]> bbs.cooldavid.org Git - net-next-2.6.git/blob - kernel/fork.c
cgroups: add an owner to the mm_struct
[net-next-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
56
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
63
64 /*
65  * Protected counters by write_lock_irq(&tasklist_lock)
66  */
67 unsigned long total_forks;      /* Handle normal Linux uptimes. */
68 int nr_threads;                 /* The idle threads do not count.. */
69
70 int max_threads;                /* tunable limit on nr_threads */
71
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
75
76 int nr_processes(void)
77 {
78         int cpu;
79         int total = 0;
80
81         for_each_online_cpu(cpu)
82                 total += per_cpu(process_counts, cpu);
83
84         return total;
85 }
86
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
92
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
95
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
98
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
101
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
104
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
107
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
110
111 void free_task(struct task_struct *tsk)
112 {
113         prop_local_destroy_single(&tsk->dirties);
114         free_thread_info(tsk->stack);
115         rt_mutex_debug_task_free(tsk);
116         free_task_struct(tsk);
117 }
118 EXPORT_SYMBOL(free_task);
119
120 void __put_task_struct(struct task_struct *tsk)
121 {
122         WARN_ON(!tsk->exit_state);
123         WARN_ON(atomic_read(&tsk->usage));
124         WARN_ON(tsk == current);
125
126         security_task_free(tsk);
127         free_uid(tsk->user);
128         put_group_info(tsk->group_info);
129         delayacct_tsk_free(tsk);
130
131         if (!profile_handoff_task(tsk))
132                 free_task(tsk);
133 }
134
135 /*
136  * macro override instead of weak attribute alias, to workaround
137  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
138  */
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
142
143 void __init fork_init(unsigned long mempages)
144 {
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
148 #endif
149         /* create a slab on which task_structs can be allocated */
150         task_struct_cachep =
151                 kmem_cache_create("task_struct", sizeof(struct task_struct),
152                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
154
155         /* do the arch specific task caches init */
156         arch_task_cache_init();
157
158         /*
159          * The default maximum number of threads is set to a safe
160          * value: the thread structures can take up at most half
161          * of memory.
162          */
163         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
164
165         /*
166          * we need to allow at least 20 threads to boot a system
167          */
168         if(max_threads < 20)
169                 max_threads = 20;
170
171         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173         init_task.signal->rlim[RLIMIT_SIGPENDING] =
174                 init_task.signal->rlim[RLIMIT_NPROC];
175 }
176
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178                                                struct task_struct *src)
179 {
180         *dst = *src;
181         return 0;
182 }
183
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
185 {
186         struct task_struct *tsk;
187         struct thread_info *ti;
188         int err;
189
190         prepare_to_copy(orig);
191
192         tsk = alloc_task_struct();
193         if (!tsk)
194                 return NULL;
195
196         ti = alloc_thread_info(tsk);
197         if (!ti) {
198                 free_task_struct(tsk);
199                 return NULL;
200         }
201
202         err = arch_dup_task_struct(tsk, orig);
203         if (err)
204                 goto out;
205
206         tsk->stack = ti;
207
208         err = prop_local_init_single(&tsk->dirties);
209         if (err)
210                 goto out;
211
212         setup_thread_stack(tsk, orig);
213
214 #ifdef CONFIG_CC_STACKPROTECTOR
215         tsk->stack_canary = get_random_int();
216 #endif
217
218         /* One for us, one for whoever does the "release_task()" (usually parent) */
219         atomic_set(&tsk->usage,2);
220         atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222         tsk->btrace_seq = 0;
223 #endif
224         tsk->splice_pipe = NULL;
225         return tsk;
226
227 out:
228         free_thread_info(ti);
229         free_task_struct(tsk);
230         return NULL;
231 }
232
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
235 {
236         struct vm_area_struct *mpnt, *tmp, **pprev;
237         struct rb_node **rb_link, *rb_parent;
238         int retval;
239         unsigned long charge;
240         struct mempolicy *pol;
241
242         down_write(&oldmm->mmap_sem);
243         flush_cache_dup_mm(oldmm);
244         /*
245          * Not linked in yet - no deadlock potential:
246          */
247         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
248
249         mm->locked_vm = 0;
250         mm->mmap = NULL;
251         mm->mmap_cache = NULL;
252         mm->free_area_cache = oldmm->mmap_base;
253         mm->cached_hole_size = ~0UL;
254         mm->map_count = 0;
255         cpus_clear(mm->cpu_vm_mask);
256         mm->mm_rb = RB_ROOT;
257         rb_link = &mm->mm_rb.rb_node;
258         rb_parent = NULL;
259         pprev = &mm->mmap;
260
261         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262                 struct file *file;
263
264                 if (mpnt->vm_flags & VM_DONTCOPY) {
265                         long pages = vma_pages(mpnt);
266                         mm->total_vm -= pages;
267                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268                                                                 -pages);
269                         continue;
270                 }
271                 charge = 0;
272                 if (mpnt->vm_flags & VM_ACCOUNT) {
273                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274                         if (security_vm_enough_memory(len))
275                                 goto fail_nomem;
276                         charge = len;
277                 }
278                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279                 if (!tmp)
280                         goto fail_nomem;
281                 *tmp = *mpnt;
282                 pol = mpol_dup(vma_policy(mpnt));
283                 retval = PTR_ERR(pol);
284                 if (IS_ERR(pol))
285                         goto fail_nomem_policy;
286                 vma_set_policy(tmp, pol);
287                 tmp->vm_flags &= ~VM_LOCKED;
288                 tmp->vm_mm = mm;
289                 tmp->vm_next = NULL;
290                 anon_vma_link(tmp);
291                 file = tmp->vm_file;
292                 if (file) {
293                         struct inode *inode = file->f_path.dentry->d_inode;
294                         get_file(file);
295                         if (tmp->vm_flags & VM_DENYWRITE)
296                                 atomic_dec(&inode->i_writecount);
297
298                         /* insert tmp into the share list, just after mpnt */
299                         spin_lock(&file->f_mapping->i_mmap_lock);
300                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
301                         flush_dcache_mmap_lock(file->f_mapping);
302                         vma_prio_tree_add(tmp, mpnt);
303                         flush_dcache_mmap_unlock(file->f_mapping);
304                         spin_unlock(&file->f_mapping->i_mmap_lock);
305                 }
306
307                 /*
308                  * Link in the new vma and copy the page table entries.
