]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd2/transaction.c
001e95fb0fe1172cdbe13a8810cfa438c982d297
[net-next-2.6.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *      The journal MUST be locked.  We don't perform atomic mallocs on the
44  *      new transaction and we can't block without protecting against other
45  *      processes trying to touch the journal while it is in transition.
46  *
47  */
48
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52         transaction->t_journal = journal;
53         transaction->t_state = T_RUNNING;
54         transaction->t_start_time = ktime_get();
55         transaction->t_tid = journal->j_transaction_sequence++;
56         transaction->t_expires = jiffies + journal->j_commit_interval;
57         spin_lock_init(&transaction->t_handle_lock);
58         INIT_LIST_HEAD(&transaction->t_inode_list);
59         INIT_LIST_HEAD(&transaction->t_private_list);
60
61         /* Set up the commit timer for the new transaction. */
62         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
63         add_timer(&journal->j_commit_timer);
64
65         J_ASSERT(journal->j_running_transaction == NULL);
66         journal->j_running_transaction = transaction;
67         transaction->t_max_wait = 0;
68         transaction->t_start = jiffies;
69
70         return transaction;
71 }
72
73 /*
74  * Handle management.
75  *
76  * A handle_t is an object which represents a single atomic update to a
77  * filesystem, and which tracks all of the modifications which form part
78  * of that one update.
79  */
80
81 /*
82  * start_this_handle: Given a handle, deal with any locking or stalling
83  * needed to make sure that there is enough journal space for the handle
84  * to begin.  Attach the handle to a transaction and set up the
85  * transaction's buffer credits.
86  */
87
88 static int start_this_handle(journal_t *journal, handle_t *handle,
89                              int gfp_mask)
90 {
91         transaction_t *transaction;
92         int needed;
93         int nblocks = handle->h_buffer_credits;
94         transaction_t *new_transaction = NULL;
95         unsigned long ts = jiffies;
96
97         if (nblocks > journal->j_max_transaction_buffers) {
98                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
99                        current->comm, nblocks,
100                        journal->j_max_transaction_buffers);
101                 return -ENOSPC;
102         }
103
104 alloc_transaction:
105         if (!journal->j_running_transaction) {
106                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
107                 if (!new_transaction) {
108                         /*
109                          * If __GFP_FS is not present, then we may be
110                          * being called from inside the fs writeback
111                          * layer, so we MUST NOT fail.  Since
112                          * __GFP_NOFAIL is going away, we will arrange
113                          * to retry the allocation ourselves.
114                          */
115                         if ((gfp_mask & __GFP_FS) == 0) {
116                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
117                                 goto alloc_transaction;
118                         }
119                         return -ENOMEM;
120                 }
121         }
122
123         jbd_debug(3, "New handle %p going live.\n", handle);
124
125 repeat:
126
127         /*
128          * We need to hold j_state_lock until t_updates has been incremented,
129          * for proper journal barrier handling
130          */
131         spin_lock(&journal->j_state_lock);
132 repeat_locked:
133         if (is_journal_aborted(journal) ||
134             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
135                 spin_unlock(&journal->j_state_lock);
136                 kfree(new_transaction);
137                 return -EROFS;
138         }
139
140         /* Wait on the journal's transaction barrier if necessary */
141         if (journal->j_barrier_count) {
142                 spin_unlock(&journal->j_state_lock);
143                 wait_event(journal->j_wait_transaction_locked,
144                                 journal->j_barrier_count == 0);
145                 goto repeat;
146         }
147
148         if (!journal->j_running_transaction) {
149                 if (!new_transaction) {
150                         spin_unlock(&journal->j_state_lock);
151                         goto alloc_transaction;
152                 }
153                 jbd2_get_transaction(journal, new_transaction);
154                 new_transaction = NULL;
155         }
156
157         transaction = journal->j_running_transaction;
158
159         /*
160          * If the current transaction is locked down for commit, wait for the
161          * lock to be released.
162          */
163         if (transaction->t_state == T_LOCKED) {
164                 DEFINE_WAIT(wait);
165
166                 prepare_to_wait(&journal->j_wait_transaction_locked,
167                                         &wait, TASK_UNINTERRUPTIBLE);
168                 spin_unlock(&journal->j_state_lock);
169                 schedule();
170                 finish_wait(&journal->j_wait_transaction_locked, &wait);
171                 goto repeat;
172         }
173
174         /*
175          * If there is not enough space left in the log to write all potential
176          * buffers requested by this operation, we need to stall pending a log
177          * checkpoint to free some more log space.
178          */
179         spin_lock(&transaction->t_handle_lock);
180         needed = transaction->t_outstanding_credits + nblocks;
181
182         if (needed > journal->j_max_transaction_buffers) {
183                 /*
184                  * If the current transaction is already too large, then start
185                  * to commit it: we can then go back and attach this handle to
186                  * a new transaction.
187                  */
188                 DEFINE_WAIT(wait);
189
190                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
191                 spin_unlock(&transaction->t_handle_lock);
192                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
193                                 TASK_UNINTERRUPTIBLE);
194                 __jbd2_log_start_commit(journal, transaction->t_tid);
195                 spin_unlock(&journal->j_state_lock);
196                 schedule();
197                 finish_wait(&journal->j_wait_transaction_locked, &wait);
198                 goto repeat;
199         }
200
201         /*
202          * The commit code assumes that it can get enough log space
203          * without forcing a checkpoint.  This is *critical* for
204          * correctness: a checkpoint of a buffer which is also
205          * associated with a committing transaction creates a deadlock,
206          * so commit simply cannot force through checkpoints.
207          *
208          * We must therefore ensure the necessary space in the journal
209          * *before* starting to dirty potentially checkpointed buffers
210          * in the new transaction.
211          *
212          * The worst part is, any transaction currently committing can
213          * reduce the free space arbitrarily.  Be careful to account for
214          * those buffers when checkpointing.
215          */
216
217         /*
218          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
219          * a _lot_ of headroom: 1/4 of the journal plus the size of
220          * the committing transaction.  Really, we only need to give it
221          * committing_transaction->t_outstanding_credits plus "enough" for
222          * the log control blocks.
223          * Also, this test is inconsitent with the matching one in
224          * jbd2_journal_extend().
225          */
226         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
227                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
228                 spin_unlock(&transaction->t_handle_lock);
229                 __jbd2_log_wait_for_space(journal);
230                 goto repeat_locked;
231         }
232
233         /* OK, account for the buffers that this operation expects to
234          * use and add the handle to the running transaction. */
235
236         if (time_after(transaction->t_start, ts)) {
237                 ts = jbd2_time_diff(ts, transaction->t_start);
238                 if (ts > transaction->t_max_wait)
239                         transaction->t_max_wait = ts;
240         }
241
242         handle->h_transaction = transaction;
243         transaction->t_outstanding_credits += nblocks;
244         transaction->t_updates++;
245         transaction->t_handle_count++;
246         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
247                   handle, nblocks, transaction->t_outstanding_credits,
248                   __jbd2_log_space_left(journal));
249         spin_unlock(&transaction->t_handle_lock);
250         spin_unlock(&journal->j_state_lock);
251
252         lock_map_acquire(&handle->h_lockdep_map);
253         kfree(new_transaction);
254         return 0;
255 }
256
257 static struct lock_class_key jbd2_handle_key;
258
259 /* Allocate a new handle.  This should probably be in a slab... */
260 static handle_t *new_handle(int nblocks)
261 {
262         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
263         if (!handle)
264                 return NULL;
265         memset(handle, 0, sizeof(*handle));
266         handle->h_buffer_credits = nblocks;
267         handle->h_ref = 1;
268
269         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
270                                                 &jbd2_handle_key, 0);
271
272         return handle;
273 }
274
275 /**
276  * handle_t *jbd2_journal_start() - Obtain a new handle.
277  * @journal: Journal to start transaction on.
278  * @nblocks: number of block buffer we might modify
279  *
280  * We make sure that the transaction can guarantee at least nblocks of
281  * modified buffers in the log.  We block until the log can guarantee
282  * that much space.
283  *
284  * This function is visible to journal users (like ext3fs), so is not
285  * called with the journal already locked.
286  *
287  * Return a pointer to a newly allocated handle, or NULL on failure
288  */
289 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
290 {
291         handle_t *handle = journal_current_handle();
292         int err;
293
294         if (!journal)
295                 return ERR_PTR(-EROFS);
296
297         if (handle) {
298                 J_ASSERT(handle->h_transaction->t_journal == journal);
299                 handle->h_ref++;
300                 return handle;
301         }
302
303         handle = new_handle(nblocks);
304         if (!handle)
305                 return ERR_PTR(-ENOMEM);
306
307         current->journal_info = handle;
308
309         err = start_this_handle(journal, handle, gfp_mask);
310         if (err < 0) {
311                 jbd2_free_handle(handle);
312                 current->journal_info = NULL;
313                 handle = ERR_PTR(err);
314                 goto out;
315         }
316 out:
317         return handle;
318 }
319 EXPORT_SYMBOL(jbd2__journal_start);
320
321
322 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
323 {
324         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
325 }
326 EXPORT_SYMBOL(jbd2_journal_start);
327
328
329 /**
330  * int jbd2_journal_extend() - extend buffer credits.
