;
2682         unsigned long user_locked, user_lock_limit;
2683         struct user_struct *user = current_user();
2684         unsigned long locked, lock_limit;
2685         struct perf_mmap_data *data;
2686         unsigned long vma_size;
2687         unsigned long nr_pages;
2688         long user_extra, extra;
2689         int ret = 0;
2690
2691         /*
2692          * Don't allow mmap() of inherited per-task counters. This would
2693          * create a performance issue due to all children writing to the
2694          * same buffer.
2695          */
2696         if (event->cpu == -1 && event->attr.inherit)
2697                 return -EINVAL;
2698
2699         if (!(vma->vm_flags & VM_SHARED))
2700                 return -EINVAL;
2701
2702         vma_size = vma->vm_end - vma->vm_start;
2703         nr_pages = (vma_size / PAGE_SIZE) - 1;
2704
2705         /*
2706          * If we have data pages ensure they're a power-of-two number, so we
2707          * can do bitmasks instead of modulo.
2708          */
2709         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2710                 return -EINVAL;
2711
2712         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2713                 return -EINVAL;
2714
2715         if (vma->vm_pgoff != 0)
2716                 return -EINVAL;
2717
2718         WARN_ON_ONCE(event->ctx->parent_ctx);
2719         mutex_lock(&event->mmap_mutex);
2720         if (event->data) {
2721                 if (event->data->nr_pages == nr_pages)
2722                         atomic_inc(&event->data->refcount);
2723                 else
2724                         ret = -EINVAL;
2725                 goto unlock;
2726         }
2727
2728         user_extra = nr_pages + 1;
2729         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2730
2731         /*
2732          * Increase the limit linearly with more CPUs:
2733          */
2734         user_lock_limit *= num_online_cpus();
2735
2736         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2737
2738         extra = 0;
2739         if (user_locked > user_lock_limit)
2740                 extra = user_locked - user_lock_limit;
2741
2742         lock_limit = rlimit(RLIMIT_MEMLOCK);
2743         lock_limit >>= PAGE_SHIFT;
2744         locked = vma->vm_mm->locked_vm + extra;
2745
2746         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2747                 !capable(CAP_IPC_LOCK)) {
2748                 ret = -EPERM;
2749                 goto unlock;
2750         }
2751
2752         WARN_ON(event->data);
2753
2754         data = perf_mmap_data_alloc(event, nr_pages);
2755         if (!data) {
2756                 ret = -ENOMEM;
2757                 goto unlock;
2758         }
2759
2760         perf_mmap_data_init(event, data);
2761         if (vma->vm_flags & VM_WRITE)
2762                 event->data->writable = 1;
2763
2764         atomic_long_add(user_extra, &user->locked_vm);
2765         event->mmap_locked = extra;
2766         event->mmap_user = get_current_user();
2767         vma->vm_mm->locked_vm += event->mmap_locked;
2768
2769 unlock:
2770         if (!ret)
2771                 atomic_inc(&event->mmap_count);
2772         mutex_unlock(&event->mmap_mutex);
2773
2774         vma->vm_flags |= VM_RESERVED;
2775         vma->vm_ops = &perf_mmap_vmops;
2776
2777         return ret;
2778 }
2779
2780 static int perf_fasync(int fd, struct file *filp, int on)
2781 {
2782         struct inode *inode = filp->f_path.dentry->d_inode;
2783         struct perf_event *event = filp->private_data;
2784         int retval;
2785
2786         mutex_lock(&inode->i_mutex);
2787         retval = fasync_helper(fd, filp, on, &event->fasync);
2788         mutex_unlock(&inode->i_mutex);
2789
2790         if (retval < 0)
2791                 return retval;
2792
2793         return 0;
2794 }
2795
2796 static const struct file_operations perf_fops = {
2797         .llseek                 = no_llseek,
2798         .release                = perf_release,
2799         .read                   = perf_read,
2800         .poll                   = perf_poll,
2801         .unlocked_ioctl         = perf_ioctl,
2802         .compat_ioctl           = perf_ioctl,
2803         .mmap                   = perf_mmap,
2804         .fasync                 = perf_fasync,
2805 };
2806
2807 /*
2808  * Perf event wakeup
2809  *
2810  * If there's data, ensure we set the poll() state and publish everything
2811  * to user-space before waking everybody up.
2812  */
2813
2814 void perf_event_wakeup(struct perf_event *event)
2815 {
2816         wake_up_all(&event->waitq);
2817
2818         if (event->pending_kill) {
2819                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2820                 event->pending_kill = 0;
2821         }
2822 }
2823
2824 /*
2825  * Pending wakeups
2826  *
2827  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2828  *
2829  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2830  * single linked list and use cmpxchg() to add entries lockless.
2831  */
2832
2833 static void perf_pending_event(struct perf_pending_entry *entry)
2834 {
2835         struct perf_event *event = container_of(entry,
2836                         struct perf_event, pending);
2837
2838         if (event->pending_disable) {
2839                 event->pending_disable = 0;
2840                 __perf_event_disable(event);
2841         }
2842
2843         if (event->pending_wakeup) {
2844                 event->pending_wakeup = 0;
2845                 perf_event_wakeup(event);
2846         }
2847 }
2848
2849 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2850
2851 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2852         PENDING_TAIL,
2853 };
2854
2855 static void perf_pending_queue(struct perf_pending_entry *entry,
2856                                void (*func)(struct perf_pending_entry *))
2857 {
2858         struct perf_pending_entry **head;
2859
2860         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2861                 return;
2862
2863         entry->func = func;
2864
2865         head = &get_cpu_var(perf_pending_head);
2866
2867         do {
2868                 entry->next = *head;
2869         } while (cmpxchg(head, entry->next, entry) != entry->next);
2870
2871         set_perf_event_pending();
2872
2873         put_cpu_var(perf_pending_head);
2874 }
2875
2876 static int __perf_pending_run(void)
2877 {
2878         struct perf_pending_entry *list;
2879         int nr = 0;
2880
2881         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2882         while (list != PENDING_TAIL) {
2883                 void (*func)(struct perf_pending_entry *);
2884                 struct perf_pending_entry *entry = list;
2885
2886                 list = list->next;
2887
2888                 func = entry->func;
2889                 entry->next = NULL;
2890                 /*
2891                  * Ensure we observe the unqueue before we issue the wakeup,
2892                  * so that we won't be waiting forever.
2893                  * -- see perf_not_pending().
2894                  */
2895                 smp_wmb();
2896
2897                 func(entry);
2898                 nr++;
2899         }
2900
2901         return nr;
2902 }
2903
2904 static inline int perf_not_pending(struct perf_event *event)
2905 {
2906         /*
2907          * If we flush on whatever cpu we run, there is a chance we don't
2908          * need to wait.
2909          */
2910         get_cpu();
2911         __perf_pending_run();
2912         put_cpu();
2913
2914         /*
2915          * Ensure we see the proper queue state before going to sleep
2916          * so that we do not miss the wakeup. -- see perf_pending_handle()
2917          */
2918         smp_rmb();
2919         return event->pending.next == NULL;
2920 }
2921
2922 static void perf_pending_sync(struct perf_event *event)
2923 {
2924         wait_event(event->waitq, perf_not_pending(event));
2925 }
2926
2927 void perf_event_do_pending(void)
2928 {
2929         __perf_pending_run();
2930 }
2931
2932 /*
2933  * Callchain support -- arch specific
2934  */
2935
2936 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2937 {
2938         return NULL;
2939 }
2940
2941 __weak
2942 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2943 {
2944 }
2945
2946
2947 /*
2948  * We assume there is only KVM supporting the callbacks.
2949  * Later on, we might change it to a list if there is
2950  * another virtualization implementation supporting the callbacks.
2951  */
2952 struct perf_guest_info_callbacks *perf_guest_cbs;
2953
2954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2955 {
2956         perf_guest_cbs = cbs;
2957         return 0;
2958 }
2959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2960
2961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2962 {
2963         perf_guest_cbs = NULL;
2964         return 0;
2965 }
2966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2967
2968 /*
2969  * Output
2970  */
2971 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2972                               unsigned long offset, unsigned long head)
2973 {
2974         unsigned long mask;
2975
2976         if (!data->writable)
2977                 return true;
2978
2979         mask = perf_data_size(data) - 1;
2980
2981         offset = (offset - tail) & mask;
2982         head   = (head   - tail) & mask;
2983
2984         if ((int)(head - offset) < 0)
2985                 return false;
2986
2987         return true;
2988 }
2989
2990 static void perf_output_wakeup(struct perf_output_handle *handle)
2991 {
2992         atomic_set(&handle->data->poll, POLL_IN);
2993
2994         if (handle->nmi) {
2995                 handle->event->pending_wakeup = 1;
2996                 perf_pending_queue(&handle->event->pending,
2997                                    perf_pending_event);
2998         } else
2999                 perf_event_wakeup(handle->event);
3000 }
3001
3002 /*
3003  * We need to ensure a later event_id doesn't publish a head when a former
3004  * event isn't done writing. However since we need to deal with NMIs we
3005  * cannot fully serialize things.
3006  *
3007  * We only publish the head (and generate a wakeup) when the outer-most
3008  * event completes.
3009  */
3010 static void perf_output_get_handle(struct perf_output_handle *handle)
3011 {
3012         struct perf_mmap_data *data = handle->data;
3013
3014         preempt_disable();
3015         local_inc(&data->nest);
3016         handle->wakeup = local_read(&data->wakeup);
3017 }
3018
3019 static void perf_output_put_handle(struct perf_output_handle *handle)
3020 {
3021         struct perf_mmap_data *data = handle->data;
3022         unsigned long head;
3023
3024 again:
3025         head = local_read(&data->head);
3026
3027         /*
3028          * IRQ/NMI can happen here, which means we can miss a head update.
3029          */
3030
3031         if (!local_dec_and_test(&data->nest))
3032                 goto out;
3033
3034         /*
3035          * Publish the known good head. Rely on the full barrier implied
3036          * by atomic_dec_and_test() order the data->head read and this
3037          * write.
3038          */
3039         data->user_page->data_head = head;
3040
3041         /*
3042          * Now check if we missed an update, rely on the (compiler)
3043          * barrier in atomic_dec_and_test() to re-read data->head.
3044          */
3045         if (unlikely(head != local_read(&data->head))) {
3046                 local_inc(&data->nest);
3047                 goto again;
3048         }
3049
3050         if (handle->wakeup != local_read(&data->wakeup))
3051                 perf_output_wakeup(handle);
3052
3053  out:
3054         preempt_enable();
3055 }
3056
3057 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3058                       const void *buf, unsigned int len)
3059 {
3060         do {
3061                 unsigned long size = min_t(unsigned long, handle->size, len);
3062
3063                 memcpy(handle->addr, buf, size);
3064
3065                 len -= size;
3066                 handle->addr += size;
3067                 handle->size -= size;
3068                 if (!handle->size) {
3069                         struct perf_mmap_data *data = handle->data;
3070
3071                         handle->page++;
3072                         handle->page &= data->nr_pages - 1;
3073                         handle->addr = data->data_pages[handle->page];
3074                         handle->size = PAGE_SIZE << page_order(data);
3075                 }
3076         } while (len);
3077 }
3078
3079 int perf_output_begin(struct perf_output_handle *handle,
3080                       struct perf_event *event, unsigned int size,
3081                       int nmi, int sample)
3082 {
3083         struct perf_mmap_data *data;
3084         unsigned long tail, offset, head;
3085         int have_lost;
3086         struct {
3087                 struct perf_event_header header;
3088                 u64                      id;
3089                 u64                      lost;
3090         } lost_event;
3091
3092         rcu_read_lock();
3093         /*
3094          * For inherited events we send all the output towards the parent.
