]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext4/mballoc.c
ext4: Remove code to create the journal inode
[net-next-2.6.git] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:                       buddy = on-disk + PAs
197  *  - new PA:                           buddy += N; PA = N
198  *  - use inode PA:                     on-disk += N; PA -= N
199  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA             on-disk += N; PA -= N
201  *  - discard locality group PA         buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group        (group)
301  *  - object (inode/locality)   (object)
302  *  - per-pa lock               (pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337                                         ext4_group_t group);
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
339                                                 ext4_group_t group);
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
343
344
345
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349         *bit += ((unsigned long) addr & 7UL) << 3;
350         addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352         *bit += ((unsigned long) addr & 3UL) << 3;
353         addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357         return addr;
358 }
359
360 static inline int mb_test_bit(int bit, void *addr)
361 {
362         /*
363          * ext4_test_bit on architecture like powerpc
364          * needs unsigned long aligned address
365          */
366         addr = mb_correct_addr_and_bit(&bit, addr);
367         return ext4_test_bit(bit, addr);
368 }
369
370 static inline void mb_set_bit(int bit, void *addr)
371 {
372         addr = mb_correct_addr_and_bit(&bit, addr);
373         ext4_set_bit(bit, addr);
374 }
375
376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378         addr = mb_correct_addr_and_bit(&bit, addr);
379         ext4_set_bit_atomic(lock, bit, addr);
380 }
381
382 static inline void mb_clear_bit(int bit, void *addr)
383 {
384         addr = mb_correct_addr_and_bit(&bit, addr);
385         ext4_clear_bit(bit, addr);
386 }
387
388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
389 {
390         addr = mb_correct_addr_and_bit(&bit, addr);
391         ext4_clear_bit_atomic(lock, bit, addr);
392 }
393
394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
395 {
396         int fix = 0, ret, tmpmax;
397         addr = mb_correct_addr_and_bit(&fix, addr);
398         tmpmax = max + fix;
399         start += fix;
400
401         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
402         if (ret > max)
403                 return max;
404         return ret;
405 }
406
407 static inline int mb_find_next_bit(void *addr, int max, int start)
408 {
409         int fix = 0, ret, tmpmax;
410         addr = mb_correct_addr_and_bit(&fix, addr);
411         tmpmax = max + fix;
412         start += fix;
413
414         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
415         if (ret > max)
416                 return max;
417         return ret;
418 }
419
420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
421 {
422         char *bb;
423
424         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
425         BUG_ON(max == NULL);
426
427         if (order > e4b->bd_blkbits + 1) {
428                 *max = 0;
429                 return NULL;
430         }
431
432         /* at order 0 we see each particular block */
433         *max = 1 << (e4b->bd_blkbits + 3);
434         if (order == 0)
435                 return EXT4_MB_BITMAP(e4b);
436
437         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
439
440         return bb;
441 }
442
443 #ifdef DOUBLE_CHECK
444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445                            int first, int count)
446 {
447         int i;
448         struct super_block *sb = e4b->bd_sb;
449
450         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
451                 return;
452         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453         for (i = 0; i < count; i++) {
454                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455                         ext4_fsblk_t blocknr;
456                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457                         blocknr += first + i;
458                         blocknr +=
459                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
460                         ext4_grp_locked_error(sb, e4b->bd_group,
461                                    __func__, "double-free of inode"
462                                    " %lu's block %llu(bit %u in group %u)",
463                                    inode ? inode->i_ino : 0, blocknr,
464                                    first + i, e4b->bd_group);
465                 }
466                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
467         }
468 }
469
470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
471 {
472         int i;
473
474         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
475                 return;
476         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477         for (i = 0; i < count; i++) {
478                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
480         }
481 }
482
483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
484 {
485         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486                 unsigned char *b1, *b2;
487                 int i;
488                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489                 b2 = (unsigned char *) bitmap;
490                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491                         if (b1[i] != b2[i]) {
492                                 printk(KERN_ERR "corruption in group %u "
493                                        "at byte %u(%u): %x in copy != %x "
494                                        "on disk/prealloc\n",
495                                        e4b->bd_group, i, i * 8, b1[i], b2[i]);
496                                 BUG();
497                         }
498                 }
499         }
500 }
501
502 #else
503 static inline void mb_free_blocks_double(struct inode *inode,
504                                 struct ext4_buddy *e4b, int first, int count)
505 {
506         return;
507 }
508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509                                                 int first, int count)
510 {
511         return;
512 }
513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
514 {
515         return;
516 }
517 #endif
518
519 #ifdef AGGRESSIVE_CHECK
520
521 #define MB_CHECK_ASSERT(assert)                                         \
522 do {                                                                    \
523         if (!(assert)) {                                                \
524                 printk(KERN_EMERG                                       \
525                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526                         function, file, line, # assert);                \
527                 BUG();                                                  \
528         }                                                               \
529 } while (0)
530
531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532                                 const char *function, int line)
533 {
534         struct super_block *sb = e4b->bd_sb;
535         int order = e4b->bd_blkbits + 1;
536         int max;
537         int max2;
538         int i;
539         int j;
540         int k;
541         int count;
542         struct ext4_group_info *grp;
543         int fragments = 0;
544         int fstart;
545         struct list_head *cur;
546         void *buddy;
547         void *buddy2;
548
549         {
550                 static int mb_check_counter;
551                 if (mb_check_counter++ % 100 != 0)
552                         return 0;
553         }
554
555         while (order > 1) {
556                 buddy = mb_find_buddy(e4b, order, &max);
557                 MB_CHECK_ASSERT(buddy);
558                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559                 MB_CHECK_ASSERT(buddy2);
560                 MB_CHECK_ASSERT(buddy != buddy2);
561                 MB_CHECK_ASSERT(max * 2 == max2);
562
563                 count = 0;
564                 for (i = 0; i < max; i++) {
565
566                         if (mb_test_bit(i, buddy)) {
567                                 /* only single bit in buddy2 may be 1 */
568                                 if (!mb_test_bit(i << 1, buddy2)) {
569                                         MB_CHECK_ASSERT(
570                                                 mb_test_bit((i<<1)+1, buddy2));
571                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
572                                         MB_CHECK_ASSERT(
573                                                 mb_test_bit(i << 1, buddy2));
574                                 }
575                                 continue;
576                         }
577
578                         /* both bits in buddy2 must be 0 */
579                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
581
582                         for (j = 0; j < (1 << order); j++) {
583                                 k = (i * (1 << order)) + j;
584                                 MB_CHECK_ASSERT(
585                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
586                         }
587                         count++;
588                 }
589                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
590                 order--;
591         }
592
593         fstart = -1;
594         buddy = mb_find_buddy(e4b, 0, &max);
595         for (i = 0; i < max; i++) {
596                 if (!mb_test_bit(i, buddy)) {
597                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
598                         if (fstart == -1) {
599                                 fragments++;
600                                 fstart = i;
601                         }
602                         continue;
603                 }
604                 fstart = -1;
605                 /* check used bits only */
606                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607                         buddy2 = mb_find_buddy(e4b, j, &max2);
608                         k = i >> j;
609                         MB_CHECK_ASSERT(k < max2);
610                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
611                 }
612         }
613         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
615
616         grp = ext4_get_group_info(sb, e4b->bd_group);
617         buddy = mb_find_buddy(e4b, 0, &max);
618         list_for_each(cur, &grp->bb_prealloc_list) {
619                 ext4_group_t groupnr;
620                 struct ext4_prealloc_space *pa;
621                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624                 for (i = 0; i < pa->pa_len; i++)
625                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
626         }
627         return 0;
628 }
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
631                                         __FILE__, __func__, __LINE__)
632 #else
633 #define mb_check_buddy(e4b)
634 #endif
635
636 /* FIXME!! need more doc */
637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638                                 void *buddy, unsigned first, int len,
639                                         struct ext4_group_info *grp)
640 {
641         struct ext4_sb_info *sbi = EXT4_SB(sb);
642         unsigned short min;
643         unsigned short max;
644         unsigned short chunk;
645         unsigned short border;
646
647         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
648
649         border = 2 << sb->s_blocksize_bits;
650
651         while (len > 0) {
652                 /* find how many blocks can be covered since this position */
653                 max = ffs(first | border) - 1;
654
655                 /* find how many blocks of power 2 we need to mark */
656                 min = fls(len) - 1;
657
658                 if (max < min)
659                         min = max;
660                 chunk = 1 << min;
661
662                 /* mark multiblock chunks only */
663                 grp->bb_counters[min]++;
664                 if (min > 0)
665                         mb_clear_bit(first >> min,
666                                      buddy + sbi->s_mb_offsets[min]);
667
668                 len -= chunk;
669                 first += chunk;
670         }
671 }
672
673 static void ext4_mb_generate_buddy(struct super_block *sb,
674                                 void *buddy, void *bitmap, ext4_group_t group)
675 {
676         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677         unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678         unsigned short i = 0;
679         unsigned short first;
680         unsigned short len;
681         unsigned free = 0;
682         unsigned fragments = 0;
683         unsigned long long period = get_cycles();
684
685         /* initialize buddy from bitmap which is aggregation
686          * of on-disk bitmap and preallocations */
687         i = mb_find_next_zero_bit(bitmap, max, 0);
688         grp->bb_first_free = i;
689         while (i < max) {
690                 fragments++;
691                 first = i;
692                 i = mb_find_next_bit(bitmap, max, i);
693                 len = i - first;
694                 free += len;
695                 if (len > 1)
696                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
697                 else
698                         grp->bb_counters[0]++;
699                 if (i < max)
700                         i = mb_find_next_zero_bit(bitmap, max, i);
701         }
702         grp->bb_fragments = fragments;
703
704         if (free != grp->bb_free) {
705                 ext4_grp_locked_error(sb, group,  __func__,
706                         "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707                         group, free, grp->bb_free);
708                 /*
709                  * If we intent to continue, we consider group descritor
710                  * corrupt and update bb_free using bitmap value
711                  */
712                 grp->bb_free = free;
713         }
714
715         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
716
717         period = get_cycles() - period;
718         spin_lock(&EXT4_SB(sb)->s_bal_lock);
719         EXT4_SB(sb)->s_mb_buddies_generated++;
720         EXT4_SB(sb)->s_mb_generation_time += period;
721         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
722 }
723
724 /* The buddy information is attached the buddy cache inode
725  * for convenience. The information regarding each group
726  * is loaded via ext4_mb_load_buddy. The information involve
727  * block bitmap and buddy information. The information are
728  * stored in the inode as
729  *
730  * {                        page                        }
731  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
732  *
733  *
734  * one block each for bitmap and buddy information.
735  * So for each group we take up 2 blocks. A page can
736  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
737  * So it can have information regarding groups_per_page which
738  * is blocks_per_page/2
739  */
740
741 static int ext4_mb_init_cache(struct page *page, char *incore)
742 {
743         int blocksize;
744         int blocks_per_page;
745         int groups_per_page;
746         int err = 0;
747         int i;
748         ext4_group_t first_group;
749         int first_block;
750         struct super_block *sb;
751         struct buffer_head *bhs;
752         struct buffer_head **bh;
753         struct inode *inode;
754         char *data;
755         char *bitmap;
756
757         mb_debug("init page %lu\n", page->index);
758
759         inode = page->mapping->host;
760         sb = inode->i_sb;
761         blocksize = 1 << inode->i_blkbits;
762         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
763
764         groups_per_page = blocks_per_page >> 1;
765         if (groups_per_page == 0)
766                 groups_per_page = 1;
767
768         /* allocate buffer_heads to read bitmaps */
769         if (groups_per_page > 1) {
770                 err = -ENOMEM;
771                 i = sizeof(struct buffer_head *) * groups_per_page;
772                 bh = kzalloc(i, GFP_NOFS);
773                 if (bh == NULL)
774                         goto out;
775         } else
776                 bh = &bhs;
777
778         first_group = page->index * blocks_per_page / 2;
779
780         /* read all groups the page covers into the cache */
781         for (i = 0; i < groups_per_page; i++) {
782                 struct ext4_group_desc *desc;
783
784                 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
785                         break;
786
787                 err = -EIO;
788                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
789                 if (desc == NULL)
790                         goto out;
791
792                 err = -ENOMEM;
793                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
794                 if (bh[i] == NULL)
795                         goto out;
796
797                 if (bitmap_uptodate(bh[i]))
798                         continue;
799
800                 lock_buffer(bh[i]);
801                 if (bitmap_uptodate(bh[i])) {
802                         unlock_buffer(bh[i]);
803                         continue;
804                 }
805                 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
806                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
807                         ext4_init_block_bitmap(sb, bh[i],
808                                                 first_group + i, desc);
809                         set_bitmap_uptodate(bh[i]);
810                         set_buffer_uptodate(bh[i]);
811                         spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
812                         unlock_buffer(bh[i]);
813                         continue;
814                 }
815                 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
816                 if (buffer_uptodate(bh[i])) {
817                         /*
818                          * if not uninit if bh is uptodate,
819                          * bitmap is also uptodate
820                          */
821                         set_bitmap_uptodate(bh[i]);
822                         unlock_buffer(bh[i]);
823                         continue;
824                 }
825                 get_bh(bh[i]);
826                 /*
827                  * submit the buffer_head for read. We can
828                  * safely mark the bitmap as uptodate now.
829                  * We do it here so the bitmap uptodate bit
830                  * get set with buffer lock held.
831                  */
832                 set_bitmap_uptodate(bh[i]);
833                 bh[i]->b_end_io = end_buffer_read_sync;
834                 submit_bh(READ, bh[i]);
835                 mb_debug("read bitmap for group %u\n", first_group + i);
836         }
837
838         /* wait for I/O completion */
839         for (i = 0; i < groups_per_page && bh[i]; i++)
840                 wait_on_buffer(bh[i]);
841
842         err = -EIO;
843         for (i = 0; i < groups_per_page && bh[i]; i++)
844                 if (!buffer_uptodate(bh[i]))
845                         goto out;
846
847         err = 0;
848         first_block = page->index * blocks_per_page;
849         /* init the page  */
850         memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
851         for (i = 0; i < blocks_per_page; i++) {
852                 int group;
853                 struct ext4_group_info *grinfo;
854
855                 group = (first_block + i) >> 1;
856                 if (group >= EXT4_SB(sb)->s_groups_count)
857                         break;
858
859                 /*
860                  * data carry information regarding this
861                  * particular group in the format specified
862                  * above
863                  *
864                  */
865                 data = page_address(page) + (i * blocksize);
866                 bitmap = bh[group - first_group]->b_data;
867
868                 /*
869                  * We place the buddy block and bitmap block
870                  * close together
871                  */
872                 if ((first_block + i) & 1) {
873                         /* this is block of buddy */
874                         BUG_ON(incore == NULL);
875                         mb_debug("put buddy for group %u in page %lu/%x\n",
876                                 group, page->index, i * blocksize);
877                         grinfo = ext4_get_group_info(sb, group);
878                         grinfo->bb_fragments = 0;
879                         memset(grinfo->bb_counters, 0,
880                                sizeof(unsigned short)*(sb->s_blocksize_bits+2));
881                         /*
882                          * incore got set to the group block bitmap below
883                          */
884                         ext4_lock_group(sb, group);
885                         ext4_mb_generate_buddy(sb, data, incore, group);
886                         ext4_unlock_group(sb, group);
887                         incore = NULL;
888                 } else {
889                         /* this is block of bitmap */
890                         BUG_ON(incore != NULL);
891                         mb_debug("put bitmap for group %u in page %lu/%x\n",
892                                 group, page->index, i * blocksize);
893
894                         /* see comments in ext4_mb_put_pa() */
895                         ext4_lock_group(sb, group);
896                         memcpy(data, bitmap, blocksize);
897
898                         /* mark all preallocated blks used in in-core bitmap */
899                         ext4_mb_generate_from_pa(sb, data, group);
900                         ext4_mb_generate_from_freelist(sb, data, group);
901                         ext4_unlock_group(sb, group);
902
903                         /* set incore so that the buddy information can be
904                          * generated using this
905                          */
906                         incore = data;
907                 }
908         }
909         SetPageUptodate(page);
910
911 out:
912         if (bh) {
913                 for (i = 0; i < groups_per_page && bh[i]; i++)
914                         brelse(bh[i]);
915                 if (bh != &bhs)
916                         kfree(bh);
917         }
918         return err;
919 }
920
921 static noinline_for_stack int
922 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
923                                         struct ext4_buddy *e4b)
924 {
925         int blocks_per_page;
926         int block;
927         int pnum;
928         int poff;
929         struct page *page;
930         int ret;
931         struct ext4_group_info *grp;
932         struct ext4_sb_info *sbi = EXT4_SB(sb);
933         struct inode *inode = sbi->s_buddy_cache;
934
935         mb_debug("load group %u\n", group);
936
937         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
938         grp = ext4_get_group_info(sb, group);
939
940         e4b->bd_blkbits = sb->s_blocksize_bits;
941         e4b->bd_info = ext4_get_group_info(sb, group);
942         e4b->bd_sb = sb;
943         e4b->bd_group = group;
944         e4b->bd_buddy_page = NULL;
945         e4b->bd_bitmap_page = NULL;
946         e4b->alloc_semp = &grp->alloc_sem;
947
948         /* Take the read lock on the group alloc
949          * sem. This would make sure a parallel
950          * ext4_mb_init_group happening on other
951          * groups mapped by the page is blocked
952          * till we are done with allocation
953          */
954         down_read(e4b->alloc_semp);
955
956         /*
957          * the buddy cache inode stores the block bitmap
958          * and buddy information in consecutive blocks.
959          * So for each group we need two blocks.
