]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/udf/super.c
8364b1719158dfeb3bdbf5364d72efd182e8dae7
[net-next-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static void udf_write_super(struct super_block *);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static int udf_check_valid(struct super_block *, int, int);
87 static int udf_vrs(struct super_block *sb, int silent);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static void udf_find_anchor(struct super_block *);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91                             struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93                              struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct vfsmount *);
99 static void udf_error(struct super_block *sb, const char *function,
100                       const char *fmt, ...);
101
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
103 {
104         struct logicalVolIntegrityDesc *lvid =
105                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
106         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
107         __u32 offset = number_of_partitions * 2 *
108                                 sizeof(uint32_t)/sizeof(uint8_t);
109         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
110 }
111
112 /* UDF filesystem type */
113 static int udf_get_sb(struct file_system_type *fs_type,
114                       int flags, const char *dev_name, void *data,
115                       struct vfsmount *mnt)
116 {
117         return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
118 }
119
120 static struct file_system_type udf_fstype = {
121         .owner          = THIS_MODULE,
122         .name           = "udf",
123         .get_sb         = udf_get_sb,
124         .kill_sb        = kill_block_super,
125         .fs_flags       = FS_REQUIRES_DEV,
126 };
127
128 static struct kmem_cache *udf_inode_cachep;
129
130 static struct inode *udf_alloc_inode(struct super_block *sb)
131 {
132         struct udf_inode_info *ei;
133         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
134         if (!ei)
135                 return NULL;
136
137         ei->i_unique = 0;
138         ei->i_lenExtents = 0;
139         ei->i_next_alloc_block = 0;
140         ei->i_next_alloc_goal = 0;
141         ei->i_strat4096 = 0;
142
143         return &ei->vfs_inode;
144 }
145
146 static void udf_destroy_inode(struct inode *inode)
147 {
148         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
149 }
150
151 static void init_once(void *foo)
152 {
153         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
154
155         ei->i_ext.i_data = NULL;
156         inode_init_once(&ei->vfs_inode);
157 }
158
159 static int init_inodecache(void)
160 {
161         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162                                              sizeof(struct udf_inode_info),
163                                              0, (SLAB_RECLAIM_ACCOUNT |
164                                                  SLAB_MEM_SPREAD),
165                                              init_once);
166         if (!udf_inode_cachep)
167                 return -ENOMEM;
168         return 0;
169 }
170
171 static void destroy_inodecache(void)
172 {
173         kmem_cache_destroy(udf_inode_cachep);
174 }
175
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178         .alloc_inode    = udf_alloc_inode,
179         .destroy_inode  = udf_destroy_inode,
180         .write_inode    = udf_write_inode,
181         .delete_inode   = udf_delete_inode,
182         .clear_inode    = udf_clear_inode,
183         .put_super      = udf_put_super,
184         .write_super    = udf_write_super,
185         .statfs         = udf_statfs,
186         .remount_fs     = udf_remount_fs,
187         .show_options   = udf_show_options,
188 };
189
190 struct udf_options {
191         unsigned char novrs;
192         unsigned int blocksize;
193         unsigned int session;
194         unsigned int lastblock;
195         unsigned int anchor;
196         unsigned int volume;
197         unsigned short partition;
198         unsigned int fileset;
199         unsigned int rootdir;
200         unsigned int flags;
201         mode_t umask;
202         gid_t gid;
203         uid_t uid;
204         struct nls_table *nls_map;
205 };
206
207 static int __init init_udf_fs(void)
208 {
209         int err;
210
211         err = init_inodecache();
212         if (err)
213                 goto out1;
214         err = register_filesystem(&udf_fstype);
215         if (err)
216                 goto out;
217
218         return 0;
219
220 out:
221         destroy_inodecache();
222
223 out1:
224         return err;
225 }
226
227 static void __exit exit_udf_fs(void)
228 {
229         unregister_filesystem(&udf_fstype);
230         destroy_inodecache();
231 }
232
233 module_init(init_udf_fs)
234 module_exit(exit_udf_fs)
235
236 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
237 {
238         struct udf_sb_info *sbi = UDF_SB(sb);
239
240         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
241                                   GFP_KERNEL);
242         if (!sbi->s_partmaps) {
243                 udf_error(sb, __func__,
244                           "Unable to allocate space for %d partition maps",
245                           count);
246                 sbi->s_partitions = 0;
247                 return -ENOMEM;
248         }
249
250         sbi->s_partitions = count;
251         return 0;
252 }
253
254 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
255 {
256         struct super_block *sb = mnt->mnt_sb;
257         struct udf_sb_info *sbi = UDF_SB(sb);
258
259         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
260                 seq_puts(seq, ",nostrict");
261         if (sb->s_blocksize != UDF_DEFAULT_BLOCKSIZE)
262                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
263         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
264                 seq_puts(seq, ",unhide");
265         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
266                 seq_puts(seq, ",undelete");
267         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
268                 seq_puts(seq, ",noadinicb");
269         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
270                 seq_puts(seq, ",shortad");
271         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
272                 seq_puts(seq, ",uid=forget");
273         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
274                 seq_puts(seq, ",uid=ignore");
275         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
276                 seq_puts(seq, ",gid=forget");
277         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
278                 seq_puts(seq, ",gid=ignore");
279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
280                 seq_printf(seq, ",uid=%u", sbi->s_uid);
281         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
282                 seq_printf(seq, ",gid=%u", sbi->s_gid);
283         if (sbi->s_umask != 0)
284                 seq_printf(seq, ",umask=%o", sbi->s_umask);
285         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
286                 seq_printf(seq, ",session=%u", sbi->s_session);
287         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
288                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
289         /*
290          * s_anchor[2] could be zeroed out in case there is no anchor
291          * in the specified block, but then the "anchor=N" option
292          * originally given by the user wasn't effective, so it's OK
293          * if we don't show it.
294          */
295         if (sbi->s_anchor[2] != 0)
296                 seq_printf(seq, ",anchor=%u", sbi->s_anchor[2]);
297         /*
298          * volume, partition, fileset and rootdir seem to be ignored
299          * currently
300          */
301         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
302                 seq_puts(seq, ",utf8");
303         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
304                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
305
306         return 0;
307 }
308
309 /*
310  * udf_parse_options
311  *
312  * PURPOSE
313  *      Parse mount options.
314  *
315  * DESCRIPTION
316  *      The following mount options are supported:
317  *
318  *      gid=            Set the default group.
319  *      umask=          Set the default umask.
320  *      uid=            Set the default user.
321  *      bs=             Set the block size.
322  *      unhide          Show otherwise hidden files.
323  *      undelete        Show deleted files in lists.
324  *      adinicb         Embed data in the inode (default)
325  *      noadinicb       Don't embed data in the inode
326  *      shortad         Use short ad's
327  *      longad          Use long ad's (default)
328  *      nostrict        Unset strict conformance
329  *      iocharset=      Set the NLS character set
330  *
331  *      The remaining are for debugging and disaster recovery:
332  *
333  *      novrs           Skip volume sequence recognition
334  *
335  *      The following expect a offset from 0.
336  *
337  *      session=        Set the CDROM session (default= last session)
338  *      anchor=         Override standard anchor location. (default= 256)
339  *      volume=         Override the VolumeDesc location. (unused)
340  *      partition=      Override the PartitionDesc location. (unused)
341  *      lastblock=      Set the last block of the filesystem/
342  *
343  *      The following expect a offset from the partition root.
344  *
345  *      fileset=        Override the fileset block location. (unused)
346  *      rootdir=        Override the root directory location. (unused)
347  *              WARNING: overriding the rootdir to a non-directory may
348  *              yield highly unpredictable results.
349  *
350  * PRE-CONDITIONS
351  *      options         Pointer to mount options string.
352  *      uopts           Pointer to mount options variable.
353  *
354  * POST-CONDITIONS
355  *      <return>        1       Mount options parsed okay.
356  *      <return>        0       Error parsing mount options.
357  *
358  * HISTORY
359  *      July 1, 1997 - Andrew E. Mileski
360  *      Written, tested, and released.
