]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ocfs2/aops.c
Merge git://git.infradead.org/users/cbou/battery-2.6.35
[net-next-2.6.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63                    (unsigned long long)iblock, bh_result, create);
64
65         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69                      (unsigned long long)iblock);
70                 goto bail;
71         }
72
73         status = ocfs2_read_inode_block(inode, &bh);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81                                                     le32_to_cpu(fe->i_clusters))) {
82                 mlog(ML_ERROR, "block offset is outside the allocated size: "
83                      "%llu\n", (unsigned long long)iblock);
84                 goto bail;
85         }
86
87         /* We don't use the page cache to create symlink data, so if
88          * need be, copy it over from the buffer cache. */
89         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91                             iblock;
92                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93                 if (!buffer_cache_bh) {
94                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95                         goto bail;
96                 }
97
98                 /* we haven't locked out transactions, so a commit
99                  * could've happened. Since we've got a reference on
100                  * the bh, even if it commits while we're doing the
101                  * copy, the data is still good. */
102                 if (buffer_jbd(buffer_cache_bh)
103                     && ocfs2_inode_is_new(inode)) {
104                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105                         if (!kaddr) {
106                                 mlog(ML_ERROR, "couldn't kmap!\n");
107                                 goto bail;
108                         }
109                         memcpy(kaddr + (bh_result->b_size * iblock),
110                                buffer_cache_bh->b_data,
111                                bh_result->b_size);
112                         kunmap_atomic(kaddr, KM_USER0);
113                         set_buffer_uptodate(bh_result);
114                 }
115                 brelse(buffer_cache_bh);
116         }
117
118         map_bh(bh_result, inode->i_sb,
119                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121         err = 0;
122
123 bail:
124         brelse(bh);
125
126         mlog_exit(err);
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140                    (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows block_prepare_write() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199         }
200
201         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202         mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203              (unsigned long long)past_eof);
204         if (create && (iblock >= past_eof))
205                 set_buffer_new(bh_result);
206
207 bail:
208         if (err < 0)
209                 err = -EIO;
210
211         mlog_exit(err);
212         return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216                            struct buffer_head *di_bh)
217 {
218         void *kaddr;
219         loff_t size;
220         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
225                 return -EROFS;
226         }
227
228         size = i_size_read(inode);
229
230         if (size > PAGE_CACHE_SIZE ||
231             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232                 ocfs2_error(inode->i_sb,
233                             "Inode %llu has with inline data has bad size: %Lu",
234                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
235                             (unsigned long long)size);
236                 return -EROFS;
237         }
238
239         kaddr = kmap_atomic(page, KM_USER0);
240         if (size)
241                 memcpy(kaddr, di->id2.i_data.id_data, size);
242         /* Clear the remaining part of the page */
243         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244         flush_dcache_page(page);
245         kunmap_atomic(kaddr, KM_USER0);
246
247         SetPageUptodate(page);
248
249         return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254         int ret;
255         struct buffer_head *di_bh = NULL;
256
257         BUG_ON(!PageLocked(page));
258         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260         ret = ocfs2_read_inode_block(inode, &di_bh);
261         if (ret) {
262                 mlog_errno(ret);
263                 goto out;
264         }
265
266         ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268         unlock_page(page);
269
270         brelse(di_bh);
271         return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276         struct inode *inode = page->mapping->host;
277         struct ocfs2_inode_info *oi = OCFS2_I(inode);
278         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279         int ret, unlock = 1;
280
281         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
283         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284         if (ret != 0) {
285                 if (ret == AOP_TRUNCATED_PAGE)
286                         unlock = 0;
287                 mlog_errno(ret);
288                 goto out;
289         }
290
291         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292                 ret = AOP_TRUNCATED_PAGE;
293                 goto out_inode_unlock;
294         }
295
296         /*
297          * i_size might have just been updated as we grabed the meta lock.  We
298          * might now be discovering a truncate that hit on another node.
299          * block_read_full_page->get_block freaks out if it is asked to read
300          * beyond the end of a file, so we check here.  Callers
301          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302          * and notice that the page they just read isn't needed.
303          *
304          * XXX sys_readahead() seems to get that wrong?
305          */
306         if (start >= i_size_read(inode)) {
307                 zero_user(page, 0, PAGE_SIZE);
308                 SetPageUptodate(page);
309                 ret = 0;
310                 goto out_alloc;
311         }
312
313         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314                 ret = ocfs2_readpage_inline(inode, page);
315         else
316                 ret = block_read_full_page(page, ocfs2_get_block);
317         unlock = 0;
318
319 out_alloc:
320         up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322         ocfs2_inode_unlock(inode, 0);
323 out:
324         if (unlock)
325                 unlock_page(page);
326         mlog_exit(ret);
327         return ret;
328 }
329
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340                            struct list_head *pages, unsigned nr_pages)
341 {
342         int ret, err = -EIO;
343         struct inode *inode = mapping->host;
344         struct ocfs2_inode_info *oi = OCFS2_I(inode);
345         loff_t start;
346         struct page *last;
347
348         /*
349          * Use the nonblocking flag for the dlm code to avoid page
350          * lock inversion, but don't bother with retrying.
351          */
352         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353         if (ret)
354                 return err;
355
356         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357                 ocfs2_inode_unlock(inode, 0);
358                 return err;
359         }
360
361         /*
362          * Don't bother with inline-data. There isn't anything
363          * to read-ahead in that case anyway...
364          */
365         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366                 goto out_unlock;
367
368         /*
369          * Check whether a remote node truncated this file - we just
370          * drop out in that case as it's not worth handling here.
371          */
372         last = list_entry(pages->prev, struct page, lru);
373         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374         if (start >= i_size_read(inode))
375                 goto out_unlock;
376
377         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379 out_unlock:
380         up_read(&oi->ip_alloc_sem);
381         ocfs2_inode_unlock(inode, 0);
382
383         return err;
384 }
385
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399         int ret;
400
401         mlog_entry("(0x%p)\n", page);
402
403         ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405         mlog_exit(ret);
406
407         return ret;
408 }
409
410 /*
411  * This is called from ocfs2_write_zero_page() which has handled it's
412  * own cluster locking and has ensured allocation exists for those
413  * blocks to be written.
