]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd2/transaction.c
jbd2: Change j_state_lock to be a rwlock_t
[net-next-2.6.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *      The journal MUST be locked.  We don't perform atomic mallocs on the
44  *      new transaction and we can't block without protecting against other
45  *      processes trying to touch the journal while it is in transition.
46  *
47  */
48
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58         atomic_set(&transaction->t_updates, 0);
59         atomic_set(&transaction->t_outstanding_credits, 0);
60         INIT_LIST_HEAD(&transaction->t_inode_list);
61         INIT_LIST_HEAD(&transaction->t_private_list);
62
63         /* Set up the commit timer for the new transaction. */
64         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
65         add_timer(&journal->j_commit_timer);
66
67         J_ASSERT(journal->j_running_transaction == NULL);
68         journal->j_running_transaction = transaction;
69         transaction->t_max_wait = 0;
70         transaction->t_start = jiffies;
71
72         return transaction;
73 }
74
75 /*
76  * Handle management.
77  *
78  * A handle_t is an object which represents a single atomic update to a
79  * filesystem, and which tracks all of the modifications which form part
80  * of that one update.
81  */
82
83 /*
84  * start_this_handle: Given a handle, deal with any locking or stalling
85  * needed to make sure that there is enough journal space for the handle
86  * to begin.  Attach the handle to a transaction and set up the
87  * transaction's buffer credits.
88  */
89
90 static int start_this_handle(journal_t *journal, handle_t *handle,
91                              int gfp_mask)
92 {
93         transaction_t *transaction;
94         int needed;
95         int nblocks = handle->h_buffer_credits;
96         transaction_t *new_transaction = NULL;
97         unsigned long ts = jiffies;
98
99         if (nblocks > journal->j_max_transaction_buffers) {
100                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
101                        current->comm, nblocks,
102                        journal->j_max_transaction_buffers);
103                 return -ENOSPC;
104         }
105
106 alloc_transaction:
107         if (!journal->j_running_transaction) {
108                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
109                 if (!new_transaction) {
110                         /*
111                          * If __GFP_FS is not present, then we may be
112                          * being called from inside the fs writeback
113                          * layer, so we MUST NOT fail.  Since
114                          * __GFP_NOFAIL is going away, we will arrange
115                          * to retry the allocation ourselves.
116                          */
117                         if ((gfp_mask & __GFP_FS) == 0) {
118                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
119                                 goto alloc_transaction;
120                         }
121                         return -ENOMEM;
122                 }
123         }
124
125         jbd_debug(3, "New handle %p going live.\n", handle);
126
127         /*
128          * We need to hold j_state_lock until t_updates has been incremented,
129          * for proper journal barrier handling
130          */
131 repeat:
132         read_lock(&journal->j_state_lock);
133         if (is_journal_aborted(journal) ||
134             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
135                 read_unlock(&journal->j_state_lock);
136                 kfree(new_transaction);
137                 return -EROFS;
138         }
139
140         /* Wait on the journal's transaction barrier if necessary */
141         if (journal->j_barrier_count) {
142                 read_unlock(&journal->j_state_lock);
143                 wait_event(journal->j_wait_transaction_locked,
144                                 journal->j_barrier_count == 0);
145                 goto repeat;
146         }
147
148         if (!journal->j_running_transaction) {
149                 read_unlock(&journal->j_state_lock);
150                 if (!new_transaction)
151                         goto alloc_transaction;
152                 write_lock(&journal->j_state_lock);
153                 if (!journal->j_running_transaction) {
154                         jbd2_get_transaction(journal, new_transaction);
155                         new_transaction = NULL;
156                 }
157                 write_unlock(&journal->j_state_lock);
158                 goto repeat;
159         }
160
161         transaction = journal->j_running_transaction;
162
163         /*
164          * If the current transaction is locked down for commit, wait for the
165          * lock to be released.
166          */
167         if (transaction->t_state == T_LOCKED) {
168                 DEFINE_WAIT(wait);
169
170                 prepare_to_wait(&journal->j_wait_transaction_locked,
171                                         &wait, TASK_UNINTERRUPTIBLE);
172                 read_unlock(&journal->j_state_lock);
173                 schedule();
174                 finish_wait(&journal->j_wait_transaction_locked, &wait);
175                 goto repeat;
176         }
177
178         /*
179          * If there is not enough space left in the log to write all potential
180          * buffers requested by this operation, we need to stall pending a log
181          * checkpoint to free some more log space.
182          */
183         spin_lock(&transaction->t_handle_lock);
184         needed = atomic_read(&transaction->t_outstanding_credits) + nblocks;
185
186         if (needed > journal->j_max_transaction_buffers) {
187                 /*
188                  * If the current transaction is already too large, then start
189                  * to commit it: we can then go back and attach this handle to
190                  * a new transaction.
191                  */
192                 DEFINE_WAIT(wait);
193
194                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
195                 spin_unlock(&transaction->t_handle_lock);
196                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
197                                 TASK_UNINTERRUPTIBLE);
198                 __jbd2_log_start_commit(journal, transaction->t_tid);
199                 read_unlock(&journal->j_state_lock);
200                 schedule();
201                 finish_wait(&journal->j_wait_transaction_locked, &wait);
202                 goto repeat;
203         }
204
205         /*
206          * The commit code assumes that it can get enough log space
207          * without forcing a checkpoint.  This is *critical* for
208          * correctness: a checkpoint of a buffer which is also
209          * associated with a committing transaction creates a deadlock,
210          * so commit simply cannot force through checkpoints.
211          *
212          * We must therefore ensure the necessary space in the journal
213          * *before* starting to dirty potentially checkpointed buffers
214          * in the new transaction.
215          *
216          * The worst part is, any transaction currently committing can
217          * reduce the free space arbitrarily.  Be careful to account for
218          * those buffers when checkpointing.
219          */
220
221         /*
222          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
223          * a _lot_ of headroom: 1/4 of the journal plus the size of
224          * the committing transaction.  Really, we only need to give it
225          * committing_transaction->t_outstanding_credits plus "enough" for
226          * the log control blocks.
227          * Also, this test is inconsitent with the matching one in
228          * jbd2_journal_extend().
229          */
230         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
231                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
232                 spin_unlock(&transaction->t_handle_lock);
233                 read_unlock(&journal->j_state_lock);
234                 write_lock(&journal->j_state_lock);
235                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
236                         __jbd2_log_wait_for_space(journal);
237                 write_unlock(&journal->j_state_lock);
238                 goto repeat;
239         }
240
241         /* OK, account for the buffers that this operation expects to
242          * use and add the handle to the running transaction. */
243
244         if (time_after(transaction->t_start, ts)) {
245                 ts = jbd2_time_diff(ts, transaction->t_start);
246                 if (ts > transaction->t_max_wait)
247                         transaction->t_max_wait = ts;
248         }
249
250         handle->h_transaction = transaction;
251         atomic_add(nblocks, &transaction->t_outstanding_credits);
252         atomic_inc(&transaction->t_updates);
253         transaction->t_handle_count++;
254         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
255                   handle, nblocks,
256                   atomic_read(&transaction->t_outstanding_credits),
257                   __jbd2_log_space_left(journal));
258         spin_unlock(&transaction->t_handle_lock);
259         read_unlock(&journal->j_state_lock);
260
261         lock_map_acquire(&handle->h_lockdep_map);
262         kfree(new_transaction);
263         return 0;
264 }
265
266 static struct lock_class_key jbd2_handle_key;
267
268 /* Allocate a new handle.  This should probably be in a slab... */
269 static handle_t *new_handle(int nblocks)
270 {
271         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
272         if (!handle)
273                 return NULL;
274         memset(handle, 0, sizeof(*handle));
275         handle->h_buffer_credits = nblocks;
276         handle->h_ref = 1;
277
278         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
279                                                 &jbd2_handle_key, 0);
280
281         return handle;
282 }
283
284 /**
285  * handle_t *jbd2_journal_start() - Obtain a new handle.
286  * @journal: Journal to start transaction on.
287  * @nblocks: number of block buffer we might modify
288  *
289  * We make sure that the transaction can guarantee at least nblocks of
290  * modified buffers in the log.  We block until the log can guarantee
291  * that much space.
292  *
293  * This function is visible to journal users (like ext3fs), so is not
294  * called with the journal already locked.
295  *
296  * Return a pointer to a newly allocated handle, or NULL on failure
297  */
298 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
299 {
300         handle_t *handle = journal_current_handle();
301         int err;
302
303         if (!journal)
304                 return ERR_PTR(-EROFS);
305
306         if (handle) {
307                 J_ASSERT(handle->h_transaction->t_journal == journal);
308                 handle->h_ref++;
309                 return handle;
310         }
311
312         handle = new_handle(nblocks);
313         if (!handle)
314                 return ERR_PTR(-ENOMEM);
315
316         current->journal_info = handle;
317
318         err = start_this_handle(journal, handle, gfp_mask);
319         if (err < 0) {
320                 jbd2_free_handle(handle);
321                 current->journal_info = NULL;
322                 handle = ERR_PTR(err);
323                 goto out;
324         }
325 out:
326         return handle;
327 }
328 EXPORT_SYMBOL(jbd2__journal_start);
329
330
331 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
332 {
333         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
334 }
335 EXPORT_SYMBOL(jbd2_journal_start);
336
337
338 /**
339  * int jbd2_journal_extend() - extend buffer credits.