309                  */
310                 *pprev = tmp;
311                 pprev = &tmp->vm_next;
312
313                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
314                 rb_link = &tmp->vm_rb.rb_right;
315                 rb_parent = &tmp->vm_rb;
316
317                 mm->map_count++;
318                 retval = copy_page_range(mm, oldmm, mpnt);
319
320                 if (tmp->vm_ops && tmp->vm_ops->open)
321                         tmp->vm_ops->open(tmp);
322
323                 if (retval)
324                         goto out;
325         }
326         /* a new mm has just been created */
327         arch_dup_mmap(oldmm, mm);
328         retval = 0;
329 out:
330         up_write(&mm->mmap_sem);
331         flush_tlb_mm(oldmm);
332         up_write(&oldmm->mmap_sem);
333         return retval;
334 fail_nomem_policy:
335         kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337         retval = -ENOMEM;
338         vm_unacct_memory(charge);
339         goto out;
340 }
341
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
343 {
344         mm->pgd = pgd_alloc(mm);
345         if (unlikely(!mm->pgd))
346                 return -ENOMEM;
347         return 0;
348 }
349
350 static inline void mm_free_pgd(struct mm_struct * mm)
351 {
352         pgd_free(mm, mm->pgd);
353 }
354 #else
355 #define dup_mmap(mm, oldmm)     (0)
356 #define mm_alloc_pgd(mm)        (0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
359
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
361
362 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
364
365 #include <linux/init_task.h>
366
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
368 {
369         atomic_set(&mm->mm_users, 1);
370         atomic_set(&mm->mm_count, 1);
371         init_rwsem(&mm->mmap_sem);
372         INIT_LIST_HEAD(&mm->mmlist);
373         mm->flags = (current->mm) ? current->mm->flags
374                                   : MMF_DUMP_FILTER_DEFAULT;
375         mm->core_waiters = 0;
376         mm->nr_ptes = 0;
377         set_mm_counter(mm, file_rss, 0);
378         set_mm_counter(mm, anon_rss, 0);
379         spin_lock_init(&mm->page_table_lock);
380         rwlock_init(&mm->ioctx_list_lock);
381         mm->ioctx_list = NULL;
382         mm->free_area_cache = TASK_UNMAPPED_BASE;
383         mm->cached_hole_size = ~0UL;
384         mm_init_owner(mm, p);
385
386         if (likely(!mm_alloc_pgd(mm))) {
387                 mm->def_flags = 0;
388                 return mm;
389         }
390
391         free_mm(mm);
392         return NULL;
393 }
394
395 /*
396  * Allocate and initialize an mm_struct.
397  */
398 struct mm_struct * mm_alloc(void)
399 {
400         struct mm_struct * mm;
401
402         mm = allocate_mm();
403         if (mm) {
404                 memset(mm, 0, sizeof(*mm));
405                 mm = mm_init(mm, current);
406         }
407         return mm;
408 }
409
410 /*
411  * Called when the last reference to the mm
412  * is dropped: either by a lazy thread or by
413  * mmput. Free the page directory and the mm.
414  */
415 void __mmdrop(struct mm_struct *mm)
416 {
417         BUG_ON(mm == &init_mm);
418         mm_free_pgd(mm);
419         destroy_context(mm);
420         free_mm(mm);
421 }
422 EXPORT_SYMBOL_GPL(__mmdrop);
423
424 /*
425  * Decrement the use count and release all resources for an mm.
426  */
427 void mmput(struct mm_struct *mm)
428 {
429         might_sleep();
430
431         if (atomic_dec_and_test(&mm->mm_users)) {
432                 exit_aio(mm);
433                 exit_mmap(mm);
434                 if (!list_empty(&mm->mmlist)) {
435                         spin_lock(&mmlist_lock);
436                         list_del(&mm->mmlist);
437                         spin_unlock(&mmlist_lock);
438                 }
439                 put_swap_token(mm);
440                 mmdrop(mm);
441         }
442 }
443 EXPORT_SYMBOL_GPL(mmput);
444
445 /**
446  * get_task_mm - acquire a reference to the task's mm
447  *
448  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
449  * this kernel workthread has transiently adopted a user mm with use_mm,
450  * to do its AIO) is not set and if so returns a reference to it, after
451  * bumping up the use count.  User must release the mm via mmput()
452  * after use.  Typically used by /proc and ptrace.
453  */
454 struct mm_struct *get_task_mm(struct task_struct *task)
455 {
456         struct mm_struct *mm;
457
458         task_lock(task);
459         mm = task->mm;
460         if (mm) {
461                 if (task->flags & PF_BORROWED_MM)
462                         mm = NULL;
463                 else
464                         atomic_inc(&mm->mm_users);
465         }
466         task_unlock(task);
467         return mm;
468 }
469 EXPORT_SYMBOL_GPL(get_task_mm);
470
471 /* Please note the differences between mmput and mm_release.
472  * mmput is called whenever we stop holding onto a mm_struct,
473  * error success whatever.
474  *
475  * mm_release is called after a mm_struct has been removed
476  * from the current process.
477  *
478  * This difference is important for error handling, when we
479  * only half set up a mm_struct for a new process and need to restore
480  * the old one.  Because we mmput the new mm_struct before
481  * restoring the old one. . .
482  * Eric Biederman 10 January 1998
483  */
484 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
485 {
486         struct completion *vfork_done = tsk->vfork_done;
487
488         /* Get rid of any cached register state */
489         deactivate_mm(tsk, mm);
490
491         /* notify parent sleeping on vfork() */
492         if (vfork_done) {
493                 tsk->vfork_done = NULL;
494                 complete(vfork_done);
495         }
496
497         /*
498          * If we're exiting normally, clear a user-space tid field if
499          * requested.  We leave this alone when dying by signal, to leave
500          * the value intact in a core dump, and to save the unnecessary
501          * trouble otherwise.  Userland only wants this done for a sys_exit.
502          */
503         if (tsk->clear_child_tid
504             && !(tsk->flags & PF_SIGNALED)
505             && atomic_read(&mm->mm_users) > 1) {
506                 u32 __user * tidptr = tsk->clear_child_tid;
507                 tsk->clear_child_tid = NULL;
508
509                 /*
510                  * We don't check the error code - if userspace has
511                  * not set up a proper pointer then tough luck.
512                  */
513                 put_user(0, tidptr);
514                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
515         }
516 }
517
518 /*
519  * Allocate a new mm structure and copy contents from the
520  * mm structure of the passed in task structure.
