]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd2/transaction.c
9c64c7ec48d4c468d649c9acd537ed78f01c59b0
[net-next-2.6.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *      The journal MUST be locked.  We don't perform atomic mallocs on the
44  *      new transaction and we can't block without protecting against other
45  *      processes trying to touch the journal while it is in transition.
46  *
47  */
48
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58         atomic_set(&transaction->t_updates, 0);
59         atomic_set(&transaction->t_outstanding_credits, 0);
60         INIT_LIST_HEAD(&transaction->t_inode_list);
61         INIT_LIST_HEAD(&transaction->t_private_list);
62
63         /* Set up the commit timer for the new transaction. */
64         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
65         add_timer(&journal->j_commit_timer);
66
67         J_ASSERT(journal->j_running_transaction == NULL);
68         journal->j_running_transaction = transaction;
69         transaction->t_max_wait = 0;
70         transaction->t_start = jiffies;
71
72         return transaction;
73 }
74
75 /*
76  * Handle management.
77  *
78  * A handle_t is an object which represents a single atomic update to a
79  * filesystem, and which tracks all of the modifications which form part
80  * of that one update.
81  */
82
83 /*
84  * start_this_handle: Given a handle, deal with any locking or stalling
85  * needed to make sure that there is enough journal space for the handle
86  * to begin.  Attach the handle to a transaction and set up the
87  * transaction's buffer credits.
88  */
89
90 static int start_this_handle(journal_t *journal, handle_t *handle,
91                              int gfp_mask)
92 {
93         transaction_t *transaction;
94         int needed;
95         int nblocks = handle->h_buffer_credits;
96         transaction_t *new_transaction = NULL;
97         unsigned long ts = jiffies;
98
99         if (nblocks > journal->j_max_transaction_buffers) {
100                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
101                        current->comm, nblocks,
102                        journal->j_max_transaction_buffers);
103                 return -ENOSPC;
104         }
105
106 alloc_transaction:
107         if (!journal->j_running_transaction) {
108                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
109                 if (!new_transaction) {
110                         /*
111                          * If __GFP_FS is not present, then we may be
112                          * being called from inside the fs writeback
113                          * layer, so we MUST NOT fail.  Since
114                          * __GFP_NOFAIL is going away, we will arrange
115                          * to retry the allocation ourselves.
116                          */
117                         if ((gfp_mask & __GFP_FS) == 0) {
118                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
119                                 goto alloc_transaction;
120                         }
121                         return -ENOMEM;
122                 }
123         }
124
125         jbd_debug(3, "New handle %p going live.\n", handle);
126
127 repeat:
128
129         /*
130          * We need to hold j_state_lock until t_updates has been incremented,
131          * for proper journal barrier handling
132          */
133         spin_lock(&journal->j_state_lock);
134 repeat_locked:
135         if (is_journal_aborted(journal) ||
136             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
137                 spin_unlock(&journal->j_state_lock);
138                 kfree(new_transaction);
139                 return -EROFS;
140         }
141
142         /* Wait on the journal's transaction barrier if necessary */
143         if (journal->j_barrier_count) {
144                 spin_unlock(&journal->j_state_lock);
145                 wait_event(journal->j_wait_transaction_locked,
146                                 journal->j_barrier_count == 0);
147                 goto repeat;
148         }
149
150         if (!journal->j_running_transaction) {
151                 if (!new_transaction) {
152                         spin_unlock(&journal->j_state_lock);
153                         goto alloc_transaction;
154                 }
155                 jbd2_get_transaction(journal, new_transaction);
156                 new_transaction = NULL;
157         }
158
159         transaction = journal->j_running_transaction;
160
161         /*
162          * If the current transaction is locked down for commit, wait for the
163          * lock to be released.
164          */
165         if (transaction->t_state == T_LOCKED) {
166                 DEFINE_WAIT(wait);
167
168                 prepare_to_wait(&journal->j_wait_transaction_locked,
169                                         &wait, TASK_UNINTERRUPTIBLE);
170                 spin_unlock(&journal->j_state_lock);
171                 schedule();
172                 finish_wait(&journal->j_wait_transaction_locked, &wait);
173                 goto repeat;
174         }
175
176         /*
177          * If there is not enough space left in the log to write all potential
178          * buffers requested by this operation, we need to stall pending a log
179          * checkpoint to free some more log space.
180          */
181         spin_lock(&transaction->t_handle_lock);
182         needed = atomic_read(&transaction->t_outstanding_credits) + nblocks;
183
184         if (needed > journal->j_max_transaction_buffers) {
185                 /*
186                  * If the current transaction is already too large, then start
187                  * to commit it: we can then go back and attach this handle to
188                  * a new transaction.
189                  */
190                 DEFINE_WAIT(wait);
191
192                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
193                 spin_unlock(&transaction->t_handle_lock);
194                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
195                                 TASK_UNINTERRUPTIBLE);
196                 __jbd2_log_start_commit(journal, transaction->t_tid);
197                 spin_unlock(&journal->j_state_lock);
198                 schedule();
199                 finish_wait(&journal->j_wait_transaction_locked, &wait);
200                 goto repeat;
201         }
202
203         /*
204          * The commit code assumes that it can get enough log space
205          * without forcing a checkpoint.  This is *critical* for
206          * correctness: a checkpoint of a buffer which is also
207          * associated with a committing transaction creates a deadlock,
208          * so commit simply cannot force through checkpoints.
209          *
210          * We must therefore ensure the necessary space in the journal
211          * *before* starting to dirty potentially checkpointed buffers
212          * in the new transaction.
213          *
214          * The worst part is, any transaction currently committing can
215          * reduce the free space arbitrarily.  Be careful to account for
216          * those buffers when checkpointing.
217          */
218
219         /*
220          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
221          * a _lot_ of headroom: 1/4 of the journal plus the size of
222          * the committing transaction.  Really, we only need to give it
223          * committing_transaction->t_outstanding_credits plus "enough" for
224          * the log control blocks.
225          * Also, this test is inconsitent with the matching one in
226          * jbd2_journal_extend().
227          */
228         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
229                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
230                 spin_unlock(&transaction->t_handle_lock);
231                 __jbd2_log_wait_for_space(journal);
232                 goto repeat_locked;
233         }
234
235         /* OK, account for the buffers that this operation expects to
236          * use and add the handle to the running transaction. */
237
238         if (time_after(transaction->t_start, ts)) {
239                 ts = jbd2_time_diff(ts, transaction->t_start);
240                 if (ts > transaction->t_max_wait)
241                         transaction->t_max_wait = ts;
242         }
243
244         handle->h_transaction = transaction;
245         atomic_add(nblocks, &transaction->t_outstanding_credits);
246         atomic_inc(&transaction->t_updates);
247         transaction->t_handle_count++;
248         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
249                   handle, nblocks,
250                   atomic_read(&transaction->t_outstanding_credits),
251                   __jbd2_log_space_left(journal));
252         spin_unlock(&transaction->t_handle_lock);
253         spin_unlock(&journal->j_state_lock);
254
255         lock_map_acquire(&handle->h_lockdep_map);
256         kfree(new_transaction);
257         return 0;
258 }
259
260 static struct lock_class_key jbd2_handle_key;
261
262 /* Allocate a new handle.  This should probably be in a slab... */
263 static handle_t *new_handle(int nblocks)
264 {
265         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
266         if (!handle)
267                 return NULL;
268         memset(handle, 0, sizeof(*handle));
269         handle->h_buffer_credits = nblocks;
270         handle->h_ref = 1;
271
272         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
273                                                 &jbd2_handle_key, 0);
274
275         return handle;
276 }
277
278 /**
279  * handle_t *jbd2_journal_start() - Obtain a new handle.
280  * @journal: Journal to start transaction on.
281  * @nblocks: number of block buffer we might modify
282  *
283  * We make sure that the transaction can guarantee at least nblocks of
284  * modified buffers in the log.  We block until the log can guarantee
285  * that much space.
286  *
287  * This function is visible to journal users (like ext3fs), so is not
288  * called with the journal already locked.
289  *
290  * Return a pointer to a newly allocated handle, or NULL on failure
291  */
292 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
293 {
294         handle_t *handle = journal_current_handle();
295         int err;
296
297         if (!journal)
298                 return ERR_PTR(-EROFS);
299
300         if (handle) {
301                 J_ASSERT(handle->h_transaction->t_journal == journal);
302                 handle->h_ref++;
303                 return handle;
304         }
305
306         handle = new_handle(nblocks);
307         if (!handle)
308                 return ERR_PTR(-ENOMEM);
309
310         current->journal_info = handle;
311
312         err = start_this_handle(journal, handle, gfp_mask);
313         if (err < 0) {
314                 jbd2_free_handle(handle);
315                 current->journal_info = NULL;
316                 handle = ERR_PTR(err);
317                 goto out;
318         }
319 out:
320         return handle;
321 }
322 EXPORT_SYMBOL(jbd2__journal_start);
323
324
325 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
326 {
327         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
328 }
329 EXPORT_SYMBOL(jbd2_journal_start);
330
331
332 /**
333  * int jbd2_journal_extend() - extend buffer credits.