340  * @handle:  handle to 'extend'
341  * @nblocks: nr blocks to try to extend by.
342  *
343  * Some transactions, such as large extends and truncates, can be done
344  * atomically all at once or in several stages.  The operation requests
345  * a credit for a number of buffer modications in advance, but can
346  * extend its credit if it needs more.
347  *
348  * jbd2_journal_extend tries to give the running handle more buffer credits.
349  * It does not guarantee that allocation - this is a best-effort only.
350  * The calling process MUST be able to deal cleanly with a failure to
351  * extend here.
352  *
353  * Return 0 on success, non-zero on failure.
354  *
355  * return code < 0 implies an error
356  * return code > 0 implies normal transaction-full status.
357  */
358 int jbd2_journal_extend(handle_t *handle, int nblocks)
359 {
360         transaction_t *transaction = handle->h_transaction;
361         journal_t *journal = transaction->t_journal;
362         int result;
363         int wanted;
364
365         result = -EIO;
366         if (is_handle_aborted(handle))
367                 goto out;
368
369         result = 1;
370
371         read_lock(&journal->j_state_lock);
372
373         /* Don't extend a locked-down transaction! */
374         if (handle->h_transaction->t_state != T_RUNNING) {
375                 jbd_debug(3, "denied handle %p %d blocks: "
376                           "transaction not running\n", handle, nblocks);
377                 goto error_out;
378         }
379
380         spin_lock(&transaction->t_handle_lock);
381         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
382
383         if (wanted > journal->j_max_transaction_buffers) {
384                 jbd_debug(3, "denied handle %p %d blocks: "
385                           "transaction too large\n", handle, nblocks);
386                 goto unlock;
387         }
388
389         if (wanted > __jbd2_log_space_left(journal)) {
390                 jbd_debug(3, "denied handle %p %d blocks: "
391                           "insufficient log space\n", handle, nblocks);
392                 goto unlock;
393         }
394
395         handle->h_buffer_credits += nblocks;
396         atomic_add(nblocks, &transaction->t_outstanding_credits);
397         result = 0;
398
399         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
400 unlock:
401         spin_unlock(&transaction->t_handle_lock);
402 error_out:
403         read_unlock(&journal->j_state_lock);
404 out:
405         return result;
406 }
407
408
409 /**
410  * int jbd2_journal_restart() - restart a handle .
411  * @handle:  handle to restart
412  * @nblocks: nr credits requested
413  *
414  * Restart a handle for a multi-transaction filesystem
415  * operation.
416  *
417  * If the jbd2_journal_extend() call above fails to grant new buffer credits
418  * to a running handle, a call to jbd2_journal_restart will commit the
419  * handle's transaction so far and reattach the handle to a new
420  * transaction capabable of guaranteeing the requested number of
421  * credits.
422  */
423 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
424 {
425         transaction_t *transaction = handle->h_transaction;
426         journal_t *journal = transaction->t_journal;
427         int ret;
428
429         /* If we've had an abort of any type, don't even think about
430          * actually doing the restart! */
431         if (is_handle_aborted(handle))
432                 return 0;
433
434         /*
435          * First unlink the handle from its current transaction, and start the
436          * commit on that.
437          */
438         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
439         J_ASSERT(journal_current_handle() == handle);
440
441         read_lock(&journal->j_state_lock);
442         spin_lock(&transaction->t_handle_lock);
443         atomic_sub(handle->h_buffer_credits,
444                    &transaction->t_outstanding_credits);
445         if (atomic_dec_and_test(&transaction->t_updates))
446                 wake_up(&journal->j_wait_updates);
447         spin_unlock(&transaction->t_handle_lock);
448
449         jbd_debug(2, "restarting handle %p\n", handle);
450         __jbd2_log_start_commit(journal, transaction->t_tid);
451         read_unlock(&journal->j_state_lock);
452
453         lock_map_release(&handle->h_lockdep_map);
454         handle->h_buffer_credits = nblocks;
455         ret = start_this_handle(journal, handle, gfp_mask);
456         return ret;
457 }
458 EXPORT_SYMBOL(jbd2__journal_restart);
459
460
461 int jbd2_journal_restart(handle_t *handle, int nblocks)
462 {
463         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
464 }
465 EXPORT_SYMBOL(jbd2_journal_restart);
466
467 /**
468  * void jbd2_journal_lock_updates () - establish a transaction barrier.
469  * @journal:  Journal to establish a barrier on.
470  *
471  * This locks out any further updates from being started, and blocks
472  * until all existing updates have completed, returning only once the
473  * journal is in a quiescent state with no updates running.
474  *
475  * The journal lock should not be held on entry.
476  */
477 void jbd2_journal_lock_updates(journal_t *journal)
478 {
479         DEFINE_WAIT(wait);
480
481         write_lock(&journal->j_state_lock);
482         ++journal->j_barrier_count;
483
484         /* Wait until there are no running updates */
485         while (1) {
486                 transaction_t *transaction = journal->j_running_transaction;
487
488                 if (!transaction)
489                         break;
490
491                 spin_lock(&transaction->t_handle_lock);
492                 if (!atomic_read(&transaction->t_updates)) {
493                         spin_unlock(&transaction->t_handle_lock);
494                         break;
495                 }
496                 prepare_to_wait(&journal->j_wait_updates, &wait,
497                                 TASK_UNINTERRUPTIBLE);
498                 spin_unlock(&transaction->t_handle_lock);
499                 write_unlock(&journal->j_state_lock);
500                 schedule();
501                 finish_wait(&journal->j_wait_updates, &wait);
502                 write_lock(&journal->j_state_lock);
503         }
504         write_unlock(&journal->j_state_lock);
505
506         /*
507          * We have now established a barrier against other normal updates, but
508          * we also need to barrier against other jbd2_journal_lock_updates() calls
509          * to make sure that we serialise special journal-locked operations
510          * too.
511          */
512         mutex_lock(&journal->j_barrier);
513 }
514
515 /**
516  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
517  * @journal:  Journal to release the barrier on.
518  *
519  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
520  *
521  * Should be called without the journal lock held.
522  */
523 void jbd2_journal_unlock_updates (journal_t *journal)
524 {
525         J_ASSERT(journal->j_barrier_count != 0);
526
527         mutex_unlock(&journal->j_barrier);
528         write_lock(&journal->j_state_lock);
529         --journal->j_barrier_count;
530         write_unlock(&journal->j_state_lock);
531         wake_up(&journal->j_wait_transaction_locked);
532 }
533
534 static void warn_dirty_buffer(struct buffer_head *bh)
535 {
536         char b[BDEVNAME_SIZE];
537
538         printk(KERN_WARNING
539                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
540                "There's a risk of filesystem corruption in case of system "
541                "crash.\n",
542                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
543 }
544
545 /*
546  * If the buffer is already part of the current transaction, then there
547  * is nothing we need to do.  If it is already part of a prior
548  * transaction which we are still committing to disk, then we need to
549  * make sure that we do not overwrite the old copy: we do copy-out to
550  * preserve the copy going to disk.  We also account the buffer against
551  * the handle's metadata buffer credits (unless the buffer is already
552  * part of the transaction, that is).
553  *
554  */
555 static int
556 do_get_write_access(handle_t *handle, struct journal_head *jh,
557                         int force_copy)
558 {
559         struct buffer_head *bh;
560         transaction_t *transaction;
561         journal_t *journal;
562         int error;
563         char *frozen_buffer = NULL;
564         int need_copy = 0;
565
566         if (is_handle_aborted(handle))
567                 return -EROFS;
568
569         transaction = handle->h_transaction;
570         journal = transaction->t_journal;
571
572         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
573
574         JBUFFER_TRACE(jh, "entry");
575 repeat:
576         bh = jh2bh(jh);
577
578         /* @@@ Need to check for errors here at some point. */
579
580         lock_buffer(bh);
581         jbd_lock_bh_state(bh);
582
583         /* We now hold the buffer lock so it is safe to query the buffer
584          * state.  Is the buffer dirty?
585          *
586          * If so, there are two possibilities.  The buffer may be
587          * non-journaled, and undergoing a quite legitimate writeback.
588          * Otherwise, it is journaled, and we don't expect dirty buffers
589          * in that state (the buffers should be marked JBD_Dirty
590          * instead.)  So either the IO is being done under our own
591          * control and this is a bug, or it's a third party IO such as
592          * dump(8) (which may leave the buffer scheduled for read ---
593          * ie. locked but not dirty) or tune2fs (which may actually have
594          * the buffer dirtied, ugh.)  */
595
596         if (buffer_dirty(bh)) {
597                 /*
598                  * First question: is this buffer already part of the current
599                  * transaction or the existing committing transaction?