414  */
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416                                unsigned from, unsigned to)
417 {
418         int ret;
419
420         ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
422         return ret;
423 }
424
425 /* Taken from ext3. We don't necessarily need the full blown
426  * functionality yet, but IMHO it's better to cut and paste the whole
427  * thing so we can avoid introducing our own bugs (and easily pick up
428  * their fixes when they happen) --Mark */
429 int walk_page_buffers(  handle_t *handle,
430                         struct buffer_head *head,
431                         unsigned from,
432                         unsigned to,
433                         int *partial,
434                         int (*fn)(      handle_t *handle,
435                                         struct buffer_head *bh))
436 {
437         struct buffer_head *bh;
438         unsigned block_start, block_end;
439         unsigned blocksize = head->b_size;
440         int err, ret = 0;
441         struct buffer_head *next;
442
443         for (   bh = head, block_start = 0;
444                 ret == 0 && (bh != head || !block_start);
445                 block_start = block_end, bh = next)
446         {
447                 next = bh->b_this_page;
448                 block_end = block_start + blocksize;
449                 if (block_end <= from || block_start >= to) {
450                         if (partial && !buffer_uptodate(bh))
451                                 *partial = 1;
452                         continue;
453                 }
454                 err = (*fn)(handle, bh);
455                 if (!ret)
456                         ret = err;
457         }
458         return ret;
459 }
460
461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
462 {
463         sector_t status;
464         u64 p_blkno = 0;
465         int err = 0;
466         struct inode *inode = mapping->host;
467
468         mlog_entry("(block = %llu)\n", (unsigned long long)block);
469
470         /* We don't need to lock journal system files, since they aren't
471          * accessed concurrently from multiple nodes.
472          */
473         if (!INODE_JOURNAL(inode)) {
474                 err = ocfs2_inode_lock(inode, NULL, 0);
475                 if (err) {
476                         if (err != -ENOENT)
477                                 mlog_errno(err);
478                         goto bail;
479                 }
480                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
481         }
482
483         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485                                                   NULL);
486
487         if (!INODE_JOURNAL(inode)) {
488                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
489                 ocfs2_inode_unlock(inode, 0);
490         }
491
492         if (err) {
493                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494                      (unsigned long long)block);
495                 mlog_errno(err);
496                 goto bail;
497         }
498
499 bail:
500         status = err ? 0 : p_blkno;
501
502         mlog_exit((int)status);
503
504         return status;
505 }
506
507 /*
508  * TODO: Make this into a generic get_blocks function.
509  *
510  * From do_direct_io in direct-io.c:
511  *  "So what we do is to permit the ->get_blocks function to populate
512  *   bh.b_size with the size of IO which is permitted at this offset and
513  *   this i_blkbits."
514  *
515  * This function is called directly from get_more_blocks in direct-io.c.
516  *
517  * called like this: dio->get_blocks(dio->inode, fs_startblk,
518  *                                      fs_count, map_bh, dio->rw == WRITE);
519  *
520  * Note that we never bother to allocate blocks here, and thus ignore the
521  * create argument.
522  */
523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
524                                      struct buffer_head *bh_result, int create)
525 {
526         int ret;
527         u64 p_blkno, inode_blocks, contig_blocks;
528         unsigned int ext_flags;
529         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
530         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
531
532         /* This function won't even be called if the request isn't all
533          * nicely aligned and of the right size, so there's no need
534          * for us to check any of that. */
535
536         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
537
538         /* This figures out the size of the next contiguous block, and
539          * our logical offset */
540         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541                                           &contig_blocks, &ext_flags);
542         if (ret) {
543                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544                      (unsigned long long)iblock);
545                 ret = -EIO;
546                 goto bail;
547         }
548
549         /* We should already CoW the refcounted extent in case of create. */
550         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
551
552         /*
553          * get_more_blocks() expects us to describe a hole by clearing
554          * the mapped bit on bh_result().
555          *
556          * Consider an unwritten extent as a hole.
557          */
558         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
559                 map_bh(bh_result, inode->i_sb, p_blkno);
560         else
561                 clear_buffer_mapped(bh_result);
562
563         /* make sure we don't map more than max_blocks blocks here as
564            that's all the kernel will handle at this point. */
565         if (max_blocks < contig_blocks)
566                 contig_blocks = max_blocks;
567         bh_result->b_size = contig_blocks << blocksize_bits;
568 bail:
569         return ret;
570 }
571
572 /*
573  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
574  * particularly interested in the aio/dio case.  Like the core uses
575  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576  * truncation on another.
577  */
578 static void ocfs2_dio_end_io(struct kiocb *iocb,
579                              loff_t offset,
580                              ssize_t bytes,
581                              void *private)
582 {
583         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
584         int level;
585
586         /* this io's submitter should not have unlocked this before we could */
587         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
588
589         ocfs2_iocb_clear_rw_locked(iocb);
590
591         level = ocfs2_iocb_rw_locked_level(iocb);
592         if (!level)
593                 up_read(&inode->i_alloc_sem);
594         ocfs2_rw_unlock(inode, level);
595 }
596
597 /*
598  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
599  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
600  * do journalled data.
601  */
602 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
603 {
604         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
605
606         jbd2_journal_invalidatepage(journal, page, offset);
607 }
608
609 static int ocfs2_releasepage(struct page *page, gfp_t wait)
610 {
611         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
612
613         if (!page_has_buffers(page))
614                 return 0;
615         return jbd2_journal_try_to_free_buffers(journal, page, wait);
616 }
617
618 static ssize_t ocfs2_direct_IO(int rw,
619                                struct kiocb *iocb,
620                                const struct iovec *iov,
621                                loff_t offset,
622                                unsigned long nr_segs)
623 {
624         struct file *file = iocb->ki_filp;
625         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
626         int ret;
627
628         mlog_entry_void();
629
630         /*
631          * Fallback to buffered I/O if we see an inode without
632          * extents.
633          */
634         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
635                 return 0;
636
637         /* Fallback to buffered I/O if we are appending. */
638         if (i_size_read(inode) <= offset)
639                 return 0;
640
641         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
642                                             inode->i_sb->s_bdev, iov, offset,
643                                             nr_segs,
644                                             ocfs2_direct_IO_get_blocks,
645                                             ocfs2_dio_end_io);
646
647         mlog_exit(ret);
648         return ret;
649 }
650
651 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
652                                             u32 cpos,
653                                             unsigned int *start,
654                                             unsigned int *end)
655 {
656         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
657
658         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
659                 unsigned int cpp;
660
661                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
662
663                 cluster_start = cpos % cpp;
664                 cluster_start = cluster_start << osb->s_clustersize_bits;
665
666                 cluster_end = cluster_start + osb->s_clustersize;
667         }
668
669         BUG_ON(cluster_start > PAGE_SIZE);
670         BUG_ON(cluster_end > PAGE_SIZE);
671
672         if (start)
673                 *start = cluster_start;
674         if (end)
675                 *end = cluster_end;
676 }
677
678 /*
679  * 'from' and 'to' are the region in the page to avoid zeroing.
