]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/xfs/linux-2.6/xfs_buf.c
eca945b0f88f3f394b58730bbb789823f74dd6af
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         INIT_LIST_HEAD(&bp->b_hash_list);
192         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_hash_list));
266
267         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         if (bp->b_flags & _XBF_PAGE_CACHE)
278                                 ASSERT(!PagePrivate(page));
279                         page_cache_release(page);
280                 }
281         }
282         _xfs_buf_free_pages(bp);
283         xfs_buf_deallocate(bp);
284 }
285
286 /*
287  *      Finds all pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 _xfs_buf_lookup_pages(
291         xfs_buf_t               *bp,
292         uint                    flags)
293 {
294         struct address_space    *mapping = bp->b_target->bt_mapping;
295         size_t                  blocksize = bp->b_target->bt_bsize;
296         size_t                  size = bp->b_count_desired;
297         size_t                  nbytes, offset;
298         gfp_t                   gfp_mask = xb_to_gfp(flags);
299         unsigned short          page_count, i;
300         pgoff_t                 first;
301         xfs_off_t               end;
302         int                     error;
303
304         end = bp->b_file_offset + bp->b_buffer_length;
305         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307         error = _xfs_buf_get_pages(bp, page_count, flags);
308         if (unlikely(error))
309                 return error;
310         bp->b_flags |= _XBF_PAGE_CACHE;
311
312         offset = bp->b_offset;
313         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315         for (i = 0; i < bp->b_page_count; i++) {
316                 struct page     *page;
317                 uint            retries = 0;
318
319               retry:
320                 page = find_or_create_page(mapping, first + i, gfp_mask);
321                 if (unlikely(page == NULL)) {
322                         if (flags & XBF_READ_AHEAD) {
323                                 bp->b_page_count = i;
324                                 for (i = 0; i < bp->b_page_count; i++)
325                                         unlock_page(bp->b_pages[i]);
326                                 return -ENOMEM;
327                         }
328
329                         /*
330                          * This could deadlock.
331                          *
332                          * But until all the XFS lowlevel code is revamped to
333                          * handle buffer allocation failures we can't do much.
334                          */
335                         if (!(++retries % 100))
336                                 printk(KERN_ERR
337                                         "XFS: possible memory allocation "
338                                         "deadlock in %s (mode:0x%x)\n",
339                                         __func__, gfp_mask);
340
341                         XFS_STATS_INC(xb_page_retries);
342                         xfsbufd_wakeup(NULL, 0, gfp_mask);
343                         congestion_wait(BLK_RW_ASYNC, HZ/50);
344                         goto retry;
345                 }
346
347                 XFS_STATS_INC(xb_page_found);
348
349                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350                 size -= nbytes;
351
352                 ASSERT(!PagePrivate(page));
353                 if (!PageUptodate(page)) {
354                         page_count--;
355                         if (blocksize >= PAGE_CACHE_SIZE) {
356                                 if (flags & XBF_READ)
357                                         bp->b_flags |= _XBF_PAGE_LOCKED;
358                         } else if (!PagePrivate(page)) {
359                                 if (test_page_region(page, offset, nbytes))
360                                         page_count++;
361                         }
362                 }
363
364                 bp->b_pages[i] = page;
365                 offset = 0;
366         }
367
368         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369                 for (i = 0; i < bp->b_page_count; i++)
370                         unlock_page(bp->b_pages[i]);
371         }
372
373         if (page_count == bp->b_page_count)
374                 bp->b_flags |= XBF_DONE;
375
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if nessecary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         /* A single page buffer is always mappable */
388         if (bp->b_page_count == 1) {
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393                                         -1, PAGE_KERNEL);
394                 if (unlikely(bp->b_addr == NULL))
395                         return -ENOMEM;
396                 bp->b_addr += bp->b_offset;
397                 bp->b_flags |= XBF_MAPPED;
398         }
399
400         return 0;
401 }
402
403 /*
404  *      Finding and Reading Buffers
405  */
406
407 /*
408  *      Look up, and creates if absent, a lockable buffer for
409  *      a given range of an inode.  The buffer is returned
410  *      locked.  If other overlapping buffers exist, they are
411  *      released before the new buffer is created and locked,
412  *      which may imply that this call will block until those buffers
413  *      are unlocked.  No I/O is implied by this call.
414  */
415 xfs_buf_t *
416 _xfs_buf_find(
417         xfs_buftarg_t           *btp,   /* block device target          */
418         xfs_off_t               ioff,   /* starting offset of range     */
419         size_t                  isize,  /* length of range              */
420         xfs_buf_flags_t         flags,
421         xfs_buf_t               *new_bp)
422 {
423         xfs_off_t               range_base;
424         size_t                  range_length;
425         xfs_bufhash_t           *hash;
426         xfs_buf_t               *bp, *n;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437         spin_lock(&hash->bh_lock);
438
439         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440                 ASSERT(btp == bp->b_target);
441                 if (bp->b_file_offset == range_base &&
442                     bp->b_buffer_length == range_length) {
443                         atomic_inc(&bp->b_hold);
444                         goto found;
445                 }
446         }
447
448         /* No match found */
449         if (new_bp) {
450                 _xfs_buf_initialize(new_bp, btp, range_base,
451                                 range_length, flags);
452                 new_bp->b_hash = hash;
453                 list_add(&new_bp->b_hash_list, &hash->bh_list);
454         } else {
455                 XFS_STATS_INC(xb_miss_locked);
456         }
457
458         spin_unlock(&hash->bh_lock);
459         return new_bp;
460
461 found:
462         spin_unlock(&hash->bh_lock);
463
464         /* Attempt to get the semaphore without sleeping,
465          * if this does not work then we need to drop the
466          * spinlock and do a hard attempt on the semaphore.
467          */
468         if (down_trylock(&bp->b_sema)) {
469                 if (!(flags & XBF_TRYLOCK)) {
470                         /* wait for buffer ownership */
471                         xfs_buf_lock(bp);
472                         XFS_STATS_INC(xb_get_locked_waited);
473                 } else {
474                         /* We asked for a trylock and failed, no need
475                          * to look at file offset and length here, we
476                          * know that this buffer at least overlaps our
477                          * buffer and is locked, therefore our buffer
478                          * either does not exist, or is this buffer.