600                  */
601                 if (jh->b_transaction) {
602                         J_ASSERT_JH(jh,
603                                 jh->b_transaction == transaction ||
604                                 jh->b_transaction ==
605                                         journal->j_committing_transaction);
606                         if (jh->b_next_transaction)
607                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
608                                                         transaction);
609                         warn_dirty_buffer(bh);
610                 }
611                 /*
612                  * In any case we need to clean the dirty flag and we must
613                  * do it under the buffer lock to be sure we don't race
614                  * with running write-out.
615                  */
616                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
617                 clear_buffer_dirty(bh);
618                 set_buffer_jbddirty(bh);
619         }
620
621         unlock_buffer(bh);
622
623         error = -EROFS;
624         if (is_handle_aborted(handle)) {
625                 jbd_unlock_bh_state(bh);
626                 goto out;
627         }
628         error = 0;
629
630         /*
631          * The buffer is already part of this transaction if b_transaction or
632          * b_next_transaction points to it
633          */
634         if (jh->b_transaction == transaction ||
635             jh->b_next_transaction == transaction)
636                 goto done;
637
638         /*
639          * this is the first time this transaction is touching this buffer,
640          * reset the modified flag
641          */
642        jh->b_modified = 0;
643
644         /*
645          * If there is already a copy-out version of this buffer, then we don't
646          * need to make another one
647          */
648         if (jh->b_frozen_data) {
649                 JBUFFER_TRACE(jh, "has frozen data");
650                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
651                 jh->b_next_transaction = transaction;
652                 goto done;
653         }
654
655         /* Is there data here we need to preserve? */
656
657         if (jh->b_transaction && jh->b_transaction != transaction) {
658                 JBUFFER_TRACE(jh, "owned by older transaction");
659                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
660                 J_ASSERT_JH(jh, jh->b_transaction ==
661                                         journal->j_committing_transaction);
662
663                 /* There is one case we have to be very careful about.
664                  * If the committing transaction is currently writing
665                  * this buffer out to disk and has NOT made a copy-out,
666                  * then we cannot modify the buffer contents at all
667                  * right now.  The essence of copy-out is that it is the
668                  * extra copy, not the primary copy, which gets
669                  * journaled.  If the primary copy is already going to
670                  * disk then we cannot do copy-out here. */
671
672                 if (jh->b_jlist == BJ_Shadow) {
673                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
674                         wait_queue_head_t *wqh;
675
676                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
677
678                         JBUFFER_TRACE(jh, "on shadow: sleep");
679                         jbd_unlock_bh_state(bh);
680                         /* commit wakes up all shadow buffers after IO */
681                         for ( ; ; ) {
682                                 prepare_to_wait(wqh, &wait.wait,
683                                                 TASK_UNINTERRUPTIBLE);
684                                 if (jh->b_jlist != BJ_Shadow)
685                                         break;
686                                 schedule();
687                         }
688                         finish_wait(wqh, &wait.wait);
689                         goto repeat;
690                 }
691
692                 /* Only do the copy if the currently-owning transaction
693                  * still needs it.  If it is on the Forget list, the
694                  * committing transaction is past that stage.  The
695                  * buffer had better remain locked during the kmalloc,
696                  * but that should be true --- we hold the journal lock
697                  * still and the buffer is already on the BUF_JOURNAL
698                  * list so won't be flushed.
699                  *
700                  * Subtle point, though: if this is a get_undo_access,
701                  * then we will be relying on the frozen_data to contain
702                  * the new value of the committed_data record after the
703                  * transaction, so we HAVE to force the frozen_data copy
704                  * in that case. */
705
706                 if (jh->b_jlist != BJ_Forget || force_copy) {
707                         JBUFFER_TRACE(jh, "generate frozen data");
708                         if (!frozen_buffer) {
709                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
710                                 jbd_unlock_bh_state(bh);
711                                 frozen_buffer =
712                                         jbd2_alloc(jh2bh(jh)->b_size,
713                                                          GFP_NOFS);
714                                 if (!frozen_buffer) {
715                                         printk(KERN_EMERG
716                                                "%s: OOM for frozen_buffer\n",
717                                                __func__);
718                                         JBUFFER_TRACE(jh, "oom!");
719                                         error = -ENOMEM;
720                                         jbd_lock_bh_state(bh);
721                                         goto done;
722                                 }
723                                 goto repeat;
724                         }
725                         jh->b_frozen_data = frozen_buffer;
726                         frozen_buffer = NULL;
727                         need_copy = 1;
728                 }
729                 jh->b_next_transaction = transaction;
730         }
731
732
733         /*
734          * Finally, if the buffer is not journaled right now, we need to make
735          * sure it doesn't get written to disk before the caller actually
736          * commits the new data
737          */
738         if (!jh->b_transaction) {
739                 JBUFFER_TRACE(jh, "no transaction");
740                 J_ASSERT_JH(jh, !jh->b_next_transaction);
741                 jh->b_transaction = transaction;
742                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
743                 spin_lock(&journal->j_list_lock);
744                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
745                 spin_unlock(&journal->j_list_lock);
746         }
747
748 done:
749         if (need_copy) {
750                 struct page *page;
751                 int offset;
752                 char *source;
753
754                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
755                             "Possible IO failure.\n");
756                 page = jh2bh(jh)->b_page;
757                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
758                 source = kmap_atomic(page, KM_USER0);
759                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
760                 kunmap_atomic(source, KM_USER0);
761
762                 /*
763                  * Now that the frozen data is saved off, we need to store
764                  * any matching triggers.
765                  */
766                 jh->b_frozen_triggers = jh->b_triggers;
767         }
768         jbd_unlock_bh_state(bh);
769
770         /*
771          * If we are about to journal a buffer, then any revoke pending on it is
772          * no longer valid
773          */
774         jbd2_journal_cancel_revoke(handle, jh);
775
776 out:
777         if (unlikely(frozen_buffer))    /* It's usually NULL */
778                 jbd2_free(frozen_buffer, bh->b_size);
779
780         JBUFFER_TRACE(jh, "exit");
781         return error;
782 }
783
784 /**
785  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
786  * @handle: transaction to add buffer modifications to
787  * @bh:     bh to be used for metadata writes
788  * @credits: variable that will receive credits for the buffer
789  *
790  * Returns an error code or 0 on success.
791  *
792  * In full data journalling mode the buffer may be of type BJ_AsyncData,
793  * because we're write()ing a buffer which is also part of a shared mapping.
794  */
795
796 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
797 {
798         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
799         int rc;
800
801         /* We do not want to get caught playing with fields which the
802          * log thread also manipulates.  Make sure that the buffer
803          * completes any outstanding IO before proceeding. */
804         rc = do_get_write_access(handle, jh, 0);
805         jbd2_journal_put_journal_head(jh);
806         return rc;
807 }
808
809
810 /*
811  * When the user wants to journal a newly created buffer_head
812  * (ie. getblk() returned a new buffer and we are going to populate it
813  * manually rather than reading off disk), then we need to keep the
814  * buffer_head locked until it has been completely filled with new
815  * data.  In this case, we should be able to make the assertion that
816  * the bh is not already part of an existing transaction.
817  *
818  * The buffer should already be locked by the caller by this point.
819  * There is no lock ranking violation: it was a newly created,
820  * unlocked buffer beforehand. */
821
822 /**
823  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
824  * @handle: transaction to new buffer to
825  * @bh: new buffer.
826  *
827  * Call this if you create a new bh.
828  */
829 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
830 {
831         transaction_t *transaction = handle->h_transaction;
832         journal_t *journal = transaction->t_journal;
833         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
834         int err;
835
836         jbd_debug(5, "journal_head %p\n", jh);
837         err = -EROFS;
838         if (is_handle_aborted(handle))
839                 goto out;
840         err = 0;
841
842         JBUFFER_TRACE(jh, "entry");
843         /*
844          * The buffer may already belong to this transaction due to pre-zeroing
845          * in the filesystem's new_block code.  It may also be on the previous,
846          * committing transaction's lists, but it HAS to be in Forget state in
847          * that case: the transaction must have deleted the buffer for it to be
848          * reused here.
849          */
850         jbd_lock_bh_state(bh);
851         spin_lock(&journal->j_list_lock);
852         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
853                 jh->b_transaction == NULL ||
854                 (jh->b_transaction == journal->j_committing_transaction &&
855                           jh->b_jlist == BJ_Forget)));
856
857         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
858         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
859
860         if (jh->b_transaction == NULL) {
861                 /*
862                  * Previous jbd2_journal_forget() could have left the buffer
863                  * with jbddirty bit set because it was being committed. When
864                  * the commit finished, we've filed the buffer for
865                  * checkpointing and marked it dirty. Now we are reallocating
866                  * the buffer so the transaction freeing it must have
867                  * committed and so it's safe to clear the dirty bit.