960          */
961         block = group * 2;
962         pnum = block / blocks_per_page;
963         poff = block % blocks_per_page;
964
965         /* we could use find_or_create_page(), but it locks page
966          * what we'd like to avoid in fast path ... */
967         page = find_get_page(inode->i_mapping, pnum);
968         if (page == NULL || !PageUptodate(page)) {
969                 if (page)
970                         /*
971                          * drop the page reference and try
972                          * to get the page with lock. If we
973                          * are not uptodate that implies
974                          * somebody just created the page but
975                          * is yet to initialize the same. So
976                          * wait for it to initialize.
977                          */
978                         page_cache_release(page);
979                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
980                 if (page) {
981                         BUG_ON(page->mapping != inode->i_mapping);
982                         if (!PageUptodate(page)) {
983                                 ret = ext4_mb_init_cache(page, NULL);
984                                 if (ret) {
985                                         unlock_page(page);
986                                         goto err;
987                                 }
988                                 mb_cmp_bitmaps(e4b, page_address(page) +
989                                                (poff * sb->s_blocksize));
990                         }
991                         unlock_page(page);
992                 }
993         }
994         if (page == NULL || !PageUptodate(page)) {
995                 ret = -EIO;
996                 goto err;
997         }
998         e4b->bd_bitmap_page = page;
999         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000         mark_page_accessed(page);
1001
1002         block++;
1003         pnum = block / blocks_per_page;
1004         poff = block % blocks_per_page;
1005
1006         page = find_get_page(inode->i_mapping, pnum);
1007         if (page == NULL || !PageUptodate(page)) {
1008                 if (page)
1009                         page_cache_release(page);
1010                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1011                 if (page) {
1012                         BUG_ON(page->mapping != inode->i_mapping);
1013                         if (!PageUptodate(page)) {
1014                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1015                                 if (ret) {
1016                                         unlock_page(page);
1017                                         goto err;
1018                                 }
1019                         }
1020                         unlock_page(page);
1021                 }
1022         }
1023         if (page == NULL || !PageUptodate(page)) {
1024                 ret = -EIO;
1025                 goto err;
1026         }
1027         e4b->bd_buddy_page = page;
1028         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1029         mark_page_accessed(page);
1030
1031         BUG_ON(e4b->bd_bitmap_page == NULL);
1032         BUG_ON(e4b->bd_buddy_page == NULL);
1033
1034         return 0;
1035
1036 err:
1037         if (e4b->bd_bitmap_page)
1038                 page_cache_release(e4b->bd_bitmap_page);
1039         if (e4b->bd_buddy_page)
1040                 page_cache_release(e4b->bd_buddy_page);
1041         e4b->bd_buddy = NULL;
1042         e4b->bd_bitmap = NULL;
1043
1044         /* Done with the buddy cache */
1045         up_read(e4b->alloc_semp);
1046         return ret;
1047 }
1048
1049 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1050 {
1051         if (e4b->bd_bitmap_page)
1052                 page_cache_release(e4b->bd_bitmap_page);
1053         if (e4b->bd_buddy_page)
1054                 page_cache_release(e4b->bd_buddy_page);
1055         /* Done with the buddy cache */
1056         if (e4b->alloc_semp)
1057                 up_read(e4b->alloc_semp);
1058 }
1059
1060
1061 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1062 {
1063         int order = 1;
1064         void *bb;
1065
1066         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1067         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1068
1069         bb = EXT4_MB_BUDDY(e4b);
1070         while (order <= e4b->bd_blkbits + 1) {
1071                 block = block >> 1;
1072                 if (!mb_test_bit(block, bb)) {
1073                         /* this block is part of buddy of order 'order' */
1074                         return order;
1075                 }
1076                 bb += 1 << (e4b->bd_blkbits - order);
1077                 order++;
1078         }
1079         return 0;
1080 }
1081
1082 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1083 {
1084         __u32 *addr;
1085
1086         len = cur + len;
1087         while (cur < len) {
1088                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1089                         /* fast path: clear whole word at once */
1090                         addr = bm + (cur >> 3);
1091                         *addr = 0;
1092                         cur += 32;
1093                         continue;
1094                 }
1095                 if (lock)
1096                         mb_clear_bit_atomic(lock, cur, bm);
1097                 else
1098                         mb_clear_bit(cur, bm);
1099                 cur++;
1100         }
1101 }
1102
1103 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1104 {
1105         __u32 *addr;
1106
1107         len = cur + len;
1108         while (cur < len) {
1109                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1110                         /* fast path: set whole word at once */
1111                         addr = bm + (cur >> 3);
1112                         *addr = 0xffffffff;
1113                         cur += 32;
1114                         continue;
1115                 }
1116                 if (lock)
1117                         mb_set_bit_atomic(lock, cur, bm);
1118                 else
1119                         mb_set_bit(cur, bm);
1120                 cur++;
1121         }
1122 }
1123
1124 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1125                           int first, int count)
1126 {
1127         int block = 0;
1128         int max = 0;
1129         int order;
1130         void *buddy;
1131         void *buddy2;
1132         struct super_block *sb = e4b->bd_sb;
1133
1134         BUG_ON(first + count > (sb->s_blocksize << 3));
1135         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1136         mb_check_buddy(e4b);
1137         mb_free_blocks_double(inode, e4b, first, count);
1138
1139         e4b->bd_info->bb_free += count;
1140         if (first < e4b->bd_info->bb_first_free)
1141                 e4b->bd_info->bb_first_free = first;
1142
1143         /* let's maintain fragments counter */
1144         if (first != 0)
1145                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1146         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1147                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1148         if (block && max)
1149                 e4b->bd_info->bb_fragments--;
1150         else if (!block && !max)
1151                 e4b->bd_info->bb_fragments++;
1152
1153         /* let's maintain buddy itself */
1154         while (count-- > 0) {
1155                 block = first++;
1156                 order = 0;
1157
1158                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1159                         ext4_fsblk_t blocknr;
1160                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1161                         blocknr += block;
1162                         blocknr +=
1163                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1164                         ext4_grp_locked_error(sb, e4b->bd_group,
1165                                    __func__, "double-free of inode"
1166                                    " %lu's block %llu(bit %u in group %u)",
1167                                    inode ? inode->i_ino : 0, blocknr, block,
1168                                    e4b->bd_group);
1169                 }
1170                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1171                 e4b->bd_info->bb_counters[order]++;
1172
1173                 /* start of the buddy */
1174                 buddy = mb_find_buddy(e4b, order, &max);
1175
1176                 do {
1177                         block &= ~1UL;
1178                         if (mb_test_bit(block, buddy) ||
1179                                         mb_test_bit(block + 1, buddy))
1180                                 break;
1181
1182                         /* both the buddies are free, try to coalesce them */
1183                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1184
1185                         if (!buddy2)
1186                                 break;
1187
1188                         if (order > 0) {
1189                                 /* for special purposes, we don't set
1190                                  * free bits in bitmap */
1191                                 mb_set_bit(block, buddy);
1192                                 mb_set_bit(block + 1, buddy);
1193                         }
1194                         e4b->bd_info->bb_counters[order]--;
1195                         e4b->bd_info->bb_counters[order]--;
1196
1197                         block = block >> 1;
1198                         order++;
1199                         e4b->bd_info->bb_counters[order]++;
1200
1201                         mb_clear_bit(block, buddy2);
1202                         buddy = buddy2;
1203                 } while (1);
1204         }
1205         mb_check_buddy(e4b);
1206 }
1207
1208 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1209                                 int needed, struct ext4_free_extent *ex)
1210 {
1211         int next = block;
1212         int max;
1213         int ord;
1214         void *buddy;
1215
1216         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1217         BUG_ON(ex == NULL);
1218
1219         buddy = mb_find_buddy(e4b, order, &max);
1220         BUG_ON(buddy == NULL);
1221         BUG_ON(block >= max);
1222         if (mb_test_bit(block, buddy)) {
1223                 ex->fe_len = 0;
1224                 ex->fe_start = 0;
1225                 ex->fe_group = 0;
1226                 return 0;
1227         }
1228
1229         /* FIXME dorp order completely ? */
1230         if (likely(order == 0)) {
1231                 /* find actual order */
1232                 order = mb_find_order_for_block(e4b, block);
1233                 block = block >> order;
1234         }
1235
1236         ex->fe_len = 1 << order;
1237         ex->fe_start = block << order;
1238         ex->fe_group = e4b->bd_group;
1239
1240         /* calc difference from given start */
1241         next = next - ex->fe_start;
1242         ex->fe_len -= next;
1243         ex->fe_start += next;
1244
1245         while (needed > ex->fe_len &&
1246                (buddy = mb_find_buddy(e4b, order, &max))) {
1247
1248                 if (block + 1 >= max)
1249                         break;
1250
1251                 next = (block + 1) * (1 << order);
1252                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1253                         break;
1254
1255                 ord = mb_find_order_for_block(e4b, next);
1256
1257                 order = ord;
1258                 block = next >> order;
1259                 ex->fe_len += 1 << order;
1260         }
1261
1262         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1263         return ex->fe_len;
1264 }
1265
1266 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1267 {
1268         int ord;
1269         int mlen = 0;
1270         int max = 0;
1271         int cur;
1272         int start = ex->fe_start;
1273         int len = ex->fe_len;
1274         unsigned ret = 0;
1275         int len0 = len;
1276         void *buddy;
1277
1278         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1279         BUG_ON(e4b->bd_group != ex->fe_group);
1280         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1281         mb_check_buddy(e4b);
1282         mb_mark_used_double(e4b, start, len);
1283
1284         e4b->bd_info->bb_free -= len;
1285         if (e4b->bd_info->bb_first_free == start)
1286                 e4b->bd_info->bb_first_free += len;
1287
1288         /* let's maintain fragments counter */
1289         if (start != 0)
1290                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1291         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1292                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1293         if (mlen && max)
1294                 e4b->bd_info->bb_fragments++;
1295         else if (!mlen && !max)
1296                 e4b->bd_info->bb_fragments--;
1297
1298         /* let's maintain buddy itself */
1299         while (len) {
1300                 ord = mb_find_order_for_block(e4b, start);
1301
1302                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1303                         /* the whole chunk may be allocated at once! */
1304                         mlen = 1 << ord;
1305                         buddy = mb_find_buddy(e4b, ord, &max);
1306                         BUG_ON((start >> ord) >= max);
1307                         mb_set_bit(start >> ord, buddy);
1308                         e4b->bd_info->bb_counters[ord]--;
1309                         start += mlen;
1310                         len -= mlen;
1311                         BUG_ON(len < 0);
1312                         continue;
1313                 }
1314
1315                 /* store for history */
1316                 if (ret == 0)
1317                         ret = len | (ord << 16);
1318
1319                 /* we have to split large buddy */
1320                 BUG_ON(ord <= 0);
1321                 buddy = mb_find_buddy(e4b, ord, &max);
1322                 mb_set_bit(start >> ord, buddy);
1323                 e4b->bd_info->bb_counters[ord]--;
1324
1325                 ord--;
1326                 cur = (start >> ord) & ~1U;
1327                 buddy = mb_find_buddy(e4b, ord, &max);
1328                 mb_clear_bit(cur, buddy);
1329                 mb_clear_bit(cur + 1, buddy);
1330                 e4b->bd_info->bb_counters[ord]++;
1331                 e4b->bd_info->bb_counters[ord]++;
1332         }
1333
1334         mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1335                         EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1336         mb_check_buddy(e4b);
1337
1338         return ret;
1339 }
1340
1341 /*
1342  * Must be called under group lock!
1343  */
1344 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1345                                         struct ext4_buddy *e4b)
1346 {
1347         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1348         int ret;
1349
1350         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1351         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1352
1353         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1354         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1355         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1356
1357         /* preallocation can change ac_b_ex, thus we store actually
1358          * allocated blocks for history */
1359         ac->ac_f_ex = ac->ac_b_ex;
1360
1361         ac->ac_status = AC_STATUS_FOUND;
1362         ac->ac_tail = ret & 0xffff;
1363         ac->ac_buddy = ret >> 16;
1364
1365         /*
1366          * take the page reference. We want the page to be pinned
1367          * so that we don't get a ext4_mb_init_cache_call for this
1368          * group until we update the bitmap. That would mean we
1369          * double allocate blocks. The reference is dropped
1370          * in ext4_mb_release_context
1371          */
1372         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1373         get_page(ac->ac_bitmap_page);
1374         ac->ac_buddy_page = e4b->bd_buddy_page;
1375         get_page(ac->ac_buddy_page);
1376         /* on allocation we use ac to track the held semaphore */
1377         ac->alloc_semp =  e4b->alloc_semp;
1378         e4b->alloc_semp = NULL;
1379         /* store last allocated for subsequent stream allocation */
1380         if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1381                 spin_lock(&sbi->s_md_lock);
1382                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1383                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1384                 spin_unlock(&sbi->s_md_lock);
1385         }
1386 }
1387
1388 /*
1389  * regular allocator, for general purposes allocation
1390  */
1391
1392 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1393                                         struct ext4_buddy *e4b,
1394                                         int finish_group)
1395 {
1396         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1397         struct ext4_free_extent *bex = &ac->ac_b_ex;
1398         struct ext4_free_extent *gex = &ac->ac_g_ex;
1399         struct ext4_free_extent ex;
1400         int max;
1401
1402         if (ac->ac_status == AC_STATUS_FOUND)
1403                 return;
1404         /*
1405          * We don't want to scan for a whole year
1406          */
1407         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1408                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1409                 ac->ac_status = AC_STATUS_BREAK;
1410                 return;
1411         }
1412
1413         /*
1414          * Haven't found good chunk so far, let's continue
1415          */
1416         if (bex->fe_len < gex->fe_len)
1417                 return;
1418
1419         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1420                         && bex->fe_group == e4b->bd_group) {
1421                 /* recheck chunk's availability - we don't know
1422                  * when it was found (within this lock-unlock
1423                  * period or not) */
1424                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1425                 if (max >= gex->fe_len) {
1426                         ext4_mb_use_best_found(ac, e4b);
1427                         return;
1428                 }
1429         }
1430 }
1431
1432 /*
1433  * The routine checks whether found extent is good enough. If it is,
1434  * then the extent gets marked used and flag is set to the context
1435  * to stop scanning. Otherwise, the extent is compared with the
1436  * previous found extent and if new one is better, then it's stored
1437  * in the context. Later, the best found extent will be used, if
1438  * mballoc can't find good enough extent.
1439  *
1440  * FIXME: real allocation policy is to be designed yet!
1441  */
1442 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1443                                         struct ext4_free_extent *ex,
1444                                         struct ext4_buddy *e4b)
1445 {
1446         struct ext4_free_extent *bex = &ac->ac_b_ex;
1447         struct ext4_free_extent *gex = &ac->ac_g_ex;
1448
1449         BUG_ON(ex->fe_len <= 0);
1450         BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1451         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1452         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1453
1454         ac->ac_found++;
1455
1456         /*
1457          * The special case - take what you catch first
1458          */
1459         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1460                 *bex = *ex;
1461                 ext4_mb_use_best_found(ac, e4b);
1462                 return;
1463         }
1464
1465         /*
1466          * Let's check whether the chuck is good enough
1467          */
1468         if (ex->fe_len == gex->fe_len) {
1469                 *bex = *ex;
1470                 ext4_mb_use_best_found(ac, e4b);
1471                 return;
1472         }
1473
1474         /*
1475          * If this is first found extent, just store it in the context
1476          */
1477         if (bex->fe_len == 0) {
1478                 *bex = *ex;
1479                 return;
1480         }
1481
1482         /*
1483          * If new found extent is better, store it in the context
1484          */
1485         if (bex->fe_len < gex->fe_len) {
1486                 /* if the request isn't satisfied, any found extent
1487                  * larger than previous best one is better */
1488                 if (ex->fe_len > bex->fe_len)
1489                         *bex = *ex;
1490         } else if (ex->fe_len > gex->fe_len) {
1491                 /* if the request is satisfied, then we try to find
1492                  * an extent that still satisfy the request, but is
1493                  * smaller than previous one */
1494                 if (ex->fe_len < bex->fe_len)
1495                         *bex = *ex;
1496         }
1497
1498         ext4_mb_check_limits(ac, e4b, 0);
1499 }
1500
1501 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1502                                         struct ext4_buddy *e4b)
1503 {
1504         struct ext4_free_extent ex = ac->ac_b_ex;
1505         ext4_group_t group = ex.fe_group;
1506         int max;
1507         int err;
1508
1509         BUG_ON(ex.fe_len <= 0);
1510         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1511         if (err)
1512                 return err;
1513
1514         ext4_lock_group(ac->ac_sb, group);
1515         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1516
1517         if (max > 0) {
1518                 ac->ac_b_ex = ex;
1519                 ext4_mb_use_best_found(ac, e4b);
1520         }
1521
1522         ext4_unlock_group(ac->ac_sb, group);
1523         ext4_mb_release_desc(e4b);
1524
1525         return 0;
1526 }
1527
1528 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1529                                 struct ext4_buddy *e4b)
1530 {
1531         ext4_group_t group = ac->ac_g_ex.fe_group;
1532         int max;
1533         int err;
1534         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1535         struct ext4_super_block *es = sbi->s_es;
1536         struct ext4_free_extent ex;
1537
1538         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1539                 return 0;
1540
1541         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1542         if (err)
1543                 return err;
1544
1545         ext4_lock_group(ac->ac_sb, group);
1546         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1547                              ac->ac_g_ex.fe_len, &ex);
1548
1549         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1550                 ext4_fsblk_t start;
1551
1552                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1553                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1554                 /* use do_div to get remainder (would be 64-bit modulo) */
1555                 if (do_div(start, sbi->s_stripe) == 0) {
1556                         ac->ac_found++;
1557                         ac->ac_b_ex = ex;
1558                         ext4_mb_use_best_found(ac, e4b);
1559                 }
1560         } else if (max >= ac->ac_g_ex.fe_len) {
1561                 BUG_ON(ex.fe_len <= 0);
1562                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1563                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1564                 ac->ac_found++;
1565                 ac->ac_b_ex = ex;
1566                 ext4_mb_use_best_found(ac, e4b);
1567         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1568                 /* Sometimes, caller may want to merge even small
1569                  * number of blocks to an existing extent */
1570                 BUG_ON(ex.fe_len <= 0);
1571                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1572                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1573                 ac->ac_found++;
1574                 ac->ac_b_ex = ex;
1575                 ext4_mb_use_best_found(ac, e4b);
1576         }
1577         ext4_unlock_group(ac->ac_sb, group);
1578         ext4_mb_release_desc(e4b);
1579
1580         return 0;
1581 }
1582
1583 /*
1584  * The routine scans buddy structures (not bitmap!) from given order
1585  * to max order and tries to find big enough chunk to satisfy the req
1586  */
1587 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1588                                         struct ext4_buddy *e4b)
1589 {
1590         struct super_block *sb = ac->ac_sb;
1591         struct ext4_group_info *grp = e4b->bd_info;
1592         void *buddy;
1593         int i;
1594         int k;
1595         int max;
1596
1597         BUG_ON(ac->ac_2order <= 0);
1598         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1599                 if (grp->bb_counters[i] == 0)
1600                         continue;
1601
1602                 buddy = mb_find_buddy(e4b, i, &max);
1603                 BUG_ON(buddy == NULL);
1604
1605                 k = mb_find_next_zero_bit(buddy, max, 0);
1606                 BUG_ON(k >= max);
1607
1608                 ac->ac_found++;
1609
1610                 ac->ac_b_ex.fe_len = 1 << i;
1611                 ac->ac_b_ex.fe_start = k << i;
1612                 ac->ac_b_ex.fe_group = e4b->bd_group;
1613
1614                 ext4_mb_use_best_found(ac, e4b);
1615
1616                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1617
1618                 if (EXT4_SB(sb)->s_mb_stats)
1619                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1620
1621                 break;
1622         }
1623 }
1624
1625 /*
1626  * The routine scans the group and measures all found extents.
