]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/nilfs2/super.c
Merge branch 'v2.6.36-rc8' into for-2.6.37/barrier
[net-next-2.6.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "btree.h"
59 #include "btnode.h"
60 #include "page.h"
61 #include "cpfile.h"
62 #include "ifile.h"
63 #include "dat.h"
64 #include "segment.h"
65 #include "segbuf.h"
66
67 MODULE_AUTHOR("NTT Corp.");
68 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
69                    "(NILFS)");
70 MODULE_LICENSE("GPL");
71
72 struct kmem_cache *nilfs_inode_cachep;
73 struct kmem_cache *nilfs_transaction_cachep;
74 struct kmem_cache *nilfs_segbuf_cachep;
75 struct kmem_cache *nilfs_btree_path_cache;
76
77 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78
79 static void nilfs_set_error(struct nilfs_sb_info *sbi)
80 {
81         struct the_nilfs *nilfs = sbi->s_nilfs;
82         struct nilfs_super_block **sbp;
83
84         down_write(&nilfs->ns_sem);
85         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
86                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
87                 sbp = nilfs_prepare_super(sbi, 0);
88                 if (likely(sbp)) {
89                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90                         if (sbp[1])
91                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92                         nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
93                 }
94         }
95         up_write(&nilfs->ns_sem);
96 }
97
98 /**
99  * nilfs_error() - report failure condition on a filesystem
100  *
101  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
102  * reporting an error message.  It should be called when NILFS detects
103  * incoherences or defects of meta data on disk.  As for sustainable
104  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
105  * function should be used instead.
106  *
107  * The segment constructor must not call this function because it can
108  * kill itself.
109  */
110 void nilfs_error(struct super_block *sb, const char *function,
111                  const char *fmt, ...)
112 {
113         struct nilfs_sb_info *sbi = NILFS_SB(sb);
114         va_list args;
115
116         va_start(args, fmt);
117         printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
118         vprintk(fmt, args);
119         printk("\n");
120         va_end(args);
121
122         if (!(sb->s_flags & MS_RDONLY)) {
123                 nilfs_set_error(sbi);
124
125                 if (nilfs_test_opt(sbi, ERRORS_RO)) {
126                         printk(KERN_CRIT "Remounting filesystem read-only\n");
127                         sb->s_flags |= MS_RDONLY;
128                 }
129         }
130
131         if (nilfs_test_opt(sbi, ERRORS_PANIC))
132                 panic("NILFS (device %s): panic forced after error\n",
133                       sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137                    const char *fmt, ...)
138 {
139         va_list args;
140
141         va_start(args, fmt);
142         printk(KERN_WARNING "NILFS warning (device %s): %s: ",
143                sb->s_id, function);
144         vprintk(fmt, args);
145         printk("\n");
146         va_end(args);
147 }
148
149
150 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
151 {
152         struct nilfs_inode_info *ii;
153
154         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155         if (!ii)
156                 return NULL;
157         ii->i_bh = NULL;
158         ii->i_state = 0;
159         ii->vfs_inode.i_version = 1;
160         nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161         return &ii->vfs_inode;
162 }
163
164 struct inode *nilfs_alloc_inode(struct super_block *sb)
165 {
166         return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
167 }
168
169 void nilfs_destroy_inode(struct inode *inode)
170 {
171         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173
174 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
175 {
176         struct the_nilfs *nilfs = sbi->s_nilfs;
177         int err;
178
179  retry:
180         set_buffer_dirty(nilfs->ns_sbh[0]);
181         if (nilfs_test_opt(sbi, BARRIER)) {
182                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183                                           WRITE_SYNC | WRITE_FLUSH_FUA);
184         } else {
185                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186         }
187
188         if (unlikely(err)) {
189                 printk(KERN_ERR
190                        "NILFS: unable to write superblock (err=%d)\n", err);
191                 if (err == -EIO && nilfs->ns_sbh[1]) {
192                         /*
193                          * sbp[0] points to newer log than sbp[1],
194                          * so copy sbp[0] to sbp[1] to take over sbp[0].
195                          */
196                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
197                                nilfs->ns_sbsize);
198                         nilfs_fall_back_super_block(nilfs);
199                         goto retry;
200                 }
201         } else {
202                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
203
204                 nilfs->ns_sbwcount++;
205
206                 /*
207                  * The latest segment becomes trailable from the position
208                  * written in superblock.