331  * @handle:  handle to 'extend'
332  * @nblocks: nr blocks to try to extend by.
333  *
334  * Some transactions, such as large extends and truncates, can be done
335  * atomically all at once or in several stages.  The operation requests
336  * a credit for a number of buffer modications in advance, but can
337  * extend its credit if it needs more.
338  *
339  * jbd2_journal_extend tries to give the running handle more buffer credits.
340  * It does not guarantee that allocation - this is a best-effort only.
341  * The calling process MUST be able to deal cleanly with a failure to
342  * extend here.
343  *
344  * Return 0 on success, non-zero on failure.
345  *
346  * return code < 0 implies an error
347  * return code > 0 implies normal transaction-full status.
348  */
349 int jbd2_journal_extend(handle_t *handle, int nblocks)
350 {
351         transaction_t *transaction = handle->h_transaction;
352         journal_t *journal = transaction->t_journal;
353         int result;
354         int wanted;
355
356         result = -EIO;
357         if (is_handle_aborted(handle))
358                 goto out;
359
360         result = 1;
361
362         spin_lock(&journal->j_state_lock);
363
364         /* Don't extend a locked-down transaction! */
365         if (handle->h_transaction->t_state != T_RUNNING) {
366                 jbd_debug(3, "denied handle %p %d blocks: "
367                           "transaction not running\n", handle, nblocks);
368                 goto error_out;
369         }
370
371         spin_lock(&transaction->t_handle_lock);
372         wanted = transaction->t_outstanding_credits + nblocks;
373
374         if (wanted > journal->j_max_transaction_buffers) {
375                 jbd_debug(3, "denied handle %p %d blocks: "
376                           "transaction too large\n", handle, nblocks);
377                 goto unlock;
378         }
379
380         if (wanted > __jbd2_log_space_left(journal)) {
381                 jbd_debug(3, "denied handle %p %d blocks: "
382                           "insufficient log space\n", handle, nblocks);
383                 goto unlock;
384         }
385
386         handle->h_buffer_credits += nblocks;
387         transaction->t_outstanding_credits += nblocks;
388         result = 0;
389
390         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
391 unlock:
392         spin_unlock(&transaction->t_handle_lock);
393 error_out:
394         spin_unlock(&journal->j_state_lock);
395 out:
396         return result;
397 }
398
399
400 /**
401  * int jbd2_journal_restart() - restart a handle .
402  * @handle:  handle to restart
403  * @nblocks: nr credits requested
404  *
405  * Restart a handle for a multi-transaction filesystem
406  * operation.
407  *
408  * If the jbd2_journal_extend() call above fails to grant new buffer credits
409  * to a running handle, a call to jbd2_journal_restart will commit the
410  * handle's transaction so far and reattach the handle to a new
411  * transaction capabable of guaranteeing the requested number of
412  * credits.
413  */
414 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
415 {
416         transaction_t *transaction = handle->h_transaction;
417         journal_t *journal = transaction->t_journal;
418         int ret;
419
420         /* If we've had an abort of any type, don't even think about
421          * actually doing the restart! */
422         if (is_handle_aborted(handle))
423                 return 0;
424
425         /*
426          * First unlink the handle from its current transaction, and start the
427          * commit on that.
428          */
429         J_ASSERT(transaction->t_updates > 0);
430         J_ASSERT(journal_current_handle() == handle);
431
432         spin_lock(&journal->j_state_lock);
433         spin_lock(&transaction->t_handle_lock);
434         transaction->t_outstanding_credits -= handle->h_buffer_credits;
435         transaction->t_updates--;
436
437         if (!transaction->t_updates)
438                 wake_up(&journal->j_wait_updates);
439         spin_unlock(&transaction->t_handle_lock);
440
441         jbd_debug(2, "restarting handle %p\n", handle);
442         __jbd2_log_start_commit(journal, transaction->t_tid);
443         spin_unlock(&journal->j_state_lock);
444
445         lock_map_release(&handle->h_lockdep_map);
446         handle->h_buffer_credits = nblocks;
447         ret = start_this_handle(journal, handle, gfp_mask);
448         return ret;
449 }
450 EXPORT_SYMBOL(jbd2__journal_restart);
451
452
453 int jbd2_journal_restart(handle_t *handle, int nblocks)
454 {
455         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
456 }
457 EXPORT_SYMBOL(jbd2_journal_restart);
458
459 /**
460  * void jbd2_journal_lock_updates () - establish a transaction barrier.
461  * @journal:  Journal to establish a barrier on.
462  *
463  * This locks out any further updates from being started, and blocks
464  * until all existing updates have completed, returning only once the
465  * journal is in a quiescent state with no updates running.
466  *
467  * The journal lock should not be held on entry.
468  */
469 void jbd2_journal_lock_updates(journal_t *journal)
470 {
471         DEFINE_WAIT(wait);
472
473         spin_lock(&journal->j_state_lock);
474         ++journal->j_barrier_count;
475
476         /* Wait until there are no running updates */
477         while (1) {
478                 transaction_t *transaction = journal->j_running_transaction;
479
480                 if (!transaction)
481                         break;
482
483                 spin_lock(&transaction->t_handle_lock);
484                 if (!transaction->t_updates) {
485                         spin_unlock(&transaction->t_handle_lock);
486                         break;
487                 }
488                 prepare_to_wait(&journal->j_wait_updates, &wait,
489                                 TASK_UNINTERRUPTIBLE);
490                 spin_unlock(&transaction->t_handle_lock);
491                 spin_unlock(&journal->j_state_lock);
492                 schedule();
493                 finish_wait(&journal->j_wait_updates, &wait);
494                 spin_lock(&journal->j_state_lock);
495         }
496         spin_unlock(&journal->j_state_lock);
497
498         /*
499          * We have now established a barrier against other normal updates, but
500          * we also need to barrier against other jbd2_journal_lock_updates() calls
501          * to make sure that we serialise special journal-locked operations
502          * too.
503          */
504         mutex_lock(&journal->j_barrier);
505 }
506
507 /**
508  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
509  * @journal:  Journal to release the barrier on.
510  *
511  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
512  *
513  * Should be called without the journal lock held.
514  */
515 void jbd2_journal_unlock_updates (journal_t *journal)
516 {
517         J_ASSERT(journal->j_barrier_count != 0);
518
519         mutex_unlock(&journal->j_barrier);
520         spin_lock(&journal->j_state_lock);
521         --journal->j_barrier_count;
522         spin_unlock(&journal->j_state_lock);
523         wake_up(&journal->j_wait_transaction_locked);
524 }
525
526 static void warn_dirty_buffer(struct buffer_head *bh)
527 {
528         char b[BDEVNAME_SIZE];
529
530         printk(KERN_WARNING
531                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
532                "There's a risk of filesystem corruption in case of system "
533                "crash.\n",
534                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
535 }
536
537 /*
538  * If the buffer is already part of the current transaction, then there
539  * is nothing we need to do.  If it is already part of a prior
540  * transaction which we are still committing to disk, then we need to
541  * make sure that we do not overwrite the old copy: we do copy-out to
542  * preserve the copy going to disk.  We also account the buffer against
543  * the handle's metadata buffer credits (unless the buffer is already
544  * part of the transaction, that is).
545  *
546  */
547 static int
548 do_get_write_access(handle_t *handle, struct journal_head *jh,
549                         int force_copy)
550 {
551         struct buffer_head *bh;
552         transaction_t *transaction;
553         journal_t *journal;
554         int error;
555         char *frozen_buffer = NULL;
556         int need_copy = 0;
557
558         if (is_handle_aborted(handle))
559                 return -EROFS;
560
561         transaction = handle->h_transaction;
562         journal = transaction->t_journal;
563
564         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
565
566         JBUFFER_TRACE(jh, "entry");
567 repeat:
568         bh = jh2bh(jh);
569
570         /* @@@ Need to check for errors here at some point. */
571
572         lock_buffer(bh);
573         jbd_lock_bh_state(bh);
574
575         /* We now hold the buffer lock so it is safe to query the buffer
576          * state.  Is the buffer dirty?
577          *
578          * If so, there are two possibilities.  The buffer may be
579          * non-journaled, and undergoing a quite legitimate writeback.
580          * Otherwise, it is journaled, and we don't expect dirty buffers
581          * in that state (the buffers should be marked JBD_Dirty
582          * instead.)  So either the IO is being done under our own
583          * control and this is a bug, or it's a third party IO such as
584          * dump(8) (which may leave the buffer scheduled for read ---
585          * ie. locked but not dirty) or tune2fs (which may actually have
586          * the buffer dirtied, ugh.)  */
587
588         if (buffer_dirty(bh)) {
589                 /*
590                  * First question: is this buffer already part of the current
591                  * transaction or the existing committing transaction?