361  */
362
363 enum {
364         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
365         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
366         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
367         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
368         Opt_rootdir, Opt_utf8, Opt_iocharset,
369         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore
370 };
371
372 static const match_table_t tokens = {
373         {Opt_novrs,     "novrs"},
374         {Opt_nostrict,  "nostrict"},
375         {Opt_bs,        "bs=%u"},
376         {Opt_unhide,    "unhide"},
377         {Opt_undelete,  "undelete"},
378         {Opt_noadinicb, "noadinicb"},
379         {Opt_adinicb,   "adinicb"},
380         {Opt_shortad,   "shortad"},
381         {Opt_longad,    "longad"},
382         {Opt_uforget,   "uid=forget"},
383         {Opt_uignore,   "uid=ignore"},
384         {Opt_gforget,   "gid=forget"},
385         {Opt_gignore,   "gid=ignore"},
386         {Opt_gid,       "gid=%u"},
387         {Opt_uid,       "uid=%u"},
388         {Opt_umask,     "umask=%o"},
389         {Opt_session,   "session=%u"},
390         {Opt_lastblock, "lastblock=%u"},
391         {Opt_anchor,    "anchor=%u"},
392         {Opt_volume,    "volume=%u"},
393         {Opt_partition, "partition=%u"},
394         {Opt_fileset,   "fileset=%u"},
395         {Opt_rootdir,   "rootdir=%u"},
396         {Opt_utf8,      "utf8"},
397         {Opt_iocharset, "iocharset=%s"},
398         {Opt_err,       NULL}
399 };
400
401 static int udf_parse_options(char *options, struct udf_options *uopt,
402                              bool remount)
403 {
404         char *p;
405         int option;
406
407         uopt->novrs = 0;
408         uopt->blocksize = UDF_DEFAULT_BLOCKSIZE;
409         uopt->partition = 0xFFFF;
410         uopt->session = 0xFFFFFFFF;
411         uopt->lastblock = 0;
412         uopt->anchor = 0;
413         uopt->volume = 0xFFFFFFFF;
414         uopt->rootdir = 0xFFFFFFFF;
415         uopt->fileset = 0xFFFFFFFF;
416         uopt->nls_map = NULL;
417
418         if (!options)
419                 return 1;
420
421         while ((p = strsep(&options, ",")) != NULL) {
422                 substring_t args[MAX_OPT_ARGS];
423                 int token;
424                 if (!*p)
425                         continue;
426
427                 token = match_token(p, tokens, args);
428                 switch (token) {
429                 case Opt_novrs:
430                         uopt->novrs = 1;
431                 case Opt_bs:
432                         if (match_int(&args[0], &option))
433                                 return 0;
434                         uopt->blocksize = option;
435                         break;
436                 case Opt_unhide:
437                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
438                         break;
439                 case Opt_undelete:
440                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
441                         break;
442                 case Opt_noadinicb:
443                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
444                         break;
445                 case Opt_adinicb:
446                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
447                         break;
448                 case Opt_shortad:
449                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
450                         break;
451                 case Opt_longad:
452                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
453                         break;
454                 case Opt_gid:
455                         if (match_int(args, &option))
456                                 return 0;
457                         uopt->gid = option;
458                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
459                         break;
460                 case Opt_uid:
461                         if (match_int(args, &option))
462                                 return 0;
463                         uopt->uid = option;
464                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
465                         break;
466                 case Opt_umask:
467                         if (match_octal(args, &option))
468                                 return 0;
469                         uopt->umask = option;
470                         break;
471                 case Opt_nostrict:
472                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
473                         break;
474                 case Opt_session:
475                         if (match_int(args, &option))
476                                 return 0;
477                         uopt->session = option;
478                         if (!remount)
479                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
480                         break;
481                 case Opt_lastblock:
482                         if (match_int(args, &option))
483                                 return 0;
484                         uopt->lastblock = option;
485                         if (!remount)
486                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
487                         break;
488                 case Opt_anchor:
489                         if (match_int(args, &option))
490                                 return 0;
491                         uopt->anchor = option;
492                         break;
493                 case Opt_volume:
494                         if (match_int(args, &option))
495                                 return 0;
496                         uopt->volume = option;
497                         break;
498                 case Opt_partition:
499                         if (match_int(args, &option))
500                                 return 0;
501                         uopt->partition = option;
502                         break;
503                 case Opt_fileset:
504                         if (match_int(args, &option))
505                                 return 0;
506                         uopt->fileset = option;
507                         break;
508                 case Opt_rootdir:
509                         if (match_int(args, &option))
510                                 return 0;
511                         uopt->rootdir = option;
512                         break;
513                 case Opt_utf8:
514                         uopt->flags |= (1 << UDF_FLAG_UTF8);
515                         break;
516 #ifdef CONFIG_UDF_NLS
517                 case Opt_iocharset:
518                         uopt->nls_map = load_nls(args[0].from);
519                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
520                         break;
521 #endif
522                 case Opt_uignore:
523                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
524                         break;
525                 case Opt_uforget:
526                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
527                         break;
528                 case Opt_gignore:
529                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
530                         break;
531                 case Opt_gforget:
532                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
533                         break;
534                 default:
535                         printk(KERN_ERR "udf: bad mount option \"%s\" "
536                                "or missing value\n", p);
537                         return 0;
538                 }
539         }
540         return 1;
541 }
542
543 static void udf_write_super(struct super_block *sb)
544 {
545         lock_kernel();
546
547         if (!(sb->s_flags & MS_RDONLY))
548                 udf_open_lvid(sb);
549         sb->s_dirt = 0;
550
551         unlock_kernel();
552 }
553
554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
555 {
556         struct udf_options uopt;
557         struct udf_sb_info *sbi = UDF_SB(sb);
558
559         uopt.flags = sbi->s_flags;
560         uopt.uid   = sbi->s_uid;
561         uopt.gid   = sbi->s_gid;
562         uopt.umask = sbi->s_umask;
563
564         if (!udf_parse_options(options, &uopt, true))
565                 return -EINVAL;
566
567         sbi->s_flags = uopt.flags;
568         sbi->s_uid   = uopt.uid;
569         sbi->s_gid   = uopt.gid;
570         sbi->s_umask = uopt.umask;
571
572         if (sbi->s_lvid_bh) {
573                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
574                 if (write_rev > UDF_MAX_WRITE_VERSION)
575                         *flags |= MS_RDONLY;
576         }
577
578         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
579                 return 0;
580         if (*flags & MS_RDONLY)
581                 udf_close_lvid(sb);
582         else
583                 udf_open_lvid(sb);
584
585         return 0;
586 }
587
588 static int udf_vrs(struct super_block *sb, int silent)
589 {
590         struct volStructDesc *vsd = NULL;
591         loff_t sector = 32768;
592         int sectorsize;
593         struct buffer_head *bh = NULL;
594         int iso9660 = 0;
595         int nsr02 = 0;
596         int nsr03 = 0;
597         struct udf_sb_info *sbi;
598
599         /* Block size must be a multiple of 512 */
600         if (sb->s_blocksize & 511)
601                 return 0;
602         sbi = UDF_SB(sb);
603
604         if (sb->s_blocksize < sizeof(struct volStructDesc))
605                 sectorsize = sizeof(struct volStructDesc);
606         else
607                 sectorsize = sb->s_blocksize;
608
609         sector += (sbi->s_session << sb->s_blocksize_bits);
610
611         udf_debug("Starting at sector %u (%ld byte sectors)\n",
612                   (unsigned int)(sector >> sb->s_blocksize_bits),
613                   sb->s_blocksize);
614         /* Process the sequence (if applicable) */
615         for (; !nsr02 && !nsr03; sector += sectorsize) {
616                 /* Read a block */
617                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
618                 if (!bh)
619                         break;
620
621                 /* Look for ISO  descriptors */
622                 vsd = (struct volStructDesc *)(bh->b_data +
623                                               (sector & (sb->s_blocksize - 1)));
624
625                 if (vsd->stdIdent[0] == 0) {
626                         brelse(bh);
627                         break;
628                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
629                                     VSD_STD_ID_LEN)) {
630                         iso9660 = sector;
631                         switch (vsd->structType) {
632                         case 0:
633                                 udf_debug("ISO9660 Boot Record found\n");
634                                 break;
635                         case 1:
636                                 udf_debug("ISO9660 Primary Volume Descriptor "
637                                           "found\n");
638                                 break;
639                         case 2:
640                                 udf_debug("ISO9660 Supplementary Volume "
641                                           "Descriptor found\n");
642                                 break;
643                         case 3:
644                                 udf_debug("ISO9660 Volume Partition Descriptor "
645                                           "found\n");
646                                 break;
647                         case 255:
648                                 udf_debug("ISO9660 Volume Descriptor Set "
649                                           "Terminator found\n");
650                                 break;
651                         default:
652                                 udf_debug("ISO9660 VRS (%u) found\n",
653                                           vsd->structType);
654                                 break;
655                         }
656                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
657                                     VSD_STD_ID_LEN))
658                         ; /* nothing */