521  */
522 struct mm_struct *dup_mm(struct task_struct *tsk)
523 {
524         struct mm_struct *mm, *oldmm = current->mm;
525         int err;
526
527         if (!oldmm)
528                 return NULL;
529
530         mm = allocate_mm();
531         if (!mm)
532                 goto fail_nomem;
533
534         memcpy(mm, oldmm, sizeof(*mm));
535
536         /* Initializing for Swap token stuff */
537         mm->token_priority = 0;
538         mm->last_interval = 0;
539
540         if (!mm_init(mm, tsk))
541                 goto fail_nomem;
542
543         if (init_new_context(tsk, mm))
544                 goto fail_nocontext;
545
546         err = dup_mmap(mm, oldmm);
547         if (err)
548                 goto free_pt;
549
550         mm->hiwater_rss = get_mm_rss(mm);
551         mm->hiwater_vm = mm->total_vm;
552
553         return mm;
554
555 free_pt:
556         mmput(mm);
557
558 fail_nomem:
559         return NULL;
560
561 fail_nocontext:
562         /*
563          * If init_new_context() failed, we cannot use mmput() to free the mm
564          * because it calls destroy_context()
565          */
566         mm_free_pgd(mm);
567         free_mm(mm);
568         return NULL;
569 }
570
571 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
572 {
573         struct mm_struct * mm, *oldmm;
574         int retval;
575
576         tsk->min_flt = tsk->maj_flt = 0;
577         tsk->nvcsw = tsk->nivcsw = 0;
578
579         tsk->mm = NULL;
580         tsk->active_mm = NULL;
581
582         /*
583          * Are we cloning a kernel thread?
584          *
585          * We need to steal a active VM for that..
586          */
587         oldmm = current->mm;
588         if (!oldmm)
589                 return 0;
590
591         if (clone_flags & CLONE_VM) {
592                 atomic_inc(&oldmm->mm_users);
593                 mm = oldmm;
594                 goto good_mm;
595         }
596
597         retval = -ENOMEM;
598         mm = dup_mm(tsk);
599         if (!mm)
600                 goto fail_nomem;
601
602 good_mm:
603         /* Initializing for Swap token stuff */
604         mm->token_priority = 0;
605         mm->last_interval = 0;
606
607         tsk->mm = mm;
608         tsk->active_mm = mm;
609         return 0;
610
611 fail_nomem:
612         return retval;
613 }
614
615 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
616 {
617         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
618         /* We don't need to lock fs - think why ;-) */
619         if (fs) {
620                 atomic_set(&fs->count, 1);
621                 rwlock_init(&fs->lock);
622                 fs->umask = old->umask;
623                 read_lock(&old->lock);
624                 fs->root = old->root;
625                 path_get(&old->root);
626                 fs->pwd = old->pwd;
627                 path_get(&old->pwd);
628                 if (old->altroot.dentry) {
629                         fs->altroot = old->altroot;
630                         path_get(&old->altroot);
631                 } else {
632                         fs->altroot.mnt = NULL;
633                         fs->altroot.dentry = NULL;
634                 }
635                 read_unlock(&old->lock);
636         }
637         return fs;
638 }
639
640 struct fs_struct *copy_fs_struct(struct fs_struct *old)
641 {
642         return __copy_fs_struct(old);
643 }
644
645 EXPORT_SYMBOL_GPL(copy_fs_struct);
646
647 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
648 {
649         if (clone_flags & CLONE_FS) {
650                 atomic_inc(&current->fs->count);
651                 return 0;
652         }
653         tsk->fs = __copy_fs_struct(current->fs);
654         if (!tsk->fs)
655                 return -ENOMEM;
656         return 0;
657 }
658
659 static int count_open_files(struct fdtable *fdt)
660 {
661         int size = fdt->max_fds;
662         int i;
663
664         /* Find the last open fd */
665         for (i = size/(8*sizeof(long)); i > 0; ) {
666                 if (fdt->open_fds->fds_bits[--i])
667                         break;
668         }
669         i = (i+1) * 8 * sizeof(long);
670         return i;
671 }
672
673 static struct files_struct *alloc_files(void)
674 {
675         struct files_struct *newf;
676         struct fdtable *fdt;
677
678         newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
679         if (!newf)
680                 goto out;
681
682         atomic_set(&newf->count, 1);
683
684         spin_lock_init(&newf->file_lock);
685         newf->next_fd = 0;
686         fdt = &newf->fdtab;
687         fdt->max_fds = NR_OPEN_DEFAULT;
688         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
689         fdt->open_fds = (fd_set *)&newf->open_fds_init;
690         fdt->fd = &newf->fd_array[0];
691         INIT_RCU_HEAD(&fdt->rcu);
692         fdt->next = NULL;
693         rcu_assign_pointer(newf->fdt, fdt);
694 out:
695         return newf;
696 }
697
698 /*
699  * Allocate a new files structure and copy contents from the
700  * passed in files structure.
701  * errorp will be valid only when the returned files_struct is NULL.
702  */
703 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
704 {
705         struct files_struct *newf;
706         struct file **old_fds, **new_fds;
707         int open_files, size, i;
708         struct fdtable *old_fdt, *new_fdt;
709
710         *errorp = -ENOMEM;
711         newf = alloc_files();
712         if (!newf)
713                 goto out;
714
715         spin_lock(&oldf->file_lock);
716         old_fdt = files_fdtable(oldf);
717         new_fdt = files_fdtable(newf);
718         open_files = count_open_files(old_fdt);
719
720         /*
721          * Check whether we need to allocate a larger fd array and fd set.
722          * Note: we're not a clone task, so the open count won't change.
723          */
724         if (open_files > new_fdt->max_fds) {
725                 new_fdt->max_fds = 0;
726                 spin_unlock(&oldf->file_lock);
727                 spin_lock(&newf->file_lock);
728                 *errorp = expand_files(newf, open_files-1);
729                 spin_unlock(&newf->file_lock);
730                 if (*errorp < 0)
731                         goto out_release;
732                 new_fdt = files_fdtable(newf);
733                 /*
734                  * Reacquire the oldf lock and a pointer to its fd table
735                  * who knows it may have a new bigger fd table. We need
736                  * the latest pointer.
737                  */
738                 spin_lock(&oldf->file_lock);
739                 old_fdt = files_fdtable(oldf);
740         }
741
742         old_fds = old_fdt->fd;
743         new_fds = new_fdt->fd;
744
745         memcpy(new_fdt->open_fds->fds_bits,
746                 old_fdt->open_fds->fds_bits, open_files/8);
747         memcpy(new_fdt->close_on_exec->fds_bits,
748                 old_fdt->close_on_exec->fds_bits, open_files/8);
749
750         for (i = open_files; i != 0; i--) {
751                 struct file *f = *old_fds++;
752                 if (f) {
753                         get_file(f);
754                 } else {
755                         /*
756                          * The fd may be claimed in the fd bitmap but not yet
757                          * instantiated in the files array if a sibling thread
758                          * is partway through open().  So make sure that this
759                          * fd is available to the new process.
760                          */
761                         FD_CLR(open_files - i, new_fdt->open_fds);
762                 }
763                 rcu_assign_pointer(*new_fds++, f);
764         }
765         spin_unlock(&oldf->file_lock);
766
767         /* compute the remainder to be cleared */
768         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
769
770         /* This is long word aligned thus could use a optimized version */
771         memset(new_fds, 0, size);
772
773         if (new_fdt->max_fds > open_files) {
774                 int left = (new_fdt->max_fds-open_files)/8;
775                 int start = open_files / (8 * sizeof(unsigned long));
776
777                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
778                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
779         }
780
781         return newf;
782
783 out_release:
784         kmem_cache_free(files_cachep, newf);
785 out:
786         return NULL;
787 }
788
789 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
790 {
791         struct files_struct *oldf, *newf;
792         int error = 0;
793
794         /*
795          * A background process may not have any files ...