479                          */
480                         xfs_buf_rele(bp);
481                         XFS_STATS_INC(xb_busy_locked);
482                         return NULL;
483                 }
484         } else {
485                 /* trylock worked */
486                 XB_SET_OWNER(bp);
487         }
488
489         if (bp->b_flags & XBF_STALE) {
490                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491                 bp->b_flags &= XBF_MAPPED;
492         }
493
494         trace_xfs_buf_find(bp, flags, _RET_IP_);
495         XFS_STATS_INC(xb_get_locked);
496         return bp;
497 }
498
499 /*
500  *      Assembles a buffer covering the specified range.
501  *      Storage in memory for all portions of the buffer will be allocated,
502  *      although backing storage may not be.
503  */
504 xfs_buf_t *
505 xfs_buf_get(
506         xfs_buftarg_t           *target,/* target for buffer            */
507         xfs_off_t               ioff,   /* starting offset of range     */
508         size_t                  isize,  /* length of range              */
509         xfs_buf_flags_t         flags)
510 {
511         xfs_buf_t               *bp, *new_bp;
512         int                     error = 0, i;
513
514         new_bp = xfs_buf_allocate(flags);
515         if (unlikely(!new_bp))
516                 return NULL;
517
518         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519         if (bp == new_bp) {
520                 error = _xfs_buf_lookup_pages(bp, flags);
521                 if (error)
522                         goto no_buffer;
523         } else {
524                 xfs_buf_deallocate(new_bp);
525                 if (unlikely(bp == NULL))
526                         return NULL;
527         }
528
529         for (i = 0; i < bp->b_page_count; i++)
530                 mark_page_accessed(bp->b_pages[i]);
531
532         if (!(bp->b_flags & XBF_MAPPED)) {
533                 error = _xfs_buf_map_pages(bp, flags);
534                 if (unlikely(error)) {
535                         printk(KERN_WARNING "%s: failed to map pages\n",
536                                         __func__);
537                         goto no_buffer;
538                 }
539         }
540
541         XFS_STATS_INC(xb_get);
542
543         /*
544          * Always fill in the block number now, the mapped cases can do
545          * their own overlay of this later.
546          */
547         bp->b_bn = ioff;
548         bp->b_count_desired = bp->b_buffer_length;
549
550         trace_xfs_buf_get(bp, flags, _RET_IP_);
551         return bp;
552
553  no_buffer:
554         if (flags & (XBF_LOCK | XBF_TRYLOCK))
555                 xfs_buf_unlock(bp);
556         xfs_buf_rele(bp);
557         return NULL;
558 }
559
560 STATIC int
561 _xfs_buf_read(
562         xfs_buf_t               *bp,
563         xfs_buf_flags_t         flags)
564 {
565         int                     status;
566
567         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575         status = xfs_buf_iorequest(bp);
576         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577                 return status;
578         return xfs_buf_iowait(bp);
579 }
580
581 xfs_buf_t *
582 xfs_buf_read(
583         xfs_buftarg_t           *target,
584         xfs_off_t               ioff,
585         size_t                  isize,
586         xfs_buf_flags_t         flags)
587 {
588         xfs_buf_t               *bp;
589
590         flags |= XBF_READ;
591
592         bp = xfs_buf_get(target, ioff, isize, flags);
593         if (bp) {
594                 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
596                 if (!XFS_BUF_ISDONE(bp)) {
597                         XFS_STATS_INC(xb_get_read);
598                         _xfs_buf_read(bp, flags);
599                 } else if (flags & XBF_ASYNC) {
600                         /*
601                          * Read ahead call which is already satisfied,
602                          * drop the buffer
603                          */
604                         goto no_buffer;
605                 } else {
606                         /* We do not want read in the flags */
607                         bp->b_flags &= ~XBF_READ;
608                 }
609         }
610
611         return bp;
612
613  no_buffer:
614         if (flags & (XBF_LOCK | XBF_TRYLOCK))
615                 xfs_buf_unlock(bp);
616         xfs_buf_rele(bp);
617         return NULL;
618 }
619
620 /*
621  *      If we are not low on memory then do the readahead in a deadlock
622  *      safe manner.
623  */
624 void
625 xfs_buf_readahead(
626         xfs_buftarg_t           *target,
627         xfs_off_t               ioff,
628         size_t                  isize,
629         xfs_buf_flags_t         flags)
630 {
631         struct backing_dev_info *bdi;
632
633         bdi = target->bt_mapping->backing_dev_info;
634         if (bdi_read_congested(bdi))
635                 return;
636
637         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638         xfs_buf_read(target, ioff, isize, flags);
639 }
640
641 xfs_buf_t *
642 xfs_buf_get_empty(
643         size_t                  len,
644         xfs_buftarg_t           *target)
645 {
646         xfs_buf_t               *bp;
647
648         bp = xfs_buf_allocate(0);
649         if (bp)
650                 _xfs_buf_initialize(bp, target, 0, len, 0);
651         return bp;
652 }
653
654 static inline struct page *
655 mem_to_page(
656         void                    *addr)
657 {
658         if ((!is_vmalloc_addr(addr))) {
659                 return virt_to_page(addr);
660         } else {
661                 return vmalloc_to_page(addr);
662         }
663 }
664
665 int
666 xfs_buf_associate_memory(
667         xfs_buf_t               *bp,
668         void                    *mem,
669         size_t                  len)
670 {
671         int                     rval;
672         int                     i = 0;
673         unsigned long           pageaddr;
674         unsigned long           offset;
675         size_t                  buflen;
676         int                     page_count;
677
678         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
679         offset = (unsigned long)mem - pageaddr;
680         buflen = PAGE_CACHE_ALIGN(len + offset);
681         page_count = buflen >> PAGE_CACHE_SHIFT;
682
683         /* Free any previous set of page pointers */
684         if (bp->b_pages)
685                 _xfs_buf_free_pages(bp);
686
687         bp->b_pages = NULL;
688         bp->b_addr = mem;
689
690         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
691         if (rval)
692                 return rval;
693
694         bp->b_offset = offset;
695
696         for (i = 0; i < bp->b_page_count; i++) {
697                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
698                 pageaddr += PAGE_CACHE_SIZE;
699         }
700
701         bp->b_count_desired = len;
702         bp->b_buffer_length = buflen;
703         bp->b_flags |= XBF_MAPPED;
704         bp->b_flags &= ~_XBF_PAGE_LOCKED;
705
706         return 0;
707 }
708
709 xfs_buf_t *
710 xfs_buf_get_uncached(
711         struct xfs_buftarg      *target,
712         size_t                  len,
713         int                     flags)
714 {
715         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
716         int                     error, i;
717         xfs_buf_t               *bp;
718
719         bp = xfs_buf_allocate(0);
720         if (unlikely(bp == NULL))
721                 goto fail;
722         _xfs_buf_initialize(bp, target, 0, len, 0);
723
724         error = _xfs_buf_get_pages(bp, page_count, 0);
725         if (error)
726                 goto fail_free_buf;
727
728         for (i = 0; i < page_count; i++) {
729                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
730                 if (!bp->b_pages[i])
731                         goto fail_free_mem;
732         }
733         bp->b_flags |= _XBF_PAGES;
734
735         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
736         if (unlikely(error)) {
737                 printk(KERN_WARNING "%s: failed to map pages\n",
738                                 __func__);
739                 goto fail_free_mem;
740         }
741
742         xfs_buf_unlock(bp);
743
744         trace_xfs_buf_get_uncached(bp, _RET_IP_);
745         return bp;
746
747  fail_free_mem:
748         while (--i >= 0)
749                 __free_page(bp->b_pages[i]);
750         _xfs_buf_free_pages(bp);
751  fail_free_buf:
752         xfs_buf_deallocate(bp);
753  fail:
754         return NULL;
755 }
756
757 /*
758  *      Increment reference count on buffer, to hold the buffer concurrently
759  *      with another thread which may release (free) the buffer asynchronously.