659                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
660                                     VSD_STD_ID_LEN)) {
661                         brelse(bh);
662                         break;
663                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
664                                     VSD_STD_ID_LEN))
665                         nsr02 = sector;
666                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
667                                     VSD_STD_ID_LEN))
668                         nsr03 = sector;
669                 brelse(bh);
670         }
671
672         if (nsr03)
673                 return nsr03;
674         else if (nsr02)
675                 return nsr02;
676         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
677                 return -1;
678         else
679                 return 0;
680 }
681
682 /*
683  * Check whether there is an anchor block in the given block
684  */
685 static int udf_check_anchor_block(struct super_block *sb, sector_t block)
686 {
687         struct buffer_head *bh;
688         uint16_t ident;
689
690         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
691             udf_fixed_to_variable(block) >=
692             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
693                 return 0;
694
695         bh = udf_read_tagged(sb, block, block, &ident);
696         if (!bh)
697                 return 0;
698         brelse(bh);
699
700         return ident == TAG_IDENT_AVDP;
701 }
702
703 /* Search for an anchor volume descriptor pointer */
704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock)
705 {
706         sector_t last[6];
707         int i;
708         struct udf_sb_info *sbi = UDF_SB(sb);
709
710         last[0] = lastblock;
711         last[1] = last[0] - 1;
712         last[2] = last[0] + 1;
713         last[3] = last[0] - 2;
714         last[4] = last[0] - 150;
715         last[5] = last[0] - 152;
716
717         /*  according to spec, anchor is in either:
718          *     block 256
719          *     lastblock-256
720          *     lastblock
721          *  however, if the disc isn't closed, it could be 512 */
722
723         for (i = 0; i < ARRAY_SIZE(last); i++) {
724                 if (last[i] < 0)
725                         continue;
726                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
727                                 sb->s_blocksize_bits)
728                         continue;
729
730                 if (udf_check_anchor_block(sb, last[i])) {
731                         sbi->s_anchor[0] = last[i];
732                         sbi->s_anchor[1] = last[i] - 256;
733                         return last[i];
734                 }
735
736                 if (last[i] < 256)
737                         continue;
738
739                 if (udf_check_anchor_block(sb, last[i] - 256)) {
740                         sbi->s_anchor[1] = last[i] - 256;
741                         return last[i];
742                 }
743         }
744
745         if (udf_check_anchor_block(sb, sbi->s_session + 256)) {
746                 sbi->s_anchor[0] = sbi->s_session + 256;
747                 return last[0];
748         }
749         if (udf_check_anchor_block(sb, sbi->s_session + 512)) {
750                 sbi->s_anchor[0] = sbi->s_session + 512;
751                 return last[0];
752         }
753         return 0;
754 }
755
756 /*
757  * Find an anchor volume descriptor. The function expects sbi->s_lastblock to
758  * be the last block on the media.
759  *
760  * Return 1 if not found, 0 if ok
761  *
762  */
763 static void udf_find_anchor(struct super_block *sb)
764 {
765         sector_t lastblock;
766         struct buffer_head *bh = NULL;
767         uint16_t ident;
768         int i;
769         struct udf_sb_info *sbi = UDF_SB(sb);
770
771         lastblock = udf_scan_anchors(sb, sbi->s_last_block);
772         if (lastblock)
773                 goto check_anchor;
774
775         /* No anchor found? Try VARCONV conversion of block numbers */
776         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
777         /* Firstly, we try to not convert number of the last block */
778         lastblock = udf_scan_anchors(sb,
779                                 udf_variable_to_fixed(sbi->s_last_block));
780         if (lastblock)
781                 goto check_anchor;
782
783         /* Secondly, we try with converted number of the last block */
784         lastblock = udf_scan_anchors(sb, sbi->s_last_block);
785         if (!lastblock) {
786                 /* VARCONV didn't help. Clear it. */
787                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
788         }
789
790 check_anchor:
791         /*
792          * Check located anchors and the anchor block supplied via
793          * mount options
794          */
795         for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
796                 if (!sbi->s_anchor[i])
797                         continue;
798                 bh = udf_read_tagged(sb, sbi->s_anchor[i],
799                                         sbi->s_anchor[i], &ident);
800                 if (!bh)
801                         sbi->s_anchor[i] = 0;
802                 else {
803                         brelse(bh);
804                         if (ident != TAG_IDENT_AVDP)
805                                 sbi->s_anchor[i] = 0;
806                 }
807         }
808
809         sbi->s_last_block = lastblock;
810 }
811
812 static int udf_find_fileset(struct super_block *sb,
813                             struct kernel_lb_addr *fileset,
814                             struct kernel_lb_addr *root)
815 {
816         struct buffer_head *bh = NULL;
817         long lastblock;
818         uint16_t ident;
819         struct udf_sb_info *sbi;
820
821         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
822             fileset->partitionReferenceNum != 0xFFFF) {
823                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
824
825                 if (!bh) {
826                         return 1;
827                 } else if (ident != TAG_IDENT_FSD) {
828                         brelse(bh);
829                         return 1;
830                 }
831
832         }
833
834         sbi = UDF_SB(sb);
835         if (!bh) {
836                 /* Search backwards through the partitions */
837                 struct kernel_lb_addr newfileset;
838
839 /* --> cvg: FIXME - is it reasonable? */
840                 return 1;
841
842                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
843                      (newfileset.partitionReferenceNum != 0xFFFF &&
844                       fileset->logicalBlockNum == 0xFFFFFFFF &&
845                       fileset->partitionReferenceNum == 0xFFFF);
846                      newfileset.partitionReferenceNum--) {
847                         lastblock = sbi->s_partmaps
848                                         [newfileset.partitionReferenceNum]
849                                                 .s_partition_len;
850                         newfileset.logicalBlockNum = 0;
851
852                         do {
853                                 bh = udf_read_ptagged(sb, &newfileset, 0,
854                                                       &ident);
855                                 if (!bh) {
856                                         newfileset.logicalBlockNum++;
857                                         continue;
858                                 }
859
860                                 switch (ident) {
861                                 case TAG_IDENT_SBD:
862                                 {
863                                         struct spaceBitmapDesc *sp;
864                                         sp = (struct spaceBitmapDesc *)
865                                                                 bh->b_data;
866                                         newfileset.logicalBlockNum += 1 +
867                                                 ((le32_to_cpu(sp->numOfBytes) +
868                                                   sizeof(struct spaceBitmapDesc)
869                                                   - 1) >> sb->s_blocksize_bits);
870                                         brelse(bh);
871                                         break;
872                                 }
873                                 case TAG_IDENT_FSD:
874                                         *fileset = newfileset;
875                                         break;
876                                 default:
877                                         newfileset.logicalBlockNum++;
878                                         brelse(bh);
879                                         bh = NULL;
880                                         break;
881                                 }
882                         } while (newfileset.logicalBlockNum < lastblock &&
883                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
884                                  fileset->partitionReferenceNum == 0xFFFF);
885                 }
886         }
887
888         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
889              fileset->partitionReferenceNum != 0xFFFF) && bh) {
890                 udf_debug("Fileset at block=%d, partition=%d\n",
891                           fileset->logicalBlockNum,
892                           fileset->partitionReferenceNum);
893
894                 sbi->s_partition = fileset->partitionReferenceNum;
895                 udf_load_fileset(sb, bh, root);
896                 brelse(bh);
897                 return 0;
898         }
899         return 1;
900 }
901
902 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
903 {
904         struct primaryVolDesc *pvoldesc;
905         struct ustr *instr, *outstr;
906         struct buffer_head *bh;
907         uint16_t ident;
908         int ret = 1;
909
910         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
911         if (!instr)
912                 return 1;
913
914         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
915         if (!outstr)
916                 goto out1;
917
918         bh = udf_read_tagged(sb, block, block, &ident);
919         if (!bh)
920                 goto out2;
921
922         BUG_ON(ident != TAG_IDENT_PVD);
923
924         pvoldesc = (struct primaryVolDesc *)bh->b_data;
925
926         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
927                               pvoldesc->recordingDateAndTime)) {
928 #ifdef UDFFS_DEBUG
929                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
930                 udf_debug("recording time %04u/%02u/%02u"
931                           " %02u:%02u (%x)\n",
932                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
933                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
934 #endif
935         }
936
937         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
938                 if (udf_CS0toUTF8(outstr, instr)) {
939                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
940                                 outstr->u_len > 31 ? 31 : outstr->u_len);
941                         udf_debug("volIdent[] = '%s'\n",
942                                         UDF_SB(sb)->s_volume_ident);
943                 }
944
945         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
946                 if (udf_CS0toUTF8(outstr, instr))
947                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
948
949         brelse(bh);
950         ret = 0;
951 out2:
952         kfree(outstr);
953 out1:
954         kfree(instr);
955         return ret;
956 }
957
958 static int udf_load_metadata_files(struct super_block *sb, int partition)
959 {
960         struct udf_sb_info *sbi = UDF_SB(sb);
961         struct udf_part_map *map;
962         struct udf_meta_data *mdata;
963         struct kernel_lb_addr addr;
964         int fe_error = 0;
965
966         map = &sbi->s_partmaps[partition];
967         mdata = &map->s_type_specific.s_metadata;
968
969         /* metadata address */
970         addr.logicalBlockNum =  mdata->s_meta_file_loc;
971         addr.partitionReferenceNum = map->s_partition_num;
972
973         udf_debug("Metadata file location: block = %d part = %d\n",