209                  */
210                 clear_nilfs_discontinued(nilfs);
211
212                 /* update GC protection for recent segments */
213                 if (nilfs->ns_sbh[1]) {
214                         if (flag == NILFS_SB_COMMIT_ALL) {
215                                 set_buffer_dirty(nilfs->ns_sbh[1]);
216                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
217                                         goto out;
218                         }
219                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
220                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
221                                 sbp = nilfs->ns_sbp[1];
222                 }
223
224                 spin_lock(&nilfs->ns_last_segment_lock);
225                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
226                 spin_unlock(&nilfs->ns_last_segment_lock);
227         }
228  out:
229         return err;
230 }
231
232 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
233                           struct the_nilfs *nilfs)
234 {
235         sector_t nfreeblocks;
236
237         /* nilfs->ns_sem must be locked by the caller. */
238         nilfs_count_free_blocks(nilfs, &nfreeblocks);
239         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
240
241         spin_lock(&nilfs->ns_last_segment_lock);
242         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
243         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
244         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
245         spin_unlock(&nilfs->ns_last_segment_lock);
246 }
247
248 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
249                                                int flip)
250 {
251         struct the_nilfs *nilfs = sbi->s_nilfs;
252         struct nilfs_super_block **sbp = nilfs->ns_sbp;
253
254         /* nilfs->ns_sem must be locked by the caller. */
255         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
256                 if (sbp[1] &&
257                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
258                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
259                 } else {
260                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
261                                sbi->s_super->s_id);
262                         return NULL;
263                 }
264         } else if (sbp[1] &&
265                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
266                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
267         }
268
269         if (flip && sbp[1])
270                 nilfs_swap_super_block(nilfs);
271
272         return sbp;
273 }
274
275 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
276 {
277         struct the_nilfs *nilfs = sbi->s_nilfs;
278         struct nilfs_super_block **sbp = nilfs->ns_sbp;
279         time_t t;
280
281         /* nilfs->ns_sem must be locked by the caller. */
282         t = get_seconds();
283         nilfs->ns_sbwtime = t;
284         sbp[0]->s_wtime = cpu_to_le64(t);
285         sbp[0]->s_sum = 0;
286         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
287                                              (unsigned char *)sbp[0],
288                                              nilfs->ns_sbsize));
289         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
290                 sbp[1]->s_wtime = sbp[0]->s_wtime;
291                 sbp[1]->s_sum = 0;
292                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
293                                             (unsigned char *)sbp[1],
294                                             nilfs->ns_sbsize));
295         }
296         clear_nilfs_sb_dirty(nilfs);
297         return nilfs_sync_super(sbi, flag);
298 }
299
300 /**
301  * nilfs_cleanup_super() - write filesystem state for cleanup
302  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
303  *
304  * This function restores state flags in the on-disk super block.
305  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306  * filesystem was not clean previously.
307  */
308 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
309 {
310         struct nilfs_super_block **sbp;
311         int flag = NILFS_SB_COMMIT;
312         int ret = -EIO;
313
314         sbp = nilfs_prepare_super(sbi, 0);
315         if (sbp) {
316                 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
317                 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
318                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
319                         /*
320                          * make the "clean" flag also to the opposite
321                          * super block if both super blocks point to
322                          * the same checkpoint.
323                          */
324                         sbp[1]->s_state = sbp[0]->s_state;
325                         flag = NILFS_SB_COMMIT_ALL;
326                 }
327                 ret = nilfs_commit_super(sbi, flag);
328         }
329         return ret;
330 }
331
332 static void nilfs_put_super(struct super_block *sb)
333 {
334         struct nilfs_sb_info *sbi = NILFS_SB(sb);
335         struct the_nilfs *nilfs = sbi->s_nilfs;
336
337         lock_kernel();
338
339         nilfs_detach_segment_constructor(sbi);
340
341         if (!(sb->s_flags & MS_RDONLY)) {
342                 down_write(&nilfs->ns_sem);
343                 nilfs_cleanup_super(sbi);
344                 up_write(&nilfs->ns_sem);
345         }
346         down_write(&nilfs->ns_super_sem);
347         if (nilfs->ns_current == sbi)
348                 nilfs->ns_current = NULL;
349         up_write(&nilfs->ns_super_sem);
350
351         nilfs_detach_checkpoint(sbi);
352         put_nilfs(sbi->s_nilfs);
353         sbi->s_super = NULL;
354         sb->s_fs_info = NULL;
355         nilfs_put_sbinfo(sbi);
356
357         unlock_kernel();
358 }
359
360 static int nilfs_sync_fs(struct super_block *sb, int wait)
361 {
