]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jffs2/nodemgmt.c
5ab5c8521cdf9576b308ba7237015438a82a9887
[net-next-2.6.git] / fs / jffs2 / nodemgmt.c
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/compiler.h>
15 #include <linux/sched.h> /* For cond_resched() */
16 #include "nodelist.h"
17 #include "debug.h"
18
19 /**
20  *      jffs2_reserve_space - request physical space to write nodes to flash
21  *      @c: superblock info
22  *      @minsize: Minimum acceptable size of allocation
23  *      @len: Returned value of allocation length
24  *      @prio: Allocation type - ALLOC_{NORMAL,DELETION}
25  *
26  *      Requests a block of physical space on the flash. Returns zero for success
27  *      and puts 'len' into the appropriate place, or returns -ENOSPC or other 
28  *      error if appropriate. Doesn't return len since that's 
29  *
30  *      If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31  *      allocation semaphore, to prevent more than one allocation from being
32  *      active at any time. The semaphore is later released by jffs2_commit_allocation()
33  *
34  *      jffs2_reserve_space() may trigger garbage collection in order to make room
35  *      for the requested allocation.
36  */
37
38 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
39                                   uint32_t *len, uint32_t sumsize);
40
41 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42                         uint32_t *len, int prio, uint32_t sumsize)
43 {
44         int ret = -EAGAIN;
45         int blocksneeded = c->resv_blocks_write;
46         /* align it */
47         minsize = PAD(minsize);
48
49         D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50         mutex_lock(&c->alloc_sem);
51
52         D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
53
54         spin_lock(&c->erase_completion_lock);
55
56         /* this needs a little more thought (true <tglx> :)) */
57         while(ret == -EAGAIN) {
58                 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59                         uint32_t dirty, avail;
60
61                         /* calculate real dirty size
62                          * dirty_size contains blocks on erase_pending_list
63                          * those blocks are counted in c->nr_erasing_blocks.
64                          * If one block is actually erased, it is not longer counted as dirty_space
65                          * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66                          * with c->nr_erasing_blocks * c->sector_size again.
67                          * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68                          * This helps us to force gc and pick eventually a clean block to spread the load.
69                          * We add unchecked_size here, as we hopefully will find some space to use.
70                          * This will affect the sum only once, as gc first finishes checking
71                          * of nodes.
72                          */
73                         dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74                         if (dirty < c->nospc_dirty_size) {
75                                 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76                                         D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77                                         break;
78                                 }
79                                 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80                                           dirty, c->unchecked_size, c->sector_size));
81
82                                 spin_unlock(&c->erase_completion_lock);
83                                 mutex_unlock(&c->alloc_sem);
84                                 return -ENOSPC;
85                         }
86
87                         /* Calc possibly available space. Possibly available means that we
88                          * don't know, if unchecked size contains obsoleted nodes, which could give us some
89                          * more usable space. This will affect the sum only once, as gc first finishes checking
90                          * of nodes.
91                          + Return -ENOSPC, if the maximum possibly available space is less or equal than
92                          * blocksneeded * sector_size.
93                          * This blocks endless gc looping on a filesystem, which is nearly full, even if
94                          * the check above passes.