1627  * In order to optimize scanning, caller must pass number of
1628  * free blocks in the group, so the routine can know upper limit.
1629  */
1630 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1631                                         struct ext4_buddy *e4b)
1632 {
1633         struct super_block *sb = ac->ac_sb;
1634         void *bitmap = EXT4_MB_BITMAP(e4b);
1635         struct ext4_free_extent ex;
1636         int i;
1637         int free;
1638
1639         free = e4b->bd_info->bb_free;
1640         BUG_ON(free <= 0);
1641
1642         i = e4b->bd_info->bb_first_free;
1643
1644         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1645                 i = mb_find_next_zero_bit(bitmap,
1646                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1647                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1648                         /*
1649                          * IF we have corrupt bitmap, we won't find any
1650                          * free blocks even though group info says we
1651                          * we have free blocks
1652                          */
1653                         ext4_grp_locked_error(sb, e4b->bd_group,
1654                                         __func__, "%d free blocks as per "
1655                                         "group info. But bitmap says 0",
1656                                         free);
1657                         break;
1658                 }
1659
1660                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1661                 BUG_ON(ex.fe_len <= 0);
1662                 if (free < ex.fe_len) {
1663                         ext4_grp_locked_error(sb, e4b->bd_group,
1664                                         __func__, "%d free blocks as per "
1665                                         "group info. But got %d blocks",
1666                                         free, ex.fe_len);
1667                         /*
1668                          * The number of free blocks differs. This mostly
1669                          * indicate that the bitmap is corrupt. So exit
1670                          * without claiming the space.
1671                          */
1672                         break;
1673                 }
1674
1675                 ext4_mb_measure_extent(ac, &ex, e4b);
1676
1677                 i += ex.fe_len;
1678                 free -= ex.fe_len;
1679         }
1680
1681         ext4_mb_check_limits(ac, e4b, 1);
1682 }
1683
1684 /*
1685  * This is a special case for storages like raid5
1686  * we try to find stripe-aligned chunks for stripe-size requests
1687  * XXX should do so at least for multiples of stripe size as well
1688  */
1689 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1690                                  struct ext4_buddy *e4b)
1691 {
1692         struct super_block *sb = ac->ac_sb;
1693         struct ext4_sb_info *sbi = EXT4_SB(sb);
1694         void *bitmap = EXT4_MB_BITMAP(e4b);
1695         struct ext4_free_extent ex;
1696         ext4_fsblk_t first_group_block;
1697         ext4_fsblk_t a;
1698         ext4_grpblk_t i;
1699         int max;
1700
1701         BUG_ON(sbi->s_stripe == 0);
1702
1703         /* find first stripe-aligned block in group */
1704         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1705                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1706         a = first_group_block + sbi->s_stripe - 1;
1707         do_div(a, sbi->s_stripe);
1708         i = (a * sbi->s_stripe) - first_group_block;
1709
1710         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1711                 if (!mb_test_bit(i, bitmap)) {
1712                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1713                         if (max >= sbi->s_stripe) {
1714                                 ac->ac_found++;
1715                                 ac->ac_b_ex = ex;
1716                                 ext4_mb_use_best_found(ac, e4b);
1717                                 break;
1718                         }
1719                 }
1720                 i += sbi->s_stripe;
1721         }
1722 }
1723
1724 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1725                                 ext4_group_t group, int cr)
1726 {
1727         unsigned free, fragments;
1728         unsigned i, bits;
1729         struct ext4_group_desc *desc;
1730         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1731
1732         BUG_ON(cr < 0 || cr >= 4);
1733         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1734
1735         free = grp->bb_free;
1736         fragments = grp->bb_fragments;
1737         if (free == 0)
1738                 return 0;
1739         if (fragments == 0)
1740                 return 0;
1741
1742         switch (cr) {
1743         case 0:
1744                 BUG_ON(ac->ac_2order == 0);
1745                 /* If this group is uninitialized, skip it initially */
1746                 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1747                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1748                         return 0;
1749
1750                 bits = ac->ac_sb->s_blocksize_bits + 1;
1751                 for (i = ac->ac_2order; i <= bits; i++)
1752                         if (grp->bb_counters[i] > 0)
1753                                 return 1;
1754                 break;
1755         case 1:
1756                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1757                         return 1;
1758                 break;
1759         case 2:
1760                 if (free >= ac->ac_g_ex.fe_len)
1761                         return 1;
1762                 break;
1763         case 3:
1764                 return 1;
1765         default:
1766                 BUG();
1767         }
1768
1769         return 0;
1770 }
1771
1772 /*
1773  * lock the group_info alloc_sem of all the groups
1774  * belonging to the same buddy cache page. This
1775  * make sure other parallel operation on the buddy
1776  * cache doesn't happen  whild holding the buddy cache
1777  * lock
1778  */
1779 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1780 {
1781         int i;
1782         int block, pnum;
1783         int blocks_per_page;
1784         int groups_per_page;
1785         ext4_group_t first_group;
1786         struct ext4_group_info *grp;
1787
1788         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1789         /*
1790          * the buddy cache inode stores the block bitmap
1791          * and buddy information in consecutive blocks.
1792          * So for each group we need two blocks.
1793          */
1794         block = group * 2;
1795         pnum = block / blocks_per_page;
1796         first_group = pnum * blocks_per_page / 2;
1797
1798         groups_per_page = blocks_per_page >> 1;
1799         if (groups_per_page == 0)
1800                 groups_per_page = 1;
1801         /* read all groups the page covers into the cache */
1802         for (i = 0; i < groups_per_page; i++) {
1803
1804                 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1805                         break;
1806                 grp = ext4_get_group_info(sb, first_group + i);
1807                 /* take all groups write allocation
1808                  * semaphore. This make sure there is
1809                  * no block allocation going on in any
1810                  * of that groups
1811                  */
1812                 down_write_nested(&grp->alloc_sem, i);
1813         }
1814         return i;
1815 }
1816
1817 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1818                                         ext4_group_t group, int locked_group)
1819 {
1820         int i;
1821         int block, pnum;
1822         int blocks_per_page;
1823         ext4_group_t first_group;
1824         struct ext4_group_info *grp;
1825
1826         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1827         /*
1828          * the buddy cache inode stores the block bitmap
1829          * and buddy information in consecutive blocks.
1830          * So for each group we need two blocks.
1831          */
1832         block = group * 2;
1833         pnum = block / blocks_per_page;
1834         first_group = pnum * blocks_per_page / 2;
1835         /* release locks on all the groups */
1836         for (i = 0; i < locked_group; i++) {
1837
1838                 grp = ext4_get_group_info(sb, first_group + i);
1839                 /* take all groups write allocation
1840                  * semaphore. This make sure there is
1841                  * no block allocation going on in any
1842                  * of that groups
1843                  */
1844                 up_write(&grp->alloc_sem);
1845         }
1846
1847 }
1848
1849 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1850 {
1851
1852         int ret;
1853         void *bitmap;
1854         int blocks_per_page;
1855         int block, pnum, poff;
1856         int num_grp_locked = 0;
1857         struct ext4_group_info *this_grp;
1858         struct ext4_sb_info *sbi = EXT4_SB(sb);
1859         struct inode *inode = sbi->s_buddy_cache;
1860         struct page *page = NULL, *bitmap_page = NULL;
1861
1862         mb_debug("init group %lu\n", group);
1863         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1864         this_grp = ext4_get_group_info(sb, group);
1865         /*
1866          * This ensures we don't add group
1867          * to this buddy cache via resize
1868          */
1869         num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1870         if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1871                 /*
1872                  * somebody initialized the group
1873                  * return without doing anything
1874                  */
1875                 ret = 0;
1876                 goto err;
1877         }
1878         /*
1879          * the buddy cache inode stores the block bitmap
1880          * and buddy information in consecutive blocks.
1881          * So for each group we need two blocks.
1882          */
1883         block = group * 2;
1884         pnum = block / blocks_per_page;
1885         poff = block % blocks_per_page;
1886         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1887         if (page) {
1888                 BUG_ON(page->mapping != inode->i_mapping);
1889                 ret = ext4_mb_init_cache(page, NULL);
1890                 if (ret) {
1891                         unlock_page(page);
1892                         goto err;
1893                 }
1894                 unlock_page(page);
1895         }
1896         if (page == NULL || !PageUptodate(page)) {
1897                 ret = -EIO;
1898                 goto err;
1899         }
1900         mark_page_accessed(page);
1901         bitmap_page = page;
1902         bitmap = page_address(page) + (poff * sb->s_blocksize);
1903
1904         /* init buddy cache */
1905         block++;
1906         pnum = block / blocks_per_page;
1907         poff = block % blocks_per_page;
1908         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1909         if (page == bitmap_page) {
1910                 /*
1911                  * If both the bitmap and buddy are in
1912                  * the same page we don't need to force
1913                  * init the buddy
1914                  */
1915                 unlock_page(page);
1916         } else if (page) {
1917                 BUG_ON(page->mapping != inode->i_mapping);
1918                 ret = ext4_mb_init_cache(page, bitmap);
1919                 if (ret) {
1920                         unlock_page(page);
1921                         goto err;
1922                 }
1923                 unlock_page(page);
1924         }
1925         if (page == NULL || !PageUptodate(page)) {
1926                 ret = -EIO;
1927                 goto err;
1928         }
1929         mark_page_accessed(page);
1930 err:
1931         ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1932         if (bitmap_page)
1933                 page_cache_release(bitmap_page);
1934         if (page)
1935                 page_cache_release(page);
1936         return ret;
1937 }
1938
1939 static noinline_for_stack int
1940 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1941 {
1942         ext4_group_t group;
1943         ext4_group_t i;
1944         int cr;
1945         int err = 0;
1946         int bsbits;
1947         struct ext4_sb_info *sbi;
1948         struct super_block *sb;
1949         struct ext4_buddy e4b;
1950         loff_t size, isize;
1951
1952         sb = ac->ac_sb;
1953         sbi = EXT4_SB(sb);
1954         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1955
1956         /* first, try the goal */
1957         err = ext4_mb_find_by_goal(ac, &e4b);
1958         if (err || ac->ac_status == AC_STATUS_FOUND)
1959                 goto out;
1960
1961         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1962                 goto out;
1963
1964         /*
1965          * ac->ac2_order is set only if the fe_len is a power of 2
1966          * if ac2_order is set we also set criteria to 0 so that we
1967          * try exact allocation using buddy.
1968          */
1969         i = fls(ac->ac_g_ex.fe_len);
1970         ac->ac_2order = 0;
1971         /*
1972          * We search using buddy data only if the order of the request
1973          * is greater than equal to the sbi_s_mb_order2_reqs
1974          * You can tune it via /proc/fs/ext4/<partition>/order2_req
1975          */
1976         if (i >= sbi->s_mb_order2_reqs) {
1977                 /*
1978                  * This should tell if fe_len is exactly power of 2
1979                  */
1980                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1981                         ac->ac_2order = i - 1;
1982         }
1983
1984         bsbits = ac->ac_sb->s_blocksize_bits;
1985         /* if stream allocation is enabled, use global goal */
1986         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1987         isize = i_size_read(ac->ac_inode) >> bsbits;
1988         if (size < isize)
1989                 size = isize;
1990
1991         if (size < sbi->s_mb_stream_request &&
1992                         (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1993                 /* TBD: may be hot point */
1994                 spin_lock(&sbi->s_md_lock);
1995                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1996                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1997                 spin_unlock(&sbi->s_md_lock);
1998         }
1999         /* Let's just scan groups to find more-less suitable blocks */
2000         cr = ac->ac_2order ? 0 : 1;
2001         /*
2002          * cr == 0 try to get exact allocation,
2003          * cr == 3  try to get anything
2004          */
2005 repeat:
2006         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2007                 ac->ac_criteria = cr;
2008                 /*
2009                  * searching for the right group start
2010                  * from the goal value specified
2011                  */
2012                 group = ac->ac_g_ex.fe_group;
2013
2014                 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2015                         struct ext4_group_info *grp;
2016                         struct ext4_group_desc *desc;
2017
2018                         if (group == EXT4_SB(sb)->s_groups_count)
2019                                 group = 0;
2020
2021                         /* quick check to skip empty groups */
2022                         grp = ext4_get_group_info(sb, group);
2023                         if (grp->bb_free == 0)
2024                                 continue;
2025
2026                         /*
2027                          * if the group is already init we check whether it is
2028                          * a good group and if not we don't load the buddy
2029                          */
2030                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
2031                                 /*
2032                                  * we need full data about the group
2033                                  * to make a good selection
2034                                  */
2035                                 err = ext4_mb_init_group(sb, group);
2036                                 if (err)
2037                                         goto out;
2038                         }
2039
2040                         /*
2041                          * If the particular group doesn't satisfy our
2042                          * criteria we continue with the next group
2043                          */
2044                         if (!ext4_mb_good_group(ac, group, cr))
2045                                 continue;
2046
2047                         err = ext4_mb_load_buddy(sb, group, &e4b);
2048                         if (err)
2049                                 goto out;
2050
2051                         ext4_lock_group(sb, group);
2052                         if (!ext4_mb_good_group(ac, group, cr)) {
2053                                 /* someone did allocation from this group */
2054                                 ext4_unlock_group(sb, group);
2055                                 ext4_mb_release_desc(&e4b);
2056                                 continue;
2057                         }
2058
2059                         ac->ac_groups_scanned++;
2060                         desc = ext4_get_group_desc(sb, group, NULL);
2061                         if (cr == 0 || (desc->bg_flags &
2062                                         cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2063                                         ac->ac_2order != 0))
2064                                 ext4_mb_simple_scan_group(ac, &e4b);
2065                         else if (cr == 1 &&
2066                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
2067                                 ext4_mb_scan_aligned(ac, &e4b);
2068                         else
2069                                 ext4_mb_complex_scan_group(ac, &e4b);
2070
2071                         ext4_unlock_group(sb, group);
2072                         ext4_mb_release_desc(&e4b);
2073
2074                         if (ac->ac_status != AC_STATUS_CONTINUE)
2075                                 break;
2076                 }
2077         }
2078
2079         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2080             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2081                 /*
2082                  * We've been searching too long. Let's try to allocate
2083                  * the best chunk we've found so far
2084                  */
2085
2086                 ext4_mb_try_best_found(ac, &e4b);
2087                 if (ac->ac_status != AC_STATUS_FOUND) {
2088                         /*
2089                          * Someone more lucky has already allocated it.