868                  */
869                 clear_buffer_dirty(jh2bh(jh));
870                 jh->b_transaction = transaction;
871
872                 /* first access by this transaction */
873                 jh->b_modified = 0;
874
875                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
876                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
877         } else if (jh->b_transaction == journal->j_committing_transaction) {
878                 /* first access by this transaction */
879                 jh->b_modified = 0;
880
881                 JBUFFER_TRACE(jh, "set next transaction");
882                 jh->b_next_transaction = transaction;
883         }
884         spin_unlock(&journal->j_list_lock);
885         jbd_unlock_bh_state(bh);
886
887         /*
888          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
889          * blocks which contain freed but then revoked metadata.  We need
890          * to cancel the revoke in case we end up freeing it yet again
891          * and the reallocating as data - this would cause a second revoke,
892          * which hits an assertion error.
893          */
894         JBUFFER_TRACE(jh, "cancelling revoke");
895         jbd2_journal_cancel_revoke(handle, jh);
896         jbd2_journal_put_journal_head(jh);
897 out:
898         return err;
899 }
900
901 /**
902  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
903  *     non-rewindable consequences
904  * @handle: transaction
905  * @bh: buffer to undo
906  * @credits: store the number of taken credits here (if not NULL)
907  *
908  * Sometimes there is a need to distinguish between metadata which has
909  * been committed to disk and that which has not.  The ext3fs code uses
910  * this for freeing and allocating space, we have to make sure that we
911  * do not reuse freed space until the deallocation has been committed,
912  * since if we overwrote that space we would make the delete
913  * un-rewindable in case of a crash.
914  *
915  * To deal with that, jbd2_journal_get_undo_access requests write access to a
916  * buffer for parts of non-rewindable operations such as delete
917  * operations on the bitmaps.  The journaling code must keep a copy of
918  * the buffer's contents prior to the undo_access call until such time
919  * as we know that the buffer has definitely been committed to disk.
920  *
921  * We never need to know which transaction the committed data is part
922  * of, buffers touched here are guaranteed to be dirtied later and so
923  * will be committed to a new transaction in due course, at which point
924  * we can discard the old committed data pointer.
925  *
926  * Returns error number or 0 on success.
927  */
928 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
929 {
930         int err;
931         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
932         char *committed_data = NULL;
933
934         JBUFFER_TRACE(jh, "entry");
935
936         /*
937          * Do this first --- it can drop the journal lock, so we want to
938          * make sure that obtaining the committed_data is done
939          * atomically wrt. completion of any outstanding commits.
940          */
941         err = do_get_write_access(handle, jh, 1);
942         if (err)
943                 goto out;
944
945 repeat:
946         if (!jh->b_committed_data) {
947                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
948                 if (!committed_data) {
949                         printk(KERN_EMERG "%s: No memory for committed data\n",
950                                 __func__);
951                         err = -ENOMEM;
952                         goto out;
953                 }
954         }
955
956         jbd_lock_bh_state(bh);
957         if (!jh->b_committed_data) {
958                 /* Copy out the current buffer contents into the
959                  * preserved, committed copy. */
960                 JBUFFER_TRACE(jh, "generate b_committed data");
961                 if (!committed_data) {
962                         jbd_unlock_bh_state(bh);
963                         goto repeat;
964                 }
965
966                 jh->b_committed_data = committed_data;
967                 committed_data = NULL;
968                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
969         }
970         jbd_unlock_bh_state(bh);
971 out:
972         jbd2_journal_put_journal_head(jh);
973         if (unlikely(committed_data))
974                 jbd2_free(committed_data, bh->b_size);
975         return err;
976 }
977
978 /**
979  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
980  * @bh: buffer to trigger on
981  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
982  *
983  * Set any triggers on this journal_head.  This is always safe, because
984  * triggers for a committing buffer will be saved off, and triggers for
985  * a running transaction will match the buffer in that transaction.
986  *
987  * Call with NULL to clear the triggers.
988  */
989 void jbd2_journal_set_triggers(struct buffer_head *bh,
990                                struct jbd2_buffer_trigger_type *type)
991 {
992         struct journal_head *jh = bh2jh(bh);
993
994         jh->b_triggers = type;
995 }
996
997 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
998                                 struct jbd2_buffer_trigger_type *triggers)
999 {
1000         struct buffer_head *bh = jh2bh(jh);
1001
1002         if (!triggers || !triggers->t_commit)
1003                 return;
1004
1005         triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
1006 }
1007
1008 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1009                                struct jbd2_buffer_trigger_type *triggers)
1010 {
1011         if (!triggers || !triggers->t_abort)
1012                 return;
1013
1014         triggers->t_abort(triggers, jh2bh(jh));
1015 }
1016
1017
1018
1019 /**
1020  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1021  * @handle: transaction to add buffer to.
1022  * @bh: buffer to mark
1023  *
1024  * mark dirty metadata which needs to be journaled as part of the current
1025  * transaction.
1026  *
1027  * The buffer is placed on the transaction's metadata list and is marked
1028  * as belonging to the transaction.
1029  *
1030  * Returns error number or 0 on success.
1031  *
1032  * Special care needs to be taken if the buffer already belongs to the
1033  * current committing transaction (in which case we should have frozen
1034  * data present for that commit).  In that case, we don't relink the
1035  * buffer: that only gets done when the old transaction finally
1036  * completes its commit.
1037  */
1038 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1039 {
1040         transaction_t *transaction = handle->h_transaction;
1041         journal_t *journal = transaction->t_journal;
1042         struct journal_head *jh = bh2jh(bh);
1043
1044         jbd_debug(5, "journal_head %p\n", jh);
1045         JBUFFER_TRACE(jh, "entry");
1046         if (is_handle_aborted(handle))
1047                 goto out;
1048
1049         jbd_lock_bh_state(bh);
1050
1051         if (jh->b_modified == 0) {
1052                 /*
1053                  * This buffer's got modified and becoming part
1054                  * of the transaction. This needs to be done
1055                  * once a transaction -bzzz
1056                  */
1057                 jh->b_modified = 1;
1058                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1059                 handle->h_buffer_credits--;
1060         }
1061
1062         /*
1063          * fastpath, to avoid expensive locking.  If this buffer is already
1064          * on the running transaction's metadata list there is nothing to do.
1065          * Nobody can take it off again because there is a handle open.
1066          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1067          * result in this test being false, so we go in and take the locks.
1068          */
1069         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1070                 JBUFFER_TRACE(jh, "fastpath");
1071                 J_ASSERT_JH(jh, jh->b_transaction ==
1072                                         journal->j_running_transaction);
1073                 goto out_unlock_bh;
1074         }
1075
1076         set_buffer_jbddirty(bh);
1077
1078         /*
1079          * Metadata already on the current transaction list doesn't
1080          * need to be filed.  Metadata on another transaction's list must
1081          * be committing, and will be refiled once the commit completes:
1082          * leave it alone for now.
1083          */
1084         if (jh->b_transaction != transaction) {
1085                 JBUFFER_TRACE(jh, "already on other transaction");
1086                 J_ASSERT_JH(jh, jh->b_transaction ==
1087                                         journal->j_committing_transaction);
1088                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1089                 /* And this case is illegal: we can't reuse another
1090                  * transaction's data buffer, ever. */
1091                 goto out_unlock_bh;
1092         }
1093
1094         /* That test should have eliminated the following case: */
1095         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1096
1097         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1098         spin_lock(&journal->j_list_lock);
1099         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1100         spin_unlock(&journal->j_list_lock);
1101 out_unlock_bh:
1102         jbd_unlock_bh_state(bh);
1103 out:
1104         JBUFFER_TRACE(jh, "exit");
1105         return 0;
1106 }
1107
1108 /*
1109  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1110  * updates, if the update decided in the end that it didn't need access.
1111  *
1112  */
1113 void
1114 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1115 {
1116         BUFFER_TRACE(bh, "entry");
1117 }
1118
1119 /**
1120  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1121  * @handle: transaction handle
1122  * @bh:     bh to 'forget'
1123  *
1124  * We can only do the bforget if there are no commits pending against the
1125  * buffer.  If the buffer is dirty in the current running transaction we
1126  * can safely unlink it.
1127  *
1128  * bh may not be a journalled buffer at all - it may be a non-JBD
1129  * buffer which came off the hashtable.  Check for this.
1130  *
1131  * Decrements bh->b_count by one.
1132  *
1133  * Allow this call even if the handle has aborted --- it may be part of
1134  * the caller's cleanup after an abort.
1135  */
1136 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1137 {
1138         transaction_t *transaction = handle->h_transaction;
1139         journal_t *journal = transaction->t_journal;
1140         struct journal_head *jh;
1141         int drop_reserve = 0;
1142         int err = 0;
1143         int was_modified = 0;
1144
1145         BUFFER_TRACE(bh, "entry");
1146
1147         jbd_lock_bh_state(bh);
1148         spin_lock(&journal->j_list_lock);
1149
1150         if (!buffer_jbd(bh))
1151                 goto not_jbd;
1152         jh = bh2jh(bh);
1153
1154         /* Critical error: attempting to delete a bitmap buffer, maybe?