592                  */
593                 if (jh->b_transaction) {
594                         J_ASSERT_JH(jh,
595                                 jh->b_transaction == transaction ||
596                                 jh->b_transaction ==
597                                         journal->j_committing_transaction);
598                         if (jh->b_next_transaction)
599                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
600                                                         transaction);
601                         warn_dirty_buffer(bh);
602                 }
603                 /*
604                  * In any case we need to clean the dirty flag and we must
605                  * do it under the buffer lock to be sure we don't race
606                  * with running write-out.
607                  */
608                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
609                 clear_buffer_dirty(bh);
610                 set_buffer_jbddirty(bh);
611         }
612
613         unlock_buffer(bh);
614
615         error = -EROFS;
616         if (is_handle_aborted(handle)) {
617                 jbd_unlock_bh_state(bh);
618                 goto out;
619         }
620         error = 0;
621
622         /*
623          * The buffer is already part of this transaction if b_transaction or
624          * b_next_transaction points to it
625          */
626         if (jh->b_transaction == transaction ||
627             jh->b_next_transaction == transaction)
628                 goto done;
629
630         /*
631          * this is the first time this transaction is touching this buffer,
632          * reset the modified flag
633          */
634        jh->b_modified = 0;
635
636         /*
637          * If there is already a copy-out version of this buffer, then we don't
638          * need to make another one
639          */
640         if (jh->b_frozen_data) {
641                 JBUFFER_TRACE(jh, "has frozen data");
642                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
643                 jh->b_next_transaction = transaction;
644                 goto done;
645         }
646
647         /* Is there data here we need to preserve? */
648
649         if (jh->b_transaction && jh->b_transaction != transaction) {
650                 JBUFFER_TRACE(jh, "owned by older transaction");
651                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
652                 J_ASSERT_JH(jh, jh->b_transaction ==
653                                         journal->j_committing_transaction);
654
655                 /* There is one case we have to be very careful about.
656                  * If the committing transaction is currently writing
657                  * this buffer out to disk and has NOT made a copy-out,
658                  * then we cannot modify the buffer contents at all
659                  * right now.  The essence of copy-out is that it is the
660                  * extra copy, not the primary copy, which gets
661                  * journaled.  If the primary copy is already going to
662                  * disk then we cannot do copy-out here. */
663
664                 if (jh->b_jlist == BJ_Shadow) {
665                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
666                         wait_queue_head_t *wqh;
667
668                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
669
670                         JBUFFER_TRACE(jh, "on shadow: sleep");
671                         jbd_unlock_bh_state(bh);
672                         /* commit wakes up all shadow buffers after IO */
673                         for ( ; ; ) {
674                                 prepare_to_wait(wqh, &wait.wait,
675                                                 TASK_UNINTERRUPTIBLE);
676                                 if (jh->b_jlist != BJ_Shadow)
677                                         break;
678                                 schedule();
679                         }
680                         finish_wait(wqh, &wait.wait);
681                         goto repeat;
682                 }
683
684                 /* Only do the copy if the currently-owning transaction
685                  * still needs it.  If it is on the Forget list, the
686                  * committing transaction is past that stage.  The
687                  * buffer had better remain locked during the kmalloc,
688                  * but that should be true --- we hold the journal lock
689                  * still and the buffer is already on the BUF_JOURNAL
690                  * list so won't be flushed.
691                  *
692                  * Subtle point, though: if this is a get_undo_access,
693                  * then we will be relying on the frozen_data to contain
694                  * the new value of the committed_data record after the
695                  * transaction, so we HAVE to force the frozen_data copy
696                  * in that case. */
697
698                 if (jh->b_jlist != BJ_Forget || force_copy) {
699                         JBUFFER_TRACE(jh, "generate frozen data");
700                         if (!frozen_buffer) {
701                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
702                                 jbd_unlock_bh_state(bh);
703                                 frozen_buffer =
704                                         jbd2_alloc(jh2bh(jh)->b_size,
705                                                          GFP_NOFS);
706                                 if (!frozen_buffer) {
707                                         printk(KERN_EMERG
708                                                "%s: OOM for frozen_buffer\n",
709                                                __func__);
710                                         JBUFFER_TRACE(jh, "oom!");
711                                         error = -ENOMEM;
712                                         jbd_lock_bh_state(bh);
713                                         goto done;
714                                 }
715                                 goto repeat;
716                         }
717                         jh->b_frozen_data = frozen_buffer;
718                         frozen_buffer = NULL;
719                         need_copy = 1;
720                 }
721                 jh->b_next_transaction = transaction;
722         }
723
724
725         /*
726          * Finally, if the buffer is not journaled right now, we need to make
727          * sure it doesn't get written to disk before the caller actually
728          * commits the new data
729          */
730         if (!jh->b_transaction) {
731                 JBUFFER_TRACE(jh, "no transaction");
732                 J_ASSERT_JH(jh, !jh->b_next_transaction);
733                 jh->b_transaction = transaction;
734                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
735                 spin_lock(&journal->j_list_lock);
736                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
737                 spin_unlock(&journal->j_list_lock);
738         }
739
740 done:
741         if (need_copy) {
742                 struct page *page;
743                 int offset;
744                 char *source;
745
746                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
747                             "Possible IO failure.\n");
748                 page = jh2bh(jh)->b_page;
749                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
750                 source = kmap_atomic(page, KM_USER0);
751                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
752                 kunmap_atomic(source, KM_USER0);
753
754                 /*
755                  * Now that the frozen data is saved off, we need to store
756                  * any matching triggers.
757                  */
758                 jh->b_frozen_triggers = jh->b_triggers;
759         }
760         jbd_unlock_bh_state(bh);
761
762         /*
763          * If we are about to journal a buffer, then any revoke pending on it is
764          * no longer valid
765          */
766         jbd2_journal_cancel_revoke(handle, jh);
767
768 out:
769         if (unlikely(frozen_buffer))    /* It's usually NULL */
770                 jbd2_free(frozen_buffer, bh->b_size);
771
772         JBUFFER_TRACE(jh, "exit");
773         return error;
774 }
775
776 /**
777  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
778  * @handle: transaction to add buffer modifications to
779  * @bh:     bh to be used for metadata writes
780  * @credits: variable that will receive credits for the buffer
781  *
782  * Returns an error code or 0 on success.
783  *
784  * In full data journalling mode the buffer may be of type BJ_AsyncData,
785  * because we're write()ing a buffer which is also part of a shared mapping.
786  */
787
788 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
789 {
790         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
791         int rc;
792
793         /* We do not want to get caught playing with fields which the
794          * log thread also manipulates.  Make sure that the buffer
795          * completes any outstanding IO before proceeding. */
796         rc = do_get_write_access(handle, jh, 0);
797         jbd2_journal_put_journal_head(jh);
798         return rc;
799 }
800
801
802 /*
803  * When the user wants to journal a newly created buffer_head
804  * (ie. getblk() returned a new buffer and we are going to populate it
805  * manually rather than reading off disk), then we need to keep the
806  * buffer_head locked until it has been completely filled with new
807  * data.  In this case, we should be able to make the assertion that
808  * the bh is not already part of an existing transaction.
809  *
810  * The buffer should already be locked by the caller by this point.
811  * There is no lock ranking violation: it was a newly created,
812  * unlocked buffer beforehand. */
813
814 /**
815  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
816  * @handle: transaction to new buffer to
817  * @bh: new buffer.
818  *
819  * Call this if you create a new bh.
820  */
821 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
822 {
823         transaction_t *transaction = handle->h_transaction;
824         journal_t *journal = transaction->t_journal;
825         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
826         int err;
827
828         jbd_debug(5, "journal_head %p\n", jh);
829         err = -EROFS;
830         if (is_handle_aborted(handle))
831                 goto out;
832         err = 0;
833
834         JBUFFER_TRACE(jh, "entry");
835         /*
836          * The buffer may already belong to this transaction due to pre-zeroing
837          * in the filesystem's new_block code.  It may also be on the previous,
838          * committing transaction's lists, but it HAS to be in Forget state in
839          * that case: the transaction must have deleted the buffer for it to be
840          * reused here.
841          */
842         jbd_lock_bh_state(bh);
843         spin_lock(&journal->j_list_lock);
844         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
845                 jh->b_transaction == NULL ||
846                 (jh->b_transaction == journal->j_committing_transaction &&
847                           jh->b_jlist == BJ_Forget)));
848
849         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
850         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
851
852         if (jh->b_transaction == NULL) {
853                 /*
854                  * Previous jbd2_journal_forget() could have left the buffer
855                  * with jbddirty bit set because it was being committed. When
856                  * the commit finished, we've filed the buffer for
857                  * checkpointing and marked it dirty. Now we are reallocating
858                  * the buffer so the transaction freeing it must have
859                  * committed and so it's safe to clear the dirty bit.
