]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd2/journal.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[net-next-2.6.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/jbd2.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/page.h>
51
52 EXPORT_SYMBOL(jbd2_journal_extend);
53 EXPORT_SYMBOL(jbd2_journal_stop);
54 EXPORT_SYMBOL(jbd2_journal_lock_updates);
55 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
56 EXPORT_SYMBOL(jbd2_journal_get_write_access);
57 EXPORT_SYMBOL(jbd2_journal_get_create_access);
58 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
59 EXPORT_SYMBOL(jbd2_journal_set_triggers);
60 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
61 EXPORT_SYMBOL(jbd2_journal_release_buffer);
62 EXPORT_SYMBOL(jbd2_journal_forget);
63 #if 0
64 EXPORT_SYMBOL(journal_sync_buffer);
65 #endif
66 EXPORT_SYMBOL(jbd2_journal_flush);
67 EXPORT_SYMBOL(jbd2_journal_revoke);
68
69 EXPORT_SYMBOL(jbd2_journal_init_dev);
70 EXPORT_SYMBOL(jbd2_journal_init_inode);
71 EXPORT_SYMBOL(jbd2_journal_update_format);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94
95 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98
99 /*
100  * Helper function used to manage commit timeouts
101  */
102
103 static void commit_timeout(unsigned long __data)
104 {
105         struct task_struct * p = (struct task_struct *) __data;
106
107         wake_up_process(p);
108 }
109
110 /*
111  * kjournald2: The main thread function used to manage a logging device
112  * journal.
113  *
114  * This kernel thread is responsible for two things:
115  *
116  * 1) COMMIT:  Every so often we need to commit the current state of the
117  *    filesystem to disk.  The journal thread is responsible for writing
118  *    all of the metadata buffers to disk.
119  *
120  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
121  *    of the data in that part of the log has been rewritten elsewhere on
122  *    the disk.  Flushing these old buffers to reclaim space in the log is
123  *    known as checkpointing, and this thread is responsible for that job.
124  */
125
126 static int kjournald2(void *arg)
127 {
128         journal_t *journal = arg;
129         transaction_t *transaction;
130
131         /*
132          * Set up an interval timer which can be used to trigger a commit wakeup
133          * after the commit interval expires
134          */
135         setup_timer(&journal->j_commit_timer, commit_timeout,
136                         (unsigned long)current);
137
138         /* Record that the journal thread is running */
139         journal->j_task = current;
140         wake_up(&journal->j_wait_done_commit);
141
142         /*
143          * And now, wait forever for commit wakeup events.
144          */
145         write_lock(&journal->j_state_lock);
146
147 loop:
148         if (journal->j_flags & JBD2_UNMOUNT)
149                 goto end_loop;
150
151         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
152                 journal->j_commit_sequence, journal->j_commit_request);
153
154         if (journal->j_commit_sequence != journal->j_commit_request) {
155                 jbd_debug(1, "OK, requests differ\n");
156                 write_unlock(&journal->j_state_lock);
157                 del_timer_sync(&journal->j_commit_timer);
158                 jbd2_journal_commit_transaction(journal);
159                 write_lock(&journal->j_state_lock);
160                 goto loop;
161         }
162
163         wake_up(&journal->j_wait_done_commit);
164         if (freezing(current)) {
165                 /*
166                  * The simpler the better. Flushing journal isn't a
167                  * good idea, because that depends on threads that may
168                  * be already stopped.
169                  */
170                 jbd_debug(1, "Now suspending kjournald2\n");
171                 write_unlock(&journal->j_state_lock);
172                 refrigerator();
173                 write_lock(&journal->j_state_lock);
174         } else {
175                 /*
176                  * We assume on resume that commits are already there,
177                  * so we don't sleep
178                  */
179                 DEFINE_WAIT(wait);
180                 int should_sleep = 1;
181
182                 prepare_to_wait(&journal->j_wait_commit, &wait,
183                                 TASK_INTERRUPTIBLE);
184                 if (journal->j_commit_sequence != journal->j_commit_request)
185                         should_sleep = 0;
186                 transaction = journal->j_running_transaction;
187                 if (transaction && time_after_eq(jiffies,
188                                                 transaction->t_expires))
189                         should_sleep = 0;
190                 if (journal->j_flags & JBD2_UNMOUNT)
191                         should_sleep = 0;
192                 if (should_sleep) {
193                         write_unlock(&journal->j_state_lock);
194                         schedule();
195                         write_lock(&journal->j_state_lock);
196                 }
197                 finish_wait(&journal->j_wait_commit, &wait);
198         }
199
200         jbd_debug(1, "kjournald2 wakes\n");
201
202         /*
203          * Were we woken up by a commit wakeup event?
204          */
205         transaction = journal->j_running_transaction;
206         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
207                 journal->j_commit_request = transaction->t_tid;
208                 jbd_debug(1, "woke because of timeout\n");
209         }
210         goto loop;
211
212 end_loop:
213         write_unlock(&journal->j_state_lock);
214         del_timer_sync(&journal->j_commit_timer);
215         journal->j_task = NULL;
216         wake_up(&journal->j_wait_done_commit);
217         jbd_debug(1, "Journal thread exiting.\n");
218         return 0;
219 }
220
221 static int jbd2_journal_start_thread(journal_t *journal)
222 {
223         struct task_struct *t;
224
225         t = kthread_run(kjournald2, journal, "jbd2/%s",
226                         journal->j_devname);
227         if (IS_ERR(t))
228                 return PTR_ERR(t);
229
230         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
231         return 0;
232 }
233
234 static void journal_kill_thread(journal_t *journal)
235 {
236         write_lock(&journal->j_state_lock);
237         journal->j_flags |= JBD2_UNMOUNT;
238
239         while (journal->j_task) {
240                 wake_up(&journal->j_wait_commit);
241                 write_unlock(&journal->j_state_lock);
242                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
243                 write_lock(&journal->j_state_lock);
244         }
245         write_unlock(&journal->j_state_lock);
246 }
247
248 /*
249  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
250  *
251  * Writes a metadata buffer to a given disk block.  The actual IO is not
252  * performed but a new buffer_head is constructed which labels the data
253  * to be written with the correct destination disk block.
254  *
255  * Any magic-number escaping which needs to be done will cause a
256  * copy-out here.  If the buffer happens to start with the
257  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
258  * magic number is only written to the log for descripter blocks.  In
259  * this case, we copy the data and replace the first word with 0, and we
260  * return a result code which indicates that this buffer needs to be
261  * marked as an escaped buffer in the corresponding log descriptor
262  * block.  The missing word can then be restored when the block is read
263  * during recovery.
264  *
265  * If the source buffer has already been modified by a new transaction
266  * since we took the last commit snapshot, we use the frozen copy of
267  * that data for IO.  If we end up using the existing buffer_head's data
268  * for the write, then we *have* to lock the buffer to prevent anyone
269  * else from using and possibly modifying it while the IO is in
270  * progress.
271  *
272  * The function returns a pointer to the buffer_heads to be used for IO.
273  *
274  * We assume that the journal has already been locked in this function.
275  *
276  * Return value:
277  *  <0: Error
278  * >=0: Finished OK
279  *
280  * On success:
281  * Bit 0 set == escape performed on the data
282  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
283  */
284
285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
286                                   struct journal_head  *jh_in,
287                                   struct journal_head **jh_out,
288                                   unsigned long long blocknr)
289 {
290         int need_copy_out = 0;
291         int done_copy_out = 0;
292         int do_escape = 0;
293         char *mapped_data;
294         struct buffer_head *new_bh;
295         struct journal_head *new_jh;
296         struct page *new_page;
297         unsigned int new_offset;
298         struct buffer_head *bh_in = jh2bh(jh_in);
299         journal_t *journal = transaction->t_journal;
300
301         /*
302          * The buffer really shouldn't be locked: only the current committing
303          * transaction is allowed to write it, so nobody else is allowed
304          * to do any IO.
305          *
306          * akpm: except if we're journalling data, and write() output is
307          * also part of a shared mapping, and another thread has
308          * decided to launch a writepage() against this buffer.
309          */
310         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
311
312 retry_alloc:
313         new_bh = alloc_buffer_head(GFP_NOFS);
314         if (!new_bh) {
315                 /*
316                  * Failure is not an option, but __GFP_NOFAIL is going
317                  * away; so we retry ourselves here.
318                  */
319                 congestion_wait(BLK_RW_ASYNC, HZ/50);
320                 goto retry_alloc;
321         }
322
323         /* keep subsequent assertions sane */
324         new_bh->b_state = 0;
325         init_buffer(new_bh, NULL, NULL);
326         atomic_set(&new_bh->b_count, 1);
327         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
328
329         /*
330          * If a new transaction has already done a buffer copy-out, then
331          * we use that version of the data for the commit.
332          */
333         jbd_lock_bh_state(bh_in);
334 repeat:
335         if (jh_in->b_frozen_data) {
336                 done_copy_out = 1;
337                 new_page = virt_to_page(jh_in->b_frozen_data);
338                 new_offset = offset_in_page(jh_in->b_frozen_data);
339         } else {
340                 new_page = jh2bh(jh_in)->b_page;
341                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
342         }
343
344         mapped_data = kmap_atomic(new_page, KM_USER0);
345         /*
346          * Fire data frozen trigger if data already wasn't frozen.  Do this
347          * before checking for escaping, as the trigger may modify the magic
348          * offset.  If a copy-out happens afterwards, it will have the correct
349          * data in the buffer.