2090                          * The only thing we can do is just take first
2091                          * found block(s)
2092                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2093                          */
2094                         ac->ac_b_ex.fe_group = 0;
2095                         ac->ac_b_ex.fe_start = 0;
2096                         ac->ac_b_ex.fe_len = 0;
2097                         ac->ac_status = AC_STATUS_CONTINUE;
2098                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2099                         cr = 3;
2100                         atomic_inc(&sbi->s_mb_lost_chunks);
2101                         goto repeat;
2102                 }
2103         }
2104 out:
2105         return err;
2106 }
2107
2108 #ifdef EXT4_MB_HISTORY
2109 struct ext4_mb_proc_session {
2110         struct ext4_mb_history *history;
2111         struct super_block *sb;
2112         int start;
2113         int max;
2114 };
2115
2116 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2117                                         struct ext4_mb_history *hs,
2118                                         int first)
2119 {
2120         if (hs == s->history + s->max)
2121                 hs = s->history;
2122         if (!first && hs == s->history + s->start)
2123                 return NULL;
2124         while (hs->orig.fe_len == 0) {
2125                 hs++;
2126                 if (hs == s->history + s->max)
2127                         hs = s->history;
2128                 if (hs == s->history + s->start)
2129                         return NULL;
2130         }
2131         return hs;
2132 }
2133
2134 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2135 {
2136         struct ext4_mb_proc_session *s = seq->private;
2137         struct ext4_mb_history *hs;
2138         int l = *pos;
2139
2140         if (l == 0)
2141                 return SEQ_START_TOKEN;
2142         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2143         if (!hs)
2144                 return NULL;
2145         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2146         return hs;
2147 }
2148
2149 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2150                                       loff_t *pos)
2151 {
2152         struct ext4_mb_proc_session *s = seq->private;
2153         struct ext4_mb_history *hs = v;
2154
2155         ++*pos;
2156         if (v == SEQ_START_TOKEN)
2157                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2158         else
2159                 return ext4_mb_history_skip_empty(s, ++hs, 0);
2160 }
2161
2162 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2163 {
2164         char buf[25], buf2[25], buf3[25], *fmt;
2165         struct ext4_mb_history *hs = v;
2166
2167         if (v == SEQ_START_TOKEN) {
2168                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2169                                 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2170                           "pid", "inode", "original", "goal", "result", "found",
2171                            "grps", "cr", "flags", "merge", "tail", "broken");
2172                 return 0;
2173         }
2174
2175         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2176                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2177                         "%-5u %-5s %-5u %-6u\n";
2178                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2179                         hs->result.fe_start, hs->result.fe_len,
2180                         hs->result.fe_logical);
2181                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2182                         hs->orig.fe_start, hs->orig.fe_len,
2183                         hs->orig.fe_logical);
2184                 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2185                         hs->goal.fe_start, hs->goal.fe_len,
2186                         hs->goal.fe_logical);
2187                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2188                                 hs->found, hs->groups, hs->cr, hs->flags,
2189                                 hs->merged ? "M" : "", hs->tail,
2190                                 hs->buddy ? 1 << hs->buddy : 0);
2191         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2192                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2193                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2194                         hs->result.fe_start, hs->result.fe_len,
2195                         hs->result.fe_logical);
2196                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2197                         hs->orig.fe_start, hs->orig.fe_len,
2198                         hs->orig.fe_logical);
2199                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2200         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2201                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2202                         hs->result.fe_start, hs->result.fe_len);
2203                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2204                                 hs->pid, hs->ino, buf2);
2205         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2206                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2207                         hs->result.fe_start, hs->result.fe_len);
2208                 seq_printf(seq, "%-5u %-8u %-23s free\n",
2209                                 hs->pid, hs->ino, buf2);
2210         }
2211         return 0;
2212 }
2213
2214 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2215 {
2216 }
2217
2218 static struct seq_operations ext4_mb_seq_history_ops = {
2219         .start  = ext4_mb_seq_history_start,
2220         .next   = ext4_mb_seq_history_next,
2221         .stop   = ext4_mb_seq_history_stop,
2222         .show   = ext4_mb_seq_history_show,
2223 };
2224
2225 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2226 {
2227         struct super_block *sb = PDE(inode)->data;
2228         struct ext4_sb_info *sbi = EXT4_SB(sb);
2229         struct ext4_mb_proc_session *s;
2230         int rc;
2231         int size;
2232
2233         if (unlikely(sbi->s_mb_history == NULL))
2234                 return -ENOMEM;
2235         s = kmalloc(sizeof(*s), GFP_KERNEL);
2236         if (s == NULL)
2237                 return -ENOMEM;
2238         s->sb = sb;
2239         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2240         s->history = kmalloc(size, GFP_KERNEL);
2241         if (s->history == NULL) {
2242                 kfree(s);
2243                 return -ENOMEM;
2244         }
2245
2246         spin_lock(&sbi->s_mb_history_lock);
2247         memcpy(s->history, sbi->s_mb_history, size);
2248         s->max = sbi->s_mb_history_max;
2249         s->start = sbi->s_mb_history_cur % s->max;
2250         spin_unlock(&sbi->s_mb_history_lock);
2251
2252         rc = seq_open(file, &ext4_mb_seq_history_ops);
2253         if (rc == 0) {
2254                 struct seq_file *m = (struct seq_file *)file->private_data;
2255                 m->private = s;
2256         } else {
2257                 kfree(s->history);
2258                 kfree(s);
2259         }
2260         return rc;
2261
2262 }
2263
2264 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2265 {
2266         struct seq_file *seq = (struct seq_file *)file->private_data;
2267         struct ext4_mb_proc_session *s = seq->private;
2268         kfree(s->history);
2269         kfree(s);
2270         return seq_release(inode, file);
2271 }
2272
2273 static ssize_t ext4_mb_seq_history_write(struct file *file,
2274                                 const char __user *buffer,
2275                                 size_t count, loff_t *ppos)
2276 {
2277         struct seq_file *seq = (struct seq_file *)file->private_data;
2278         struct ext4_mb_proc_session *s = seq->private;
2279         struct super_block *sb = s->sb;
2280         char str[32];
2281         int value;
2282
2283         if (count >= sizeof(str)) {
2284                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2285                                 "mb_history", (int)sizeof(str));
2286                 return -EOVERFLOW;
2287         }
2288
2289         if (copy_from_user(str, buffer, count))
2290                 return -EFAULT;
2291
2292         value = simple_strtol(str, NULL, 0);
2293         if (value < 0)
2294                 return -ERANGE;
2295         EXT4_SB(sb)->s_mb_history_filter = value;
2296
2297         return count;
2298 }
2299
2300 static struct file_operations ext4_mb_seq_history_fops = {
2301         .owner          = THIS_MODULE,
2302         .open           = ext4_mb_seq_history_open,
2303         .read           = seq_read,
2304         .write          = ext4_mb_seq_history_write,
2305         .llseek         = seq_lseek,
2306         .release        = ext4_mb_seq_history_release,
2307 };
2308
2309 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2310 {
2311         struct super_block *sb = seq->private;
2312         struct ext4_sb_info *sbi = EXT4_SB(sb);
2313         ext4_group_t group;
2314
2315         if (*pos < 0 || *pos >= sbi->s_groups_count)
2316                 return NULL;
2317
2318         group = *pos + 1;
2319         return (void *) ((unsigned long) group);
2320 }
2321
2322 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2323 {
2324         struct super_block *sb = seq->private;
2325         struct ext4_sb_info *sbi = EXT4_SB(sb);
2326         ext4_group_t group;
2327
2328         ++*pos;
2329         if (*pos < 0 || *pos >= sbi->s_groups_count)
2330                 return NULL;
2331         group = *pos + 1;
2332         return (void *) ((unsigned long) group);
2333 }
2334
2335 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2336 {
2337         struct super_block *sb = seq->private;
2338         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2339         int i;
2340         int err;
2341         struct ext4_buddy e4b;
2342         struct sg {
2343                 struct ext4_group_info info;
2344                 unsigned short counters[16];
2345         } sg;
2346
2347         group--;
2348         if (group == 0)
2349                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2350                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2351                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2352                            "group", "free", "frags", "first",
2353                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2354                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2355
2356         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2357                 sizeof(struct ext4_group_info);
2358         err = ext4_mb_load_buddy(sb, group, &e4b);
2359         if (err) {
2360                 seq_printf(seq, "#%-5u: I/O error\n", group);
2361                 return 0;
2362         }
2363         ext4_lock_group(sb, group);
2364         memcpy(&sg, ext4_get_group_info(sb, group), i);
2365         ext4_unlock_group(sb, group);
2366         ext4_mb_release_desc(&e4b);
2367
2368         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2369                         sg.info.bb_fragments, sg.info.bb_first_free);
2370         for (i = 0; i <= 13; i++)
2371                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2372                                 sg.info.bb_counters[i] : 0);
2373         seq_printf(seq, " ]\n");
2374
2375         return 0;
2376 }
2377
2378 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2379 {
2380 }
2381
2382 static struct seq_operations ext4_mb_seq_groups_ops = {
2383         .start  = ext4_mb_seq_groups_start,
2384         .next   = ext4_mb_seq_groups_next,
2385         .stop   = ext4_mb_seq_groups_stop,
2386         .show   = ext4_mb_seq_groups_show,
2387 };
2388
2389 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2390 {
2391         struct super_block *sb = PDE(inode)->data;
2392         int rc;
2393
2394         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2395         if (rc == 0) {
2396                 struct seq_file *m = (struct seq_file *)file->private_data;
2397                 m->private = sb;
2398         }
2399         return rc;
2400
2401 }
2402
2403 static struct file_operations ext4_mb_seq_groups_fops = {
2404         .owner          = THIS_MODULE,
2405         .open           = ext4_mb_seq_groups_open,
2406         .read           = seq_read,
2407         .llseek         = seq_lseek,
2408         .release        = seq_release,
2409 };
2410
2411 static void ext4_mb_history_release(struct super_block *sb)
2412 {
2413         struct ext4_sb_info *sbi = EXT4_SB(sb);
2414
2415         if (sbi->s_proc != NULL) {
2416                 remove_proc_entry("mb_groups", sbi->s_proc);
2417                 remove_proc_entry("mb_history", sbi->s_proc);
2418         }
2419         kfree(sbi->s_mb_history);
2420 }
2421
2422 static void ext4_mb_history_init(struct super_block *sb)
2423 {
2424         struct ext4_sb_info *sbi = EXT4_SB(sb);
2425         int i;
2426
2427         if (sbi->s_proc != NULL) {
2428                 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2429                                  &ext4_mb_seq_history_fops, sb);
2430                 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2431                                  &ext4_mb_seq_groups_fops, sb);
2432         }
2433
2434         sbi->s_mb_history_max = 1000;
2435         sbi->s_mb_history_cur = 0;
2436         spin_lock_init(&sbi->s_mb_history_lock);
2437         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2438         sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2439         /* if we can't allocate history, then we simple won't use it */
2440 }
2441
2442 static noinline_for_stack void
2443 ext4_mb_store_history(struct ext4_allocation_context *ac)
2444 {
2445         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2446         struct ext4_mb_history h;
2447
2448         if (unlikely(sbi->s_mb_history == NULL))
2449                 return;
2450
2451         if (!(ac->ac_op & sbi->s_mb_history_filter))
2452                 return;
2453
2454         h.op = ac->ac_op;
2455         h.pid = current->pid;
2456         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2457         h.orig = ac->ac_o_ex;
2458         h.result = ac->ac_b_ex;
2459         h.flags = ac->ac_flags;
2460         h.found = ac->ac_found;
2461         h.groups = ac->ac_groups_scanned;
2462         h.cr = ac->ac_criteria;
2463         h.tail = ac->ac_tail;
2464         h.buddy = ac->ac_buddy;
2465         h.merged = 0;
2466         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2467                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2468                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2469                         h.merged = 1;
2470                 h.goal = ac->ac_g_ex;
2471                 h.result = ac->ac_f_ex;
2472         }
2473
2474         spin_lock(&sbi->s_mb_history_lock);
2475         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2476         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2477                 sbi->s_mb_history_cur = 0;
2478         spin_unlock(&sbi->s_mb_history_lock);
2479 }
2480
2481 #else
2482 #define ext4_mb_history_release(sb)
2483 #define ext4_mb_history_init(sb)
2484 #endif
2485
2486
2487 /* Create and initialize ext4_group_info data for the given group. */
2488 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2489                           struct ext4_group_desc *desc)
2490 {
2491         int i, len;
2492         int metalen = 0;
2493         struct ext4_sb_info *sbi = EXT4_SB(sb);
2494         struct ext4_group_info **meta_group_info;
2495
2496         /*
2497          * First check if this group is the first of a reserved block.
2498          * If it's true, we have to allocate a new table of pointers
2499          * to ext4_group_info structures
2500          */
2501         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2502                 metalen = sizeof(*meta_group_info) <<
2503                         EXT4_DESC_PER_BLOCK_BITS(sb);
2504                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2505                 if (meta_group_info == NULL) {
2506                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2507                                "buddy group\n");
2508                         goto exit_meta_group_info;
2509                 }
2510                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2511                         meta_group_info;
2512         }
2513
2514         /*
2515          * calculate needed size. if change bb_counters size,
2516          * don't forget about ext4_mb_generate_buddy()
2517          */
2518         len = offsetof(typeof(**meta_group_info),
2519                        bb_counters[sb->s_blocksize_bits + 2]);
2520
2521         meta_group_info =
2522                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2523         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2524
2525         meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2526         if (meta_group_info[i] == NULL) {
2527                 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2528                 goto exit_group_info;
2529         }
2530         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2531                 &(meta_group_info[i]->bb_state));
2532
2533         /*
2534          * initialize bb_free to be able to skip
2535          * empty groups without initialization
2536          */
2537         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2538                 meta_group_info[i]->bb_free =
2539                         ext4_free_blocks_after_init(sb, group, desc);
2540         } else {
2541                 meta_group_info[i]->bb_free =
2542                         ext4_free_blks_count(sb, desc);
2543         }
2544
2545         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2546         init_rwsem(&meta_group_info[i]->alloc_sem);
2547         meta_group_info[i]->bb_free_root.rb_node = NULL;;
2548
2549 #ifdef DOUBLE_CHECK
2550         {
2551                 struct buffer_head *bh;
2552                 meta_group_info[i]->bb_bitmap =
2553                         kmalloc(sb->s_blocksize, GFP_KERNEL);
2554                 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2555                 bh = ext4_read_block_bitmap(sb, group);
2556                 BUG_ON(bh == NULL);
2557                 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2558                         sb->s_blocksize);
2559                 put_bh(bh);
2560         }
2561 #endif
2562
2563         return 0;
2564
2565 exit_group_info:
2566         /* If a meta_group_info table has been allocated, release it now */
2567         if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2568                 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2569 exit_meta_group_info:
2570         return -ENOMEM;
2571 } /* ext4_mb_add_groupinfo */
2572
2573 /*
2574  * Update an existing group.
2575  * This function is used for online resize
2576  */
2577 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2578 {
2579         grp->bb_free += add;
2580 }
2581
2582 static int ext4_mb_init_backend(struct super_block *sb)
2583 {
2584         ext4_group_t i;
2585         int metalen;
2586         struct ext4_sb_info *sbi = EXT4_SB(sb);
2587         struct ext4_super_block *es = sbi->s_es;
2588         int num_meta_group_infos;
2589         int num_meta_group_infos_max;
2590         int array_size;
2591         struct ext4_group_info **meta_group_info;
2592         struct ext4_group_desc *desc;
2593
2594         /* This is the number of blocks used by GDT */
2595         num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2596                                 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2597
2598         /*
2599          * This is the total number of blocks used by GDT including
2600          * the number of reserved blocks for GDT.
2601          * The s_group_info array is allocated with this value
2602          * to allow a clean online resize without a complex
2603          * manipulation of pointer.
2604          * The drawback is the unused memory when no resize
2605          * occurs but it's very low in terms of pages
2606          * (see comments below)
2607          * Need to handle this properly when META_BG resizing is allowed
2608          */
2609         num_meta_group_infos_max = num_meta_group_infos +
2610                                 le16_to_cpu(es->s_reserved_gdt_blocks);
2611
2612         /*
2613          * array_size is the size of s_group_info array. We round it
2614          * to the next power of two because this approximation is done
2615          * internally by kmalloc so we can have some more memory
2616          * for free here (e.g. may be used for META_BG resize).