680  *
681  * If pagesize > clustersize, this function will avoid zeroing outside
682  * of the cluster boundary.
683  *
684  * from == to == 0 is code for "zero the entire cluster region"
685  */
686 static void ocfs2_clear_page_regions(struct page *page,
687                                      struct ocfs2_super *osb, u32 cpos,
688                                      unsigned from, unsigned to)
689 {
690         void *kaddr;
691         unsigned int cluster_start, cluster_end;
692
693         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
694
695         kaddr = kmap_atomic(page, KM_USER0);
696
697         if (from || to) {
698                 if (from > cluster_start)
699                         memset(kaddr + cluster_start, 0, from - cluster_start);
700                 if (to < cluster_end)
701                         memset(kaddr + to, 0, cluster_end - to);
702         } else {
703                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
704         }
705
706         kunmap_atomic(kaddr, KM_USER0);
707 }
708
709 /*
710  * Nonsparse file systems fully allocate before we get to the write
711  * code. This prevents ocfs2_write() from tagging the write as an
712  * allocating one, which means ocfs2_map_page_blocks() might try to
713  * read-in the blocks at the tail of our file. Avoid reading them by
714  * testing i_size against each block offset.
715  */
716 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
717                                  unsigned int block_start)
718 {
719         u64 offset = page_offset(page) + block_start;
720
721         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
722                 return 1;
723
724         if (i_size_read(inode) > offset)
725                 return 1;
726
727         return 0;
728 }
729
730 /*
731  * Some of this taken from block_prepare_write(). We already have our
732  * mapping by now though, and the entire write will be allocating or
733  * it won't, so not much need to use BH_New.
734  *
735  * This will also skip zeroing, which is handled externally.
736  */
737 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
738                           struct inode *inode, unsigned int from,
739                           unsigned int to, int new)
740 {
741         int ret = 0;
742         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
743         unsigned int block_end, block_start;
744         unsigned int bsize = 1 << inode->i_blkbits;
745
746         if (!page_has_buffers(page))
747                 create_empty_buffers(page, bsize, 0);
748
749         head = page_buffers(page);
750         for (bh = head, block_start = 0; bh != head || !block_start;
751              bh = bh->b_this_page, block_start += bsize) {
752                 block_end = block_start + bsize;
753
754                 clear_buffer_new(bh);
755
756                 /*
757                  * Ignore blocks outside of our i/o range -
758                  * they may belong to unallocated clusters.
759                  */
760                 if (block_start >= to || block_end <= from) {
761                         if (PageUptodate(page))
762                                 set_buffer_uptodate(bh);
763                         continue;
764                 }
765
766                 /*
767                  * For an allocating write with cluster size >= page
768                  * size, we always write the entire page.
769                  */
770                 if (new)
771                         set_buffer_new(bh);
772
773                 if (!buffer_mapped(bh)) {
774                         map_bh(bh, inode->i_sb, *p_blkno);
775                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
776                 }
777
778                 if (PageUptodate(page)) {
779                         if (!buffer_uptodate(bh))
780                                 set_buffer_uptodate(bh);
781                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
782                            !buffer_new(bh) &&
783                            ocfs2_should_read_blk(inode, page, block_start) &&
784                            (block_start < from || block_end > to)) {
785                         ll_rw_block(READ, 1, &bh);
786                         *wait_bh++=bh;
787                 }
788
789                 *p_blkno = *p_blkno + 1;
790         }
791
792         /*
793          * If we issued read requests - let them complete.
794          */
795         while(wait_bh > wait) {
796                 wait_on_buffer(*--wait_bh);
797                 if (!buffer_uptodate(*wait_bh))
798                         ret = -EIO;
799         }
800
801         if (ret == 0 || !new)
802                 return ret;
803
804         /*
805          * If we get -EIO above, zero out any newly allocated blocks
806          * to avoid exposing stale data.
807          */
808         bh = head;
809         block_start = 0;
810         do {
811                 block_end = block_start + bsize;
812                 if (block_end <= from)
813                         goto next_bh;
814                 if (block_start >= to)
815                         break;
816
817                 zero_user(page, block_start, bh->b_size);
818                 set_buffer_uptodate(bh);
819                 mark_buffer_dirty(bh);
820
821 next_bh:
822                 block_start = block_end;
823                 bh = bh->b_this_page;
824         } while (bh != head);
825
826         return ret;
827 }
828
829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830 #define OCFS2_MAX_CTXT_PAGES    1
831 #else
832 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
833 #endif
834
835 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
836
837 /*
838  * Describe the state of a single cluster to be written to.
839  */
840 struct ocfs2_write_cluster_desc {
841         u32             c_cpos;
842         u32             c_phys;
843         /*
844          * Give this a unique field because c_phys eventually gets
845          * filled.
846          */
847         unsigned        c_new;
848         unsigned        c_unwritten;
849         unsigned        c_needs_zero;
850 };
851
852 struct ocfs2_write_ctxt {
853         /* Logical cluster position / len of write */
854         u32                             w_cpos;
855         u32                             w_clen;
856
857         /* First cluster allocated in a nonsparse extend */
858         u32                             w_first_new_cpos;
859
860         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
861
862         /*
863          * This is true if page_size > cluster_size.
864          *
865          * It triggers a set of special cases during write which might
866          * have to deal with allocating writes to partial pages.
867          */
868         unsigned int                    w_large_pages;
869
870         /*
871          * Pages involved in this write.
872          *
873          * w_target_page is the page being written to by the user.
874          *
875          * w_pages is an array of pages which always contains
876          * w_target_page, and in the case of an allocating write with
877          * page_size < cluster size, it will contain zero'd and mapped
878          * pages adjacent to w_target_page which need to be written
879          * out in so that future reads from that region will get
880          * zero's.
881          */
882         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
883         unsigned int                    w_num_pages;
884         struct page                     *w_target_page;
885
886         /*
887          * ocfs2_write_end() uses this to know what the real range to
888          * write in the target should be.