95                          */
96                         avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97                         if ( (avail / c->sector_size) <= blocksneeded) {
98                                 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99                                         D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100                                         break;
101                                 }
102
103                                 D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104                                           avail, blocksneeded * c->sector_size));
105                                 spin_unlock(&c->erase_completion_lock);
106                                 mutex_unlock(&c->alloc_sem);
107                                 return -ENOSPC;
108                         }
109
110                         mutex_unlock(&c->alloc_sem);
111
112                         D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113                                   c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114                                   c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115                         spin_unlock(&c->erase_completion_lock);
116
117                         ret = jffs2_garbage_collect_pass(c);
118
119                         if (ret == -EAGAIN) {
120                                 spin_lock(&c->erase_completion_lock);
121                                 if (c->nr_erasing_blocks &&
122                                     list_empty(&c->erase_pending_list) &&
123                                     list_empty(&c->erase_complete_list)) {
124                                         DECLARE_WAITQUEUE(wait, current);
125                                         set_current_state(TASK_UNINTERRUPTIBLE);
126                                         add_wait_queue(&c->erase_wait, &wait);
127                                         D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
128                                         spin_unlock(&c->erase_completion_lock);
129
130                                         schedule();
131                                 } else
132                                         spin_unlock(&c->erase_completion_lock);
133                         } else if (ret)
134                                 return ret;
135
136                         cond_resched();
137
138                         if (signal_pending(current))
139                                 return -EINTR;
140
141                         mutex_lock(&c->alloc_sem);
142                         spin_lock(&c->erase_completion_lock);
143                 }
144
145                 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146                 if (ret) {
147                         D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
148                 }
149         }
150         spin_unlock(&c->erase_completion_lock);
151         if (!ret)
152                 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153         if (ret)
154                 mutex_unlock(&c->alloc_sem);
155         return ret;
156 }
157
158 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159                            uint32_t *len, uint32_t sumsize)
160 {
161         int ret = -EAGAIN;
162         minsize = PAD(minsize);
163
164         D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
165
166         spin_lock(&c->erase_completion_lock);
167         while(ret == -EAGAIN) {
168                 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169                 if (ret) {
170                         D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
171                 }
172         }
173         spin_unlock(&c->erase_completion_lock);
174         if (!ret)
175                 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
176
177         return ret;
178 }
179
180
181 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
182
183 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
184 {
185
186         if (c->nextblock == NULL) {
187                 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188                   jeb->offset));
189                 return;
190         }
191         /* Check, if we have a dirty block now, or if it was dirty already */
192         if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193                 c->dirty_size += jeb->wasted_size;
194                 c->wasted_size -= jeb->wasted_size;
195                 jeb->dirty_size += jeb->wasted_size;
196                 jeb->wasted_size = 0;
197                 if (VERYDIRTY(c, jeb->dirty_size)) {
198                         D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
200                         list_add_tail(&jeb->list, &c->very_dirty_list);
201                 } else {
202                         D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
204                         list_add_tail(&jeb->list, &c->dirty_list);
205                 }
206         } else {
207                 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208                   jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
209                 list_add_tail(&jeb->list, &c->clean_list);
210         }
211         c->nextblock = NULL;
212
213 }
214
215 /* Select a new jeb for nextblock */
216
217 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
218 {
219         struct list_head *next;
220
221         /* Take the next block off the 'free' list */
222
223         if (list_empty(&c->free_list)) {
224
225                 if (!c->nr_erasing_blocks &&
226                         !list_empty(&c->erasable_list)) {
227                         struct jffs2_eraseblock *ejeb;
228
229                         ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230                         list_move_tail(&ejeb->list, &c->erase_pending_list);
231                         c->nr_erasing_blocks++;
232                         jffs2_erase_pending_trigger(c);
233                         D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234                                   ejeb->offset));
235                 }
236
237                 if (!c->nr_erasing_blocks &&
238                         !list_empty(&c->erasable_pending_wbuf_list)) {
239                         D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
240                         /* c->nextblock is NULL, no update to c->nextblock allowed */
241                         spin_unlock(&c->erase_completion_lock);
242                         jffs2_flush_wbuf_pad(c);
243                         spin_lock(&c->erase_completion_lock);
244                         /* Have another go. It'll be on the erasable_list now */
245                         return -EAGAIN;
246                 }
247
248                 if (!c->nr_erasing_blocks) {
249                         /* Ouch. We're in GC, or we wouldn't have got here.