760  *      Must hold the buffer already to call this function.
761  */
762 void
763 xfs_buf_hold(
764         xfs_buf_t               *bp)
765 {
766         trace_xfs_buf_hold(bp, _RET_IP_);
767         atomic_inc(&bp->b_hold);
768 }
769
770 /*
771  *      Releases a hold on the specified buffer.  If the
772  *      the hold count is 1, calls xfs_buf_free.
773  */
774 void
775 xfs_buf_rele(
776         xfs_buf_t               *bp)
777 {
778         xfs_bufhash_t           *hash = bp->b_hash;
779
780         trace_xfs_buf_rele(bp, _RET_IP_);
781
782         if (unlikely(!hash)) {
783                 ASSERT(!bp->b_relse);
784                 if (atomic_dec_and_test(&bp->b_hold))
785                         xfs_buf_free(bp);
786                 return;
787         }
788
789         ASSERT(atomic_read(&bp->b_hold) > 0);
790         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
791                 if (bp->b_relse) {
792                         atomic_inc(&bp->b_hold);
793                         spin_unlock(&hash->bh_lock);
794                         (*(bp->b_relse)) (bp);
795                 } else if (bp->b_flags & XBF_FS_MANAGED) {
796                         spin_unlock(&hash->bh_lock);
797                 } else {
798                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
799                         list_del_init(&bp->b_hash_list);
800                         spin_unlock(&hash->bh_lock);
801                         xfs_buf_free(bp);
802                 }
803         }
804 }
805
806
807 /*
808  *      Mutual exclusion on buffers.  Locking model:
809  *
810  *      Buffers associated with inodes for which buffer locking
811  *      is not enabled are not protected by semaphores, and are
812  *      assumed to be exclusively owned by the caller.  There is a
813  *      spinlock in the buffer, used by the caller when concurrent
814  *      access is possible.
815  */
816
817 /*
818  *      Locks a buffer object, if it is not already locked.
819  *      Note that this in no way locks the underlying pages, so it is only
820  *      useful for synchronizing concurrent use of buffer objects, not for
821  *      synchronizing independent access to the underlying pages.
822  */
823 int
824 xfs_buf_cond_lock(
825         xfs_buf_t               *bp)
826 {
827         int                     locked;
828
829         locked = down_trylock(&bp->b_sema) == 0;
830         if (locked)
831                 XB_SET_OWNER(bp);
832
833         trace_xfs_buf_cond_lock(bp, _RET_IP_);
834         return locked ? 0 : -EBUSY;
835 }
836
837 int
838 xfs_buf_lock_value(
839         xfs_buf_t               *bp)
840 {
841         return bp->b_sema.count;
842 }
843
844 /*
845  *      Locks a buffer object.
846  *      Note that this in no way locks the underlying pages, so it is only
847  *      useful for synchronizing concurrent use of buffer objects, not for
848  *      synchronizing independent access to the underlying pages.
849  *
850  *      If we come across a stale, pinned, locked buffer, we know that we
851  *      are being asked to lock a buffer that has been reallocated. Because
852  *      it is pinned, we know that the log has not been pushed to disk and
853  *      hence it will still be locked. Rather than sleeping until someone
854  *      else pushes the log, push it ourselves before trying to get the lock.
855  */
856 void
857 xfs_buf_lock(
858         xfs_buf_t               *bp)
859 {
860         trace_xfs_buf_lock(bp, _RET_IP_);
861
862         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
863                 xfs_log_force(bp->b_mount, 0);
864         if (atomic_read(&bp->b_io_remaining))
865                 blk_run_address_space(bp->b_target->bt_mapping);
866         down(&bp->b_sema);
867         XB_SET_OWNER(bp);
868
869         trace_xfs_buf_lock_done(bp, _RET_IP_);
870 }
871
872 /*
873  *      Releases the lock on the buffer object.
874  *      If the buffer is marked delwri but is not queued, do so before we
875  *      unlock the buffer as we need to set flags correctly.  We also need to
876  *      take a reference for the delwri queue because the unlocker is going to
877  *      drop their's and they don't know we just queued it.