362         struct nilfs_sb_info *sbi = NILFS_SB(sb);
363         struct the_nilfs *nilfs = sbi->s_nilfs;
364         struct nilfs_super_block **sbp;
365         int err = 0;
366
367         /* This function is called when super block should be written back */
368         if (wait)
369                 err = nilfs_construct_segment(sb);
370
371         down_write(&nilfs->ns_sem);
372         if (nilfs_sb_dirty(nilfs)) {
373                 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
374                 if (likely(sbp)) {
375                         nilfs_set_log_cursor(sbp[0], nilfs);
376                         nilfs_commit_super(sbi, NILFS_SB_COMMIT);
377                 }
378         }
379         up_write(&nilfs->ns_sem);
380
381         return err;
382 }
383
384 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
385 {
386         struct the_nilfs *nilfs = sbi->s_nilfs;
387         struct nilfs_checkpoint *raw_cp;
388         struct buffer_head *bh_cp;
389         int err;
390
391         down_write(&nilfs->ns_super_sem);
392         list_add(&sbi->s_list, &nilfs->ns_supers);
393         up_write(&nilfs->ns_super_sem);
394
395         err = -ENOMEM;
396         sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
397         if (!sbi->s_ifile)
398                 goto delist;
399
400         down_read(&nilfs->ns_segctor_sem);
401         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
402                                           &bh_cp);
403         up_read(&nilfs->ns_segctor_sem);
404         if (unlikely(err)) {
405                 if (err == -ENOENT || err == -EINVAL) {
406                         printk(KERN_ERR
407                                "NILFS: Invalid checkpoint "
408                                "(checkpoint number=%llu)\n",
409                                (unsigned long long)cno);
410                         err = -EINVAL;
411                 }
412                 goto failed;
413         }
414         err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
415         if (unlikely(err))
416                 goto failed_bh;
417         atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
418         atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
419
420         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
421         return 0;
422
423  failed_bh:
424         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
425  failed:
426         nilfs_mdt_destroy(sbi->s_ifile);
427         sbi->s_ifile = NULL;
428
429  delist:
430         down_write(&nilfs->ns_super_sem);
431         list_del_init(&sbi->s_list);
432         up_write(&nilfs->ns_super_sem);
433
434         return err;
435 }
436
437 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
438 {
439         struct the_nilfs *nilfs = sbi->s_nilfs;
440
441         nilfs_mdt_destroy(sbi->s_ifile);
442         sbi->s_ifile = NULL;
443         down_write(&nilfs->ns_super_sem);
444         list_del_init(&sbi->s_list);
445         up_write(&nilfs->ns_super_sem);
446 }
447
448 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
449 {
450         struct super_block *sb = dentry->d_sb;
451         struct nilfs_sb_info *sbi = NILFS_SB(sb);
452         struct the_nilfs *nilfs = sbi->s_nilfs;
453         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
454         unsigned long long blocks;
455         unsigned long overhead;
456         unsigned long nrsvblocks;
457         sector_t nfreeblocks;
458         int err;
459
460         /*
461          * Compute all of the segment blocks
462          *
463          * The blocks before first segment and after last segment
464          * are excluded.
465          */
466         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
467                 - nilfs->ns_first_data_block;
468         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
469
470         /*
471          * Compute the overhead
472          *
473          * When distributing meta data blocks outside segment structure,
474          * We must count them as the overhead.
475          */
476         overhead = 0;
477
478         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
479         if (unlikely(err))
480                 return err;
481
482         buf->f_type = NILFS_SUPER_MAGIC;
483         buf->f_bsize = sb->s_blocksize;
484         buf->f_blocks = blocks - overhead;
485         buf->f_bfree = nfreeblocks;
486         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
487                 (buf->f_bfree - nrsvblocks) : 0;
488         buf->f_files = atomic_read(&sbi->s_inodes_count);
489         buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
490         buf->f_namelen = NILFS_NAME_LEN;
491         buf->f_fsid.val[0] = (u32)id;
492         buf->f_fsid.val[1] = (u32)(id >> 32);
493
494         return 0;
495 }
496
497 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
498 {
499         struct super_block *sb = vfs->mnt_sb;
500         struct nilfs_sb_info *sbi = NILFS_SB(sb);
501
502         if (!nilfs_test_opt(sbi, BARRIER))
503                 seq_puts(seq, ",nobarrier");
504         if (nilfs_test_opt(sbi, SNAPSHOT))
505                 seq_printf(seq, ",cp=%llu",
506                            (unsigned long long int)sbi->s_snapshot_cno);
507         if (nilfs_test_opt(sbi, ERRORS_PANIC))
508                 seq_puts(seq, ",errors=panic");
509         if (nilfs_test_opt(sbi, ERRORS_CONT))
510                 seq_puts(seq, ",errors=continue");
511         if (nilfs_test_opt(sbi, STRICT_ORDER))
512                 seq_puts(seq, ",order=strict");
513         if (nilfs_test_opt(sbi, NORECOVERY))
514                 seq_puts(seq, ",norecovery");
515         if (nilfs_test_opt(sbi, DISCARD))
516                 seq_puts(seq, ",discard");
517
518         return 0;
519 }
520
521 static const struct super_operations nilfs_sops = {
522         .alloc_inode    = nilfs_alloc_inode,
523         .destroy_inode  = nilfs_destroy_inode,
524         .dirty_inode    = nilfs_dirty_inode,
525         /* .write_inode    = nilfs_write_inode, */