796          */
797         oldf = current->files;
798         if (!oldf)
799                 goto out;
800
801         if (clone_flags & CLONE_FILES) {
802                 atomic_inc(&oldf->count);
803                 goto out;
804         }
805
806         newf = dup_fd(oldf, &error);
807         if (!newf)
808                 goto out;
809
810         tsk->files = newf;
811         error = 0;
812 out:
813         return error;
814 }
815
816 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
817 {
818 #ifdef CONFIG_BLOCK
819         struct io_context *ioc = current->io_context;
820
821         if (!ioc)
822                 return 0;
823         /*
824          * Share io context with parent, if CLONE_IO is set
825          */
826         if (clone_flags & CLONE_IO) {
827                 tsk->io_context = ioc_task_link(ioc);
828                 if (unlikely(!tsk->io_context))
829                         return -ENOMEM;
830         } else if (ioprio_valid(ioc->ioprio)) {
831                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
832                 if (unlikely(!tsk->io_context))
833                         return -ENOMEM;
834
835                 tsk->io_context->ioprio = ioc->ioprio;
836         }
837 #endif
838         return 0;
839 }
840
841 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
842 {
843         struct sighand_struct *sig;
844
845         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
846                 atomic_inc(&current->sighand->count);
847                 return 0;
848         }
849         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
850         rcu_assign_pointer(tsk->sighand, sig);
851         if (!sig)
852                 return -ENOMEM;
853         atomic_set(&sig->count, 1);
854         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
855         return 0;
856 }
857
858 void __cleanup_sighand(struct sighand_struct *sighand)
859 {
860         if (atomic_dec_and_test(&sighand->count))
861                 kmem_cache_free(sighand_cachep, sighand);
862 }
863
864 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
865 {
866         struct signal_struct *sig;
867         int ret;
868
869         if (clone_flags & CLONE_THREAD) {
870                 atomic_inc(&current->signal->count);
871                 atomic_inc(&current->signal->live);
872                 return 0;
873         }
874         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
875         tsk->signal = sig;
876         if (!sig)
877                 return -ENOMEM;
878
879         ret = copy_thread_group_keys(tsk);
880         if (ret < 0) {
881                 kmem_cache_free(signal_cachep, sig);
882                 return ret;
883         }
884
885         atomic_set(&sig->count, 1);
886         atomic_set(&sig->live, 1);
887         init_waitqueue_head(&sig->wait_chldexit);
888         sig->flags = 0;
889         sig->group_exit_code = 0;
890         sig->group_exit_task = NULL;
891         sig->group_stop_count = 0;
892         sig->curr_target = NULL;
893         init_sigpending(&sig->shared_pending);
894         INIT_LIST_HEAD(&sig->posix_timers);
895
896         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
897         sig->it_real_incr.tv64 = 0;
898         sig->real_timer.function = it_real_fn;
899
900         sig->it_virt_expires = cputime_zero;
901         sig->it_virt_incr = cputime_zero;
902         sig->it_prof_expires = cputime_zero;
903         sig->it_prof_incr = cputime_zero;
904
905         sig->leader = 0;        /* session leadership doesn't inherit */
906         sig->tty_old_pgrp = NULL;
907
908         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
909         sig->gtime = cputime_zero;
910         sig->cgtime = cputime_zero;
911         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
912         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
913         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
914         sig->sum_sched_runtime = 0;
915         INIT_LIST_HEAD(&sig->cpu_timers[0]);
916         INIT_LIST_HEAD(&sig->cpu_timers[1]);
917         INIT_LIST_HEAD(&sig->cpu_timers[2]);
918         taskstats_tgid_init(sig);
919
920         task_lock(current->group_leader);
921         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
922         task_unlock(current->group_leader);
923
924         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
925                 /*
926                  * New sole thread in the process gets an expiry time
927                  * of the whole CPU time limit.
928                  */
929                 tsk->it_prof_expires =
930                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
931         }
932         acct_init_pacct(&sig->pacct);
933
934         tty_audit_fork(sig);
935
936         return 0;
937 }
938
939 void __cleanup_signal(struct signal_struct *sig)
940 {
941         exit_thread_group_keys(sig);
942         kmem_cache_free(signal_cachep, sig);
943 }
944
945 static void cleanup_signal(struct task_struct *tsk)
946 {
947         struct signal_struct *sig = tsk->signal;
948
949         atomic_dec(&sig->live);
950
951         if (atomic_dec_and_test(&sig->count))
952                 __cleanup_signal(sig);
953 }
954
955 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
956 {
957         unsigned long new_flags = p->flags;
958
959         new_flags &= ~PF_SUPERPRIV;
960         new_flags |= PF_FORKNOEXEC;
961         if (!(clone_flags & CLONE_PTRACE))
962                 p->ptrace = 0;
963         p->flags = new_flags;
964         clear_freeze_flag(p);
965 }
966
967 asmlinkage long sys_set_tid_address(int __user *tidptr)
968 {
969         current->clear_child_tid = tidptr;
970
971         return task_pid_vnr(current);
972 }
973
974 static void rt_mutex_init_task(struct task_struct *p)
975 {
976         spin_lock_init(&p->pi_lock);
977 #ifdef CONFIG_RT_MUTEXES
978         plist_head_init(&p->pi_waiters, &p->pi_lock);
979         p->pi_blocked_on = NULL;
980 #endif
981 }
982
983 #ifdef CONFIG_MM_OWNER
984 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
985 {
986         mm->owner = p;
987 }
988 #endif /* CONFIG_MM_OWNER */
989
990 /*
991  * This creates a new process as a copy of the old one,
992  * but does not actually start it yet.
993  *
994  * It copies the registers, and all the appropriate
995  * parts of the process environment (as per the clone
996  * flags). The actual kick-off is left to the caller.
997  */
998 static struct task_struct *copy_process(unsigned long clone_flags,
999                                         unsigned long stack_start,
1000                                         struct pt_regs *regs,
1001                                         unsigned long stack_size,
1002                                         int __user *child_tidptr,
1003                                         struct pid *pid)
1004 {
1005         int retval;
1006         struct task_struct *p;
1007         int cgroup_callbacks_done = 0;
1008
1009         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1010                 return ERR_PTR(-EINVAL);
1011
1012         /*
1013          * Thread groups must share signals as well, and detached threads
1014          * can only be started up within the thread group.
1015          */
1016         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1017                 return ERR_PTR(-EINVAL);
1018
1019         /*
1020          * Shared signal handlers imply shared VM. By way of the above,
1021          * thread groups also imply shared VM. Blocking this case allows
1022          * for various simplifications in other code.