350          */
351         if (!done_copy_out)
352                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
353                                            jh_in->b_triggers);
354
355         /*
356          * Check for escaping
357          */
358         if (*((__be32 *)(mapped_data + new_offset)) ==
359                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
360                 need_copy_out = 1;
361                 do_escape = 1;
362         }
363         kunmap_atomic(mapped_data, KM_USER0);
364
365         /*
366          * Do we need to do a data copy?
367          */
368         if (need_copy_out && !done_copy_out) {
369                 char *tmp;
370
371                 jbd_unlock_bh_state(bh_in);
372                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
373                 if (!tmp) {
374                         jbd2_journal_put_journal_head(new_jh);
375                         return -ENOMEM;
376                 }
377                 jbd_lock_bh_state(bh_in);
378                 if (jh_in->b_frozen_data) {
379                         jbd2_free(tmp, bh_in->b_size);
380                         goto repeat;
381                 }
382
383                 jh_in->b_frozen_data = tmp;
384                 mapped_data = kmap_atomic(new_page, KM_USER0);
385                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
386                 kunmap_atomic(mapped_data, KM_USER0);
387
388                 new_page = virt_to_page(tmp);
389                 new_offset = offset_in_page(tmp);
390                 done_copy_out = 1;
391
392                 /*
393                  * This isn't strictly necessary, as we're using frozen
394                  * data for the escaping, but it keeps consistency with
395                  * b_frozen_data usage.
396                  */
397                 jh_in->b_frozen_triggers = jh_in->b_triggers;
398         }
399
400         /*
401          * Did we need to do an escaping?  Now we've done all the
402          * copying, we can finally do so.
403          */
404         if (do_escape) {
405                 mapped_data = kmap_atomic(new_page, KM_USER0);
406                 *((unsigned int *)(mapped_data + new_offset)) = 0;
407                 kunmap_atomic(mapped_data, KM_USER0);
408         }
409
410         set_bh_page(new_bh, new_page, new_offset);
411         new_jh->b_transaction = NULL;
412         new_bh->b_size = jh2bh(jh_in)->b_size;
413         new_bh->b_bdev = transaction->t_journal->j_dev;
414         new_bh->b_blocknr = blocknr;
415         set_buffer_mapped(new_bh);
416         set_buffer_dirty(new_bh);
417
418         *jh_out = new_jh;
419
420         /*
421          * The to-be-written buffer needs to get moved to the io queue,
422          * and the original buffer whose contents we are shadowing or
423          * copying is moved to the transaction's shadow queue.
424          */
425         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
426         spin_lock(&journal->j_list_lock);
427         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
428         spin_unlock(&journal->j_list_lock);
429         jbd_unlock_bh_state(bh_in);
430
431         JBUFFER_TRACE(new_jh, "file as BJ_IO");
432         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
433
434         return do_escape | (done_copy_out << 1);
435 }
436
437 /*
438  * Allocation code for the journal file.  Manage the space left in the
439  * journal, so that we can begin checkpointing when appropriate.
440  */
441
442 /*
443  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
444  *
445  * Called with the journal already locked.
446  *
447  * Called under j_state_lock
448  */
449
450 int __jbd2_log_space_left(journal_t *journal)
451 {
452         int left = journal->j_free;
453
454         /* assert_spin_locked(&journal->j_state_lock); */
455
456         /*
457          * Be pessimistic here about the number of those free blocks which
458          * might be required for log descriptor control blocks.
459          */
460
461 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
462
463         left -= MIN_LOG_RESERVED_BLOCKS;
464
465         if (left <= 0)
466                 return 0;
467         left -= (left >> 3);
468         return left;
469 }
470
471 /*
472  * Called under j_state_lock.  Returns true if a transaction commit was started.
473  */
474 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
475 {
476         /*
477          * Are we already doing a recent enough commit?
478          */
479         if (!tid_geq(journal->j_commit_request, target)) {
480                 /*
481                  * We want a new commit: OK, mark the request and wakup the
482                  * commit thread.  We do _not_ do the commit ourselves.
483                  */
484
485                 journal->j_commit_request = target;
486                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
487                           journal->j_commit_request,
488                           journal->j_commit_sequence);
489                 wake_up(&journal->j_wait_commit);
490                 return 1;
491         }
492         return 0;
493 }
494
495 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
496 {
497         int ret;
498
499         write_lock(&journal->j_state_lock);
500         ret = __jbd2_log_start_commit(journal, tid);
501         write_unlock(&journal->j_state_lock);
502         return ret;
503 }
504
505 /*
506  * Force and wait upon a commit if the calling process is not within
507  * transaction.  This is used for forcing out undo-protected data which contains
508  * bitmaps, when the fs is running out of space.
509  *
510  * We can only force the running transaction if we don't have an active handle;
511  * otherwise, we will deadlock.
512  *
513  * Returns true if a transaction was started.
514  */
515 int jbd2_journal_force_commit_nested(journal_t *journal)
516 {
517         transaction_t *transaction = NULL;
518         tid_t tid;
519
520         read_lock(&journal->j_state_lock);
521         if (journal->j_running_transaction && !current->journal_info) {
522                 transaction = journal->j_running_transaction;
523                 __jbd2_log_start_commit(journal, transaction->t_tid);
524         } else if (journal->j_committing_transaction)
525                 transaction = journal->j_committing_transaction;
526
527         if (!transaction) {
528                 read_unlock(&journal->j_state_lock);
529                 return 0;       /* Nothing to retry */
530         }
531
532         tid = transaction->t_tid;
533         read_unlock(&journal->j_state_lock);
534         jbd2_log_wait_commit(journal, tid);
535         return 1;
536 }
537
538 /*
539  * Start a commit of the current running transaction (if any).  Returns true
540  * if a transaction is going to be committed (or is currently already
541  * committing), and fills its tid in at *ptid
542  */
543 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
544 {
545         int ret = 0;
546
547         write_lock(&journal->j_state_lock);
548         if (journal->j_running_transaction) {
549                 tid_t tid = journal->j_running_transaction->t_tid;
550
551                 __jbd2_log_start_commit(journal, tid);
552                 /* There's a running transaction and we've just made sure
553                  * it's commit has been scheduled. */
554                 if (ptid)
555                         *ptid = tid;
556                 ret = 1;
557         } else if (journal->j_committing_transaction) {
558                 /*
559                  * If ext3_write_super() recently started a commit, then we
560                  * have to wait for completion of that transaction
561                  */
562                 if (ptid)
563                         *ptid = journal->j_committing_transaction->t_tid;
564                 ret = 1;
565         }
566         write_unlock(&journal->j_state_lock);
567         return ret;
568 }
569
570 /*
571  * Wait for a specified commit to complete.
572  * The caller may not hold the journal lock.
573  */
574 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
575 {
576         int err = 0;
577
578         read_lock(&journal->j_state_lock);
579 #ifdef CONFIG_JBD2_DEBUG
580         if (!tid_geq(journal->j_commit_request, tid)) {
581                 printk(KERN_EMERG
582                        "%s: error: j_commit_request=%d, tid=%d\n",
583                        __func__, journal->j_commit_request, tid);
584         }
585 #endif
586         while (tid_gt(tid, journal->j_commit_sequence)) {
587                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
588                                   tid, journal->j_commit_sequence);
589                 wake_up(&journal->j_wait_commit);
590                 read_unlock(&journal->j_state_lock);
591                 wait_event(journal->j_wait_done_commit,
592                                 !tid_gt(tid, journal->j_commit_sequence));
593                 read_lock(&journal->j_state_lock);
594         }
595         read_unlock(&journal->j_state_lock);
596
597         if (unlikely(is_journal_aborted(journal))) {
598                 printk(KERN_EMERG "journal commit I/O error\n");
599                 err = -EIO;
600         }
601         return err;
602 }
603
604 /*
605  * Log buffer allocation routines:
606  */
607
608 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
609 {
610         unsigned long blocknr;
611
612         write_lock(&journal->j_state_lock);
613         J_ASSERT(journal->j_free > 1);
614
615         blocknr = journal->j_head;
616         journal->j_head++;
617         journal->j_free--;
618         if (journal->j_head == journal->j_last)
619                 journal->j_head = journal->j_first;
620         write_unlock(&journal->j_state_lock);
621         return jbd2_journal_bmap(journal, blocknr, retp);
622 }
623
624 /*
625  * Conversion of logical to physical block numbers for the journal
626  *
627  * On external journals the journal blocks are identity-mapped, so
628  * this is a no-op.  If needed, we can use j_blk_offset - everything is
629  * ready.
630  */
631 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
632                  unsigned long long *retp)
633 {
634         int err = 0;
635         unsigned long long ret;
636
637         if (journal->j_inode) {
638                 ret = bmap(journal->j_inode, blocknr);
639                 if (ret)
640                         *retp = ret;
641                 else {
642                         printk(KERN_ALERT "%s: journal block not found "
643                                         "at offset %lu on %s\n",
644                                __func__, blocknr, journal->j_devname);
645                         err = -EIO;
646                         __journal_abort_soft(journal, err);
647                 }
648         } else {
649                 *retp = blocknr; /* +journal->j_blk_offset */
650         }
651         return err;
652 }
653
654 /*
655  * We play buffer_head aliasing tricks to write data/metadata blocks to
656  * the journal without copying their contents, but for journal
657  * descriptor blocks we do need to generate bona fide buffers.