250                            And there's no space left. At all. */
251                         printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252                                    c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253                                    list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
254                         return -ENOSPC;
255                 }
256
257                 spin_unlock(&c->erase_completion_lock);
258                 /* Don't wait for it; just erase one right now */
259                 jffs2_erase_pending_blocks(c, 1);
260                 spin_lock(&c->erase_completion_lock);
261
262                 /* An erase may have failed, decreasing the
263                    amount of free space available. So we must
264                    restart from the beginning */
265                 return -EAGAIN;
266         }
267
268         next = c->free_list.next;
269         list_del(next);
270         c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271         c->nr_free_blocks--;
272
273         jffs2_sum_reset_collected(c->summary); /* reset collected summary */
274
275 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276         /* adjust write buffer offset, else we get a non contiguous write bug */
277         if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278                 c->wbuf_ofs = 0xffffffff;
279 #endif
280
281         D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
282
283         return 0;
284 }
285
286 /* Called with alloc sem _and_ erase_completion_lock */
287 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288                                   uint32_t *len, uint32_t sumsize)
289 {
290         struct jffs2_eraseblock *jeb = c->nextblock;
291         uint32_t reserved_size;                         /* for summary information at the end of the jeb */
292         int ret;
293
294  restart:
295         reserved_size = 0;
296
297         if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298                                                         /* NOSUM_SIZE means not to generate summary */
299
300                 if (jeb) {
301                         reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302                         dbg_summary("minsize=%d , jeb->free=%d ,"
303                                                 "summary->size=%d , sumsize=%d\n",
304                                                 minsize, jeb->free_size,
305                                                 c->summary->sum_size, sumsize);
306                 }
307
308                 /* Is there enough space for writing out the current node, or we have to
309                    write out summary information now, close this jeb and select new nextblock? */
310                 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311                                         JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
312
313                         /* Has summary been disabled for this jeb? */
314                         if (jffs2_sum_is_disabled(c->summary)) {
315                                 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316                                 goto restart;
317                         }
318
319                         /* Writing out the collected summary information */
320                         dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321                         ret = jffs2_sum_write_sumnode(c);
322
323                         if (ret)
324                                 return ret;
325
326                         if (jffs2_sum_is_disabled(c->summary)) {
327                                 /* jffs2_write_sumnode() couldn't write out the summary information
328                                    diabling summary for this jeb and free the collected information
329                                  */
330                                 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331                                 goto restart;
332                         }
333
334                         jffs2_close_nextblock(c, jeb);
335                         jeb = NULL;
336                         /* keep always valid value in reserved_size */
337                         reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
338                 }
339         } else {
340                 if (jeb && minsize > jeb->free_size) {
341                         uint32_t waste;
342
343                         /* Skip the end of this block and file it as having some dirty space */
344                         /* If there's a pending write to it, flush now */
345
346                         if (jffs2_wbuf_dirty(c)) {
347                                 spin_unlock(&c->erase_completion_lock);
348                                 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
349                                 jffs2_flush_wbuf_pad(c);
350                                 spin_lock(&c->erase_completion_lock);
351                                 jeb = c->nextblock;
352                                 goto restart;
353                         }
354
355                         spin_unlock(&c->erase_completion_lock);
356
357                         ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358                         if (ret)
359                                 return ret;
360                         /* Just lock it again and continue. Nothing much can change because
361                            we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362                            we hold c->erase_completion_lock in the majority of this function...
363                            but that's a question for another (more caffeine-rich) day. */
364                         spin_lock(&c->erase_completion_lock);
365
366                         waste = jeb->free_size;
367                         jffs2_link_node_ref(c, jeb,
368                                             (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369                                             waste, NULL);
370                         /* FIXME: that made it count as dirty. Convert to wasted */
371                         jeb->dirty_size -= waste;
372                         c->dirty_size -= waste;
373                         jeb->wasted_size += waste;
374                         c->wasted_size += waste;
375
376                         jffs2_close_nextblock(c, jeb);
377                         jeb = NULL;
378                 }
379         }
380
381         if (!jeb) {
382
383                 ret = jffs2_find_nextblock(c);
384                 if (ret)
385                         return ret;
386
387                 jeb = c->nextblock;
388
389                 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390                         printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
391                         goto restart;
392                 }
393         }
394         /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395            enough space */
396         *len = jeb->free_size - reserved_size;
397
398         if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399             !jeb->first_node->next_in_ino) {
400                 /* Only node in it beforehand was a CLEANMARKER node (we think).