1023          */
1024         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1025                 return ERR_PTR(-EINVAL);
1026
1027         retval = security_task_create(clone_flags);
1028         if (retval)
1029                 goto fork_out;
1030
1031         retval = -ENOMEM;
1032         p = dup_task_struct(current);
1033         if (!p)
1034                 goto fork_out;
1035
1036         rt_mutex_init_task(p);
1037
1038 #ifdef CONFIG_TRACE_IRQFLAGS
1039         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1040         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1041 #endif
1042         retval = -EAGAIN;
1043         if (atomic_read(&p->user->processes) >=
1044                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1045                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1046                     p->user != current->nsproxy->user_ns->root_user)
1047                         goto bad_fork_free;
1048         }
1049
1050         atomic_inc(&p->user->__count);
1051         atomic_inc(&p->user->processes);
1052         get_group_info(p->group_info);
1053
1054         /*
1055          * If multiple threads are within copy_process(), then this check
1056          * triggers too late. This doesn't hurt, the check is only there
1057          * to stop root fork bombs.
1058          */
1059         if (nr_threads >= max_threads)
1060                 goto bad_fork_cleanup_count;
1061
1062         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1063                 goto bad_fork_cleanup_count;
1064
1065         if (p->binfmt && !try_module_get(p->binfmt->module))
1066                 goto bad_fork_cleanup_put_domain;
1067
1068         p->did_exec = 0;
1069         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1070         copy_flags(clone_flags, p);
1071         INIT_LIST_HEAD(&p->children);
1072         INIT_LIST_HEAD(&p->sibling);
1073 #ifdef CONFIG_PREEMPT_RCU
1074         p->rcu_read_lock_nesting = 0;
1075         p->rcu_flipctr_idx = 0;
1076 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1077         p->vfork_done = NULL;
1078         spin_lock_init(&p->alloc_lock);
1079
1080         clear_tsk_thread_flag(p, TIF_SIGPENDING);
1081         init_sigpending(&p->pending);
1082
1083         p->utime = cputime_zero;
1084         p->stime = cputime_zero;
1085         p->gtime = cputime_zero;
1086         p->utimescaled = cputime_zero;
1087         p->stimescaled = cputime_zero;
1088         p->prev_utime = cputime_zero;
1089         p->prev_stime = cputime_zero;
1090
1091 #ifdef CONFIG_DETECT_SOFTLOCKUP
1092         p->last_switch_count = 0;
1093         p->last_switch_timestamp = 0;
1094 #endif
1095
1096 #ifdef CONFIG_TASK_XACCT
1097         p->rchar = 0;           /* I/O counter: bytes read */
1098         p->wchar = 0;           /* I/O counter: bytes written */
1099         p->syscr = 0;           /* I/O counter: read syscalls */
1100         p->syscw = 0;           /* I/O counter: write syscalls */
1101 #endif
1102         task_io_accounting_init(p);
1103         acct_clear_integrals(p);
1104
1105         p->it_virt_expires = cputime_zero;
1106         p->it_prof_expires = cputime_zero;
1107         p->it_sched_expires = 0;
1108         INIT_LIST_HEAD(&p->cpu_timers[0]);
1109         INIT_LIST_HEAD(&p->cpu_timers[1]);
1110         INIT_LIST_HEAD(&p->cpu_timers[2]);
1111
1112         p->lock_depth = -1;             /* -1 = no lock */
1113         do_posix_clock_monotonic_gettime(&p->start_time);
1114         p->real_start_time = p->start_time;
1115         monotonic_to_bootbased(&p->real_start_time);
1116 #ifdef CONFIG_SECURITY
1117         p->security = NULL;
1118 #endif
1119         p->cap_bset = current->cap_bset;
1120         p->io_context = NULL;
1121         p->audit_context = NULL;
1122         cgroup_fork(p);
1123 #ifdef CONFIG_NUMA
1124         p->mempolicy = mpol_dup(p->mempolicy);
1125         if (IS_ERR(p->mempolicy)) {
1126                 retval = PTR_ERR(p->mempolicy);
1127                 p->mempolicy = NULL;
1128                 goto bad_fork_cleanup_cgroup;
1129         }
1130         mpol_fix_fork_child_flag(p);
1131 #endif
1132 #ifdef CONFIG_TRACE_IRQFLAGS
1133         p->irq_events = 0;
1134 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1135         p->hardirqs_enabled = 1;
1136 #else
1137         p->hardirqs_enabled = 0;
1138 #endif
1139         p->hardirq_enable_ip = 0;
1140         p->hardirq_enable_event = 0;
1141         p->hardirq_disable_ip = _THIS_IP_;
1142         p->hardirq_disable_event = 0;
1143         p->softirqs_enabled = 1;
1144         p->softirq_enable_ip = _THIS_IP_;
1145         p->softirq_enable_event = 0;
1146         p->softirq_disable_ip = 0;
1147         p->softirq_disable_event = 0;
1148         p->hardirq_context = 0;
1149         p->softirq_context = 0;
1150 #endif
1151 #ifdef CONFIG_LOCKDEP
1152         p->lockdep_depth = 0; /* no locks held yet */
1153         p->curr_chain_key = 0;
1154         p->lockdep_recursion = 0;
1155 #endif
1156
1157 #ifdef CONFIG_DEBUG_MUTEXES
1158         p->blocked_on = NULL; /* not blocked yet */
1159 #endif
1160
1161         /* Perform scheduler related setup. Assign this task to a CPU. */
1162         sched_fork(p, clone_flags);
1163
1164         if ((retval = security_task_alloc(p)))
1165                 goto bad_fork_cleanup_policy;
1166         if ((retval = audit_alloc(p)))
1167                 goto bad_fork_cleanup_security;
1168         /* copy all the process information */
1169         if ((retval = copy_semundo(clone_flags, p)))
1170                 goto bad_fork_cleanup_audit;
1171         if ((retval = copy_files(clone_flags, p)))
1172                 goto bad_fork_cleanup_semundo;
1173         if ((retval = copy_fs(clone_flags, p)))
1174                 goto bad_fork_cleanup_files;
1175         if ((retval = copy_sighand(clone_flags, p)))
1176                 goto bad_fork_cleanup_fs;
1177         if ((retval = copy_signal(clone_flags, p)))
1178                 goto bad_fork_cleanup_sighand;
1179         if ((retval = copy_mm(clone_flags, p)))
1180                 goto bad_fork_cleanup_signal;
1181         if ((retval = copy_keys(clone_flags, p)))
1182                 goto bad_fork_cleanup_mm;
1183         if ((retval = copy_namespaces(clone_flags, p)))
1184                 goto bad_fork_cleanup_keys;
1185         if ((retval = copy_io(clone_flags, p)))
1186                 goto bad_fork_cleanup_namespaces;
1187         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1188         if (retval)
1189                 goto bad_fork_cleanup_io;
1190
1191         if (pid != &init_struct_pid) {
1192                 retval = -ENOMEM;
1193                 pid = alloc_pid(task_active_pid_ns(p));
1194                 if (!pid)
1195                         goto bad_fork_cleanup_io;
1196
1197                 if (clone_flags & CLONE_NEWPID) {
1198                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1199                         if (retval < 0)
1200                                 goto bad_fork_free_pid;
1201                 }
1202         }
1203
1204         p->pid = pid_nr(pid);
1205         p->tgid = p->pid;
1206         if (clone_flags & CLONE_THREAD)
1207                 p->tgid = current->tgid;
1208
1209         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1210         /*
1211          * Clear TID on mm_release()?