889          */
890         unsigned int                    w_target_from;
891         unsigned int                    w_target_to;
892
893         /*
894          * We could use journal_current_handle() but this is cleaner,
895          * IMHO -Mark
896          */
897         handle_t                        *w_handle;
898
899         struct buffer_head              *w_di_bh;
900
901         struct ocfs2_cached_dealloc_ctxt w_dealloc;
902 };
903
904 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
905 {
906         int i;
907
908         for(i = 0; i < num_pages; i++) {
909                 if (pages[i]) {
910                         unlock_page(pages[i]);
911                         mark_page_accessed(pages[i]);
912                         page_cache_release(pages[i]);
913                 }
914         }
915 }
916
917 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
918 {
919         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
920
921         brelse(wc->w_di_bh);
922         kfree(wc);
923 }
924
925 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
926                                   struct ocfs2_super *osb, loff_t pos,
927                                   unsigned len, struct buffer_head *di_bh)
928 {
929         u32 cend;
930         struct ocfs2_write_ctxt *wc;
931
932         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
933         if (!wc)
934                 return -ENOMEM;
935
936         wc->w_cpos = pos >> osb->s_clustersize_bits;
937         wc->w_first_new_cpos = UINT_MAX;
938         cend = (pos + len - 1) >> osb->s_clustersize_bits;
939         wc->w_clen = cend - wc->w_cpos + 1;
940         get_bh(di_bh);
941         wc->w_di_bh = di_bh;
942
943         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
944                 wc->w_large_pages = 1;
945         else
946                 wc->w_large_pages = 0;
947
948         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
949
950         *wcp = wc;
951
952         return 0;
953 }
954
955 /*
956  * If a page has any new buffers, zero them out here, and mark them uptodate
957  * and dirty so they'll be written out (in order to prevent uninitialised
958  * block data from leaking). And clear the new bit.
959  */
960 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
961 {
962         unsigned int block_start, block_end;
963         struct buffer_head *head, *bh;
964
965         BUG_ON(!PageLocked(page));
966         if (!page_has_buffers(page))
967                 return;
968
969         bh = head = page_buffers(page);
970         block_start = 0;
971         do {
972                 block_end = block_start + bh->b_size;
973
974                 if (buffer_new(bh)) {
975                         if (block_end > from && block_start < to) {
976                                 if (!PageUptodate(page)) {
977                                         unsigned start, end;
978
979                                         start = max(from, block_start);
980                                         end = min(to, block_end);
981
982                                         zero_user_segment(page, start, end);
983                                         set_buffer_uptodate(bh);
984                                 }
985
986                                 clear_buffer_new(bh);
987                                 mark_buffer_dirty(bh);
988                         }
989                 }
990
991                 block_start = block_end;
992                 bh = bh->b_this_page;
993         } while (bh != head);
994 }
995
996 /*
997  * Only called when we have a failure during allocating write to write
998  * zero's to the newly allocated region.
999  */
1000 static void ocfs2_write_failure(struct inode *inode,
1001                                 struct ocfs2_write_ctxt *wc,
1002                                 loff_t user_pos, unsigned user_len)
1003 {
1004         int i;
1005         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1006                 to = user_pos + user_len;
1007         struct page *tmppage;
1008
1009         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1010
1011         for(i = 0; i < wc->w_num_pages; i++) {
1012                 tmppage = wc->w_pages[i];
1013
1014                 if (page_has_buffers(tmppage)) {
1015                         if (ocfs2_should_order_data(inode))
1016                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1017
1018                         block_commit_write(tmppage, from, to);
1019                 }
1020         }
1021 }
1022
1023 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1024                                         struct ocfs2_write_ctxt *wc,
1025                                         struct page *page, u32 cpos,
1026                                         loff_t user_pos, unsigned user_len,
1027                                         int new)
1028 {
1029         int ret;
1030         unsigned int map_from = 0, map_to = 0;
1031         unsigned int cluster_start, cluster_end;
1032         unsigned int user_data_from = 0, user_data_to = 0;
1033
1034         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1035                                         &cluster_start, &cluster_end);
1036
1037         if (page == wc->w_target_page) {
1038                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1039                 map_to = map_from + user_len;
1040
1041                 if (new)
1042                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1043                                                     cluster_start, cluster_end,
1044                                                     new);
1045                 else
1046                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047                                                     map_from, map_to, new);
1048                 if (ret) {
1049                         mlog_errno(ret);
1050                         goto out;
1051                 }
1052
1053                 user_data_from = map_from;
1054                 user_data_to = map_to;
1055                 if (new) {
1056                         map_from = cluster_start;
1057                         map_to = cluster_end;
1058                 }
1059         } else {
1060                 /*
1061                  * If we haven't allocated the new page yet, we
1062                  * shouldn't be writing it out without copying user
1063                  * data. This is likely a math error from the caller.
1064                  */
1065                 BUG_ON(!new);
1066
1067                 map_from = cluster_start;
1068                 map_to = cluster_end;
1069
1070                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071                                             cluster_start, cluster_end, new);
1072                 if (ret) {
1073                         mlog_errno(ret);
1074                         goto out;
1075                 }
1076         }
1077
1078         /*
1079          * Parts of newly allocated pages need to be zero'd.
1080          *
1081          * Above, we have also rewritten 'to' and 'from' - as far as
1082          * the rest of the function is concerned, the entire cluster
1083          * range inside of a page needs to be written.
1084          *
1085          * We can skip this if the page is up to date - it's already
1086          * been zero'd from being read in as a hole.
1087          */
1088         if (new && !PageUptodate(page))
1089                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1090                                          cpos, user_data_from, user_data_to);
1091
1092         flush_dcache_page(page);
1093
1094 out:
1095         return ret;
1096 }
1097
1098 /*
1099  * This function will only grab one clusters worth of pages.
1100  */
1101 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1102                                       struct ocfs2_write_ctxt *wc,
1103                                       u32 cpos, loff_t user_pos,
1104                                       unsigned user_len, int new,
1105                                       struct page *mmap_page)
1106 {
1107         int ret = 0, i;
1108         unsigned long start, target_index, end_index, index;
1109         struct inode *inode = mapping->host;
1110         loff_t last_byte;
1111
1112         target_index = user_pos >> PAGE_CACHE_SHIFT;
1113
1114         /*
1115          * Figure out how many pages we'll be manipulating here. For
1116          * non allocating write, we just change the one
1117          * page. Otherwise, we'll need a whole clusters worth.  If we're
1118          * writing past i_size, we only need enough pages to cover the
1119          * last page of the write.