974                           addr.logicalBlockNum, addr.partitionReferenceNum);
975
976         mdata->s_metadata_fe = udf_iget(sb, &addr);
977
978         if (mdata->s_metadata_fe == NULL) {
979                 udf_warning(sb, __func__, "metadata inode efe not found, "
980                                 "will try mirror inode.");
981                 fe_error = 1;
982         } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
983                  ICBTAG_FLAG_AD_SHORT) {
984                 udf_warning(sb, __func__, "metadata inode efe does not have "
985                         "short allocation descriptors!");
986                 fe_error = 1;
987                 iput(mdata->s_metadata_fe);
988                 mdata->s_metadata_fe = NULL;
989         }
990
991         /* mirror file entry */
992         addr.logicalBlockNum = mdata->s_mirror_file_loc;
993         addr.partitionReferenceNum = map->s_partition_num;
994
995         udf_debug("Mirror metadata file location: block = %d part = %d\n",
996                           addr.logicalBlockNum, addr.partitionReferenceNum);
997
998         mdata->s_mirror_fe = udf_iget(sb, &addr);
999
1000         if (mdata->s_mirror_fe == NULL) {
1001                 if (fe_error) {
1002                         udf_error(sb, __func__, "mirror inode efe not found "
1003                         "and metadata inode is missing too, exiting...");
1004                         goto error_exit;
1005                 } else
1006                         udf_warning(sb, __func__, "mirror inode efe not found,"
1007                                         " but metadata inode is OK");
1008         } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
1009                  ICBTAG_FLAG_AD_SHORT) {
1010                 udf_warning(sb, __func__, "mirror inode efe does not have "
1011                         "short allocation descriptors!");
1012                 iput(mdata->s_mirror_fe);
1013                 mdata->s_mirror_fe = NULL;
1014                 if (fe_error)
1015                         goto error_exit;
1016         }
1017
1018         /*
1019          * bitmap file entry
1020          * Note:
1021          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1022         */
1023         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1024                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1025                 addr.partitionReferenceNum = map->s_partition_num;
1026
1027                 udf_debug("Bitmap file location: block = %d part = %d\n",
1028                         addr.logicalBlockNum, addr.partitionReferenceNum);
1029
1030                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1031
1032                 if (mdata->s_bitmap_fe == NULL) {
1033                         if (sb->s_flags & MS_RDONLY)
1034                                 udf_warning(sb, __func__, "bitmap inode efe "
1035                                         "not found but it's ok since the disc"
1036                                         " is mounted read-only");
1037                         else {
1038                                 udf_error(sb, __func__, "bitmap inode efe not "
1039                                         "found and attempted read-write mount");
1040                                 goto error_exit;
1041                         }
1042                 }
1043         }
1044
1045         udf_debug("udf_load_metadata_files Ok\n");
1046
1047         return 0;
1048
1049 error_exit:
1050         return 1;
1051 }
1052
1053 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1054                              struct kernel_lb_addr *root)
1055 {
1056         struct fileSetDesc *fset;
1057
1058         fset = (struct fileSetDesc *)bh->b_data;
1059
1060         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1061
1062         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1063
1064         udf_debug("Rootdir at block=%d, partition=%d\n",
1065                   root->logicalBlockNum, root->partitionReferenceNum);
1066 }
1067
1068 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1069 {
1070         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1071         return DIV_ROUND_UP(map->s_partition_len +
1072                             (sizeof(struct spaceBitmapDesc) << 3),
1073                             sb->s_blocksize * 8);
1074 }
1075
1076 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1077 {
1078         struct udf_bitmap *bitmap;
1079         int nr_groups;
1080         int size;
1081
1082         nr_groups = udf_compute_nr_groups(sb, index);
1083         size = sizeof(struct udf_bitmap) +
1084                 (sizeof(struct buffer_head *) * nr_groups);
1085
1086         if (size <= PAGE_SIZE)
1087                 bitmap = kmalloc(size, GFP_KERNEL);
1088         else
1089                 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
1090
1091         if (bitmap == NULL) {
1092                 udf_error(sb, __func__,
1093                           "Unable to allocate space for bitmap "
1094                           "and %d buffer_head pointers", nr_groups);
1095                 return NULL;
1096         }
1097
1098         memset(bitmap, 0x00, size);
1099         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1100         bitmap->s_nr_groups = nr_groups;
1101         return bitmap;
1102 }
1103
1104 static int udf_fill_partdesc_info(struct super_block *sb,
1105                 struct partitionDesc *p, int p_index)
1106 {
1107         struct udf_part_map *map;
1108         struct udf_sb_info *sbi = UDF_SB(sb);
1109         struct partitionHeaderDesc *phd;
1110
1111         map = &sbi->s_partmaps[p_index];
1112
1113         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1114         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1115
1116         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1117                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1118         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1119                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1120         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1121                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1122         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1123                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1124
1125         udf_debug("Partition (%d type %x) starts at physical %d, "
1126                   "block length %d\n", p_index,
1127                   map->s_partition_type, map->s_partition_root,
1128                   map->s_partition_len);
1129
1130         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1131             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1132                 return 0;
1133
1134         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1135         if (phd->unallocSpaceTable.extLength) {
1136                 struct kernel_lb_addr loc = {
1137                         .logicalBlockNum = le32_to_cpu(
1138                                 phd->unallocSpaceTable.extPosition),
1139                         .partitionReferenceNum = p_index,
1140                 };
1141
1142                 map->s_uspace.s_table = udf_iget(sb, &loc);
1143                 if (!map->s_uspace.s_table) {
1144                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1145                                         p_index);
1146                         return 1;
1147                 }
1148                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1149                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1150                                 p_index, map->s_uspace.s_table->i_ino);
1151         }
1152
1153         if (phd->unallocSpaceBitmap.extLength) {
1154                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1155                 if (!bitmap)
1156                         return 1;
1157                 map->s_uspace.s_bitmap = bitmap;
1158                 bitmap->s_extLength = le32_to_cpu(
1159                                 phd->unallocSpaceBitmap.extLength);
1160                 bitmap->s_extPosition = le32_to_cpu(
1161                                 phd->unallocSpaceBitmap.extPosition);
1162                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1163                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1164                                                 bitmap->s_extPosition);
1165         }
1166
1167         if (phd->partitionIntegrityTable.extLength)
1168                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1169
1170         if (phd->freedSpaceTable.extLength) {
1171                 struct kernel_lb_addr loc = {
1172                         .logicalBlockNum = le32_to_cpu(
1173                                 phd->freedSpaceTable.extPosition),
1174                         .partitionReferenceNum = p_index,
1175                 };
1176
1177                 map->s_fspace.s_table = udf_iget(sb, &loc);
1178                 if (!map->s_fspace.s_table) {
1179                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1180                                 p_index);
1181                         return 1;
1182                 }
1183
1184                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1185                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1186                                 p_index, map->s_fspace.s_table->i_ino);
1187         }
1188
1189         if (phd->freedSpaceBitmap.extLength) {
1190                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1191                 if (!bitmap)
1192                         return 1;
1193                 map->s_fspace.s_bitmap = bitmap;
1194                 bitmap->s_extLength = le32_to_cpu(
1195                                 phd->freedSpaceBitmap.extLength);
1196                 bitmap->s_extPosition = le32_to_cpu(
1197                                 phd->freedSpaceBitmap.extPosition);
1198                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1199                 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1200                                         bitmap->s_extPosition);
1201         }
1202         return 0;
1203 }
1204
1205 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1206 {
1207         struct udf_sb_info *sbi = UDF_SB(sb);
1208         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1209         struct kernel_lb_addr ino;
1210         struct buffer_head *bh = NULL;
1211         struct udf_inode_info *vati;
1212         uint32_t pos;
1213         struct virtualAllocationTable20 *vat20;
1214
1215         /* VAT file entry is in the last recorded block */
1216         ino.partitionReferenceNum = type1_index;
1217         ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1218         sbi->s_vat_inode = udf_iget(sb, &ino);
1219         if (!sbi->s_vat_inode)
1220                 return 1;
1221
1222         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1223                 map->s_type_specific.s_virtual.s_start_offset = 0;
1224                 map->s_type_specific.s_virtual.s_num_entries =
1225                         (sbi->s_vat_inode->i_size - 36) >> 2;
1226         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1227                 vati = UDF_I(sbi->s_vat_inode);
1228                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1229                         pos = udf_block_map(sbi->s_vat_inode, 0);
1230                         bh = sb_bread(sb, pos);
1231                         if (!bh)
1232                                 return 1;
1233                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1234                 } else {
1235                         vat20 = (struct virtualAllocationTable20 *)
1236                                                         vati->i_ext.i_data;
1237                 }
1238
1239                 map->s_type_specific.s_virtual.s_start_offset =
1240                         le16_to_cpu(vat20->lengthHeader);
1241                 map->s_type_specific.s_virtual.s_num_entries =
1242                         (sbi->s_vat_inode->i_size -
1243                                 map->s_type_specific.s_virtual.