860                  */
861                 clear_buffer_dirty(jh2bh(jh));
862                 jh->b_transaction = transaction;
863
864                 /* first access by this transaction */
865                 jh->b_modified = 0;
866
867                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
868                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
869         } else if (jh->b_transaction == journal->j_committing_transaction) {
870                 /* first access by this transaction */
871                 jh->b_modified = 0;
872
873                 JBUFFER_TRACE(jh, "set next transaction");
874                 jh->b_next_transaction = transaction;
875         }
876         spin_unlock(&journal->j_list_lock);
877         jbd_unlock_bh_state(bh);
878
879         /*
880          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
881          * blocks which contain freed but then revoked metadata.  We need
882          * to cancel the revoke in case we end up freeing it yet again
883          * and the reallocating as data - this would cause a second revoke,
884          * which hits an assertion error.
885          */
886         JBUFFER_TRACE(jh, "cancelling revoke");
887         jbd2_journal_cancel_revoke(handle, jh);
888         jbd2_journal_put_journal_head(jh);
889 out:
890         return err;
891 }
892
893 /**
894  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
895  *     non-rewindable consequences
896  * @handle: transaction
897  * @bh: buffer to undo
898  * @credits: store the number of taken credits here (if not NULL)
899  *
900  * Sometimes there is a need to distinguish between metadata which has
901  * been committed to disk and that which has not.  The ext3fs code uses
902  * this for freeing and allocating space, we have to make sure that we
903  * do not reuse freed space until the deallocation has been committed,
904  * since if we overwrote that space we would make the delete
905  * un-rewindable in case of a crash.
906  *
907  * To deal with that, jbd2_journal_get_undo_access requests write access to a
908  * buffer for parts of non-rewindable operations such as delete
909  * operations on the bitmaps.  The journaling code must keep a copy of
910  * the buffer's contents prior to the undo_access call until such time
911  * as we know that the buffer has definitely been committed to disk.
912  *
913  * We never need to know which transaction the committed data is part
914  * of, buffers touched here are guaranteed to be dirtied later and so
915  * will be committed to a new transaction in due course, at which point
916  * we can discard the old committed data pointer.
917  *
918  * Returns error number or 0 on success.
919  */
920 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
921 {
922         int err;
923         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
924         char *committed_data = NULL;
925
926         JBUFFER_TRACE(jh, "entry");
927
928         /*
929          * Do this first --- it can drop the journal lock, so we want to
930          * make sure that obtaining the committed_data is done
931          * atomically wrt. completion of any outstanding commits.
932          */
933         err = do_get_write_access(handle, jh, 1);
934         if (err)
935                 goto out;
936
937 repeat:
938         if (!jh->b_committed_data) {
939                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
940                 if (!committed_data) {
941                         printk(KERN_EMERG "%s: No memory for committed data\n",
942                                 __func__);
943                         err = -ENOMEM;
944                         goto out;
945                 }
946         }
947
948         jbd_lock_bh_state(bh);
949         if (!jh->b_committed_data) {
950                 /* Copy out the current buffer contents into the
951                  * preserved, committed copy. */
952                 JBUFFER_TRACE(jh, "generate b_committed data");
953                 if (!committed_data) {
954                         jbd_unlock_bh_state(bh);
955                         goto repeat;
956                 }
957
958                 jh->b_committed_data = committed_data;
959                 committed_data = NULL;
960                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
961         }
962         jbd_unlock_bh_state(bh);
963 out:
964         jbd2_journal_put_journal_head(jh);
965         if (unlikely(committed_data))
966                 jbd2_free(committed_data, bh->b_size);
967         return err;
968 }
969
970 /**
971  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
972  * @bh: buffer to trigger on
973  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
974  *
975  * Set any triggers on this journal_head.  This is always safe, because
976  * triggers for a committing buffer will be saved off, and triggers for
977  * a running transaction will match the buffer in that transaction.
978  *
979  * Call with NULL to clear the triggers.
980  */
981 void jbd2_journal_set_triggers(struct buffer_head *bh,
982                                struct jbd2_buffer_trigger_type *type)
983 {
984         struct journal_head *jh = bh2jh(bh);
985
986         jh->b_triggers = type;
987 }
988
989 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
990                                 struct jbd2_buffer_trigger_type *triggers)
991 {
992         struct buffer_head *bh = jh2bh(jh);
993
994         if (!triggers || !triggers->t_commit)
995                 return;
996
997         triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
998 }
999
1000 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1001                                struct jbd2_buffer_trigger_type *triggers)
1002 {
1003         if (!triggers || !triggers->t_abort)
1004                 return;
1005
1006         triggers->t_abort(triggers, jh2bh(jh));
1007 }
1008
1009
1010
1011 /**
1012  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1013  * @handle: transaction to add buffer to.
1014  * @bh: buffer to mark
1015  *
1016  * mark dirty metadata which needs to be journaled as part of the current
1017  * transaction.
1018  *
1019  * The buffer is placed on the transaction's metadata list and is marked
1020  * as belonging to the transaction.
1021  *
1022  * Returns error number or 0 on success.
1023  *
1024  * Special care needs to be taken if the buffer already belongs to the
1025  * current committing transaction (in which case we should have frozen
1026  * data present for that commit).  In that case, we don't relink the
1027  * buffer: that only gets done when the old transaction finally
1028  * completes its commit.
1029  */
1030 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1031 {
1032         transaction_t *transaction = handle->h_transaction;
1033         journal_t *journal = transaction->t_journal;
1034         struct journal_head *jh = bh2jh(bh);
1035
1036         jbd_debug(5, "journal_head %p\n", jh);
1037         JBUFFER_TRACE(jh, "entry");
1038         if (is_handle_aborted(handle))
1039                 goto out;
1040
1041         jbd_lock_bh_state(bh);
1042
1043         if (jh->b_modified == 0) {
1044                 /*
1045                  * This buffer's got modified and becoming part
1046                  * of the transaction. This needs to be done
1047                  * once a transaction -bzzz
1048                  */
1049                 jh->b_modified = 1;
1050                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1051                 handle->h_buffer_credits--;
1052         }
1053
1054         /*
1055          * fastpath, to avoid expensive locking.  If this buffer is already
1056          * on the running transaction's metadata list there is nothing to do.
1057          * Nobody can take it off again because there is a handle open.
1058          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1059          * result in this test being false, so we go in and take the locks.
1060          */
1061         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1062                 JBUFFER_TRACE(jh, "fastpath");
1063                 J_ASSERT_JH(jh, jh->b_transaction ==
1064                                         journal->j_running_transaction);
1065                 goto out_unlock_bh;
1066         }
1067
1068         set_buffer_jbddirty(bh);
1069
1070         /*
1071          * Metadata already on the current transaction list doesn't
1072          * need to be filed.  Metadata on another transaction's list must
1073          * be committing, and will be refiled once the commit completes:
1074          * leave it alone for now.
1075          */
1076         if (jh->b_transaction != transaction) {
1077                 JBUFFER_TRACE(jh, "already on other transaction");
1078                 J_ASSERT_JH(jh, jh->b_transaction ==
1079                                         journal->j_committing_transaction);
1080                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1081                 /* And this case is illegal: we can't reuse another
1082                  * transaction's data buffer, ever. */
1083                 goto out_unlock_bh;
1084         }
1085
1086         /* That test should have eliminated the following case: */
1087         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1088
1089         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1090         spin_lock(&journal->j_list_lock);
1091         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1092         spin_unlock(&journal->j_list_lock);
1093 out_unlock_bh:
1094         jbd_unlock_bh_state(bh);
1095 out:
1096         JBUFFER_TRACE(jh, "exit");
1097         return 0;
1098 }
1099
1100 /*
1101  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1102  * updates, if the update decided in the end that it didn't need access.
1103  *
1104  */
1105 void
1106 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1107 {
1108         BUFFER_TRACE(bh, "entry");
1109 }
1110
1111 /**
1112  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1113  * @handle: transaction handle
1114  * @bh:     bh to 'forget'
1115  *
1116  * We can only do the bforget if there are no commits pending against the
1117  * buffer.  If the buffer is dirty in the current running transaction we
1118  * can safely unlink it.
1119  *
1120  * bh may not be a journalled buffer at all - it may be a non-JBD
1121  * buffer which came off the hashtable.  Check for this.
1122  *
1123  * Decrements bh->b_count by one.
1124  *
1125  * Allow this call even if the handle has aborted --- it may be part of
1126  * the caller's cleanup after an abort.
1127  */
1128 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1129 {
1130         transaction_t *transaction = handle->h_transaction;
1131         journal_t *journal = transaction->t_journal;
1132         struct journal_head *jh;
1133         int drop_reserve = 0;
1134         int err = 0;
1135         int was_modified = 0;
1136
1137         BUFFER_TRACE(bh, "entry");
1138
1139         jbd_lock_bh_state(bh);
1140         spin_lock(&journal->j_list_lock);
1141
1142         if (!buffer_jbd(bh))
1143                 goto not_jbd;
1144         jh = bh2jh(bh);
1145
1146         /* Critical error: attempting to delete a bitmap buffer, maybe?