878  */
879 void
880 xfs_buf_unlock(
881         xfs_buf_t               *bp)
882 {
883         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
884                 atomic_inc(&bp->b_hold);
885                 bp->b_flags |= XBF_ASYNC;
886                 xfs_buf_delwri_queue(bp, 0);
887         }
888
889         XB_CLEAR_OWNER(bp);
890         up(&bp->b_sema);
891
892         trace_xfs_buf_unlock(bp, _RET_IP_);
893 }
894
895 STATIC void
896 xfs_buf_wait_unpin(
897         xfs_buf_t               *bp)
898 {
899         DECLARE_WAITQUEUE       (wait, current);
900
901         if (atomic_read(&bp->b_pin_count) == 0)
902                 return;
903
904         add_wait_queue(&bp->b_waiters, &wait);
905         for (;;) {
906                 set_current_state(TASK_UNINTERRUPTIBLE);
907                 if (atomic_read(&bp->b_pin_count) == 0)
908                         break;
909                 if (atomic_read(&bp->b_io_remaining))
910                         blk_run_address_space(bp->b_target->bt_mapping);
911                 schedule();
912         }
913         remove_wait_queue(&bp->b_waiters, &wait);
914         set_current_state(TASK_RUNNING);
915 }
916
917 /*
918  *      Buffer Utility Routines
919  */
920
921 STATIC void
922 xfs_buf_iodone_work(
923         struct work_struct      *work)
924 {
925         xfs_buf_t               *bp =
926                 container_of(work, xfs_buf_t, b_iodone_work);
927
928         /*
929          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
930          * ordered flag and reissue them.  Because we can't tell the higher
931          * layers directly that they should not issue ordered I/O anymore, they
932          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
933          */
934         if ((bp->b_error == EOPNOTSUPP) &&
935             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
936                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
937                 bp->b_flags &= ~XBF_ORDERED;
938                 bp->b_flags |= _XFS_BARRIER_FAILED;
939                 xfs_buf_iorequest(bp);
940         } else if (bp->b_iodone)
941                 (*(bp->b_iodone))(bp);
942         else if (bp->b_flags & XBF_ASYNC)
943                 xfs_buf_relse(bp);
944 }
945
946 void
947 xfs_buf_ioend(
948         xfs_buf_t               *bp,
949         int                     schedule)
950 {
951         trace_xfs_buf_iodone(bp, _RET_IP_);
952
953         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
954         if (bp->b_error == 0)
955                 bp->b_flags |= XBF_DONE;
956
957         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
958                 if (schedule) {
959                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
960                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
961                 } else {
962                         xfs_buf_iodone_work(&bp->b_iodone_work);
963                 }
964         } else {
965                 complete(&bp->b_iowait);
966         }
967 }
968
969 void
970 xfs_buf_ioerror(
971         xfs_buf_t               *bp,
972         int                     error)
973 {
974         ASSERT(error >= 0 && error <= 0xffff);
975         bp->b_error = (unsigned short)error;
976         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
977 }
978
979 int
980 xfs_bwrite(
981         struct xfs_mount        *mp,
982         struct xfs_buf          *bp)
983 {
984         int                     error;
985
986         bp->b_mount = mp;
987         bp->b_flags |= XBF_WRITE;
988         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
989
990         xfs_buf_delwri_dequeue(bp);
991         xfs_bdstrat_cb(bp);
992
993         error = xfs_buf_iowait(bp);
994         if (error)
995                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
996         xfs_buf_relse(bp);
997         return error;
998 }
999
1000 void
1001 xfs_bdwrite(
1002         void                    *mp,
1003         struct xfs_buf          *bp)
1004 {
1005         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1006
1007         bp->b_mount = mp;
1008
1009         bp->b_flags &= ~XBF_READ;
1010         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1011
1012         xfs_buf_delwri_queue(bp, 1);
1013 }
1014
1015 /*
1016  * Called when we want to stop a buffer from getting written or read.
1017  * We attach the EIO error, muck with its flags, and call biodone
1018  * so that the proper iodone callbacks get called.
1019  */
1020 STATIC int
1021 xfs_bioerror(
1022         xfs_buf_t *bp)
1023 {
1024 #ifdef XFSERRORDEBUG
1025         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1026 #endif
1027
1028         /*
1029          * No need to wait until the buffer is unpinned, we aren't flushing it.
1030          */
1031         XFS_BUF_ERROR(bp, EIO);
1032
1033         /*
1034          * We're calling biodone, so delete XBF_DONE flag.
1035          */
1036         XFS_BUF_UNREAD(bp);
1037         XFS_BUF_UNDELAYWRITE(bp);
1038         XFS_BUF_UNDONE(bp);
1039         XFS_BUF_STALE(bp);
1040
1041         xfs_biodone(bp);
1042
1043         return EIO;
1044 }
1045
1046 /*
1047  * Same as xfs_bioerror, except that we are releasing the buffer
1048  * here ourselves, and avoiding the biodone call.
1049  * This is meant for userdata errors; metadata bufs come with
1050  * iodone functions attached, so that we can track down errors.
1051  */
1052 STATIC int
1053 xfs_bioerror_relse(
1054         struct xfs_buf  *bp)
1055 {
1056         int64_t         fl = XFS_BUF_BFLAGS(bp);
1057         /*
1058          * No need to wait until the buffer is unpinned.
1059          * We aren't flushing it.
1060          *
1061          * chunkhold expects B_DONE to be set, whether
1062          * we actually finish the I/O or not. We don't want to
1063          * change that interface.
1064          */
1065         XFS_BUF_UNREAD(bp);
1066         XFS_BUF_UNDELAYWRITE(bp);
1067         XFS_BUF_DONE(bp);
1068         XFS_BUF_STALE(bp);
1069         XFS_BUF_CLR_IODONE_FUNC(bp);
1070         if (!(fl & XBF_ASYNC)) {
1071                 /*
1072                  * Mark b_error and B_ERROR _both_.
1073                  * Lot's of chunkcache code assumes that.
1074                  * There's no reason to mark error for
1075                  * ASYNC buffers.
1076                  */
1077                 XFS_BUF_ERROR(bp, EIO);
1078                 XFS_BUF_FINISH_IOWAIT(bp);
1079         } else {
1080                 xfs_buf_relse(bp);
1081         }
1082
1083         return EIO;
1084 }
1085
1086
1087 /*
1088  * All xfs metadata buffers except log state machine buffers
1089  * get this attached as their b_bdstrat callback function.
1090  * This is so that we can catch a buffer
1091  * after prematurely unpinning it to forcibly shutdown the filesystem.
1092  */
1093 int
1094 xfs_bdstrat_cb(
1095         struct xfs_buf  *bp)
1096 {
1097         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1098                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1099                 /*
1100                  * Metadata write that didn't get logged but
1101                  * written delayed anyway. These aren't associated
1102                  * with a transaction, and can be ignored.
1103                  */
1104                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1105                         return xfs_bioerror_relse(bp);
1106                 else
1107                         return xfs_bioerror(bp);
1108         }
1109
1110         xfs_buf_iorequest(bp);
1111         return 0;
1112 }
1113
1114 /*
1115  * Wrapper around bdstrat so that we can stop data from going to disk in case
1116  * we are shutting down the filesystem.  Typically user data goes thru this
1117  * path; one of the exceptions is the superblock.