1244                                         s_start_offset) >> 2;
1245                 brelse(bh);
1246         }
1247         return 0;
1248 }
1249
1250 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1251 {
1252         struct buffer_head *bh;
1253         struct partitionDesc *p;
1254         struct udf_part_map *map;
1255         struct udf_sb_info *sbi = UDF_SB(sb);
1256         int i, type1_idx;
1257         uint16_t partitionNumber;
1258         uint16_t ident;
1259         int ret = 0;
1260
1261         bh = udf_read_tagged(sb, block, block, &ident);
1262         if (!bh)
1263                 return 1;
1264         if (ident != TAG_IDENT_PD)
1265                 goto out_bh;
1266
1267         p = (struct partitionDesc *)bh->b_data;
1268         partitionNumber = le16_to_cpu(p->partitionNumber);
1269
1270         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1271         for (i = 0; i < sbi->s_partitions; i++) {
1272                 map = &sbi->s_partmaps[i];
1273                 udf_debug("Searching map: (%d == %d)\n",
1274                           map->s_partition_num, partitionNumber);
1275                 if (map->s_partition_num == partitionNumber &&
1276                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1277                      map->s_partition_type == UDF_SPARABLE_MAP15))
1278                         break;
1279         }
1280
1281         if (i >= sbi->s_partitions) {
1282                 udf_debug("Partition (%d) not found in partition map\n",
1283                           partitionNumber);
1284                 goto out_bh;
1285         }
1286
1287         ret = udf_fill_partdesc_info(sb, p, i);
1288
1289         /*
1290          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1291          * PHYSICAL partitions are already set up
1292          */
1293         type1_idx = i;
1294         for (i = 0; i < sbi->s_partitions; i++) {
1295                 map = &sbi->s_partmaps[i];
1296
1297                 if (map->s_partition_num == partitionNumber &&
1298                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1299                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1300                      map->s_partition_type == UDF_METADATA_MAP25))
1301                         break;
1302         }
1303
1304         if (i >= sbi->s_partitions)
1305                 goto out_bh;
1306
1307         ret = udf_fill_partdesc_info(sb, p, i);
1308         if (ret)
1309                 goto out_bh;
1310
1311         if (map->s_partition_type == UDF_METADATA_MAP25) {
1312                 ret = udf_load_metadata_files(sb, i);
1313                 if (ret) {
1314                         printk(KERN_ERR "UDF-fs: error loading MetaData "
1315                         "partition map %d\n", i);
1316                         goto out_bh;
1317                 }
1318         } else {
1319                 ret = udf_load_vat(sb, i, type1_idx);
1320                 if (ret)
1321                         goto out_bh;
1322                 /*
1323                  * Mark filesystem read-only if we have a partition with
1324                  * virtual map since we don't handle writing to it (we
1325                  * overwrite blocks instead of relocating them).
1326                  */
1327                 sb->s_flags |= MS_RDONLY;
1328                 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1329                         "because writing to pseudooverwrite partition is "
1330                         "not implemented.\n");
1331         }
1332 out_bh:
1333         /* In case loading failed, we handle cleanup in udf_fill_super */
1334         brelse(bh);
1335         return ret;
1336 }
1337
1338 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1339                                struct kernel_lb_addr *fileset)
1340 {
1341         struct logicalVolDesc *lvd;
1342         int i, j, offset;
1343         uint8_t type;
1344         struct udf_sb_info *sbi = UDF_SB(sb);
1345         struct genericPartitionMap *gpm;
1346         uint16_t ident;
1347         struct buffer_head *bh;
1348         int ret = 0;
1349
1350         bh = udf_read_tagged(sb, block, block, &ident);
1351         if (!bh)
1352                 return 1;
1353         BUG_ON(ident != TAG_IDENT_LVD);
1354         lvd = (struct logicalVolDesc *)bh->b_data;
1355
1356         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1357         if (i != 0) {
1358                 ret = i;
1359                 goto out_bh;
1360         }
1361
1362         for (i = 0, offset = 0;
1363              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1364              i++, offset += gpm->partitionMapLength) {
1365                 struct udf_part_map *map = &sbi->s_partmaps[i];
1366                 gpm = (struct genericPartitionMap *)
1367                                 &(lvd->partitionMaps[offset]);
1368                 type = gpm->partitionMapType;
1369                 if (type == 1) {
1370                         struct genericPartitionMap1 *gpm1 =
1371                                 (struct genericPartitionMap1 *)gpm;
1372                         map->s_partition_type = UDF_TYPE1_MAP15;
1373                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1374                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1375                         map->s_partition_func = NULL;
1376                 } else if (type == 2) {
1377                         struct udfPartitionMap2 *upm2 =
1378                                                 (struct udfPartitionMap2 *)gpm;
1379                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1380                                                 strlen(UDF_ID_VIRTUAL))) {
1381                                 u16 suf =
1382                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1383                                                         identSuffix)[0]);
1384                                 if (suf < 0x0200) {
1385                                         map->s_partition_type =
1386                                                         UDF_VIRTUAL_MAP15;
1387                                         map->s_partition_func =
1388                                                         udf_get_pblock_virt15;
1389                                 } else {
1390                                         map->s_partition_type =
1391                                                         UDF_VIRTUAL_MAP20;
1392                                         map->s_partition_func =
1393                                                         udf_get_pblock_virt20;
1394                                 }
1395                         } else if (!strncmp(upm2->partIdent.ident,
1396                                                 UDF_ID_SPARABLE,
1397                                                 strlen(UDF_ID_SPARABLE))) {
1398                                 uint32_t loc;
1399                                 struct sparingTable *st;
1400                                 struct sparablePartitionMap *spm =
1401                                         (struct sparablePartitionMap *)gpm;
1402
1403                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1404                                 map->s_type_specific.s_sparing.s_packet_len =
1405                                                 le16_to_cpu(spm->packetLength);
1406                                 for (j = 0; j < spm->numSparingTables; j++) {
1407                                         struct buffer_head *bh2;
1408
1409                                         loc = le32_to_cpu(
1410                                                 spm->locSparingTable[j]);
1411                                         bh2 = udf_read_tagged(sb, loc, loc,
1412                                                              &ident);
1413                                         map->s_type_specific.s_sparing.
1414                                                         s_spar_map[j] = bh2;
1415
1416                                         if (bh2 == NULL)
1417                                                 continue;
1418
1419                                         st = (struct sparingTable *)bh2->b_data;
1420                                         if (ident != 0 || strncmp(
1421                                                 st->sparingIdent.ident,
1422                                                 UDF_ID_SPARING,
1423                                                 strlen(UDF_ID_SPARING))) {
1424                                                 brelse(bh2);
1425                                                 map->s_type_specific.s_sparing.