401                    So mark it obsolete now that there's going to be another node
402                    in the block. This will reduce used_size to zero but We've
403                    already set c->nextblock so that jffs2_mark_node_obsolete()
404                    won't try to refile it to the dirty_list.
405                 */
406                 spin_unlock(&c->erase_completion_lock);
407                 jffs2_mark_node_obsolete(c, jeb->first_node);
408                 spin_lock(&c->erase_completion_lock);
409         }
410
411         D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412                   *len, jeb->offset + (c->sector_size - jeb->free_size)));
413         return 0;
414 }
415
416 /**
417  *      jffs2_add_physical_node_ref - add a physical node reference to the list
418  *      @c: superblock info
419  *      @new: new node reference to add
420  *      @len: length of this physical node
421  *
422  *      Should only be used to report nodes for which space has been allocated
423  *      by jffs2_reserve_space.
424  *
425  *      Must be called with the alloc_sem held.
426  */
427
428 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429                                                        uint32_t ofs, uint32_t len,
430                                                        struct jffs2_inode_cache *ic)
431 {
432         struct jffs2_eraseblock *jeb;
433         struct jffs2_raw_node_ref *new;
434
435         jeb = &c->blocks[ofs / c->sector_size];
436
437         D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438                   ofs & ~3, ofs & 3, len));
439 #if 1
440         /* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
441            if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442            even after refiling c->nextblock */
443         if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444             && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445                 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
446                 if (c->nextblock)
447                         printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448                 else
449                         printk(KERN_WARNING "No nextblock");
450                 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
451                 return ERR_PTR(-EINVAL);
452         }
453 #endif
454         spin_lock(&c->erase_completion_lock);
455
456         new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
457
458         if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459                 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460                 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
462                 if (jffs2_wbuf_dirty(c)) {
463                         /* Flush the last write in the block if it's outstanding */
464                         spin_unlock(&c->erase_completion_lock);
465                         jffs2_flush_wbuf_pad(c);
466                         spin_lock(&c->erase_completion_lock);
467                 }
468
469                 list_add_tail(&jeb->list, &c->clean_list);
470                 c->nextblock = NULL;
471         }
472         jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473         jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
474
475         spin_unlock(&c->erase_completion_lock);
476
477         return new;
478 }
479
480
481 void jffs2_complete_reservation(struct jffs2_sb_info *c)
482 {
483         D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484         jffs2_garbage_collect_trigger(c);
485         mutex_unlock(&c->alloc_sem);
486 }
487
488 static inline int on_list(struct list_head *obj, struct list_head *head)
489 {
490         struct list_head *this;
491
492         list_for_each(this, head) {
493                 if (this == obj) {
494                         D1(printk("%p is on list at %p\n", obj, head));
495                         return 1;
496
497                 }
498         }
499         return 0;
500 }
501
502 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
503 {
504         struct jffs2_eraseblock *jeb;
505         int blocknr;
506         struct jffs2_unknown_node n;
507         int ret, addedsize;
508         size_t retlen;
509         uint32_t freed_len;
510
511         if(unlikely(!ref)) {
512                 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
513                 return;
514         }
515         if (ref_obsolete(ref)) {
516                 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
517                 return;
518         }
519         blocknr = ref->flash_offset / c->sector_size;
520         if (blocknr >= c->nr_blocks) {
521                 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
522                 BUG();
523         }
524         jeb = &c->blocks[blocknr];
525
526         if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
527             !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
528                 /* Hm. This may confuse static lock analysis. If any of the above
529                    three conditions is false, we're going to return from this
530                    function without actually obliterating any nodes or freeing
531                    any jffs2_raw_node_refs. So we don't need to stop erases from
532                    happening, or protect against people holding an obsolete
533                    jffs2_raw_node_ref without the erase_completion_lock. */
534                 mutex_lock(&c->erase_free_sem);
535         }
536
537         spin_lock(&c->erase_completion_lock);
538
539         freed_len = ref_totlen(c, jeb, ref);
540
541         if (ref_flags(ref) == REF_UNCHECKED) {
542                 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
543                         printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
544                                freed_len, blocknr, ref->flash_offset, jeb->used_size);