334  * @handle:  handle to 'extend'
335  * @nblocks: nr blocks to try to extend by.
336  *
337  * Some transactions, such as large extends and truncates, can be done
338  * atomically all at once or in several stages.  The operation requests
339  * a credit for a number of buffer modications in advance, but can
340  * extend its credit if it needs more.
341  *
342  * jbd2_journal_extend tries to give the running handle more buffer credits.
343  * It does not guarantee that allocation - this is a best-effort only.
344  * The calling process MUST be able to deal cleanly with a failure to
345  * extend here.
346  *
347  * Return 0 on success, non-zero on failure.
348  *
349  * return code < 0 implies an error
350  * return code > 0 implies normal transaction-full status.
351  */
352 int jbd2_journal_extend(handle_t *handle, int nblocks)
353 {
354         transaction_t *transaction = handle->h_transaction;
355         journal_t *journal = transaction->t_journal;
356         int result;
357         int wanted;
358
359         result = -EIO;
360         if (is_handle_aborted(handle))
361                 goto out;
362
363         result = 1;
364
365         spin_lock(&journal->j_state_lock);
366
367         /* Don't extend a locked-down transaction! */
368         if (handle->h_transaction->t_state != T_RUNNING) {
369                 jbd_debug(3, "denied handle %p %d blocks: "
370                           "transaction not running\n", handle, nblocks);
371                 goto error_out;
372         }
373
374         spin_lock(&transaction->t_handle_lock);
375         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
376
377         if (wanted > journal->j_max_transaction_buffers) {
378                 jbd_debug(3, "denied handle %p %d blocks: "
379                           "transaction too large\n", handle, nblocks);
380                 goto unlock;
381         }
382
383         if (wanted > __jbd2_log_space_left(journal)) {
384                 jbd_debug(3, "denied handle %p %d blocks: "
385                           "insufficient log space\n", handle, nblocks);
386                 goto unlock;
387         }
388
389         handle->h_buffer_credits += nblocks;
390         atomic_add(nblocks, &transaction->t_outstanding_credits);
391         result = 0;
392
393         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
394 unlock:
395         spin_unlock(&transaction->t_handle_lock);
396 error_out:
397         spin_unlock(&journal->j_state_lock);
398 out:
399         return result;
400 }
401
402
403 /**
404  * int jbd2_journal_restart() - restart a handle .
405  * @handle:  handle to restart
406  * @nblocks: nr credits requested
407  *
408  * Restart a handle for a multi-transaction filesystem
409  * operation.
410  *
411  * If the jbd2_journal_extend() call above fails to grant new buffer credits
412  * to a running handle, a call to jbd2_journal_restart will commit the
413  * handle's transaction so far and reattach the handle to a new
414  * transaction capabable of guaranteeing the requested number of
415  * credits.
416  */
417 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
418 {
419         transaction_t *transaction = handle->h_transaction;
420         journal_t *journal = transaction->t_journal;
421         int ret;
422
423         /* If we've had an abort of any type, don't even think about
424          * actually doing the restart! */
425         if (is_handle_aborted(handle))
426                 return 0;
427
428         /*
429          * First unlink the handle from its current transaction, and start the
430          * commit on that.
431          */
432         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
433         J_ASSERT(journal_current_handle() == handle);
434
435         spin_lock(&journal->j_state_lock);
436         spin_lock(&transaction->t_handle_lock);
437         atomic_sub(handle->h_buffer_credits,
438                    &transaction->t_outstanding_credits);
439         if (atomic_dec_and_test(&transaction->t_updates))
440                 wake_up(&journal->j_wait_updates);
441         spin_unlock(&transaction->t_handle_lock);
442
443         jbd_debug(2, "restarting handle %p\n", handle);
444         __jbd2_log_start_commit(journal, transaction->t_tid);
445         spin_unlock(&journal->j_state_lock);
446
447         lock_map_release(&handle->h_lockdep_map);
448         handle->h_buffer_credits = nblocks;
449         ret = start_this_handle(journal, handle, gfp_mask);
450         return ret;
451 }
452 EXPORT_SYMBOL(jbd2__journal_restart);
453
454
455 int jbd2_journal_restart(handle_t *handle, int nblocks)
456 {
457         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
458 }
459 EXPORT_SYMBOL(jbd2_journal_restart);
460
461 /**
462  * void jbd2_journal_lock_updates () - establish a transaction barrier.
463  * @journal:  Journal to establish a barrier on.
464  *
465  * This locks out any further updates from being started, and blocks
466  * until all existing updates have completed, returning only once the
467  * journal is in a quiescent state with no updates running.
468  *
469  * The journal lock should not be held on entry.
470  */
471 void jbd2_journal_lock_updates(journal_t *journal)
472 {
473         DEFINE_WAIT(wait);
474
475         spin_lock(&journal->j_state_lock);
476         ++journal->j_barrier_count;
477
478         /* Wait until there are no running updates */
479         while (1) {
480                 transaction_t *transaction = journal->j_running_transaction;
481
482                 if (!transaction)
483                         break;
484
485                 spin_lock(&transaction->t_handle_lock);
486                 if (!atomic_read(&transaction->t_updates)) {
487                         spin_unlock(&transaction->t_handle_lock);
488                         break;
489                 }
490                 prepare_to_wait(&journal->j_wait_updates, &wait,
491                                 TASK_UNINTERRUPTIBLE);
492                 spin_unlock(&transaction->t_handle_lock);
493                 spin_unlock(&journal->j_state_lock);
494                 schedule();
495                 finish_wait(&journal->j_wait_updates, &wait);
496                 spin_lock(&journal->j_state_lock);
497         }
498         spin_unlock(&journal->j_state_lock);
499
500         /*
501          * We have now established a barrier against other normal updates, but
502          * we also need to barrier against other jbd2_journal_lock_updates() calls
503          * to make sure that we serialise special journal-locked operations
504          * too.
505          */
506         mutex_lock(&journal->j_barrier);
507 }
508
509 /**
510  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
511  * @journal:  Journal to release the barrier on.
512  *
513  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
514  *
515  * Should be called without the journal lock held.
516  */
517 void jbd2_journal_unlock_updates (journal_t *journal)
518 {
519         J_ASSERT(journal->j_barrier_count != 0);
520
521         mutex_unlock(&journal->j_barrier);
522         spin_lock(&journal->j_state_lock);
523         --journal->j_barrier_count;
524         spin_unlock(&journal->j_state_lock);
525         wake_up(&journal->j_wait_transaction_locked);
526 }
527
528 static void warn_dirty_buffer(struct buffer_head *bh)
529 {
530         char b[BDEVNAME_SIZE];
531
532         printk(KERN_WARNING
533                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
534                "There's a risk of filesystem corruption in case of system "
535                "crash.\n",
536                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
537 }
538
539 /*
540  * If the buffer is already part of the current transaction, then there
541  * is nothing we need to do.  If it is already part of a prior
542  * transaction which we are still committing to disk, then we need to
543  * make sure that we do not overwrite the old copy: we do copy-out to
544  * preserve the copy going to disk.  We also account the buffer against
545  * the handle's metadata buffer credits (unless the buffer is already
546  * part of the transaction, that is).
547  *
548  */
549 static int
550 do_get_write_access(handle_t *handle, struct journal_head *jh,
551                         int force_copy)
552 {
553         struct buffer_head *bh;
554         transaction_t *transaction;
555         journal_t *journal;
556         int error;
557         char *frozen_buffer = NULL;
558         int need_copy = 0;
559
560         if (is_handle_aborted(handle))
561                 return -EROFS;
562
563         transaction = handle->h_transaction;
564         journal = transaction->t_journal;
565
566         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
567
568         JBUFFER_TRACE(jh, "entry");
569 repeat:
570         bh = jh2bh(jh);
571
572         /* @@@ Need to check for errors here at some point. */
573
574         lock_buffer(bh);
575         jbd_lock_bh_state(bh);
576
577         /* We now hold the buffer lock so it is safe to query the buffer
578          * state.  Is the buffer dirty?
579          *
580          * If so, there are two possibilities.  The buffer may be
581          * non-journaled, and undergoing a quite legitimate writeback.
582          * Otherwise, it is journaled, and we don't expect dirty buffers
583          * in that state (the buffers should be marked JBD_Dirty
584          * instead.)  So either the IO is being done under our own
585          * control and this is a bug, or it's a third party IO such as
586          * dump(8) (which may leave the buffer scheduled for read ---
587          * ie. locked but not dirty) or tune2fs (which may actually have
588          * the buffer dirtied, ugh.)  */
589
590         if (buffer_dirty(bh)) {
591                 /*
592                  * First question: is this buffer already part of the current
593                  * transaction or the existing committing transaction?
594                  */
595                 if (jh->b_transaction) {
596                         J_ASSERT_JH(jh,
597                                 jh->b_transaction == transaction ||
598                                 jh->b_transaction ==
599                                         journal->j_committing_transaction);
600                         if (jh->b_next_transaction)
601                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
602                                                         transaction);
603                         warn_dirty_buffer(bh);
604                 }
605                 /*
606                  * In any case we need to clean the dirty flag and we must
607                  * do it under the buffer lock to be sure we don't race
608                  * with running write-out.