1212          */
1213         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1214 #ifdef CONFIG_FUTEX
1215         p->robust_list = NULL;
1216 #ifdef CONFIG_COMPAT
1217         p->compat_robust_list = NULL;
1218 #endif
1219         INIT_LIST_HEAD(&p->pi_state_list);
1220         p->pi_state_cache = NULL;
1221 #endif
1222         /*
1223          * sigaltstack should be cleared when sharing the same VM
1224          */
1225         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1226                 p->sas_ss_sp = p->sas_ss_size = 0;
1227
1228         /*
1229          * Syscall tracing should be turned off in the child regardless
1230          * of CLONE_PTRACE.
1231          */
1232         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1233 #ifdef TIF_SYSCALL_EMU
1234         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1235 #endif
1236         clear_all_latency_tracing(p);
1237
1238         /* Our parent execution domain becomes current domain
1239            These must match for thread signalling to apply */
1240         p->parent_exec_id = p->self_exec_id;
1241
1242         /* ok, now we should be set up.. */
1243         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1244         p->pdeath_signal = 0;
1245         p->exit_state = 0;
1246
1247         /*
1248          * Ok, make it visible to the rest of the system.
1249          * We dont wake it up yet.
1250          */
1251         p->group_leader = p;
1252         INIT_LIST_HEAD(&p->thread_group);
1253         INIT_LIST_HEAD(&p->ptrace_children);
1254         INIT_LIST_HEAD(&p->ptrace_list);
1255
1256         /* Now that the task is set up, run cgroup callbacks if
1257          * necessary. We need to run them before the task is visible
1258          * on the tasklist. */
1259         cgroup_fork_callbacks(p);
1260         cgroup_callbacks_done = 1;
1261
1262         /* Need tasklist lock for parent etc handling! */
1263         write_lock_irq(&tasklist_lock);
1264
1265         /*
1266          * The task hasn't been attached yet, so its cpus_allowed mask will
1267          * not be changed, nor will its assigned CPU.
1268          *
1269          * The cpus_allowed mask of the parent may have changed after it was
1270          * copied first time - so re-copy it here, then check the child's CPU
1271          * to ensure it is on a valid CPU (and if not, just force it back to
1272          * parent's CPU). This avoids alot of nasty races.
1273          */
1274         p->cpus_allowed = current->cpus_allowed;
1275         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1276         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1277                         !cpu_online(task_cpu(p))))
1278                 set_task_cpu(p, smp_processor_id());
1279
1280         /* CLONE_PARENT re-uses the old parent */
1281         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1282                 p->real_parent = current->real_parent;
1283         else
1284                 p->real_parent = current;
1285         p->parent = p->real_parent;
1286
1287         spin_lock(&current->sighand->siglock);
1288
1289         /*
1290          * Process group and session signals need to be delivered to just the
1291          * parent before the fork or both the parent and the child after the
1292          * fork. Restart if a signal comes in before we add the new process to
1293          * it's process group.
1294          * A fatal signal pending means that current will exit, so the new
1295          * thread can't slip out of an OOM kill (or normal SIGKILL).
1296          */
1297         recalc_sigpending();
1298         if (signal_pending(current)) {
1299                 spin_unlock(&current->sighand->siglock);
1300                 write_unlock_irq(&tasklist_lock);
1301                 retval = -ERESTARTNOINTR;
1302                 goto bad_fork_free_pid;
1303         }
1304
1305         if (clone_flags & CLONE_THREAD) {
1306                 p->group_leader = current->group_leader;
1307                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1308
1309                 if (!cputime_eq(current->signal->it_virt_expires,
1310                                 cputime_zero) ||
1311                     !cputime_eq(current->signal->it_prof_expires,
1312                                 cputime_zero) ||
1313                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1314                     !list_empty(&current->signal->cpu_timers[0]) ||
1315                     !list_empty(&current->signal->cpu_timers[1]) ||
1316                     !list_empty(&current->signal->cpu_timers[2])) {
1317                         /*
1318                          * Have child wake up on its first tick to check
1319                          * for process CPU timers.