1120          */
1121         if (new) {
1122                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1123                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1124                 /*
1125                  * We need the index *past* the last page we could possibly
1126                  * touch.  This is the page past the end of the write or
1127                  * i_size, whichever is greater.
1128                  */
1129                 last_byte = max(user_pos + user_len, i_size_read(inode));
1130                 BUG_ON(last_byte < 1);
1131                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1132                 if ((start + wc->w_num_pages) > end_index)
1133                         wc->w_num_pages = end_index - start;
1134         } else {
1135                 wc->w_num_pages = 1;
1136                 start = target_index;
1137         }
1138
1139         for(i = 0; i < wc->w_num_pages; i++) {
1140                 index = start + i;
1141
1142                 if (index == target_index && mmap_page) {
1143                         /*
1144                          * ocfs2_pagemkwrite() is a little different
1145                          * and wants us to directly use the page
1146                          * passed in.
1147                          */
1148                         lock_page(mmap_page);
1149
1150                         if (mmap_page->mapping != mapping) {
1151                                 unlock_page(mmap_page);
1152                                 /*
1153                                  * Sanity check - the locking in
1154                                  * ocfs2_pagemkwrite() should ensure
1155                                  * that this code doesn't trigger.
1156                                  */
1157                                 ret = -EINVAL;
1158                                 mlog_errno(ret);
1159                                 goto out;
1160                         }
1161
1162                         page_cache_get(mmap_page);
1163                         wc->w_pages[i] = mmap_page;
1164                 } else {
1165                         wc->w_pages[i] = find_or_create_page(mapping, index,
1166                                                              GFP_NOFS);
1167                         if (!wc->w_pages[i]) {
1168                                 ret = -ENOMEM;
1169                                 mlog_errno(ret);
1170                                 goto out;
1171                         }
1172                 }
1173
1174                 if (index == target_index)
1175                         wc->w_target_page = wc->w_pages[i];
1176         }
1177 out:
1178         return ret;
1179 }
1180
1181 /*
1182  * Prepare a single cluster for write one cluster into the file.
1183  */
1184 static int ocfs2_write_cluster(struct address_space *mapping,
1185                                u32 phys, unsigned int unwritten,
1186                                unsigned int should_zero,
1187                                struct ocfs2_alloc_context *data_ac,
1188                                struct ocfs2_alloc_context *meta_ac,
1189                                struct ocfs2_write_ctxt *wc, u32 cpos,
1190                                loff_t user_pos, unsigned user_len)
1191 {
1192         int ret, i, new;
1193         u64 v_blkno, p_blkno;
1194         struct inode *inode = mapping->host;
1195         struct ocfs2_extent_tree et;
1196
1197         new = phys == 0 ? 1 : 0;
1198         if (new) {
1199                 u32 tmp_pos;
1200
1201                 /*
1202                  * This is safe to call with the page locks - it won't take
1203                  * any additional semaphores or cluster locks.
1204                  */
1205                 tmp_pos = cpos;
1206                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1207                                            &tmp_pos, 1, 0, wc->w_di_bh,
1208                                            wc->w_handle, data_ac,
1209                                            meta_ac, NULL);
1210                 /*
1211                  * This shouldn't happen because we must have already
1212                  * calculated the correct meta data allocation required. The
1213                  * internal tree allocation code should know how to increase
1214                  * transaction credits itself.
1215                  *
1216                  * If need be, we could handle -EAGAIN for a
1217                  * RESTART_TRANS here.
1218                  */
1219                 mlog_bug_on_msg(ret == -EAGAIN,
1220                                 "Inode %llu: EAGAIN return during allocation.\n",
1221                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1222                 if (ret < 0) {
1223                         mlog_errno(ret);
1224                         goto out;
1225                 }
1226         } else if (unwritten) {
1227                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1228                                               wc->w_di_bh);
1229                 ret = ocfs2_mark_extent_written(inode, &et,
1230                                                 wc->w_handle, cpos, 1, phys,
1231                                                 meta_ac, &wc->w_dealloc);
1232                 if (ret < 0) {
1233                         mlog_errno(ret);
1234                         goto out;
1235                 }
1236         }
1237
1238         if (should_zero)
1239                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1240         else
1241                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1242
1243         /*
1244          * The only reason this should fail is due to an inability to
1245          * find the extent added.
1246          */
1247         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1248                                           NULL);
1249         if (ret < 0) {
1250                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1251                             "at logical block %llu",
1252                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1253                             (unsigned long long)v_blkno);
1254                 goto out;
1255         }
1256
1257         BUG_ON(p_blkno == 0);
1258
1259         for(i = 0; i < wc->w_num_pages; i++) {
1260                 int tmpret;
1261
1262                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1263                                                       wc->w_pages[i], cpos,
1264                                                       user_pos, user_len,
1265                                                       should_zero);
1266                 if (tmpret) {
1267                         mlog_errno(tmpret);
1268                         if (ret == 0)
1269                                 ret = tmpret;
1270                 }
1271         }
1272
1273         /*
1274          * We only have cleanup to do in case of allocating write.
1275          */
1276         if (ret && new)
1277                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1278
1279 out:
1280
1281         return ret;
1282 }
1283
1284 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1285                                        struct ocfs2_alloc_context *data_ac,
1286                                        struct ocfs2_alloc_context *meta_ac,
1287                                        struct ocfs2_write_ctxt *wc,
1288                                        loff_t pos, unsigned len)
1289 {
1290         int ret, i;
1291         loff_t cluster_off;
1292         unsigned int local_len = len;
1293         struct ocfs2_write_cluster_desc *desc;
1294         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1295
1296         for (i = 0; i < wc->w_clen; i++) {
1297                 desc = &wc->w_desc[i];
1298
1299                 /*
1300                  * We have to make sure that the total write passed in
1301                  * doesn't extend past a single cluster.
1302                  */
1303                 local_len = len;
1304                 cluster_off = pos & (osb->s_clustersize - 1);
1305                 if ((cluster_off + local_len) > osb->s_clustersize)
1306                         local_len = osb->s_clustersize - cluster_off;
1307
1308                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1309                                           desc->c_unwritten,
1310                                           desc->c_needs_zero,
1311                                           data_ac, meta_ac,
1312                                           wc, desc->c_cpos, pos, local_len);
1313                 if (ret) {
1314                         mlog_errno(ret);
1315                         goto out;
1316                 }
1317
1318                 len -= local_len;
1319                 pos += local_len;
1320         }
1321
1322         ret = 0;
1323 out:
1324         return ret;
1325 }
1326
1327 /*
1328  * ocfs2_write_end() wants to know which parts of the target page it
1329  * should complete the write on. It's easiest to compute them ahead of
1330  * time when a more complete view of the write is available.