3095          */
3096         if (event->parent)
3097                 event = event->parent;
3098
3099         data = rcu_dereference(event->data);
3100         if (!data)
3101                 goto out;
3102
3103         handle->data    = data;
3104         handle->event   = event;
3105         handle->nmi     = nmi;
3106         handle->sample  = sample;
3107
3108         if (!data->nr_pages)
3109                 goto out;
3110
3111         have_lost = local_read(&data->lost);
3112         if (have_lost)
3113                 size += sizeof(lost_event);
3114
3115         perf_output_get_handle(handle);
3116
3117         do {
3118                 /*
3119                  * Userspace could choose to issue a mb() before updating the
3120                  * tail pointer. So that all reads will be completed before the
3121                  * write is issued.
3122                  */
3123                 tail = ACCESS_ONCE(data->user_page->data_tail);
3124                 smp_rmb();
3125                 offset = head = local_read(&data->head);
3126                 head += size;
3127                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3128                         goto fail;
3129         } while (local_cmpxchg(&data->head, offset, head) != offset);
3130
3131         if (head - local_read(&data->wakeup) > data->watermark)
3132                 local_add(data->watermark, &data->wakeup);
3133
3134         handle->page = offset >> (PAGE_SHIFT + page_order(data));
3135         handle->page &= data->nr_pages - 1;
3136         handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3137         handle->addr = data->data_pages[handle->page];
3138         handle->addr += handle->size;
3139         handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3140
3141         if (have_lost) {
3142                 lost_event.header.type = PERF_RECORD_LOST;
3143                 lost_event.header.misc = 0;
3144                 lost_event.header.size = sizeof(lost_event);
3145                 lost_event.id          = event->id;
3146                 lost_event.lost        = local_xchg(&data->lost, 0);
3147
3148                 perf_output_put(handle, lost_event);
3149         }
3150
3151         return 0;
3152
3153 fail:
3154         local_inc(&data->lost);
3155         perf_output_put_handle(handle);
3156 out:
3157         rcu_read_unlock();
3158
3159         return -ENOSPC;
3160 }
3161
3162 void perf_output_end(struct perf_output_handle *handle)
3163 {
3164         struct perf_event *event = handle->event;
3165         struct perf_mmap_data *data = handle->data;
3166
3167         int wakeup_events = event->attr.wakeup_events;
3168
3169         if (handle->sample && wakeup_events) {
3170                 int events = local_inc_return(&data->events);
3171                 if (events >= wakeup_events) {
3172                         local_sub(wakeup_events, &data->events);
3173                         local_inc(&data->wakeup);
3174                 }
3175         }
3176
3177         perf_output_put_handle(handle);
3178         rcu_read_unlock();
3179 }
3180
3181 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3182 {
3183         /*
3184          * only top level events have the pid namespace they were created in
3185          */
3186         if (event->parent)
3187                 event = event->parent;
3188
3189         return task_tgid_nr_ns(p, event->ns);
3190 }
3191
3192 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3193 {
3194         /*
3195          * only top level events have the pid namespace they were created in
3196          */
3197         if (event->parent)
3198                 event = event->parent;
3199
3200         return task_pid_nr_ns(p, event->ns);
3201 }
3202
3203 static void perf_output_read_one(struct perf_output_handle *handle,
3204                                  struct perf_event *event)
3205 {
3206         u64 read_format = event->attr.read_format;
3207         u64 values[4];
3208         int n = 0;
3209
3210         values[n++] = atomic64_read(&event->count);
3211         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3212                 values[n++] = event->total_time_enabled +
3213                         atomic64_read(&event->child_total_time_enabled);
3214         }
3215         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3216                 values[n++] = event->total_time_running +
3217                         atomic64_read(&event->child_total_time_running);
3218         }
3219         if (read_format & PERF_FORMAT_ID)
3220                 values[n++] = primary_event_id(event);
3221
3222         perf_output_copy(handle, values, n * sizeof(u64));
3223 }
3224
3225 /*
3226  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3227  */
3228 static void perf_output_read_group(struct perf_output_handle *handle,
3229                             struct perf_event *event)
3230 {
3231         struct perf_event *leader = event->group_leader, *sub;
3232         u64 read_format = event->attr.read_format;
3233         u64 values[5];
3234         int n = 0;
3235
3236         values[n++] = 1 + leader->nr_siblings;
3237
3238         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3239                 values[n++] = leader->total_time_enabled;
3240
3241         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3242                 values[n++] = leader->total_time_running;
3243
3244         if (leader != event)
3245                 leader->pmu->read(leader);
3246
3247         values[n++] = atomic64_read(&leader->count);
3248         if (read_format & PERF_FORMAT_ID)
3249                 values[n++] = primary_event_id(leader);
3250
3251         perf_output_copy(handle, values, n * sizeof(u64));
3252
3253         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3254                 n = 0;
3255
3256                 if (sub != event)
3257                         sub->pmu->read(sub);
3258
3259                 values[n++] = atomic64_read(&sub->count);
3260                 if (read_format & PERF_FORMAT_ID)
3261                         values[n++] = primary_event_id(sub);
3262
3263                 perf_output_copy(handle, values, n * sizeof(u64));
3264         }
3265 }
3266
3267 static void perf_output_read(struct perf_output_handle *handle,
3268                              struct perf_event *event)
3269 {
3270         if (event->attr.read_format & PERF_FORMAT_GROUP)
3271                 perf_output_read_group(handle, event);
3272         else
3273                 perf_output_read_one(handle, event);
3274 }
3275
3276 void perf_output_sample(struct perf_output_handle *handle,
3277                         struct perf_event_header *header,
3278                         struct perf_sample_data *data,
3279                         struct perf_event *event)
3280 {
3281         u64 sample_type = data->type;
3282
3283         perf_output_put(handle, *header);
3284
3285         if (sample_type & PERF_SAMPLE_IP)
3286                 perf_output_put(handle, data->ip);
3287
3288         if (sample_type & PERF_SAMPLE_TID)
3289                 perf_output_put(handle, data->tid_entry);
3290
3291         if (sample_type & PERF_SAMPLE_TIME)
3292                 perf_output_put(handle, data->time);
3293
3294         if (sample_type & PERF_SAMPLE_ADDR)
3295                 perf_output_put(handle, data->addr);
3296
3297         if (sample_type & PERF_SAMPLE_ID)
3298                 perf_output_put(handle, data->id);
3299
3300         if (sample_type & PERF_SAMPLE_STREAM_ID)
3301                 perf_output_put(handle, data->stream_id);
3302
3303         if (sample_type & PERF_SAMPLE_CPU)
3304                 perf_output_put(handle, data->cpu_entry);
3305
3306         if (sample_type & PERF_SAMPLE_PERIOD)
3307                 perf_output_put(handle, data->period);
3308
3309         if (sample_type & PERF_SAMPLE_READ)
3310                 perf_output_read(handle, event);
3311
3312         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3313                 if (data->callchain) {
3314                         int size = 1;
3315
3316                         if (data->callchain)
3317                                 size += data->callchain->nr;
3318
3319                         size *= sizeof(u64);
3320
3321                         perf_output_copy(handle, data->callchain, size);
3322                 } else {
3323                         u64 nr = 0;
3324                         perf_output_put(handle, nr);
3325                 }
3326         }
3327
3328         if (sample_type & PERF_SAMPLE_RAW) {
3329                 if (data->raw) {
3330                         perf_output_put(handle, data->raw->size);
3331                         perf_output_copy(handle, data->raw->data,
3332                                          data->raw->size);
3333                 } else {
3334                         struct {
3335                                 u32     size;
3336                                 u32     data;
3337                         } raw = {
3338                                 .size = sizeof(u32),
3339                                 .data = 0,
3340                         };
3341                         perf_output_put(handle, raw);
3342                 }
3343         }
3344 }
3345
3346 void perf_prepare_sample(struct perf_event_header *header,
3347                          struct perf_sample_data *data,
3348                          struct perf_event *event,
3349                          struct pt_regs *regs)
3350 {
3351         u64 sample_type = event->attr.sample_type;
3352
3353         data->type = sample_type;
3354
3355         header->type = PERF_RECORD_SAMPLE;
3356         header->size = sizeof(*header);
3357
3358         header->misc = 0;
3359         header->misc |= perf_misc_flags(regs);
3360
3361         if (sample_type & PERF_SAMPLE_IP) {
3362                 data->ip = perf_instruction_pointer(regs);
3363
3364                 header->size += sizeof(data->ip);
3365         }
3366
3367         if (sample_type & PERF_SAMPLE_TID) {
3368                 /* namespace issues */
3369                 data->tid_entry.pid = perf_event_pid(event, current);
3370                 data->tid_entry.tid = perf_event_tid(event, current);
3371
3372                 header->size += sizeof(data->tid_entry);
3373         }
3374
3375         if (sample_type & PERF_SAMPLE_TIME) {
3376                 data->time = perf_clock();
3377
3378                 header->size += sizeof(data->time);
3379         }
3380
3381         if (sample_type & PERF_SAMPLE_ADDR)
3382                 header->size += sizeof(data->addr);
3383
3384         if (sample_type & PERF_SAMPLE_ID) {
3385                 data->id = primary_event_id(event);
3386
3387                 header->size += sizeof(data->id);
3388         }
3389
3390         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3391                 data->stream_id = event->id;
3392
3393                 header->size += sizeof(data->stream_id);
3394         }
3395
3396         if (sample_type & PERF_SAMPLE_CPU) {
3397                 data->cpu_entry.cpu             = raw_smp_processor_id();
3398                 data->cpu_entry.reserved        = 0;
3399
3400                 header->size += sizeof(data->cpu_entry);
3401         }
3402
3403         if (sample_type & PERF_SAMPLE_PERIOD)
3404                 header->size += sizeof(data->period);
3405
3406         if (sample_type & PERF_SAMPLE_READ)
3407                 header->size += perf_event_read_size(event);
3408
3409         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3410                 int size = 1;
3411
3412                 data->callchain = perf_callchain(regs);
3413
3414                 if (data->callchain)
3415                         size += data->callchain->nr;
3416
3417                 header->size += size * sizeof(u64);
3418         }
3419
3420         if (sample_type & PERF_SAMPLE_RAW) {
3421                 int size = sizeof(u32);
3422
3423                 if (data->raw)
3424                         size += data->raw->size;
3425                 else
3426                         size += sizeof(u32);
3427
3428                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3429                 header->size += size;
3430         }
3431 }
3432
3433 static void perf_event_output(struct perf_event *event, int nmi,
3434                                 struct perf_sample_data *data,
3435                                 struct pt_regs *regs)
3436 {
3437         struct perf_output_handle handle;
3438         struct perf_event_header header;
3439
3440         perf_prepare_sample(&header, data, event, regs);
3441
3442         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3443                 return;
3444
3445         perf_output_sample(&handle, &header, data, event);
3446
3447         perf_output_end(&handle);
3448 }
3449
3450 /*
3451  * read event_id
3452  */
3453
3454 struct perf_read_event {
3455         struct perf_event_header        header;
3456
3457         u32                             pid;
3458         u32                             tid;
3459 };
3460
3461 static void
3462 perf_event_read_event(struct perf_event *event,
3463                         struct task_struct *task)
3464 {
3465         struct perf_output_handle handle;
3466         struct perf_read_event read_event = {
3467                 .header = {
3468                         .type = PERF_RECORD_READ,
3469                         .misc = 0,
3470                         .size = sizeof(read_event) + perf_event_read_size(event),
3471                 },
3472                 .pid = perf_event_pid(event, task),
3473                 .tid = perf_event_tid(event, task),
3474         };
3475         int ret;
3476
3477         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3478         if (ret)
3479                 return;
3480
3481         perf_output_put(&handle, read_event);
3482         perf_output_read(&handle, event);
3483
3484         perf_output_end(&handle);
3485 }
3486
3487 /*
3488  * task tracking -- fork/exit
3489  *
3490  * enabled by: attr.comm | attr.mmap | attr.task
3491  */
3492
3493 struct perf_task_event {
3494         struct task_struct              *task;
3495         struct perf_event_context       *task_ctx;
3496
3497         struct {
3498                 struct perf_event_header        header;
3499
3500                 u32                             pid;
3501                 u32                             ppid;
3502                 u32                             tid;
3503                 u32                             ptid;