1155          * Don't do any jbd operations, and return an error. */
1156         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1157                          "inconsistent data on disk")) {
1158                 err = -EIO;
1159                 goto not_jbd;
1160         }
1161
1162         /* keep track of wether or not this transaction modified us */
1163         was_modified = jh->b_modified;
1164
1165         /*
1166          * The buffer's going from the transaction, we must drop
1167          * all references -bzzz
1168          */
1169         jh->b_modified = 0;
1170
1171         if (jh->b_transaction == handle->h_transaction) {
1172                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1173
1174                 /* If we are forgetting a buffer which is already part
1175                  * of this transaction, then we can just drop it from
1176                  * the transaction immediately. */
1177                 clear_buffer_dirty(bh);
1178                 clear_buffer_jbddirty(bh);
1179
1180                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1181
1182                 /*
1183                  * we only want to drop a reference if this transaction
1184                  * modified the buffer
1185                  */
1186                 if (was_modified)
1187                         drop_reserve = 1;
1188
1189                 /*
1190                  * We are no longer going to journal this buffer.
1191                  * However, the commit of this transaction is still
1192                  * important to the buffer: the delete that we are now
1193                  * processing might obsolete an old log entry, so by
1194                  * committing, we can satisfy the buffer's checkpoint.
1195                  *
1196                  * So, if we have a checkpoint on the buffer, we should
1197                  * now refile the buffer on our BJ_Forget list so that
1198                  * we know to remove the checkpoint after we commit.
1199                  */
1200
1201                 if (jh->b_cp_transaction) {
1202                         __jbd2_journal_temp_unlink_buffer(jh);
1203                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1204                 } else {
1205                         __jbd2_journal_unfile_buffer(jh);
1206                         jbd2_journal_remove_journal_head(bh);
1207                         __brelse(bh);
1208                         if (!buffer_jbd(bh)) {
1209                                 spin_unlock(&journal->j_list_lock);
1210                                 jbd_unlock_bh_state(bh);
1211                                 __bforget(bh);
1212                                 goto drop;
1213                         }
1214                 }
1215         } else if (jh->b_transaction) {
1216                 J_ASSERT_JH(jh, (jh->b_transaction ==
1217                                  journal->j_committing_transaction));
1218                 /* However, if the buffer is still owned by a prior
1219                  * (committing) transaction, we can't drop it yet... */
1220                 JBUFFER_TRACE(jh, "belongs to older transaction");
1221                 /* ... but we CAN drop it from the new transaction if we
1222                  * have also modified it since the original commit. */
1223
1224                 if (jh->b_next_transaction) {
1225                         J_ASSERT(jh->b_next_transaction == transaction);
1226                         jh->b_next_transaction = NULL;
1227
1228                         /*
1229                          * only drop a reference if this transaction modified
1230                          * the buffer
1231                          */
1232                         if (was_modified)
1233                                 drop_reserve = 1;
1234                 }
1235         }
1236
1237 not_jbd:
1238         spin_unlock(&journal->j_list_lock);
1239         jbd_unlock_bh_state(bh);
1240         __brelse(bh);
1241 drop:
1242         if (drop_reserve) {
1243                 /* no need to reserve log space for this block -bzzz */
1244                 handle->h_buffer_credits++;
1245         }
1246         return err;
1247 }
1248
1249 /**
1250  * int jbd2_journal_stop() - complete a transaction
1251  * @handle: tranaction to complete.
1252  *
1253  * All done for a particular handle.
1254  *
1255  * There is not much action needed here.  We just return any remaining
1256  * buffer credits to the transaction and remove the handle.  The only
1257  * complication is that we need to start a commit operation if the
1258  * filesystem is marked for synchronous update.
1259  *
1260  * jbd2_journal_stop itself will not usually return an error, but it may
1261  * do so in unusual circumstances.  In particular, expect it to
1262  * return -EIO if a jbd2_journal_abort has been executed since the
1263  * transaction began.
1264  */
1265 int jbd2_journal_stop(handle_t *handle)
1266 {
1267         transaction_t *transaction = handle->h_transaction;
1268         journal_t *journal = transaction->t_journal;
1269         int err, wait_for_commit = 0;
1270         tid_t tid;
1271         pid_t pid;
1272
1273         J_ASSERT(journal_current_handle() == handle);
1274
1275         if (is_handle_aborted(handle))
1276                 err = -EIO;
1277         else {
1278                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1279                 err = 0;
1280         }
1281
1282         if (--handle->h_ref > 0) {
1283                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1284                           handle->h_ref);
1285                 return err;
1286         }
1287
1288         jbd_debug(4, "Handle %p going down\n", handle);
1289
1290         /*
1291          * Implement synchronous transaction batching.  If the handle
1292          * was synchronous, don't force a commit immediately.  Let's
1293          * yield and let another thread piggyback onto this
1294          * transaction.  Keep doing that while new threads continue to
1295          * arrive.  It doesn't cost much - we're about to run a commit
1296          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1297          * operations by 30x or more...
1298          *
1299          * We try and optimize the sleep time against what the
1300          * underlying disk can do, instead of having a static sleep
1301          * time.  This is useful for the case where our storage is so
1302          * fast that it is more optimal to go ahead and force a flush
1303          * and wait for the transaction to be committed than it is to
1304          * wait for an arbitrary amount of time for new writers to
1305          * join the transaction.  We achieve this by measuring how
1306          * long it takes to commit a transaction, and compare it with
1307          * how long this transaction has been running, and if run time
1308          * < commit time then we sleep for the delta and commit.  This
1309          * greatly helps super fast disks that would see slowdowns as
1310          * more threads started doing fsyncs.
1311          *
1312          * But don't do this if this process was the most recent one
1313          * to perform a synchronous write.  We do this to detect the
1314          * case where a single process is doing a stream of sync
1315          * writes.  No point in waiting for joiners in that case.
1316          */
1317         pid = current->pid;
1318         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1319                 u64 commit_time, trans_time;
1320
1321                 journal->j_last_sync_writer = pid;
1322
1323                 read_lock(&journal->j_state_lock);
1324                 commit_time = journal->j_average_commit_time;
1325                 read_unlock(&journal->j_state_lock);
1326
1327                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1328                                                    transaction->t_start_time));
1329
1330                 commit_time = max_t(u64, commit_time,
1331                                     1000*journal->j_min_batch_time);
1332                 commit_time = min_t(u64, commit_time,
1333                                     1000*journal->j_max_batch_time);
1334
1335                 if (trans_time < commit_time) {
1336                         ktime_t expires = ktime_add_ns(ktime_get(),
1337                                                        commit_time);
1338                         set_current_state(TASK_UNINTERRUPTIBLE);
1339                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1340                 }
1341         }
1342
1343         if (handle->h_sync)
1344                 transaction->t_synchronous_commit = 1;
1345         current->journal_info = NULL;
1346         atomic_sub(handle->h_buffer_credits,
1347                    &transaction->t_outstanding_credits);
1348
1349         /*
1350          * If the handle is marked SYNC, we need to set another commit
1351          * going!  We also want to force a commit if the current
1352          * transaction is occupying too much of the log, or if the
1353          * transaction is too old now.
1354          */
1355         if (handle->h_sync ||
1356             (atomic_read(&transaction->t_outstanding_credits) >
1357              journal->j_max_transaction_buffers) ||
1358             time_after_eq(jiffies, transaction->t_expires)) {
1359                 /* Do this even for aborted journals: an abort still
1360                  * completes the commit thread, it just doesn't write
1361                  * anything to disk. */
1362
1363                 jbd_debug(2, "transaction too old, requesting commit for "
1364                                         "handle %p\n", handle);
1365                 /* This is non-blocking */
1366                 jbd2_log_start_commit(journal, transaction->t_tid);
1367
1368                 /*
1369                  * Special case: JBD2_SYNC synchronous updates require us
1370                  * to wait for the commit to complete.
1371                  */
1372                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1373                         wait_for_commit = 1;
1374         }
1375
1376         /*
1377          * Once we drop t_updates, if it goes to zero the transaction
1378          * could start commiting on us and eventually disappear.  So
1379          * once we do this, we must not dereference transaction
1380          * pointer again.
1381          */
1382         tid = transaction->t_tid;
1383         if (atomic_dec_and_test(&transaction->t_updates)) {
1384                 wake_up(&journal->j_wait_updates);
1385                 if (journal->j_barrier_count)
1386                         wake_up(&journal->j_wait_transaction_locked);
1387         }
1388
1389         if (wait_for_commit)
1390                 err = jbd2_log_wait_commit(journal, tid);
1391
1392         lock_map_release(&handle->h_lockdep_map);
1393
1394         jbd2_free_handle(handle);
1395         return err;
1396 }
1397
1398 /**
1399  * int jbd2_journal_force_commit() - force any uncommitted transactions
1400  * @journal: journal to force
1401  *
1402  * For synchronous operations: force any uncommitted transactions
1403  * to disk.  May seem kludgy, but it reuses all the handle batching
1404  * code in a very simple manner.
1405  */
1406 int jbd2_journal_force_commit(journal_t *journal)
1407 {
1408         handle_t *handle;
1409         int ret;
1410
1411         handle = jbd2_journal_start(journal, 1);
1412         if (IS_ERR(handle)) {
1413                 ret = PTR_ERR(handle);
1414         } else {
1415                 handle->h_sync = 1;
1416                 ret = jbd2_journal_stop(handle);
1417         }
1418         return ret;
1419 }
1420
1421 /*
1422  *
1423  * List management code snippets: various functions for manipulating the
1424  * transaction buffer lists.