545                         BUG();
546                 })
547                 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
548                 jeb->unchecked_size -= freed_len;
549                 c->unchecked_size -= freed_len;
550         } else {
551                 D1(if (unlikely(jeb->used_size < freed_len)) {
552                         printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
553                                freed_len, blocknr, ref->flash_offset, jeb->used_size);
554                         BUG();
555                 })
556                 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
557                 jeb->used_size -= freed_len;
558                 c->used_size -= freed_len;
559         }
560
561         // Take care, that wasted size is taken into concern
562         if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
563                 D1(printk("Dirtying\n"));
564                 addedsize = freed_len;
565                 jeb->dirty_size += freed_len;
566                 c->dirty_size += freed_len;
567
568                 /* Convert wasted space to dirty, if not a bad block */
569                 if (jeb->wasted_size) {
570                         if (on_list(&jeb->list, &c->bad_used_list)) {
571                                 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
572                                           jeb->offset));
573                                 addedsize = 0; /* To fool the refiling code later */
574                         } else {
575                                 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
576                                           jeb->wasted_size, jeb->offset));
577                                 addedsize += jeb->wasted_size;
578                                 jeb->dirty_size += jeb->wasted_size;
579                                 c->dirty_size += jeb->wasted_size;
580                                 c->wasted_size -= jeb->wasted_size;
581                                 jeb->wasted_size = 0;
582                         }
583                 }
584         } else {
585                 D1(printk("Wasting\n"));
586                 addedsize = 0;
587                 jeb->wasted_size += freed_len;
588                 c->wasted_size += freed_len;
589         }
590         ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
591
592         jffs2_dbg_acct_sanity_check_nolock(c, jeb);
593         jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
594
595         if (c->flags & JFFS2_SB_FLAG_SCANNING) {
596                 /* Flash scanning is in progress. Don't muck about with the block
597                    lists because they're not ready yet, and don't actually
598                    obliterate nodes that look obsolete. If they weren't
599                    marked obsolete on the flash at the time they _became_
600                    obsolete, there was probably a reason for that. */
601                 spin_unlock(&c->erase_completion_lock);
602                 /* We didn't lock the erase_free_sem */
603                 return;
604         }
605
606         if (jeb == c->nextblock) {
607                 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
608         } else if (!jeb->used_size && !jeb->unchecked_size) {
609                 if (jeb == c->gcblock) {
610                         D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
611                         c->gcblock = NULL;
612                 } else {
613                         D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
614                         list_del(&jeb->list);
615                 }
616                 if (jffs2_wbuf_dirty(c)) {
617                         D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
618                         list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
619                 } else {
620                         if (jiffies & 127) {
621                                 /* Most of the time, we just erase it immediately. Otherwise we
622                                    spend ages scanning it on mount, etc. */
623                                 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
624                                 list_add_tail(&jeb->list, &c->erase_pending_list);
625                                 c->nr_erasing_blocks++;
626                                 jffs2_erase_pending_trigger(c);
627                         } else {
628                                 /* Sometimes, however, we leave it elsewhere so it doesn't get
629                                    immediately reused, and we spread the load a bit. */
630                                 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
631                                 list_add_tail(&jeb->list, &c->erasable_list);
632                         }
633                 }
634                 D1(printk(KERN_DEBUG "Done OK\n"));
635         } else if (jeb == c->gcblock) {
636                 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
637         } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
638                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
639                 list_del(&jeb->list);
640                 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
641                 list_add_tail(&jeb->list, &c->dirty_list);
642         } else if (VERYDIRTY(c, jeb->dirty_size) &&
643                    !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
644                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
645                 list_del(&jeb->list);
646                 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
647                 list_add_tail(&jeb->list, &c->very_dirty_list);
648         } else {
649                 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