1426                                                         s_spar_map[j] = NULL;
1427                                         }
1428                                 }
1429                                 map->s_partition_func = udf_get_pblock_spar15;
1430                         } else if (!strncmp(upm2->partIdent.ident,
1431                                                 UDF_ID_METADATA,
1432                                                 strlen(UDF_ID_METADATA))) {
1433                                 struct udf_meta_data *mdata =
1434                                         &map->s_type_specific.s_metadata;
1435                                 struct metadataPartitionMap *mdm =
1436                                                 (struct metadataPartitionMap *)
1437                                                 &(lvd->partitionMaps[offset]);
1438                                 udf_debug("Parsing Logical vol part %d "
1439                                         "type %d  id=%s\n", i, type,
1440                                         UDF_ID_METADATA);
1441
1442                                 map->s_partition_type = UDF_METADATA_MAP25;
1443                                 map->s_partition_func = udf_get_pblock_meta25;
1444
1445                                 mdata->s_meta_file_loc   =
1446                                         le32_to_cpu(mdm->metadataFileLoc);
1447                                 mdata->s_mirror_file_loc =
1448                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1449                                 mdata->s_bitmap_file_loc =
1450                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1451                                 mdata->s_alloc_unit_size =
1452                                         le32_to_cpu(mdm->allocUnitSize);
1453                                 mdata->s_align_unit_size =
1454                                         le16_to_cpu(mdm->alignUnitSize);
1455                                 mdata->s_dup_md_flag     =
1456                                         mdm->flags & 0x01;
1457
1458                                 udf_debug("Metadata Ident suffix=0x%x\n",
1459                                         (le16_to_cpu(
1460                                          ((__le16 *)
1461                                               mdm->partIdent.identSuffix)[0])));
1462                                 udf_debug("Metadata part num=%d\n",
1463                                         le16_to_cpu(mdm->partitionNum));
1464                                 udf_debug("Metadata part alloc unit size=%d\n",
1465                                         le32_to_cpu(mdm->allocUnitSize));
1466                                 udf_debug("Metadata file loc=%d\n",
1467                                         le32_to_cpu(mdm->metadataFileLoc));
1468                                 udf_debug("Mirror file loc=%d\n",
1469                                        le32_to_cpu(mdm->metadataMirrorFileLoc));
1470                                 udf_debug("Bitmap file loc=%d\n",
1471                                        le32_to_cpu(mdm->metadataBitmapFileLoc));
1472                                 udf_debug("Duplicate Flag: %d %d\n",
1473                                         mdata->s_dup_md_flag, mdm->flags);
1474                         } else {
1475                                 udf_debug("Unknown ident: %s\n",
1476                                           upm2->partIdent.ident);
1477                                 continue;
1478                         }
1479                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1480                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1481                 }
1482                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1483                           i, map->s_partition_num, type,
1484                           map->s_volumeseqnum);
1485         }
1486
1487         if (fileset) {
1488                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1489
1490                 *fileset = lelb_to_cpu(la->extLocation);
1491                 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1492                           "partition=%d\n", fileset->logicalBlockNum,
1493                           fileset->partitionReferenceNum);
1494         }
1495         if (lvd->integritySeqExt.extLength)
1496                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1497
1498 out_bh:
1499         brelse(bh);
1500         return ret;
1501 }
1502
1503 /*
1504  * udf_load_logicalvolint
1505  *
1506  */
1507 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1508 {
1509         struct buffer_head *bh = NULL;
1510         uint16_t ident;
1511         struct udf_sb_info *sbi = UDF_SB(sb);
1512         struct logicalVolIntegrityDesc *lvid;
1513
1514         while (loc.extLength > 0 &&
1515                (bh = udf_read_tagged(sb, loc.extLocation,
1516                                      loc.extLocation, &ident)) &&
1517                ident == TAG_IDENT_LVID) {
1518                 sbi->s_lvid_bh = bh;
1519                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1520
1521                 if (lvid->nextIntegrityExt.extLength)
1522                         udf_load_logicalvolint(sb,
1523                                 leea_to_cpu(lvid->nextIntegrityExt));
1524
1525                 if (sbi->s_lvid_bh != bh)
1526                         brelse(bh);
1527                 loc.extLength -= sb->s_blocksize;
1528                 loc.extLocation++;
1529         }
1530         if (sbi->s_lvid_bh != bh)
1531                 brelse(bh);
1532 }
1533
1534 /*
1535  * udf_process_sequence
1536  *
1537  * PURPOSE
1538  *      Process a main/reserve volume descriptor sequence.
1539  *
1540  * PRE-CONDITIONS
1541  *      sb                      Pointer to _locked_ superblock.
1542  *      block                   First block of first extent of the sequence.
1543  *      lastblock               Lastblock of first extent of the sequence.
1544  *
1545  * HISTORY
1546  *      July 1, 1997 - Andrew E. Mileski
1547  *      Written, tested, and released.
1548  */
1549 static noinline int udf_process_sequence(struct super_block *sb, long block,
1550                                 long lastblock, struct kernel_lb_addr *fileset)
1551 {
1552         struct buffer_head *bh = NULL;
1553         struct udf_vds_record vds[VDS_POS_LENGTH];
1554         struct udf_vds_record *curr;
1555         struct generic_desc *gd;
1556         struct volDescPtr *vdp;
1557         int done = 0;
1558         uint32_t vdsn;
1559         uint16_t ident;
1560         long next_s = 0, next_e = 0;
1561
1562         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1563
1564         /*
1565          * Read the main descriptor sequence and find which descriptors
1566          * are in it.
1567          */
1568         for (; (!done && block <= lastblock); block++) {
1569
1570                 bh = udf_read_tagged(sb, block, block, &ident);
1571                 if (!bh) {
1572                         printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1573                                "sequence is corrupted or we could not read "
1574                                "it.\n", (unsigned long long)block);
1575                         return 1;
1576                 }
1577
1578                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1579                 gd = (struct generic_desc *)bh->b_data;
1580                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1581                 switch (ident) {
1582                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1583                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1584                         if (vdsn >= curr->volDescSeqNum) {
1585                                 curr->volDescSeqNum = vdsn;
1586                                 curr->block = block;
1587                         }
1588                         break;
1589                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1590                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1591                         if (vdsn >= curr->volDescSeqNum) {
1592                                 curr->volDescSeqNum = vdsn;
1593                                 curr->block = block;
1594
1595                                 vdp = (struct volDescPtr *)bh->b_data;
1596                                 next_s = le32_to_cpu(
1597                                         vdp->nextVolDescSeqExt.extLocation);
1598                                 next_e = le32_to_cpu(
1599                                         vdp->nextVolDescSeqExt.extLength);
1600                                 next_e = next_e >> sb->s_blocksize_bits;
1601                                 next_e += next_s;
1602                         }
1603                         break;
1604                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1605                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1606                         if (vdsn >= curr->volDescSeqNum) {
1607                                 curr->volDescSeqNum = vdsn;
1608                                 curr->block = block;
1609                         }
1610                         break;
1611                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1612                         curr = &vds[VDS_POS_PARTITION_DESC];
1613                         if (!curr->block)
1614                                 curr->block = block;
1615                         break;
1616                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1617                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1618                         if (vdsn >= curr->volDescSeqNum) {
1619                                 curr->volDescSeqNum = vdsn;
1620                                 curr->block = block;
1621                         }
1622                         break;
1623                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1624                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1625                         if (vdsn >= curr->volDescSeqNum) {
1626                                 curr->volDescSeqNum = vdsn;
1627                                 curr->block = block;
1628                         }
1629                         break;
1630                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1631                         vds[VDS_POS_TERMINATING_DESC].block = block;
1632                         if (next_e) {
1633                                 block = next_s;
1634                                 lastblock = next_e;
1635                                 next_s = next_e = 0;
1636                         } else
1637                                 done = 1;
1638                         break;
1639                 }
1640                 brelse(bh);
1641         }
1642         /*
1643          * Now read interesting descriptors again and process them
1644          * in a suitable order
1645          */
1646         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1647                 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1648                 return 1;
1649         }
1650         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1651                 return 1;
1652
1653         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1654             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1655                 return 1;
1656
1657         if (vds[VDS_POS_PARTITION_DESC].block) {
1658                 /*
1659                  * We rescan the whole descriptor sequence to find
1660                  * partition descriptor blocks and process them.