2617          */
2618         array_size = 1;
2619         while (array_size < sizeof(*sbi->s_group_info) *
2620                num_meta_group_infos_max)
2621                 array_size = array_size << 1;
2622         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2623          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2624          * So a two level scheme suffices for now. */
2625         sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2626         if (sbi->s_group_info == NULL) {
2627                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2628                 return -ENOMEM;
2629         }
2630         sbi->s_buddy_cache = new_inode(sb);
2631         if (sbi->s_buddy_cache == NULL) {
2632                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2633                 goto err_freesgi;
2634         }
2635         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2636
2637         metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2638         for (i = 0; i < num_meta_group_infos; i++) {
2639                 if ((i + 1) == num_meta_group_infos)
2640                         metalen = sizeof(*meta_group_info) *
2641                                 (sbi->s_groups_count -
2642                                         (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2643                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2644                 if (meta_group_info == NULL) {
2645                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2646                                "buddy group\n");
2647                         goto err_freemeta;
2648                 }
2649                 sbi->s_group_info[i] = meta_group_info;
2650         }
2651
2652         for (i = 0; i < sbi->s_groups_count; i++) {
2653                 desc = ext4_get_group_desc(sb, i, NULL);
2654                 if (desc == NULL) {
2655                         printk(KERN_ERR
2656                                 "EXT4-fs: can't read descriptor %u\n", i);
2657                         goto err_freebuddy;
2658                 }
2659                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2660                         goto err_freebuddy;
2661         }
2662
2663         return 0;
2664
2665 err_freebuddy:
2666         while (i-- > 0)
2667                 kfree(ext4_get_group_info(sb, i));
2668         i = num_meta_group_infos;
2669 err_freemeta:
2670         while (i-- > 0)
2671                 kfree(sbi->s_group_info[i]);
2672         iput(sbi->s_buddy_cache);
2673 err_freesgi:
2674         kfree(sbi->s_group_info);
2675         return -ENOMEM;
2676 }
2677
2678 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2679 {
2680         struct ext4_sb_info *sbi = EXT4_SB(sb);
2681         unsigned i, j;
2682         unsigned offset;
2683         unsigned max;
2684         int ret;
2685
2686         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2687
2688         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2689         if (sbi->s_mb_offsets == NULL) {
2690                 return -ENOMEM;
2691         }
2692
2693         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2694         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2695         if (sbi->s_mb_maxs == NULL) {
2696                 kfree(sbi->s_mb_maxs);
2697                 return -ENOMEM;
2698         }
2699
2700         /* order 0 is regular bitmap */
2701         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2702         sbi->s_mb_offsets[0] = 0;
2703
2704         i = 1;
2705         offset = 0;
2706         max = sb->s_blocksize << 2;
2707         do {
2708                 sbi->s_mb_offsets[i] = offset;
2709                 sbi->s_mb_maxs[i] = max;
2710                 offset += 1 << (sb->s_blocksize_bits - i);
2711                 max = max >> 1;
2712                 i++;
2713         } while (i <= sb->s_blocksize_bits + 1);
2714
2715         /* init file for buddy data */
2716         ret = ext4_mb_init_backend(sb);
2717         if (ret != 0) {
2718                 kfree(sbi->s_mb_offsets);
2719                 kfree(sbi->s_mb_maxs);
2720                 return ret;
2721         }
2722
2723         spin_lock_init(&sbi->s_md_lock);
2724         spin_lock_init(&sbi->s_bal_lock);
2725
2726         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2727         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2728         sbi->s_mb_stats = MB_DEFAULT_STATS;
2729         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2730         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2731         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2732         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2733
2734         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2735         if (sbi->s_locality_groups == NULL) {
2736                 kfree(sbi->s_mb_offsets);
2737                 kfree(sbi->s_mb_maxs);
2738                 return -ENOMEM;
2739         }
2740         for_each_possible_cpu(i) {
2741                 struct ext4_locality_group *lg;
2742                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2743                 mutex_init(&lg->lg_mutex);
2744                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2745                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2746                 spin_lock_init(&lg->lg_prealloc_lock);
2747         }
2748
2749         ext4_mb_init_per_dev_proc(sb);
2750         ext4_mb_history_init(sb);
2751
2752         if (sbi->s_journal)
2753                 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2754
2755         printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2756         return 0;
2757 }
2758
2759 /* need to called with ext4 group lock (ext4_lock_group) */
2760 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2761 {
2762         struct ext4_prealloc_space *pa;
2763         struct list_head *cur, *tmp;
2764         int count = 0;
2765
2766         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2767                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2768                 list_del(&pa->pa_group_list);
2769                 count++;
2770                 kmem_cache_free(ext4_pspace_cachep, pa);
2771         }
2772         if (count)
2773                 mb_debug("mballoc: %u PAs left\n", count);
2774
2775 }
2776
2777 int ext4_mb_release(struct super_block *sb)
2778 {
2779         ext4_group_t i;
2780         int num_meta_group_infos;
2781         struct ext4_group_info *grinfo;
2782         struct ext4_sb_info *sbi = EXT4_SB(sb);
2783
2784         if (sbi->s_group_info) {
2785                 for (i = 0; i < sbi->s_groups_count; i++) {
2786                         grinfo = ext4_get_group_info(sb, i);
2787 #ifdef DOUBLE_CHECK
2788                         kfree(grinfo->bb_bitmap);
2789 #endif
2790                         ext4_lock_group(sb, i);
2791                         ext4_mb_cleanup_pa(grinfo);
2792                         ext4_unlock_group(sb, i);
2793                         kfree(grinfo);
2794                 }
2795                 num_meta_group_infos = (sbi->s_groups_count +
2796                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2797                         EXT4_DESC_PER_BLOCK_BITS(sb);
2798                 for (i = 0; i < num_meta_group_infos; i++)
2799                         kfree(sbi->s_group_info[i]);
2800                 kfree(sbi->s_group_info);
2801         }
2802         kfree(sbi->s_mb_offsets);
2803         kfree(sbi->s_mb_maxs);
2804         if (sbi->s_buddy_cache)
2805                 iput(sbi->s_buddy_cache);
2806         if (sbi->s_mb_stats) {
2807                 printk(KERN_INFO
2808                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2809                                 atomic_read(&sbi->s_bal_allocated),
2810                                 atomic_read(&sbi->s_bal_reqs),
2811                                 atomic_read(&sbi->s_bal_success));
2812                 printk(KERN_INFO
2813                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2814                                 "%u 2^N hits, %u breaks, %u lost\n",
2815                                 atomic_read(&sbi->s_bal_ex_scanned),
2816                                 atomic_read(&sbi->s_bal_goals),
2817                                 atomic_read(&sbi->s_bal_2orders),
2818                                 atomic_read(&sbi->s_bal_breaks),
2819                                 atomic_read(&sbi->s_mb_lost_chunks));
2820                 printk(KERN_INFO
2821                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2822                                 sbi->s_mb_buddies_generated++,
2823                                 sbi->s_mb_generation_time);
2824                 printk(KERN_INFO
2825                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2826                                 atomic_read(&sbi->s_mb_preallocated),
2827                                 atomic_read(&sbi->s_mb_discarded));
2828         }
2829
2830         free_percpu(sbi->s_locality_groups);
2831         ext4_mb_history_release(sb);
2832         ext4_mb_destroy_per_dev_proc(sb);
2833
2834         return 0;
2835 }
2836
2837 /*
2838  * This function is called by the jbd2 layer once the commit has finished,
2839  * so we know we can free the blocks that were released with that commit.
2840  */
2841 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2842 {
2843         struct super_block *sb = journal->j_private;
2844         struct ext4_buddy e4b;
2845         struct ext4_group_info *db;
2846         int err, count = 0, count2 = 0;
2847         struct ext4_free_data *entry;
2848         ext4_fsblk_t discard_block;
2849         struct list_head *l, *ltmp;
2850
2851         list_for_each_safe(l, ltmp, &txn->t_private_list) {
2852                 entry = list_entry(l, struct ext4_free_data, list);
2853
2854                 mb_debug("gonna free %u blocks in group %u (0x%p):",
2855                          entry->count, entry->group, entry);
2856
2857                 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2858                 /* we expect to find existing buddy because it's pinned */
2859                 BUG_ON(err != 0);
2860
2861                 db = e4b.bd_info;
2862                 /* there are blocks to put in buddy to make them really free */
2863                 count += entry->count;
2864                 count2++;
2865                 ext4_lock_group(sb, entry->group);
2866                 /* Take it out of per group rb tree */
2867                 rb_erase(&entry->node, &(db->bb_free_root));
2868                 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2869
2870                 if (!db->bb_free_root.rb_node) {
2871                         /* No more items in the per group rb tree
2872                          * balance refcounts from ext4_mb_free_metadata()
2873                          */
2874                         page_cache_release(e4b.bd_buddy_page);
2875                         page_cache_release(e4b.bd_bitmap_page);
2876                 }
2877                 ext4_unlock_group(sb, entry->group);
2878                 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2879                         + entry->start_blk
2880                         + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2881                 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
2882                            (unsigned long long) discard_block, entry->count);
2883                 sb_issue_discard(sb, discard_block, entry->count);
2884
2885                 kmem_cache_free(ext4_free_ext_cachep, entry);
2886                 ext4_mb_release_desc(&e4b);
2887         }
2888
2889         mb_debug("freed %u blocks in %u structures\n", count, count2);
2890 }
2891
2892 #define EXT4_MB_STATS_NAME              "stats"
2893 #define EXT4_MB_MAX_TO_SCAN_NAME        "max_to_scan"
2894 #define EXT4_MB_MIN_TO_SCAN_NAME        "min_to_scan"
2895 #define EXT4_MB_ORDER2_REQ              "order2_req"
2896 #define EXT4_MB_STREAM_REQ              "stream_req"
2897 #define EXT4_MB_GROUP_PREALLOC          "group_prealloc"
2898
2899 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2900 {
2901 #ifdef CONFIG_PROC_FS
2902         mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2903         struct ext4_sb_info *sbi = EXT4_SB(sb);
2904         struct proc_dir_entry *proc;
2905
2906         if (sbi->s_proc == NULL)
2907                 return -EINVAL;
2908
2909         EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2910         EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2911         EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2912         EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2913         EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2914         EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2915         return 0;
2916
2917 err_out:
2918         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2919         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2920         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2921         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2922         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2923         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2924         return -ENOMEM;
2925 #else
2926         return 0;
2927 #endif
2928 }
2929
2930 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2931 {
2932 #ifdef CONFIG_PROC_FS
2933         struct ext4_sb_info *sbi = EXT4_SB(sb);
2934
2935         if (sbi->s_proc == NULL)
2936                 return -EINVAL;
2937
2938         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2939         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2940         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2941         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2942         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2943         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2944 #endif
2945         return 0;
2946 }
2947
2948 int __init init_ext4_mballoc(void)
2949 {
2950         ext4_pspace_cachep =
2951                 kmem_cache_create("ext4_prealloc_space",
2952                                      sizeof(struct ext4_prealloc_space),
2953                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2954         if (ext4_pspace_cachep == NULL)
2955                 return -ENOMEM;
2956
2957         ext4_ac_cachep =
2958                 kmem_cache_create("ext4_alloc_context",
2959                                      sizeof(struct ext4_allocation_context),
2960                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2961         if (ext4_ac_cachep == NULL) {
2962                 kmem_cache_destroy(ext4_pspace_cachep);
2963                 return -ENOMEM;
2964         }
2965
2966         ext4_free_ext_cachep =
2967                 kmem_cache_create("ext4_free_block_extents",
2968                                      sizeof(struct ext4_free_data),
2969                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2970         if (ext4_free_ext_cachep == NULL) {
2971                 kmem_cache_destroy(ext4_pspace_cachep);
2972                 kmem_cache_destroy(ext4_ac_cachep);
2973                 return -ENOMEM;
2974         }
2975         return 0;
2976 }
2977
2978 void exit_ext4_mballoc(void)
2979 {
2980         /* XXX: synchronize_rcu(); */
2981         kmem_cache_destroy(ext4_pspace_cachep);
2982         kmem_cache_destroy(ext4_ac_cachep);
2983         kmem_cache_destroy(ext4_free_ext_cachep);
2984 }
2985
2986
2987 /*
2988  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2989  * Returns 0 if success or error code
2990  */
2991 static noinline_for_stack int
2992 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2993                                 handle_t *handle, unsigned int reserv_blks)
2994 {
2995         struct buffer_head *bitmap_bh = NULL;
2996         struct ext4_super_block *es;
2997         struct ext4_group_desc *gdp;
2998         struct buffer_head *gdp_bh;
2999         struct ext4_sb_info *sbi;
3000         struct super_block *sb;
3001         ext4_fsblk_t block;
3002         int err, len;
3003
3004         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3005         BUG_ON(ac->ac_b_ex.fe_len <= 0);
3006
3007         sb = ac->ac_sb;
3008         sbi = EXT4_SB(sb);
3009         es = sbi->s_es;
3010
3011
3012         err = -EIO;
3013         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3014         if (!bitmap_bh)
3015                 goto out_err;
3016
3017         err = ext4_journal_get_write_access(handle, bitmap_bh);
3018         if (err)
3019                 goto out_err;
3020
3021         err = -EIO;
3022         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3023         if (!gdp)
3024                 goto out_err;
3025
3026         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3027                         gdp->bg_free_blocks_count);
3028
3029         err = ext4_journal_get_write_access(handle, gdp_bh);
3030         if (err)
3031                 goto out_err;
3032
3033         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3034                 + ac->ac_b_ex.fe_start
3035                 + le32_to_cpu(es->s_first_data_block);
3036
3037         len = ac->ac_b_ex.fe_len;
3038         if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3039             in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3040             in_range(block, ext4_inode_table(sb, gdp),
3041                      EXT4_SB(sb)->s_itb_per_group) ||
3042             in_range(block + len - 1, ext4_inode_table(sb, gdp),
3043                      EXT4_SB(sb)->s_itb_per_group)) {
3044                 ext4_error(sb, __func__,
3045                            "Allocating block %llu in system zone of %d group\n",
3046                            block, ac->ac_b_ex.fe_group);
3047                 /* File system mounted not to panic on error
3048                  * Fix the bitmap and repeat the block allocation
3049                  * We leak some of the blocks here.
3050                  */
3051                 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3052                                 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3053                                 ac->ac_b_ex.fe_len);
3054                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3055                 if (!err)
3056                         err = -EAGAIN;
3057                 goto out_err;
3058         }
3059 #ifdef AGGRESSIVE_CHECK
3060         {
3061                 int i;
3062                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3063                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3064                                                 bitmap_bh->b_data));
3065                 }
3066         }
3067 #endif
3068         spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3069         mb_set_bits(NULL, bitmap_bh->b_data,
3070                                 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3071         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3072                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3073                 ext4_free_blks_set(sb, gdp,
3074                                         ext4_free_blocks_after_init(sb,
3075                                         ac->ac_b_ex.fe_group, gdp));
3076         }
3077         len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3078         ext4_free_blks_set(sb, gdp, len);
3079         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3080         spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3081         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3082         /*
3083          * Now reduce the dirty block count also. Should not go negative
3084          */
3085         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3086                 /* release all the reserved blocks if non delalloc */
3087                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3088         else
3089                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3090                                                 ac->ac_b_ex.fe_len);
3091
3092         if (sbi->s_log_groups_per_flex) {
3093                 ext4_group_t flex_group = ext4_flex_group(sbi,
3094                                                           ac->ac_b_ex.fe_group);
3095                 spin_lock(sb_bgl_lock(sbi, flex_group));
3096                 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3097                 spin_unlock(sb_bgl_lock(sbi, flex_group));
3098         }
3099
3100         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3101         if (err)
3102                 goto out_err;
3103         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3104
3105 out_err:
3106         sb->s_dirt = 1;
3107         brelse(bitmap_bh);
3108         return err;
3109 }
3110
3111 /*
3112  * here we normalize request for locality group
3113  * Group request are normalized to s_strip size if we set the same via mount
3114  * option. If not we set it to s_mb_group_prealloc which can be configured via
3115  * /proc/fs/ext4/<partition>/group_prealloc
3116  *
3117  * XXX: should we try to preallocate more than the group has now?
3118  */
3119 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3120 {
3121         struct super_block *sb = ac->ac_sb;
3122         struct ext4_locality_group *lg = ac->ac_lg;
3123
3124         BUG_ON(lg == NULL);
3125         if (EXT4_SB(sb)->s_stripe)
3126                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3127         else
3128                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3129         mb_debug("#%u: goal %u blocks for locality group\n",
3130                 current->pid, ac->ac_g_ex.fe_len);
3131 }
3132
3133 /*
3134  * Normalization means making request better in terms of
3135  * size and alignment
3136  */
3137 static noinline_for_stack void
3138 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3139                                 struct ext4_allocation_request *ar)
3140 {
3141         int bsbits, max;
3142         ext4_lblk_t end;
3143         loff_t size, orig_size, start_off;
3144         ext4_lblk_t start, orig_start;
3145         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3146         struct ext4_prealloc_space *pa;
3147
3148         /* do normalize only data requests, metadata requests
3149            do not need preallocation */
3150         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3151                 return;
3152
3153         /* sometime caller may want exact blocks */
3154         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3155                 return;
3156
3157         /* caller may indicate that preallocation isn't
3158          * required (it's a tail, for example) */
3159         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3160                 return;
3161
3162         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3163                 ext4_mb_normalize_group_request(ac);
3164                 return ;
3165         }
3166
3167         bsbits = ac->ac_sb->s_blocksize_bits;
3168
3169         /* first, let's learn actual file size
3170          * given current request is allocated */
3171         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3172         size = size << bsbits;
3173         if (size < i_size_read(ac->ac_inode))
3174                 size = i_size_read(ac->ac_inode);
3175
3176         /* max size of free chunks */
3177         max = 2 << bsbits;
3178
3179 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3180                 (req <= (size) || max <= (chunk_size))
3181
3182         /* first, try to predict filesize */
3183         /* XXX: should this table be tunable? */
3184         start_off = 0;
3185         if (size <= 16 * 1024) {
3186                 size = 16 * 1024;
3187         } else if (size <= 32 * 1024) {
3188                 size = 32 * 1024;
3189         } else if (size <= 64 * 1024) {
3190                 size = 64 * 1024;
3191         } else if (size <= 128 * 1024) {
3192                 size = 128 * 1024;
3193         } else if (size <= 256 * 1024) {
3194                 size = 256 * 1024;
3195         } else if (size <= 512 * 1024) {
3196                 size = 512 * 1024;
3197         } else if (size <= 1024 * 1024) {
3198                 size = 1024 * 1024;
3199         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3200                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3201                                                 (21 - bsbits)) << 21;
3202                 size = 2 * 1024 * 1024;
3203         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3204                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3205                                                         (22 - bsbits)) << 22;
3206                 size = 4 * 1024 * 1024;
3207         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3208                                         (8<<20)>>bsbits, max, 8 * 1024)) {
3209                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3210                                                         (23 - bsbits)) << 23;
3211                 size = 8 * 1024 * 1024;
3212         } else {
3213                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3214                 size      = ac->ac_o_ex.fe_len << bsbits;
3215         }
3216         orig_size = size = size >> bsbits;
3217         orig_start = start = start_off >> bsbits;
3218
3219         /* don't cover already allocated blocks in selected range */
3220         if (ar->pleft && start <= ar->lleft) {
3221                 size -= ar->lleft + 1 - start;
3222                 start = ar->lleft + 1;
3223         }
3224         if (ar->pright && start + size - 1 >= ar->lright)
3225                 size -= start + size - ar->lright;
3226
3227         end = start + size;
3228
3229         /* check we don't cross already preallocated blocks */
3230         rcu_read_lock();
3231         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3232                 ext4_lblk_t pa_end;
3233
3234                 if (pa->pa_deleted)
3235                         continue;
3236                 spin_lock(&pa->pa_lock);
3237                 if (pa->pa_deleted) {
3238                         spin_unlock(&pa->pa_lock);
3239                         continue;
3240                 }
3241
3242                 pa_end = pa->pa_lstart + pa->pa_len;
3243
3244                 /* PA must not overlap original request */
3245                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3246                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3247
3248                 /* skip PA normalized request doesn't overlap with */
3249                 if (pa->pa_lstart >= end) {
3250                         spin_unlock(&pa->pa_lock);
3251                         continue;
3252                 }
3253                 if (pa_end <= start) {
3254                         spin_unlock(&pa->pa_lock);
3255                         continue;
3256                 }
3257                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3258
3259                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3260                         BUG_ON(pa_end < start);
3261                         start = pa_end;
3262                 }
3263
3264                 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3265                         BUG_ON(pa->pa_lstart > end);
3266                         end = pa->pa_lstart;
3267                 }
3268                 spin_unlock(&pa->pa_lock);
3269         }
3270         rcu_read_unlock();
3271         size = end - start;
3272
3273         /* XXX: extra loop to check we really don't overlap preallocations */
3274         rcu_read_lock();
3275         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3276                 ext4_lblk_t pa_end;
3277                 spin_lock(&pa->pa_lock);
3278                 if (pa->pa_deleted == 0) {
3279                         pa_end = pa->pa_lstart + pa->pa_len;
3280                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3281                 }
3282                 spin_unlock(&pa->pa_lock);
3283         }
3284         rcu_read_unlock();
3285
3286         if (start + size <= ac->ac_o_ex.fe_logical &&
3287                         start > ac->ac_o_ex.fe_logical) {
3288                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3289                         (unsigned long) start, (unsigned long) size,
3290                         (unsigned long) ac->ac_o_ex.fe_logical);
3291         }
3292         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3293                         start > ac->ac_o_ex.fe_logical);
3294         BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3295
3296         /* now prepare goal request */
3297
3298         /* XXX: is it better to align blocks WRT to logical
3299          * placement or satisfy big request as is */
3300         ac->ac_g_ex.fe_logical = start;
3301         ac->ac_g_ex.fe_len = size;
3302
3303         /* define goal start in order to merge */
3304         if (ar->pright && (ar->lright == (start + size))) {
3305                 /* merge to the right */
3306                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3307                                                 &ac->ac_f_ex.fe_group,
3308                                                 &ac->ac_f_ex.fe_start);
3309                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3310         }
3311         if (ar->pleft && (ar->lleft + 1 == start)) {
3312                 /* merge to the left */
3313                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3314                                                 &ac->ac_f_ex.fe_group,
3315                                                 &ac->ac_f_ex.fe_start);
3316                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3317         }
3318
3319         mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3320                 (unsigned) orig_size, (unsigned) start);
3321 }
3322
3323 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3324 {
3325         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3326
3327         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3328                 atomic_inc(&sbi->s_bal_reqs);
3329                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3330                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3331                         atomic_inc(&sbi->s_bal_success);
3332                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3333                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3334                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3335                         atomic_inc(&sbi->s_bal_goals);
3336                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3337                         atomic_inc(&sbi->s_bal_breaks);
3338         }
3339
3340         ext4_mb_store_history(ac);
3341 }
3342
3343 /*
3344  * use blocks preallocated to inode
3345  */
3346 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3347                                 struct ext4_prealloc_space *pa)
3348 {
3349         ext4_fsblk_t start;
3350         ext4_fsblk_t end;
3351         int len;
3352
3353         /* found preallocated blocks, use them */
3354         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3355         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3356         len = end - start;
3357         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3358                                         &ac->ac_b_ex.fe_start);
3359         ac->ac_b_ex.fe_len = len;
3360         ac->ac_status = AC_STATUS_FOUND;
3361         ac->ac_pa = pa;
3362
3363         BUG_ON(start < pa->pa_pstart);
3364         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3365         BUG_ON(pa->pa_free < len);
3366         pa->pa_free -= len;
3367
3368         mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3369 }
3370
3371 /*
3372  * use blocks preallocated to locality group
3373  */
3374 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3375                                 struct ext4_prealloc_space *pa)
3376 {
3377         unsigned int len = ac->ac_o_ex.fe_len;
3378
3379         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3380                                         &ac->ac_b_ex.fe_group,
3381                                         &ac->ac_b_ex.fe_start);
3382         ac->ac_b_ex.fe_len = len;
3383         ac->ac_status = AC_STATUS_FOUND;
3384         ac->ac_pa = pa;
3385
3386         /* we don't correct pa_pstart or pa_plen here to avoid
3387          * possible race when the group is being loaded concurrently
3388          * instead we correct pa later, after blocks are marked
3389          * in on-disk bitmap -- see ext4_mb_release_context()
3390          * Other CPUs are prevented from allocating from this pa by lg_mutex
3391          */
3392         mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3393 }
3394
3395 /*
3396  * Return the prealloc space that have minimal distance
3397  * from the goal block. @cpa is the prealloc
3398  * space that is having currently known minimal distance
3399  * from the goal block.