1320                          */
1321                         p->it_prof_expires = jiffies_to_cputime(1);
1322                 }
1323         }
1324
1325         if (likely(p->pid)) {
1326                 add_parent(p);
1327                 if (unlikely(p->ptrace & PT_PTRACED))
1328                         __ptrace_link(p, current->parent);
1329
1330                 if (thread_group_leader(p)) {
1331                         if (clone_flags & CLONE_NEWPID)
1332                                 p->nsproxy->pid_ns->child_reaper = p;
1333
1334                         p->signal->leader_pid = pid;
1335                         p->signal->tty = current->signal->tty;
1336                         set_task_pgrp(p, task_pgrp_nr(current));
1337                         set_task_session(p, task_session_nr(current));
1338                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1339                         attach_pid(p, PIDTYPE_SID, task_session(current));
1340                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1341                         __get_cpu_var(process_counts)++;
1342                 }
1343                 attach_pid(p, PIDTYPE_PID, pid);
1344                 nr_threads++;
1345         }
1346
1347         total_forks++;
1348         spin_unlock(&current->sighand->siglock);
1349         write_unlock_irq(&tasklist_lock);
1350         proc_fork_connector(p);
1351         cgroup_post_fork(p);
1352         return p;
1353
1354 bad_fork_free_pid:
1355         if (pid != &init_struct_pid)
1356                 free_pid(pid);
1357 bad_fork_cleanup_io:
1358         put_io_context(p->io_context);
1359 bad_fork_cleanup_namespaces:
1360         exit_task_namespaces(p);
1361 bad_fork_cleanup_keys:
1362         exit_keys(p);
1363 bad_fork_cleanup_mm:
1364         if (p->mm)
1365                 mmput(p->mm);
1366 bad_fork_cleanup_signal:
1367         cleanup_signal(p);
1368 bad_fork_cleanup_sighand:
1369         __cleanup_sighand(p->sighand);
1370 bad_fork_cleanup_fs:
1371         exit_fs(p); /* blocking */
1372 bad_fork_cleanup_files:
1373         exit_files(p); /* blocking */
1374 bad_fork_cleanup_semundo:
1375         exit_sem(p);
1376 bad_fork_cleanup_audit:
1377         audit_free(p);
1378 bad_fork_cleanup_security:
1379         security_task_free(p);
1380 bad_fork_cleanup_policy:
1381 #ifdef CONFIG_NUMA
1382         mpol_put(p->mempolicy);
1383 bad_fork_cleanup_cgroup:
1384 #endif
1385         cgroup_exit(p, cgroup_callbacks_done);
1386         delayacct_tsk_free(p);
1387         if (p->binfmt)
1388                 module_put(p->binfmt->module);
1389 bad_fork_cleanup_put_domain:
1390         module_put(task_thread_info(p)->exec_domain->module);
1391 bad_fork_cleanup_count:
1392         put_group_info(p->group_info);
1393         atomic_dec(&p->user->processes);
1394         free_uid(p->user);
1395 bad_fork_free:
1396         free_task(p);
1397 fork_out:
1398         return ERR_PTR(retval);
1399 }
1400
1401 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1402 {
1403         memset(regs, 0, sizeof(struct pt_regs));
1404         return regs;
1405 }
1406
1407 struct task_struct * __cpuinit fork_idle(int cpu)
1408 {
1409         struct task_struct *task;
1410         struct pt_regs regs;
1411
1412         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1413                                 &init_struct_pid);
1414         if (!IS_ERR(task))
1415                 init_idle(task, cpu);
1416
1417         return task;
1418 }
1419
1420 static int fork_traceflag(unsigned clone_flags)
1421 {
1422         if (clone_flags & CLONE_UNTRACED)
1423                 return 0;
1424         else if (clone_flags & CLONE_VFORK) {
1425                 if (current->ptrace & PT_TRACE_VFORK)
1426                         return PTRACE_EVENT_VFORK;
1427         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1428                 if (current->ptrace & PT_TRACE_CLONE)
1429                         return PTRACE_EVENT_CLONE;
1430         } else if (current->ptrace & PT_TRACE_FORK)
1431                 return PTRACE_EVENT_FORK;
1432
1433         return 0;
1434 }
1435
1436 /*
1437  *  Ok, this is the main fork-routine.
1438  *
1439  * It copies the process, and if successful kick-starts
1440  * it and waits for it to finish using the VM if required.
1441  */
1442 long do_fork(unsigned long clone_flags,
1443               unsigned long stack_start,
1444               struct pt_regs *regs,
1445               unsigned long stack_size,
1446               int __user *parent_tidptr,
1447               int __user *child_tidptr)
1448 {
1449         struct task_struct *p;
1450         int trace = 0;
1451         long nr;
1452
1453         /*
1454          * We hope to recycle these flags after 2.6.26
1455          */
1456         if (unlikely(clone_flags & CLONE_STOPPED)) {
1457                 static int __read_mostly count = 100;
1458
1459                 if (count > 0 && printk_ratelimit()) {
1460                         char comm[TASK_COMM_LEN];
1461
1462                         count--;
1463                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1464                                         "clone flags 0x%lx\n",
1465                                 get_task_comm(comm, current),
1466                                 clone_flags & CLONE_STOPPED);
1467                 }
1468         }
1469
1470         if (unlikely(current->ptrace)) {
1471                 trace = fork_traceflag (clone_flags);
1472                 if (trace)
1473                         clone_flags |= CLONE_PTRACE;
1474         }
1475
1476         p = copy_process(clone_flags, stack_start, regs, stack_size,
1477                         child_tidptr, NULL);
1478         /*
1479          * Do this prior waking up the new thread - the thread pointer
1480          * might get invalid after that point, if the thread exits quickly.
1481          */
1482         if (!IS_ERR(p)) {
1483                 struct completion vfork;
1484
1485                 nr = task_pid_vnr(p);
1486
1487                 if (clone_flags & CLONE_PARENT_SETTID)
1488                         put_user(nr, parent_tidptr);
1489
1490                 if (clone_flags & CLONE_VFORK) {
1491                         p->vfork_done = &vfork;
1492                         init_completion(&vfork);
1493                 }
1494
1495                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1496                         /*
1497                          * We'll start up with an immediate SIGSTOP.
1498                          */
1499                         sigaddset(&p->pending.signal, SIGSTOP);
1500                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1501                 }
1502
1503                 if (!(clone_flags & CLONE_STOPPED))
1504                         wake_up_new_task(p, clone_flags);
1505                 else
1506                         __set_task_state(p, TASK_STOPPED);
1507
1508                 if (unlikely (trace)) {
1509                         current->ptrace_message = nr;
1510                         ptrace_notify ((trace << 8) | SIGTRAP);
1511                 }
1512
1513                 if (clone_flags & CLONE_VFORK) {
1514                         freezer_do_not_count();
1515                         wait_for_completion(&vfork);
1516                         freezer_count();
1517                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1518                                 current->ptrace_message = nr;
1519                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1520                         }
1521                 }
1522         } else {
1523                 nr = PTR_ERR(p);
1524         }
1525         return nr;
1526 }
1527
1528 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1529 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1530 #endif
1531
1532 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1533 {
1534         struct sighand_struct *sighand = data;
1535
1536         spin_lock_init(&sighand->siglock);
1537         init_waitqueue_head(&sighand->signalfd_wqh);
1538 }
1539
1540 void __init proc_caches_init(void)
1541 {
1542         sighand_cachep = kmem_cache_create("sighand_cache",
1543                         sizeof(struct sighand_struct), 0,
1544                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1545                         sighand_ctor);
1546         signal_cachep = kmem_cache_create("signal_cache",
1547                         sizeof(struct signal_struct), 0,
1548                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1549         files_cachep = kmem_cache_create("files_cache",
1550                         sizeof(struct files_struct), 0,
1551                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1552         fs_cachep = kmem_cache_create("fs_cache",
1553                         sizeof(struct fs_struct), 0,
1554                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555         vm_area_cachep = kmem_cache_create("vm_area_struct",
1556                         sizeof(struct vm_area_struct), 0,
1557                         SLAB_PANIC, NULL);
1558         mm_cachep = kmem_cache_create("mm_struct",
1559                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1560                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1561 }
1562
1563 /*
1564  * Check constraints on flags passed to the unshare system call and
1565  * force unsharing of additional process context as appropriate.
1566  */
1567 static void check_unshare_flags(unsigned long *flags_ptr)
1568 {
1569         /*
1570          * If unsharing a thread from a thread group, must also
1571          * unshare vm.
1572          */
1573         if (*flags_ptr & CLONE_THREAD)
1574                 *flags_ptr |= CLONE_VM;
1575
1576         /*
1577          * If unsharing vm, must also unshare signal handlers.