1661                  */
1662                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1663                      block < vds[VDS_POS_TERMINATING_DESC].block;
1664                      block++)
1665                         if (udf_load_partdesc(sb, block))
1666                                 return 1;
1667         }
1668
1669         return 0;
1670 }
1671
1672 /*
1673  * udf_check_valid()
1674  */
1675 static int udf_check_valid(struct super_block *sb, int novrs, int silent)
1676 {
1677         long block;
1678         struct udf_sb_info *sbi = UDF_SB(sb);
1679
1680         if (novrs) {
1681                 udf_debug("Validity check skipped because of novrs option\n");
1682                 return 0;
1683         }
1684         /* Check that it is NSR02 compliant */
1685         /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
1686         block = udf_vrs(sb, silent);
1687         if (block == -1)
1688                 udf_debug("Failed to read byte 32768. Assuming open "
1689                           "disc. Skipping validity check\n");
1690         if (block && !sbi->s_last_block)
1691                 sbi->s_last_block = udf_get_last_block(sb);
1692         return !block;
1693 }
1694
1695 static int udf_load_sequence(struct super_block *sb, struct kernel_lb_addr *fileset)
1696 {
1697         struct anchorVolDescPtr *anchor;
1698         uint16_t ident;
1699         struct buffer_head *bh;
1700         long main_s, main_e, reserve_s, reserve_e;
1701         int i;
1702         struct udf_sb_info *sbi;
1703
1704         if (!sb)
1705                 return 1;
1706         sbi = UDF_SB(sb);
1707
1708         for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
1709                 if (!sbi->s_anchor[i])
1710                         continue;
1711
1712                 bh = udf_read_tagged(sb, sbi->s_anchor[i], sbi->s_anchor[i],
1713                                      &ident);
1714                 if (!bh)
1715                         continue;
1716
1717                 anchor = (struct anchorVolDescPtr *)bh->b_data;
1718
1719                 /* Locate the main sequence */
1720                 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1721                 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1722                 main_e = main_e >> sb->s_blocksize_bits;
1723                 main_e += main_s;
1724
1725                 /* Locate the reserve sequence */
1726                 reserve_s = le32_to_cpu(
1727                                 anchor->reserveVolDescSeqExt.extLocation);
1728                 reserve_e = le32_to_cpu(
1729                                 anchor->reserveVolDescSeqExt.extLength);
1730                 reserve_e = reserve_e >> sb->s_blocksize_bits;
1731                 reserve_e += reserve_s;
1732
1733                 brelse(bh);
1734
1735                 /* Process the main & reserve sequences */
1736                 /* responsible for finding the PartitionDesc(s) */
1737                 if (!(udf_process_sequence(sb, main_s, main_e,
1738                                            fileset) &&
1739                       udf_process_sequence(sb, reserve_s, reserve_e,
1740                                            fileset)))
1741                         break;
1742         }
1743
1744         if (i == ARRAY_SIZE(sbi->s_anchor)) {
1745                 udf_debug("No Anchor block found\n");
1746                 return 1;
1747         }
1748         udf_debug("Using anchor in block %d\n", sbi->s_anchor[i]);
1749
1750         return 0;
1751 }
1752
1753 static void udf_open_lvid(struct super_block *sb)
1754 {
1755         struct udf_sb_info *sbi = UDF_SB(sb);
1756         struct buffer_head *bh = sbi->s_lvid_bh;
1757         struct logicalVolIntegrityDesc *lvid;
1758         struct logicalVolIntegrityDescImpUse *lvidiu;
1759         if (!bh)
1760                 return;
1761
1762         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1763         lvidiu = udf_sb_lvidiu(sbi);
1764
1765         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1766         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1767         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1768                                 CURRENT_TIME);
1769         lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN;
1770
1771         lvid->descTag.descCRC = cpu_to_le16(
1772                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1773                         le16_to_cpu(lvid->descTag.descCRCLength)));
1774
1775         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1776         mark_buffer_dirty(bh);
1777 }
1778
1779 static void udf_close_lvid(struct super_block *sb)
1780 {
1781         struct udf_sb_info *sbi = UDF_SB(sb);
1782         struct buffer_head *bh = sbi->s_lvid_bh;
1783         struct logicalVolIntegrityDesc *lvid;
1784         struct logicalVolIntegrityDescImpUse *lvidiu;
1785
1786         if (!bh)
1787                 return;
1788
1789         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1790
1791         if (lvid->integrityType != LVID_INTEGRITY_TYPE_OPEN)
1792                 return;
1793
1794         lvidiu = udf_sb_lvidiu(sbi);
1795         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1796         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1797         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1798         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1799                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1800         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1801                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1802         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1803                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1804         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1805
1806         lvid->descTag.descCRC = cpu_to_le16(
1807                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1808                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1809
1810         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1811         mark_buffer_dirty(bh);
1812 }
1813
1814 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1815 {
1816         int i;
1817         int nr_groups = bitmap->s_nr_groups;
1818         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1819                                                 nr_groups);
1820
1821         for (i = 0; i < nr_groups; i++)
1822                 if (bitmap->s_block_bitmap[i])
1823                         brelse(bitmap->s_block_bitmap[i]);
1824
1825         if (size <= PAGE_SIZE)
1826                 kfree(bitmap);
1827         else
1828                 vfree(bitmap);
1829 }
1830
1831 static void udf_free_partition(struct udf_part_map *map)
1832 {
1833         int i;
1834         struct udf_meta_data *mdata;
1835
1836         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1837                 iput(map->s_uspace.s_table);
1838         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1839                 iput(map->s_fspace.s_table);
1840         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1841                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1842         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1843                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1844         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1845                 for (i = 0; i < 4; i++)
1846                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1847         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1848                 mdata = &map->s_type_specific.s_metadata;
1849                 iput(mdata->s_metadata_fe);
1850                 mdata->s_metadata_fe = NULL;
1851
1852                 iput(mdata->s_mirror_fe);
1853                 mdata->s_mirror_fe = NULL;
1854
1855                 iput(mdata->s_bitmap_fe);
1856                 mdata->s_bitmap_fe = NULL;
1857         }
1858 }
1859
1860 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1861 {
1862         int i;
1863         struct inode *inode = NULL;
1864         struct udf_options uopt;
1865         struct kernel_lb_addr rootdir, fileset;
1866         struct udf_sb_info *sbi;
1867
1868         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1869         uopt.uid = -1;
1870         uopt.gid = -1;
1871         uopt.umask = 0;
1872
1873         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1874         if (!sbi)
1875                 return -ENOMEM;
1876
1877         sb->s_fs_info = sbi;
1878
1879         mutex_init(&sbi->s_alloc_mutex);
1880
1881         if (!udf_parse_options((char *)options, &uopt, false))
1882                 goto error_out;
1883
1884         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1885             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1886                 udf_error(sb, "udf_read_super",
1887                           "utf8 cannot be combined with iocharset\n");
1888                 goto error_out;
1889         }
1890 #ifdef CONFIG_UDF_NLS
1891         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1892                 uopt.nls_map = load_nls_default();
1893                 if (!uopt.nls_map)
1894                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1895                 else
1896                         udf_debug("Using default NLS map\n");
1897         }
1898 #endif
1899         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1900                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1901
1902         fileset.logicalBlockNum = 0xFFFFFFFF;
1903         fileset.partitionReferenceNum = 0xFFFF;
1904
1905         sbi->s_flags = uopt.flags;
1906         sbi->s_uid = uopt.uid;
1907         sbi->s_gid = uopt.gid;
1908         sbi->s_umask = uopt.umask;
1909         sbi->s_nls_map = uopt.nls_map;
1910
1911         /* Set the block size for all transfers */
1912         if (!sb_min_blocksize(sb, uopt.blocksize)) {
1913                 udf_debug("Bad block size (%d)\n", uopt.blocksize);
1914                 printk(KERN_ERR "udf: bad block size (%d)\n", uopt.blocksize);
1915                 goto error_out;
1916         }
1917
1918         if (uopt.session == 0xFFFFFFFF)
1919                 sbi->s_session = udf_get_last_session(sb);
1920         else
1921                 sbi->s_session = uopt.session;
1922
1923         udf_debug("Multi-session=%d\n", sbi->s_session);
1924
1925         sbi->s_last_block = uopt.lastblock;
1926         sbi->s_anchor[0] = sbi->s_anchor[1] = 0;
1927         sbi->s_anchor[2] = uopt.anchor;
1928
1929         if (udf_check_valid(sb, uopt.novrs, silent)) {
1930                 /* read volume recognition sequences */
1931                 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1932                 goto error_out;
1933         }
1934
1935         udf_find_anchor(sb);
1936
1937         /* Fill in the rest of the superblock */
1938         sb->s_op = &udf_sb_ops;
1939         sb->s_export_op = &udf_export_ops;
1940         sb->dq_op = NULL;
1941         sb->s_dirt = 0;
1942         sb->s_magic = UDF_SUPER_MAGIC;
1943         sb->s_time_gran = 1000;
1944
1945         if (udf_load_sequence(sb, &fileset)) {
1946                 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1947                 goto error_out;
1948         }
1949
1950         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1951
1952         if (sbi->s_lvid_bh) {
1953                 struct logicalVolIntegrityDescImpUse *lvidiu =
1954                                                         udf_sb_lvidiu(sbi);
1955                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1956                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1957                 /* uint16_t maxUDFWriteRev =
1958                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1959
1960                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1961                         printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1962                                         "(max is %x)\n",
1963                                le16_to_cpu(lvidiu->minUDFReadRev),
1964                                UDF_MAX_READ_VERSION);
1965                         goto error_out;
1966                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1967                         sb->s_flags |= MS_RDONLY;
1968
1969                 sbi->s_udfrev = minUDFWriteRev;
1970
1971                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1972                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1973                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1974                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1975         }
1976
1977         if (!sbi->s_partitions) {
1978                 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
1979                 goto error_out;
1980         }
1981
1982         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
1983                         UDF_PART_FLAG_READ_ONLY) {
1984                 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
1985                                    "forcing readonly mount\n");
1986                 sb->s_flags |= MS_RDONLY;
1987         }
1988
1989         if (udf_find_fileset(sb, &fileset, &rootdir)) {
1990                 printk(KERN_WARNING "UDF-fs: No fileset found\n");
1991                 goto error_out;
1992         }
1993
1994         if (!silent) {
1995                 struct timestamp ts;
1996                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
1997                 udf_info("UDF: Mounting volume '%s', "
1998                          "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
1999                          sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2000                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2001         }
2002         if (!(sb->s_flags & MS_RDONLY))
2003                 udf_open_lvid(sb);
2004
2005         /* Assign the root inode */
2006         /* assign inodes by physical block number */
2007         /* perhaps it's not extensible enough, but for now ... */
2008         inode = udf_iget(sb, &rootdir);
2009         if (!inode) {
2010                 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2011                                 "partition=%d\n",
2012                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2013                 goto error_out;
2014         }
2015
2016         /* Allocate a dentry for the root inode */
2017         sb->s_root = d_alloc_root(inode);
2018         if (!sb->s_root) {
2019                 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2020                 iput(inode);
2021                 goto error_out;
2022         }
2023         sb->s_maxbytes = MAX_LFS_FILESIZE;
2024         return 0;
2025
2026 error_out:
2027         if (sbi->s_vat_inode)
2028                 iput(sbi->s_vat_inode);
2029         if (sbi->s_partitions)
2030                 for (i = 0; i < sbi->s_partitions; i++)
2031                         udf_free_partition(&sbi->s_partmaps[i]);
2032 #ifdef CONFIG_UDF_NLS
2033         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2034                 unload_nls(sbi->s_nls_map);
2035 #endif
2036         if (!(sb->s_flags & MS_RDONLY))
2037                 udf_close_lvid(sb);
2038         brelse(sbi->s_lvid_bh);
2039
2040         kfree(sbi->s_partmaps);
2041         kfree(sbi);
2042         sb->s_fs_info = NULL;
2043
2044         return -EINVAL;
2045 }
2046
2047 static void udf_error(struct super_block *sb, const char *function,
2048                       const char *fmt, ...)