1147          * Don't do any jbd operations, and return an error. */
1148         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1149                          "inconsistent data on disk")) {
1150                 err = -EIO;
1151                 goto not_jbd;
1152         }
1153
1154         /* keep track of wether or not this transaction modified us */
1155         was_modified = jh->b_modified;
1156
1157         /*
1158          * The buffer's going from the transaction, we must drop
1159          * all references -bzzz
1160          */
1161         jh->b_modified = 0;
1162
1163         if (jh->b_transaction == handle->h_transaction) {
1164                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1165
1166                 /* If we are forgetting a buffer which is already part
1167                  * of this transaction, then we can just drop it from
1168                  * the transaction immediately. */
1169                 clear_buffer_dirty(bh);
1170                 clear_buffer_jbddirty(bh);
1171
1172                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1173
1174                 /*
1175                  * we only want to drop a reference if this transaction
1176                  * modified the buffer
1177                  */
1178                 if (was_modified)
1179                         drop_reserve = 1;
1180
1181                 /*
1182                  * We are no longer going to journal this buffer.
1183                  * However, the commit of this transaction is still
1184                  * important to the buffer: the delete that we are now
1185                  * processing might obsolete an old log entry, so by
1186                  * committing, we can satisfy the buffer's checkpoint.
1187                  *
1188                  * So, if we have a checkpoint on the buffer, we should
1189                  * now refile the buffer on our BJ_Forget list so that
1190                  * we know to remove the checkpoint after we commit.
1191                  */
1192
1193                 if (jh->b_cp_transaction) {
1194                         __jbd2_journal_temp_unlink_buffer(jh);
1195                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1196                 } else {
1197                         __jbd2_journal_unfile_buffer(jh);
1198                         jbd2_journal_remove_journal_head(bh);
1199                         __brelse(bh);
1200                         if (!buffer_jbd(bh)) {
1201                                 spin_unlock(&journal->j_list_lock);
1202                                 jbd_unlock_bh_state(bh);
1203                                 __bforget(bh);
1204                                 goto drop;
1205                         }
1206                 }
1207         } else if (jh->b_transaction) {
1208                 J_ASSERT_JH(jh, (jh->b_transaction ==
1209                                  journal->j_committing_transaction));
1210                 /* However, if the buffer is still owned by a prior
1211                  * (committing) transaction, we can't drop it yet... */
1212                 JBUFFER_TRACE(jh, "belongs to older transaction");
1213                 /* ... but we CAN drop it from the new transaction if we
1214                  * have also modified it since the original commit. */
1215
1216                 if (jh->b_next_transaction) {
1217                         J_ASSERT(jh->b_next_transaction == transaction);
1218                         jh->b_next_transaction = NULL;
1219
1220                         /*
1221                          * only drop a reference if this transaction modified
1222                          * the buffer
1223                          */
1224                         if (was_modified)
1225                                 drop_reserve = 1;
1226                 }
1227         }
1228
1229 not_jbd:
1230         spin_unlock(&journal->j_list_lock);
1231         jbd_unlock_bh_state(bh);
1232         __brelse(bh);
1233 drop:
1234         if (drop_reserve) {
1235                 /* no need to reserve log space for this block -bzzz */
1236                 handle->h_buffer_credits++;
1237         }
1238         return err;
1239 }
1240
1241 /**
1242  * int jbd2_journal_stop() - complete a transaction
1243  * @handle: tranaction to complete.
1244  *
1245  * All done for a particular handle.
1246  *
1247  * There is not much action needed here.  We just return any remaining
1248  * buffer credits to the transaction and remove the handle.  The only
1249  * complication is that we need to start a commit operation if the
1250  * filesystem is marked for synchronous update.
1251  *
1252  * jbd2_journal_stop itself will not usually return an error, but it may
1253  * do so in unusual circumstances.  In particular, expect it to
1254  * return -EIO if a jbd2_journal_abort has been executed since the
1255  * transaction began.
1256  */
1257 int jbd2_journal_stop(handle_t *handle)
1258 {
1259         transaction_t *transaction = handle->h_transaction;
1260         journal_t *journal = transaction->t_journal;
1261         int err;
1262         pid_t pid;
1263
1264         J_ASSERT(journal_current_handle() == handle);
1265
1266         if (is_handle_aborted(handle))
1267                 err = -EIO;
1268         else {
1269                 J_ASSERT(transaction->t_updates > 0);
1270                 err = 0;
1271         }
1272
1273         if (--handle->h_ref > 0) {
1274                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1275                           handle->h_ref);
1276                 return err;
1277         }
1278
1279         jbd_debug(4, "Handle %p going down\n", handle);
1280
1281         /*
1282          * Implement synchronous transaction batching.  If the handle
1283          * was synchronous, don't force a commit immediately.  Let's
1284          * yield and let another thread piggyback onto this
1285          * transaction.  Keep doing that while new threads continue to
1286          * arrive.  It doesn't cost much - we're about to run a commit
1287          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1288          * operations by 30x or more...
1289          *
1290          * We try and optimize the sleep time against what the
1291          * underlying disk can do, instead of having a static sleep
1292          * time.  This is useful for the case where our storage is so
1293          * fast that it is more optimal to go ahead and force a flush
1294          * and wait for the transaction to be committed than it is to
1295          * wait for an arbitrary amount of time for new writers to
1296          * join the transaction.  We achieve this by measuring how
1297          * long it takes to commit a transaction, and compare it with
1298          * how long this transaction has been running, and if run time
1299          * < commit time then we sleep for the delta and commit.  This
1300          * greatly helps super fast disks that would see slowdowns as
1301          * more threads started doing fsyncs.
1302          *
1303          * But don't do this if this process was the most recent one
1304          * to perform a synchronous write.  We do this to detect the
1305          * case where a single process is doing a stream of sync
1306          * writes.  No point in waiting for joiners in that case.
1307          */
1308         pid = current->pid;
1309         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1310                 u64 commit_time, trans_time;
1311
1312                 journal->j_last_sync_writer = pid;
1313
1314                 spin_lock(&journal->j_state_lock);
1315                 commit_time = journal->j_average_commit_time;
1316                 spin_unlock(&journal->j_state_lock);
1317
1318                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1319                                                    transaction->t_start_time));
1320
1321                 commit_time = max_t(u64, commit_time,
1322                                     1000*journal->j_min_batch_time);
1323                 commit_time = min_t(u64, commit_time,
1324                                     1000*journal->j_max_batch_time);
1325
1326                 if (trans_time < commit_time) {
1327                         ktime_t expires = ktime_add_ns(ktime_get(),
1328                                                        commit_time);
1329                         set_current_state(TASK_UNINTERRUPTIBLE);
1330                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1331                 }
1332         }
1333
1334         if (handle->h_sync)
1335                 transaction->t_synchronous_commit = 1;
1336         current->journal_info = NULL;
1337         spin_lock(&transaction->t_handle_lock);
1338         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1339         transaction->t_updates--;
1340         if (!transaction->t_updates) {
1341                 wake_up(&journal->j_wait_updates);
1342                 if (journal->j_barrier_count)
1343                         wake_up(&journal->j_wait_transaction_locked);
1344         }
1345
1346         /*
1347          * If the handle is marked SYNC, we need to set another commit
1348          * going!  We also want to force a commit if the current
1349          * transaction is occupying too much of the log, or if the
1350          * transaction is too old now.
1351          */
1352         if (handle->h_sync ||
1353                         transaction->t_outstanding_credits >
1354                                 journal->j_max_transaction_buffers ||
1355                         time_after_eq(jiffies, transaction->t_expires)) {
1356                 /* Do this even for aborted journals: an abort still
1357                  * completes the commit thread, it just doesn't write
1358                  * anything to disk. */
1359                 tid_t tid = transaction->t_tid;
1360
1361                 spin_unlock(&transaction->t_handle_lock);
1362                 jbd_debug(2, "transaction too old, requesting commit for "
1363                                         "handle %p\n", handle);
1364                 /* This is non-blocking */
1365                 jbd2_log_start_commit(journal, transaction->t_tid);
1366
1367                 /*
1368                  * Special case: JBD2_SYNC synchronous updates require us
1369                  * to wait for the commit to complete.
1370                  */
1371                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1372                         err = jbd2_log_wait_commit(journal, tid);
1373         } else {
1374                 spin_unlock(&transaction->t_handle_lock);
1375         }
1376
1377         lock_map_release(&handle->h_lockdep_map);
1378
1379         jbd2_free_handle(handle);
1380         return err;
1381 }
1382
1383 /**
1384  * int jbd2_journal_force_commit() - force any uncommitted transactions
1385  * @journal: journal to force
1386  *
1387  * For synchronous operations: force any uncommitted transactions
1388  * to disk.  May seem kludgy, but it reuses all the handle batching
1389  * code in a very simple manner.
1390  */
1391 int jbd2_journal_force_commit(journal_t *journal)
1392 {
1393         handle_t *handle;
1394         int ret;
1395
1396         handle = jbd2_journal_start(journal, 1);
1397         if (IS_ERR(handle)) {
1398                 ret = PTR_ERR(handle);
1399         } else {
1400                 handle->h_sync = 1;
1401                 ret = jbd2_journal_stop(handle);
1402         }
1403         return ret;
1404 }
1405
1406 /*
1407  *
1408  * List management code snippets: various functions for manipulating the
1409  * transaction buffer lists.
