]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext4/inode.c
ff2f5fd681b585f1f0000e511bff005f14eb4bcb
[net-next-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69         int ea_blocks = EXT4_I(inode)->i_file_acl ?
70                 (inode->i_sb->s_blocksize >> 9) : 0;
71
72         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81         ext4_lblk_t needed;
82
83         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85         /* Give ourselves just enough room to cope with inodes in which
86          * i_blocks is corrupt: we've seen disk corruptions in the past
87          * which resulted in random data in an inode which looked enough
88          * like a regular file for ext4 to try to delete it.  Things
89          * will go a bit crazy if that happens, but at least we should
90          * try not to panic the whole kernel. */
91         if (needed < 2)
92                 needed = 2;
93
94         /* But we need to bound the transaction so we don't overflow the
95          * journal. */
96         if (needed > EXT4_MAX_TRANS_DATA)
97                 needed = EXT4_MAX_TRANS_DATA;
98
99         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114         handle_t *result;
115
116         result = ext4_journal_start(inode, blocks_for_truncate(inode));
117         if (!IS_ERR(result))
118                 return result;
119
120         ext4_std_error(inode->i_sb, PTR_ERR(result));
121         return result;
122 }
123
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132         if (!ext4_handle_valid(handle))
133                 return 0;
134         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135                 return 0;
136         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137                 return 0;
138         return 1;
139 }
140
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147                                  int nblocks)
148 {
149         int ret;
150
151         /*
152          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153          * moment, get_block can be called only for blocks inside i_size since
154          * page cache has been already dropped and writes are blocked by
155          * i_mutex. So we can safely drop the i_data_sem here.
156          */
157         BUG_ON(EXT4_JOURNAL(inode) == NULL);
158         jbd_debug(2, "restarting handle %p\n", handle);
159         up_write(&EXT4_I(inode)->i_data_sem);
160         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161         down_write(&EXT4_I(inode)->i_data_sem);
162         ext4_discard_preallocations(inode);
163
164         return ret;
165 }
166
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172         handle_t *handle;
173         int err;
174
175         if (!is_bad_inode(inode))
176                 dquot_initialize(inode);
177
178         if (ext4_should_order_data(inode))
179                 ext4_begin_ordered_truncate(inode, 0);
180         truncate_inode_pages(&inode->i_data, 0);
181
182         if (is_bad_inode(inode))
183                 goto no_delete;
184
185         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186         if (IS_ERR(handle)) {
187                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188                 /*
189                  * If we're going to skip the normal cleanup, we still need to
190                  * make sure that the in-core orphan linked list is properly
191                  * cleaned up.
192                  */
193                 ext4_orphan_del(NULL, inode);
194                 goto no_delete;
195         }
196
197         if (IS_SYNC(inode))
198                 ext4_handle_sync(handle);
199         inode->i_size = 0;
200         err = ext4_mark_inode_dirty(handle, inode);
201         if (err) {
202                 ext4_warning(inode->i_sb,
203                              "couldn't mark inode dirty (err %d)", err);
204                 goto stop_handle;
205         }
206         if (inode->i_blocks)
207                 ext4_truncate(inode);
208
209         /*
210          * ext4_ext_truncate() doesn't reserve any slop when it
211          * restarts journal transactions; therefore there may not be
212          * enough credits left in the handle to remove the inode from
213          * the orphan list and set the dtime field.
214          */
215         if (!ext4_handle_has_enough_credits(handle, 3)) {
216                 err = ext4_journal_extend(handle, 3);
217                 if (err > 0)
218                         err = ext4_journal_restart(handle, 3);
219                 if (err != 0) {
220                         ext4_warning(inode->i_sb,
221                                      "couldn't extend journal (err %d)", err);
222                 stop_handle:
223                         ext4_journal_stop(handle);
224                         goto no_delete;
225                 }
226         }
227
228         /*
229          * Kill off the orphan record which ext4_truncate created.
230          * AKPM: I think this can be inside the above `if'.
231          * Note that ext4_orphan_del() has to be able to cope with the
232          * deletion of a non-existent orphan - this is because we don't
233          * know if ext4_truncate() actually created an orphan record.
234          * (Well, we could do this if we need to, but heck - it works)
235          */
236         ext4_orphan_del(handle, inode);
237         EXT4_I(inode)->i_dtime  = get_seconds();
238
239         /*
240          * One subtle ordering requirement: if anything has gone wrong
241          * (transaction abort, IO errors, whatever), then we can still
242          * do these next steps (the fs will already have been marked as
243          * having errors), but we can't free the inode if the mark_dirty
244          * fails.