609                  */
610                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
611                 clear_buffer_dirty(bh);
612                 set_buffer_jbddirty(bh);
613         }
614
615         unlock_buffer(bh);
616
617         error = -EROFS;
618         if (is_handle_aborted(handle)) {
619                 jbd_unlock_bh_state(bh);
620                 goto out;
621         }
622         error = 0;
623
624         /*
625          * The buffer is already part of this transaction if b_transaction or
626          * b_next_transaction points to it
627          */
628         if (jh->b_transaction == transaction ||
629             jh->b_next_transaction == transaction)
630                 goto done;
631
632         /*
633          * this is the first time this transaction is touching this buffer,
634          * reset the modified flag
635          */
636        jh->b_modified = 0;
637
638         /*
639          * If there is already a copy-out version of this buffer, then we don't
640          * need to make another one
641          */
642         if (jh->b_frozen_data) {
643                 JBUFFER_TRACE(jh, "has frozen data");
644                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
645                 jh->b_next_transaction = transaction;
646                 goto done;
647         }
648
649         /* Is there data here we need to preserve? */
650
651         if (jh->b_transaction && jh->b_transaction != transaction) {
652                 JBUFFER_TRACE(jh, "owned by older transaction");
653                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
654                 J_ASSERT_JH(jh, jh->b_transaction ==
655                                         journal->j_committing_transaction);
656
657                 /* There is one case we have to be very careful about.
658                  * If the committing transaction is currently writing
659                  * this buffer out to disk and has NOT made a copy-out,
660                  * then we cannot modify the buffer contents at all
661                  * right now.  The essence of copy-out is that it is the
662                  * extra copy, not the primary copy, which gets
663                  * journaled.  If the primary copy is already going to
664                  * disk then we cannot do copy-out here. */
665
666                 if (jh->b_jlist == BJ_Shadow) {
667                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
668                         wait_queue_head_t *wqh;
669
670                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
671
672                         JBUFFER_TRACE(jh, "on shadow: sleep");
673                         jbd_unlock_bh_state(bh);
674                         /* commit wakes up all shadow buffers after IO */
675                         for ( ; ; ) {
676                                 prepare_to_wait(wqh, &wait.wait,
677                                                 TASK_UNINTERRUPTIBLE);
678                                 if (jh->b_jlist != BJ_Shadow)
679                                         break;
680                                 schedule();
681                         }
682                         finish_wait(wqh, &wait.wait);
683                         goto repeat;
684                 }
685
686                 /* Only do the copy if the currently-owning transaction
687                  * still needs it.  If it is on the Forget list, the
688                  * committing transaction is past that stage.  The
689                  * buffer had better remain locked during the kmalloc,
690                  * but that should be true --- we hold the journal lock
691                  * still and the buffer is already on the BUF_JOURNAL
692                  * list so won't be flushed.
693                  *
694                  * Subtle point, though: if this is a get_undo_access,
695                  * then we will be relying on the frozen_data to contain
696                  * the new value of the committed_data record after the
697                  * transaction, so we HAVE to force the frozen_data copy
698                  * in that case. */
699
700                 if (jh->b_jlist != BJ_Forget || force_copy) {
701                         JBUFFER_TRACE(jh, "generate frozen data");
702                         if (!frozen_buffer) {
703                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
704                                 jbd_unlock_bh_state(bh);
705                                 frozen_buffer =
706                                         jbd2_alloc(jh2bh(jh)->b_size,
707                                                          GFP_NOFS);
708                                 if (!frozen_buffer) {
709                                         printk(KERN_EMERG
710                                                "%s: OOM for frozen_buffer\n",
711                                                __func__);
712                                         JBUFFER_TRACE(jh, "oom!");
713                                         error = -ENOMEM;
714                                         jbd_lock_bh_state(bh);
715                                         goto done;
716                                 }
717                                 goto repeat;
718                         }
719                         jh->b_frozen_data = frozen_buffer;
720                         frozen_buffer = NULL;
721                         need_copy = 1;
722                 }
723                 jh->b_next_transaction = transaction;
724         }
725
726
727         /*
728          * Finally, if the buffer is not journaled right now, we need to make
729          * sure it doesn't get written to disk before the caller actually
730          * commits the new data
731          */
732         if (!jh->b_transaction) {
733                 JBUFFER_TRACE(jh, "no transaction");
734                 J_ASSERT_JH(jh, !jh->b_next_transaction);
735                 jh->b_transaction = transaction;
736                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
737                 spin_lock(&journal->j_list_lock);
738                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
739                 spin_unlock(&journal->j_list_lock);
740         }
741
742 done:
743         if (need_copy) {
744                 struct page *page;
745                 int offset;
746                 char *source;
747
748                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
749                             "Possible IO failure.\n");
750                 page = jh2bh(jh)->b_page;
751                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
752                 source = kmap_atomic(page, KM_USER0);
753                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
754                 kunmap_atomic(source, KM_USER0);
755
756                 /*
757                  * Now that the frozen data is saved off, we need to store
758                  * any matching triggers.
759                  */
760                 jh->b_frozen_triggers = jh->b_triggers;
761         }
762         jbd_unlock_bh_state(bh);
763
764         /*
765          * If we are about to journal a buffer, then any revoke pending on it is
766          * no longer valid
767          */
768         jbd2_journal_cancel_revoke(handle, jh);
769
770 out:
771         if (unlikely(frozen_buffer))    /* It's usually NULL */
772                 jbd2_free(frozen_buffer, bh->b_size);
773
774         JBUFFER_TRACE(jh, "exit");
775         return error;
776 }
777
778 /**
779  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
780  * @handle: transaction to add buffer modifications to
781  * @bh:     bh to be used for metadata writes
782  * @credits: variable that will receive credits for the buffer
783  *
784  * Returns an error code or 0 on success.
785  *
786  * In full data journalling mode the buffer may be of type BJ_AsyncData,
787  * because we're write()ing a buffer which is also part of a shared mapping.
788  */
789
790 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
791 {
792         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
793         int rc;
794
795         /* We do not want to get caught playing with fields which the
796          * log thread also manipulates.  Make sure that the buffer
797          * completes any outstanding IO before proceeding. */
798         rc = do_get_write_access(handle, jh, 0);
799         jbd2_journal_put_journal_head(jh);
800         return rc;
801 }
802
803
804 /*
805  * When the user wants to journal a newly created buffer_head
806  * (ie. getblk() returned a new buffer and we are going to populate it
807  * manually rather than reading off disk), then we need to keep the
808  * buffer_head locked until it has been completely filled with new
809  * data.  In this case, we should be able to make the assertion that
810  * the bh is not already part of an existing transaction.
811  *
812  * The buffer should already be locked by the caller by this point.
813  * There is no lock ranking violation: it was a newly created,
814  * unlocked buffer beforehand. */
815
816 /**
817  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
818  * @handle: transaction to new buffer to
819  * @bh: new buffer.
820  *
821  * Call this if you create a new bh.
822  */
823 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
824 {
825         transaction_t *transaction = handle->h_transaction;
826         journal_t *journal = transaction->t_journal;
827         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
828         int err;
829
830         jbd_debug(5, "journal_head %p\n", jh);
831         err = -EROFS;
832         if (is_handle_aborted(handle))
833                 goto out;
834         err = 0;
835
836         JBUFFER_TRACE(jh, "entry");
837         /*
838          * The buffer may already belong to this transaction due to pre-zeroing
839          * in the filesystem's new_block code.  It may also be on the previous,
840          * committing transaction's lists, but it HAS to be in Forget state in
841          * that case: the transaction must have deleted the buffer for it to be
842          * reused here.
843          */
844         jbd_lock_bh_state(bh);
845         spin_lock(&journal->j_list_lock);
846         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
847                 jh->b_transaction == NULL ||
848                 (jh->b_transaction == journal->j_committing_transaction &&
849                           jh->b_jlist == BJ_Forget)));
850
851         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
852         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
853
854         if (jh->b_transaction == NULL) {
855                 /*
856                  * Previous jbd2_journal_forget() could have left the buffer
857                  * with jbddirty bit set because it was being committed. When
858                  * the commit finished, we've filed the buffer for
859                  * checkpointing and marked it dirty. Now we are reallocating
860                  * the buffer so the transaction freeing it must have
861                  * committed and so it's safe to clear the dirty bit.
862                  */
863                 clear_buffer_dirty(jh2bh(jh));
864                 jh->b_transaction = transaction;
865
866                 /* first access by this transaction */
867                 jh->b_modified = 0;
868
869                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
870                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
871         } else if (jh->b_transaction == journal->j_committing_transaction) {
872                 /* first access by this transaction */
873                 jh->b_modified = 0;
874
875                 JBUFFER_TRACE(jh, "set next transaction");
876                 jh->b_next_transaction = transaction;
877         }
878         spin_unlock(&journal->j_list_lock);
879         jbd_unlock_bh_state(bh);
880
881         /*
882          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
883          * blocks which contain freed but then revoked metadata.  We need
884          * to cancel the revoke in case we end up freeing it yet again
885          * and the reallocating as data - this would cause a second revoke,
886          * which hits an assertion error.