2049 {
2050         va_list args;
2051
2052         if (!(sb->s_flags & MS_RDONLY)) {
2053                 /* mark sb error */
2054                 sb->s_dirt = 1;
2055         }
2056         va_start(args, fmt);
2057         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2058         va_end(args);
2059         printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2060                 sb->s_id, function, error_buf);
2061 }
2062
2063 void udf_warning(struct super_block *sb, const char *function,
2064                  const char *fmt, ...)
2065 {
2066         va_list args;
2067
2068         va_start(args, fmt);
2069         vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2070         va_end(args);
2071         printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2072                sb->s_id, function, error_buf);
2073 }
2074
2075 static void udf_put_super(struct super_block *sb)
2076 {
2077         int i;
2078         struct udf_sb_info *sbi;
2079
2080         sbi = UDF_SB(sb);
2081         if (sbi->s_vat_inode)
2082                 iput(sbi->s_vat_inode);
2083         if (sbi->s_partitions)
2084                 for (i = 0; i < sbi->s_partitions; i++)
2085                         udf_free_partition(&sbi->s_partmaps[i]);
2086 #ifdef CONFIG_UDF_NLS
2087         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2088                 unload_nls(sbi->s_nls_map);
2089 #endif
2090         if (!(sb->s_flags & MS_RDONLY))
2091                 udf_close_lvid(sb);
2092         brelse(sbi->s_lvid_bh);
2093         kfree(sbi->s_partmaps);
2094         kfree(sb->s_fs_info);
2095         sb->s_fs_info = NULL;
2096 }
2097
2098 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2099 {
2100         struct super_block *sb = dentry->d_sb;
2101         struct udf_sb_info *sbi = UDF_SB(sb);
2102         struct logicalVolIntegrityDescImpUse *lvidiu;
2103
2104         if (sbi->s_lvid_bh != NULL)
2105                 lvidiu = udf_sb_lvidiu(sbi);
2106         else
2107                 lvidiu = NULL;
2108
2109         buf->f_type = UDF_SUPER_MAGIC;
2110         buf->f_bsize = sb->s_blocksize;
2111         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2112         buf->f_bfree = udf_count_free(sb);
2113         buf->f_bavail = buf->f_bfree;
2114         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2115                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2116                         + buf->f_bfree;
2117         buf->f_ffree = buf->f_bfree;
2118         /* __kernel_fsid_t f_fsid */
2119         buf->f_namelen = UDF_NAME_LEN - 2;
2120
2121         return 0;
2122 }
2123
2124 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2125                                           struct udf_bitmap *bitmap)
2126 {
2127         struct buffer_head *bh = NULL;
2128         unsigned int accum = 0;
2129         int index;
2130         int block = 0, newblock;
2131         struct kernel_lb_addr loc;
2132         uint32_t bytes;
2133         uint8_t *ptr;
2134         uint16_t ident;
2135         struct spaceBitmapDesc *bm;
2136
2137         lock_kernel();
2138
2139         loc.logicalBlockNum = bitmap->s_extPosition;
2140         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2141         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2142
2143         if (!bh) {
2144                 printk(KERN_ERR "udf: udf_count_free failed\n");
2145                 goto out;
2146         } else if (ident != TAG_IDENT_SBD) {
2147                 brelse(bh);
2148                 printk(KERN_ERR "udf: udf_count_free failed\n");
2149                 goto out;
2150         }
2151
2152         bm = (struct spaceBitmapDesc *)bh->b_data;
2153         bytes = le32_to_cpu(bm->numOfBytes);
2154         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2155         ptr = (uint8_t *)bh->b_data;
2156
2157         while (bytes > 0) {
2158                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2159                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2160                                         cur_bytes * 8);
2161                 bytes -= cur_bytes;
2162                 if (bytes) {
2163                         brelse(bh);
2164                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2165                         bh = udf_tread(sb, newblock);
2166                         if (!bh) {
2167                                 udf_debug("read failed\n");
2168                                 goto out;
2169                         }
2170                         index = 0;
2171                         ptr = (uint8_t *)bh->b_data;
2172                 }
2173         }
2174         brelse(bh);
2175
2176 out:
2177         unlock_kernel();
2178
2179         return accum;
2180 }
2181
2182 static unsigned int udf_count_free_table(struct super_block *sb,
2183                                          struct inode *table)
2184 {
2185         unsigned int accum = 0;
2186         uint32_t elen;
2187         struct kernel_lb_addr eloc;
2188         int8_t etype;
2189         struct extent_position epos;
2190
2191         lock_kernel();
2192
2193         epos.block = UDF_I(table)->i_location;
2194         epos.offset = sizeof(struct unallocSpaceEntry);
2195         epos.bh = NULL;
2196
2197         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2198                 accum += (elen >> table->i_sb->s_blocksize_bits);
2199
2200         brelse(epos.bh);
2201
2202         unlock_kernel();
2203
2204         return accum;
2205 }
2206
2207 static unsigned int udf_count_free(struct super_block *sb)
2208 {
2209         unsigned int accum = 0;
2210         struct udf_sb_info *sbi;
2211         struct udf_part_map *map;
2212
2213         sbi = UDF_SB(sb);
2214         if (sbi->s_lvid_bh) {
2215                 struct logicalVolIntegrityDesc *lvid =
2216                         (struct logicalVolIntegrityDesc *)
2217                         sbi->s_lvid_bh->b_data;
2218                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2219                         accum = le32_to_cpu(
2220                                         lvid->freeSpaceTable[sbi->s_partition]);
2221                         if (accum == 0xFFFFFFFF)
2222                                 accum = 0;
2223                 }
2224         }
2225
2226         if (accum)
2227                 return accum;
2228
2229         map = &sbi->s_partmaps[sbi->s_partition];
2230         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2231                 accum += udf_count_free_bitmap(sb,
2232                                                map->s_uspace.s_bitmap);
2233         }
2234         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2235                 accum += udf_count_free_bitmap(sb,
2236                                                map->s_fspace.s_bitmap);
2237         }
2238         if (accum)
2239                 return accum;
2240
2241         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2242                 accum += udf_count_free_table(sb,
2243                                               map->s_uspace.s_table);
2244         }
2245         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2246                 accum += udf_count_free_table(sb,
2247                                               map->s_fspace.s_table);
2248         }
2249
2250         return accum;
2251 }