3400  */
3401 static struct ext4_prealloc_space *
3402 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3403                         struct ext4_prealloc_space *pa,
3404                         struct ext4_prealloc_space *cpa)
3405 {
3406         ext4_fsblk_t cur_distance, new_distance;
3407
3408         if (cpa == NULL) {
3409                 atomic_inc(&pa->pa_count);
3410                 return pa;
3411         }
3412         cur_distance = abs(goal_block - cpa->pa_pstart);
3413         new_distance = abs(goal_block - pa->pa_pstart);
3414
3415         if (cur_distance < new_distance)
3416                 return cpa;
3417
3418         /* drop the previous reference */
3419         atomic_dec(&cpa->pa_count);
3420         atomic_inc(&pa->pa_count);
3421         return pa;
3422 }
3423
3424 /*
3425  * search goal blocks in preallocated space
3426  */
3427 static noinline_for_stack int
3428 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3429 {
3430         int order, i;
3431         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3432         struct ext4_locality_group *lg;
3433         struct ext4_prealloc_space *pa, *cpa = NULL;
3434         ext4_fsblk_t goal_block;
3435
3436         /* only data can be preallocated */
3437         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3438                 return 0;
3439
3440         /* first, try per-file preallocation */
3441         rcu_read_lock();
3442         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3443
3444                 /* all fields in this condition don't change,
3445                  * so we can skip locking for them */
3446                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3447                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3448                         continue;
3449
3450                 /* found preallocated blocks, use them */
3451                 spin_lock(&pa->pa_lock);
3452                 if (pa->pa_deleted == 0 && pa->pa_free) {
3453                         atomic_inc(&pa->pa_count);
3454                         ext4_mb_use_inode_pa(ac, pa);
3455                         spin_unlock(&pa->pa_lock);
3456                         ac->ac_criteria = 10;
3457                         rcu_read_unlock();
3458                         return 1;
3459                 }
3460                 spin_unlock(&pa->pa_lock);
3461         }
3462         rcu_read_unlock();
3463
3464         /* can we use group allocation? */
3465         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3466                 return 0;
3467
3468         /* inode may have no locality group for some reason */
3469         lg = ac->ac_lg;
3470         if (lg == NULL)
3471                 return 0;
3472         order  = fls(ac->ac_o_ex.fe_len) - 1;
3473         if (order > PREALLOC_TB_SIZE - 1)
3474                 /* The max size of hash table is PREALLOC_TB_SIZE */
3475                 order = PREALLOC_TB_SIZE - 1;
3476
3477         goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3478                      ac->ac_g_ex.fe_start +
3479                      le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3480         /*
3481          * search for the prealloc space that is having
3482          * minimal distance from the goal block.
3483          */
3484         for (i = order; i < PREALLOC_TB_SIZE; i++) {
3485                 rcu_read_lock();
3486                 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3487                                         pa_inode_list) {
3488                         spin_lock(&pa->pa_lock);
3489                         if (pa->pa_deleted == 0 &&
3490                                         pa->pa_free >= ac->ac_o_ex.fe_len) {
3491
3492                                 cpa = ext4_mb_check_group_pa(goal_block,
3493                                                                 pa, cpa);
3494                         }
3495                         spin_unlock(&pa->pa_lock);
3496                 }
3497                 rcu_read_unlock();
3498         }
3499         if (cpa) {
3500                 ext4_mb_use_group_pa(ac, cpa);
3501                 ac->ac_criteria = 20;
3502                 return 1;
3503         }
3504         return 0;
3505 }
3506
3507 /*
3508  * the function goes through all block freed in the group
3509  * but not yet committed and marks them used in in-core bitmap.
3510  * buddy must be generated from this bitmap
3511  * Need to be called with ext4 group lock (ext4_lock_group)
3512  */
3513 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3514                                                 ext4_group_t group)
3515 {
3516         struct rb_node *n;
3517         struct ext4_group_info *grp;
3518         struct ext4_free_data *entry;
3519
3520         grp = ext4_get_group_info(sb, group);
3521         n = rb_first(&(grp->bb_free_root));
3522
3523         while (n) {
3524                 entry = rb_entry(n, struct ext4_free_data, node);
3525                 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3526                                 bitmap, entry->start_blk,
3527                                 entry->count);
3528                 n = rb_next(n);
3529         }
3530         return;
3531 }
3532
3533 /*
3534  * the function goes through all preallocation in this group and marks them
3535  * used in in-core bitmap. buddy must be generated from this bitmap
3536  * Need to be called with ext4 group lock (ext4_lock_group)
3537  */
3538 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3539                                         ext4_group_t group)
3540 {
3541         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3542         struct ext4_prealloc_space *pa;
3543         struct list_head *cur;
3544         ext4_group_t groupnr;
3545         ext4_grpblk_t start;
3546         int preallocated = 0;
3547         int count = 0;
3548         int len;
3549
3550         /* all form of preallocation discards first load group,
3551          * so the only competing code is preallocation use.
3552          * we don't need any locking here
3553          * notice we do NOT ignore preallocations with pa_deleted
3554          * otherwise we could leave used blocks available for
3555          * allocation in buddy when concurrent ext4_mb_put_pa()
3556          * is dropping preallocation
3557          */
3558         list_for_each(cur, &grp->bb_prealloc_list) {
3559                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3560                 spin_lock(&pa->pa_lock);
3561                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3562                                              &groupnr, &start);
3563                 len = pa->pa_len;
3564                 spin_unlock(&pa->pa_lock);
3565                 if (unlikely(len == 0))
3566                         continue;
3567                 BUG_ON(groupnr != group);
3568                 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3569                                                 bitmap, start, len);
3570                 preallocated += len;
3571                 count++;
3572         }
3573         mb_debug("prellocated %u for group %u\n", preallocated, group);
3574 }
3575
3576 static void ext4_mb_pa_callback(struct rcu_head *head)
3577 {
3578         struct ext4_prealloc_space *pa;
3579         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3580         kmem_cache_free(ext4_pspace_cachep, pa);
3581 }
3582
3583 /*
3584  * drops a reference to preallocated space descriptor
3585  * if this was the last reference and the space is consumed
3586  */
3587 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3588                         struct super_block *sb, struct ext4_prealloc_space *pa)
3589 {
3590         ext4_group_t grp;
3591
3592         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3593                 return;
3594
3595         /* in this short window concurrent discard can set pa_deleted */
3596         spin_lock(&pa->pa_lock);
3597         if (pa->pa_deleted == 1) {
3598                 spin_unlock(&pa->pa_lock);
3599                 return;
3600         }
3601
3602         pa->pa_deleted = 1;
3603         spin_unlock(&pa->pa_lock);
3604
3605         /* -1 is to protect from crossing allocation group */
3606         ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3607
3608         /*
3609          * possible race:
3610          *
3611          *  P1 (buddy init)                     P2 (regular allocation)
3612          *                                      find block B in PA
3613          *  copy on-disk bitmap to buddy
3614          *                                      mark B in on-disk bitmap
3615          *                                      drop PA from group
3616          *  mark all PAs in buddy
3617          *
3618          * thus, P1 initializes buddy with B available. to prevent this
3619          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3620          * against that pair
3621          */
3622         ext4_lock_group(sb, grp);
3623         list_del(&pa->pa_group_list);
3624         ext4_unlock_group(sb, grp);
3625
3626         spin_lock(pa->pa_obj_lock);
3627         list_del_rcu(&pa->pa_inode_list);
3628         spin_unlock(pa->pa_obj_lock);
3629
3630         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3631 }
3632
3633 /*
3634  * creates new preallocated space for given inode
3635  */
3636 static noinline_for_stack int
3637 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3638 {
3639         struct super_block *sb = ac->ac_sb;
3640         struct ext4_prealloc_space *pa;
3641         struct ext4_group_info *grp;
3642         struct ext4_inode_info *ei;
3643
3644         /* preallocate only when found space is larger then requested */
3645         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3646         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3647         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3648
3649         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3650         if (pa == NULL)
3651                 return -ENOMEM;
3652
3653         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3654                 int winl;
3655                 int wins;
3656                 int win;
3657                 int offs;
3658
3659                 /* we can't allocate as much as normalizer wants.
3660                  * so, found space must get proper lstart
3661                  * to cover original request */
3662                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3663                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3664
3665                 /* we're limited by original request in that
3666                  * logical block must be covered any way
3667                  * winl is window we can move our chunk within */
3668                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3669
3670                 /* also, we should cover whole original request */
3671                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3672
3673                 /* the smallest one defines real window */
3674                 win = min(winl, wins);
3675
3676                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3677                 if (offs && offs < win)
3678                         win = offs;
3679
3680                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3681                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3682                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3683         }
3684
3685         /* preallocation can change ac_b_ex, thus we store actually
3686          * allocated blocks for history */
3687         ac->ac_f_ex = ac->ac_b_ex;
3688
3689         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3690         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3691         pa->pa_len = ac->ac_b_ex.fe_len;
3692         pa->pa_free = pa->pa_len;
3693         atomic_set(&pa->pa_count, 1);
3694         spin_lock_init(&pa->pa_lock);
3695         pa->pa_deleted = 0;
3696         pa->pa_linear = 0;
3697
3698         mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3699                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3700
3701         ext4_mb_use_inode_pa(ac, pa);
3702         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3703
3704         ei = EXT4_I(ac->ac_inode);
3705         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3706
3707         pa->pa_obj_lock = &ei->i_prealloc_lock;
3708         pa->pa_inode = ac->ac_inode;
3709
3710         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3711         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3712         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3713
3714         spin_lock(pa->pa_obj_lock);
3715         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3716         spin_unlock(pa->pa_obj_lock);
3717
3718         return 0;
3719 }
3720
3721 /*
3722  * creates new preallocated space for locality group inodes belongs to
3723  */
3724 static noinline_for_stack int
3725 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3726 {
3727         struct super_block *sb = ac->ac_sb;
3728         struct ext4_locality_group *lg;
3729         struct ext4_prealloc_space *pa;
3730         struct ext4_group_info *grp;
3731
3732         /* preallocate only when found space is larger then requested */
3733         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3734         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3735         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3736
3737         BUG_ON(ext4_pspace_cachep == NULL);
3738         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3739         if (pa == NULL)
3740                 return -ENOMEM;
3741
3742         /* preallocation can change ac_b_ex, thus we store actually
3743          * allocated blocks for history */
3744         ac->ac_f_ex = ac->ac_b_ex;
3745
3746         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3747         pa->pa_lstart = pa->pa_pstart;
3748         pa->pa_len = ac->ac_b_ex.fe_len;
3749         pa->pa_free = pa->pa_len;
3750         atomic_set(&pa->pa_count, 1);
3751         spin_lock_init(&pa->pa_lock);
3752         INIT_LIST_HEAD(&pa->pa_inode_list);
3753         pa->pa_deleted = 0;
3754         pa->pa_linear = 1;
3755
3756         mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3757                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3758
3759         ext4_mb_use_group_pa(ac, pa);
3760         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3761
3762         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3763         lg = ac->ac_lg;
3764         BUG_ON(lg == NULL);
3765
3766         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3767         pa->pa_inode = NULL;
3768
3769         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3770         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3771         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3772
3773         /*
3774          * We will later add the new pa to the right bucket
3775          * after updating the pa_free in ext4_mb_release_context
3776          */
3777         return 0;
3778 }
3779
3780 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3781 {
3782         int err;
3783
3784         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3785                 err = ext4_mb_new_group_pa(ac);
3786         else
3787                 err = ext4_mb_new_inode_pa(ac);
3788         return err;
3789 }
3790
3791 /*
3792  * finds all unused blocks in on-disk bitmap, frees them in
3793  * in-core bitmap and buddy.
3794  * @pa must be unlinked from inode and group lists, so that
3795  * nobody else can find/use it.
3796  * the caller MUST hold group/inode locks.
3797  * TODO: optimize the case when there are no in-core structures yet
3798  */
3799 static noinline_for_stack int
3800 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3801                         struct ext4_prealloc_space *pa,
3802                         struct ext4_allocation_context *ac)
3803 {
3804         struct super_block *sb = e4b->bd_sb;
3805         struct ext4_sb_info *sbi = EXT4_SB(sb);
3806         unsigned int end;
3807         unsigned int next;
3808         ext4_group_t group;
3809         ext4_grpblk_t bit;
3810         sector_t start;
3811         int err = 0;
3812         int free = 0;
3813
3814         BUG_ON(pa->pa_deleted == 0);
3815         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3816         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3817         end = bit + pa->pa_len;
3818
3819         if (ac) {
3820                 ac->ac_sb = sb;
3821                 ac->ac_inode = pa->pa_inode;
3822                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3823         }
3824
3825         while (bit < end) {
3826                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3827                 if (bit >= end)
3828                         break;
3829                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3830                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3831                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3832                 mb_debug("    free preallocated %u/%u in group %u\n",
3833                                 (unsigned) start, (unsigned) next - bit,
3834                                 (unsigned) group);
3835                 free += next - bit;
3836
3837                 if (ac) {
3838                         ac->ac_b_ex.fe_group = group;
3839                         ac->ac_b_ex.fe_start = bit;
3840                         ac->ac_b_ex.fe_len = next - bit;
3841                         ac->ac_b_ex.fe_logical = 0;
3842                         ext4_mb_store_history(ac);
3843                 }
3844
3845                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3846                 bit = next + 1;
3847         }
3848         if (free != pa->pa_free) {
3849                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3850                         pa, (unsigned long) pa->pa_lstart,
3851                         (unsigned long) pa->pa_pstart,
3852                         (unsigned long) pa->pa_len);
3853                 ext4_grp_locked_error(sb, group,
3854                                         __func__, "free %u, pa_free %u",
3855                                         free, pa->pa_free);
3856                 /*
3857                  * pa is already deleted so we use the value obtained
3858                  * from the bitmap and continue.