887          */
888         JBUFFER_TRACE(jh, "cancelling revoke");
889         jbd2_journal_cancel_revoke(handle, jh);
890         jbd2_journal_put_journal_head(jh);
891 out:
892         return err;
893 }
894
895 /**
896  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
897  *     non-rewindable consequences
898  * @handle: transaction
899  * @bh: buffer to undo
900  * @credits: store the number of taken credits here (if not NULL)
901  *
902  * Sometimes there is a need to distinguish between metadata which has
903  * been committed to disk and that which has not.  The ext3fs code uses
904  * this for freeing and allocating space, we have to make sure that we
905  * do not reuse freed space until the deallocation has been committed,
906  * since if we overwrote that space we would make the delete
907  * un-rewindable in case of a crash.
908  *
909  * To deal with that, jbd2_journal_get_undo_access requests write access to a
910  * buffer for parts of non-rewindable operations such as delete
911  * operations on the bitmaps.  The journaling code must keep a copy of
912  * the buffer's contents prior to the undo_access call until such time
913  * as we know that the buffer has definitely been committed to disk.
914  *
915  * We never need to know which transaction the committed data is part
916  * of, buffers touched here are guaranteed to be dirtied later and so
917  * will be committed to a new transaction in due course, at which point
918  * we can discard the old committed data pointer.
919  *
920  * Returns error number or 0 on success.
921  */
922 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
923 {
924         int err;
925         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
926         char *committed_data = NULL;
927
928         JBUFFER_TRACE(jh, "entry");
929
930         /*
931          * Do this first --- it can drop the journal lock, so we want to
932          * make sure that obtaining the committed_data is done
933          * atomically wrt. completion of any outstanding commits.
934          */
935         err = do_get_write_access(handle, jh, 1);
936         if (err)
937                 goto out;
938
939 repeat:
940         if (!jh->b_committed_data) {
941                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
942                 if (!committed_data) {
943                         printk(KERN_EMERG "%s: No memory for committed data\n",
944                                 __func__);
945                         err = -ENOMEM;
946                         goto out;
947                 }
948         }
949
950         jbd_lock_bh_state(bh);
951         if (!jh->b_committed_data) {
952                 /* Copy out the current buffer contents into the
953                  * preserved, committed copy. */
954                 JBUFFER_TRACE(jh, "generate b_committed data");
955                 if (!committed_data) {
956                         jbd_unlock_bh_state(bh);
957                         goto repeat;
958                 }
959
960                 jh->b_committed_data = committed_data;
961                 committed_data = NULL;
962                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
963         }
964         jbd_unlock_bh_state(bh);
965 out:
966         jbd2_journal_put_journal_head(jh);
967         if (unlikely(committed_data))
968                 jbd2_free(committed_data, bh->b_size);
969         return err;
970 }
971
972 /**
973  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
974  * @bh: buffer to trigger on
975  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
976  *
977  * Set any triggers on this journal_head.  This is always safe, because
978  * triggers for a committing buffer will be saved off, and triggers for
979  * a running transaction will match the buffer in that transaction.
980  *
981  * Call with NULL to clear the triggers.
982  */
983 void jbd2_journal_set_triggers(struct buffer_head *bh,
984                                struct jbd2_buffer_trigger_type *type)
985 {
986         struct journal_head *jh = bh2jh(bh);
987
988         jh->b_triggers = type;
989 }
990
991 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
992                                 struct jbd2_buffer_trigger_type *triggers)
993 {
994         struct buffer_head *bh = jh2bh(jh);
995
996         if (!triggers || !triggers->t_commit)
997                 return;
998
999         triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
1000 }
1001
1002 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1003                                struct jbd2_buffer_trigger_type *triggers)
1004 {
1005         if (!triggers || !triggers->t_abort)
1006                 return;
1007
1008         triggers->t_abort(triggers, jh2bh(jh));
1009 }
1010
1011
1012
1013 /**
1014  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1015  * @handle: transaction to add buffer to.
1016  * @bh: buffer to mark
1017  *
1018  * mark dirty metadata which needs to be journaled as part of the current
1019  * transaction.
1020  *
1021  * The buffer is placed on the transaction's metadata list and is marked
1022  * as belonging to the transaction.
1023  *
1024  * Returns error number or 0 on success.
1025  *
1026  * Special care needs to be taken if the buffer already belongs to the
1027  * current committing transaction (in which case we should have frozen
1028  * data present for that commit).  In that case, we don't relink the
1029  * buffer: that only gets done when the old transaction finally
1030  * completes its commit.
1031  */
1032 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1033 {
1034         transaction_t *transaction = handle->h_transaction;
1035         journal_t *journal = transaction->t_journal;
1036         struct journal_head *jh = bh2jh(bh);
1037
1038         jbd_debug(5, "journal_head %p\n", jh);
1039         JBUFFER_TRACE(jh, "entry");
1040         if (is_handle_aborted(handle))
1041                 goto out;
1042
1043         jbd_lock_bh_state(bh);
1044
1045         if (jh->b_modified == 0) {
1046                 /*
1047                  * This buffer's got modified and becoming part
1048                  * of the transaction. This needs to be done
1049                  * once a transaction -bzzz
1050                  */
1051                 jh->b_modified = 1;
1052                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1053                 handle->h_buffer_credits--;
1054         }
1055
1056         /*
1057          * fastpath, to avoid expensive locking.  If this buffer is already
1058          * on the running transaction's metadata list there is nothing to do.
1059          * Nobody can take it off again because there is a handle open.
1060          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1061          * result in this test being false, so we go in and take the locks.
1062          */
1063         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1064                 JBUFFER_TRACE(jh, "fastpath");
1065                 J_ASSERT_JH(jh, jh->b_transaction ==
1066                                         journal->j_running_transaction);
1067                 goto out_unlock_bh;
1068         }
1069
1070         set_buffer_jbddirty(bh);
1071
1072         /*
1073          * Metadata already on the current transaction list doesn't
1074          * need to be filed.  Metadata on another transaction's list must
1075          * be committing, and will be refiled once the commit completes:
1076          * leave it alone for now.
1077          */
1078         if (jh->b_transaction != transaction) {
1079                 JBUFFER_TRACE(jh, "already on other transaction");
1080                 J_ASSERT_JH(jh, jh->b_transaction ==
1081                                         journal->j_committing_transaction);
1082                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1083                 /* And this case is illegal: we can't reuse another
1084                  * transaction's data buffer, ever. */
1085                 goto out_unlock_bh;
1086         }
1087
1088         /* That test should have eliminated the following case: */
1089         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1090
1091         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1092         spin_lock(&journal->j_list_lock);
1093         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1094         spin_unlock(&journal->j_list_lock);
1095 out_unlock_bh:
1096         jbd_unlock_bh_state(bh);
1097 out:
1098         JBUFFER_TRACE(jh, "exit");
1099         return 0;
1100 }
1101
1102 /*
1103  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1104  * updates, if the update decided in the end that it didn't need access.
1105  *
1106  */
1107 void
1108 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1109 {
1110         BUFFER_TRACE(bh, "entry");
1111 }
1112
1113 /**
1114  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1115  * @handle: transaction handle
1116  * @bh:     bh to 'forget'
1117  *
1118  * We can only do the bforget if there are no commits pending against the
1119  * buffer.  If the buffer is dirty in the current running transaction we
1120  * can safely unlink it.
1121  *
1122  * bh may not be a journalled buffer at all - it may be a non-JBD
1123  * buffer which came off the hashtable.  Check for this.
1124  *
1125  * Decrements bh->b_count by one.
1126  *
1127  * Allow this call even if the handle has aborted --- it may be part of
1128  * the caller's cleanup after an abort.
1129  */
1130 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1131 {
1132         transaction_t *transaction = handle->h_transaction;
1133         journal_t *journal = transaction->t_journal;
1134         struct journal_head *jh;
1135         int drop_reserve = 0;
1136         int err = 0;
1137         int was_modified = 0;
1138
1139         BUFFER_TRACE(bh, "entry");
1140
1141         jbd_lock_bh_state(bh);
1142         spin_lock(&journal->j_list_lock);
1143
1144         if (!buffer_jbd(bh))
1145                 goto not_jbd;
1146         jh = bh2jh(bh);
1147
1148         /* Critical error: attempting to delete a bitmap buffer, maybe?