526         /* .put_inode      = nilfs_put_inode, */
527         /* .drop_inode    = nilfs_drop_inode, */
528         .evict_inode    = nilfs_evict_inode,
529         .put_super      = nilfs_put_super,
530         /* .write_super    = nilfs_write_super, */
531         .sync_fs        = nilfs_sync_fs,
532         /* .write_super_lockfs */
533         /* .unlockfs */
534         .statfs         = nilfs_statfs,
535         .remount_fs     = nilfs_remount,
536         /* .umount_begin */
537         .show_options = nilfs_show_options
538 };
539
540 static struct inode *
541 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
542 {
543         struct inode *inode;
544
545         if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
546             ino != NILFS_SKETCH_INO)
547                 return ERR_PTR(-ESTALE);
548
549         inode = nilfs_iget(sb, ino);
550         if (IS_ERR(inode))
551                 return ERR_CAST(inode);
552         if (generation && inode->i_generation != generation) {
553                 iput(inode);
554                 return ERR_PTR(-ESTALE);
555         }
556
557         return inode;
558 }
559
560 static struct dentry *
561 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
562                    int fh_type)
563 {
564         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
565                                     nilfs_nfs_get_inode);
566 }
567
568 static struct dentry *
569 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
570                    int fh_type)
571 {
572         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
573                                     nilfs_nfs_get_inode);
574 }
575
576 static const struct export_operations nilfs_export_ops = {
577         .fh_to_dentry = nilfs_fh_to_dentry,
578         .fh_to_parent = nilfs_fh_to_parent,
579         .get_parent = nilfs_get_parent,
580 };
581
582 enum {
583         Opt_err_cont, Opt_err_panic, Opt_err_ro,
584         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
585         Opt_discard, Opt_nodiscard, Opt_err,
586 };
587
588 static match_table_t tokens = {
589         {Opt_err_cont, "errors=continue"},
590         {Opt_err_panic, "errors=panic"},
591         {Opt_err_ro, "errors=remount-ro"},
592         {Opt_barrier, "barrier"},
593         {Opt_nobarrier, "nobarrier"},
594         {Opt_snapshot, "cp=%u"},
595         {Opt_order, "order=%s"},
596         {Opt_norecovery, "norecovery"},
597         {Opt_discard, "discard"},
598         {Opt_nodiscard, "nodiscard"},
599         {Opt_err, NULL}
600 };
601
602 static int parse_options(char *options, struct super_block *sb, int is_remount)
603 {
604         struct nilfs_sb_info *sbi = NILFS_SB(sb);
605         char *p;
606         substring_t args[MAX_OPT_ARGS];
607         int option;
608
609         if (!options)
610                 return 1;
611
612         while ((p = strsep(&options, ",")) != NULL) {
613                 int token;
614                 if (!*p)
615                         continue;
616
617                 token = match_token(p, tokens, args);
618                 switch (token) {
619                 case Opt_barrier:
620                         nilfs_set_opt(sbi, BARRIER);
621                         break;
622                 case Opt_nobarrier:
623                         nilfs_clear_opt(sbi, BARRIER);
624                         break;
625                 case Opt_order:
626                         if (strcmp(args[0].from, "relaxed") == 0)
627                                 /* Ordered data semantics */
628                                 nilfs_clear_opt(sbi, STRICT_ORDER);
629                         else if (strcmp(args[0].from, "strict") == 0)
630                                 /* Strict in-order semantics */
631                                 nilfs_set_opt(sbi, STRICT_ORDER);
632                         else
633                                 return 0;
634                         break;
635                 case Opt_err_panic:
636                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
637                         break;
638                 case Opt_err_ro:
639                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
640                         break;
641                 case Opt_err_cont:
642                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
643                         break;
644                 case Opt_snapshot:
645                         if (match_int(&args[0], &option) || option <= 0)
646                                 return 0;
647                         if (is_remount) {
648                                 if (!nilfs_test_opt(sbi, SNAPSHOT)) {
649                                         printk(KERN_ERR
650                                                "NILFS: cannot change regular "
651                                                "mount to snapshot.\n");
652                                         return 0;
653                                 } else if (option != sbi->s_snapshot_cno) {
654                                         printk(KERN_ERR
655                                                "NILFS: cannot remount to a "
656                                                "different snapshot.\n");
657                                         return 0;
658                                 }
659                                 break;
660                         }
661                         if (!(sb->s_flags & MS_RDONLY)) {
662                                 printk(KERN_ERR "NILFS: cannot mount snapshot "
663                                        "read/write.  A read-only option is "
664                                        "required.\n");
665                                 return 0;
666                         }
667                         sbi->s_snapshot_cno = option;
668                         nilfs_set_opt(sbi, SNAPSHOT);
669                         break;
670                 case Opt_norecovery:
671                         nilfs_set_opt(sbi, NORECOVERY);
672                         break;