3504                 u64                             time;
3505         } event_id;
3506 };
3507
3508 static void perf_event_task_output(struct perf_event *event,
3509                                      struct perf_task_event *task_event)
3510 {
3511         struct perf_output_handle handle;
3512         struct task_struct *task = task_event->task;
3513         int size, ret;
3514
3515         size  = task_event->event_id.header.size;
3516         ret = perf_output_begin(&handle, event, size, 0, 0);
3517
3518         if (ret)
3519                 return;
3520
3521         task_event->event_id.pid = perf_event_pid(event, task);
3522         task_event->event_id.ppid = perf_event_pid(event, current);
3523
3524         task_event->event_id.tid = perf_event_tid(event, task);
3525         task_event->event_id.ptid = perf_event_tid(event, current);
3526
3527         perf_output_put(&handle, task_event->event_id);
3528
3529         perf_output_end(&handle);
3530 }
3531
3532 static int perf_event_task_match(struct perf_event *event)
3533 {
3534         if (event->state < PERF_EVENT_STATE_INACTIVE)
3535                 return 0;
3536
3537         if (event->cpu != -1 && event->cpu != smp_processor_id())
3538                 return 0;
3539
3540         if (event->attr.comm || event->attr.mmap || event->attr.task)
3541                 return 1;
3542
3543         return 0;
3544 }
3545
3546 static void perf_event_task_ctx(struct perf_event_context *ctx,
3547                                   struct perf_task_event *task_event)
3548 {
3549         struct perf_event *event;
3550
3551         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3552                 if (perf_event_task_match(event))
3553                         perf_event_task_output(event, task_event);
3554         }
3555 }
3556
3557 static void perf_event_task_event(struct perf_task_event *task_event)
3558 {
3559         struct perf_cpu_context *cpuctx;
3560         struct perf_event_context *ctx = task_event->task_ctx;
3561
3562         rcu_read_lock();
3563         cpuctx = &get_cpu_var(perf_cpu_context);
3564         perf_event_task_ctx(&cpuctx->ctx, task_event);
3565         if (!ctx)
3566                 ctx = rcu_dereference(current->perf_event_ctxp);
3567         if (ctx)
3568                 perf_event_task_ctx(ctx, task_event);
3569         put_cpu_var(perf_cpu_context);
3570         rcu_read_unlock();
3571 }
3572
3573 static void perf_event_task(struct task_struct *task,
3574                               struct perf_event_context *task_ctx,
3575                               int new)
3576 {
3577         struct perf_task_event task_event;
3578
3579         if (!atomic_read(&nr_comm_events) &&
3580             !atomic_read(&nr_mmap_events) &&
3581             !atomic_read(&nr_task_events))
3582                 return;
3583
3584         task_event = (struct perf_task_event){
3585                 .task     = task,
3586                 .task_ctx = task_ctx,
3587                 .event_id    = {
3588                         .header = {
3589                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3590                                 .misc = 0,
3591                                 .size = sizeof(task_event.event_id),
3592                         },
3593                         /* .pid  */
3594                         /* .ppid */
3595                         /* .tid  */
3596                         /* .ptid */
3597                         .time = perf_clock(),
3598                 },
3599         };
3600
3601         perf_event_task_event(&task_event);
3602 }
3603
3604 void perf_event_fork(struct task_struct *task)
3605 {
3606         perf_event_task(task, NULL, 1);
3607 }
3608
3609 /*
3610  * comm tracking
3611  */
3612
3613 struct perf_comm_event {
3614         struct task_struct      *task;
3615         char                    *comm;
3616         int                     comm_size;
3617
3618         struct {
3619                 struct perf_event_header        header;
3620
3621                 u32                             pid;
3622                 u32                             tid;
3623         } event_id;
3624 };
3625
3626 static void perf_event_comm_output(struct perf_event *event,
3627                                      struct perf_comm_event *comm_event)
3628 {
3629         struct perf_output_handle handle;
3630         int size = comm_event->event_id.header.size;
3631         int ret = perf_output_begin(&handle, event, size, 0, 0);
3632
3633         if (ret)
3634                 return;
3635
3636         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3637         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3638
3639         perf_output_put(&handle, comm_event->event_id);
3640         perf_output_copy(&handle, comm_event->comm,
3641                                    comm_event->comm_size);
3642         perf_output_end(&handle);
3643 }
3644
3645 static int perf_event_comm_match(struct perf_event *event)
3646 {
3647         if (event->state < PERF_EVENT_STATE_INACTIVE)
3648                 return 0;
3649
3650         if (event->cpu != -1 && event->cpu != smp_processor_id())
3651                 return 0;
3652
3653         if (event->attr.comm)
3654                 return 1;
3655
3656         return 0;
3657 }
3658
3659 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3660                                   struct perf_comm_event *comm_event)
3661 {
3662         struct perf_event *event;
3663
3664         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3665                 if (perf_event_comm_match(event))
3666                         perf_event_comm_output(event, comm_event);
3667         }
3668 }
3669
3670 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3671 {
3672         struct perf_cpu_context *cpuctx;
3673         struct perf_event_context *ctx;
3674         unsigned int size;
3675         char comm[TASK_COMM_LEN];
3676
3677         memset(comm, 0, sizeof(comm));
3678         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3679         size = ALIGN(strlen(comm)+1, sizeof(u64));
3680
3681         comm_event->comm = comm;
3682         comm_event->comm_size = size;
3683
3684         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3685
3686         rcu_read_lock();
3687         cpuctx = &get_cpu_var(perf_cpu_context);
3688         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3689         ctx = rcu_dereference(current->perf_event_ctxp);
3690         if (ctx)
3691                 perf_event_comm_ctx(ctx, comm_event);
3692         put_cpu_var(perf_cpu_context);
3693         rcu_read_unlock();
3694 }
3695
3696 void perf_event_comm(struct task_struct *task)
3697 {
3698         struct perf_comm_event comm_event;
3699
3700         if (task->perf_event_ctxp)
3701                 perf_event_enable_on_exec(task);
3702
3703         if (!atomic_read(&nr_comm_events))
3704                 return;
3705
3706         comm_event = (struct perf_comm_event){
3707                 .task   = task,
3708                 /* .comm      */
3709                 /* .comm_size */
3710                 .event_id  = {
3711                         .header = {
3712                                 .type = PERF_RECORD_COMM,
3713                                 .misc = 0,
3714                                 /* .size */
3715                         },
3716                         /* .pid */
3717                         /* .tid */
3718                 },
3719         };
3720
3721         perf_event_comm_event(&comm_event);
3722 }
3723
3724 /*
3725  * mmap tracking
3726  */
3727
3728 struct perf_mmap_event {
3729         struct vm_area_struct   *vma;
3730
3731         const char              *file_name;
3732         int                     file_size;
3733
3734         struct {
3735                 struct perf_event_header        header;
3736
3737                 u32                             pid;
3738                 u32                             tid;
3739                 u64                             start;
3740                 u64                             len;
3741                 u64                             pgoff;
3742         } event_id;
3743 };
3744
3745 static void perf_event_mmap_output(struct perf_event *event,
3746                                      struct perf_mmap_event *mmap_event)
3747 {
3748         struct perf_output_handle handle;
3749         int size = mmap_event->event_id.header.size;
3750         int ret = perf_output_begin(&handle, event, size, 0, 0);
3751
3752         if (ret)
3753                 return;
3754
3755         mmap_event->event_id.pid = perf_event_pid(event, current);
3756         mmap_event->event_id.tid = perf_event_tid(event, current);
3757
3758         perf_output_put(&handle, mmap_event->event_id);
3759         perf_output_copy(&handle, mmap_event->file_name,
3760                                    mmap_event->file_size);
3761         perf_output_end(&handle);
3762 }
3763
3764 static int perf_event_mmap_match(struct perf_event *event,
3765                                    struct perf_mmap_event *mmap_event)
3766 {
3767         if (event->state < PERF_EVENT_STATE_INACTIVE)
3768                 return 0;
3769
3770         if (event->cpu != -1 && event->cpu != smp_processor_id())
3771                 return 0;
3772
3773         if (event->attr.mmap)
3774                 return 1;
3775
3776         return 0;
3777 }
3778
3779 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3780                                   struct perf_mmap_event *mmap_event)
3781 {
3782         struct perf_event *event;
3783
3784         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3785                 if (perf_event_mmap_match(event, mmap_event))
3786                         perf_event_mmap_output(event, mmap_event);
3787         }
3788 }
3789
3790 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3791 {
3792         struct perf_cpu_context *cpuctx;
3793         struct perf_event_context *ctx;
3794         struct vm_area_struct *vma = mmap_event->vma;
3795         struct file *file = vma->vm_file;
3796         unsigned int size;
3797         char tmp[16];
3798         char *buf = NULL;
3799         const char *name;
3800
3801         memset(tmp, 0, sizeof(tmp));
3802
3803         if (file) {
3804                 /*
3805                  * d_path works from the end of the buffer backwards, so we
3806                  * need to add enough zero bytes after the string to handle
3807                  * the 64bit alignment we do later.
3808                  */
3809                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3810                 if (!buf) {
3811                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3812                         goto got_name;
3813                 }
3814                 name = d_path(&file->f_path, buf, PATH_MAX);
3815                 if (IS_ERR(name)) {
3816                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3817                         goto got_name;
3818                 }
3819         } else {
3820                 if (arch_vma_name(mmap_event->vma)) {
3821                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3822                                        sizeof(tmp));
3823                         goto got_name;
3824                 }
3825
3826                 if (!vma->vm_mm) {
3827                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3828                         goto got_name;
3829                 }
3830
3831                 name = strncpy(tmp, "//anon", sizeof(tmp));
3832                 goto got_name;
3833         }
3834
3835 got_name:
3836         size = ALIGN(strlen(name)+1, sizeof(u64));
3837
3838         mmap_event->file_name = name;
3839         mmap_event->file_size = size;
3840
3841         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3842
3843         rcu_read_lock();
3844         cpuctx = &get_cpu_var(perf_cpu_context);
3845         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3846         ctx = rcu_dereference(current->perf_event_ctxp);
3847         if (ctx)
3848                 perf_event_mmap_ctx(ctx, mmap_event);
3849         put_cpu_var(perf_cpu_context);
3850         rcu_read_unlock();
3851
3852         kfree(buf);
3853 }
3854
3855 void __perf_event_mmap(struct vm_area_struct *vma)
3856 {
3857         struct perf_mmap_event mmap_event;
3858
3859         if (!atomic_read(&nr_mmap_events))
3860                 return;
3861
3862         mmap_event = (struct perf_mmap_event){
3863                 .vma    = vma,
3864                 /* .file_name */
3865                 /* .file_size */
3866                 .event_id  = {
3867                         .header = {
3868                                 .type = PERF_RECORD_MMAP,
3869                                 .misc = PERF_RECORD_MISC_USER,
3870                                 /* .size */
3871                         },
3872                         /* .pid */
3873                         /* .tid */
3874                         .start  = vma->vm_start,
3875                         .len    = vma->vm_end - vma->vm_start,
3876                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3877                 },
3878         };
3879
3880         perf_event_mmap_event(&mmap_event);
3881 }
3882
3883 /*
3884  * IRQ throttle logging
3885  */
3886
3887 static void perf_log_throttle(struct perf_event *event, int enable)
3888 {
3889         struct perf_output_handle handle;
3890         int ret;
3891
3892         struct {
3893                 struct perf_event_header        header;
3894                 u64                             time;
3895                 u64                             id;
3896                 u64                             stream_id;
3897         } throttle_event = {
3898                 .header = {
3899                         .type = PERF_RECORD_THROTTLE,
3900                         .misc = 0,
3901                         .size = sizeof(throttle_event),
3902                 },
3903                 .time           = perf_clock(),
3904                 .id             = primary_event_id(event),
3905                 .stream_id      = event->id,
3906         };
3907
3908         if (enable)
3909                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3910
3911         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3912         if (ret)
3913                 return;
3914
3915         perf_output_put(&handle, throttle_event);
3916         perf_output_end(&handle);
3917 }
3918
3919 /*
3920  * Generic event overflow handling, sampling.