1331  */
1332 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1333                                         struct ocfs2_write_ctxt *wc,
1334                                         loff_t pos, unsigned len, int alloc)
1335 {
1336         struct ocfs2_write_cluster_desc *desc;
1337
1338         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1339         wc->w_target_to = wc->w_target_from + len;
1340
1341         if (alloc == 0)
1342                 return;
1343
1344         /*
1345          * Allocating write - we may have different boundaries based
1346          * on page size and cluster size.
1347          *
1348          * NOTE: We can no longer compute one value from the other as
1349          * the actual write length and user provided length may be
1350          * different.
1351          */
1352
1353         if (wc->w_large_pages) {
1354                 /*
1355                  * We only care about the 1st and last cluster within
1356                  * our range and whether they should be zero'd or not. Either
1357                  * value may be extended out to the start/end of a
1358                  * newly allocated cluster.
1359                  */
1360                 desc = &wc->w_desc[0];
1361                 if (desc->c_needs_zero)
1362                         ocfs2_figure_cluster_boundaries(osb,
1363                                                         desc->c_cpos,
1364                                                         &wc->w_target_from,
1365                                                         NULL);
1366
1367                 desc = &wc->w_desc[wc->w_clen - 1];
1368                 if (desc->c_needs_zero)
1369                         ocfs2_figure_cluster_boundaries(osb,
1370                                                         desc->c_cpos,
1371                                                         NULL,
1372                                                         &wc->w_target_to);
1373         } else {
1374                 wc->w_target_from = 0;
1375                 wc->w_target_to = PAGE_CACHE_SIZE;
1376         }
1377 }
1378
1379 /*
1380  * Populate each single-cluster write descriptor in the write context
1381  * with information about the i/o to be done.
1382  *
1383  * Returns the number of clusters that will have to be allocated, as
1384  * well as a worst case estimate of the number of extent records that
1385  * would have to be created during a write to an unwritten region.
1386  */
1387 static int ocfs2_populate_write_desc(struct inode *inode,
1388                                      struct ocfs2_write_ctxt *wc,
1389                                      unsigned int *clusters_to_alloc,
1390                                      unsigned int *extents_to_split)
1391 {
1392         int ret;
1393         struct ocfs2_write_cluster_desc *desc;
1394         unsigned int num_clusters = 0;
1395         unsigned int ext_flags = 0;
1396         u32 phys = 0;
1397         int i;
1398
1399         *clusters_to_alloc = 0;
1400         *extents_to_split = 0;
1401
1402         for (i = 0; i < wc->w_clen; i++) {
1403                 desc = &wc->w_desc[i];
1404                 desc->c_cpos = wc->w_cpos + i;
1405
1406                 if (num_clusters == 0) {
1407                         /*
1408                          * Need to look up the next extent record.
1409                          */
1410                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1411                                                  &num_clusters, &ext_flags);
1412                         if (ret) {
1413                                 mlog_errno(ret);
1414                                 goto out;
1415                         }
1416
1417                         /* We should already CoW the refcountd extent. */
1418                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1419
1420                         /*
1421                          * Assume worst case - that we're writing in
1422                          * the middle of the extent.
1423                          *
1424                          * We can assume that the write proceeds from
1425                          * left to right, in which case the extent
1426                          * insert code is smart enough to coalesce the
1427                          * next splits into the previous records created.
1428                          */
1429                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1430                                 *extents_to_split = *extents_to_split + 2;
1431                 } else if (phys) {
1432                         /*
1433                          * Only increment phys if it doesn't describe
1434                          * a hole.
1435                          */
1436                         phys++;
1437                 }
1438
1439                 /*
1440                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1441                  * file that got extended.  w_first_new_cpos tells us
1442                  * where the newly allocated clusters are so we can
1443                  * zero them.
1444                  */
1445                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1446                         BUG_ON(phys == 0);
1447                         desc->c_needs_zero = 1;
1448                 }
1449
1450                 desc->c_phys = phys;
1451                 if (phys == 0) {
1452                         desc->c_new = 1;
1453                         desc->c_needs_zero = 1;
1454                         *clusters_to_alloc = *clusters_to_alloc + 1;
1455                 }
1456
1457                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458                         desc->c_unwritten = 1;
1459                         desc->c_needs_zero = 1;
1460                 }
1461
1462                 num_clusters--;
1463         }
1464
1465         ret = 0;
1466 out:
1467         return ret;
1468 }
1469
1470 static int ocfs2_write_begin_inline(struct address_space *mapping,
1471                                     struct inode *inode,
1472                                     struct ocfs2_write_ctxt *wc)
1473 {
1474         int ret;
1475         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476         struct page *page;
1477         handle_t *handle;
1478         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1479
1480         page = find_or_create_page(mapping, 0, GFP_NOFS);
1481         if (!page) {
1482                 ret = -ENOMEM;
1483                 mlog_errno(ret);
1484                 goto out;
1485         }
1486         /*
1487          * If we don't set w_num_pages then this page won't get unlocked
1488          * and freed on cleanup of the write context.
1489          */
1490         wc->w_pages[0] = wc->w_target_page = page;
1491         wc->w_num_pages = 1;
1492
1493         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494         if (IS_ERR(handle)) {
1495                 ret = PTR_ERR(handle);
1496                 mlog_errno(ret);
1497                 goto out;
1498         }
1499
1500         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1501                                       OCFS2_JOURNAL_ACCESS_WRITE);
1502         if (ret) {
1503                 ocfs2_commit_trans(osb, handle);
1504
1505                 mlog_errno(ret);
1506                 goto out;
1507         }
1508
1509         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510                 ocfs2_set_inode_data_inline(inode, di);
1511
1512         if (!PageUptodate(page)) {
1513                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514                 if (ret) {
1515                         ocfs2_commit_trans(osb, handle);
1516
1517                         goto out;
1518                 }
1519         }
1520
1521         wc->w_handle = handle;
1522 out:
1523         return ret;
1524 }
1525
1526 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1527 {
1528         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1529
1530         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1531                 return 1;
1532         return 0;
1533 }
1534
1535 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536                                           struct inode *inode, loff_t pos,
1537                                           unsigned len, struct page *mmap_page,
1538                                           struct ocfs2_write_ctxt *wc)
1539 {
1540         int ret, written = 0;
1541         loff_t end = pos + len;
1542         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1543         struct ocfs2_dinode *di = NULL;
1544
1545         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1546              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1547              oi->ip_dyn_features);
1548
1549         /*
1550          * Handle inodes which already have inline data 1st.