658  *
659  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
660  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
661  * But we don't bother doing that, so there will be coherency problems with
662  * mmaps of blockdevs which hold live JBD-controlled filesystems.
663  */
664 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
665 {
666         struct buffer_head *bh;
667         unsigned long long blocknr;
668         int err;
669
670         err = jbd2_journal_next_log_block(journal, &blocknr);
671
672         if (err)
673                 return NULL;
674
675         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
676         if (!bh)
677                 return NULL;
678         lock_buffer(bh);
679         memset(bh->b_data, 0, journal->j_blocksize);
680         set_buffer_uptodate(bh);
681         unlock_buffer(bh);
682         BUFFER_TRACE(bh, "return this buffer");
683         return jbd2_journal_add_journal_head(bh);
684 }
685
686 struct jbd2_stats_proc_session {
687         journal_t *journal;
688         struct transaction_stats_s *stats;
689         int start;
690         int max;
691 };
692
693 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
694 {
695         return *pos ? NULL : SEQ_START_TOKEN;
696 }
697
698 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
699 {
700         return NULL;
701 }
702
703 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
704 {
705         struct jbd2_stats_proc_session *s = seq->private;
706
707         if (v != SEQ_START_TOKEN)
708                 return 0;
709         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
710                         s->stats->ts_tid,
711                         s->journal->j_max_transaction_buffers);
712         if (s->stats->ts_tid == 0)
713                 return 0;
714         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
715             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
716         seq_printf(seq, "  %ums running transaction\n",
717             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
718         seq_printf(seq, "  %ums transaction was being locked\n",
719             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
720         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
721             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
722         seq_printf(seq, "  %ums logging transaction\n",
723             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
724         seq_printf(seq, "  %lluus average transaction commit time\n",
725                    div_u64(s->journal->j_average_commit_time, 1000));
726         seq_printf(seq, "  %lu handles per transaction\n",
727             s->stats->run.rs_handle_count / s->stats->ts_tid);
728         seq_printf(seq, "  %lu blocks per transaction\n",
729             s->stats->run.rs_blocks / s->stats->ts_tid);
730         seq_printf(seq, "  %lu logged blocks per transaction\n",
731             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
732         return 0;
733 }
734
735 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
736 {
737 }
738
739 static const struct seq_operations jbd2_seq_info_ops = {
740         .start  = jbd2_seq_info_start,
741         .next   = jbd2_seq_info_next,
742         .stop   = jbd2_seq_info_stop,
743         .show   = jbd2_seq_info_show,
744 };
745
746 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
747 {
748         journal_t *journal = PDE(inode)->data;
749         struct jbd2_stats_proc_session *s;
750         int rc, size;
751
752         s = kmalloc(sizeof(*s), GFP_KERNEL);
753         if (s == NULL)
754                 return -ENOMEM;
755         size = sizeof(struct transaction_stats_s);
756         s->stats = kmalloc(size, GFP_KERNEL);
757         if (s->stats == NULL) {
758                 kfree(s);
759                 return -ENOMEM;
760         }
761         spin_lock(&journal->j_history_lock);
762         memcpy(s->stats, &journal->j_stats, size);
763         s->journal = journal;
764         spin_unlock(&journal->j_history_lock);
765
766         rc = seq_open(file, &jbd2_seq_info_ops);
767         if (rc == 0) {
768                 struct seq_file *m = file->private_data;
769                 m->private = s;
770         } else {
771                 kfree(s->stats);
772                 kfree(s);
773         }
774         return rc;
775
776 }
777
778 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
779 {
780         struct seq_file *seq = file->private_data;
781         struct jbd2_stats_proc_session *s = seq->private;
782         kfree(s->stats);
783         kfree(s);
784         return seq_release(inode, file);
785 }
786
787 static const struct file_operations jbd2_seq_info_fops = {
788         .owner          = THIS_MODULE,
789         .open           = jbd2_seq_info_open,
790         .read           = seq_read,
791         .llseek         = seq_lseek,
792         .release        = jbd2_seq_info_release,
793 };
794
795 static struct proc_dir_entry *proc_jbd2_stats;
796
797 static void jbd2_stats_proc_init(journal_t *journal)
798 {
799         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
800         if (journal->j_proc_entry) {
801                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
802                                  &jbd2_seq_info_fops, journal);
803         }
804 }
805
806 static void jbd2_stats_proc_exit(journal_t *journal)
807 {
808         remove_proc_entry("info", journal->j_proc_entry);
809         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
810 }
811
812 /*
813  * Management for journal control blocks: functions to create and
814  * destroy journal_t structures, and to initialise and read existing
815  * journal blocks from disk.  */
816
817 /* First: create and setup a journal_t object in memory.  We initialise
818  * very few fields yet: that has to wait until we have created the
819  * journal structures from from scratch, or loaded them from disk. */
820
821 static journal_t * journal_init_common (void)
822 {
823         journal_t *journal;
824         int err;
825
826         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
827         if (!journal)
828                 goto fail;
829
830         init_waitqueue_head(&journal->j_wait_transaction_locked);
831         init_waitqueue_head(&journal->j_wait_logspace);
832         init_waitqueue_head(&journal->j_wait_done_commit);
833         init_waitqueue_head(&journal->j_wait_checkpoint);
834         init_waitqueue_head(&journal->j_wait_commit);
835         init_waitqueue_head(&journal->j_wait_updates);
836         mutex_init(&journal->j_barrier);
837         mutex_init(&journal->j_checkpoint_mutex);
838         spin_lock_init(&journal->j_revoke_lock);
839         spin_lock_init(&journal->j_list_lock);
840         rwlock_init(&journal->j_state_lock);
841
842         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
843         journal->j_min_batch_time = 0;
844         journal->j_max_batch_time = 15000; /* 15ms */
845
846         /* The journal is marked for error until we succeed with recovery! */
847         journal->j_flags = JBD2_ABORT;
848
849         /* Set up a default-sized revoke table for the new mount. */
850         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
851         if (err) {
852                 kfree(journal);
853                 goto fail;
854         }
855
856         spin_lock_init(&journal->j_history_lock);
857
858         return journal;
859 fail:
860         return NULL;
861 }
862
863 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
864  *
865  * Create a journal structure assigned some fixed set of disk blocks to
866  * the journal.  We don't actually touch those disk blocks yet, but we
867  * need to set up all of the mapping information to tell the journaling
868  * system where the journal blocks are.
869  *
870  */
871
872 /**
873  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
874  *  @bdev: Block device on which to create the journal
875  *  @fs_dev: Device which hold journalled filesystem for this journal.
876  *  @start: Block nr Start of journal.
877  *  @len:  Length of the journal in blocks.
878  *  @blocksize: blocksize of journalling device
879  *
880  *  Returns: a newly created journal_t *
881  *
882  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
883  *  range of blocks on an arbitrary block device.
884  *
885  */
886 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
887                         struct block_device *fs_dev,
888                         unsigned long long start, int len, int blocksize)
889 {
890         journal_t *journal = journal_init_common();
891         struct buffer_head *bh;
892         char *p;
893         int n;
894
895         if (!journal)
896                 return NULL;
897
898         /* journal descriptor can store up to n blocks -bzzz */
899         journal->j_blocksize = blocksize;
900         jbd2_stats_proc_init(journal);
901         n = journal->j_blocksize / sizeof(journal_block_tag_t);
902         journal->j_wbufsize = n;
903         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
904         if (!journal->j_wbuf) {
905                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
906                         __func__);
907                 goto out_err;
908         }
909         journal->j_dev = bdev;
910         journal->j_fs_dev = fs_dev;
911         journal->j_blk_offset = start;
912         journal->j_maxlen = len;
913         bdevname(journal->j_dev, journal->j_devname);
914         p = journal->j_devname;
915         while ((p = strchr(p, '/')))
916                 *p = '!';
917
918         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
919         if (!bh) {
920                 printk(KERN_ERR
921                        "%s: Cannot get buffer for journal superblock\n",
922                        __func__);
923                 goto out_err;
924         }
925         journal->j_sb_buffer = bh;
926         journal->j_superblock = (journal_superblock_t *)bh->b_data;
927
928         return journal;
929 out_err:
930         kfree(journal->j_wbuf);
931         jbd2_stats_proc_exit(journal);
932         kfree(journal);
933         return NULL;
934 }
935
936 /**
937  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
938  *  @inode: An inode to create the journal in
939  *
940  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
941  * the journal.  The inode must exist already, must support bmap() and
942  * must have all data blocks preallocated.