1578          */
1579         if (*flags_ptr & CLONE_VM)
1580                 *flags_ptr |= CLONE_SIGHAND;
1581
1582         /*
1583          * If unsharing signal handlers and the task was created
1584          * using CLONE_THREAD, then must unshare the thread
1585          */
1586         if ((*flags_ptr & CLONE_SIGHAND) &&
1587             (atomic_read(&current->signal->count) > 1))
1588                 *flags_ptr |= CLONE_THREAD;
1589
1590         /*
1591          * If unsharing namespace, must also unshare filesystem information.
1592          */
1593         if (*flags_ptr & CLONE_NEWNS)
1594                 *flags_ptr |= CLONE_FS;
1595 }
1596
1597 /*
1598  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1599  */
1600 static int unshare_thread(unsigned long unshare_flags)
1601 {
1602         if (unshare_flags & CLONE_THREAD)
1603                 return -EINVAL;
1604
1605         return 0;
1606 }
1607
1608 /*
1609  * Unshare the filesystem structure if it is being shared
1610  */
1611 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1612 {
1613         struct fs_struct *fs = current->fs;
1614
1615         if ((unshare_flags & CLONE_FS) &&
1616             (fs && atomic_read(&fs->count) > 1)) {
1617                 *new_fsp = __copy_fs_struct(current->fs);
1618                 if (!*new_fsp)
1619                         return -ENOMEM;
1620         }
1621
1622         return 0;
1623 }
1624
1625 /*
1626  * Unsharing of sighand is not supported yet
1627  */
1628 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1629 {
1630         struct sighand_struct *sigh = current->sighand;
1631
1632         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1633                 return -EINVAL;
1634         else
1635                 return 0;
1636 }
1637
1638 /*
1639  * Unshare vm if it is being shared
1640  */
1641 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1642 {
1643         struct mm_struct *mm = current->mm;
1644
1645         if ((unshare_flags & CLONE_VM) &&
1646             (mm && atomic_read(&mm->mm_users) > 1)) {
1647                 return -EINVAL;
1648         }
1649
1650         return 0;
1651 }
1652
1653 /*
1654  * Unshare file descriptor table if it is being shared
1655  */
1656 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1657 {
1658         struct files_struct *fd = current->files;
1659         int error = 0;
1660
1661         if ((unshare_flags & CLONE_FILES) &&
1662             (fd && atomic_read(&fd->count) > 1)) {
1663                 *new_fdp = dup_fd(fd, &error);
1664                 if (!*new_fdp)
1665                         return error;
1666         }
1667
1668         return 0;
1669 }
1670
1671 /*
1672  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1673  * supported yet
1674  */
1675 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1676 {
1677         if (unshare_flags & CLONE_SYSVSEM)
1678                 return -EINVAL;
1679
1680         return 0;
1681 }
1682
1683 /*
1684  * unshare allows a process to 'unshare' part of the process
1685  * context which was originally shared using clone.  copy_*
1686  * functions used by do_fork() cannot be used here directly
1687  * because they modify an inactive task_struct that is being
1688  * constructed. Here we are modifying the current, active,
1689  * task_struct.
1690  */
1691 asmlinkage long sys_unshare(unsigned long unshare_flags)
1692 {
1693         int err = 0;
1694         struct fs_struct *fs, *new_fs = NULL;
1695         struct sighand_struct *new_sigh = NULL;
1696         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1697         struct files_struct *fd, *new_fd = NULL;
1698         struct sem_undo_list *new_ulist = NULL;
1699         struct nsproxy *new_nsproxy = NULL;
1700
1701         check_unshare_flags(&unshare_flags);
1702
1703         /* Return -EINVAL for all unsupported flags */
1704         err = -EINVAL;
1705         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1706                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1707                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1708                                 CLONE_NEWNET))
1709                 goto bad_unshare_out;
1710
1711         if ((err = unshare_thread(unshare_flags)))
1712                 goto bad_unshare_out;
1713         if ((err = unshare_fs(unshare_flags, &new_fs)))
1714                 goto bad_unshare_cleanup_thread;
1715         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1716                 goto bad_unshare_cleanup_fs;
1717         if ((err = unshare_vm(unshare_flags, &new_mm)))
1718                 goto bad_unshare_cleanup_sigh;
1719         if ((err = unshare_fd(unshare_flags, &new_fd)))
1720                 goto bad_unshare_cleanup_vm;
1721         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1722                 goto bad_unshare_cleanup_fd;
1723         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1724                         new_fs)))
1725                 goto bad_unshare_cleanup_semundo;
1726
1727         if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1728
1729                 if (new_nsproxy) {
1730                         switch_task_namespaces(current, new_nsproxy);
1731                         new_nsproxy = NULL;
1732                 }
1733
1734                 task_lock(current);
1735
1736                 if (new_fs) {
1737                         fs = current->fs;
1738                         current->fs = new_fs;
1739                         new_fs = fs;
1740                 }
1741
1742                 if (new_mm) {
1743                         mm = current->mm;
1744                         active_mm = current->active_mm;
1745                         current->mm = new_mm;
1746                         current->active_mm = new_mm;
1747                         activate_mm(active_mm, new_mm);
1748                         new_mm = mm;
1749                 }
1750
1751                 if (new_fd) {
1752                         fd = current->files;
1753                         current->files = new_fd;
1754                         new_fd = fd;
1755                 }
1756
1757                 task_unlock(current);
1758         }
1759
1760         if (new_nsproxy)
1761                 put_nsproxy(new_nsproxy);
1762
1763 bad_unshare_cleanup_semundo:
1764 bad_unshare_cleanup_fd:
1765         if (new_fd)
1766                 put_files_struct(new_fd);
1767
1768 bad_unshare_cleanup_vm:
1769         if (new_mm)
1770                 mmput(new_mm);
1771
1772 bad_unshare_cleanup_sigh:
1773         if (new_sigh)
1774                 if (atomic_dec_and_test(&new_sigh->count))
1775                         kmem_cache_free(sighand_cachep, new_sigh);
1776
1777 bad_unshare_cleanup_fs:
1778         if (new_fs)
1779                 put_fs_struct(new_fs);
1780
1781 bad_unshare_cleanup_thread:
1782 bad_unshare_out:
1783         return err;
1784 }
1785
1786 /*
1787  *      Helper to unshare the files of the current task.
1788  *      We don't want to expose copy_files internals to
1789  *      the exec layer of the kernel.
1790  */
1791
1792 int unshare_files(struct files_struct **displaced)
1793 {
1794         struct task_struct *task = current;
1795         struct files_struct *copy = NULL;
1796         int error;
1797
1798         error = unshare_fd(CLONE_FILES, &copy);
1799         if (error || !copy) {
1800                 *displaced = NULL;
1801                 return error;
1802         }
1803         *displaced = task->files;
1804         task_lock(task);
1805         task->files = copy;
1806         task_unlock(task);
1807         return 0;
1808 }