1551          */
1552         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553                 if (mmap_page == NULL &&
1554                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555                         goto do_inline_write;
1556
1557                 /*
1558                  * The write won't fit - we have to give this inode an
1559                  * inline extent list now.
1560                  */
1561                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562                 if (ret)
1563                         mlog_errno(ret);
1564                 goto out;
1565         }
1566
1567         /*
1568          * Check whether the inode can accept inline data.
1569          */
1570         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571                 return 0;
1572
1573         /*
1574          * Check whether the write can fit.
1575          */
1576         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577         if (mmap_page ||
1578             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1579                 return 0;
1580
1581 do_inline_write:
1582         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583         if (ret) {
1584                 mlog_errno(ret);
1585                 goto out;
1586         }
1587
1588         /*
1589          * This signals to the caller that the data can be written
1590          * inline.
1591          */
1592         written = 1;
1593 out:
1594         return written ? written : ret;
1595 }
1596
1597 /*
1598  * This function only does anything for file systems which can't
1599  * handle sparse files.
1600  *
1601  * What we want to do here is fill in any hole between the current end
1602  * of allocation and the end of our write. That way the rest of the
1603  * write path can treat it as an non-allocating write, which has no
1604  * special case code for sparse/nonsparse files.
1605  */
1606 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607                                         struct buffer_head *di_bh,
1608                                         loff_t pos, unsigned len,
1609                                         struct ocfs2_write_ctxt *wc)
1610 {
1611         int ret;
1612         loff_t newsize = pos + len;
1613
1614         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1615
1616         if (newsize <= i_size_read(inode))
1617                 return 0;
1618
1619         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1620         if (ret)
1621                 mlog_errno(ret);
1622
1623         wc->w_first_new_cpos =
1624                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1625
1626         return ret;
1627 }
1628
1629 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1630                            loff_t pos)
1631 {
1632         int ret = 0;
1633
1634         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1635         if (pos > i_size_read(inode))
1636                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1637
1638         return ret;
1639 }
1640
1641 int ocfs2_write_begin_nolock(struct address_space *mapping,
1642                              loff_t pos, unsigned len, unsigned flags,
1643                              struct page **pagep, void **fsdata,
1644                              struct buffer_head *di_bh, struct page *mmap_page)
1645 {
1646         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1647         unsigned int clusters_to_alloc, extents_to_split;
1648         struct ocfs2_write_ctxt *wc;
1649         struct inode *inode = mapping->host;
1650         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1651         struct ocfs2_dinode *di;
1652         struct ocfs2_alloc_context *data_ac = NULL;
1653         struct ocfs2_alloc_context *meta_ac = NULL;
1654         handle_t *handle;
1655         struct ocfs2_extent_tree et;
1656
1657         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1658         if (ret) {
1659                 mlog_errno(ret);
1660                 return ret;
1661         }
1662
1663         if (ocfs2_supports_inline_data(osb)) {
1664                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1665                                                      mmap_page, wc);
1666                 if (ret == 1) {
1667                         ret = 0;
1668                         goto success;
1669                 }
1670                 if (ret < 0) {
1671                         mlog_errno(ret);
1672                         goto out;
1673                 }
1674         }
1675
1676         if (ocfs2_sparse_alloc(osb))
1677                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1678         else
1679                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1680                                                    wc);
1681         if (ret) {
1682                 mlog_errno(ret);
1683                 goto out;
1684         }
1685
1686         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1687         if (ret < 0) {
1688                 mlog_errno(ret);
1689                 goto out;
1690         } else if (ret == 1) {
1691                 ret = ocfs2_refcount_cow(inode, di_bh,
1692                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1693                 if (ret) {
1694                         mlog_errno(ret);
1695                         goto out;
1696                 }
1697         }
1698
1699         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1700                                         &extents_to_split);
1701         if (ret) {
1702                 mlog_errno(ret);
1703                 goto out;
1704         }
1705
1706         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1707
1708         /*
1709          * We set w_target_from, w_target_to here so that
1710          * ocfs2_write_end() knows which range in the target page to
1711          * write out. An allocation requires that we write the entire
1712          * cluster range.
1713          */
1714         if (clusters_to_alloc || extents_to_split) {
1715                 /*
1716                  * XXX: We are stretching the limits of
1717                  * ocfs2_lock_allocators(). It greatly over-estimates
1718                  * the work to be done.
1719                  */
1720                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721                      " clusters_to_add = %u, extents_to_split = %u\n",
1722                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724                      clusters_to_alloc, extents_to_split);
1725
1726                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1727                                               wc->w_di_bh);
1728                 ret = ocfs2_lock_allocators(inode, &et,
1729                                             clusters_to_alloc, extents_to_split,
1730                                             &data_ac, &meta_ac);
1731                 if (ret) {
1732                         mlog_errno(ret);
1733                         goto out;
1734                 }
1735
1736                 if (data_ac)
1737                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1738
1739                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1740                                                     &di->id2.i_list,
1741                                                     clusters_to_alloc);
1742
1743         }
1744
1745         /*
1746          * We have to zero sparse allocated clusters, unwritten extent clusters,
1747          * and non-sparse clusters we just extended.  For non-sparse writes,
1748          * we know zeros will only be needed in the first and/or last cluster.
1749          */
1750         if (clusters_to_alloc || extents_to_split ||
1751             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1752                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1753                 cluster_of_pages = 1;
1754         else
1755                 cluster_of_pages = 0;
1756
1757         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1758
1759         handle = ocfs2_start_trans(osb, credits);
1760         if (IS_ERR(handle)) {
1761                 ret = PTR_ERR(handle);
1762                 mlog_errno(ret);
1763                 goto out;
1764         }
1765
1766         wc->w_handle = handle;
1767
1768         if (clusters_to_alloc) {
1769                 ret = dquot_alloc_space_nodirty(inode,
1770                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1771                 if (ret)
1772                         goto out_commit;
1773         }
1774         /*
1775          * We don't want this to fail in ocfs2_write_end(), so do it
1776          * here.
1777          */
1778         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1779                                       OCFS2_JOURNAL_ACCESS_WRITE);
1780         if (ret) {
1781                 mlog_errno(ret);
1782                 goto out_quota;
1783         }
1784
1785         /*
1786          * Fill our page array first. That way we've grabbed enough so
1787          * that we can zero and flush if we error after adding the
1788          * extent.