1149          * Don't do any jbd operations, and return an error. */
1150         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1151                          "inconsistent data on disk")) {
1152                 err = -EIO;
1153                 goto not_jbd;
1154         }
1155
1156         /* keep track of wether or not this transaction modified us */
1157         was_modified = jh->b_modified;
1158
1159         /*
1160          * The buffer's going from the transaction, we must drop
1161          * all references -bzzz
1162          */
1163         jh->b_modified = 0;
1164
1165         if (jh->b_transaction == handle->h_transaction) {
1166                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1167
1168                 /* If we are forgetting a buffer which is already part
1169                  * of this transaction, then we can just drop it from
1170                  * the transaction immediately. */
1171                 clear_buffer_dirty(bh);
1172                 clear_buffer_jbddirty(bh);
1173
1174                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1175
1176                 /*
1177                  * we only want to drop a reference if this transaction
1178                  * modified the buffer
1179                  */
1180                 if (was_modified)
1181                         drop_reserve = 1;
1182
1183                 /*
1184                  * We are no longer going to journal this buffer.
1185                  * However, the commit of this transaction is still
1186                  * important to the buffer: the delete that we are now
1187                  * processing might obsolete an old log entry, so by
1188                  * committing, we can satisfy the buffer's checkpoint.
1189                  *
1190                  * So, if we have a checkpoint on the buffer, we should
1191                  * now refile the buffer on our BJ_Forget list so that
1192                  * we know to remove the checkpoint after we commit.
1193                  */
1194
1195                 if (jh->b_cp_transaction) {
1196                         __jbd2_journal_temp_unlink_buffer(jh);
1197                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1198                 } else {
1199                         __jbd2_journal_unfile_buffer(jh);
1200                         jbd2_journal_remove_journal_head(bh);
1201                         __brelse(bh);
1202                         if (!buffer_jbd(bh)) {
1203                                 spin_unlock(&journal->j_list_lock);
1204                                 jbd_unlock_bh_state(bh);
1205                                 __bforget(bh);
1206                                 goto drop;
1207                         }
1208                 }
1209         } else if (jh->b_transaction) {
1210                 J_ASSERT_JH(jh, (jh->b_transaction ==
1211                                  journal->j_committing_transaction));
1212                 /* However, if the buffer is still owned by a prior
1213                  * (committing) transaction, we can't drop it yet... */
1214                 JBUFFER_TRACE(jh, "belongs to older transaction");
1215                 /* ... but we CAN drop it from the new transaction if we
1216                  * have also modified it since the original commit. */
1217
1218                 if (jh->b_next_transaction) {
1219                         J_ASSERT(jh->b_next_transaction == transaction);
1220                         jh->b_next_transaction = NULL;
1221
1222                         /*
1223                          * only drop a reference if this transaction modified
1224                          * the buffer
1225                          */
1226                         if (was_modified)
1227                                 drop_reserve = 1;
1228                 }
1229         }
1230
1231 not_jbd:
1232         spin_unlock(&journal->j_list_lock);
1233         jbd_unlock_bh_state(bh);
1234         __brelse(bh);
1235 drop:
1236         if (drop_reserve) {
1237                 /* no need to reserve log space for this block -bzzz */
1238                 handle->h_buffer_credits++;
1239         }
1240         return err;
1241 }
1242
1243 /**
1244  * int jbd2_journal_stop() - complete a transaction
1245  * @handle: tranaction to complete.
1246  *
1247  * All done for a particular handle.
1248  *
1249  * There is not much action needed here.  We just return any remaining
1250  * buffer credits to the transaction and remove the handle.  The only
1251  * complication is that we need to start a commit operation if the
1252  * filesystem is marked for synchronous update.
1253  *
1254  * jbd2_journal_stop itself will not usually return an error, but it may
1255  * do so in unusual circumstances.  In particular, expect it to
1256  * return -EIO if a jbd2_journal_abort has been executed since the
1257  * transaction began.
1258  */
1259 int jbd2_journal_stop(handle_t *handle)
1260 {
1261         transaction_t *transaction = handle->h_transaction;
1262         journal_t *journal = transaction->t_journal;
1263         int err, wait_for_commit = 0;
1264         tid_t tid;
1265         pid_t pid;
1266
1267         J_ASSERT(journal_current_handle() == handle);
1268
1269         if (is_handle_aborted(handle))
1270                 err = -EIO;
1271         else {
1272                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1273                 err = 0;
1274         }
1275
1276         if (--handle->h_ref > 0) {
1277                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1278                           handle->h_ref);
1279                 return err;
1280         }
1281
1282         jbd_debug(4, "Handle %p going down\n", handle);
1283
1284         /*
1285          * Implement synchronous transaction batching.  If the handle
1286          * was synchronous, don't force a commit immediately.  Let's
1287          * yield and let another thread piggyback onto this
1288          * transaction.  Keep doing that while new threads continue to
1289          * arrive.  It doesn't cost much - we're about to run a commit
1290          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1291          * operations by 30x or more...
1292          *
1293          * We try and optimize the sleep time against what the
1294          * underlying disk can do, instead of having a static sleep
1295          * time.  This is useful for the case where our storage is so
1296          * fast that it is more optimal to go ahead and force a flush
1297          * and wait for the transaction to be committed than it is to
1298          * wait for an arbitrary amount of time for new writers to
1299          * join the transaction.  We achieve this by measuring how
1300          * long it takes to commit a transaction, and compare it with
1301          * how long this transaction has been running, and if run time
1302          * < commit time then we sleep for the delta and commit.  This
1303          * greatly helps super fast disks that would see slowdowns as
1304          * more threads started doing fsyncs.
1305          *
1306          * But don't do this if this process was the most recent one
1307          * to perform a synchronous write.  We do this to detect the
1308          * case where a single process is doing a stream of sync
1309          * writes.  No point in waiting for joiners in that case.
1310          */
1311         pid = current->pid;
1312         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1313                 u64 commit_time, trans_time;
1314
1315                 journal->j_last_sync_writer = pid;
1316
1317                 spin_lock(&journal->j_state_lock);
1318                 commit_time = journal->j_average_commit_time;
1319                 spin_unlock(&journal->j_state_lock);
1320
1321                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1322                                                    transaction->t_start_time));
1323
1324                 commit_time = max_t(u64, commit_time,
1325                                     1000*journal->j_min_batch_time);
1326                 commit_time = min_t(u64, commit_time,
1327                                     1000*journal->j_max_batch_time);
1328
1329                 if (trans_time < commit_time) {
1330                         ktime_t expires = ktime_add_ns(ktime_get(),
1331                                                        commit_time);
1332                         set_current_state(TASK_UNINTERRUPTIBLE);
1333                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1334                 }
1335         }
1336
1337         if (handle->h_sync)
1338                 transaction->t_synchronous_commit = 1;
1339         current->journal_info = NULL;
1340         atomic_sub(handle->h_buffer_credits,
1341                    &transaction->t_outstanding_credits);
1342
1343         /*
1344          * If the handle is marked SYNC, we need to set another commit
1345          * going!  We also want to force a commit if the current
1346          * transaction is occupying too much of the log, or if the
1347          * transaction is too old now.
1348          */
1349         if (handle->h_sync ||
1350             (atomic_read(&transaction->t_outstanding_credits) >
1351              journal->j_max_transaction_buffers) ||
1352             time_after_eq(jiffies, transaction->t_expires)) {
1353                 /* Do this even for aborted journals: an abort still
1354                  * completes the commit thread, it just doesn't write
1355                  * anything to disk. */
1356
1357                 jbd_debug(2, "transaction too old, requesting commit for "
1358                                         "handle %p\n", handle);
1359                 /* This is non-blocking */
1360                 jbd2_log_start_commit(journal, transaction->t_tid);
1361
1362                 /*
1363                  * Special case: JBD2_SYNC synchronous updates require us
1364                  * to wait for the commit to complete.
1365                  */
1366                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1367                         wait_for_commit = 1;
1368         }
1369
1370         /*
1371          * Once we drop t_updates, if it goes to zero the transaction
1372          * could start commiting on us and eventually disappear.  So
1373          * once we do this, we must not dereference transaction
1374          * pointer again.
1375          */
1376         tid = transaction->t_tid;
1377         if (atomic_dec_and_test(&transaction->t_updates)) {
1378                 wake_up(&journal->j_wait_updates);
1379                 if (journal->j_barrier_count)
1380                         wake_up(&journal->j_wait_transaction_locked);
1381         }
1382
1383         if (wait_for_commit)
1384                 err = jbd2_log_wait_commit(journal, tid);
1385
1386         lock_map_release(&handle->h_lockdep_map);
1387
1388         jbd2_free_handle(handle);
1389         return err;
1390 }
1391
1392 /**
1393  * int jbd2_journal_force_commit() - force any uncommitted transactions
1394  * @journal: journal to force
1395  *
1396  * For synchronous operations: force any uncommitted transactions
1397  * to disk.  May seem kludgy, but it reuses all the handle batching
1398  * code in a very simple manner.
1399  */
1400 int jbd2_journal_force_commit(journal_t *journal)
1401 {
1402         handle_t *handle;
1403         int ret;
1404
1405         handle = jbd2_journal_start(journal, 1);
1406         if (IS_ERR(handle)) {
1407                 ret = PTR_ERR(handle);
1408         } else {
1409                 handle->h_sync = 1;
1410                 ret = jbd2_journal_stop(handle);
1411         }
1412         return ret;
1413 }
1414
1415 /*
1416  *
1417  * List management code snippets: various functions for manipulating the
1418  * transaction buffer lists.