1118  */
1119 void
1120 xfsbdstrat(
1121         struct xfs_mount        *mp,
1122         struct xfs_buf          *bp)
1123 {
1124         if (XFS_FORCED_SHUTDOWN(mp)) {
1125                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1126                 xfs_bioerror_relse(bp);
1127                 return;
1128         }
1129
1130         xfs_buf_iorequest(bp);
1131 }
1132
1133 STATIC void
1134 _xfs_buf_ioend(
1135         xfs_buf_t               *bp,
1136         int                     schedule)
1137 {
1138         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1139                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1140                 xfs_buf_ioend(bp, schedule);
1141         }
1142 }
1143
1144 STATIC void
1145 xfs_buf_bio_end_io(
1146         struct bio              *bio,
1147         int                     error)
1148 {
1149         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1150         unsigned int            blocksize = bp->b_target->bt_bsize;
1151         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1152
1153         xfs_buf_ioerror(bp, -error);
1154
1155         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1156                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1157
1158         do {
1159                 struct page     *page = bvec->bv_page;
1160
1161                 ASSERT(!PagePrivate(page));
1162                 if (unlikely(bp->b_error)) {
1163                         if (bp->b_flags & XBF_READ)
1164                                 ClearPageUptodate(page);
1165                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1166                         SetPageUptodate(page);
1167                 } else if (!PagePrivate(page) &&
1168                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1169                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1170                 }
1171
1172                 if (--bvec >= bio->bi_io_vec)
1173                         prefetchw(&bvec->bv_page->flags);
1174
1175                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1176                         unlock_page(page);
1177         } while (bvec >= bio->bi_io_vec);
1178
1179         _xfs_buf_ioend(bp, 1);
1180         bio_put(bio);
1181 }
1182
1183 STATIC void
1184 _xfs_buf_ioapply(
1185         xfs_buf_t               *bp)
1186 {
1187         int                     rw, map_i, total_nr_pages, nr_pages;
1188         struct bio              *bio;
1189         int                     offset = bp->b_offset;
1190         int                     size = bp->b_count_desired;
1191         sector_t                sector = bp->b_bn;
1192         unsigned int            blocksize = bp->b_target->bt_bsize;
1193
1194         total_nr_pages = bp->b_page_count;
1195         map_i = 0;
1196
1197         if (bp->b_flags & XBF_ORDERED) {
1198                 ASSERT(!(bp->b_flags & XBF_READ));
1199                 rw = WRITE_BARRIER;
1200         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1201                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1202                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1203                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1204         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1205                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1206                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1207                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1208         } else {
1209                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1210                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1211         }
1212
1213         /* Special code path for reading a sub page size buffer in --
1214          * we populate up the whole page, and hence the other metadata
1215          * in the same page.  This optimization is only valid when the
1216          * filesystem block size is not smaller than the page size.
1217          */
1218         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1219             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1220               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1221             (blocksize >= PAGE_CACHE_SIZE)) {
1222                 bio = bio_alloc(GFP_NOIO, 1);
1223
1224                 bio->bi_bdev = bp->b_target->bt_bdev;
1225                 bio->bi_sector = sector - (offset >> BBSHIFT);
1226                 bio->bi_end_io = xfs_buf_bio_end_io;
1227                 bio->bi_private = bp;
1228
1229                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1230                 size = 0;
1231
1232                 atomic_inc(&bp->b_io_remaining);
1233
1234                 goto submit_io;
1235         }
1236
1237 next_chunk:
1238         atomic_inc(&bp->b_io_remaining);
1239         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1240         if (nr_pages > total_nr_pages)
1241                 nr_pages = total_nr_pages;
1242
1243         bio = bio_alloc(GFP_NOIO, nr_pages);
1244         bio->bi_bdev = bp->b_target->bt_bdev;
1245         bio->bi_sector = sector;
1246         bio->bi_end_io = xfs_buf_bio_end_io;
1247         bio->bi_private = bp;
1248
1249         for (; size && nr_pages; nr_pages--, map_i++) {
1250                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1251
1252                 if (nbytes > size)
1253                         nbytes = size;
1254
1255                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1256                 if (rbytes < nbytes)
1257                         break;
1258
1259                 offset = 0;
1260                 sector += nbytes >> BBSHIFT;
1261                 size -= nbytes;
1262                 total_nr_pages--;
1263         }
1264
1265 submit_io:
1266         if (likely(bio->bi_size)) {
1267                 if (xfs_buf_is_vmapped(bp)) {
1268                         flush_kernel_vmap_range(bp->b_addr,
1269                                                 xfs_buf_vmap_len(bp));
1270                 }
1271                 submit_bio(rw, bio);
1272                 if (size)
1273                         goto next_chunk;
1274         } else {
1275                 /*
1276                  * if we get here, no pages were added to the bio. However,
1277                  * we can't just error out here - if the pages are locked then
1278                  * we have to unlock them otherwise we can hang on a later
1279                  * access to the page.
1280                  */
1281                 xfs_buf_ioerror(bp, EIO);
1282                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1283                         int i;
1284                         for (i = 0; i < bp->b_page_count; i++)
1285                                 unlock_page(bp->b_pages[i]);
1286                 }
1287                 bio_put(bio);
1288         }
1289 }
1290
1291 int
1292 xfs_buf_iorequest(
1293         xfs_buf_t               *bp)
1294 {
1295         trace_xfs_buf_iorequest(bp, _RET_IP_);
1296
1297         if (bp->b_flags & XBF_DELWRI) {
1298                 xfs_buf_delwri_queue(bp, 1);
1299                 return 0;
1300         }
1301
1302         if (bp->b_flags & XBF_WRITE) {
1303                 xfs_buf_wait_unpin(bp);
1304         }
1305
1306         xfs_buf_hold(bp);
1307
1308         /* Set the count to 1 initially, this will stop an I/O
1309          * completion callout which happens before we have started
1310          * all the I/O from calling xfs_buf_ioend too early.
1311          */
1312         atomic_set(&bp->b_io_remaining, 1);
1313         _xfs_buf_ioapply(bp);
1314         _xfs_buf_ioend(bp, 0);
1315
1316         xfs_buf_rele(bp);
1317         return 0;
1318 }
1319
1320 /*
1321  *      Waits for I/O to complete on the buffer supplied.
1322  *      It returns immediately if no I/O is pending.
1323  *      It returns the I/O error code, if any, or 0 if there was no error.
1324  */
1325 int
1326 xfs_buf_iowait(
1327         xfs_buf_t               *bp)
1328 {
1329         trace_xfs_buf_iowait(bp, _RET_IP_);
1330
1331         if (atomic_read(&bp->b_io_remaining))
1332                 blk_run_address_space(bp->b_target->bt_mapping);
1333         wait_for_completion(&bp->b_iowait);
1334
1335         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1336         return bp->b_error;
1337 }
1338
1339 xfs_caddr_t
1340 xfs_buf_offset(
1341         xfs_buf_t               *bp,
1342         size_t                  offset)
1343 {
1344         struct page             *page;
1345
1346         if (bp->b_flags & XBF_MAPPED)
1347                 return XFS_BUF_PTR(bp) + offset;
1348
1349         offset += bp->b_offset;
1350         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1351         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1352 }
1353
1354 /*
1355  *      Move data into or out of a buffer.