943  */
944 journal_t * jbd2_journal_init_inode (struct inode *inode)
945 {
946         struct buffer_head *bh;
947         journal_t *journal = journal_init_common();
948         char *p;
949         int err;
950         int n;
951         unsigned long long blocknr;
952
953         if (!journal)
954                 return NULL;
955
956         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
957         journal->j_inode = inode;
958         bdevname(journal->j_dev, journal->j_devname);
959         p = journal->j_devname;
960         while ((p = strchr(p, '/')))
961                 *p = '!';
962         p = journal->j_devname + strlen(journal->j_devname);
963         sprintf(p, "-%lu", journal->j_inode->i_ino);
964         jbd_debug(1,
965                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
966                   journal, inode->i_sb->s_id, inode->i_ino,
967                   (long long) inode->i_size,
968                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
969
970         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
971         journal->j_blocksize = inode->i_sb->s_blocksize;
972         jbd2_stats_proc_init(journal);
973
974         /* journal descriptor can store up to n blocks -bzzz */
975         n = journal->j_blocksize / sizeof(journal_block_tag_t);
976         journal->j_wbufsize = n;
977         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
978         if (!journal->j_wbuf) {
979                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
980                         __func__);
981                 goto out_err;
982         }
983
984         err = jbd2_journal_bmap(journal, 0, &blocknr);
985         /* If that failed, give up */
986         if (err) {
987                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
988                        __func__);
989                 goto out_err;
990         }
991
992         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
993         if (!bh) {
994                 printk(KERN_ERR
995                        "%s: Cannot get buffer for journal superblock\n",
996                        __func__);
997                 goto out_err;
998         }
999         journal->j_sb_buffer = bh;
1000         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1001
1002         return journal;
1003 out_err:
1004         kfree(journal->j_wbuf);
1005         jbd2_stats_proc_exit(journal);
1006         kfree(journal);
1007         return NULL;
1008 }
1009
1010 /*
1011  * If the journal init or create aborts, we need to mark the journal
1012  * superblock as being NULL to prevent the journal destroy from writing
1013  * back a bogus superblock.
1014  */
1015 static void journal_fail_superblock (journal_t *journal)
1016 {
1017         struct buffer_head *bh = journal->j_sb_buffer;
1018         brelse(bh);
1019         journal->j_sb_buffer = NULL;
1020 }
1021
1022 /*
1023  * Given a journal_t structure, initialise the various fields for
1024  * startup of a new journaling session.  We use this both when creating
1025  * a journal, and after recovering an old journal to reset it for
1026  * subsequent use.
1027  */
1028
1029 static int journal_reset(journal_t *journal)
1030 {
1031         journal_superblock_t *sb = journal->j_superblock;
1032         unsigned long long first, last;
1033
1034         first = be32_to_cpu(sb->s_first);
1035         last = be32_to_cpu(sb->s_maxlen);
1036         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1037                 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1038                        first, last);
1039                 journal_fail_superblock(journal);
1040                 return -EINVAL;
1041         }
1042
1043         journal->j_first = first;
1044         journal->j_last = last;
1045
1046         journal->j_head = first;
1047         journal->j_tail = first;
1048         journal->j_free = last - first;
1049
1050         journal->j_tail_sequence = journal->j_transaction_sequence;
1051         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1052         journal->j_commit_request = journal->j_commit_sequence;
1053
1054         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1055
1056         /* Add the dynamic fields and write it to disk. */
1057         jbd2_journal_update_superblock(journal, 1);
1058         return jbd2_journal_start_thread(journal);
1059 }
1060
1061 /**
1062  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1063  * @journal: The journal to update.
1064  * @wait: Set to '0' if you don't want to wait for IO completion.
1065  *
1066  * Update a journal's dynamic superblock fields and write it to disk,
1067  * optionally waiting for the IO to complete.
1068  */
1069 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1070 {
1071         journal_superblock_t *sb = journal->j_superblock;
1072         struct buffer_head *bh = journal->j_sb_buffer;
1073
1074         /*
1075          * As a special case, if the on-disk copy is already marked as needing
1076          * no recovery (s_start == 0) and there are no outstanding transactions
1077          * in the filesystem, then we can safely defer the superblock update
1078          * until the next commit by setting JBD2_FLUSHED.  This avoids
1079          * attempting a write to a potential-readonly device.
1080          */
1081         if (sb->s_start == 0 && journal->j_tail_sequence ==
1082                                 journal->j_transaction_sequence) {
1083                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1084                         "(start %ld, seq %d, errno %d)\n",
1085                         journal->j_tail, journal->j_tail_sequence,
1086                         journal->j_errno);
1087                 goto out;
1088         }
1089
1090         if (buffer_write_io_error(bh)) {
1091                 /*
1092                  * Oh, dear.  A previous attempt to write the journal
1093                  * superblock failed.  This could happen because the
1094                  * USB device was yanked out.  Or it could happen to
1095                  * be a transient write error and maybe the block will
1096                  * be remapped.  Nothing we can do but to retry the
1097                  * write and hope for the best.
1098                  */
1099                 printk(KERN_ERR "JBD2: previous I/O error detected "
1100                        "for journal superblock update for %s.\n",
1101                        journal->j_devname);
1102                 clear_buffer_write_io_error(bh);
1103                 set_buffer_uptodate(bh);
1104         }
1105
1106         read_lock(&journal->j_state_lock);
1107         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1108                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1109
1110         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1111         sb->s_start    = cpu_to_be32(journal->j_tail);
1112         sb->s_errno    = cpu_to_be32(journal->j_errno);
1113         read_unlock(&journal->j_state_lock);
1114
1115         BUFFER_TRACE(bh, "marking dirty");
1116         mark_buffer_dirty(bh);
1117         if (wait) {
1118                 sync_dirty_buffer(bh);
1119                 if (buffer_write_io_error(bh)) {
1120                         printk(KERN_ERR "JBD2: I/O error detected "
1121                                "when updating journal superblock for %s.\n",
1122                                journal->j_devname);
1123                         clear_buffer_write_io_error(bh);
1124                         set_buffer_uptodate(bh);
1125                 }
1126         } else
1127                 write_dirty_buffer(bh, WRITE);
1128
1129 out:
1130         /* If we have just flushed the log (by marking s_start==0), then
1131          * any future commit will have to be careful to update the
1132          * superblock again to re-record the true start of the log. */
1133
1134         write_lock(&journal->j_state_lock);
1135         if (sb->s_start)
1136                 journal->j_flags &= ~JBD2_FLUSHED;
1137         else
1138                 journal->j_flags |= JBD2_FLUSHED;
1139         write_unlock(&journal->j_state_lock);
1140 }
1141
1142 /*
1143  * Read the superblock for a given journal, performing initial
1144  * validation of the format.
1145  */
1146
1147 static int journal_get_superblock(journal_t *journal)
1148 {
1149         struct buffer_head *bh;
1150         journal_superblock_t *sb;
1151         int err = -EIO;
1152
1153         bh = journal->j_sb_buffer;
1154
1155         J_ASSERT(bh != NULL);
1156         if (!buffer_uptodate(bh)) {
1157                 ll_rw_block(READ, 1, &bh);
1158                 wait_on_buffer(bh);
1159                 if (!buffer_uptodate(bh)) {
1160                         printk (KERN_ERR
1161                                 "JBD: IO error reading journal superblock\n");
1162                         goto out;
1163                 }
1164         }
1165
1166         sb = journal->j_superblock;
1167
1168         err = -EINVAL;
1169
1170         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1171             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1172                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1173                 goto out;
1174         }
1175
1176         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1177         case JBD2_SUPERBLOCK_V1:
1178                 journal->j_format_version = 1;
1179                 break;
1180         case JBD2_SUPERBLOCK_V2:
1181                 journal->j_format_version = 2;
1182                 break;
1183         default:
1184                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1185                 goto out;
1186         }
1187
1188         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1189                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1190         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1191                 printk (KERN_WARNING "JBD: journal file too short\n");
1192                 goto out;
1193         }
1194
1195         return 0;
1196
1197 out:
1198         journal_fail_superblock(journal);
1199         return err;
1200 }
1201
1202 /*
1203  * Load the on-disk journal superblock and read the key fields into the
1204  * journal_t.
1205  */
1206
1207 static int load_superblock(journal_t *journal)
1208 {
1209         int err;
1210         journal_superblock_t *sb;
1211
1212         err = journal_get_superblock(journal);
1213         if (err)
1214                 return err;
1215
1216         sb = journal->j_superblock;
1217
1218         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1219         journal->j_tail = be32_to_cpu(sb->s_start);
1220         journal->j_first = be32_to_cpu(sb->s_first);
1221         journal->j_last = be32_to_cpu(sb->s_maxlen);
1222         journal->j_errno = be32_to_cpu(sb->s_errno);
1223
1224         return 0;
1225 }
1226
1227
1228 /**
1229  * int jbd2_journal_load() - Read journal from disk.
1230  * @journal: Journal to act on.
1231  *
1232  * Given a journal_t structure which tells us which disk blocks contain
1233  * a journal, read the journal from disk to initialise the in-memory
1234  * structures.