1410  *
1411  */
1412
1413 /*
1414  * Append a buffer to a transaction list, given the transaction's list head
1415  * pointer.
1416  *
1417  * j_list_lock is held.
1418  *
1419  * jbd_lock_bh_state(jh2bh(jh)) is held.
1420  */
1421
1422 static inline void
1423 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1424 {
1425         if (!*list) {
1426                 jh->b_tnext = jh->b_tprev = jh;
1427                 *list = jh;
1428         } else {
1429                 /* Insert at the tail of the list to preserve order */
1430                 struct journal_head *first = *list, *last = first->b_tprev;
1431                 jh->b_tprev = last;
1432                 jh->b_tnext = first;
1433                 last->b_tnext = first->b_tprev = jh;
1434         }
1435 }
1436
1437 /*
1438  * Remove a buffer from a transaction list, given the transaction's list
1439  * head pointer.
1440  *
1441  * Called with j_list_lock held, and the journal may not be locked.
1442  *
1443  * jbd_lock_bh_state(jh2bh(jh)) is held.
1444  */
1445
1446 static inline void
1447 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1448 {
1449         if (*list == jh) {
1450                 *list = jh->b_tnext;
1451                 if (*list == jh)
1452                         *list = NULL;
1453         }
1454         jh->b_tprev->b_tnext = jh->b_tnext;
1455         jh->b_tnext->b_tprev = jh->b_tprev;
1456 }
1457
1458 /*
1459  * Remove a buffer from the appropriate transaction list.
1460  *
1461  * Note that this function can *change* the value of
1462  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1463  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1464  * of these pointers, it could go bad.  Generally the caller needs to re-read
1465  * the pointer from the transaction_t.
1466  *
1467  * Called under j_list_lock.  The journal may not be locked.
1468  */
1469 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1470 {
1471         struct journal_head **list = NULL;
1472         transaction_t *transaction;
1473         struct buffer_head *bh = jh2bh(jh);
1474
1475         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1476         transaction = jh->b_transaction;
1477         if (transaction)
1478                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1479
1480         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1481         if (jh->b_jlist != BJ_None)
1482                 J_ASSERT_JH(jh, transaction != NULL);
1483
1484         switch (jh->b_jlist) {
1485         case BJ_None:
1486                 return;
1487         case BJ_Metadata:
1488                 transaction->t_nr_buffers--;
1489                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1490                 list = &transaction->t_buffers;
1491                 break;
1492         case BJ_Forget:
1493                 list = &transaction->t_forget;
1494                 break;
1495         case BJ_IO:
1496                 list = &transaction->t_iobuf_list;
1497                 break;
1498         case BJ_Shadow:
1499                 list = &transaction->t_shadow_list;
1500                 break;
1501         case BJ_LogCtl:
1502                 list = &transaction->t_log_list;
1503                 break;
1504         case BJ_Reserved:
1505                 list = &transaction->t_reserved_list;
1506                 break;
1507         }
1508
1509         __blist_del_buffer(list, jh);
1510         jh->b_jlist = BJ_None;
1511         if (test_clear_buffer_jbddirty(bh))
1512                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1513 }
1514
1515 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1516 {
1517         __jbd2_journal_temp_unlink_buffer(jh);
1518         jh->b_transaction = NULL;
1519 }
1520
1521 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1522 {
1523         jbd_lock_bh_state(jh2bh(jh));
1524         spin_lock(&journal->j_list_lock);
1525         __jbd2_journal_unfile_buffer(jh);
1526         spin_unlock(&journal->j_list_lock);
1527         jbd_unlock_bh_state(jh2bh(jh));
1528 }
1529
1530 /*
1531  * Called from jbd2_journal_try_to_free_buffers().
1532  *
1533  * Called under jbd_lock_bh_state(bh)
1534  */
1535 static void
1536 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1537 {
1538         struct journal_head *jh;
1539
1540         jh = bh2jh(bh);
1541
1542         if (buffer_locked(bh) || buffer_dirty(bh))
1543                 goto out;
1544
1545         if (jh->b_next_transaction != NULL)
1546                 goto out;
1547
1548         spin_lock(&journal->j_list_lock);
1549         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1550                 /* written-back checkpointed metadata buffer */
1551                 if (jh->b_jlist == BJ_None) {
1552                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1553                         __jbd2_journal_remove_checkpoint(jh);
1554                         jbd2_journal_remove_journal_head(bh);
1555                         __brelse(bh);
1556                 }
1557         }
1558         spin_unlock(&journal->j_list_lock);
1559 out:
1560         return;
1561 }
1562
1563 /**
1564  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1565  * @journal: journal for operation
1566  * @page: to try and free
1567  * @gfp_mask: we use the mask to detect how hard should we try to release
1568  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1569  * release the buffers.
1570  *
1571  *
1572  * For all the buffers on this page,
1573  * if they are fully written out ordered data, move them onto BUF_CLEAN
1574  * so try_to_free_buffers() can reap them.
1575  *
1576  * This function returns non-zero if we wish try_to_free_buffers()
1577  * to be called. We do this if the page is releasable by try_to_free_buffers().
1578  * We also do it if the page has locked or dirty buffers and the caller wants
1579  * us to perform sync or async writeout.
1580  *
1581  * This complicates JBD locking somewhat.  We aren't protected by the
1582  * BKL here.  We wish to remove the buffer from its committing or
1583  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1584  *
1585  * This may *change* the value of transaction_t->t_datalist, so anyone
1586  * who looks at t_datalist needs to lock against this function.
1587  *
1588  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1589  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1590  * will come out of the lock with the buffer dirty, which makes it
1591  * ineligible for release here.
1592  *
1593  * Who else is affected by this?  hmm...  Really the only contender
1594  * is do_get_write_access() - it could be looking at the buffer while
1595  * journal_try_to_free_buffer() is changing its state.  But that
1596  * cannot happen because we never reallocate freed data as metadata
1597  * while the data is part of a transaction.  Yes?
1598  *
1599  * Return 0 on failure, 1 on success
1600  */
1601 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1602                                 struct page *page, gfp_t gfp_mask)
1603 {
1604         struct buffer_head *head;
1605         struct buffer_head *bh;
1606         int ret = 0;
1607
1608         J_ASSERT(PageLocked(page));
1609
1610         head = page_buffers(page);
1611         bh = head;
1612         do {
1613                 struct journal_head *jh;
1614
1615                 /*
1616                  * We take our own ref against the journal_head here to avoid
1617                  * having to add tons of locking around each instance of
1618                  * jbd2_journal_remove_journal_head() and
1619                  * jbd2_journal_put_journal_head().
1620                  */
1621                 jh = jbd2_journal_grab_journal_head(bh);
1622                 if (!jh)
1623                         continue;
1624
1625                 jbd_lock_bh_state(bh);
1626                 __journal_try_to_free_buffer(journal, bh);
1627                 jbd2_journal_put_journal_head(jh);
1628                 jbd_unlock_bh_state(bh);
1629                 if (buffer_jbd(bh))
1630                         goto busy;
1631         } while ((bh = bh->b_this_page) != head);
1632
1633         ret = try_to_free_buffers(page);
1634
1635 busy:
1636         return ret;
1637 }
1638
1639 /*
1640  * This buffer is no longer needed.  If it is on an older transaction's
1641  * checkpoint list we need to record it on this transaction's forget list
1642  * to pin this buffer (and hence its checkpointing transaction) down until
1643  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1644  * release it.
1645  * Returns non-zero if JBD no longer has an interest in the buffer.
1646  *
1647  * Called under j_list_lock.
1648  *
1649  * Called under jbd_lock_bh_state(bh).
1650  */
1651 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1652 {
1653         int may_free = 1;
1654         struct buffer_head *bh = jh2bh(jh);
1655
1656         __jbd2_journal_unfile_buffer(jh);
1657
1658         if (jh->b_cp_transaction) {
1659                 JBUFFER_TRACE(jh, "on running+cp transaction");
1660                 /*
1661                  * We don't want to write the buffer anymore, clear the
1662                  * bit so that we don't confuse checks in
1663                  * __journal_file_buffer
1664                  */
1665                 clear_buffer_dirty(bh);
1666                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1667                 may_free = 0;
1668         } else {
1669                 JBUFFER_TRACE(jh, "on running transaction");
1670                 jbd2_journal_remove_journal_head(bh);
1671                 __brelse(bh);
1672         }
1673         return may_free;
1674 }
1675
1676 /*
1677  * jbd2_journal_invalidatepage
1678  *
1679  * This code is tricky.  It has a number of cases to deal with.
1680  *
1681  * There are two invariants which this code relies on:
1682  *
1683  * i_size must be updated on disk before we start calling invalidatepage on the
1684  * data.
1685  *
1686  *  This is done in ext3 by defining an ext3_setattr method which
1687  *  updates i_size before truncate gets going.  By maintaining this
1688  *  invariant, we can be sure that it is safe to throw away any buffers
1689  *  attached to the current transaction: once the transaction commits,
1690  *  we know that the data will not be needed.