673                 case Opt_discard:
674                         nilfs_set_opt(sbi, DISCARD);
675                         break;
676                 case Opt_nodiscard:
677                         nilfs_clear_opt(sbi, DISCARD);
678                         break;
679                 default:
680                         printk(KERN_ERR
681                                "NILFS: Unrecognized mount option \"%s\"\n", p);
682                         return 0;
683                 }
684         }
685         return 1;
686 }
687
688 static inline void
689 nilfs_set_default_options(struct nilfs_sb_info *sbi,
690                           struct nilfs_super_block *sbp)
691 {
692         sbi->s_mount_opt =
693                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
694 }
695
696 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
697 {
698         struct the_nilfs *nilfs = sbi->s_nilfs;
699         struct nilfs_super_block **sbp;
700         int max_mnt_count;
701         int mnt_count;
702
703         /* nilfs->ns_sem must be locked by the caller. */
704         sbp = nilfs_prepare_super(sbi, 0);
705         if (!sbp)
706                 return -EIO;
707
708         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
709         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
710
711         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
712                 printk(KERN_WARNING
713                        "NILFS warning: mounting fs with errors\n");
714 #if 0
715         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
716                 printk(KERN_WARNING
717                        "NILFS warning: maximal mount count reached\n");
718 #endif
719         }
720         if (!max_mnt_count)
721                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
722
723         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
724         sbp[0]->s_state =
725                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
726         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
727         /* synchronize sbp[1] with sbp[0] */
728         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
729         return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
730 }
731
732 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
733                                                  u64 pos, int blocksize,
734                                                  struct buffer_head **pbh)
735 {
736         unsigned long long sb_index = pos;
737         unsigned long offset;
738
739         offset = do_div(sb_index, blocksize);
740         *pbh = sb_bread(sb, sb_index);
741         if (!*pbh)
742                 return NULL;
743         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
744 }
745
746 int nilfs_store_magic_and_option(struct super_block *sb,
747                                  struct nilfs_super_block *sbp,
748                                  char *data)
749 {
750         struct nilfs_sb_info *sbi = NILFS_SB(sb);
751
752         sb->s_magic = le16_to_cpu(sbp->s_magic);
753
754         /* FS independent flags */
755 #ifdef NILFS_ATIME_DISABLE
756         sb->s_flags |= MS_NOATIME;
757 #endif
758
759         nilfs_set_default_options(sbi, sbp);
760
761         sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
762         sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
763         sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
764         sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
765
766         return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
767 }
768
769 int nilfs_check_feature_compatibility(struct super_block *sb,
770                                       struct nilfs_super_block *sbp)
771 {
772         __u64 features;
773
774         features = le64_to_cpu(sbp->s_feature_incompat) &
775                 ~NILFS_FEATURE_INCOMPAT_SUPP;
776         if (features) {
777                 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
778                        "optional features (%llx)\n",
779                        (unsigned long long)features);
780                 return -EINVAL;
781         }
782         features = le64_to_cpu(sbp->s_feature_compat_ro) &
783                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
784         if (!(sb->s_flags & MS_RDONLY) && features) {
785                 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
786                        "unsupported optional features (%llx)\n",
787                        (unsigned long long)features);
788                 return -EINVAL;
789         }
790         return 0;
791 }
792
793 /**
794  * nilfs_fill_super() - initialize a super block instance
795  * @sb: super_block
796  * @data: mount options
797  * @silent: silent mode flag
798  * @nilfs: the_nilfs struct
799  *
800  * This function is called exclusively by nilfs->ns_mount_mutex.
801  * So, the recovery process is protected from other simultaneous mounts.
802  */
803 static int
804 nilfs_fill_super(struct super_block *sb, void *data, int silent,
805                  struct the_nilfs *nilfs)
806 {
807         struct nilfs_sb_info *sbi;
808         struct inode *root;
809         __u64 cno;
810         int err;
811
812         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
813         if (!sbi)
814                 return -ENOMEM;
815
816         sb->s_fs_info = sbi;
817
818         get_nilfs(nilfs);
819         sbi->s_nilfs = nilfs;
820         sbi->s_super = sb;
821         atomic_set(&sbi->s_count, 1);
822
823         err = init_nilfs(nilfs, sbi, (char *)data);
824         if (err)
825                 goto failed_sbi;
826
827         spin_lock_init(&sbi->s_inode_lock);
828         INIT_LIST_HEAD(&sbi->s_dirty_files);
829         INIT_LIST_HEAD(&sbi->s_list);
830
831         /*
832          * Following initialization is overlapped because
833          * nilfs_sb_info structure has been cleared at the beginning.
834          * But we reserve them to keep our interest and make ready
835          * for the future change.