3921  */
3922
3923 static int __perf_event_overflow(struct perf_event *event, int nmi,
3924                                    int throttle, struct perf_sample_data *data,
3925                                    struct pt_regs *regs)
3926 {
3927         int events = atomic_read(&event->event_limit);
3928         struct hw_perf_event *hwc = &event->hw;
3929         int ret = 0;
3930
3931         throttle = (throttle && event->pmu->unthrottle != NULL);
3932
3933         if (!throttle) {
3934                 hwc->interrupts++;
3935         } else {
3936                 if (hwc->interrupts != MAX_INTERRUPTS) {
3937                         hwc->interrupts++;
3938                         if (HZ * hwc->interrupts >
3939                                         (u64)sysctl_perf_event_sample_rate) {
3940                                 hwc->interrupts = MAX_INTERRUPTS;
3941                                 perf_log_throttle(event, 0);
3942                                 ret = 1;
3943                         }
3944                 } else {
3945                         /*
3946                          * Keep re-disabling events even though on the previous
3947                          * pass we disabled it - just in case we raced with a
3948                          * sched-in and the event got enabled again:
3949                          */
3950                         ret = 1;
3951                 }
3952         }
3953
3954         if (event->attr.freq) {
3955                 u64 now = perf_clock();
3956                 s64 delta = now - hwc->freq_time_stamp;
3957
3958                 hwc->freq_time_stamp = now;
3959
3960                 if (delta > 0 && delta < 2*TICK_NSEC)
3961                         perf_adjust_period(event, delta, hwc->last_period);
3962         }
3963
3964         /*
3965          * XXX event_limit might not quite work as expected on inherited
3966          * events
3967          */
3968
3969         event->pending_kill = POLL_IN;
3970         if (events && atomic_dec_and_test(&event->event_limit)) {
3971                 ret = 1;
3972                 event->pending_kill = POLL_HUP;
3973                 if (nmi) {
3974                         event->pending_disable = 1;
3975                         perf_pending_queue(&event->pending,
3976                                            perf_pending_event);
3977                 } else
3978                         perf_event_disable(event);
3979         }
3980
3981         if (event->overflow_handler)
3982                 event->overflow_handler(event, nmi, data, regs);
3983         else
3984                 perf_event_output(event, nmi, data, regs);
3985
3986         return ret;
3987 }
3988
3989 int perf_event_overflow(struct perf_event *event, int nmi,
3990                           struct perf_sample_data *data,
3991                           struct pt_regs *regs)
3992 {
3993         return __perf_event_overflow(event, nmi, 1, data, regs);
3994 }
3995
3996 /*
3997  * Generic software event infrastructure
3998  */
3999
4000 /*
4001  * We directly increment event->count and keep a second value in
4002  * event->hw.period_left to count intervals. This period event
4003  * is kept in the range [-sample_period, 0] so that we can use the
4004  * sign as trigger.
4005  */
4006
4007 static u64 perf_swevent_set_period(struct perf_event *event)
4008 {
4009         struct hw_perf_event *hwc = &event->hw;
4010         u64 period = hwc->last_period;
4011         u64 nr, offset;
4012         s64 old, val;
4013
4014         hwc->last_period = hwc->sample_period;
4015
4016 again:
4017         old = val = atomic64_read(&hwc->period_left);
4018         if (val < 0)
4019                 return 0;
4020
4021         nr = div64_u64(period + val, period);
4022         offset = nr * period;
4023         val -= offset;
4024         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4025                 goto again;
4026
4027         return nr;
4028 }
4029
4030 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4031                                     int nmi, struct perf_sample_data *data,
4032                                     struct pt_regs *regs)
4033 {
4034         struct hw_perf_event *hwc = &event->hw;
4035         int throttle = 0;
4036
4037         data->period = event->hw.last_period;
4038         if (!overflow)
4039                 overflow = perf_swevent_set_period(event);
4040
4041         if (hwc->interrupts == MAX_INTERRUPTS)
4042                 return;
4043
4044         for (; overflow; overflow--) {
4045                 if (__perf_event_overflow(event, nmi, throttle,
4046                                             data, regs)) {
4047                         /*
4048                          * We inhibit the overflow from happening when
4049                          * hwc->interrupts == MAX_INTERRUPTS.
4050                          */
4051                         break;
4052                 }
4053                 throttle = 1;
4054         }
4055 }
4056
4057 static void perf_swevent_unthrottle(struct perf_event *event)
4058 {
4059         /*
4060          * Nothing to do, we already reset hwc->interrupts.
4061          */
4062 }
4063
4064 static void perf_swevent_add(struct perf_event *event, u64 nr,
4065                                int nmi, struct perf_sample_data *data,
4066                                struct pt_regs *regs)
4067 {
4068         struct hw_perf_event *hwc = &event->hw;
4069
4070         atomic64_add(nr, &event->count);
4071
4072         if (!regs)
4073                 return;
4074
4075         if (!hwc->sample_period)
4076                 return;
4077
4078         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4079                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4080
4081         if (atomic64_add_negative(nr, &hwc->period_left))
4082                 return;
4083
4084         perf_swevent_overflow(event, 0, nmi, data, regs);
4085 }
4086
4087 static int perf_exclude_event(struct perf_event *event,
4088                               struct pt_regs *regs)
4089 {
4090         if (regs) {
4091                 if (event->attr.exclude_user && user_mode(regs))
4092                         return 1;
4093
4094                 if (event->attr.exclude_kernel && !user_mode(regs))
4095                         return 1;
4096         }
4097
4098         return 0;
4099 }
4100
4101 static int perf_swevent_match(struct perf_event *event,
4102                                 enum perf_type_id type,
4103                                 u32 event_id,
4104                                 struct perf_sample_data *data,
4105                                 struct pt_regs *regs)
4106 {
4107         if (event->attr.type != type)
4108                 return 0;
4109
4110         if (event->attr.config != event_id)
4111                 return 0;
4112
4113         if (perf_exclude_event(event, regs))
4114                 return 0;
4115
4116         return 1;
4117 }
4118
4119 static inline u64 swevent_hash(u64 type, u32 event_id)
4120 {
4121         u64 val = event_id | (type << 32);
4122
4123         return hash_64(val, SWEVENT_HLIST_BITS);
4124 }
4125
4126 static inline struct hlist_head *
4127 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4128 {
4129         u64 hash = swevent_hash(type, event_id);
4130
4131         return &hlist->heads[hash];
4132 }
4133
4134 /* For the read side: events when they trigger */
4135 static inline struct hlist_head *
4136 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4137 {
4138         struct swevent_hlist *hlist;
4139
4140         hlist = rcu_dereference(ctx->swevent_hlist);
4141         if (!hlist)
4142                 return NULL;
4143
4144         return __find_swevent_head(hlist, type, event_id);
4145 }
4146
4147 /* For the event head insertion and removal in the hlist */
4148 static inline struct hlist_head *
4149 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4150 {
4151         struct swevent_hlist *hlist;
4152         u32 event_id = event->attr.config;
4153         u64 type = event->attr.type;
4154
4155         /*
4156          * Event scheduling is always serialized against hlist allocation
4157          * and release. Which makes the protected version suitable here.
4158          * The context lock guarantees that.