1235  */
1236 int jbd2_journal_load(journal_t *journal)
1237 {
1238         int err;
1239         journal_superblock_t *sb;
1240
1241         err = load_superblock(journal);
1242         if (err)
1243                 return err;
1244
1245         sb = journal->j_superblock;
1246         /* If this is a V2 superblock, then we have to check the
1247          * features flags on it. */
1248
1249         if (journal->j_format_version >= 2) {
1250                 if ((sb->s_feature_ro_compat &
1251                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1252                     (sb->s_feature_incompat &
1253                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1254                         printk (KERN_WARNING
1255                                 "JBD: Unrecognised features on journal\n");
1256                         return -EINVAL;
1257                 }
1258         }
1259
1260         /*
1261          * Create a slab for this blocksize
1262          */
1263         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1264         if (err)
1265                 return err;
1266
1267         /* Let the recovery code check whether it needs to recover any
1268          * data from the journal. */
1269         if (jbd2_journal_recover(journal))
1270                 goto recovery_error;
1271
1272         if (journal->j_failed_commit) {
1273                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1274                        "is corrupt.\n", journal->j_failed_commit,
1275                        journal->j_devname);
1276                 return -EIO;
1277         }
1278
1279         /* OK, we've finished with the dynamic journal bits:
1280          * reinitialise the dynamic contents of the superblock in memory
1281          * and reset them on disk. */
1282         if (journal_reset(journal))
1283                 goto recovery_error;
1284
1285         journal->j_flags &= ~JBD2_ABORT;
1286         journal->j_flags |= JBD2_LOADED;
1287         return 0;
1288
1289 recovery_error:
1290         printk (KERN_WARNING "JBD: recovery failed\n");
1291         return -EIO;
1292 }
1293
1294 /**
1295  * void jbd2_journal_destroy() - Release a journal_t structure.
1296  * @journal: Journal to act on.
1297  *
1298  * Release a journal_t structure once it is no longer in use by the
1299  * journaled object.
1300  * Return <0 if we couldn't clean up the journal.
1301  */
1302 int jbd2_journal_destroy(journal_t *journal)
1303 {
1304         int err = 0;
1305
1306         /* Wait for the commit thread to wake up and die. */
1307         journal_kill_thread(journal);
1308
1309         /* Force a final log commit */
1310         if (journal->j_running_transaction)
1311                 jbd2_journal_commit_transaction(journal);
1312
1313         /* Force any old transactions to disk */
1314
1315         /* Totally anal locking here... */
1316         spin_lock(&journal->j_list_lock);
1317         while (journal->j_checkpoint_transactions != NULL) {
1318                 spin_unlock(&journal->j_list_lock);
1319                 mutex_lock(&journal->j_checkpoint_mutex);
1320                 jbd2_log_do_checkpoint(journal);
1321                 mutex_unlock(&journal->j_checkpoint_mutex);
1322                 spin_lock(&journal->j_list_lock);
1323         }
1324
1325         J_ASSERT(journal->j_running_transaction == NULL);
1326         J_ASSERT(journal->j_committing_transaction == NULL);
1327         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1328         spin_unlock(&journal->j_list_lock);
1329
1330         if (journal->j_sb_buffer) {
1331                 if (!is_journal_aborted(journal)) {
1332                         /* We can now mark the journal as empty. */
1333                         journal->j_tail = 0;
1334                         journal->j_tail_sequence =
1335                                 ++journal->j_transaction_sequence;
1336                         jbd2_journal_update_superblock(journal, 1);
1337                 } else {
1338                         err = -EIO;
1339                 }
1340                 brelse(journal->j_sb_buffer);
1341         }
1342
1343         if (journal->j_proc_entry)
1344                 jbd2_stats_proc_exit(journal);
1345         if (journal->j_inode)
1346                 iput(journal->j_inode);
1347         if (journal->j_revoke)
1348                 jbd2_journal_destroy_revoke(journal);
1349         kfree(journal->j_wbuf);
1350         kfree(journal);
1351
1352         return err;
1353 }
1354
1355
1356 /**
1357  *int jbd2_journal_check_used_features () - Check if features specified are used.
1358  * @journal: Journal to check.
1359  * @compat: bitmask of compatible features
1360  * @ro: bitmask of features that force read-only mount
1361  * @incompat: bitmask of incompatible features
1362  *
1363  * Check whether the journal uses all of a given set of
1364  * features.  Return true (non-zero) if it does.
1365  **/
1366
1367 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1368                                  unsigned long ro, unsigned long incompat)
1369 {
1370         journal_superblock_t *sb;
1371
1372         if (!compat && !ro && !incompat)
1373                 return 1;
1374         if (journal->j_format_version == 1)
1375                 return 0;
1376
1377         sb = journal->j_superblock;
1378
1379         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1380             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1381             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1382                 return 1;
1383
1384         return 0;
1385 }
1386
1387 /**
1388  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1389  * @journal: Journal to check.
1390  * @compat: bitmask of compatible features
1391  * @ro: bitmask of features that force read-only mount
1392  * @incompat: bitmask of incompatible features
1393  *
1394  * Check whether the journaling code supports the use of
1395  * all of a given set of features on this journal.  Return true
1396  * (non-zero) if it can. */
1397
1398 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1399                                       unsigned long ro, unsigned long incompat)
1400 {
1401         if (!compat && !ro && !incompat)
1402                 return 1;
1403
1404         /* We can support any known requested features iff the
1405          * superblock is in version 2.  Otherwise we fail to support any
1406          * extended sb features. */
1407
1408         if (journal->j_format_version != 2)
1409                 return 0;
1410
1411         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1412             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1413             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1414                 return 1;
1415
1416         return 0;
1417 }
1418
1419 /**
1420  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1421  * @journal: Journal to act on.
1422  * @compat: bitmask of compatible features
1423  * @ro: bitmask of features that force read-only mount
1424  * @incompat: bitmask of incompatible features
1425  *
1426  * Mark a given journal feature as present on the
1427  * superblock.  Returns true if the requested features could be set.
1428  *
1429  */
1430
1431 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1432                           unsigned long ro, unsigned long incompat)
1433 {
1434         journal_superblock_t *sb;
1435
1436         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1437                 return 1;
1438
1439         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1440                 return 0;
1441
1442         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1443                   compat, ro, incompat);
1444
1445         sb = journal->j_superblock;
1446
1447         sb->s_feature_compat    |= cpu_to_be32(compat);
1448         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1449         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1450
1451         return 1;
1452 }
1453
1454 /*
1455  * jbd2_journal_clear_features () - Clear a given journal feature in the
1456  *                                  superblock
1457  * @journal: Journal to act on.
1458  * @compat: bitmask of compatible features
1459  * @ro: bitmask of features that force read-only mount
1460  * @incompat: bitmask of incompatible features
1461  *
1462  * Clear a given journal feature as present on the
1463  * superblock.
1464  */
1465 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1466                                 unsigned long ro, unsigned long incompat)
1467 {
1468         journal_superblock_t *sb;
1469
1470         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1471                   compat, ro, incompat);
1472
1473         sb = journal->j_superblock;
1474
1475         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1476         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1477         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1478 }
1479 EXPORT_SYMBOL(jbd2_journal_clear_features);
1480
1481 /**
1482  * int jbd2_journal_update_format () - Update on-disk journal structure.
1483  * @journal: Journal to act on.
1484  *
1485  * Given an initialised but unloaded journal struct, poke about in the
1486  * on-disk structure to update it to the most recent supported version.
1487  */
1488 int jbd2_journal_update_format (journal_t *journal)
1489 {
1490         journal_superblock_t *sb;
1491         int err;
1492
1493         err = journal_get_superblock(journal);
1494         if (err)
1495                 return err;
1496
1497         sb = journal->j_superblock;
1498
1499         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1500         case JBD2_SUPERBLOCK_V2:
1501                 return 0;
1502         case JBD2_SUPERBLOCK_V1:
1503                 return journal_convert_superblock_v1(journal, sb);
1504         default:
1505                 break;
1506         }
1507         return -EINVAL;
1508 }
1509
1510 static int journal_convert_superblock_v1(journal_t *journal,
1511                                          journal_superblock_t *sb)
1512 {
1513         int offset, blocksize;
1514         struct buffer_head *bh;
1515
1516         printk(KERN_WARNING
1517                 "JBD: Converting superblock from version 1 to 2.\n");
1518
1519         /* Pre-initialise new fields to zero */
1520         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1521         blocksize = be32_to_cpu(sb->s_blocksize);
1522         memset(&sb->s_feature_compat, 0, blocksize-offset);
1523
1524         sb->s_nr_users = cpu_to_be32(1);
1525         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1526         journal->j_format_version = 2;
1527
1528         bh = journal->j_sb_buffer;
1529         BUFFER_TRACE(bh, "marking dirty");
1530         mark_buffer_dirty(bh);
1531         sync_dirty_buffer(bh);
1532         return 0;
1533 }
1534
1535
1536 /**
1537  * int jbd2_journal_flush () - Flush journal
1538  * @journal: Journal to act on.
1539  *
1540  * Flush all data for a given journal to disk and empty the journal.
1541  * Filesystems can use this when remounting readonly to ensure that
1542  * recovery does not need to happen on remount.
1543  */
1544
1545 int jbd2_journal_flush(journal_t *journal)
1546 {
1547         int err = 0;
1548         transaction_t *transaction = NULL;
1549         unsigned long old_tail;
1550
1551         write_lock(&journal->j_state_lock);
1552
1553         /* Force everything buffered to the log... */
1554         if (journal->j_running_transaction) {
1555                 transaction = journal->j_running_transaction;
1556                 __jbd2_log_start_commit(journal, transaction->t_tid);
1557         } else if (journal->j_committing_transaction)
1558                 transaction = journal->j_committing_transaction;
1559
1560         /* Wait for the log commit to complete... */
1561         if (transaction) {
1562                 tid_t tid = transaction->t_tid;
1563
1564                 write_unlock(&journal->j_state_lock);
1565                 jbd2_log_wait_commit(journal, tid);
1566         } else {
1567                 write_unlock(&journal->j_state_lock);
1568         }
1569
1570         /* ...and flush everything in the log out to disk. */
1571         spin_lock(&journal->j_list_lock);
1572         while (!err && journal->j_checkpoint_transactions != NULL) {
1573                 spin_unlock(&journal->j_list_lock);
1574                 mutex_lock(&journal->j_checkpoint_mutex);
1575                 err = jbd2_log_do_checkpoint(journal);
1576                 mutex_unlock(&journal->j_checkpoint_mutex);
1577                 spin_lock(&journal->j_list_lock);
1578         }
1579         spin_unlock(&journal->j_list_lock);
1580
1581         if (is_journal_aborted(journal))
1582                 return -EIO;
1583
1584         jbd2_cleanup_journal_tail(journal);
1585
1586         /* Finally, mark the journal as really needing no recovery.