1425  *
1426  */
1427
1428 /*
1429  * Append a buffer to a transaction list, given the transaction's list head
1430  * pointer.
1431  *
1432  * j_list_lock is held.
1433  *
1434  * jbd_lock_bh_state(jh2bh(jh)) is held.
1435  */
1436
1437 static inline void
1438 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1439 {
1440         if (!*list) {
1441                 jh->b_tnext = jh->b_tprev = jh;
1442                 *list = jh;
1443         } else {
1444                 /* Insert at the tail of the list to preserve order */
1445                 struct journal_head *first = *list, *last = first->b_tprev;
1446                 jh->b_tprev = last;
1447                 jh->b_tnext = first;
1448                 last->b_tnext = first->b_tprev = jh;
1449         }
1450 }
1451
1452 /*
1453  * Remove a buffer from a transaction list, given the transaction's list
1454  * head pointer.
1455  *
1456  * Called with j_list_lock held, and the journal may not be locked.
1457  *
1458  * jbd_lock_bh_state(jh2bh(jh)) is held.
1459  */
1460
1461 static inline void
1462 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1463 {
1464         if (*list == jh) {
1465                 *list = jh->b_tnext;
1466                 if (*list == jh)
1467                         *list = NULL;
1468         }
1469         jh->b_tprev->b_tnext = jh->b_tnext;
1470         jh->b_tnext->b_tprev = jh->b_tprev;
1471 }
1472
1473 /*
1474  * Remove a buffer from the appropriate transaction list.
1475  *
1476  * Note that this function can *change* the value of
1477  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1478  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1479  * of these pointers, it could go bad.  Generally the caller needs to re-read
1480  * the pointer from the transaction_t.
1481  *
1482  * Called under j_list_lock.  The journal may not be locked.
1483  */
1484 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1485 {
1486         struct journal_head **list = NULL;
1487         transaction_t *transaction;
1488         struct buffer_head *bh = jh2bh(jh);
1489
1490         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1491         transaction = jh->b_transaction;
1492         if (transaction)
1493                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1494
1495         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1496         if (jh->b_jlist != BJ_None)
1497                 J_ASSERT_JH(jh, transaction != NULL);
1498
1499         switch (jh->b_jlist) {
1500         case BJ_None:
1501                 return;
1502         case BJ_Metadata:
1503                 transaction->t_nr_buffers--;
1504                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1505                 list = &transaction->t_buffers;
1506                 break;
1507         case BJ_Forget:
1508                 list = &transaction->t_forget;
1509                 break;
1510         case BJ_IO:
1511                 list = &transaction->t_iobuf_list;
1512                 break;
1513         case BJ_Shadow:
1514                 list = &transaction->t_shadow_list;
1515                 break;
1516         case BJ_LogCtl:
1517                 list = &transaction->t_log_list;
1518                 break;
1519         case BJ_Reserved:
1520                 list = &transaction->t_reserved_list;
1521                 break;
1522         }
1523
1524         __blist_del_buffer(list, jh);
1525         jh->b_jlist = BJ_None;
1526         if (test_clear_buffer_jbddirty(bh))
1527                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1528 }
1529
1530 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1531 {
1532         __jbd2_journal_temp_unlink_buffer(jh);
1533         jh->b_transaction = NULL;
1534 }
1535
1536 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1537 {
1538         jbd_lock_bh_state(jh2bh(jh));
1539         spin_lock(&journal->j_list_lock);
1540         __jbd2_journal_unfile_buffer(jh);
1541         spin_unlock(&journal->j_list_lock);
1542         jbd_unlock_bh_state(jh2bh(jh));
1543 }
1544
1545 /*
1546  * Called from jbd2_journal_try_to_free_buffers().
1547  *
1548  * Called under jbd_lock_bh_state(bh)
1549  */
1550 static void
1551 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1552 {
1553         struct journal_head *jh;
1554
1555         jh = bh2jh(bh);
1556
1557         if (buffer_locked(bh) || buffer_dirty(bh))
1558                 goto out;
1559
1560         if (jh->b_next_transaction != NULL)
1561                 goto out;
1562
1563         spin_lock(&journal->j_list_lock);
1564         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1565                 /* written-back checkpointed metadata buffer */
1566                 if (jh->b_jlist == BJ_None) {
1567                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1568                         __jbd2_journal_remove_checkpoint(jh);
1569                         jbd2_journal_remove_journal_head(bh);
1570                         __brelse(bh);
1571                 }
1572         }
1573         spin_unlock(&journal->j_list_lock);
1574 out:
1575         return;
1576 }
1577
1578 /**
1579  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1580  * @journal: journal for operation
1581  * @page: to try and free
1582  * @gfp_mask: we use the mask to detect how hard should we try to release
1583  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1584  * release the buffers.
1585  *
1586  *
1587  * For all the buffers on this page,
1588  * if they are fully written out ordered data, move them onto BUF_CLEAN
1589  * so try_to_free_buffers() can reap them.
1590  *
1591  * This function returns non-zero if we wish try_to_free_buffers()
1592  * to be called. We do this if the page is releasable by try_to_free_buffers().
1593  * We also do it if the page has locked or dirty buffers and the caller wants
1594  * us to perform sync or async writeout.
1595  *
1596  * This complicates JBD locking somewhat.  We aren't protected by the
1597  * BKL here.  We wish to remove the buffer from its committing or
1598  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1599  *
1600  * This may *change* the value of transaction_t->t_datalist, so anyone
1601  * who looks at t_datalist needs to lock against this function.
1602  *
1603  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1604  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1605  * will come out of the lock with the buffer dirty, which makes it
1606  * ineligible for release here.
1607  *
1608  * Who else is affected by this?  hmm...  Really the only contender
1609  * is do_get_write_access() - it could be looking at the buffer while
1610  * journal_try_to_free_buffer() is changing its state.  But that
1611  * cannot happen because we never reallocate freed data as metadata
1612  * while the data is part of a transaction.  Yes?
1613  *
1614  * Return 0 on failure, 1 on success
1615  */
1616 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1617                                 struct page *page, gfp_t gfp_mask)
1618 {
1619         struct buffer_head *head;
1620         struct buffer_head *bh;
1621         int ret = 0;
1622
1623         J_ASSERT(PageLocked(page));
1624
1625         head = page_buffers(page);
1626         bh = head;
1627         do {
1628                 struct journal_head *jh;
1629
1630                 /*
1631                  * We take our own ref against the journal_head here to avoid
1632                  * having to add tons of locking around each instance of
1633                  * jbd2_journal_remove_journal_head() and
1634                  * jbd2_journal_put_journal_head().
1635                  */
1636                 jh = jbd2_journal_grab_journal_head(bh);
1637                 if (!jh)
1638                         continue;
1639
1640                 jbd_lock_bh_state(bh);
1641                 __journal_try_to_free_buffer(journal, bh);
1642                 jbd2_journal_put_journal_head(jh);
1643                 jbd_unlock_bh_state(bh);
1644                 if (buffer_jbd(bh))
1645                         goto busy;
1646         } while ((bh = bh->b_this_page) != head);
1647
1648         ret = try_to_free_buffers(page);
1649
1650 busy:
1651         return ret;
1652 }
1653
1654 /*
1655  * This buffer is no longer needed.  If it is on an older transaction's
1656  * checkpoint list we need to record it on this transaction's forget list
1657  * to pin this buffer (and hence its checkpointing transaction) down until
1658  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1659  * release it.
1660  * Returns non-zero if JBD no longer has an interest in the buffer.
1661  *
1662  * Called under j_list_lock.
1663  *
1664  * Called under jbd_lock_bh_state(bh).
1665  */
1666 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1667 {
1668         int may_free = 1;
1669         struct buffer_head *bh = jh2bh(jh);
1670
1671         __jbd2_journal_unfile_buffer(jh);
1672
1673         if (jh->b_cp_transaction) {
1674                 JBUFFER_TRACE(jh, "on running+cp transaction");
1675                 /*
1676                  * We don't want to write the buffer anymore, clear the
1677                  * bit so that we don't confuse checks in
1678                  * __journal_file_buffer
1679                  */
1680                 clear_buffer_dirty(bh);
1681                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1682                 may_free = 0;
1683         } else {
1684                 JBUFFER_TRACE(jh, "on running transaction");
1685                 jbd2_journal_remove_journal_head(bh);
1686                 __brelse(bh);
1687         }
1688         return may_free;
1689 }
1690
1691 /*
1692  * jbd2_journal_invalidatepage
1693  *
1694  * This code is tricky.  It has a number of cases to deal with.
1695  *
1696  * There are two invariants which this code relies on:
1697  *
1698  * i_size must be updated on disk before we start calling invalidatepage on the
1699  * data.