4159          */
4160         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4161                                           lockdep_is_held(&event->ctx->lock));
4162         if (!hlist)
4163                 return NULL;
4164
4165         return __find_swevent_head(hlist, type, event_id);
4166 }
4167
4168 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4169                                     u64 nr, int nmi,
4170                                     struct perf_sample_data *data,
4171                                     struct pt_regs *regs)
4172 {
4173         struct perf_cpu_context *cpuctx;
4174         struct perf_event *event;
4175         struct hlist_node *node;
4176         struct hlist_head *head;
4177
4178         cpuctx = &__get_cpu_var(perf_cpu_context);
4179
4180         rcu_read_lock();
4181
4182         head = find_swevent_head_rcu(cpuctx, type, event_id);
4183
4184         if (!head)
4185                 goto end;
4186
4187         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4188                 if (perf_swevent_match(event, type, event_id, data, regs))
4189                         perf_swevent_add(event, nr, nmi, data, regs);
4190         }
4191 end:
4192         rcu_read_unlock();
4193 }
4194
4195 int perf_swevent_get_recursion_context(void)
4196 {
4197         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4198         int rctx;
4199
4200         if (in_nmi())
4201                 rctx = 3;
4202         else if (in_irq())
4203                 rctx = 2;
4204         else if (in_softirq())
4205                 rctx = 1;
4206         else
4207                 rctx = 0;
4208
4209         if (cpuctx->recursion[rctx])
4210                 return -1;
4211
4212         cpuctx->recursion[rctx]++;
4213         barrier();
4214
4215         return rctx;
4216 }
4217 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4218
4219 void perf_swevent_put_recursion_context(int rctx)
4220 {
4221         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4222         barrier();
4223         cpuctx->recursion[rctx]--;
4224 }
4225 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4226
4227
4228 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4229                             struct pt_regs *regs, u64 addr)
4230 {
4231         struct perf_sample_data data;
4232         int rctx;
4233
4234         preempt_disable_notrace();
4235         rctx = perf_swevent_get_recursion_context();
4236         if (rctx < 0)
4237                 return;
4238
4239         perf_sample_data_init(&data, addr);
4240
4241         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4242
4243         perf_swevent_put_recursion_context(rctx);
4244         preempt_enable_notrace();
4245 }
4246
4247 static void perf_swevent_read(struct perf_event *event)
4248 {
4249 }
4250
4251 static int perf_swevent_enable(struct perf_event *event)
4252 {
4253         struct hw_perf_event *hwc = &event->hw;
4254         struct perf_cpu_context *cpuctx;
4255         struct hlist_head *head;
4256
4257         cpuctx = &__get_cpu_var(perf_cpu_context);
4258
4259         if (hwc->sample_period) {
4260                 hwc->last_period = hwc->sample_period;
4261                 perf_swevent_set_period(event);
4262         }
4263
4264         head = find_swevent_head(cpuctx, event);
4265         if (WARN_ON_ONCE(!head))
4266                 return -EINVAL;
4267
4268         hlist_add_head_rcu(&event->hlist_entry, head);
4269
4270         return 0;
4271 }
4272
4273 static void perf_swevent_disable(struct perf_event *event)
4274 {
4275         hlist_del_rcu(&event->hlist_entry);
4276 }
4277
4278 static const struct pmu perf_ops_generic = {
4279         .enable         = perf_swevent_enable,
4280         .disable        = perf_swevent_disable,
4281         .read           = perf_swevent_read,
4282         .unthrottle     = perf_swevent_unthrottle,
4283 };
4284
4285 /*
4286  * hrtimer based swevent callback
4287  */
4288
4289 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4290 {
4291         enum hrtimer_restart ret = HRTIMER_RESTART;
4292         struct perf_sample_data data;
4293         struct pt_regs *regs;
4294         struct perf_event *event;
4295         u64 period;
4296
4297         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4298         event->pmu->read(event);
4299
4300         perf_sample_data_init(&data, 0);
4301         data.period = event->hw.last_period;
4302         regs = get_irq_regs();
4303
4304         if (regs && !perf_exclude_event(event, regs)) {
4305                 if (!(event->attr.exclude_idle && current->pid == 0))
4306                         if (perf_event_overflow(event, 0, &data, regs))
4307                                 ret = HRTIMER_NORESTART;
4308         }
4309
4310         period = max_t(u64, 10000, event->hw.sample_period);
4311         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4312
4313         return ret;
4314 }
4315
4316 static void perf_swevent_start_hrtimer(struct perf_event *event)
4317 {
4318         struct hw_perf_event *hwc = &event->hw;
4319
4320         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4321         hwc->hrtimer.function = perf_swevent_hrtimer;
4322         if (hwc->sample_period) {
4323                 u64 period;
4324
4325                 if (hwc->remaining) {
4326                         if (hwc->remaining < 0)
4327                                 period = 10000;
4328                         else
4329                                 period = hwc->remaining;
4330                         hwc->remaining = 0;
4331                 } else {
4332                         period = max_t(u64, 10000, hwc->sample_period);
4333                 }
4334                 __hrtimer_start_range_ns(&hwc->hrtimer,
4335                                 ns_to_ktime(period), 0,
4336                                 HRTIMER_MODE_REL, 0);
4337         }
4338 }
4339
4340 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4341 {
4342         struct hw_perf_event *hwc = &event->hw;
4343
4344         if (hwc->sample_period) {
4345                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4346                 hwc->remaining = ktime_to_ns(remaining);
4347
4348                 hrtimer_cancel(&hwc->hrtimer);
4349         }
4350 }
4351
4352 /*
4353  * Software event: cpu wall time clock
4354  */
4355
4356 static void cpu_clock_perf_event_update(struct perf_event *event)
4357 {
4358         int cpu = raw_smp_processor_id();
4359         s64 prev;
4360         u64 now;
4361
4362         now = cpu_clock(cpu);
4363         prev = atomic64_xchg(&event->hw.prev_count, now);
4364         atomic64_add(now - prev, &event->count);
4365 }
4366
4367 static int cpu_clock_perf_event_enable(struct perf_event *event)
4368 {
4369         struct hw_perf_event *hwc = &event->hw;
4370         int cpu = raw_smp_processor_id();
4371
4372         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4373         perf_swevent_start_hrtimer(event);
4374
4375         return 0;
4376 }
4377
4378 static void cpu_clock_perf_event_disable(struct perf_event *event)
4379 {
4380         perf_swevent_cancel_hrtimer(event);
4381         cpu_clock_perf_event_update(event);
4382 }
4383
4384 static void cpu_clock_perf_event_read(struct perf_event *event)
4385 {
4386         cpu_clock_perf_event_update(event);
4387 }
4388
4389 static const struct pmu perf_ops_cpu_clock = {
4390         .enable         = cpu_clock_perf_event_enable,
4391         .disable        = cpu_clock_perf_event_disable,
4392         .read           = cpu_clock_perf_event_read,
4393 };
4394
4395 /*
4396  * Software event: task time clock
4397  */
4398
4399 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4400 {
4401         u64 prev;
4402         s64 delta;
4403
4404         prev = atomic64_xchg(&event->hw.prev_count, now);
4405         delta = now - prev;
4406         atomic64_add(delta, &event->count);
4407 }
4408
4409 static int task_clock_perf_event_enable(struct perf_event *event)
4410 {
4411         struct hw_perf_event *hwc = &event->hw;
4412         u64 now;
4413
4414         now = event->ctx->time;
4415
4416         atomic64_set(&hwc->prev_count, now);
4417
4418         perf_swevent_start_hrtimer(event);
4419
4420         return 0;
4421 }
4422
4423 static void task_clock_perf_event_disable(struct perf_event *event)
4424 {
4425         perf_swevent_cancel_hrtimer(event);
4426         task_clock_perf_event_update(event, event->ctx->time);
4427
4428 }
4429
4430 static void task_clock_perf_event_read(struct perf_event *event)
4431 {
4432         u64 time;
4433
4434         if (!in_nmi()) {
4435                 update_context_time(event->ctx);
4436                 time = event->ctx->time;
4437         } else {
4438                 u64 now = perf_clock();
4439                 u64 delta = now - event->ctx->timestamp;
4440                 time = event->ctx->time + delta;
4441         }
4442
4443         task_clock_perf_event_update(event, time);
4444 }
4445
4446 static const struct pmu perf_ops_task_clock = {
4447         .enable         = task_clock_perf_event_enable,
4448         .disable        = task_clock_perf_event_disable,
4449         .read           = task_clock_perf_event_read,
4450 };
4451
4452 /* Deref the hlist from the update side */
4453 static inline struct swevent_hlist *
4454 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4455 {
4456         return rcu_dereference_protected(cpuctx->swevent_hlist,
4457                                          lockdep_is_held(&cpuctx->hlist_mutex));
4458 }
4459
4460 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4461 {
4462         struct swevent_hlist *hlist;
4463
4464         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4465         kfree(hlist);
4466 }
4467
4468 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4469 {
4470         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4471
4472         if (!hlist)
4473                 return;
4474
4475         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4476         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4477 }
4478
4479 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4480 {
4481         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4482
4483         mutex_lock(&cpuctx->hlist_mutex);
4484
4485         if (!--cpuctx->hlist_refcount)
4486                 swevent_hlist_release(cpuctx);
4487
4488         mutex_unlock(&cpuctx->hlist_mutex);
4489 }
4490
4491 static void swevent_hlist_put(struct perf_event *event)
4492 {
4493         int cpu;
4494
4495         if (event->cpu != -1) {
4496                 swevent_hlist_put_cpu(event, event->cpu);
4497                 return;
4498         }
4499
4500         for_each_possible_cpu(cpu)
4501                 swevent_hlist_put_cpu(event, cpu);
4502 }
4503
4504 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4505 {
4506         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4507         int err = 0;
4508
4509         mutex_lock(&cpuctx->hlist_mutex);
4510
4511         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4512                 struct swevent_hlist *hlist;
4513
4514                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4515                 if (!hlist) {
4516                         err = -ENOMEM;
4517                         goto exit;
4518                 }
4519                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4520         }
4521         cpuctx->hlist_refcount++;
4522  exit:
4523         mutex_unlock(&cpuctx->hlist_mutex);
4524
4525         return err;
4526 }
4527
4528 static int swevent_hlist_get(struct perf_event *event)
4529 {
4530         int err;
4531         int cpu, failed_cpu;
4532
4533         if (event->cpu != -1)
4534                 return swevent_hlist_get_cpu(event, event->cpu);
4535
4536         get_online_cpus();
4537         for_each_possible_cpu(cpu) {
4538                 err = swevent_hlist_get_cpu(event, cpu);
4539                 if (err) {
4540                         failed_cpu = cpu;
4541                         goto fail;
4542                 }
4543         }
4544         put_online_cpus();
4545
4546         return 0;
4547  fail:
4548         for_each_possible_cpu(cpu) {
4549                 if (cpu == failed_cpu)
4550                         break;
4551                 swevent_hlist_put_cpu(event, cpu);
4552         }
4553
4554         put_online_cpus();
4555         return err;
4556 }
4557
4558 #ifdef CONFIG_EVENT_TRACING
4559
4560 static const struct pmu perf_ops_tracepoint = {
4561         .enable         = perf_trace_enable,
4562         .disable        = perf_trace_disable,
4563         .read           = perf_swevent_read,
4564         .unthrottle     = perf_swevent_unthrottle,
4565 };
4566
4567 static int perf_tp_filter_match(struct perf_event *event,
4568                                 struct perf_sample_data *data)
4569 {
4570         void *record = data->raw->data;
4571
4572         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4573                 return 1;
4574         return 0;
4575 }
4576
4577 static int perf_tp_event_match(struct perf_event *event,
4578                                 struct perf_sample_data *data,
4579                                 struct pt_regs *regs)
4580 {
4581         /*
4582          * All tracepoints are from kernel-space.
4583          */
4584         if (event->attr.exclude_kernel)
4585                 return 0;
4586
4587         if (!perf_tp_filter_match(event, data))
4588                 return 0;
4589
4590         return 1;
4591 }
4592
4593 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4594                    struct pt_regs *regs, struct hlist_head *head)
4595 {
4596         struct perf_sample_data data;
4597         struct perf_event *event;
4598         struct hlist_node *node;
4599
4600         struct perf_raw_record raw = {
4601                 .size = entry_size,
4602                 .data = record,
4603         };
4604
4605         perf_sample_data_init(&data, addr);
4606         data.raw = &raw;
4607
4608         rcu_read_lock();
4609         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4610                 if (perf_tp_event_match(event, &data, regs))
4611                         perf_swevent_add(event, count, 1, &data, regs);
4612         }
4613         rcu_read_unlock();
4614 }
4615 EXPORT_SYMBOL_GPL(perf_tp_event);
4616
4617 static void tp_perf_event_destroy(struct perf_event *event)
4618 {
4619         perf_trace_destroy(event);
4620 }
4621
4622 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4623 {
4624         int err;
4625
4626         /*
4627          * Raw tracepoint data is a severe data leak, only allow root to
4628          * have these.
4629          */
4630         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4631                         perf_paranoid_tracepoint_raw() &&
4632                         !capable(CAP_SYS_ADMIN))
4633                 return ERR_PTR(-EPERM);
4634
4635         err = perf_trace_init(event);
4636         if (err)
4637                 return NULL;
4638
4639         event->destroy = tp_perf_event_destroy;
4640
4641         return &perf_ops_tracepoint;
4642 }
4643
4644 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4645 {
4646         char *filter_str;
4647         int ret;
4648
4649         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4650                 return -EINVAL;
4651
4652         filter_str = strndup_user(arg, PAGE_SIZE);
4653         if (IS_ERR(filter_str))
4654                 return PTR_ERR(filter_str);
4655
4656         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4657
4658         kfree(filter_str);
4659         return ret;
4660 }
4661
4662 static void perf_event_free_filter(struct perf_event *event)
4663 {
4664         ftrace_profile_free_filter(event);
4665 }
4666
4667 #else
4668
4669 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4670 {
4671         return NULL;
4672 }
4673
4674 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4675 {
4676         return -ENOENT;
4677 }
4678
4679 static void perf_event_free_filter(struct perf_event *event)
4680 {
4681 }
4682
4683 #endif /* CONFIG_EVENT_TRACING */
4684
4685 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4686 static void bp_perf_event_destroy(struct perf_event *event)
4687 {
4688         release_bp_slot(event);
4689 }
4690
4691 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4692 {
4693         int err;
4694
4695         err = register_perf_hw_breakpoint(bp);
4696         if (err)
4697                 return ERR_PTR(err);
4698
4699         bp->destroy = bp_perf_event_destroy;
4700
4701         return &perf_ops_bp;
4702 }
4703
4704 void perf_bp_event(struct perf_event *bp, void *data)
4705 {
4706         struct perf_sample_data sample;
4707         struct pt_regs *regs = data;
4708
4709         perf_sample_data_init(&sample, bp->attr.bp_addr);
4710
4711         if (!perf_exclude_event(bp, regs))
4712                 perf_swevent_add(bp, 1, 1, &sample, regs);
4713 }
4714 #else
4715 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4716 {
4717         return NULL;
4718 }
4719
4720 void perf_bp_event(struct perf_event *bp, void *regs)
4721 {
4722 }
4723 #endif
4724
4725 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4726
4727 static void sw_perf_event_destroy(struct perf_event *event)
4728 {
4729         u64 event_id = event->attr.config;
4730
4731         WARN_ON(event->parent);
4732
4733         atomic_dec(&perf_swevent_enabled[event_id]);
4734         swevent_hlist_put(event);
4735 }
4736
4737 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4738 {
4739         const struct pmu *pmu = NULL;
4740         u64 event_id = event->attr.config;
4741
4742         /*
4743          * Software events (currently) can't in general distinguish
4744          * between user, kernel and hypervisor events.