1587          * This sets s_start==0 in the underlying superblock, which is
1588          * the magic code for a fully-recovered superblock.  Any future
1589          * commits of data to the journal will restore the current
1590          * s_start value. */
1591         write_lock(&journal->j_state_lock);
1592         old_tail = journal->j_tail;
1593         journal->j_tail = 0;
1594         write_unlock(&journal->j_state_lock);
1595         jbd2_journal_update_superblock(journal, 1);
1596         write_lock(&journal->j_state_lock);
1597         journal->j_tail = old_tail;
1598
1599         J_ASSERT(!journal->j_running_transaction);
1600         J_ASSERT(!journal->j_committing_transaction);
1601         J_ASSERT(!journal->j_checkpoint_transactions);
1602         J_ASSERT(journal->j_head == journal->j_tail);
1603         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1604         write_unlock(&journal->j_state_lock);
1605         return 0;
1606 }
1607
1608 /**
1609  * int jbd2_journal_wipe() - Wipe journal contents
1610  * @journal: Journal to act on.
1611  * @write: flag (see below)
1612  *
1613  * Wipe out all of the contents of a journal, safely.  This will produce
1614  * a warning if the journal contains any valid recovery information.
1615  * Must be called between journal_init_*() and jbd2_journal_load().
1616  *
1617  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1618  * we merely suppress recovery.
1619  */
1620
1621 int jbd2_journal_wipe(journal_t *journal, int write)
1622 {
1623         int err = 0;
1624
1625         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1626
1627         err = load_superblock(journal);
1628         if (err)
1629                 return err;
1630
1631         if (!journal->j_tail)
1632                 goto no_recovery;
1633
1634         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635                 write ? "Clearing" : "Ignoring");
1636
1637         err = jbd2_journal_skip_recovery(journal);
1638         if (write)
1639                 jbd2_journal_update_superblock(journal, 1);
1640
1641  no_recovery:
1642         return err;
1643 }
1644
1645 /*
1646  * Journal abort has very specific semantics, which we describe
1647  * for journal abort.
1648  *
1649  * Two internal functions, which provide abort to the jbd layer
1650  * itself are here.
1651  */
1652
1653 /*
1654  * Quick version for internal journal use (doesn't lock the journal).
1655  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1656  * and don't attempt to make any other journal updates.
1657  */
1658 void __jbd2_journal_abort_hard(journal_t *journal)
1659 {
1660         transaction_t *transaction;
1661
1662         if (journal->j_flags & JBD2_ABORT)
1663                 return;
1664
1665         printk(KERN_ERR "Aborting journal on device %s.\n",
1666                journal->j_devname);
1667
1668         write_lock(&journal->j_state_lock);
1669         journal->j_flags |= JBD2_ABORT;
1670         transaction = journal->j_running_transaction;
1671         if (transaction)
1672                 __jbd2_log_start_commit(journal, transaction->t_tid);
1673         write_unlock(&journal->j_state_lock);
1674 }
1675
1676 /* Soft abort: record the abort error status in the journal superblock,
1677  * but don't do any other IO. */
1678 static void __journal_abort_soft (journal_t *journal, int errno)
1679 {
1680         if (journal->j_flags & JBD2_ABORT)
1681                 return;
1682
1683         if (!journal->j_errno)
1684                 journal->j_errno = errno;
1685
1686         __jbd2_journal_abort_hard(journal);
1687
1688         if (errno)
1689                 jbd2_journal_update_superblock(journal, 1);
1690 }
1691
1692 /**
1693  * void jbd2_journal_abort () - Shutdown the journal immediately.
1694  * @journal: the journal to shutdown.
1695  * @errno:   an error number to record in the journal indicating
1696  *           the reason for the shutdown.
1697  *
1698  * Perform a complete, immediate shutdown of the ENTIRE
1699  * journal (not of a single transaction).  This operation cannot be
1700  * undone without closing and reopening the journal.
1701  *
1702  * The jbd2_journal_abort function is intended to support higher level error
1703  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1704  * mode.
1705  *
1706  * Journal abort has very specific semantics.  Any existing dirty,
1707  * unjournaled buffers in the main filesystem will still be written to
1708  * disk by bdflush, but the journaling mechanism will be suspended
1709  * immediately and no further transaction commits will be honoured.
1710  *
1711  * Any dirty, journaled buffers will be written back to disk without
1712  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1713  * filesystem, but we _do_ attempt to leave as much data as possible
1714  * behind for fsck to use for cleanup.
1715  *
1716  * Any attempt to get a new transaction handle on a journal which is in
1717  * ABORT state will just result in an -EROFS error return.  A
1718  * jbd2_journal_stop on an existing handle will return -EIO if we have
1719  * entered abort state during the update.
1720  *
1721  * Recursive transactions are not disturbed by journal abort until the
1722  * final jbd2_journal_stop, which will receive the -EIO error.
1723  *
1724  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1725  * which will be recorded (if possible) in the journal superblock.  This
1726  * allows a client to record failure conditions in the middle of a
1727  * transaction without having to complete the transaction to record the
1728  * failure to disk.  ext3_error, for example, now uses this
1729  * functionality.
1730  *
1731  * Errors which originate from within the journaling layer will NOT
1732  * supply an errno; a null errno implies that absolutely no further
1733  * writes are done to the journal (unless there are any already in
1734  * progress).
1735  *
1736  */
1737
1738 void jbd2_journal_abort(journal_t *journal, int errno)
1739 {
1740         __journal_abort_soft(journal, errno);
1741 }
1742
1743 /**
1744  * int jbd2_journal_errno () - returns the journal's error state.
1745  * @journal: journal to examine.
1746  *
1747  * This is the errno number set with jbd2_journal_abort(), the last
1748  * time the journal was mounted - if the journal was stopped
1749  * without calling abort this will be 0.
1750  *
1751  * If the journal has been aborted on this mount time -EROFS will
1752  * be returned.
1753  */
1754 int jbd2_journal_errno(journal_t *journal)
1755 {
1756         int err;
1757
1758         read_lock(&journal->j_state_lock);
1759         if (journal->j_flags & JBD2_ABORT)
1760                 err = -EROFS;
1761         else
1762                 err = journal->j_errno;
1763         read_unlock(&journal->j_state_lock);
1764         return err;
1765 }
1766
1767 /**
1768  * int jbd2_journal_clear_err () - clears the journal's error state
1769  * @journal: journal to act on.
1770  *
1771  * An error must be cleared or acked to take a FS out of readonly
1772  * mode.
1773  */
1774 int jbd2_journal_clear_err(journal_t *journal)
1775 {
1776         int err = 0;
1777
1778         write_lock(&journal->j_state_lock);
1779         if (journal->j_flags & JBD2_ABORT)
1780                 err = -EROFS;
1781         else
1782                 journal->j_errno = 0;
1783         write_unlock(&journal->j_state_lock);
1784         return err;
1785 }
1786
1787 /**
1788  * void jbd2_journal_ack_err() - Ack journal err.
1789  * @journal: journal to act on.
1790  *
1791  * An error must be cleared or acked to take a FS out of readonly
1792  * mode.
1793  */
1794 void jbd2_journal_ack_err(journal_t *journal)
1795 {
1796         write_lock(&journal->j_state_lock);
1797         if (journal->j_errno)
1798                 journal->j_flags |= JBD2_ACK_ERR;
1799         write_unlock(&journal->j_state_lock);
1800 }
1801
1802 int jbd2_journal_blocks_per_page(struct inode *inode)
1803 {
1804         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1805 }
1806
1807 /*
1808  * helper functions to deal with 32 or 64bit block numbers.
1809  */
1810 size_t journal_tag_bytes(journal_t *journal)
1811 {
1812         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1813                 return JBD2_TAG_SIZE64;
1814         else
1815                 return JBD2_TAG_SIZE32;
1816 }
1817
1818 /*
1819  * JBD memory management
1820  *
1821  * These functions are used to allocate block-sized chunks of memory
1822  * used for making copies of buffer_head data.  Very often it will be
1823  * page-sized chunks of data, but sometimes it will be in
1824  * sub-page-size chunks.  (For example, 16k pages on Power systems
1825  * with a 4k block file system.)  For blocks smaller than a page, we
1826  * use a SLAB allocator.  There are slab caches for each block size,
1827  * which are allocated at mount time, if necessary, and we only free
1828  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1829  * this reason we don't need to a mutex to protect access to
1830  * jbd2_slab[] allocating or releasing memory; only in
1831  * jbd2_journal_create_slab().