1356  */
1357 void
1358 xfs_buf_iomove(
1359         xfs_buf_t               *bp,    /* buffer to process            */
1360         size_t                  boff,   /* starting buffer offset       */
1361         size_t                  bsize,  /* length to copy               */
1362         void                    *data,  /* data address                 */
1363         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1364 {
1365         size_t                  bend, cpoff, csize;
1366         struct page             *page;
1367
1368         bend = boff + bsize;
1369         while (boff < bend) {
1370                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1371                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1372                 csize = min_t(size_t,
1373                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1374
1375                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1376
1377                 switch (mode) {
1378                 case XBRW_ZERO:
1379                         memset(page_address(page) + cpoff, 0, csize);
1380                         break;
1381                 case XBRW_READ:
1382                         memcpy(data, page_address(page) + cpoff, csize);
1383                         break;
1384                 case XBRW_WRITE:
1385                         memcpy(page_address(page) + cpoff, data, csize);
1386                 }
1387
1388                 boff += csize;
1389                 data += csize;
1390         }
1391 }
1392
1393 /*
1394  *      Handling of buffer targets (buftargs).
1395  */
1396
1397 /*
1398  *      Wait for any bufs with callbacks that have been submitted but
1399  *      have not yet returned... walk the hash list for the target.
1400  */
1401 void
1402 xfs_wait_buftarg(
1403         xfs_buftarg_t   *btp)
1404 {
1405         xfs_buf_t       *bp, *n;
1406         xfs_bufhash_t   *hash;
1407         uint            i;
1408
1409         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1410                 hash = &btp->bt_hash[i];
1411 again:
1412                 spin_lock(&hash->bh_lock);
1413                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1414                         ASSERT(btp == bp->b_target);
1415                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1416                                 spin_unlock(&hash->bh_lock);
1417                                 /*
1418                                  * Catch superblock reference count leaks
1419                                  * immediately
1420                                  */
1421                                 BUG_ON(bp->b_bn == 0);
1422                                 delay(100);
1423                                 goto again;
1424                         }
1425                 }
1426                 spin_unlock(&hash->bh_lock);
1427         }
1428 }
1429
1430 /*
1431  *      Allocate buffer hash table for a given target.
1432  *      For devices containing metadata (i.e. not the log/realtime devices)
1433  *      we need to allocate a much larger hash table.
1434  */
1435 STATIC void
1436 xfs_alloc_bufhash(
1437         xfs_buftarg_t           *btp,
1438         int                     external)
1439 {
1440         unsigned int            i;
1441
1442         btp->bt_hashshift = external ? 3 : 12;  /* 8 or 4096 buckets */
1443         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1444                                          sizeof(xfs_bufhash_t));
1445         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1446                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1447                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1448         }
1449 }
1450
1451 STATIC void
1452 xfs_free_bufhash(
1453         xfs_buftarg_t           *btp)
1454 {
1455         kmem_free_large(btp->bt_hash);
1456         btp->bt_hash = NULL;
1457 }
1458
1459 /*
1460  *      buftarg list for delwrite queue processing
1461  */
1462 static LIST_HEAD(xfs_buftarg_list);
1463 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1464
1465 STATIC void
1466 xfs_register_buftarg(
1467         xfs_buftarg_t           *btp)
1468 {
1469         spin_lock(&xfs_buftarg_lock);
1470         list_add(&btp->bt_list, &xfs_buftarg_list);
1471         spin_unlock(&xfs_buftarg_lock);
1472 }
1473
1474 STATIC void
1475 xfs_unregister_buftarg(
1476         xfs_buftarg_t           *btp)
1477 {
1478         spin_lock(&xfs_buftarg_lock);
1479         list_del(&btp->bt_list);
1480         spin_unlock(&xfs_buftarg_lock);
1481 }
1482
1483 void
1484 xfs_free_buftarg(
1485         struct xfs_mount        *mp,
1486         struct xfs_buftarg      *btp)
1487 {
1488         xfs_flush_buftarg(btp, 1);
1489         if (mp->m_flags & XFS_MOUNT_BARRIER)
1490                 xfs_blkdev_issue_flush(btp);
1491         xfs_free_bufhash(btp);
1492         iput(btp->bt_mapping->host);
1493
1494         /* Unregister the buftarg first so that we don't get a
1495          * wakeup finding a non-existent task
1496          */
1497         xfs_unregister_buftarg(btp);
1498         kthread_stop(btp->bt_task);
1499
1500         kmem_free(btp);
1501 }
1502
1503 STATIC int
1504 xfs_setsize_buftarg_flags(
1505         xfs_buftarg_t           *btp,
1506         unsigned int            blocksize,
1507         unsigned int            sectorsize,
1508         int                     verbose)
1509 {
1510         btp->bt_bsize = blocksize;
1511         btp->bt_sshift = ffs(sectorsize) - 1;
1512         btp->bt_smask = sectorsize - 1;
1513
1514         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1515                 printk(KERN_WARNING
1516                         "XFS: Cannot set_blocksize to %u on device %s\n",
1517                         sectorsize, XFS_BUFTARG_NAME(btp));
1518                 return EINVAL;
1519         }
1520
1521         if (verbose &&
1522             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1523                 printk(KERN_WARNING
1524                         "XFS: %u byte sectors in use on device %s.  "
1525                         "This is suboptimal; %u or greater is ideal.\n",
1526                         sectorsize, XFS_BUFTARG_NAME(btp),
1527                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1528         }
1529
1530         return 0;
1531 }
1532
1533 /*
1534  *      When allocating the initial buffer target we have not yet
1535  *      read in the superblock, so don't know what sized sectors
1536  *      are being used is at this early stage.  Play safe.