4745          * However, context switches and cpu migrations are considered
4746          * to be kernel events, and page faults are never hypervisor
4747          * events.
4748          */
4749         switch (event_id) {
4750         case PERF_COUNT_SW_CPU_CLOCK:
4751                 pmu = &perf_ops_cpu_clock;
4752
4753                 break;
4754         case PERF_COUNT_SW_TASK_CLOCK:
4755                 /*
4756                  * If the user instantiates this as a per-cpu event,
4757                  * use the cpu_clock event instead.
4758                  */
4759                 if (event->ctx->task)
4760                         pmu = &perf_ops_task_clock;
4761                 else
4762                         pmu = &perf_ops_cpu_clock;
4763
4764                 break;
4765         case PERF_COUNT_SW_PAGE_FAULTS:
4766         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4767         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4768         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4769         case PERF_COUNT_SW_CPU_MIGRATIONS:
4770         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4771         case PERF_COUNT_SW_EMULATION_FAULTS:
4772                 if (!event->parent) {
4773                         int err;
4774
4775                         err = swevent_hlist_get(event);
4776                         if (err)
4777                                 return ERR_PTR(err);
4778
4779                         atomic_inc(&perf_swevent_enabled[event_id]);
4780                         event->destroy = sw_perf_event_destroy;
4781                 }
4782                 pmu = &perf_ops_generic;
4783                 break;
4784         }
4785
4786         return pmu;
4787 }
4788
4789 /*
4790  * Allocate and initialize a event structure
4791  */
4792 static struct perf_event *
4793 perf_event_alloc(struct perf_event_attr *attr,
4794                    int cpu,
4795                    struct perf_event_context *ctx,
4796                    struct perf_event *group_leader,
4797                    struct perf_event *parent_event,
4798                    perf_overflow_handler_t overflow_handler,
4799                    gfp_t gfpflags)
4800 {
4801         const struct pmu *pmu;
4802         struct perf_event *event;
4803         struct hw_perf_event *hwc;
4804         long err;
4805
4806         event = kzalloc(sizeof(*event), gfpflags);
4807         if (!event)
4808                 return ERR_PTR(-ENOMEM);
4809
4810         /*
4811          * Single events are their own group leaders, with an
4812          * empty sibling list:
4813          */
4814         if (!group_leader)
4815                 group_leader = event;
4816
4817         mutex_init(&event->child_mutex);
4818         INIT_LIST_HEAD(&event->child_list);
4819
4820         INIT_LIST_HEAD(&event->group_entry);
4821         INIT_LIST_HEAD(&event->event_entry);
4822         INIT_LIST_HEAD(&event->sibling_list);
4823         init_waitqueue_head(&event->waitq);
4824
4825         mutex_init(&event->mmap_mutex);
4826
4827         event->cpu              = cpu;
4828         event->attr             = *attr;
4829         event->group_leader     = group_leader;
4830         event->pmu              = NULL;
4831         event->ctx              = ctx;
4832         event->oncpu            = -1;
4833
4834         event->parent           = parent_event;
4835
4836         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4837         event->id               = atomic64_inc_return(&perf_event_id);
4838
4839         event->state            = PERF_EVENT_STATE_INACTIVE;
4840
4841         if (!overflow_handler && parent_event)
4842                 overflow_handler = parent_event->overflow_handler;
4843         
4844         event->overflow_handler = overflow_handler;
4845
4846         if (attr->disabled)
4847                 event->state = PERF_EVENT_STATE_OFF;
4848
4849         pmu = NULL;
4850
4851         hwc = &event->hw;
4852         hwc->sample_period = attr->sample_period;
4853         if (attr->freq && attr->sample_freq)
4854                 hwc->sample_period = 1;
4855         hwc->last_period = hwc->sample_period;
4856
4857         atomic64_set(&hwc->period_left, hwc->sample_period);
4858
4859         /*
4860          * we currently do not support PERF_FORMAT_GROUP on inherited events
4861          */
4862         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4863                 goto done;
4864
4865         switch (attr->type) {
4866         case PERF_TYPE_RAW:
4867         case PERF_TYPE_HARDWARE:
4868         case PERF_TYPE_HW_CACHE:
4869                 pmu = hw_perf_event_init(event);
4870                 break;
4871
4872         case PERF_TYPE_SOFTWARE:
4873                 pmu = sw_perf_event_init(event);
4874                 break;
4875
4876         case PERF_TYPE_TRACEPOINT:
4877                 pmu = tp_perf_event_init(event);
4878                 break;
4879
4880         case PERF_TYPE_BREAKPOINT:
4881                 pmu = bp_perf_event_init(event);
4882                 break;
4883
4884
4885         default:
4886                 break;
4887         }
4888 done:
4889         err = 0;
4890         if (!pmu)
4891                 err = -EINVAL;
4892         else if (IS_ERR(pmu))
4893                 err = PTR_ERR(pmu);
4894
4895         if (err) {
4896                 if (event->ns)
4897                         put_pid_ns(event->ns);
4898                 kfree(event);
4899                 return ERR_PTR(err);
4900         }
4901
4902         event->pmu = pmu;
4903
4904         if (!event->parent) {
4905                 atomic_inc(&nr_events);
4906                 if (event->attr.mmap)
4907                         atomic_inc(&nr_mmap_events);
4908                 if (event->attr.comm)
4909                         atomic_inc(&nr_comm_events);
4910                 if (event->attr.task)
4911                         atomic_inc(&nr_task_events);
4912         }
4913
4914         return event;
4915 }
4916
4917 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4918                           struct perf_event_attr *attr)
4919 {
4920         u32 size;
4921         int ret;
4922
4923         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4924                 return -EFAULT;
4925
4926         /*
4927          * zero the full structure, so that a short copy will be nice.
4928          */
4929         memset(attr, 0, sizeof(*attr));
4930
4931         ret = get_user(size, &uattr->size);
4932         if (ret)
4933                 return ret;
4934
4935         if (size > PAGE_SIZE)   /* silly large */
4936                 goto err_size;
4937
4938         if (!size)              /* abi compat */
4939                 size = PERF_ATTR_SIZE_VER0;
4940
4941         if (size < PERF_ATTR_SIZE_VER0)
4942                 goto err_size;
4943
4944         /*
4945          * If we're handed a bigger struct than we know of,
4946          * ensure all the unknown bits are 0 - i.e. new
4947          * user-space does not rely on any kernel feature
4948          * extensions we dont know about yet.
4949          */
4950         if (size > sizeof(*attr)) {
4951                 unsigned char __user *addr;
4952                 unsigned char __user *end;
4953                 unsigned char val;
4954
4955                 addr = (void __user *)uattr + sizeof(*attr);
4956                 end  = (void __user *)uattr + size;
4957
4958                 for (; addr < end; addr++) {
4959                         ret = get_user(val, addr);
4960                         if (ret)
4961                                 return ret;
4962                         if (val)
4963                                 goto err_size;
4964                 }
4965                 size = sizeof(*attr);
4966         }
4967
4968         ret = copy_from_user(attr, uattr, size);
4969         if (ret)
4970                 return -EFAULT;
4971
4972         /*
4973          * If the type exists, the corresponding creation will verify
4974          * the attr->config.
4975          */
4976         if (attr->type >= PERF_TYPE_MAX)
4977                 return -EINVAL;
4978
4979         if (attr->__reserved_1)
4980                 return -EINVAL;
4981
4982         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4983                 return -EINVAL;
4984
4985         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4986                 return -EINVAL;
4987
4988 out:
4989         return ret;
4990
4991 err_size:
4992         put_user(sizeof(*attr), &uattr->size);
4993         ret = -E2BIG;
4994         goto out;
4995 }
4996
4997 static int
4998 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
4999 {
5000         struct perf_mmap_data *data = NULL, *old_data = NULL;
5001         int ret = -EINVAL;
5002
5003         if (!output_event)
5004                 goto set;
5005
5006         /* don't allow circular references */
5007         if (event == output_event)
5008                 goto out;
5009
5010         /*
5011          * Don't allow cross-cpu buffers
5012          */
5013         if (output_event->cpu != event->cpu)
5014                 goto out;
5015
5016         /*
5017          * If its not a per-cpu buffer, it must be the same task.
5018          */
5019         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5020                 goto out;
5021
5022 set:
5023         mutex_lock(&event->mmap_mutex);
5024         /* Can't redirect output if we've got an active mmap() */
5025         if (atomic_read(&event->mmap_count))
5026                 goto unlock;
5027
5028         if (output_event) {
5029                 /* get the buffer we want to redirect to */
5030                 data = perf_mmap_data_get(output_event);
5031                 if (!data)
5032                         goto unlock;
5033         }
5034
5035         old_data = event->data;
5036         rcu_assign_pointer(event->data, data);
5037         ret = 0;
5038 unlock:
5039         mutex_unlock(&event->mmap_mutex);
5040
5041         if (old_data)
5042                 perf_mmap_data_put(old_data);
5043 out:
5044         return ret;
5045 }
5046
5047 /**
5048  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5049  *
5050  * @attr_uptr:  event_id type attributes for monitoring/sampling
5051  * @pid:                target pid
5052  * @cpu:                target cpu
5053  * @group_fd:           group leader event fd
5054  */
5055 SYSCALL_DEFINE5(perf_event_open,
5056                 struct perf_event_attr __user *, attr_uptr,
5057                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5058 {
5059         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5060         struct perf_event_attr attr;
5061         struct perf_event_context *ctx;
5062         struct file *event_file = NULL;
5063         struct file *group_file = NULL;
5064         int event_fd;
5065         int fput_needed = 0;
5066         int err;
5067
5068         /* for future expandability... */
5069         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5070                 return -EINVAL;
5071
5072         err = perf_copy_attr(attr_uptr, &attr);
5073         if (err)
5074                 return err;
5075
5076         if (!attr.exclude_kernel) {
5077                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5078                         return -EACCES;
5079         }
5080
5081         if (attr.freq) {
5082                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5083                         return -EINVAL;
5084         }
5085
5086         event_fd = get_unused_fd_flags(O_RDWR);
5087         if (event_fd < 0)
5088                 return event_fd;
5089
5090         /*
5091          * Get the target context (task or percpu):
5092          */
5093         ctx = find_get_context(pid, cpu);
5094         if (IS_ERR(ctx)) {
5095                 err = PTR_ERR(ctx);
5096                 goto err_fd;
5097         }
5098
5099         if (group_fd != -1) {
5100                 group_leader = perf_fget_light(group_fd, &fput_needed);
5101                 if (IS_ERR(group_leader)) {
5102                         err = PTR_ERR(group_leader);
5103                         goto err_put_context;
5104                 }
5105                 group_file = group_leader->filp;
5106                 if (flags & PERF_FLAG_FD_OUTPUT)
5107                         output_event = group_leader;
5108                 if (flags & PERF_FLAG_FD_NO_GROUP)
5109                         group_leader = NULL;
5110         }
5111
5112         /*
5113          * Look up the group leader (we will attach this event to it):
5114          */
5115         if (group_leader) {
5116                 err = -EINVAL;
5117
5118                 /*
5119                  * Do not allow a recursive hierarchy (this new sibling
5120                  * becoming part of another group-sibling):
5121                  */
5122                 if (group_leader->group_leader != group_leader)
5123                         goto err_put_context;
5124                 /*
5125                  * Do not allow to attach to a group in a different
5126                  * task or CPU context:
5127                  */
5128                 if (group_leader->ctx != ctx)
5129                         goto err_put_context;
5130                 /*
5131                  * Only a group leader can be exclusive or pinned
5132                  */
5133                 if (attr.exclusive || attr.pinned)
5134                         goto err_put_context;
5135         }
5136
5137         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5138                                      NULL, NULL, GFP_KERNEL);
5139         if (IS_ERR(event)) {
5140                 err = PTR_ERR(event);
5141                 goto err_put_context;
5142         }
5143
5144         if (output_event) {
5145                 err = perf_event_set_output(event, output_event);
5146                 if (err)
5147                         goto err_free_put_context;
5148         }
5149
5150         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5151         if (IS_ERR(event_file)) {
5152                 err = PTR_ERR(event_file);
5153                 goto err_free_put_context;
5154         }
5155
5156         event->filp = event_file;
5157         WARN_ON_ONCE(ctx->parent_ctx);
5158         mutex_lock(&ctx->mutex);
5159         perf_install_in_context(ctx, event, cpu);
5160         ++ctx->generation;
5161         mutex_unlock(&ctx->mutex);
5162
5163         event->owner = current;
5164         get_task_struct(current);
5165         mutex_lock(&current->perf_event_mutex);
5166         list_add_tail(&event->owner_entry, &current->perf_event_list);
5167         mutex_unlock(&current->perf_event_mutex);
5168
5169         /*
5170          * Drop the reference on the group_event after placing the
5171          * new event on the sibling_list. This ensures destruction
5172          * of the group leader will find the pointer to itself in
5173          * perf_group_detach().