1700  *
1701  *  This is done in ext3 by defining an ext3_setattr method which
1702  *  updates i_size before truncate gets going.  By maintaining this
1703  *  invariant, we can be sure that it is safe to throw away any buffers
1704  *  attached to the current transaction: once the transaction commits,
1705  *  we know that the data will not be needed.
1706  *
1707  *  Note however that we can *not* throw away data belonging to the
1708  *  previous, committing transaction!
1709  *
1710  * Any disk blocks which *are* part of the previous, committing
1711  * transaction (and which therefore cannot be discarded immediately) are
1712  * not going to be reused in the new running transaction
1713  *
1714  *  The bitmap committed_data images guarantee this: any block which is
1715  *  allocated in one transaction and removed in the next will be marked
1716  *  as in-use in the committed_data bitmap, so cannot be reused until
1717  *  the next transaction to delete the block commits.  This means that
1718  *  leaving committing buffers dirty is quite safe: the disk blocks
1719  *  cannot be reallocated to a different file and so buffer aliasing is
1720  *  not possible.
1721  *
1722  *
1723  * The above applies mainly to ordered data mode.  In writeback mode we
1724  * don't make guarantees about the order in which data hits disk --- in
1725  * particular we don't guarantee that new dirty data is flushed before
1726  * transaction commit --- so it is always safe just to discard data
1727  * immediately in that mode.  --sct
1728  */
1729
1730 /*
1731  * The journal_unmap_buffer helper function returns zero if the buffer
1732  * concerned remains pinned as an anonymous buffer belonging to an older
1733  * transaction.
1734  *
1735  * We're outside-transaction here.  Either or both of j_running_transaction
1736  * and j_committing_transaction may be NULL.
1737  */
1738 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1739 {
1740         transaction_t *transaction;
1741         struct journal_head *jh;
1742         int may_free = 1;
1743         int ret;
1744
1745         BUFFER_TRACE(bh, "entry");
1746
1747         /*
1748          * It is safe to proceed here without the j_list_lock because the
1749          * buffers cannot be stolen by try_to_free_buffers as long as we are
1750          * holding the page lock. --sct
1751          */
1752
1753         if (!buffer_jbd(bh))
1754                 goto zap_buffer_unlocked;
1755
1756         /* OK, we have data buffer in journaled mode */
1757         write_lock(&journal->j_state_lock);
1758         jbd_lock_bh_state(bh);
1759         spin_lock(&journal->j_list_lock);
1760
1761         jh = jbd2_journal_grab_journal_head(bh);
1762         if (!jh)
1763                 goto zap_buffer_no_jh;
1764
1765         /*
1766          * We cannot remove the buffer from checkpoint lists until the
1767          * transaction adding inode to orphan list (let's call it T)
1768          * is committed.  Otherwise if the transaction changing the
1769          * buffer would be cleaned from the journal before T is
1770          * committed, a crash will cause that the correct contents of
1771          * the buffer will be lost.  On the other hand we have to
1772          * clear the buffer dirty bit at latest at the moment when the
1773          * transaction marking the buffer as freed in the filesystem
1774          * structures is committed because from that moment on the
1775          * buffer can be reallocated and used by a different page.
1776          * Since the block hasn't been freed yet but the inode has
1777          * already been added to orphan list, it is safe for us to add
1778          * the buffer to BJ_Forget list of the newest transaction.
1779          */
1780         transaction = jh->b_transaction;
1781         if (transaction == NULL) {
1782                 /* First case: not on any transaction.  If it
1783                  * has no checkpoint link, then we can zap it:
1784                  * it's a writeback-mode buffer so we don't care
1785                  * if it hits disk safely. */
1786                 if (!jh->b_cp_transaction) {
1787                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1788                         goto zap_buffer;
1789                 }
1790
1791                 if (!buffer_dirty(bh)) {
1792                         /* bdflush has written it.  We can drop it now */
1793                         goto zap_buffer;
1794                 }
1795
1796                 /* OK, it must be in the journal but still not
1797                  * written fully to disk: it's metadata or
1798                  * journaled data... */
1799
1800                 if (journal->j_running_transaction) {
1801                         /* ... and once the current transaction has
1802                          * committed, the buffer won't be needed any
1803                          * longer. */
1804                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1805                         ret = __dispose_buffer(jh,
1806                                         journal->j_running_transaction);
1807                         jbd2_journal_put_journal_head(jh);
1808                         spin_unlock(&journal->j_list_lock);
1809                         jbd_unlock_bh_state(bh);
1810                         write_unlock(&journal->j_state_lock);
1811                         return ret;
1812                 } else {
1813                         /* There is no currently-running transaction. So the
1814                          * orphan record which we wrote for this file must have
1815                          * passed into commit.  We must attach this buffer to
1816                          * the committing transaction, if it exists. */
1817                         if (journal->j_committing_transaction) {
1818                                 JBUFFER_TRACE(jh, "give to committing trans");
1819                                 ret = __dispose_buffer(jh,
1820                                         journal->j_committing_transaction);
1821                                 jbd2_journal_put_journal_head(jh);
1822                                 spin_unlock(&journal->j_list_lock);
1823                                 jbd_unlock_bh_state(bh);
1824                                 write_unlock(&journal->j_state_lock);
1825                                 return ret;
1826                         } else {
1827                                 /* The orphan record's transaction has
1828                                  * committed.  We can cleanse this buffer */
1829                                 clear_buffer_jbddirty(bh);
1830                                 goto zap_buffer;
1831                         }
1832                 }
1833         } else if (transaction == journal->j_committing_transaction) {
1834                 JBUFFER_TRACE(jh, "on committing transaction");
1835                 /*
1836                  * The buffer is committing, we simply cannot touch
1837                  * it. So we just set j_next_transaction to the
1838                  * running transaction (if there is one) and mark
1839                  * buffer as freed so that commit code knows it should
1840                  * clear dirty bits when it is done with the buffer.
1841                  */
1842                 set_buffer_freed(bh);
1843                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1844                         jh->b_next_transaction = journal->j_running_transaction;
1845                 jbd2_journal_put_journal_head(jh);
1846                 spin_unlock(&journal->j_list_lock);
1847                 jbd_unlock_bh_state(bh);
1848                 write_unlock(&journal->j_state_lock);
1849                 return 0;
1850         } else {
1851                 /* Good, the buffer belongs to the running transaction.
1852                  * We are writing our own transaction's data, not any
1853                  * previous one's, so it is safe to throw it away
1854                  * (remember that we expect the filesystem to have set
1855                  * i_size already for this truncate so recovery will not
1856                  * expose the disk blocks we are discarding here.) */
1857                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1858                 JBUFFER_TRACE(jh, "on running transaction");
1859                 may_free = __dispose_buffer(jh, transaction);
1860         }
1861
1862 zap_buffer:
1863         jbd2_journal_put_journal_head(jh);
1864 zap_buffer_no_jh:
1865         spin_unlock(&journal->j_list_lock);
1866         jbd_unlock_bh_state(bh);
1867         write_unlock(&journal->j_state_lock);
1868 zap_buffer_unlocked:
1869         clear_buffer_dirty(bh);
1870         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1871         clear_buffer_mapped(bh);
1872         clear_buffer_req(bh);
1873         clear_buffer_new(bh);
1874         bh->b_bdev = NULL;
1875         return may_free;
1876 }
1877
1878 /**
1879  * void jbd2_journal_invalidatepage()
1880  * @journal: journal to use for flush...
1881  * @page:    page to flush
1882  * @offset:  length of page to invalidate.
1883  *
1884  * Reap page buffers containing data after offset in page.
1885  *
1886  */
1887 void jbd2_journal_invalidatepage(journal_t *journal,
1888                       struct page *page,
1889                       unsigned long offset)
1890 {
1891         struct buffer_head *head, *bh, *next;
1892         unsigned int curr_off = 0;
1893         int may_free = 1;
1894
1895         if (!PageLocked(page))
1896                 BUG();
1897         if (!page_has_buffers(page))
1898                 return;
1899
1900         /* We will potentially be playing with lists other than just the
1901          * data lists (especially for journaled data mode), so be
1902          * cautious in our locking. */
1903
1904         head = bh = page_buffers(page);
1905         do {
1906                 unsigned int next_off = curr_off + bh->b_size;
1907                 next = bh->b_this_page;
1908
1909                 if (offset <= curr_off) {
1910                         /* This block is wholly outside the truncation point */
1911                         lock_buffer(bh);
1912                         may_free &= journal_unmap_buffer(journal, bh);
1913                         unlock_buffer(bh);
1914                 }
1915                 curr_off = next_off;
1916                 bh = next;
1917
1918         } while (bh != head);
1919
1920         if (!offset) {
1921                 if (may_free && try_to_free_buffers(page))
1922                         J_ASSERT(!page_has_buffers(page));
1923         }
1924 }
1925
1926 /*
1927  * File a buffer on the given transaction list.