1691  *
1692  *  Note however that we can *not* throw away data belonging to the
1693  *  previous, committing transaction!
1694  *
1695  * Any disk blocks which *are* part of the previous, committing
1696  * transaction (and which therefore cannot be discarded immediately) are
1697  * not going to be reused in the new running transaction
1698  *
1699  *  The bitmap committed_data images guarantee this: any block which is
1700  *  allocated in one transaction and removed in the next will be marked
1701  *  as in-use in the committed_data bitmap, so cannot be reused until
1702  *  the next transaction to delete the block commits.  This means that
1703  *  leaving committing buffers dirty is quite safe: the disk blocks
1704  *  cannot be reallocated to a different file and so buffer aliasing is
1705  *  not possible.
1706  *
1707  *
1708  * The above applies mainly to ordered data mode.  In writeback mode we
1709  * don't make guarantees about the order in which data hits disk --- in
1710  * particular we don't guarantee that new dirty data is flushed before
1711  * transaction commit --- so it is always safe just to discard data
1712  * immediately in that mode.  --sct
1713  */
1714
1715 /*
1716  * The journal_unmap_buffer helper function returns zero if the buffer
1717  * concerned remains pinned as an anonymous buffer belonging to an older
1718  * transaction.
1719  *
1720  * We're outside-transaction here.  Either or both of j_running_transaction
1721  * and j_committing_transaction may be NULL.
1722  */
1723 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1724 {
1725         transaction_t *transaction;
1726         struct journal_head *jh;
1727         int may_free = 1;
1728         int ret;
1729
1730         BUFFER_TRACE(bh, "entry");
1731
1732         /*
1733          * It is safe to proceed here without the j_list_lock because the
1734          * buffers cannot be stolen by try_to_free_buffers as long as we are
1735          * holding the page lock. --sct
1736          */
1737
1738         if (!buffer_jbd(bh))
1739                 goto zap_buffer_unlocked;
1740
1741         /* OK, we have data buffer in journaled mode */
1742         spin_lock(&journal->j_state_lock);
1743         jbd_lock_bh_state(bh);
1744         spin_lock(&journal->j_list_lock);
1745
1746         jh = jbd2_journal_grab_journal_head(bh);
1747         if (!jh)
1748                 goto zap_buffer_no_jh;
1749
1750         /*
1751          * We cannot remove the buffer from checkpoint lists until the
1752          * transaction adding inode to orphan list (let's call it T)
1753          * is committed.  Otherwise if the transaction changing the
1754          * buffer would be cleaned from the journal before T is
1755          * committed, a crash will cause that the correct contents of
1756          * the buffer will be lost.  On the other hand we have to
1757          * clear the buffer dirty bit at latest at the moment when the
1758          * transaction marking the buffer as freed in the filesystem
1759          * structures is committed because from that moment on the
1760          * buffer can be reallocated and used by a different page.
1761          * Since the block hasn't been freed yet but the inode has
1762          * already been added to orphan list, it is safe for us to add
1763          * the buffer to BJ_Forget list of the newest transaction.
1764          */
1765         transaction = jh->b_transaction;
1766         if (transaction == NULL) {
1767                 /* First case: not on any transaction.  If it
1768                  * has no checkpoint link, then we can zap it:
1769                  * it's a writeback-mode buffer so we don't care
1770                  * if it hits disk safely. */
1771                 if (!jh->b_cp_transaction) {
1772                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1773                         goto zap_buffer;
1774                 }
1775
1776                 if (!buffer_dirty(bh)) {
1777                         /* bdflush has written it.  We can drop it now */
1778                         goto zap_buffer;
1779                 }
1780
1781                 /* OK, it must be in the journal but still not
1782                  * written fully to disk: it's metadata or
1783                  * journaled data... */
1784
1785                 if (journal->j_running_transaction) {
1786                         /* ... and once the current transaction has
1787                          * committed, the buffer won't be needed any
1788                          * longer. */
1789                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1790                         ret = __dispose_buffer(jh,
1791                                         journal->j_running_transaction);
1792                         jbd2_journal_put_journal_head(jh);
1793                         spin_unlock(&journal->j_list_lock);
1794                         jbd_unlock_bh_state(bh);
1795                         spin_unlock(&journal->j_state_lock);
1796                         return ret;
1797                 } else {
1798                         /* There is no currently-running transaction. So the
1799                          * orphan record which we wrote for this file must have
1800                          * passed into commit.  We must attach this buffer to
1801                          * the committing transaction, if it exists. */
1802                         if (journal->j_committing_transaction) {
1803                                 JBUFFER_TRACE(jh, "give to committing trans");
1804                                 ret = __dispose_buffer(jh,
1805                                         journal->j_committing_transaction);
1806                                 jbd2_journal_put_journal_head(jh);
1807                                 spin_unlock(&journal->j_list_lock);
1808                                 jbd_unlock_bh_state(bh);
1809                                 spin_unlock(&journal->j_state_lock);
1810                                 return ret;
1811                         } else {
1812                                 /* The orphan record's transaction has
1813                                  * committed.  We can cleanse this buffer */
1814                                 clear_buffer_jbddirty(bh);
1815                                 goto zap_buffer;
1816                         }
1817                 }
1818         } else if (transaction == journal->j_committing_transaction) {
1819                 JBUFFER_TRACE(jh, "on committing transaction");
1820                 /*
1821                  * The buffer is committing, we simply cannot touch
1822                  * it. So we just set j_next_transaction to the
1823                  * running transaction (if there is one) and mark
1824                  * buffer as freed so that commit code knows it should
1825                  * clear dirty bits when it is done with the buffer.
1826                  */
1827                 set_buffer_freed(bh);
1828                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1829                         jh->b_next_transaction = journal->j_running_transaction;
1830                 jbd2_journal_put_journal_head(jh);
1831                 spin_unlock(&journal->j_list_lock);
1832                 jbd_unlock_bh_state(bh);
1833                 spin_unlock(&journal->j_state_lock);
1834                 return 0;
1835         } else {
1836                 /* Good, the buffer belongs to the running transaction.
1837                  * We are writing our own transaction's data, not any
1838                  * previous one's, so it is safe to throw it away
1839                  * (remember that we expect the filesystem to have set
1840                  * i_size already for this truncate so recovery will not
1841                  * expose the disk blocks we are discarding here.) */
1842                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1843                 JBUFFER_TRACE(jh, "on running transaction");
1844                 may_free = __dispose_buffer(jh, transaction);
1845         }
1846
1847 zap_buffer:
1848         jbd2_journal_put_journal_head(jh);
1849 zap_buffer_no_jh:
1850         spin_unlock(&journal->j_list_lock);
1851         jbd_unlock_bh_state(bh);
1852         spin_unlock(&journal->j_state_lock);
1853 zap_buffer_unlocked:
1854         clear_buffer_dirty(bh);
1855         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1856         clear_buffer_mapped(bh);
1857         clear_buffer_req(bh);
1858         clear_buffer_new(bh);
1859         bh->b_bdev = NULL;
1860         return may_free;
1861 }
1862
1863 /**
1864  * void jbd2_journal_invalidatepage()
1865  * @journal: journal to use for flush...
1866  * @page:    page to flush
1867  * @offset:  length of page to invalidate.
1868  *
1869  * Reap page buffers containing data after offset in page.
1870  *
1871  */
1872 void jbd2_journal_invalidatepage(journal_t *journal,
1873                       struct page *page,
1874                       unsigned long offset)
1875 {
1876         struct buffer_head *head, *bh, *next;
1877         unsigned int curr_off = 0;
1878         int may_free = 1;
1879
1880         if (!PageLocked(page))
1881                 BUG();
1882         if (!page_has_buffers(page))
1883                 return;
1884
1885         /* We will potentially be playing with lists other than just the
1886          * data lists (especially for journaled data mode), so be
1887          * cautious in our locking. */
1888
1889         head = bh = page_buffers(page);
1890         do {
1891                 unsigned int next_off = curr_off + bh->b_size;
1892                 next = bh->b_this_page;
1893
1894                 if (offset <= curr_off) {
1895                         /* This block is wholly outside the truncation point */
1896                         lock_buffer(bh);
1897                         may_free &= journal_unmap_buffer(journal, bh);
1898                         unlock_buffer(bh);
1899                 }
1900                 curr_off = next_off;
1901                 bh = next;
1902
1903         } while (bh != head);
1904
1905         if (!offset) {
1906                 if (may_free && try_to_free_buffers(page))
1907                         J_ASSERT(!page_has_buffers(page));
1908         }
1909 }
1910
1911 /*
1912  * File a buffer on the given transaction list.