650                           jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
651         }
652
653         spin_unlock(&c->erase_completion_lock);
654
655         if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
656                 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
657                 /* We didn't lock the erase_free_sem */
658                 return;
659         }
660
661         /* The erase_free_sem is locked, and has been since before we marked the node obsolete
662            and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
663            the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
664            by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
665
666         D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
667         ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
668         if (ret) {
669                 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
670                 goto out_erase_sem;
671         }
672         if (retlen != sizeof(n)) {
673                 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
674                 goto out_erase_sem;
675         }
676         if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
677                 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
678                 goto out_erase_sem;
679         }
680         if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
681                 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
682                 goto out_erase_sem;
683         }
684         /* XXX FIXME: This is ugly now */
685         n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
686         ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
687         if (ret) {
688                 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
689                 goto out_erase_sem;
690         }
691         if (retlen != sizeof(n)) {
692                 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
693                 goto out_erase_sem;
694         }
695
696         /* Nodes which have been marked obsolete no longer need to be
697            associated with any inode. Remove them from the per-inode list.
698
699            Note we can't do this for NAND at the moment because we need
700            obsolete dirent nodes to stay on the lists, because of the
701            horridness in jffs2_garbage_collect_deletion_dirent(). Also
702            because we delete the inocache, and on NAND we need that to
703            stay around until all the nodes are actually erased, in order
704            to stop us from giving the same inode number to another newly
705            created inode. */
706         if (ref->next_in_ino) {
707                 struct jffs2_inode_cache *ic;
708                 struct jffs2_raw_node_ref **p;
709
710                 spin_lock(&c->erase_completion_lock);
711
712                 ic = jffs2_raw_ref_to_ic(ref);
713                 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
714                         ;
715
716                 *p = ref->next_in_ino;
717                 ref->next_in_ino = NULL;
718
719                 switch (ic->class) {
720 #ifdef CONFIG_JFFS2_FS_XATTR
721                         case RAWNODE_CLASS_XATTR_DATUM:
722                                 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
723                                 break;
724                         case RAWNODE_CLASS_XATTR_REF:
725                                 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
726                                 break;
727 #endif
728                         default:
729                                 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
730                                         jffs2_del_ino_cache(c, ic);
731                                 break;
732                 }
733                 spin_unlock(&c->erase_completion_lock);
734         }
735
736  out_erase_sem:
737         mutex_unlock(&c->erase_free_sem);
738 }
739
740 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
741 {
742         int ret = 0;
743         uint32_t dirty;
744         int nr_very_dirty = 0;
745         struct jffs2_eraseblock *jeb;
746
747         if (!list_empty(&c->erase_complete_list) ||
748             !list_empty(&c->erase_pending_list))
749                 return 1;
750
751         if (c->unchecked_size) {
752                 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
753                           c->unchecked_size, c->checked_ino));
754                 return 1;
755         }
756
757         /* dirty_size contains blocks on erase_pending_list
758          * those blocks are counted in c->nr_erasing_blocks.
759          * If one block is actually erased, it is not longer counted as dirty_space
760          * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
761          * with c->nr_erasing_blocks * c->sector_size again.
762          * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
763          * This helps us to force gc and pick eventually a clean block to spread the load.
764          */
765         dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
766
767         if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
768                         (dirty > c->nospc_dirty_size))
769                 ret = 1;
770
771         list_for_each_entry(jeb, &c->very_dirty_list, list) {
772                 nr_very_dirty++;
773                 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
774                         ret = 1;
775                         /* In debug mode, actually go through and count them all */
776                         D1(continue);
777                         break;
778                 }
779         }
780
781         D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
782                   c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
783
784         return ret;
785 }