1832  */
1833 #define JBD2_MAX_SLABS 8
1834 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1835 static DECLARE_MUTEX(jbd2_slab_create_sem);
1836
1837 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1838         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1839         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1840 };
1841
1842
1843 static void jbd2_journal_destroy_slabs(void)
1844 {
1845         int i;
1846
1847         for (i = 0; i < JBD2_MAX_SLABS; i++) {
1848                 if (jbd2_slab[i])
1849                         kmem_cache_destroy(jbd2_slab[i]);
1850                 jbd2_slab[i] = NULL;
1851         }
1852 }
1853
1854 static int jbd2_journal_create_slab(size_t size)
1855 {
1856         int i = order_base_2(size) - 10;
1857         size_t slab_size;
1858
1859         if (size == PAGE_SIZE)
1860                 return 0;
1861
1862         if (i >= JBD2_MAX_SLABS)
1863                 return -EINVAL;
1864
1865         if (unlikely(i < 0))
1866                 i = 0;
1867         down(&jbd2_slab_create_sem);
1868         if (jbd2_slab[i]) {
1869                 up(&jbd2_slab_create_sem);
1870                 return 0;       /* Already created */
1871         }
1872
1873         slab_size = 1 << (i+10);
1874         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1875                                          slab_size, 0, NULL);
1876         up(&jbd2_slab_create_sem);
1877         if (!jbd2_slab[i]) {
1878                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1879                 return -ENOMEM;
1880         }
1881         return 0;
1882 }
1883
1884 static struct kmem_cache *get_slab(size_t size)
1885 {
1886         int i = order_base_2(size) - 10;
1887
1888         BUG_ON(i >= JBD2_MAX_SLABS);
1889         if (unlikely(i < 0))
1890                 i = 0;
1891         BUG_ON(jbd2_slab[i] == NULL);
1892         return jbd2_slab[i];
1893 }
1894
1895 void *jbd2_alloc(size_t size, gfp_t flags)
1896 {
1897         void *ptr;
1898
1899         BUG_ON(size & (size-1)); /* Must be a power of 2 */
1900
1901         flags |= __GFP_REPEAT;
1902         if (size == PAGE_SIZE)
1903                 ptr = (void *)__get_free_pages(flags, 0);
1904         else if (size > PAGE_SIZE) {
1905                 int order = get_order(size);
1906
1907                 if (order < 3)
1908                         ptr = (void *)__get_free_pages(flags, order);
1909                 else
1910                         ptr = vmalloc(size);
1911         } else
1912                 ptr = kmem_cache_alloc(get_slab(size), flags);
1913
1914         /* Check alignment; SLUB has gotten this wrong in the past,
1915          * and this can lead to user data corruption! */
1916         BUG_ON(((unsigned long) ptr) & (size-1));
1917
1918         return ptr;
1919 }
1920
1921 void jbd2_free(void *ptr, size_t size)
1922 {
1923         if (size == PAGE_SIZE) {
1924                 free_pages((unsigned long)ptr, 0);
1925                 return;
1926         }
1927         if (size > PAGE_SIZE) {
1928                 int order = get_order(size);
1929
1930                 if (order < 3)
1931                         free_pages((unsigned long)ptr, order);
1932                 else
1933                         vfree(ptr);
1934                 return;
1935         }
1936         kmem_cache_free(get_slab(size), ptr);
1937 };
1938
1939 /*
1940  * Journal_head storage management
1941  */
1942 static struct kmem_cache *jbd2_journal_head_cache;
1943 #ifdef CONFIG_JBD2_DEBUG
1944 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1945 #endif
1946
1947 static int journal_init_jbd2_journal_head_cache(void)
1948 {
1949         int retval;
1950
1951         J_ASSERT(jbd2_journal_head_cache == NULL);
1952         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1953                                 sizeof(struct journal_head),
1954                                 0,              /* offset */
1955                                 SLAB_TEMPORARY, /* flags */
1956                                 NULL);          /* ctor */
1957         retval = 0;
1958         if (!jbd2_journal_head_cache) {
1959                 retval = -ENOMEM;
1960                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1961         }
1962         return retval;
1963 }
1964
1965 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1966 {
1967         if (jbd2_journal_head_cache) {
1968                 kmem_cache_destroy(jbd2_journal_head_cache);
1969                 jbd2_journal_head_cache = NULL;
1970         }
1971 }
1972
1973 /*
1974  * journal_head splicing and dicing
1975  */
1976 static struct journal_head *journal_alloc_journal_head(void)
1977 {
1978         struct journal_head *ret;
1979         static unsigned long last_warning;
1980
1981 #ifdef CONFIG_JBD2_DEBUG
1982         atomic_inc(&nr_journal_heads);
1983 #endif
1984         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1985         if (!ret) {
1986                 jbd_debug(1, "out of memory for journal_head\n");
1987                 if (time_after(jiffies, last_warning + 5*HZ)) {
1988                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1989                                __func__);
1990                         last_warning = jiffies;
1991                 }
1992                 while (!ret) {
1993                         yield();
1994                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995                 }
1996         }
1997         return ret;
1998 }
1999
2000 static void journal_free_journal_head(struct journal_head *jh)
2001 {
2002 #ifdef CONFIG_JBD2_DEBUG
2003         atomic_dec(&nr_journal_heads);
2004         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2005 #endif
2006         kmem_cache_free(jbd2_journal_head_cache, jh);
2007 }
2008
2009 /*
2010  * A journal_head is attached to a buffer_head whenever JBD has an
2011  * interest in the buffer.
2012  *
2013  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2014  * is set.  This bit is tested in core kernel code where we need to take
2015  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2016  * there.
2017  *
2018  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2019  *
2020  * When a buffer has its BH_JBD bit set it is immune from being released by
2021  * core kernel code, mainly via ->b_count.
2022  *
2023  * A journal_head may be detached from its buffer_head when the journal_head's
2024  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2025  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2026  * journal_head can be dropped if needed.
2027  *
2028  * Various places in the kernel want to attach a journal_head to a buffer_head
2029  * _before_ attaching the journal_head to a transaction.  To protect the
2030  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2031  * journal_head's b_jcount refcount by one.  The caller must call
2032  * jbd2_journal_put_journal_head() to undo this.
2033  *
2034  * So the typical usage would be:
2035  *
2036  *      (Attach a journal_head if needed.  Increments b_jcount)
2037  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2038  *      ...
2039  *      jh->b_transaction = xxx;
2040  *      jbd2_journal_put_journal_head(jh);
2041  *
2042  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2043  * because it has a non-zero b_transaction.
2044  */
2045
2046 /*
2047  * Give a buffer_head a journal_head.
2048  *
2049  * Doesn't need the journal lock.
2050  * May sleep.
2051  */
2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2053 {
2054         struct journal_head *jh;
2055         struct journal_head *new_jh = NULL;
2056
2057 repeat:
2058         if (!buffer_jbd(bh)) {
2059                 new_jh = journal_alloc_journal_head();
2060                 memset(new_jh, 0, sizeof(*new_jh));
2061         }
2062
2063         jbd_lock_bh_journal_head(bh);
2064         if (buffer_jbd(bh)) {
2065                 jh = bh2jh(bh);
2066         } else {
2067                 J_ASSERT_BH(bh,
2068                         (atomic_read(&bh->b_count) > 0) ||
2069                         (bh->b_page && bh->b_page->mapping));
2070
2071                 if (!new_jh) {
2072                         jbd_unlock_bh_journal_head(bh);
2073                         goto repeat;
2074                 }
2075
2076                 jh = new_jh;
2077                 new_jh = NULL;          /* We consumed it */
2078                 set_buffer_jbd(bh);
2079                 bh->b_private = jh;
2080                 jh->b_bh = bh;
2081                 get_bh(bh);
2082                 BUFFER_TRACE(bh, "added journal_head");
2083         }
2084         jh->b_jcount++;
2085         jbd_unlock_bh_journal_head(bh);
2086         if (new_jh)
2087                 journal_free_journal_head(new_jh);
2088         return bh->b_private;
2089 }
2090
2091 /*
2092  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2093  * having a journal_head, return NULL
2094  */
2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2096 {
2097         struct journal_head *jh = NULL;
2098
2099         jbd_lock_bh_journal_head(bh);
2100         if (buffer_jbd(bh)) {
2101                 jh = bh2jh(bh);
2102                 jh->b_jcount++;
2103         }
2104         jbd_unlock_bh_journal_head(bh);
2105         return jh;
2106 }
2107
2108 static void __journal_remove_journal_head(struct buffer_head *bh)
2109 {
2110         struct journal_head *jh = bh2jh(bh);
2111
2112         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2113
2114         get_bh(bh);
2115         if (jh->b_jcount == 0) {
2116                 if (jh->b_transaction == NULL &&
2117                                 jh->b_next_transaction == NULL &&
2118                                 jh->b_cp_transaction == NULL) {
2119                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2120                         J_ASSERT_BH(bh, buffer_jbd(bh));
2121                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2122                         BUFFER_TRACE(bh, "remove journal_head");
2123                         if (jh->b_frozen_data) {
2124                                 printk(KERN_WARNING "%s: freeing "
2125                                                 "b_frozen_data\n",
2126                                                 __func__);
2127                                 jbd2_free(jh->b_frozen_data, bh->b_size);
2128                         }
2129                         if (jh->b_committed_data) {
2130                                 printk(KERN_WARNING "%s: freeing "
2131                                                 "b_committed_data\n",
2132                                                 __func__);
2133                                 jbd2_free(jh->b_committed_data, bh->b_size);
2134                         }
2135                         bh->b_private = NULL;
2136                         jh->b_bh = NULL;        /* debug, really */
2137                         clear_buffer_jbd(bh);
2138                         __brelse(bh);
2139                         journal_free_journal_head(jh);
2140                 } else {
2141                         BUFFER_TRACE(bh, "journal_head was locked");
2142                 }
2143         }
2144 }
2145
2146 /*
2147  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2148  * and has a zero b_jcount then remove and release its journal_head.   If we did
2149  * see that the buffer is not used by any transaction we also "logically"
2150  * decrement ->b_count.