3859                  */
3860         }
3861         atomic_add(free, &sbi->s_mb_discarded);
3862
3863         return err;
3864 }
3865
3866 static noinline_for_stack int
3867 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3868                                 struct ext4_prealloc_space *pa,
3869                                 struct ext4_allocation_context *ac)
3870 {
3871         struct super_block *sb = e4b->bd_sb;
3872         ext4_group_t group;
3873         ext4_grpblk_t bit;
3874
3875         if (ac)
3876                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3877
3878         BUG_ON(pa->pa_deleted == 0);
3879         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3880         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3881         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3882         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3883
3884         if (ac) {
3885                 ac->ac_sb = sb;
3886                 ac->ac_inode = NULL;
3887                 ac->ac_b_ex.fe_group = group;
3888                 ac->ac_b_ex.fe_start = bit;
3889                 ac->ac_b_ex.fe_len = pa->pa_len;
3890                 ac->ac_b_ex.fe_logical = 0;
3891                 ext4_mb_store_history(ac);
3892         }
3893
3894         return 0;
3895 }
3896
3897 /*
3898  * releases all preallocations in given group
3899  *
3900  * first, we need to decide discard policy:
3901  * - when do we discard
3902  *   1) ENOSPC
3903  * - how many do we discard
3904  *   1) how many requested
3905  */
3906 static noinline_for_stack int
3907 ext4_mb_discard_group_preallocations(struct super_block *sb,
3908                                         ext4_group_t group, int needed)
3909 {
3910         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3911         struct buffer_head *bitmap_bh = NULL;
3912         struct ext4_prealloc_space *pa, *tmp;
3913         struct ext4_allocation_context *ac;
3914         struct list_head list;
3915         struct ext4_buddy e4b;
3916         int err;
3917         int busy = 0;
3918         int free = 0;
3919
3920         mb_debug("discard preallocation for group %u\n", group);
3921
3922         if (list_empty(&grp->bb_prealloc_list))
3923                 return 0;
3924
3925         bitmap_bh = ext4_read_block_bitmap(sb, group);
3926         if (bitmap_bh == NULL) {
3927                 ext4_error(sb, __func__, "Error in reading block "
3928                                 "bitmap for %u", group);
3929                 return 0;
3930         }
3931
3932         err = ext4_mb_load_buddy(sb, group, &e4b);
3933         if (err) {
3934                 ext4_error(sb, __func__, "Error in loading buddy "
3935                                 "information for %u", group);
3936                 put_bh(bitmap_bh);
3937                 return 0;
3938         }
3939
3940         if (needed == 0)
3941                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3942
3943         INIT_LIST_HEAD(&list);
3944         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3945 repeat:
3946         ext4_lock_group(sb, group);
3947         list_for_each_entry_safe(pa, tmp,
3948                                 &grp->bb_prealloc_list, pa_group_list) {
3949                 spin_lock(&pa->pa_lock);
3950                 if (atomic_read(&pa->pa_count)) {
3951                         spin_unlock(&pa->pa_lock);
3952                         busy = 1;
3953                         continue;
3954                 }
3955                 if (pa->pa_deleted) {
3956                         spin_unlock(&pa->pa_lock);
3957                         continue;
3958                 }
3959
3960                 /* seems this one can be freed ... */
3961                 pa->pa_deleted = 1;
3962
3963                 /* we can trust pa_free ... */
3964                 free += pa->pa_free;
3965
3966                 spin_unlock(&pa->pa_lock);
3967
3968                 list_del(&pa->pa_group_list);
3969                 list_add(&pa->u.pa_tmp_list, &list);
3970         }
3971
3972         /* if we still need more blocks and some PAs were used, try again */
3973         if (free < needed && busy) {
3974                 busy = 0;
3975                 ext4_unlock_group(sb, group);
3976                 /*
3977                  * Yield the CPU here so that we don't get soft lockup
3978                  * in non preempt case.
3979                  */
3980                 yield();
3981                 goto repeat;
3982         }
3983
3984         /* found anything to free? */
3985         if (list_empty(&list)) {
3986                 BUG_ON(free != 0);
3987                 goto out;
3988         }
3989
3990         /* now free all selected PAs */
3991         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3992
3993                 /* remove from object (inode or locality group) */
3994                 spin_lock(pa->pa_obj_lock);
3995                 list_del_rcu(&pa->pa_inode_list);
3996                 spin_unlock(pa->pa_obj_lock);
3997
3998                 if (pa->pa_linear)
3999                         ext4_mb_release_group_pa(&e4b, pa, ac);
4000                 else
4001                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4002
4003                 list_del(&pa->u.pa_tmp_list);
4004                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4005         }
4006
4007 out:
4008         ext4_unlock_group(sb, group);
4009         if (ac)
4010                 kmem_cache_free(ext4_ac_cachep, ac);
4011         ext4_mb_release_desc(&e4b);
4012         put_bh(bitmap_bh);
4013         return free;
4014 }
4015
4016 /*
4017  * releases all non-used preallocated blocks for given inode
4018  *
4019  * It's important to discard preallocations under i_data_sem
4020  * We don't want another block to be served from the prealloc
4021  * space when we are discarding the inode prealloc space.
4022  *
4023  * FIXME!! Make sure it is valid at all the call sites
4024  */
4025 void ext4_discard_preallocations(struct inode *inode)
4026 {
4027         struct ext4_inode_info *ei = EXT4_I(inode);
4028         struct super_block *sb = inode->i_sb;
4029         struct buffer_head *bitmap_bh = NULL;
4030         struct ext4_prealloc_space *pa, *tmp;
4031         struct ext4_allocation_context *ac;
4032         ext4_group_t group = 0;
4033         struct list_head list;
4034         struct ext4_buddy e4b;
4035         int err;
4036
4037         if (!S_ISREG(inode->i_mode)) {
4038                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4039                 return;
4040         }
4041
4042         mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4043
4044         INIT_LIST_HEAD(&list);
4045
4046         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4047 repeat:
4048         /* first, collect all pa's in the inode */
4049         spin_lock(&ei->i_prealloc_lock);
4050         while (!list_empty(&ei->i_prealloc_list)) {
4051                 pa = list_entry(ei->i_prealloc_list.next,
4052                                 struct ext4_prealloc_space, pa_inode_list);
4053                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4054                 spin_lock(&pa->pa_lock);
4055                 if (atomic_read(&pa->pa_count)) {
4056                         /* this shouldn't happen often - nobody should
4057                          * use preallocation while we're discarding it */
4058                         spin_unlock(&pa->pa_lock);
4059                         spin_unlock(&ei->i_prealloc_lock);
4060                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
4061                         WARN_ON(1);
4062                         schedule_timeout_uninterruptible(HZ);
4063                         goto repeat;
4064
4065                 }
4066                 if (pa->pa_deleted == 0) {
4067                         pa->pa_deleted = 1;
4068                         spin_unlock(&pa->pa_lock);
4069                         list_del_rcu(&pa->pa_inode_list);
4070                         list_add(&pa->u.pa_tmp_list, &list);
4071                         continue;
4072                 }
4073
4074                 /* someone is deleting pa right now */
4075                 spin_unlock(&pa->pa_lock);
4076                 spin_unlock(&ei->i_prealloc_lock);
4077
4078                 /* we have to wait here because pa_deleted
4079                  * doesn't mean pa is already unlinked from
4080                  * the list. as we might be called from
4081                  * ->clear_inode() the inode will get freed
4082                  * and concurrent thread which is unlinking
4083                  * pa from inode's list may access already
4084                  * freed memory, bad-bad-bad */
4085
4086                 /* XXX: if this happens too often, we can
4087                  * add a flag to force wait only in case
4088                  * of ->clear_inode(), but not in case of
4089                  * regular truncate */
4090                 schedule_timeout_uninterruptible(HZ);
4091                 goto repeat;
4092         }
4093         spin_unlock(&ei->i_prealloc_lock);
4094
4095         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4096                 BUG_ON(pa->pa_linear != 0);
4097                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4098
4099                 err = ext4_mb_load_buddy(sb, group, &e4b);
4100                 if (err) {
4101                         ext4_error(sb, __func__, "Error in loading buddy "
4102                                         "information for %u", group);
4103                         continue;
4104                 }
4105
4106                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4107                 if (bitmap_bh == NULL) {
4108                         ext4_error(sb, __func__, "Error in reading block "
4109                                         "bitmap for %u", group);
4110                         ext4_mb_release_desc(&e4b);
4111                         continue;
4112                 }
4113
4114                 ext4_lock_group(sb, group);
4115                 list_del(&pa->pa_group_list);
4116                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4117                 ext4_unlock_group(sb, group);
4118
4119                 ext4_mb_release_desc(&e4b);
4120                 put_bh(bitmap_bh);
4121
4122                 list_del(&pa->u.pa_tmp_list);
4123                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4124         }
4125         if (ac)
4126                 kmem_cache_free(ext4_ac_cachep, ac);
4127 }
4128
4129 /*
4130  * finds all preallocated spaces and return blocks being freed to them
4131  * if preallocated space becomes full (no block is used from the space)
4132  * then the function frees space in buddy
4133  * XXX: at the moment, truncate (which is the only way to free blocks)
4134  * discards all preallocations
4135  */
4136 static void ext4_mb_return_to_preallocation(struct inode *inode,
4137                                         struct ext4_buddy *e4b,
4138                                         sector_t block, int count)
4139 {
4140         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4141 }
4142 #ifdef MB_DEBUG
4143 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4144 {
4145         struct super_block *sb = ac->ac_sb;
4146         ext4_group_t i;
4147
4148         printk(KERN_ERR "EXT4-fs: Can't allocate:"
4149                         " Allocation context details:\n");
4150         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4151                         ac->ac_status, ac->ac_flags);
4152         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4153                         "best %lu/%lu/%lu@%lu cr %d\n",
4154                         (unsigned long)ac->ac_o_ex.fe_group,
4155                         (unsigned long)ac->ac_o_ex.fe_start,
4156                         (unsigned long)ac->ac_o_ex.fe_len,
4157                         (unsigned long)ac->ac_o_ex.fe_logical,
4158                         (unsigned long)ac->ac_g_ex.fe_group,
4159                         (unsigned long)ac->ac_g_ex.fe_start,
4160                         (unsigned long)ac->ac_g_ex.fe_len,
4161                         (unsigned long)ac->ac_g_ex.fe_logical,
4162                         (unsigned long)ac->ac_b_ex.fe_group,
4163                         (unsigned long)ac->ac_b_ex.fe_start,
4164                         (unsigned long)ac->ac_b_ex.fe_len,
4165                         (unsigned long)ac->ac_b_ex.fe_logical,
4166                         (int)ac->ac_criteria);
4167         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4168                 ac->ac_found);
4169         printk(KERN_ERR "EXT4-fs: groups: \n");
4170         for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4171                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4172                 struct ext4_prealloc_space *pa;
4173                 ext4_grpblk_t start;
4174                 struct list_head *cur;
4175                 ext4_lock_group(sb, i);
4176                 list_for_each(cur, &grp->bb_prealloc_list) {
4177                         pa = list_entry(cur, struct ext4_prealloc_space,
4178                                         pa_group_list);
4179                         spin_lock(&pa->pa_lock);
4180                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4181                                                      NULL, &start);
4182                         spin_unlock(&pa->pa_lock);
4183                         printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4184                                                         start, pa->pa_len);
4185                 }
4186                 ext4_unlock_group(sb, i);
4187
4188                 if (grp->bb_free == 0)
4189                         continue;
4190                 printk(KERN_ERR "%lu: %d/%d \n",
4191                        i, grp->bb_free, grp->bb_fragments);
4192         }
4193         printk(KERN_ERR "\n");
4194 }
4195 #else
4196 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4197 {
4198         return;
4199 }
4200 #endif
4201
4202 /*
4203  * We use locality group preallocation for small size file. The size of the
4204  * file is determined by the current size or the resulting size after
4205  * allocation which ever is larger
4206  *
4207  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4208  */
4209 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4210 {
4211         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4212         int bsbits = ac->ac_sb->s_blocksize_bits;
4213         loff_t size, isize;
4214
4215         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4216                 return;
4217
4218         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4219         isize = i_size_read(ac->ac_inode) >> bsbits;
4220         size = max(size, isize);
4221
4222         /* don't use group allocation for large files */
4223         if (size >= sbi->s_mb_stream_request)
4224                 return;
4225
4226         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4227                 return;
4228
4229         BUG_ON(ac->ac_lg != NULL);
4230         /*
4231          * locality group prealloc space are per cpu. The reason for having
4232          * per cpu locality group is to reduce the contention between block
4233          * request from multiple CPUs.
4234          */
4235         ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4236
4237         /* we're going to use group allocation */
4238         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4239
4240         /* serialize all allocations in the group */
4241         mutex_lock(&ac->ac_lg->lg_mutex);
4242 }
4243
4244 static noinline_for_stack int
4245 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4246                                 struct ext4_allocation_request *ar)
4247 {
4248         struct super_block *sb = ar->inode->i_sb;
4249         struct ext4_sb_info *sbi = EXT4_SB(sb);
4250         struct ext4_super_block *es = sbi->s_es;
4251         ext4_group_t group;
4252         unsigned int len;
4253         ext4_fsblk_t goal;
4254         ext4_grpblk_t block;
4255
4256         /* we can't allocate > group size */
4257         len = ar->len;
4258
4259         /* just a dirty hack to filter too big requests  */
4260         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4261                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4262
4263         /* start searching from the goal */
4264         goal = ar->goal;
4265         if (goal < le32_to_cpu(es->s_first_data_block) ||
4266                         goal >= ext4_blocks_count(es))
4267                 goal = le32_to_cpu(es->s_first_data_block);
4268         ext4_get_group_no_and_offset(sb, goal, &group, &block);
4269
4270         /* set up allocation goals */
4271         ac->ac_b_ex.fe_logical = ar->logical;
4272         ac->ac_b_ex.fe_group = 0;
4273         ac->ac_b_ex.fe_start = 0;
4274         ac->ac_b_ex.fe_len = 0;
4275         ac->ac_status = AC_STATUS_CONTINUE;
4276         ac->ac_groups_scanned = 0;
4277         ac->ac_ex_scanned = 0;
4278         ac->ac_found = 0;
4279         ac->ac_sb = sb;
4280         ac->ac_inode = ar->inode;
4281         ac->ac_o_ex.fe_logical = ar->logical;
4282         ac->ac_o_ex.fe_group = group;
4283         ac->ac_o_ex.fe_start = block;
4284         ac->ac_o_ex.fe_len = len;
4285         ac->ac_g_ex.fe_logical = ar->logical;
4286         ac->ac_g_ex.fe_group = group;
4287         ac->ac_g_ex.fe_start = block;
4288         ac->ac_g_ex.fe_len = len;
4289         ac->ac_f_ex.fe_len = 0;
4290         ac->ac_flags = ar->flags;
4291         ac->ac_2order = 0;
4292         ac->ac_criteria = 0;
4293         ac->ac_pa = NULL;
4294         ac->ac_bitmap_page = NULL;
4295         ac->ac_buddy_page = NULL;
4296         ac->alloc_semp = NULL;
4297         ac->ac_lg = NULL;
4298
4299         /* we have to define context: we'll we work with a file or
4300          * locality group. this is a policy, actually */
4301         ext4_mb_group_or_file(ac);
4302
4303         mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4304                         "left: %u/%u, right %u/%u to %swritable\n",
4305                         (unsigned) ar->len, (unsigned) ar->logical,
4306                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4307                         (unsigned) ar->lleft, (unsigned) ar->pleft,
4308                         (unsigned) ar->lright, (unsigned) ar->pright,
4309                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4310         return 0;
4311
4312 }
4313
4314 static noinline_for_stack void
4315 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4316                                         struct ext4_locality_group *lg,
4317                                         int order, int total_entries)
4318 {
4319         ext4_group_t group = 0;
4320         struct ext4_buddy e4b;
4321         struct list_head discard_list;
4322         struct ext4_prealloc_space *pa, *tmp;
4323         struct ext4_allocation_context *ac;
4324
4325         mb_debug("discard locality group preallocation\n");
4326
4327         INIT_LIST_HEAD(&discard_list);
4328         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4329
4330         spin_lock(&lg->lg_prealloc_lock);
4331         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4332                                                 pa_inode_list) {
4333                 spin_lock(&pa->pa_lock);
4334                 if (atomic_read(&pa->pa_count)) {
4335                         /*
4336                          * This is the pa that we just used
4337                          * for block allocation. So don't
4338                          * free that
4339                          */
4340                         spin_unlock(&pa->pa_lock);
4341                         continue;
4342                 }
4343                 if (pa->pa_deleted) {
4344                         spin_unlock(&pa->pa_lock);
4345                         continue;
4346                 }
4347                 /* only lg prealloc space */
4348                 BUG_ON(!pa->pa_linear);
4349
4350                 /* seems this one can be freed ... */
4351                 pa->pa_deleted = 1;
4352                 spin_unlock(&pa->pa_lock);
4353
4354                 list_del_rcu(&pa->pa_inode_list);
4355                 list_add(&pa->u.pa_tmp_list, &discard_list);
4356
4357                 total_entries--;
4358                 if (total_entries <= 5) {
4359                         /*
4360                          * we want to keep only 5 entries
4361                          * allowing it to grow to 8. This
4362                          * mak sure we don't call discard
4363                          * soon for this list.