1789          */
1790         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1791                                          cluster_of_pages, mmap_page);
1792         if (ret) {
1793                 mlog_errno(ret);
1794                 goto out_quota;
1795         }
1796
1797         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1798                                           len);
1799         if (ret) {
1800                 mlog_errno(ret);
1801                 goto out_quota;
1802         }
1803
1804         if (data_ac)
1805                 ocfs2_free_alloc_context(data_ac);
1806         if (meta_ac)
1807                 ocfs2_free_alloc_context(meta_ac);
1808
1809 success:
1810         *pagep = wc->w_target_page;
1811         *fsdata = wc;
1812         return 0;
1813 out_quota:
1814         if (clusters_to_alloc)
1815                 dquot_free_space(inode,
1816                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817 out_commit:
1818         ocfs2_commit_trans(osb, handle);
1819
1820 out:
1821         ocfs2_free_write_ctxt(wc);
1822
1823         if (data_ac)
1824                 ocfs2_free_alloc_context(data_ac);
1825         if (meta_ac)
1826                 ocfs2_free_alloc_context(meta_ac);
1827         return ret;
1828 }
1829
1830 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1831                              loff_t pos, unsigned len, unsigned flags,
1832                              struct page **pagep, void **fsdata)
1833 {
1834         int ret;
1835         struct buffer_head *di_bh = NULL;
1836         struct inode *inode = mapping->host;
1837
1838         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1839         if (ret) {
1840                 mlog_errno(ret);
1841                 return ret;
1842         }
1843
1844         /*
1845          * Take alloc sem here to prevent concurrent lookups. That way
1846          * the mapping, zeroing and tree manipulation within
1847          * ocfs2_write() will be safe against ->readpage(). This
1848          * should also serve to lock out allocation from a shared
1849          * writeable region.
1850          */
1851         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1852
1853         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1854                                        fsdata, di_bh, NULL);
1855         if (ret) {
1856                 mlog_errno(ret);
1857                 goto out_fail;
1858         }
1859
1860         brelse(di_bh);
1861
1862         return 0;
1863
1864 out_fail:
1865         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1866
1867         brelse(di_bh);
1868         ocfs2_inode_unlock(inode, 1);
1869
1870         return ret;
1871 }
1872
1873 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1874                                    unsigned len, unsigned *copied,
1875                                    struct ocfs2_dinode *di,
1876                                    struct ocfs2_write_ctxt *wc)
1877 {
1878         void *kaddr;
1879
1880         if (unlikely(*copied < len)) {
1881                 if (!PageUptodate(wc->w_target_page)) {
1882                         *copied = 0;
1883                         return;
1884                 }
1885         }
1886
1887         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1888         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1889         kunmap_atomic(kaddr, KM_USER0);
1890
1891         mlog(0, "Data written to inode at offset %llu. "
1892              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1893              (unsigned long long)pos, *copied,
1894              le16_to_cpu(di->id2.i_data.id_count),
1895              le16_to_cpu(di->i_dyn_features));
1896 }
1897
1898 int ocfs2_write_end_nolock(struct address_space *mapping,
1899                            loff_t pos, unsigned len, unsigned copied,
1900                            struct page *page, void *fsdata)
1901 {
1902         int i;
1903         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1904         struct inode *inode = mapping->host;
1905         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1906         struct ocfs2_write_ctxt *wc = fsdata;
1907         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1908         handle_t *handle = wc->w_handle;
1909         struct page *tmppage;
1910
1911         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1912                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1913                 goto out_write_size;
1914         }
1915
1916         if (unlikely(copied < len)) {
1917                 if (!PageUptodate(wc->w_target_page))
1918                         copied = 0;
1919
1920                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1921                                        start+len);
1922         }
1923         flush_dcache_page(wc->w_target_page);
1924
1925         for(i = 0; i < wc->w_num_pages; i++) {
1926                 tmppage = wc->w_pages[i];
1927
1928                 if (tmppage == wc->w_target_page) {
1929                         from = wc->w_target_from;
1930                         to = wc->w_target_to;
1931
1932                         BUG_ON(from > PAGE_CACHE_SIZE ||
1933                                to > PAGE_CACHE_SIZE ||
1934                                to < from);
1935                 } else {
1936                         /*
1937                          * Pages adjacent to the target (if any) imply
1938                          * a hole-filling write in which case we want
1939                          * to flush their entire range.
1940                          */
1941                         from = 0;
1942                         to = PAGE_CACHE_SIZE;
1943                 }
1944
1945                 if (page_has_buffers(tmppage)) {
1946                         if (ocfs2_should_order_data(inode))
1947                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1948                         block_commit_write(tmppage, from, to);
1949                 }
1950         }
1951
1952 out_write_size:
1953         pos += copied;
1954         if (pos > inode->i_size) {
1955                 i_size_write(inode, pos);
1956                 mark_inode_dirty(inode);
1957         }
1958         inode->i_blocks = ocfs2_inode_sector_count(inode);
1959         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1960         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1961         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1962         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1963         ocfs2_journal_dirty(handle, wc->w_di_bh);
1964
1965         ocfs2_commit_trans(osb, handle);
1966
1967         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1968
1969         ocfs2_free_write_ctxt(wc);
1970
1971         return copied;
1972 }
1973
1974 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1975                            loff_t pos, unsigned len, unsigned copied,
1976                            struct page *page, void *fsdata)
1977 {
1978         int ret;
1979         struct inode *inode = mapping->host;
1980
1981         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1982
1983         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1984         ocfs2_inode_unlock(inode, 1);
1985
1986         return ret;
1987 }
1988
1989 const struct address_space_operations ocfs2_aops = {
1990         .readpage               = ocfs2_readpage,
1991         .readpages              = ocfs2_readpages,
1992         .writepage              = ocfs2_writepage,
1993         .write_begin            = ocfs2_write_begin,
1994         .write_end              = ocfs2_write_end,
1995         .bmap                   = ocfs2_bmap,
1996         .sync_page              = block_sync_page,
1997         .direct_IO              = ocfs2_direct_IO,
1998         .invalidatepage         = ocfs2_invalidatepage,
1999         .releasepage            = ocfs2_releasepage,
2000         .migratepage            = buffer_migrate_page,
2001         .is_partially_uptodate  = block_is_partially_uptodate,
2002         .error_remove_page      = generic_error_remove_page,
2003 };