836          */
837         get_random_bytes(&sbi->s_next_generation,
838                          sizeof(sbi->s_next_generation));
839         spin_lock_init(&sbi->s_next_gen_lock);
840
841         sb->s_op = &nilfs_sops;
842         sb->s_export_op = &nilfs_export_ops;
843         sb->s_root = NULL;
844         sb->s_time_gran = 1;
845         sb->s_bdi = nilfs->ns_bdi;
846
847         err = load_nilfs(nilfs, sbi);
848         if (err)
849                 goto failed_sbi;
850
851         cno = nilfs_last_cno(nilfs);
852
853         if (sb->s_flags & MS_RDONLY) {
854                 if (nilfs_test_opt(sbi, SNAPSHOT)) {
855                         down_read(&nilfs->ns_segctor_sem);
856                         err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
857                                                        sbi->s_snapshot_cno);
858                         up_read(&nilfs->ns_segctor_sem);
859                         if (err < 0) {
860                                 if (err == -ENOENT)
861                                         err = -EINVAL;
862                                 goto failed_sbi;
863                         }
864                         if (!err) {
865                                 printk(KERN_ERR
866                                        "NILFS: The specified checkpoint is "
867                                        "not a snapshot "
868                                        "(checkpoint number=%llu).\n",
869                                        (unsigned long long)sbi->s_snapshot_cno);
870                                 err = -EINVAL;
871                                 goto failed_sbi;
872                         }
873                         cno = sbi->s_snapshot_cno;
874                 }
875         }
876
877         err = nilfs_attach_checkpoint(sbi, cno);
878         if (err) {
879                 printk(KERN_ERR "NILFS: error loading a checkpoint"
880                        " (checkpoint number=%llu).\n", (unsigned long long)cno);
881                 goto failed_sbi;
882         }
883
884         if (!(sb->s_flags & MS_RDONLY)) {
885                 err = nilfs_attach_segment_constructor(sbi);
886                 if (err)
887                         goto failed_checkpoint;
888         }
889
890         root = nilfs_iget(sb, NILFS_ROOT_INO);
891         if (IS_ERR(root)) {
892                 printk(KERN_ERR "NILFS: get root inode failed\n");
893                 err = PTR_ERR(root);
894                 goto failed_segctor;
895         }
896         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
897                 iput(root);
898                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
899                 err = -EINVAL;
900                 goto failed_segctor;
901         }
902         sb->s_root = d_alloc_root(root);
903         if (!sb->s_root) {
904                 iput(root);
905                 printk(KERN_ERR "NILFS: get root dentry failed\n");
906                 err = -ENOMEM;
907                 goto failed_segctor;
908         }
909
910         if (!(sb->s_flags & MS_RDONLY)) {
911                 down_write(&nilfs->ns_sem);
912                 nilfs_setup_super(sbi);
913                 up_write(&nilfs->ns_sem);
914         }
915
916         down_write(&nilfs->ns_super_sem);
917         if (!nilfs_test_opt(sbi, SNAPSHOT))
918                 nilfs->ns_current = sbi;
919         up_write(&nilfs->ns_super_sem);
920
921         return 0;
922
923  failed_segctor:
924         nilfs_detach_segment_constructor(sbi);
925
926  failed_checkpoint:
927         nilfs_detach_checkpoint(sbi);
928
929  failed_sbi:
930         put_nilfs(nilfs);
931         sb->s_fs_info = NULL;
932         nilfs_put_sbinfo(sbi);
933         return err;
934 }
935
936 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
937 {
938         struct nilfs_sb_info *sbi = NILFS_SB(sb);
939         struct the_nilfs *nilfs = sbi->s_nilfs;
940         unsigned long old_sb_flags;
941         struct nilfs_mount_options old_opts;
942         int was_snapshot, err;
943
944         lock_kernel();
945
946         down_write(&nilfs->ns_super_sem);
947         old_sb_flags = sb->s_flags;
948         old_opts.mount_opt = sbi->s_mount_opt;
949         old_opts.snapshot_cno = sbi->s_snapshot_cno;
950         was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
951
952         if (!parse_options(data, sb, 1)) {
953                 err = -EINVAL;
954                 goto restore_opts;
955         }
956         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
957
958         err = -EINVAL;
959         if (was_snapshot && !(*flags & MS_RDONLY)) {
960                 printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
961                        "read/write.\n", sb->s_id);
962                 goto restore_opts;
963         }
964
965         if (!nilfs_valid_fs(nilfs)) {
966                 printk(KERN_WARNING "NILFS (device %s): couldn't "
967                        "remount because the filesystem is in an "
968                        "incomplete recovery state.\n", sb->s_id);
969                 goto restore_opts;
970         }
971
972         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
973                 goto out;
974         if (*flags & MS_RDONLY) {
975                 /* Shutting down the segment constructor */
976                 nilfs_detach_segment_constructor(sbi);
977                 sb->s_flags |= MS_RDONLY;
978
979                 /*
980                  * Remounting a valid RW partition RDONLY, so set
981                  * the RDONLY flag and then mark the partition as valid again.
982                  */
983                 down_write(&nilfs->ns_sem);
984                 nilfs_cleanup_super(sbi);
985                 up_write(&nilfs->ns_sem);
986         } else {
987                 __u64 features;
988
989                 /*
990                  * Mounting a RDONLY partition read-write, so reread and
991                  * store the current valid flag.  (It may have been changed
992                  * by fsck since we originally mounted the partition.)