1419  *
1420  */
1421
1422 /*
1423  * Append a buffer to a transaction list, given the transaction's list head
1424  * pointer.
1425  *
1426  * j_list_lock is held.
1427  *
1428  * jbd_lock_bh_state(jh2bh(jh)) is held.
1429  */
1430
1431 static inline void
1432 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1433 {
1434         if (!*list) {
1435                 jh->b_tnext = jh->b_tprev = jh;
1436                 *list = jh;
1437         } else {
1438                 /* Insert at the tail of the list to preserve order */
1439                 struct journal_head *first = *list, *last = first->b_tprev;
1440                 jh->b_tprev = last;
1441                 jh->b_tnext = first;
1442                 last->b_tnext = first->b_tprev = jh;
1443         }
1444 }
1445
1446 /*
1447  * Remove a buffer from a transaction list, given the transaction's list
1448  * head pointer.
1449  *
1450  * Called with j_list_lock held, and the journal may not be locked.
1451  *
1452  * jbd_lock_bh_state(jh2bh(jh)) is held.
1453  */
1454
1455 static inline void
1456 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1457 {
1458         if (*list == jh) {
1459                 *list = jh->b_tnext;
1460                 if (*list == jh)
1461                         *list = NULL;
1462         }
1463         jh->b_tprev->b_tnext = jh->b_tnext;
1464         jh->b_tnext->b_tprev = jh->b_tprev;
1465 }
1466
1467 /*
1468  * Remove a buffer from the appropriate transaction list.
1469  *
1470  * Note that this function can *change* the value of
1471  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1472  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1473  * of these pointers, it could go bad.  Generally the caller needs to re-read
1474  * the pointer from the transaction_t.
1475  *
1476  * Called under j_list_lock.  The journal may not be locked.
1477  */
1478 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1479 {
1480         struct journal_head **list = NULL;
1481         transaction_t *transaction;
1482         struct buffer_head *bh = jh2bh(jh);
1483
1484         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1485         transaction = jh->b_transaction;
1486         if (transaction)
1487                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1488
1489         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1490         if (jh->b_jlist != BJ_None)
1491                 J_ASSERT_JH(jh, transaction != NULL);
1492
1493         switch (jh->b_jlist) {
1494         case BJ_None:
1495                 return;
1496         case BJ_Metadata:
1497                 transaction->t_nr_buffers--;
1498                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1499                 list = &transaction->t_buffers;
1500                 break;
1501         case BJ_Forget:
1502                 list = &transaction->t_forget;
1503                 break;
1504         case BJ_IO:
1505                 list = &transaction->t_iobuf_list;
1506                 break;
1507         case BJ_Shadow:
1508                 list = &transaction->t_shadow_list;
1509                 break;
1510         case BJ_LogCtl:
1511                 list = &transaction->t_log_list;
1512                 break;
1513         case BJ_Reserved:
1514                 list = &transaction->t_reserved_list;
1515                 break;
1516         }
1517
1518         __blist_del_buffer(list, jh);
1519         jh->b_jlist = BJ_None;
1520         if (test_clear_buffer_jbddirty(bh))
1521                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1522 }
1523
1524 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1525 {
1526         __jbd2_journal_temp_unlink_buffer(jh);
1527         jh->b_transaction = NULL;
1528 }
1529
1530 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1531 {
1532         jbd_lock_bh_state(jh2bh(jh));
1533         spin_lock(&journal->j_list_lock);
1534         __jbd2_journal_unfile_buffer(jh);
1535         spin_unlock(&journal->j_list_lock);
1536         jbd_unlock_bh_state(jh2bh(jh));
1537 }
1538
1539 /*
1540  * Called from jbd2_journal_try_to_free_buffers().
1541  *
1542  * Called under jbd_lock_bh_state(bh)
1543  */
1544 static void
1545 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1546 {
1547         struct journal_head *jh;
1548
1549         jh = bh2jh(bh);
1550
1551         if (buffer_locked(bh) || buffer_dirty(bh))
1552                 goto out;
1553
1554         if (jh->b_next_transaction != NULL)
1555                 goto out;
1556
1557         spin_lock(&journal->j_list_lock);
1558         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1559                 /* written-back checkpointed metadata buffer */
1560                 if (jh->b_jlist == BJ_None) {
1561                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1562                         __jbd2_journal_remove_checkpoint(jh);
1563                         jbd2_journal_remove_journal_head(bh);
1564                         __brelse(bh);
1565                 }
1566         }
1567         spin_unlock(&journal->j_list_lock);
1568 out:
1569         return;
1570 }
1571
1572 /**
1573  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1574  * @journal: journal for operation
1575  * @page: to try and free
1576  * @gfp_mask: we use the mask to detect how hard should we try to release
1577  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1578  * release the buffers.
1579  *
1580  *
1581  * For all the buffers on this page,
1582  * if they are fully written out ordered data, move them onto BUF_CLEAN
1583  * so try_to_free_buffers() can reap them.
1584  *
1585  * This function returns non-zero if we wish try_to_free_buffers()
1586  * to be called. We do this if the page is releasable by try_to_free_buffers().
1587  * We also do it if the page has locked or dirty buffers and the caller wants
1588  * us to perform sync or async writeout.
1589  *
1590  * This complicates JBD locking somewhat.  We aren't protected by the
1591  * BKL here.  We wish to remove the buffer from its committing or
1592  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1593  *
1594  * This may *change* the value of transaction_t->t_datalist, so anyone
1595  * who looks at t_datalist needs to lock against this function.
1596  *
1597  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1598  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1599  * will come out of the lock with the buffer dirty, which makes it
1600  * ineligible for release here.
1601  *
1602  * Who else is affected by this?  hmm...  Really the only contender
1603  * is do_get_write_access() - it could be looking at the buffer while
1604  * journal_try_to_free_buffer() is changing its state.  But that
1605  * cannot happen because we never reallocate freed data as metadata
1606  * while the data is part of a transaction.  Yes?
1607  *
1608  * Return 0 on failure, 1 on success
1609  */
1610 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1611                                 struct page *page, gfp_t gfp_mask)
1612 {
1613         struct buffer_head *head;
1614         struct buffer_head *bh;
1615         int ret = 0;
1616
1617         J_ASSERT(PageLocked(page));
1618
1619         head = page_buffers(page);
1620         bh = head;
1621         do {
1622                 struct journal_head *jh;
1623
1624                 /*
1625                  * We take our own ref against the journal_head here to avoid
1626                  * having to add tons of locking around each instance of
1627                  * jbd2_journal_remove_journal_head() and
1628                  * jbd2_journal_put_journal_head().
1629                  */
1630                 jh = jbd2_journal_grab_journal_head(bh);
1631                 if (!jh)
1632                         continue;
1633
1634                 jbd_lock_bh_state(bh);
1635                 __journal_try_to_free_buffer(journal, bh);
1636                 jbd2_journal_put_journal_head(jh);
1637                 jbd_unlock_bh_state(bh);
1638                 if (buffer_jbd(bh))
1639                         goto busy;
1640         } while ((bh = bh->b_this_page) != head);
1641
1642         ret = try_to_free_buffers(page);
1643
1644 busy:
1645         return ret;
1646 }
1647
1648 /*
1649  * This buffer is no longer needed.  If it is on an older transaction's
1650  * checkpoint list we need to record it on this transaction's forget list
1651  * to pin this buffer (and hence its checkpointing transaction) down until
1652  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1653  * release it.
1654  * Returns non-zero if JBD no longer has an interest in the buffer.
1655  *
1656  * Called under j_list_lock.
1657  *
1658  * Called under jbd_lock_bh_state(bh).
1659  */
1660 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1661 {
1662         int may_free = 1;
1663         struct buffer_head *bh = jh2bh(jh);
1664
1665         __jbd2_journal_unfile_buffer(jh);
1666
1667         if (jh->b_cp_transaction) {
1668                 JBUFFER_TRACE(jh, "on running+cp transaction");
1669                 /*
1670                  * We don't want to write the buffer anymore, clear the
1671                  * bit so that we don't confuse checks in
1672                  * __journal_file_buffer
1673                  */
1674                 clear_buffer_dirty(bh);
1675                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1676                 may_free = 0;
1677         } else {
1678                 JBUFFER_TRACE(jh, "on running transaction");
1679                 jbd2_journal_remove_journal_head(bh);
1680                 __brelse(bh);
1681         }
1682         return may_free;
1683 }
1684
1685 /*
1686  * jbd2_journal_invalidatepage
1687  *
1688  * This code is tricky.  It has a number of cases to deal with.
1689  *
1690  * There are two invariants which this code relies on:
1691  *
1692  * i_size must be updated on disk before we start calling invalidatepage on the
1693  * data.
1694  *
1695  *  This is done in ext3 by defining an ext3_setattr method which
1696  *  updates i_size before truncate gets going.  By maintaining this
1697  *  invariant, we can be sure that it is safe to throw away any buffers
1698  *  attached to the current transaction: once the transaction commits,
1699  *  we know that the data will not be needed.