1537  */
1538 STATIC int
1539 xfs_setsize_buftarg_early(
1540         xfs_buftarg_t           *btp,
1541         struct block_device     *bdev)
1542 {
1543         return xfs_setsize_buftarg_flags(btp,
1544                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1545 }
1546
1547 int
1548 xfs_setsize_buftarg(
1549         xfs_buftarg_t           *btp,
1550         unsigned int            blocksize,
1551         unsigned int            sectorsize)
1552 {
1553         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1554 }
1555
1556 STATIC int
1557 xfs_mapping_buftarg(
1558         xfs_buftarg_t           *btp,
1559         struct block_device     *bdev)
1560 {
1561         struct backing_dev_info *bdi;
1562         struct inode            *inode;
1563         struct address_space    *mapping;
1564         static const struct address_space_operations mapping_aops = {
1565                 .sync_page = block_sync_page,
1566                 .migratepage = fail_migrate_page,
1567         };
1568
1569         inode = new_inode(bdev->bd_inode->i_sb);
1570         if (!inode) {
1571                 printk(KERN_WARNING
1572                         "XFS: Cannot allocate mapping inode for device %s\n",
1573                         XFS_BUFTARG_NAME(btp));
1574                 return ENOMEM;
1575         }
1576         inode->i_mode = S_IFBLK;
1577         inode->i_bdev = bdev;
1578         inode->i_rdev = bdev->bd_dev;
1579         bdi = blk_get_backing_dev_info(bdev);
1580         if (!bdi)
1581                 bdi = &default_backing_dev_info;
1582         mapping = &inode->i_data;
1583         mapping->a_ops = &mapping_aops;
1584         mapping->backing_dev_info = bdi;
1585         mapping_set_gfp_mask(mapping, GFP_NOFS);
1586         btp->bt_mapping = mapping;
1587         return 0;
1588 }
1589
1590 STATIC int
1591 xfs_alloc_delwrite_queue(
1592         xfs_buftarg_t           *btp,
1593         const char              *fsname)
1594 {
1595         int     error = 0;
1596
1597         INIT_LIST_HEAD(&btp->bt_list);
1598         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1599         spin_lock_init(&btp->bt_delwrite_lock);
1600         btp->bt_flags = 0;
1601         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1602         if (IS_ERR(btp->bt_task)) {
1603                 error = PTR_ERR(btp->bt_task);
1604                 goto out_error;
1605         }
1606         xfs_register_buftarg(btp);
1607 out_error:
1608         return error;
1609 }
1610
1611 xfs_buftarg_t *
1612 xfs_alloc_buftarg(
1613         struct block_device     *bdev,
1614         int                     external,
1615         const char              *fsname)
1616 {
1617         xfs_buftarg_t           *btp;
1618
1619         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1620
1621         btp->bt_dev =  bdev->bd_dev;
1622         btp->bt_bdev = bdev;
1623         if (xfs_setsize_buftarg_early(btp, bdev))
1624                 goto error;
1625         if (xfs_mapping_buftarg(btp, bdev))
1626                 goto error;
1627         if (xfs_alloc_delwrite_queue(btp, fsname))
1628                 goto error;
1629         xfs_alloc_bufhash(btp, external);
1630         return btp;
1631
1632 error:
1633         kmem_free(btp);
1634         return NULL;
1635 }
1636
1637
1638 /*
1639  *      Delayed write buffer handling
1640  */
1641 STATIC void
1642 xfs_buf_delwri_queue(
1643         xfs_buf_t               *bp,
1644         int                     unlock)
1645 {
1646         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1647         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1648
1649         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1650
1651         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1652
1653         spin_lock(dwlk);
1654         /* If already in the queue, dequeue and place at tail */
1655         if (!list_empty(&bp->b_list)) {
1656                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1657                 if (unlock)
1658                         atomic_dec(&bp->b_hold);
1659                 list_del(&bp->b_list);
1660         }
1661
1662         if (list_empty(dwq)) {
1663                 /* start xfsbufd as it is about to have something to do */
1664                 wake_up_process(bp->b_target->bt_task);
1665         }
1666
1667         bp->b_flags |= _XBF_DELWRI_Q;
1668         list_add_tail(&bp->b_list, dwq);
1669         bp->b_queuetime = jiffies;
1670         spin_unlock(dwlk);
1671
1672         if (unlock)
1673                 xfs_buf_unlock(bp);
1674 }
1675
1676 void
1677 xfs_buf_delwri_dequeue(
1678         xfs_buf_t               *bp)
1679 {
1680         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1681         int                     dequeued = 0;
1682
1683         spin_lock(dwlk);
1684         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1685                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1686                 list_del_init(&bp->b_list);
1687                 dequeued = 1;
1688         }
1689         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1690         spin_unlock(dwlk);
1691
1692         if (dequeued)
1693                 xfs_buf_rele(bp);
1694
1695         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1696 }
1697
1698 /*
1699  * If a delwri buffer needs to be pushed before it has aged out, then promote
1700  * it to the head of the delwri queue so that it will be flushed on the next
1701  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1702  * than the age currently needed to flush the buffer. Hence the next time the
1703  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1704  */
1705 void
1706 xfs_buf_delwri_promote(
1707         struct xfs_buf  *bp)
1708 {
1709         struct xfs_buftarg *btp = bp->b_target;
1710         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1711
1712         ASSERT(bp->b_flags & XBF_DELWRI);
1713         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1714
1715         /*
1716          * Check the buffer age before locking the delayed write queue as we
1717          * don't need to promote buffers that are already past the flush age.
1718          */
1719         if (bp->b_queuetime < jiffies - age)
1720                 return;
1721         bp->b_queuetime = jiffies - age;
1722         spin_lock(&btp->bt_delwrite_lock);
1723         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1724         spin_unlock(&btp->bt_delwrite_lock);
1725 }
1726
1727 STATIC void
1728 xfs_buf_runall_queues(
1729         struct workqueue_struct *queue)
1730 {
1731         flush_workqueue(queue);
1732 }
1733
1734 STATIC int
1735 xfsbufd_wakeup(
1736         struct shrinker         *shrink,
1737         int                     priority,
1738         gfp_t                   mask)
1739 {
1740         xfs_buftarg_t           *btp;
1741
1742         spin_lock(&xfs_buftarg_lock);
1743         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1744                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1745                         continue;
1746                 if (list_empty(&btp->bt_delwrite_queue))
1747                         continue;
1748                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1749                 wake_up_process(btp->bt_task);
1750         }
1751         spin_unlock(&xfs_buftarg_lock);
1752         return 0;
1753 }
1754
1755 /*
1756  * Move as many buffers as specified to the supplied list
1757  * idicating if we skipped any buffers to prevent deadlocks.