2151  *
2152  * We in fact take an additional increment on ->b_count as a convenience,
2153  * because the caller usually wants to do additional things with the bh
2154  * after calling here.
2155  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2156  * time.  Once the caller has run __brelse(), the buffer is eligible for
2157  * reaping by try_to_free_buffers().
2158  */
2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2160 {
2161         jbd_lock_bh_journal_head(bh);
2162         __journal_remove_journal_head(bh);
2163         jbd_unlock_bh_journal_head(bh);
2164 }
2165
2166 /*
2167  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2168  * release the journal_head from the buffer_head.
2169  */
2170 void jbd2_journal_put_journal_head(struct journal_head *jh)
2171 {
2172         struct buffer_head *bh = jh2bh(jh);
2173
2174         jbd_lock_bh_journal_head(bh);
2175         J_ASSERT_JH(jh, jh->b_jcount > 0);
2176         --jh->b_jcount;
2177         if (!jh->b_jcount && !jh->b_transaction) {
2178                 __journal_remove_journal_head(bh);
2179                 __brelse(bh);
2180         }
2181         jbd_unlock_bh_journal_head(bh);
2182 }
2183
2184 /*
2185  * Initialize jbd inode head
2186  */
2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2188 {
2189         jinode->i_transaction = NULL;
2190         jinode->i_next_transaction = NULL;
2191         jinode->i_vfs_inode = inode;
2192         jinode->i_flags = 0;
2193         INIT_LIST_HEAD(&jinode->i_list);
2194 }
2195
2196 /*
2197  * Function to be called before we start removing inode from memory (i.e.,
2198  * clear_inode() is a fine place to be called from). It removes inode from
2199  * transaction's lists.
2200  */
2201 void jbd2_journal_release_jbd_inode(journal_t *journal,
2202                                     struct jbd2_inode *jinode)
2203 {
2204         if (!journal)
2205                 return;
2206 restart:
2207         spin_lock(&journal->j_list_lock);
2208         /* Is commit writing out inode - we have to wait */
2209         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2210                 wait_queue_head_t *wq;
2211                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2212                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2213                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2214                 spin_unlock(&journal->j_list_lock);
2215                 schedule();
2216                 finish_wait(wq, &wait.wait);
2217                 goto restart;
2218         }
2219
2220         if (jinode->i_transaction) {
2221                 list_del(&jinode->i_list);
2222                 jinode->i_transaction = NULL;
2223         }
2224         spin_unlock(&journal->j_list_lock);
2225 }
2226
2227 /*
2228  * debugfs tunables
2229  */
2230 #ifdef CONFIG_JBD2_DEBUG
2231 u8 jbd2_journal_enable_debug __read_mostly;
2232 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2233
2234 #define JBD2_DEBUG_NAME "jbd2-debug"
2235
2236 static struct dentry *jbd2_debugfs_dir;
2237 static struct dentry *jbd2_debug;
2238
2239 static void __init jbd2_create_debugfs_entry(void)
2240 {
2241         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2242         if (jbd2_debugfs_dir)
2243                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2244                                                S_IRUGO | S_IWUSR,
2245                                                jbd2_debugfs_dir,
2246                                                &jbd2_journal_enable_debug);
2247 }
2248
2249 static void __exit jbd2_remove_debugfs_entry(void)
2250 {
2251         debugfs_remove(jbd2_debug);
2252         debugfs_remove(jbd2_debugfs_dir);
2253 }
2254
2255 #else
2256
2257 static void __init jbd2_create_debugfs_entry(void)
2258 {
2259 }
2260
2261 static void __exit jbd2_remove_debugfs_entry(void)
2262 {
2263 }
2264
2265 #endif
2266
2267 #ifdef CONFIG_PROC_FS
2268
2269 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2270
2271 static void __init jbd2_create_jbd_stats_proc_entry(void)
2272 {
2273         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2274 }
2275
2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2277 {
2278         if (proc_jbd2_stats)
2279                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281
2282 #else
2283
2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2286
2287 #endif
2288
2289 struct kmem_cache *jbd2_handle_cache;
2290
2291 static int __init journal_init_handle_cache(void)
2292 {
2293         jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2294                                 sizeof(handle_t),
2295                                 0,              /* offset */
2296                                 SLAB_TEMPORARY, /* flags */
2297                                 NULL);          /* ctor */
2298         if (jbd2_handle_cache == NULL) {
2299                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2300                 return -ENOMEM;
2301         }
2302         return 0;
2303 }
2304
2305 static void jbd2_journal_destroy_handle_cache(void)
2306 {
2307         if (jbd2_handle_cache)
2308                 kmem_cache_destroy(jbd2_handle_cache);
2309 }
2310
2311 /*
2312  * Module startup and shutdown
2313  */
2314
2315 static int __init journal_init_caches(void)
2316 {
2317         int ret;
2318
2319         ret = jbd2_journal_init_revoke_caches();
2320         if (ret == 0)
2321                 ret = journal_init_jbd2_journal_head_cache();
2322         if (ret == 0)
2323                 ret = journal_init_handle_cache();
2324         return ret;
2325 }
2326
2327 static void jbd2_journal_destroy_caches(void)
2328 {
2329         jbd2_journal_destroy_revoke_caches();
2330         jbd2_journal_destroy_jbd2_journal_head_cache();
2331         jbd2_journal_destroy_handle_cache();
2332         jbd2_journal_destroy_slabs();
2333 }
2334
2335 static int __init journal_init(void)
2336 {
2337         int ret;
2338
2339         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2340
2341         ret = journal_init_caches();
2342         if (ret == 0) {
2343                 jbd2_create_debugfs_entry();
2344                 jbd2_create_jbd_stats_proc_entry();
2345         } else {
2346                 jbd2_journal_destroy_caches();
2347         }
2348         return ret;
2349 }
2350
2351 static void __exit journal_exit(void)
2352 {
2353 #ifdef CONFIG_JBD2_DEBUG
2354         int n = atomic_read(&nr_journal_heads);
2355         if (n)
2356                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2357 #endif
2358         jbd2_remove_debugfs_entry();
2359         jbd2_remove_jbd_stats_proc_entry();
2360         jbd2_journal_destroy_caches();
2361 }
2362
2363 /* 
2364  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2365  * tracing infrastructure to map a dev_t to a device name.
2366  *
2367  * The caller should use rcu_read_lock() in order to make sure the
2368  * device name stays valid until its done with it.  We use
2369  * rcu_read_lock() as well to make sure we're safe in case the caller
2370  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2371  * nested.
2372  */
2373 struct devname_cache {
2374         struct rcu_head rcu;
2375         dev_t           device;
2376         char            devname[BDEVNAME_SIZE];
2377 };
2378 #define CACHE_SIZE_BITS 6
2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2380 static DEFINE_SPINLOCK(devname_cache_lock);
2381
2382 static void free_devcache(struct rcu_head *rcu)
2383 {
2384         kfree(rcu);
2385 }
2386
2387 const char *jbd2_dev_to_name(dev_t device)
2388 {
2389         int     i = hash_32(device, CACHE_SIZE_BITS);
2390         char    *ret;
2391         struct block_device *bd;
2392         static struct devname_cache *new_dev;
2393
2394         rcu_read_lock();
2395         if (devcache[i] && devcache[i]->device == device) {
2396                 ret = devcache[i]->devname;
2397                 rcu_read_unlock();
2398                 return ret;
2399         }
2400         rcu_read_unlock();
2401
2402         new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2403         if (!new_dev)
2404                 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2405         spin_lock(&devname_cache_lock);
2406         if (devcache[i]) {
2407                 if (devcache[i]->device == device) {
2408                         kfree(new_dev);
2409                         ret = devcache[i]->devname;
2410                         spin_unlock(&devname_cache_lock);
2411                         return ret;
2412                 }
2413                 call_rcu(&devcache[i]->rcu, free_devcache);
2414         }
2415         devcache[i] = new_dev;
2416         devcache[i]->device = device;
2417         bd = bdget(device);
2418         if (bd) {
2419                 bdevname(bd, devcache[i]->devname);
2420                 bdput(bd);
2421         } else
2422                 __bdevname(device, devcache[i]->devname);
2423         ret = devcache[i]->devname;
2424         spin_unlock(&devname_cache_lock);
2425         return ret;
2426 }
2427 EXPORT_SYMBOL(jbd2_dev_to_name);
2428
2429 MODULE_LICENSE("GPL");
2430 module_init(journal_init);
2431 module_exit(journal_exit);
2432