993                  */
994                 down_read(&nilfs->ns_sem);
995                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
996                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
997                 up_read(&nilfs->ns_sem);
998                 if (features) {
999                         printk(KERN_WARNING "NILFS (device %s): couldn't "
1000                                "remount RDWR because of unsupported optional "
1001                                "features (%llx)\n",
1002                                sb->s_id, (unsigned long long)features);
1003                         err = -EROFS;
1004                         goto restore_opts;
1005                 }
1006
1007                 sb->s_flags &= ~MS_RDONLY;
1008
1009                 err = nilfs_attach_segment_constructor(sbi);
1010                 if (err)
1011                         goto restore_opts;
1012
1013                 down_write(&nilfs->ns_sem);
1014                 nilfs_setup_super(sbi);
1015                 up_write(&nilfs->ns_sem);
1016         }
1017  out:
1018         up_write(&nilfs->ns_super_sem);
1019         unlock_kernel();
1020         return 0;
1021
1022  restore_opts:
1023         sb->s_flags = old_sb_flags;
1024         sbi->s_mount_opt = old_opts.mount_opt;
1025         sbi->s_snapshot_cno = old_opts.snapshot_cno;
1026         up_write(&nilfs->ns_super_sem);
1027         unlock_kernel();
1028         return err;
1029 }
1030
1031 struct nilfs_super_data {
1032         struct block_device *bdev;
1033         struct nilfs_sb_info *sbi;
1034         __u64 cno;
1035         int flags;
1036 };
1037
1038 /**
1039  * nilfs_identify - pre-read mount options needed to identify mount instance
1040  * @data: mount options
1041  * @sd: nilfs_super_data
1042  */
1043 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1044 {
1045         char *p, *options = data;
1046         substring_t args[MAX_OPT_ARGS];
1047         int option, token;
1048         int ret = 0;
1049
1050         do {
1051                 p = strsep(&options, ",");
1052                 if (p != NULL && *p) {
1053                         token = match_token(p, tokens, args);
1054                         if (token == Opt_snapshot) {
1055                                 if (!(sd->flags & MS_RDONLY))
1056                                         ret++;
1057                                 else {
1058                                         ret = match_int(&args[0], &option);
1059                                         if (!ret) {
1060                                                 if (option > 0)
1061                                                         sd->cno = option;
1062                                                 else
1063                                                         ret++;
1064                                         }
1065                                 }
1066                         }
1067                         if (ret)
1068                                 printk(KERN_ERR
1069                                        "NILFS: invalid mount option: %s\n", p);
1070                 }
1071                 if (!options)
1072                         break;
1073                 BUG_ON(options == data);
1074                 *(options - 1) = ',';
1075         } while (!ret);
1076         return ret;
1077 }
1078
1079 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1080 {
1081         struct nilfs_super_data *sd = data;
1082
1083         s->s_bdev = sd->bdev;
1084         s->s_dev = s->s_bdev->bd_dev;
1085         return 0;
1086 }
1087
1088 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1089 {
1090         struct nilfs_super_data *sd = data;
1091
1092         return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1093 }
1094
1095 static int
1096 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1097              const char *dev_name, void *data, struct vfsmount *mnt)
1098 {
1099         struct nilfs_super_data sd;
1100         struct super_block *s;
1101         fmode_t mode = FMODE_READ;
1102         struct the_nilfs *nilfs;
1103         int err, need_to_close = 1;
1104
1105         if (!(flags & MS_RDONLY))
1106                 mode |= FMODE_WRITE;
1107
1108         sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1109         if (IS_ERR(sd.bdev))
1110                 return PTR_ERR(sd.bdev);
1111
1112         /*
1113          * To get mount instance using sget() vfs-routine, NILFS needs
1114          * much more information than normal filesystems to identify mount
1115          * instance.  For snapshot mounts, not only a mount type (ro-mount
1116          * or rw-mount) but also a checkpoint number is required.
1117          */
1118         sd.cno = 0;
1119         sd.flags = flags;
1120         if (nilfs_identify((char *)data, &sd)) {
1121                 err = -EINVAL;
1122                 goto failed;
1123         }
1124
1125         nilfs = find_or_create_nilfs(sd.bdev);
1126         if (!nilfs) {
1127                 err = -ENOMEM;
1128                 goto failed;
1129         }
1130
1131         mutex_lock(&nilfs->ns_mount_mutex);
1132
1133         if (!sd.cno) {
1134                 /*
1135                  * Check if an exclusive mount exists or not.
1136                  * Snapshot mounts coexist with a current mount
1137                  * (i.e. rw-mount or ro-mount), whereas rw-mount and
1138                  * ro-mount are mutually exclusive.
1139                  */
1140                 down_read(&nilfs->ns_super_sem);
1141                 if (nilfs->ns_current &&
1142                     ((nilfs->ns_current->s_super->s_flags ^ flags)
1143                      & MS_RDONLY)) {
1144                         up_read(&nilfs->ns_super_sem);
1145                         err = -EBUSY;
1146                         goto failed_unlock;
1147                 }
1148                 up_read(&nilfs->ns_super_sem);
1149         }
1150
1151         /*
1152          * Find existing nilfs_sb_info struct
1153          */
1154         sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1155
1156         /*
1157          * Get super block instance holding the nilfs_sb_info struct.
1158          * A new instance is allocated if no existing mount is present or
1159          * existing instance has been unmounted.