1700  *
1701  *  Note however that we can *not* throw away data belonging to the
1702  *  previous, committing transaction!
1703  *
1704  * Any disk blocks which *are* part of the previous, committing
1705  * transaction (and which therefore cannot be discarded immediately) are
1706  * not going to be reused in the new running transaction
1707  *
1708  *  The bitmap committed_data images guarantee this: any block which is
1709  *  allocated in one transaction and removed in the next will be marked
1710  *  as in-use in the committed_data bitmap, so cannot be reused until
1711  *  the next transaction to delete the block commits.  This means that
1712  *  leaving committing buffers dirty is quite safe: the disk blocks
1713  *  cannot be reallocated to a different file and so buffer aliasing is
1714  *  not possible.
1715  *
1716  *
1717  * The above applies mainly to ordered data mode.  In writeback mode we
1718  * don't make guarantees about the order in which data hits disk --- in
1719  * particular we don't guarantee that new dirty data is flushed before
1720  * transaction commit --- so it is always safe just to discard data
1721  * immediately in that mode.  --sct
1722  */
1723
1724 /*
1725  * The journal_unmap_buffer helper function returns zero if the buffer
1726  * concerned remains pinned as an anonymous buffer belonging to an older
1727  * transaction.
1728  *
1729  * We're outside-transaction here.  Either or both of j_running_transaction
1730  * and j_committing_transaction may be NULL.
1731  */
1732 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1733 {
1734         transaction_t *transaction;
1735         struct journal_head *jh;
1736         int may_free = 1;
1737         int ret;
1738
1739         BUFFER_TRACE(bh, "entry");
1740
1741         /*
1742          * It is safe to proceed here without the j_list_lock because the
1743          * buffers cannot be stolen by try_to_free_buffers as long as we are
1744          * holding the page lock. --sct
1745          */
1746
1747         if (!buffer_jbd(bh))
1748                 goto zap_buffer_unlocked;
1749
1750         /* OK, we have data buffer in journaled mode */
1751         spin_lock(&journal->j_state_lock);
1752         jbd_lock_bh_state(bh);
1753         spin_lock(&journal->j_list_lock);
1754
1755         jh = jbd2_journal_grab_journal_head(bh);
1756         if (!jh)
1757                 goto zap_buffer_no_jh;
1758
1759         /*
1760          * We cannot remove the buffer from checkpoint lists until the
1761          * transaction adding inode to orphan list (let's call it T)
1762          * is committed.  Otherwise if the transaction changing the
1763          * buffer would be cleaned from the journal before T is
1764          * committed, a crash will cause that the correct contents of
1765          * the buffer will be lost.  On the other hand we have to
1766          * clear the buffer dirty bit at latest at the moment when the
1767          * transaction marking the buffer as freed in the filesystem
1768          * structures is committed because from that moment on the
1769          * buffer can be reallocated and used by a different page.
1770          * Since the block hasn't been freed yet but the inode has
1771          * already been added to orphan list, it is safe for us to add
1772          * the buffer to BJ_Forget list of the newest transaction.
1773          */
1774         transaction = jh->b_transaction;
1775         if (transaction == NULL) {
1776                 /* First case: not on any transaction.  If it
1777                  * has no checkpoint link, then we can zap it:
1778                  * it's a writeback-mode buffer so we don't care
1779                  * if it hits disk safely. */
1780                 if (!jh->b_cp_transaction) {
1781                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1782                         goto zap_buffer;
1783                 }
1784
1785                 if (!buffer_dirty(bh)) {
1786                         /* bdflush has written it.  We can drop it now */
1787                         goto zap_buffer;
1788                 }
1789
1790                 /* OK, it must be in the journal but still not
1791                  * written fully to disk: it's metadata or
1792                  * journaled data... */
1793
1794                 if (journal->j_running_transaction) {
1795                         /* ... and once the current transaction has
1796                          * committed, the buffer won't be needed any
1797                          * longer. */
1798                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1799                         ret = __dispose_buffer(jh,
1800                                         journal->j_running_transaction);
1801                         jbd2_journal_put_journal_head(jh);
1802                         spin_unlock(&journal->j_list_lock);
1803                         jbd_unlock_bh_state(bh);
1804                         spin_unlock(&journal->j_state_lock);
1805                         return ret;
1806                 } else {
1807                         /* There is no currently-running transaction. So the
1808                          * orphan record which we wrote for this file must have
1809                          * passed into commit.  We must attach this buffer to
1810                          * the committing transaction, if it exists. */
1811                         if (journal->j_committing_transaction) {
1812                                 JBUFFER_TRACE(jh, "give to committing trans");
1813                                 ret = __dispose_buffer(jh,
1814                                         journal->j_committing_transaction);
1815                                 jbd2_journal_put_journal_head(jh);
1816                                 spin_unlock(&journal->j_list_lock);
1817                                 jbd_unlock_bh_state(bh);
1818                                 spin_unlock(&journal->j_state_lock);
1819                                 return ret;
1820                         } else {
1821                                 /* The orphan record's transaction has
1822                                  * committed.  We can cleanse this buffer */
1823                                 clear_buffer_jbddirty(bh);
1824                                 goto zap_buffer;
1825                         }
1826                 }
1827         } else if (transaction == journal->j_committing_transaction) {
1828                 JBUFFER_TRACE(jh, "on committing transaction");
1829                 /*
1830                  * The buffer is committing, we simply cannot touch
1831                  * it. So we just set j_next_transaction to the
1832                  * running transaction (if there is one) and mark
1833                  * buffer as freed so that commit code knows it should
1834                  * clear dirty bits when it is done with the buffer.
1835                  */
1836                 set_buffer_freed(bh);
1837                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1838                         jh->b_next_transaction = journal->j_running_transaction;
1839                 jbd2_journal_put_journal_head(jh);
1840                 spin_unlock(&journal->j_list_lock);
1841                 jbd_unlock_bh_state(bh);
1842                 spin_unlock(&journal->j_state_lock);
1843                 return 0;
1844         } else {
1845                 /* Good, the buffer belongs to the running transaction.
1846                  * We are writing our own transaction's data, not any
1847                  * previous one's, so it is safe to throw it away
1848                  * (remember that we expect the filesystem to have set
1849                  * i_size already for this truncate so recovery will not
1850                  * expose the disk blocks we are discarding here.) */
1851                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1852                 JBUFFER_TRACE(jh, "on running transaction");
1853                 may_free = __dispose_buffer(jh, transaction);
1854         }
1855
1856 zap_buffer:
1857         jbd2_journal_put_journal_head(jh);
1858 zap_buffer_no_jh:
1859         spin_unlock(&journal->j_list_lock);
1860         jbd_unlock_bh_state(bh);
1861         spin_unlock(&journal->j_state_lock);
1862 zap_buffer_unlocked:
1863         clear_buffer_dirty(bh);
1864         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1865         clear_buffer_mapped(bh);
1866         clear_buffer_req(bh);
1867         clear_buffer_new(bh);
1868         bh->b_bdev = NULL;
1869         return may_free;
1870 }
1871
1872 /**
1873  * void jbd2_journal_invalidatepage()
1874  * @journal: journal to use for flush...
1875  * @page:    page to flush
1876  * @offset:  length of page to invalidate.
1877  *
1878  * Reap page buffers containing data after offset in page.
1879  *
1880  */
1881 void jbd2_journal_invalidatepage(journal_t *journal,
1882                       struct page *page,
1883                       unsigned long offset)
1884 {
1885         struct buffer_head *head, *bh, *next;
1886         unsigned int curr_off = 0;
1887         int may_free = 1;
1888
1889         if (!PageLocked(page))
1890                 BUG();
1891         if (!page_has_buffers(page))
1892                 return;
1893
1894         /* We will potentially be playing with lists other than just the
1895          * data lists (especially for journaled data mode), so be
1896          * cautious in our locking. */
1897
1898         head = bh = page_buffers(page);
1899         do {
1900                 unsigned int next_off = curr_off + bh->b_size;
1901                 next = bh->b_this_page;
1902
1903                 if (offset <= curr_off) {
1904                         /* This block is wholly outside the truncation point */
1905                         lock_buffer(bh);
1906                         may_free &= journal_unmap_buffer(journal, bh);
1907                         unlock_buffer(bh);
1908                 }
1909                 curr_off = next_off;
1910                 bh = next;
1911
1912         } while (bh != head);
1913
1914         if (!offset) {
1915                 if (may_free && try_to_free_buffers(page))
1916                         J_ASSERT(!page_has_buffers(page));
1917         }
1918 }
1919
1920 /*
1921  * File a buffer on the given transaction list.