1758  */
1759 STATIC int
1760 xfs_buf_delwri_split(
1761         xfs_buftarg_t   *target,
1762         struct list_head *list,
1763         unsigned long   age)
1764 {
1765         xfs_buf_t       *bp, *n;
1766         struct list_head *dwq = &target->bt_delwrite_queue;
1767         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1768         int             skipped = 0;
1769         int             force;
1770
1771         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1772         INIT_LIST_HEAD(list);
1773         spin_lock(dwlk);
1774         list_for_each_entry_safe(bp, n, dwq, b_list) {
1775                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1776                 ASSERT(bp->b_flags & XBF_DELWRI);
1777
1778                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1779                         if (!force &&
1780                             time_before(jiffies, bp->b_queuetime + age)) {
1781                                 xfs_buf_unlock(bp);
1782                                 break;
1783                         }
1784
1785                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1786                                          _XBF_RUN_QUEUES);
1787                         bp->b_flags |= XBF_WRITE;
1788                         list_move_tail(&bp->b_list, list);
1789                 } else
1790                         skipped++;
1791         }
1792         spin_unlock(dwlk);
1793
1794         return skipped;
1795
1796 }
1797
1798 /*
1799  * Compare function is more complex than it needs to be because
1800  * the return value is only 32 bits and we are doing comparisons
1801  * on 64 bit values
1802  */
1803 static int
1804 xfs_buf_cmp(
1805         void            *priv,
1806         struct list_head *a,
1807         struct list_head *b)
1808 {
1809         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1810         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1811         xfs_daddr_t             diff;
1812
1813         diff = ap->b_bn - bp->b_bn;
1814         if (diff < 0)
1815                 return -1;
1816         if (diff > 0)
1817                 return 1;
1818         return 0;
1819 }
1820
1821 void
1822 xfs_buf_delwri_sort(
1823         xfs_buftarg_t   *target,
1824         struct list_head *list)
1825 {
1826         list_sort(NULL, list, xfs_buf_cmp);
1827 }
1828
1829 STATIC int
1830 xfsbufd(
1831         void            *data)
1832 {
1833         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1834
1835         current->flags |= PF_MEMALLOC;
1836
1837         set_freezable();
1838
1839         do {
1840                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1841                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1842                 int     count = 0;
1843                 struct list_head tmp;
1844
1845                 if (unlikely(freezing(current))) {
1846                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1847                         refrigerator();
1848                 } else {
1849                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1850                 }
1851
1852                 /* sleep for a long time if there is nothing to do. */
1853                 if (list_empty(&target->bt_delwrite_queue))
1854                         tout = MAX_SCHEDULE_TIMEOUT;
1855                 schedule_timeout_interruptible(tout);
1856
1857                 xfs_buf_delwri_split(target, &tmp, age);
1858                 list_sort(NULL, &tmp, xfs_buf_cmp);
1859                 while (!list_empty(&tmp)) {
1860                         struct xfs_buf *bp;
1861                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1862                         list_del_init(&bp->b_list);
1863                         xfs_bdstrat_cb(bp);
1864                         count++;
1865                 }
1866                 if (count)
1867                         blk_run_address_space(target->bt_mapping);
1868
1869         } while (!kthread_should_stop());
1870
1871         return 0;
1872 }
1873
1874 /*
1875  *      Go through all incore buffers, and release buffers if they belong to
1876  *      the given device. This is used in filesystem error handling to
1877  *      preserve the consistency of its metadata.
1878  */
1879 int
1880 xfs_flush_buftarg(
1881         xfs_buftarg_t   *target,
1882         int             wait)
1883 {
1884         xfs_buf_t       *bp;
1885         int             pincount = 0;
1886         LIST_HEAD(tmp_list);
1887         LIST_HEAD(wait_list);
1888
1889         xfs_buf_runall_queues(xfsconvertd_workqueue);
1890         xfs_buf_runall_queues(xfsdatad_workqueue);
1891         xfs_buf_runall_queues(xfslogd_workqueue);
1892
1893         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1894         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1895
1896         /*
1897          * Dropped the delayed write list lock, now walk the temporary list.
1898          * All I/O is issued async and then if we need to wait for completion
1899          * we do that after issuing all the IO.
1900          */
1901         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1902         while (!list_empty(&tmp_list)) {
1903                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1904                 ASSERT(target == bp->b_target);
1905                 list_del_init(&bp->b_list);
1906                 if (wait) {
1907                         bp->b_flags &= ~XBF_ASYNC;
1908                         list_add(&bp->b_list, &wait_list);
1909                 }
1910                 xfs_bdstrat_cb(bp);
1911         }
1912
1913         if (wait) {
1914                 /* Expedite and wait for IO to complete. */
1915                 blk_run_address_space(target->bt_mapping);
1916                 while (!list_empty(&wait_list)) {
1917                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1918
1919                         list_del_init(&bp->b_list);
1920                         xfs_iowait(bp);
1921                         xfs_buf_relse(bp);
1922                 }
1923         }
1924
1925         return pincount;
1926 }
1927
1928 int __init
1929 xfs_buf_init(void)
1930 {
1931         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1932                                                 KM_ZONE_HWALIGN, NULL);
1933         if (!xfs_buf_zone)
1934                 goto out;
1935
1936         xfslogd_workqueue = alloc_workqueue("xfslogd",
1937                                         WQ_RESCUER | WQ_HIGHPRI, 1);
1938         if (!xfslogd_workqueue)
1939                 goto out_free_buf_zone;
1940
1941         xfsdatad_workqueue = create_workqueue("xfsdatad");
1942         if (!xfsdatad_workqueue)
1943                 goto out_destroy_xfslogd_workqueue;
1944
1945         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1946         if (!xfsconvertd_workqueue)
1947                 goto out_destroy_xfsdatad_workqueue;
1948
1949         register_shrinker(&xfs_buf_shake);
1950         return 0;
1951
1952  out_destroy_xfsdatad_workqueue:
1953         destroy_workqueue(xfsdatad_workqueue);
1954  out_destroy_xfslogd_workqueue:
1955         destroy_workqueue(xfslogd_workqueue);
1956  out_free_buf_zone:
1957         kmem_zone_destroy(xfs_buf_zone);
1958  out:
1959         return -ENOMEM;
1960 }
1961
1962 void
1963 xfs_buf_terminate(void)
1964 {
1965         unregister_shrinker(&xfs_buf_shake);
1966         destroy_workqueue(xfsconvertd_workqueue);
1967         destroy_workqueue(xfsdatad_workqueue);
1968         destroy_workqueue(xfslogd_workqueue);
1969         kmem_zone_destroy(xfs_buf_zone);
1970 }
1971
1972 #ifdef CONFIG_KDB_MODULES
1973 struct list_head *
1974 xfs_get_buftarg_list(void)
1975 {
1976         return &xfs_buftarg_list;
1977 }
1978 #endif