5174          */
5175         fput_light(group_file, fput_needed);
5176         fd_install(event_fd, event_file);
5177         return event_fd;
5178
5179 err_free_put_context:
5180         free_event(event);
5181 err_put_context:
5182         fput_light(group_file, fput_needed);
5183         put_ctx(ctx);
5184 err_fd:
5185         put_unused_fd(event_fd);
5186         return err;
5187 }
5188
5189 /**
5190  * perf_event_create_kernel_counter
5191  *
5192  * @attr: attributes of the counter to create
5193  * @cpu: cpu in which the counter is bound
5194  * @pid: task to profile
5195  */
5196 struct perf_event *
5197 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5198                                  pid_t pid,
5199                                  perf_overflow_handler_t overflow_handler)
5200 {
5201         struct perf_event *event;
5202         struct perf_event_context *ctx;
5203         int err;
5204
5205         /*
5206          * Get the target context (task or percpu):
5207          */
5208
5209         ctx = find_get_context(pid, cpu);
5210         if (IS_ERR(ctx)) {
5211                 err = PTR_ERR(ctx);
5212                 goto err_exit;
5213         }
5214
5215         event = perf_event_alloc(attr, cpu, ctx, NULL,
5216                                  NULL, overflow_handler, GFP_KERNEL);
5217         if (IS_ERR(event)) {
5218                 err = PTR_ERR(event);
5219                 goto err_put_context;
5220         }
5221
5222         event->filp = NULL;
5223         WARN_ON_ONCE(ctx->parent_ctx);
5224         mutex_lock(&ctx->mutex);
5225         perf_install_in_context(ctx, event, cpu);
5226         ++ctx->generation;
5227         mutex_unlock(&ctx->mutex);
5228
5229         event->owner = current;
5230         get_task_struct(current);
5231         mutex_lock(&current->perf_event_mutex);
5232         list_add_tail(&event->owner_entry, &current->perf_event_list);
5233         mutex_unlock(&current->perf_event_mutex);
5234
5235         return event;
5236
5237  err_put_context:
5238         put_ctx(ctx);
5239  err_exit:
5240         return ERR_PTR(err);
5241 }
5242 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5243
5244 /*
5245  * inherit a event from parent task to child task:
5246  */
5247 static struct perf_event *
5248 inherit_event(struct perf_event *parent_event,
5249               struct task_struct *parent,
5250               struct perf_event_context *parent_ctx,
5251               struct task_struct *child,
5252               struct perf_event *group_leader,
5253               struct perf_event_context *child_ctx)
5254 {
5255         struct perf_event *child_event;
5256
5257         /*
5258          * Instead of creating recursive hierarchies of events,
5259          * we link inherited events back to the original parent,
5260          * which has a filp for sure, which we use as the reference
5261          * count:
5262          */
5263         if (parent_event->parent)
5264                 parent_event = parent_event->parent;
5265
5266         child_event = perf_event_alloc(&parent_event->attr,
5267                                            parent_event->cpu, child_ctx,
5268                                            group_leader, parent_event,
5269                                            NULL, GFP_KERNEL);
5270         if (IS_ERR(child_event))
5271                 return child_event;
5272         get_ctx(child_ctx);
5273
5274         /*
5275          * Make the child state follow the state of the parent event,
5276          * not its attr.disabled bit.  We hold the parent's mutex,
5277          * so we won't race with perf_event_{en, dis}able_family.
5278          */
5279         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5280                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5281         else
5282                 child_event->state = PERF_EVENT_STATE_OFF;
5283
5284         if (parent_event->attr.freq) {
5285                 u64 sample_period = parent_event->hw.sample_period;
5286                 struct hw_perf_event *hwc = &child_event->hw;
5287
5288                 hwc->sample_period = sample_period;
5289                 hwc->last_period   = sample_period;
5290
5291                 atomic64_set(&hwc->period_left, sample_period);
5292         }
5293
5294         child_event->overflow_handler = parent_event->overflow_handler;
5295
5296         /*
5297          * Link it up in the child's context:
5298          */
5299         add_event_to_ctx(child_event, child_ctx);
5300
5301         /*
5302          * Get a reference to the parent filp - we will fput it
5303          * when the child event exits. This is safe to do because
5304          * we are in the parent and we know that the filp still
5305          * exists and has a nonzero count:
5306          */
5307         atomic_long_inc(&parent_event->filp->f_count);
5308
5309         /*
5310          * Link this into the parent event's child list
5311          */
5312         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5313         mutex_lock(&parent_event->child_mutex);
5314         list_add_tail(&child_event->child_list, &parent_event->child_list);
5315         mutex_unlock(&parent_event->child_mutex);
5316
5317         return child_event;
5318 }
5319
5320 static int inherit_group(struct perf_event *parent_event,
5321               struct task_struct *parent,
5322               struct perf_event_context *parent_ctx,
5323               struct task_struct *child,
5324               struct perf_event_context *child_ctx)
5325 {
5326         struct perf_event *leader;
5327         struct perf_event *sub;
5328         struct perf_event *child_ctr;
5329
5330         leader = inherit_event(parent_event, parent, parent_ctx,
5331                                  child, NULL, child_ctx);
5332         if (IS_ERR(leader))
5333                 return PTR_ERR(leader);
5334         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5335                 child_ctr = inherit_event(sub, parent, parent_ctx,
5336                                             child, leader, child_ctx);
5337                 if (IS_ERR(child_ctr))
5338                         return PTR_ERR(child_ctr);
5339         }
5340         return 0;
5341 }
5342
5343 static void sync_child_event(struct perf_event *child_event,
5344                                struct task_struct *child)
5345 {
5346         struct perf_event *parent_event = child_event->parent;
5347         u64 child_val;
5348
5349         if (child_event->attr.inherit_stat)
5350                 perf_event_read_event(child_event, child);
5351
5352         child_val = atomic64_read(&child_event->count);
5353
5354         /*
5355          * Add back the child's count to the parent's count:
5356          */
5357         atomic64_add(child_val, &parent_event->count);
5358         atomic64_add(child_event->total_time_enabled,
5359                      &parent_event->child_total_time_enabled);
5360         atomic64_add(child_event->total_time_running,
5361                      &parent_event->child_total_time_running);
5362
5363         /*
5364          * Remove this event from the parent's list
5365          */
5366         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5367         mutex_lock(&parent_event->child_mutex);
5368         list_del_init(&child_event->child_list);
5369         mutex_unlock(&parent_event->child_mutex);
5370
5371         /*
5372          * Release the parent event, if this was the last
5373          * reference to it.
5374          */
5375         fput(parent_event->filp);
5376 }
5377
5378 static void
5379 __perf_event_exit_task(struct perf_event *child_event,
5380                          struct perf_event_context *child_ctx,
5381                          struct task_struct *child)
5382 {
5383         struct perf_event *parent_event;
5384
5385         perf_event_remove_from_context(child_event);
5386
5387         parent_event = child_event->parent;
5388         /*
5389          * It can happen that parent exits first, and has events
5390          * that are still around due to the child reference. These
5391          * events need to be zapped - but otherwise linger.
5392          */
5393         if (parent_event) {
5394                 sync_child_event(child_event, child);
5395                 free_event(child_event);
5396         }
5397 }
5398
5399 /*
5400  * When a child task exits, feed back event values to parent events.
5401  */
5402 void perf_event_exit_task(struct task_struct *child)
5403 {
5404         struct perf_event *child_event, *tmp;
5405         struct perf_event_context *child_ctx;
5406         unsigned long flags;
5407
5408         if (likely(!child->perf_event_ctxp)) {
5409                 perf_event_task(child, NULL, 0);
5410                 return;
5411         }
5412
5413         local_irq_save(flags);
5414         /*
5415          * We can't reschedule here because interrupts are disabled,
5416          * and either child is current or it is a task that can't be
5417          * scheduled, so we are now safe from rescheduling changing
5418          * our context.
5419          */
5420         child_ctx = child->perf_event_ctxp;
5421         __perf_event_task_sched_out(child_ctx);
5422
5423         /*
5424          * Take the context lock here so that if find_get_context is
5425          * reading child->perf_event_ctxp, we wait until it has
5426          * incremented the context's refcount before we do put_ctx below.
5427          */
5428         raw_spin_lock(&child_ctx->lock);
5429         child->perf_event_ctxp = NULL;
5430         /*
5431          * If this context is a clone; unclone it so it can't get
5432          * swapped to another process while we're removing all
5433          * the events from it.
5434          */
5435         unclone_ctx(child_ctx);
5436         update_context_time(child_ctx);
5437         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5438
5439         /*
5440          * Report the task dead after unscheduling the events so that we
5441          * won't get any samples after PERF_RECORD_EXIT. We can however still
5442          * get a few PERF_RECORD_READ events.
5443          */
5444         perf_event_task(child, child_ctx, 0);
5445
5446         /*
5447          * We can recurse on the same lock type through:
5448          *
5449          *   __perf_event_exit_task()
5450          *     sync_child_event()
5451          *       fput(parent_event->filp)
5452          *         perf_release()
5453          *           mutex_lock(&ctx->mutex)
5454          *
5455          * But since its the parent context it won't be the same instance.
5456          */
5457         mutex_lock(&child_ctx->mutex);
5458
5459 again:
5460         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5461                                  group_entry)
5462                 __perf_event_exit_task(child_event, child_ctx, child);
5463
5464         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5465                                  group_entry)
5466                 __perf_event_exit_task(child_event, child_ctx, child);
5467
5468         /*
5469          * If the last event was a group event, it will have appended all
5470          * its siblings to the list, but we obtained 'tmp' before that which
5471          * will still point to the list head terminating the iteration.