1928  */
1929 void __jbd2_journal_file_buffer(struct journal_head *jh,
1930                         transaction_t *transaction, int jlist)
1931 {
1932         struct journal_head **list = NULL;
1933         int was_dirty = 0;
1934         struct buffer_head *bh = jh2bh(jh);
1935
1936         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1937         assert_spin_locked(&transaction->t_journal->j_list_lock);
1938
1939         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1940         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1941                                 jh->b_transaction == NULL);
1942
1943         if (jh->b_transaction && jh->b_jlist == jlist)
1944                 return;
1945
1946         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1947             jlist == BJ_Shadow || jlist == BJ_Forget) {
1948                 /*
1949                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1950                  * instead of buffer_dirty. We should not see a dirty bit set
1951                  * here because we clear it in do_get_write_access but e.g.
1952                  * tune2fs can modify the sb and set the dirty bit at any time
1953                  * so we try to gracefully handle that.
1954                  */
1955                 if (buffer_dirty(bh))
1956                         warn_dirty_buffer(bh);
1957                 if (test_clear_buffer_dirty(bh) ||
1958                     test_clear_buffer_jbddirty(bh))
1959                         was_dirty = 1;
1960         }
1961
1962         if (jh->b_transaction)
1963                 __jbd2_journal_temp_unlink_buffer(jh);
1964         jh->b_transaction = transaction;
1965
1966         switch (jlist) {
1967         case BJ_None:
1968                 J_ASSERT_JH(jh, !jh->b_committed_data);
1969                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1970                 return;
1971         case BJ_Metadata:
1972                 transaction->t_nr_buffers++;
1973                 list = &transaction->t_buffers;
1974                 break;
1975         case BJ_Forget:
1976                 list = &transaction->t_forget;
1977                 break;
1978         case BJ_IO:
1979                 list = &transaction->t_iobuf_list;
1980                 break;
1981         case BJ_Shadow:
1982                 list = &transaction->t_shadow_list;
1983                 break;
1984         case BJ_LogCtl:
1985                 list = &transaction->t_log_list;
1986                 break;
1987         case BJ_Reserved:
1988                 list = &transaction->t_reserved_list;
1989                 break;
1990         }
1991
1992         __blist_add_buffer(list, jh);
1993         jh->b_jlist = jlist;
1994
1995         if (was_dirty)
1996                 set_buffer_jbddirty(bh);
1997 }
1998
1999 void jbd2_journal_file_buffer(struct journal_head *jh,
2000                                 transaction_t *transaction, int jlist)
2001 {
2002         jbd_lock_bh_state(jh2bh(jh));
2003         spin_lock(&transaction->t_journal->j_list_lock);
2004         __jbd2_journal_file_buffer(jh, transaction, jlist);
2005         spin_unlock(&transaction->t_journal->j_list_lock);
2006         jbd_unlock_bh_state(jh2bh(jh));
2007 }
2008
2009 /*
2010  * Remove a buffer from its current buffer list in preparation for
2011  * dropping it from its current transaction entirely.  If the buffer has
2012  * already started to be used by a subsequent transaction, refile the
2013  * buffer on that transaction's metadata list.
2014  *
2015  * Called under journal->j_list_lock
2016  *
2017  * Called under jbd_lock_bh_state(jh2bh(jh))
2018  */
2019 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2020 {
2021         int was_dirty, jlist;
2022         struct buffer_head *bh = jh2bh(jh);
2023
2024         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2025         if (jh->b_transaction)
2026                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2027
2028         /* If the buffer is now unused, just drop it. */
2029         if (jh->b_next_transaction == NULL) {
2030                 __jbd2_journal_unfile_buffer(jh);
2031                 return;
2032         }
2033
2034         /*
2035          * It has been modified by a later transaction: add it to the new
2036          * transaction's metadata list.
2037          */
2038
2039         was_dirty = test_clear_buffer_jbddirty(bh);
2040         __jbd2_journal_temp_unlink_buffer(jh);
2041         jh->b_transaction = jh->b_next_transaction;
2042         jh->b_next_transaction = NULL;
2043         if (buffer_freed(bh))
2044                 jlist = BJ_Forget;
2045         else if (jh->b_modified)
2046                 jlist = BJ_Metadata;
2047         else
2048                 jlist = BJ_Reserved;
2049         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2050         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2051
2052         if (was_dirty)
2053                 set_buffer_jbddirty(bh);
2054 }
2055
2056 /*
2057  * For the unlocked version of this call, also make sure that any
2058  * hanging journal_head is cleaned up if necessary.
2059  *
2060  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2061  * operation on a buffer_head, in which the caller is probably going to
2062  * be hooking the journal_head onto other lists.  In that case it is up
2063  * to the caller to remove the journal_head if necessary.  For the
2064  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2065  * doing anything else to the buffer so we need to do the cleanup
2066  * ourselves to avoid a jh leak.
2067  *
2068  * *** The journal_head may be freed by this call! ***
2069  */
2070 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2071 {
2072         struct buffer_head *bh = jh2bh(jh);
2073
2074         jbd_lock_bh_state(bh);
2075         spin_lock(&journal->j_list_lock);
2076
2077         __jbd2_journal_refile_buffer(jh);
2078         jbd_unlock_bh_state(bh);
2079         jbd2_journal_remove_journal_head(bh);
2080
2081         spin_unlock(&journal->j_list_lock);
2082         __brelse(bh);
2083 }
2084
2085 /*
2086  * File inode in the inode list of the handle's transaction
2087  */
2088 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2089 {
2090         transaction_t *transaction = handle->h_transaction;
2091         journal_t *journal = transaction->t_journal;
2092
2093         if (is_handle_aborted(handle))
2094                 return -EIO;
2095
2096         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2097                         transaction->t_tid);
2098
2099         /*
2100          * First check whether inode isn't already on the transaction's
2101          * lists without taking the lock. Note that this check is safe
2102          * without the lock as we cannot race with somebody removing inode
2103          * from the transaction. The reason is that we remove inode from the
2104          * transaction only in journal_release_jbd_inode() and when we commit
2105          * the transaction. We are guarded from the first case by holding
2106          * a reference to the inode. We are safe against the second case
2107          * because if jinode->i_transaction == transaction, commit code
2108          * cannot touch the transaction because we hold reference to it,
2109          * and if jinode->i_next_transaction == transaction, commit code
2110          * will only file the inode where we want it.
2111          */
2112         if (jinode->i_transaction == transaction ||
2113             jinode->i_next_transaction == transaction)
2114                 return 0;
2115
2116         spin_lock(&journal->j_list_lock);
2117
2118         if (jinode->i_transaction == transaction ||
2119             jinode->i_next_transaction == transaction)
2120                 goto done;
2121
2122         /* On some different transaction's list - should be
2123          * the committing one */
2124         if (jinode->i_transaction) {
2125                 J_ASSERT(jinode->i_next_transaction == NULL);
2126                 J_ASSERT(jinode->i_transaction ==
2127                                         journal->j_committing_transaction);
2128                 jinode->i_next_transaction = transaction;
2129                 goto done;
2130         }
2131         /* Not on any transaction list... */
2132         J_ASSERT(!jinode->i_next_transaction);
2133         jinode->i_transaction = transaction;
2134         list_add(&jinode->i_list, &transaction->t_inode_list);
2135 done:
2136         spin_unlock(&journal->j_list_lock);
2137
2138         return 0;
2139 }
2140
2141 /*
2142  * File truncate and transaction commit interact with each other in a
2143  * non-trivial way.  If a transaction writing data block A is
2144  * committing, we cannot discard the data by truncate until we have
2145  * written them.  Otherwise if we crashed after the transaction with
2146  * write has committed but before the transaction with truncate has
2147  * committed, we could see stale data in block A.  This function is a
2148  * helper to solve this problem.  It starts writeout of the truncated
2149  * part in case it is in the committing transaction.
2150  *
2151  * Filesystem code must call this function when inode is journaled in
2152  * ordered mode before truncation happens and after the inode has been
2153  * placed on orphan list with the new inode size. The second condition
2154  * avoids the race that someone writes new data and we start
2155  * committing the transaction after this function has been called but
2156  * before a transaction for truncate is started (and furthermore it
2157  * allows us to optimize the case where the addition to orphan list
2158  * happens in the same transaction as write --- we don't have to write
2159  * any data in such case).
2160  */
2161 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2162                                         struct jbd2_inode *jinode,
2163                                         loff_t new_size)
2164 {
2165         transaction_t *inode_trans, *commit_trans;
2166         int ret = 0;
2167
2168         /* This is a quick check to avoid locking if not necessary */
2169         if (!jinode->i_transaction)
2170                 goto out;
2171         /* Locks are here just to force reading of recent values, it is
2172          * enough that the transaction was not committing before we started
2173          * a transaction adding the inode to orphan list */
2174         read_lock(&journal->j_state_lock);
2175         commit_trans = journal->j_committing_transaction;
2176         read_unlock(&journal->j_state_lock);
2177         spin_lock(&journal->j_list_lock);
2178         inode_trans = jinode->i_transaction;
2179         spin_unlock(&journal->j_list_lock);
2180         if (inode_trans == commit_trans) {
2181                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2182                         new_size, LLONG_MAX);
2183                 if (ret)
2184                         jbd2_journal_abort(journal, ret);
2185         }
2186 out:
2187         return ret;
2188 }