1160          */
1161         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1162         if (sd.sbi)
1163                 nilfs_put_sbinfo(sd.sbi);
1164
1165         if (IS_ERR(s)) {
1166                 err = PTR_ERR(s);
1167                 goto failed_unlock;
1168         }
1169
1170         if (!s->s_root) {
1171                 char b[BDEVNAME_SIZE];
1172
1173                 /* New superblock instance created */
1174                 s->s_flags = flags;
1175                 s->s_mode = mode;
1176                 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1177                 sb_set_blocksize(s, block_size(sd.bdev));
1178
1179                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1180                                        nilfs);
1181                 if (err)
1182                         goto cancel_new;
1183
1184                 s->s_flags |= MS_ACTIVE;
1185                 need_to_close = 0;
1186         }
1187
1188         mutex_unlock(&nilfs->ns_mount_mutex);
1189         put_nilfs(nilfs);
1190         if (need_to_close)
1191                 close_bdev_exclusive(sd.bdev, mode);
1192         simple_set_mnt(mnt, s);
1193         return 0;
1194
1195  failed_unlock:
1196         mutex_unlock(&nilfs->ns_mount_mutex);
1197         put_nilfs(nilfs);
1198  failed:
1199         close_bdev_exclusive(sd.bdev, mode);
1200
1201         return err;
1202
1203  cancel_new:
1204         /* Abandoning the newly allocated superblock */
1205         mutex_unlock(&nilfs->ns_mount_mutex);
1206         put_nilfs(nilfs);
1207         deactivate_locked_super(s);
1208         /*
1209          * deactivate_locked_super() invokes close_bdev_exclusive().
1210          * We must finish all post-cleaning before this call;
1211          * put_nilfs() needs the block device.
1212          */
1213         return err;
1214 }
1215
1216 struct file_system_type nilfs_fs_type = {
1217         .owner    = THIS_MODULE,
1218         .name     = "nilfs2",
1219         .get_sb   = nilfs_get_sb,
1220         .kill_sb  = kill_block_super,
1221         .fs_flags = FS_REQUIRES_DEV,
1222 };
1223
1224 static void nilfs_inode_init_once(void *obj)
1225 {
1226         struct nilfs_inode_info *ii = obj;
1227
1228         INIT_LIST_HEAD(&ii->i_dirty);
1229 #ifdef CONFIG_NILFS_XATTR
1230         init_rwsem(&ii->xattr_sem);
1231 #endif
1232         nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1233         ii->i_bmap = &ii->i_bmap_data;
1234         inode_init_once(&ii->vfs_inode);
1235 }
1236
1237 static void nilfs_segbuf_init_once(void *obj)
1238 {
1239         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1240 }
1241
1242 static void nilfs_destroy_cachep(void)
1243 {
1244         if (nilfs_inode_cachep)
1245                 kmem_cache_destroy(nilfs_inode_cachep);
1246         if (nilfs_transaction_cachep)
1247                 kmem_cache_destroy(nilfs_transaction_cachep);
1248         if (nilfs_segbuf_cachep)
1249                 kmem_cache_destroy(nilfs_segbuf_cachep);
1250         if (nilfs_btree_path_cache)
1251                 kmem_cache_destroy(nilfs_btree_path_cache);
1252 }
1253
1254 static int __init nilfs_init_cachep(void)
1255 {
1256         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1257                         sizeof(struct nilfs_inode_info), 0,
1258                         SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1259         if (!nilfs_inode_cachep)
1260                 goto fail;
1261
1262         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1263                         sizeof(struct nilfs_transaction_info), 0,
1264                         SLAB_RECLAIM_ACCOUNT, NULL);
1265         if (!nilfs_transaction_cachep)
1266                 goto fail;
1267
1268         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1269                         sizeof(struct nilfs_segment_buffer), 0,
1270                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1271         if (!nilfs_segbuf_cachep)
1272                 goto fail;
1273
1274         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1275                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1276                         0, 0, NULL);
1277         if (!nilfs_btree_path_cache)
1278                 goto fail;
1279
1280         return 0;
1281
1282 fail:
1283         nilfs_destroy_cachep();
1284         return -ENOMEM;
1285 }
1286
1287 static int __init init_nilfs_fs(void)
1288 {
1289         int err;
1290
1291         err = nilfs_init_cachep();
1292         if (err)
1293                 goto fail;
1294
1295         err = register_filesystem(&nilfs_fs_type);
1296         if (err)
1297                 goto free_cachep;
1298
1299         printk(KERN_INFO "NILFS version 2 loaded\n");
1300         return 0;
1301
1302 free_cachep:
1303         nilfs_destroy_cachep();
1304 fail:
1305         return err;
1306 }
1307
1308 static void __exit exit_nilfs_fs(void)
1309 {
1310         nilfs_destroy_cachep();
1311         unregister_filesystem(&nilfs_fs_type);
1312 }
1313
1314 module_init(init_nilfs_fs)
1315 module_exit(exit_nilfs_fs)