1913  */
1914 void __jbd2_journal_file_buffer(struct journal_head *jh,
1915                         transaction_t *transaction, int jlist)
1916 {
1917         struct journal_head **list = NULL;
1918         int was_dirty = 0;
1919         struct buffer_head *bh = jh2bh(jh);
1920
1921         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1922         assert_spin_locked(&transaction->t_journal->j_list_lock);
1923
1924         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1925         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1926                                 jh->b_transaction == NULL);
1927
1928         if (jh->b_transaction && jh->b_jlist == jlist)
1929                 return;
1930
1931         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1932             jlist == BJ_Shadow || jlist == BJ_Forget) {
1933                 /*
1934                  * For metadata buffers, we track dirty bit in buffer_jbddirty
1935                  * instead of buffer_dirty. We should not see a dirty bit set
1936                  * here because we clear it in do_get_write_access but e.g.
1937                  * tune2fs can modify the sb and set the dirty bit at any time
1938                  * so we try to gracefully handle that.
1939                  */
1940                 if (buffer_dirty(bh))
1941                         warn_dirty_buffer(bh);
1942                 if (test_clear_buffer_dirty(bh) ||
1943                     test_clear_buffer_jbddirty(bh))
1944                         was_dirty = 1;
1945         }
1946
1947         if (jh->b_transaction)
1948                 __jbd2_journal_temp_unlink_buffer(jh);
1949         jh->b_transaction = transaction;
1950
1951         switch (jlist) {
1952         case BJ_None:
1953                 J_ASSERT_JH(jh, !jh->b_committed_data);
1954                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1955                 return;
1956         case BJ_Metadata:
1957                 transaction->t_nr_buffers++;
1958                 list = &transaction->t_buffers;
1959                 break;
1960         case BJ_Forget:
1961                 list = &transaction->t_forget;
1962                 break;
1963         case BJ_IO:
1964                 list = &transaction->t_iobuf_list;
1965                 break;
1966         case BJ_Shadow:
1967                 list = &transaction->t_shadow_list;
1968                 break;
1969         case BJ_LogCtl:
1970                 list = &transaction->t_log_list;
1971                 break;
1972         case BJ_Reserved:
1973                 list = &transaction->t_reserved_list;
1974                 break;
1975         }
1976
1977         __blist_add_buffer(list, jh);
1978         jh->b_jlist = jlist;
1979
1980         if (was_dirty)
1981                 set_buffer_jbddirty(bh);
1982 }
1983
1984 void jbd2_journal_file_buffer(struct journal_head *jh,
1985                                 transaction_t *transaction, int jlist)
1986 {
1987         jbd_lock_bh_state(jh2bh(jh));
1988         spin_lock(&transaction->t_journal->j_list_lock);
1989         __jbd2_journal_file_buffer(jh, transaction, jlist);
1990         spin_unlock(&transaction->t_journal->j_list_lock);
1991         jbd_unlock_bh_state(jh2bh(jh));
1992 }
1993
1994 /*
1995  * Remove a buffer from its current buffer list in preparation for
1996  * dropping it from its current transaction entirely.  If the buffer has
1997  * already started to be used by a subsequent transaction, refile the
1998  * buffer on that transaction's metadata list.
1999  *
2000  * Called under journal->j_list_lock
2001  *
2002  * Called under jbd_lock_bh_state(jh2bh(jh))
2003  */
2004 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2005 {
2006         int was_dirty, jlist;
2007         struct buffer_head *bh = jh2bh(jh);
2008
2009         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2010         if (jh->b_transaction)
2011                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2012
2013         /* If the buffer is now unused, just drop it. */
2014         if (jh->b_next_transaction == NULL) {
2015                 __jbd2_journal_unfile_buffer(jh);
2016                 return;
2017         }
2018
2019         /*
2020          * It has been modified by a later transaction: add it to the new
2021          * transaction's metadata list.
2022          */
2023
2024         was_dirty = test_clear_buffer_jbddirty(bh);
2025         __jbd2_journal_temp_unlink_buffer(jh);
2026         jh->b_transaction = jh->b_next_transaction;
2027         jh->b_next_transaction = NULL;
2028         if (buffer_freed(bh))
2029                 jlist = BJ_Forget;
2030         else if (jh->b_modified)
2031                 jlist = BJ_Metadata;
2032         else
2033                 jlist = BJ_Reserved;
2034         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2035         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2036
2037         if (was_dirty)
2038                 set_buffer_jbddirty(bh);
2039 }
2040
2041 /*
2042  * For the unlocked version of this call, also make sure that any
2043  * hanging journal_head is cleaned up if necessary.
2044  *
2045  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2046  * operation on a buffer_head, in which the caller is probably going to
2047  * be hooking the journal_head onto other lists.  In that case it is up
2048  * to the caller to remove the journal_head if necessary.  For the
2049  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2050  * doing anything else to the buffer so we need to do the cleanup
2051  * ourselves to avoid a jh leak.
2052  *
2053  * *** The journal_head may be freed by this call! ***
2054  */
2055 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2056 {
2057         struct buffer_head *bh = jh2bh(jh);
2058
2059         jbd_lock_bh_state(bh);
2060         spin_lock(&journal->j_list_lock);
2061
2062         __jbd2_journal_refile_buffer(jh);
2063         jbd_unlock_bh_state(bh);
2064         jbd2_journal_remove_journal_head(bh);
2065
2066         spin_unlock(&journal->j_list_lock);
2067         __brelse(bh);
2068 }
2069
2070 /*
2071  * File inode in the inode list of the handle's transaction
2072  */
2073 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2074 {
2075         transaction_t *transaction = handle->h_transaction;
2076         journal_t *journal = transaction->t_journal;
2077
2078         if (is_handle_aborted(handle))
2079                 return -EIO;
2080
2081         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2082                         transaction->t_tid);
2083
2084         /*
2085          * First check whether inode isn't already on the transaction's
2086          * lists without taking the lock. Note that this check is safe
2087          * without the lock as we cannot race with somebody removing inode
2088          * from the transaction. The reason is that we remove inode from the
2089          * transaction only in journal_release_jbd_inode() and when we commit
2090          * the transaction. We are guarded from the first case by holding
2091          * a reference to the inode. We are safe against the second case
2092          * because if jinode->i_transaction == transaction, commit code
2093          * cannot touch the transaction because we hold reference to it,
2094          * and if jinode->i_next_transaction == transaction, commit code
2095          * will only file the inode where we want it.
2096          */
2097         if (jinode->i_transaction == transaction ||
2098             jinode->i_next_transaction == transaction)
2099                 return 0;
2100
2101         spin_lock(&journal->j_list_lock);
2102
2103         if (jinode->i_transaction == transaction ||
2104             jinode->i_next_transaction == transaction)
2105                 goto done;
2106
2107         /* On some different transaction's list - should be
2108          * the committing one */
2109         if (jinode->i_transaction) {
2110                 J_ASSERT(jinode->i_next_transaction == NULL);
2111                 J_ASSERT(jinode->i_transaction ==
2112                                         journal->j_committing_transaction);
2113                 jinode->i_next_transaction = transaction;
2114                 goto done;
2115         }
2116         /* Not on any transaction list... */
2117         J_ASSERT(!jinode->i_next_transaction);
2118         jinode->i_transaction = transaction;
2119         list_add(&jinode->i_list, &transaction->t_inode_list);
2120 done:
2121         spin_unlock(&journal->j_list_lock);
2122
2123         return 0;
2124 }
2125
2126 /*
2127  * File truncate and transaction commit interact with each other in a
2128  * non-trivial way.  If a transaction writing data block A is
2129  * committing, we cannot discard the data by truncate until we have
2130  * written them.  Otherwise if we crashed after the transaction with
2131  * write has committed but before the transaction with truncate has
2132  * committed, we could see stale data in block A.  This function is a
2133  * helper to solve this problem.  It starts writeout of the truncated
2134  * part in case it is in the committing transaction.
2135  *
2136  * Filesystem code must call this function when inode is journaled in
2137  * ordered mode before truncation happens and after the inode has been
2138  * placed on orphan list with the new inode size. The second condition
2139  * avoids the race that someone writes new data and we start
2140  * committing the transaction after this function has been called but
2141  * before a transaction for truncate is started (and furthermore it
2142  * allows us to optimize the case where the addition to orphan list
2143  * happens in the same transaction as write --- we don't have to write
2144  * any data in such case).
2145  */
2146 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2147                                         struct jbd2_inode *jinode,
2148                                         loff_t new_size)
2149 {
2150         transaction_t *inode_trans, *commit_trans;
2151         int ret = 0;
2152
2153         /* This is a quick check to avoid locking if not necessary */
2154         if (!jinode->i_transaction)
2155                 goto out;
2156         /* Locks are here just to force reading of recent values, it is
2157          * enough that the transaction was not committing before we started
2158          * a transaction adding the inode to orphan list */
2159         spin_lock(&journal->j_state_lock);
2160         commit_trans = journal->j_committing_transaction;
2161         spin_unlock(&journal->j_state_lock);
2162         spin_lock(&journal->j_list_lock);
2163         inode_trans = jinode->i_transaction;
2164         spin_unlock(&journal->j_list_lock);
2165         if (inode_trans == commit_trans) {
2166                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2167                         new_size, LLONG_MAX);
2168                 if (ret)
2169                         jbd2_journal_abort(journal, ret);
2170         }
2171 out:
2172         return ret;
2173 }