1922  */
1923 void __jbd2_journal_file_buffer(struct journal_head *jh,
1924                         transaction_t *transaction, int jlist)
1925 {
1926         struct journal_head **list = NULL;
1927         int was_dirty = 0;
1928         struct buffer_head *bh = jh2bh(jh);
1929
1930         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1931         assert_spin_locked(&transaction->t_journal->j_list_lock);
1932
1933         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1934         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1935                                 jh->b_transaction == NULL);
1936
1937         if (jh->b_transaction && jh->b_jlist == jlist)
1938                 return;
1939
1940         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1941             jlist == BJ_Shadow || jlist == BJ_Forget) {
1942                 /*
1943                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1944                  * instead of buffer_dirty. We should not see a dirty bit set
1945                  * here because we clear it in do_get_write_access but e.g.
1946                  * tune2fs can modify the sb and set the dirty bit at any time
1947                  * so we try to gracefully handle that.
1948                  */
1949                 if (buffer_dirty(bh))
1950                         warn_dirty_buffer(bh);
1951                 if (test_clear_buffer_dirty(bh) ||
1952                     test_clear_buffer_jbddirty(bh))
1953                         was_dirty = 1;
1954         }
1955
1956         if (jh->b_transaction)
1957                 __jbd2_journal_temp_unlink_buffer(jh);
1958         jh->b_transaction = transaction;
1959
1960         switch (jlist) {
1961         case BJ_None:
1962                 J_ASSERT_JH(jh, !jh->b_committed_data);
1963                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1964                 return;
1965         case BJ_Metadata:
1966                 transaction->t_nr_buffers++;
1967                 list = &transaction->t_buffers;
1968                 break;
1969         case BJ_Forget:
1970                 list = &transaction->t_forget;
1971                 break;
1972         case BJ_IO:
1973                 list = &transaction->t_iobuf_list;
1974                 break;
1975         case BJ_Shadow:
1976                 list = &transaction->t_shadow_list;
1977                 break;
1978         case BJ_LogCtl:
1979                 list = &transaction->t_log_list;
1980                 break;
1981         case BJ_Reserved:
1982                 list = &transaction->t_reserved_list;
1983                 break;
1984         }
1985
1986         __blist_add_buffer(list, jh);
1987         jh->b_jlist = jlist;
1988
1989         if (was_dirty)
1990                 set_buffer_jbddirty(bh);
1991 }
1992
1993 void jbd2_journal_file_buffer(struct journal_head *jh,
1994                                 transaction_t *transaction, int jlist)
1995 {
1996         jbd_lock_bh_state(jh2bh(jh));
1997         spin_lock(&transaction->t_journal->j_list_lock);
1998         __jbd2_journal_file_buffer(jh, transaction, jlist);
1999         spin_unlock(&transaction->t_journal->j_list_lock);
2000         jbd_unlock_bh_state(jh2bh(jh));
2001 }
2002
2003 /*
2004  * Remove a buffer from its current buffer list in preparation for
2005  * dropping it from its current transaction entirely.  If the buffer has
2006  * already started to be used by a subsequent transaction, refile the
2007  * buffer on that transaction's metadata list.
2008  *
2009  * Called under journal->j_list_lock
2010  *
2011  * Called under jbd_lock_bh_state(jh2bh(jh))
2012  */
2013 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2014 {
2015         int was_dirty, jlist;
2016         struct buffer_head *bh = jh2bh(jh);
2017
2018         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2019         if (jh->b_transaction)
2020                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2021
2022         /* If the buffer is now unused, just drop it. */
2023         if (jh->b_next_transaction == NULL) {
2024                 __jbd2_journal_unfile_buffer(jh);
2025                 return;
2026         }
2027
2028         /*
2029          * It has been modified by a later transaction: add it to the new
2030          * transaction's metadata list.
2031          */
2032
2033         was_dirty = test_clear_buffer_jbddirty(bh);
2034         __jbd2_journal_temp_unlink_buffer(jh);
2035         jh->b_transaction = jh->b_next_transaction;
2036         jh->b_next_transaction = NULL;
2037         if (buffer_freed(bh))
2038                 jlist = BJ_Forget;
2039         else if (jh->b_modified)
2040                 jlist = BJ_Metadata;
2041         else
2042                 jlist = BJ_Reserved;
2043         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2044         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2045
2046         if (was_dirty)
2047                 set_buffer_jbddirty(bh);
2048 }
2049
2050 /*
2051  * For the unlocked version of this call, also make sure that any
2052  * hanging journal_head is cleaned up if necessary.
2053  *
2054  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2055  * operation on a buffer_head, in which the caller is probably going to
2056  * be hooking the journal_head onto other lists.  In that case it is up
2057  * to the caller to remove the journal_head if necessary.  For the
2058  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2059  * doing anything else to the buffer so we need to do the cleanup
2060  * ourselves to avoid a jh leak.
2061  *
2062  * *** The journal_head may be freed by this call! ***
2063  */
2064 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2065 {
2066         struct buffer_head *bh = jh2bh(jh);
2067
2068         jbd_lock_bh_state(bh);
2069         spin_lock(&journal->j_list_lock);
2070
2071         __jbd2_journal_refile_buffer(jh);
2072         jbd_unlock_bh_state(bh);
2073         jbd2_journal_remove_journal_head(bh);
2074
2075         spin_unlock(&journal->j_list_lock);
2076         __brelse(bh);
2077 }
2078
2079 /*
2080  * File inode in the inode list of the handle's transaction
2081  */
2082 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2083 {
2084         transaction_t *transaction = handle->h_transaction;
2085         journal_t *journal = transaction->t_journal;
2086
2087         if (is_handle_aborted(handle))
2088                 return -EIO;
2089
2090         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2091                         transaction->t_tid);
2092
2093         /*
2094          * First check whether inode isn't already on the transaction's
2095          * lists without taking the lock. Note that this check is safe
2096          * without the lock as we cannot race with somebody removing inode
2097          * from the transaction. The reason is that we remove inode from the
2098          * transaction only in journal_release_jbd_inode() and when we commit
2099          * the transaction. We are guarded from the first case by holding
2100          * a reference to the inode. We are safe against the second case
2101          * because if jinode->i_transaction == transaction, commit code
2102          * cannot touch the transaction because we hold reference to it,
2103          * and if jinode->i_next_transaction == transaction, commit code
2104          * will only file the inode where we want it.
2105          */
2106         if (jinode->i_transaction == transaction ||
2107             jinode->i_next_transaction == transaction)
2108                 return 0;
2109
2110         spin_lock(&journal->j_list_lock);
2111
2112         if (jinode->i_transaction == transaction ||
2113             jinode->i_next_transaction == transaction)
2114                 goto done;
2115
2116         /* On some different transaction's list - should be
2117          * the committing one */
2118         if (jinode->i_transaction) {
2119                 J_ASSERT(jinode->i_next_transaction == NULL);
2120                 J_ASSERT(jinode->i_transaction ==
2121                                         journal->j_committing_transaction);
2122                 jinode->i_next_transaction = transaction;
2123                 goto done;
2124         }
2125         /* Not on any transaction list... */
2126         J_ASSERT(!jinode->i_next_transaction);
2127         jinode->i_transaction = transaction;
2128         list_add(&jinode->i_list, &transaction->t_inode_list);
2129 done:
2130         spin_unlock(&journal->j_list_lock);
2131
2132         return 0;
2133 }
2134
2135 /*
2136  * File truncate and transaction commit interact with each other in a
2137  * non-trivial way.  If a transaction writing data block A is
2138  * committing, we cannot discard the data by truncate until we have
2139  * written them.  Otherwise if we crashed after the transaction with
2140  * write has committed but before the transaction with truncate has
2141  * committed, we could see stale data in block A.  This function is a
2142  * helper to solve this problem.  It starts writeout of the truncated
2143  * part in case it is in the committing transaction.
2144  *
2145  * Filesystem code must call this function when inode is journaled in
2146  * ordered mode before truncation happens and after the inode has been
2147  * placed on orphan list with the new inode size. The second condition
2148  * avoids the race that someone writes new data and we start
2149  * committing the transaction after this function has been called but
2150  * before a transaction for truncate is started (and furthermore it
2151  * allows us to optimize the case where the addition to orphan list
2152  * happens in the same transaction as write --- we don't have to write
2153  * any data in such case).
2154  */
2155 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2156                                         struct jbd2_inode *jinode,
2157                                         loff_t new_size)
2158 {
2159         transaction_t *inode_trans, *commit_trans;
2160         int ret = 0;
2161
2162         /* This is a quick check to avoid locking if not necessary */
2163         if (!jinode->i_transaction)
2164                 goto out;
2165         /* Locks are here just to force reading of recent values, it is
2166          * enough that the transaction was not committing before we started
2167          * a transaction adding the inode to orphan list */
2168         spin_lock(&journal->j_state_lock);
2169         commit_trans = journal->j_committing_transaction;
2170         spin_unlock(&journal->j_state_lock);
2171         spin_lock(&journal->j_list_lock);
2172         inode_trans = jinode->i_transaction;
2173         spin_unlock(&journal->j_list_lock);
2174         if (inode_trans == commit_trans) {
2175                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2176                         new_size, LLONG_MAX);
2177                 if (ret)
2178                         jbd2_journal_abort(journal, ret);
2179         }
2180 out:
2181         return ret;
2182 }