5472          */
5473         if (!list_empty(&child_ctx->pinned_groups) ||
5474             !list_empty(&child_ctx->flexible_groups))
5475                 goto again;
5476
5477         mutex_unlock(&child_ctx->mutex);
5478
5479         put_ctx(child_ctx);
5480 }
5481
5482 static void perf_free_event(struct perf_event *event,
5483                             struct perf_event_context *ctx)
5484 {
5485         struct perf_event *parent = event->parent;
5486
5487         if (WARN_ON_ONCE(!parent))
5488                 return;
5489
5490         mutex_lock(&parent->child_mutex);
5491         list_del_init(&event->child_list);
5492         mutex_unlock(&parent->child_mutex);
5493
5494         fput(parent->filp);
5495
5496         perf_group_detach(event);
5497         list_del_event(event, ctx);
5498         free_event(event);
5499 }
5500
5501 /*
5502  * free an unexposed, unused context as created by inheritance by
5503  * init_task below, used by fork() in case of fail.
5504  */
5505 void perf_event_free_task(struct task_struct *task)
5506 {
5507         struct perf_event_context *ctx = task->perf_event_ctxp;
5508         struct perf_event *event, *tmp;
5509
5510         if (!ctx)
5511                 return;
5512
5513         mutex_lock(&ctx->mutex);
5514 again:
5515         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5516                 perf_free_event(event, ctx);
5517
5518         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5519                                  group_entry)
5520                 perf_free_event(event, ctx);
5521
5522         if (!list_empty(&ctx->pinned_groups) ||
5523             !list_empty(&ctx->flexible_groups))
5524                 goto again;
5525
5526         mutex_unlock(&ctx->mutex);
5527
5528         put_ctx(ctx);
5529 }
5530
5531 static int
5532 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5533                    struct perf_event_context *parent_ctx,
5534                    struct task_struct *child,
5535                    int *inherited_all)
5536 {
5537         int ret;
5538         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5539
5540         if (!event->attr.inherit) {
5541                 *inherited_all = 0;
5542                 return 0;
5543         }
5544
5545         if (!child_ctx) {
5546                 /*
5547                  * This is executed from the parent task context, so
5548                  * inherit events that have been marked for cloning.
5549                  * First allocate and initialize a context for the
5550                  * child.
5551                  */
5552
5553                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5554                                     GFP_KERNEL);
5555                 if (!child_ctx)
5556                         return -ENOMEM;
5557
5558                 __perf_event_init_context(child_ctx, child);
5559                 child->perf_event_ctxp = child_ctx;
5560                 get_task_struct(child);
5561         }
5562
5563         ret = inherit_group(event, parent, parent_ctx,
5564                             child, child_ctx);
5565
5566         if (ret)
5567                 *inherited_all = 0;
5568
5569         return ret;
5570 }
5571
5572
5573 /*
5574  * Initialize the perf_event context in task_struct
5575  */
5576 int perf_event_init_task(struct task_struct *child)
5577 {
5578         struct perf_event_context *child_ctx, *parent_ctx;
5579         struct perf_event_context *cloned_ctx;
5580         struct perf_event *event;
5581         struct task_struct *parent = current;
5582         int inherited_all = 1;
5583         int ret = 0;
5584
5585         child->perf_event_ctxp = NULL;
5586
5587         mutex_init(&child->perf_event_mutex);
5588         INIT_LIST_HEAD(&child->perf_event_list);
5589
5590         if (likely(!parent->perf_event_ctxp))
5591                 return 0;
5592
5593         /*
5594          * If the parent's context is a clone, pin it so it won't get
5595          * swapped under us.
5596          */
5597         parent_ctx = perf_pin_task_context(parent);
5598
5599         /*
5600          * No need to check if parent_ctx != NULL here; since we saw
5601          * it non-NULL earlier, the only reason for it to become NULL
5602          * is if we exit, and since we're currently in the middle of
5603          * a fork we can't be exiting at the same time.
5604          */
5605
5606         /*
5607          * Lock the parent list. No need to lock the child - not PID
5608          * hashed yet and not running, so nobody can access it.
5609          */
5610         mutex_lock(&parent_ctx->mutex);
5611
5612         /*
5613          * We dont have to disable NMIs - we are only looking at
5614          * the list, not manipulating it:
5615          */
5616         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5617                 ret = inherit_task_group(event, parent, parent_ctx, child,
5618                                          &inherited_all);
5619                 if (ret)
5620                         break;
5621         }
5622
5623         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5624                 ret = inherit_task_group(event, parent, parent_ctx, child,
5625                                          &inherited_all);
5626                 if (ret)
5627                         break;
5628         }
5629
5630         child_ctx = child->perf_event_ctxp;
5631
5632         if (child_ctx && inherited_all) {
5633                 /*
5634                  * Mark the child context as a clone of the parent
5635                  * context, or of whatever the parent is a clone of.
5636                  * Note that if the parent is a clone, it could get
5637                  * uncloned at any point, but that doesn't matter
5638                  * because the list of events and the generation
5639                  * count can't have changed since we took the mutex.
5640                  */
5641                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5642                 if (cloned_ctx) {
5643                         child_ctx->parent_ctx = cloned_ctx;
5644                         child_ctx->parent_gen = parent_ctx->parent_gen;
5645                 } else {
5646                         child_ctx->parent_ctx = parent_ctx;
5647                         child_ctx->parent_gen = parent_ctx->generation;
5648                 }
5649                 get_ctx(child_ctx->parent_ctx);
5650         }
5651
5652         mutex_unlock(&parent_ctx->mutex);
5653
5654         perf_unpin_context(parent_ctx);
5655
5656         return ret;
5657 }
5658
5659 static void __init perf_event_init_all_cpus(void)
5660 {
5661         int cpu;
5662         struct perf_cpu_context *cpuctx;
5663
5664         for_each_possible_cpu(cpu) {
5665                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5666                 mutex_init(&cpuctx->hlist_mutex);
5667                 __perf_event_init_context(&cpuctx->ctx, NULL);
5668         }
5669 }
5670
5671 static void __cpuinit perf_event_init_cpu(int cpu)
5672 {
5673         struct perf_cpu_context *cpuctx;
5674
5675         cpuctx = &per_cpu(perf_cpu_context, cpu);
5676
5677         spin_lock(&perf_resource_lock);
5678         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5679         spin_unlock(&perf_resource_lock);
5680
5681         mutex_lock(&cpuctx->hlist_mutex);
5682         if (cpuctx->hlist_refcount > 0) {
5683                 struct swevent_hlist *hlist;
5684
5685                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5686                 WARN_ON_ONCE(!hlist);
5687                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5688         }
5689         mutex_unlock(&cpuctx->hlist_mutex);
5690 }
5691
5692 #ifdef CONFIG_HOTPLUG_CPU
5693 static void __perf_event_exit_cpu(void *info)
5694 {
5695         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5696         struct perf_event_context *ctx = &cpuctx->ctx;
5697         struct perf_event *event, *tmp;
5698
5699         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5700                 __perf_event_remove_from_context(event);
5701         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5702                 __perf_event_remove_from_context(event);
5703 }
5704 static void perf_event_exit_cpu(int cpu)
5705 {
5706         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5707         struct perf_event_context *ctx = &cpuctx->ctx;
5708
5709         mutex_lock(&cpuctx->hlist_mutex);
5710         swevent_hlist_release(cpuctx);
5711         mutex_unlock(&cpuctx->hlist_mutex);
5712
5713         mutex_lock(&ctx->mutex);
5714         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5715         mutex_unlock(&ctx->mutex);
5716 }
5717 #else
5718 static inline void perf_event_exit_cpu(int cpu) { }
5719 #endif
5720
5721 static int __cpuinit
5722 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5723 {
5724         unsigned int cpu = (long)hcpu;
5725
5726         switch (action) {
5727
5728         case CPU_UP_PREPARE:
5729         case CPU_UP_PREPARE_FROZEN:
5730                 perf_event_init_cpu(cpu);
5731                 break;
5732
5733         case CPU_DOWN_PREPARE:
5734         case CPU_DOWN_PREPARE_FROZEN:
5735                 perf_event_exit_cpu(cpu);
5736                 break;
5737
5738         default:
5739                 break;
5740         }
5741
5742         return NOTIFY_OK;
5743 }
5744
5745 /*
5746  * This has to have a higher priority than migration_notifier in sched.c.
5747  */
5748 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5749         .notifier_call          = perf_cpu_notify,
5750         .priority               = 20,
5751 };
5752
5753 void __init perf_event_init(void)
5754 {
5755         perf_event_init_all_cpus();
5756         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5757                         (void *)(long)smp_processor_id());
5758         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5759                         (void *)(long)smp_processor_id());
5760         register_cpu_notifier(&perf_cpu_nb);
5761 }
5762
5763 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5764                                         struct sysdev_class_attribute *attr,
5765                                         char *buf)
5766 {
5767         return sprintf(buf, "%d\n", perf_reserved_percpu);
5768 }
5769
5770 static ssize_t
5771 perf_set_reserve_percpu(struct sysdev_class *class,
5772                         struct sysdev_class_attribute *attr,
5773                         const char *buf,
5774                         size_t count)
5775 {
5776         struct perf_cpu_context *cpuctx;
5777         unsigned long val;
5778         int err, cpu, mpt;
5779
5780         err = strict_strtoul(buf, 10, &val);
5781         if (err)
5782                 return err;
5783         if (val > perf_max_events)
5784                 return -EINVAL;
5785
5786         spin_lock(&perf_resource_lock);
5787         perf_reserved_percpu = val;
5788         for_each_online_cpu(cpu) {
5789                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5790                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5791                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5792                           perf_max_events - perf_reserved_percpu);
5793                 cpuctx->max_pertask = mpt;
5794                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5795         }
5796         spin_unlock(&perf_resource_lock);
5797
5798         return count;
5799 }
5800
5801 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5802                                     struct sysdev_class_attribute *attr,
5803                                     char *buf)
5804 {
5805         return sprintf(buf, "%d\n", perf_overcommit);
5806 }
5807
5808 static ssize_t
5809 perf_set_overcommit(struct sysdev_class *class,
5810                     struct sysdev_class_attribute *attr,
5811                     const char *buf, size_t count)
5812 {
5813         unsigned long val;
5814         int err;
5815
5816         err = strict_strtoul(buf, 10, &val);
5817         if (err)
5818                 return err;
5819         if (val > 1)
5820                 return -EINVAL;
5821
5822         spin_lock(&perf_resource_lock);
5823         perf_overcommit = val;
5824         spin_unlock(&perf_resource_lock);
5825
5826         return count;
5827 }
5828
5829 static SYSDEV_CLASS_ATTR(
5830                                 reserve_percpu,
5831                                 0644,
5832                                 perf_show_reserve_percpu,
5833                                 perf_set_reserve_percpu
5834                         );
5835
5836 static SYSDEV_CLASS_ATTR(
5837                                 overcommit,
5838                                 0644,
5839                                 perf_show_overcommit,
5840                                 perf_set_overcommit
5841                         );
5842
5843 static struct attribute *perfclass_attrs[] = {
5844         &attr_reserve_percpu.attr,
5845         &attr_overcommit.attr,
5846         NULL
5847 };
5848
5849 static struct attribute_group perfclass_attr_group = {
5850         .attrs                  = perfclass_attrs,
5851         .name                   = "perf_events",
5852 };
5853
5854 static int __init perf_event_sysfs_init(void)
5855 {
5856         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5857                                   &perfclass_attr_group);
5858 }
5859 device_initcall(perf_event_sysfs_init);