4364                          */
4365                         break;
4366                 }
4367         }
4368         spin_unlock(&lg->lg_prealloc_lock);
4369
4370         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4371
4372                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4373                 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4374                         ext4_error(sb, __func__, "Error in loading buddy "
4375                                         "information for %u", group);
4376                         continue;
4377                 }
4378                 ext4_lock_group(sb, group);
4379                 list_del(&pa->pa_group_list);
4380                 ext4_mb_release_group_pa(&e4b, pa, ac);
4381                 ext4_unlock_group(sb, group);
4382
4383                 ext4_mb_release_desc(&e4b);
4384                 list_del(&pa->u.pa_tmp_list);
4385                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4386         }
4387         if (ac)
4388                 kmem_cache_free(ext4_ac_cachep, ac);
4389 }
4390
4391 /*
4392  * We have incremented pa_count. So it cannot be freed at this
4393  * point. Also we hold lg_mutex. So no parallel allocation is
4394  * possible from this lg. That means pa_free cannot be updated.
4395  *
4396  * A parallel ext4_mb_discard_group_preallocations is possible.
4397  * which can cause the lg_prealloc_list to be updated.
4398  */
4399
4400 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4401 {
4402         int order, added = 0, lg_prealloc_count = 1;
4403         struct super_block *sb = ac->ac_sb;
4404         struct ext4_locality_group *lg = ac->ac_lg;
4405         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4406
4407         order = fls(pa->pa_free) - 1;
4408         if (order > PREALLOC_TB_SIZE - 1)
4409                 /* The max size of hash table is PREALLOC_TB_SIZE */
4410                 order = PREALLOC_TB_SIZE - 1;
4411         /* Add the prealloc space to lg */
4412         rcu_read_lock();
4413         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4414                                                 pa_inode_list) {
4415                 spin_lock(&tmp_pa->pa_lock);
4416                 if (tmp_pa->pa_deleted) {
4417                         spin_unlock(&pa->pa_lock);
4418                         continue;
4419                 }
4420                 if (!added && pa->pa_free < tmp_pa->pa_free) {
4421                         /* Add to the tail of the previous entry */
4422                         list_add_tail_rcu(&pa->pa_inode_list,
4423                                                 &tmp_pa->pa_inode_list);
4424                         added = 1;
4425                         /*
4426                          * we want to count the total
4427                          * number of entries in the list
4428                          */
4429                 }
4430                 spin_unlock(&tmp_pa->pa_lock);
4431                 lg_prealloc_count++;
4432         }
4433         if (!added)
4434                 list_add_tail_rcu(&pa->pa_inode_list,
4435                                         &lg->lg_prealloc_list[order]);
4436         rcu_read_unlock();
4437
4438         /* Now trim the list to be not more than 8 elements */
4439         if (lg_prealloc_count > 8) {
4440                 ext4_mb_discard_lg_preallocations(sb, lg,
4441                                                 order, lg_prealloc_count);
4442                 return;
4443         }
4444         return ;
4445 }
4446
4447 /*
4448  * release all resource we used in allocation
4449  */
4450 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4451 {
4452         struct ext4_prealloc_space *pa = ac->ac_pa;
4453         if (pa) {
4454                 if (pa->pa_linear) {
4455                         /* see comment in ext4_mb_use_group_pa() */
4456                         spin_lock(&pa->pa_lock);
4457                         pa->pa_pstart += ac->ac_b_ex.fe_len;
4458                         pa->pa_lstart += ac->ac_b_ex.fe_len;
4459                         pa->pa_free -= ac->ac_b_ex.fe_len;
4460                         pa->pa_len -= ac->ac_b_ex.fe_len;
4461                         spin_unlock(&pa->pa_lock);
4462                         /*
4463                          * We want to add the pa to the right bucket.
4464                          * Remove it from the list and while adding
4465                          * make sure the list to which we are adding
4466                          * doesn't grow big.
4467                          */
4468                         if (likely(pa->pa_free)) {
4469                                 spin_lock(pa->pa_obj_lock);
4470                                 list_del_rcu(&pa->pa_inode_list);
4471                                 spin_unlock(pa->pa_obj_lock);
4472                                 ext4_mb_add_n_trim(ac);
4473                         }
4474                 }
4475                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4476         }
4477         if (ac->alloc_semp)
4478                 up_read(ac->alloc_semp);
4479         if (ac->ac_bitmap_page)
4480                 page_cache_release(ac->ac_bitmap_page);
4481         if (ac->ac_buddy_page)
4482                 page_cache_release(ac->ac_buddy_page);
4483         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4484                 mutex_unlock(&ac->ac_lg->lg_mutex);
4485         ext4_mb_collect_stats(ac);
4486         return 0;
4487 }
4488
4489 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4490 {
4491         ext4_group_t i;
4492         int ret;
4493         int freed = 0;
4494
4495         for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4496                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4497                 freed += ret;
4498                 needed -= ret;
4499         }
4500
4501         return freed;
4502 }
4503
4504 /*
4505  * Main entry point into mballoc to allocate blocks
4506  * it tries to use preallocation first, then falls back
4507  * to usual allocation
4508  */
4509 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4510                                  struct ext4_allocation_request *ar, int *errp)
4511 {
4512         int freed;
4513         struct ext4_allocation_context *ac = NULL;
4514         struct ext4_sb_info *sbi;
4515         struct super_block *sb;
4516         ext4_fsblk_t block = 0;
4517         unsigned int inquota;
4518         unsigned int reserv_blks = 0;
4519
4520         sb = ar->inode->i_sb;
4521         sbi = EXT4_SB(sb);
4522
4523         if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4524                 /*
4525                  * With delalloc we already reserved the blocks
4526                  */
4527                 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4528                         /* let others to free the space */
4529                         yield();
4530                         ar->len = ar->len >> 1;
4531                 }
4532                 if (!ar->len) {
4533                         *errp = -ENOSPC;
4534                         return 0;
4535                 }
4536                 reserv_blks = ar->len;
4537         }
4538         while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4539                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4540                 ar->len--;
4541         }
4542         if (ar->len == 0) {
4543                 *errp = -EDQUOT;
4544                 goto out3;
4545         }
4546         inquota = ar->len;
4547
4548         if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4549                 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4550
4551         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4552         if (!ac) {
4553                 ar->len = 0;
4554                 *errp = -ENOMEM;
4555                 goto out1;
4556         }
4557
4558         *errp = ext4_mb_initialize_context(ac, ar);
4559         if (*errp) {
4560                 ar->len = 0;
4561                 goto out2;
4562         }
4563
4564         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4565         if (!ext4_mb_use_preallocated(ac)) {
4566                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4567                 ext4_mb_normalize_request(ac, ar);
4568 repeat:
4569                 /* allocate space in core */
4570                 ext4_mb_regular_allocator(ac);
4571
4572                 /* as we've just preallocated more space than
4573                  * user requested orinally, we store allocated
4574                  * space in a special descriptor */
4575                 if (ac->ac_status == AC_STATUS_FOUND &&
4576                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4577                         ext4_mb_new_preallocation(ac);
4578         }
4579         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4580                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4581                 if (*errp ==  -EAGAIN) {
4582                         /*
4583                          * drop the reference that we took
4584                          * in ext4_mb_use_best_found
4585                          */
4586                         ext4_mb_release_context(ac);
4587                         ac->ac_b_ex.fe_group = 0;
4588                         ac->ac_b_ex.fe_start = 0;
4589                         ac->ac_b_ex.fe_len = 0;
4590                         ac->ac_status = AC_STATUS_CONTINUE;
4591                         goto repeat;
4592                 } else if (*errp) {
4593                         ac->ac_b_ex.fe_len = 0;
4594                         ar->len = 0;
4595                         ext4_mb_show_ac(ac);
4596                 } else {
4597                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4598                         ar->len = ac->ac_b_ex.fe_len;
4599                 }
4600         } else {
4601                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4602                 if (freed)
4603                         goto repeat;
4604                 *errp = -ENOSPC;
4605                 ac->ac_b_ex.fe_len = 0;
4606                 ar->len = 0;
4607                 ext4_mb_show_ac(ac);
4608         }
4609
4610         ext4_mb_release_context(ac);
4611
4612 out2:
4613         kmem_cache_free(ext4_ac_cachep, ac);
4614 out1:
4615         if (ar->len < inquota)
4616                 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4617 out3:
4618         if (!ar->len) {
4619                 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4620                         /* release all the reserved blocks if non delalloc */
4621                         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4622                                                 reserv_blks);
4623         }
4624
4625         return block;
4626 }
4627
4628 /*
4629  * We can merge two free data extents only if the physical blocks
4630  * are contiguous, AND the extents were freed by the same transaction,
4631  * AND the blocks are associated with the same group.
4632  */
4633 static int can_merge(struct ext4_free_data *entry1,
4634                         struct ext4_free_data *entry2)
4635 {
4636         if ((entry1->t_tid == entry2->t_tid) &&
4637             (entry1->group == entry2->group) &&
4638             ((entry1->start_blk + entry1->count) == entry2->start_blk))
4639                 return 1;
4640         return 0;
4641 }
4642
4643 static noinline_for_stack int
4644 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4645                       struct ext4_free_data *new_entry)
4646 {
4647         ext4_grpblk_t block;
4648         struct ext4_free_data *entry;
4649         struct ext4_group_info *db = e4b->bd_info;
4650         struct super_block *sb = e4b->bd_sb;
4651         struct ext4_sb_info *sbi = EXT4_SB(sb);
4652         struct rb_node **n = &db->bb_free_root.rb_node, *node;
4653         struct rb_node *parent = NULL, *new_node;
4654
4655         BUG_ON(!ext4_handle_valid(handle));
4656         BUG_ON(e4b->bd_bitmap_page == NULL);
4657         BUG_ON(e4b->bd_buddy_page == NULL);
4658
4659         new_node = &new_entry->node;
4660         block = new_entry->start_blk;
4661
4662         if (!*n) {
4663                 /* first free block exent. We need to
4664                    protect buddy cache from being freed,
4665                  * otherwise we'll refresh it from
4666                  * on-disk bitmap and lose not-yet-available
4667                  * blocks */
4668                 page_cache_get(e4b->bd_buddy_page);
4669                 page_cache_get(e4b->bd_bitmap_page);
4670         }
4671         while (*n) {
4672                 parent = *n;
4673                 entry = rb_entry(parent, struct ext4_free_data, node);
4674                 if (block < entry->start_blk)
4675                         n = &(*n)->rb_left;
4676                 else if (block >= (entry->start_blk + entry->count))
4677                         n = &(*n)->rb_right;
4678                 else {
4679                         ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4680                                         "Double free of blocks %d (%d %d)",
4681                                         block, entry->start_blk, entry->count);
4682                         return 0;
4683                 }
4684         }
4685
4686         rb_link_node(new_node, parent, n);
4687         rb_insert_color(new_node, &db->bb_free_root);
4688
4689         /* Now try to see the extent can be merged to left and right */
4690         node = rb_prev(new_node);
4691         if (node) {
4692                 entry = rb_entry(node, struct ext4_free_data, node);
4693                 if (can_merge(entry, new_entry)) {
4694                         new_entry->start_blk = entry->start_blk;
4695                         new_entry->count += entry->count;
4696                         rb_erase(node, &(db->bb_free_root));
4697                         spin_lock(&sbi->s_md_lock);
4698                         list_del(&entry->list);
4699                         spin_unlock(&sbi->s_md_lock);
4700                         kmem_cache_free(ext4_free_ext_cachep, entry);
4701                 }
4702         }
4703
4704         node = rb_next(new_node);
4705         if (node) {
4706                 entry = rb_entry(node, struct ext4_free_data, node);
4707                 if (can_merge(new_entry, entry)) {
4708                         new_entry->count += entry->count;
4709                         rb_erase(node, &(db->bb_free_root));
4710                         spin_lock(&sbi->s_md_lock);
4711                         list_del(&entry->list);
4712                         spin_unlock(&sbi->s_md_lock);
4713                         kmem_cache_free(ext4_free_ext_cachep, entry);
4714                 }
4715         }
4716         /* Add the extent to transaction's private list */
4717         spin_lock(&sbi->s_md_lock);
4718         list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4719         spin_unlock(&sbi->s_md_lock);
4720         return 0;
4721 }
4722
4723 /*
4724  * Main entry point into mballoc to free blocks
4725  */
4726 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4727                         unsigned long block, unsigned long count,
4728                         int metadata, unsigned long *freed)
4729 {
4730         struct buffer_head *bitmap_bh = NULL;
4731         struct super_block *sb = inode->i_sb;
4732         struct ext4_allocation_context *ac = NULL;
4733         struct ext4_group_desc *gdp;
4734         struct ext4_super_block *es;
4735         unsigned int overflow;
4736         ext4_grpblk_t bit;
4737         struct buffer_head *gd_bh;
4738         ext4_group_t block_group;
4739         struct ext4_sb_info *sbi;
4740         struct ext4_buddy e4b;
4741         int err = 0;
4742         int ret;
4743
4744         *freed = 0;
4745
4746         sbi = EXT4_SB(sb);
4747         es = EXT4_SB(sb)->s_es;
4748         if (block < le32_to_cpu(es->s_first_data_block) ||
4749             block + count < block ||
4750             block + count > ext4_blocks_count(es)) {
4751                 ext4_error(sb, __func__,
4752                             "Freeing blocks not in datazone - "
4753                             "block = %lu, count = %lu", block, count);
4754                 goto error_return;
4755         }
4756
4757         ext4_debug("freeing block %lu\n", block);
4758
4759         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4760         if (ac) {
4761                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4762                 ac->ac_inode = inode;
4763                 ac->ac_sb = sb;
4764         }
4765
4766 do_more:
4767         overflow = 0;
4768         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4769
4770         /*
4771          * Check to see if we are freeing blocks across a group
4772          * boundary.
4773          */
4774         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4775                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4776                 count -= overflow;
4777         }
4778         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4779         if (!bitmap_bh) {
4780                 err = -EIO;
4781                 goto error_return;
4782         }
4783         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4784         if (!gdp) {
4785                 err = -EIO;
4786                 goto error_return;
4787         }
4788
4789         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4790             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4791             in_range(block, ext4_inode_table(sb, gdp),
4792                       EXT4_SB(sb)->s_itb_per_group) ||
4793             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4794                       EXT4_SB(sb)->s_itb_per_group)) {
4795
4796                 ext4_error(sb, __func__,
4797                            "Freeing blocks in system zone - "
4798                            "Block = %lu, count = %lu", block, count);
4799                 /* err = 0. ext4_std_error should be a no op */
4800                 goto error_return;
4801         }
4802
4803         BUFFER_TRACE(bitmap_bh, "getting write access");
4804         err = ext4_journal_get_write_access(handle, bitmap_bh);
4805         if (err)
4806                 goto error_return;
4807
4808         /*
4809          * We are about to modify some metadata.  Call the journal APIs
4810          * to unshare ->b_data if a currently-committing transaction is
4811          * using it
4812          */
4813         BUFFER_TRACE(gd_bh, "get_write_access");
4814         err = ext4_journal_get_write_access(handle, gd_bh);
4815         if (err)
4816                 goto error_return;
4817 #ifdef AGGRESSIVE_CHECK
4818         {
4819                 int i;
4820                 for (i = 0; i < count; i++)
4821                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4822         }
4823 #endif
4824         if (ac) {
4825                 ac->ac_b_ex.fe_group = block_group;
4826                 ac->ac_b_ex.fe_start = bit;
4827                 ac->ac_b_ex.fe_len = count;
4828                 ext4_mb_store_history(ac);
4829         }
4830
4831         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4832         if (err)
4833                 goto error_return;
4834         if (metadata && ext4_handle_valid(handle)) {
4835                 struct ext4_free_data *new_entry;
4836                 /*
4837                  * blocks being freed are metadata. these blocks shouldn't
4838                  * be used until this transaction is committed
4839                  */
4840                 new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4841                 new_entry->start_blk = bit;
4842                 new_entry->group  = block_group;
4843                 new_entry->count = count;
4844                 new_entry->t_tid = handle->h_transaction->t_tid;
4845                 ext4_lock_group(sb, block_group);
4846                 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4847                                 bit, count);
4848                 ext4_mb_free_metadata(handle, &e4b, new_entry);
4849                 ext4_unlock_group(sb, block_group);
4850         } else {
4851                 ext4_lock_group(sb, block_group);
4852                 /* need to update group_info->bb_free and bitmap
4853                  * with group lock held. generate_buddy look at
4854                  * them with group lock_held
4855                  */
4856                 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4857                                 bit, count);
4858                 mb_free_blocks(inode, &e4b, bit, count);
4859                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4860                 ext4_unlock_group(sb, block_group);
4861         }
4862
4863         spin_lock(sb_bgl_lock(sbi, block_group));
4864         ret = ext4_free_blks_count(sb, gdp) + count;
4865         ext4_free_blks_set(sb, gdp, ret);
4866         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4867         spin_unlock(sb_bgl_lock(sbi, block_group));
4868         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4869
4870         if (sbi->s_log_groups_per_flex) {
4871                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872                 spin_lock(sb_bgl_lock(sbi, flex_group));
4873                 sbi->s_flex_groups[flex_group].free_blocks += count;
4874                 spin_unlock(sb_bgl_lock(sbi, flex_group));
4875         }
4876
4877         ext4_mb_release_desc(&e4b);
4878
4879         *freed += count;
4880
4881         /* We dirtied the bitmap block */
4882         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4883         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4884
4885         /* And the group descriptor block */
4886         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4887         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4888         if (!err)
4889                 err = ret;
4890
4891         if (overflow && !err) {
4892                 block += count;
4893                 count = overflow;
4894                 put_bh(bitmap_bh);
4895                 goto do_more;
4896         }
4897         sb->s_dirt = 1;
4898 error_return:
4899         brelse(bitmap_bh);
4900         ext4_std_error(sb, err);
4901         if (ac)
4902                 kmem_cache_free(ext4_ac_cachep, ac);
4903         return;
4904 }