245          */
246         if (ext4_mark_inode_dirty(handle, inode))
247                 /* If that failed, just do the required in-core inode clear. */
248                 clear_inode(inode);
249         else
250                 ext4_free_inode(handle, inode);
251         ext4_journal_stop(handle);
252         return;
253 no_delete:
254         clear_inode(inode);     /* We must guarantee clearing of inode... */
255 }
256
257 typedef struct {
258         __le32  *p;
259         __le32  key;
260         struct buffer_head *bh;
261 } Indirect;
262
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265         p->key = *(p->p = v);
266         p->bh = bh;
267 }
268
269 /**
270  *      ext4_block_to_path - parse the block number into array of offsets
271  *      @inode: inode in question (we are only interested in its superblock)
272  *      @i_block: block number to be parsed
273  *      @offsets: array to store the offsets in
274  *      @boundary: set this non-zero if the referred-to block is likely to be
275  *             followed (on disk) by an indirect block.
276  *
277  *      To store the locations of file's data ext4 uses a data structure common
278  *      for UNIX filesystems - tree of pointers anchored in the inode, with
279  *      data blocks at leaves and indirect blocks in intermediate nodes.
280  *      This function translates the block number into path in that tree -
281  *      return value is the path length and @offsets[n] is the offset of
282  *      pointer to (n+1)th node in the nth one. If @block is out of range
283  *      (negative or too large) warning is printed and zero returned.
284  *
285  *      Note: function doesn't find node addresses, so no IO is needed. All
286  *      we need to know is the capacity of indirect blocks (taken from the
287  *      inode->i_sb).
288  */
289
290 /*
291  * Portability note: the last comparison (check that we fit into triple
292  * indirect block) is spelled differently, because otherwise on an
293  * architecture with 32-bit longs and 8Kb pages we might get into trouble
294  * if our filesystem had 8Kb blocks. We might use long long, but that would
295  * kill us on x86. Oh, well, at least the sign propagation does not matter -
296  * i_block would have to be negative in the very beginning, so we would not
297  * get there at all.
298  */
299
300 static int ext4_block_to_path(struct inode *inode,
301                               ext4_lblk_t i_block,
302                               ext4_lblk_t offsets[4], int *boundary)
303 {
304         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306         const long direct_blocks = EXT4_NDIR_BLOCKS,
307                 indirect_blocks = ptrs,
308                 double_blocks = (1 << (ptrs_bits * 2));
309         int n = 0;
310         int final = 0;
311
312         if (i_block < direct_blocks) {
313                 offsets[n++] = i_block;
314                 final = direct_blocks;
315         } else if ((i_block -= direct_blocks) < indirect_blocks) {
316                 offsets[n++] = EXT4_IND_BLOCK;
317                 offsets[n++] = i_block;
318                 final = ptrs;
319         } else if ((i_block -= indirect_blocks) < double_blocks) {
320                 offsets[n++] = EXT4_DIND_BLOCK;
321                 offsets[n++] = i_block >> ptrs_bits;
322                 offsets[n++] = i_block & (ptrs - 1);
323                 final = ptrs;
324         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325                 offsets[n++] = EXT4_TIND_BLOCK;
326                 offsets[n++] = i_block >> (ptrs_bits * 2);
327                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328                 offsets[n++] = i_block & (ptrs - 1);
329                 final = ptrs;
330         } else {
331                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332                              i_block + direct_blocks +
333                              indirect_blocks + double_blocks, inode->i_ino);
334         }
335         if (boundary)
336                 *boundary = final - 1 - (i_block & (ptrs - 1));
337         return n;
338 }
339
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341                                  __le32 *p, unsigned int max)
342 {
343         __le32 *bref = p;
344         unsigned int blk;
345
346         while (bref < p+max) {
347                 blk = le32_to_cpu(*bref++);
348                 if (blk &&
349                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350                                                     blk, 1))) {
351                         __ext4_error(inode->i_sb, function,
352                                    "invalid block reference %u "
353                                    "in inode #%lu", blk, inode->i_ino);
354                         return -EIO;
355                 }
356         }
357         return 0;
358 }
359
360
361 #define ext4_check_indirect_blockref(inode, bh)                         \
362         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
363                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364
365 #define ext4_check_inode_blockref(inode)                                \
366         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
367                               EXT4_NDIR_BLOCKS)
368
369 /**
370  *      ext4_get_branch - read the chain of indirect blocks leading to data
371  *      @inode: inode in question
372  *      @depth: depth of the chain (1 - direct pointer, etc.)
373  *      @offsets: offsets of pointers in inode/indirect blocks
374  *      @chain: place to store the result
375  *      @err: here we store the error value
376  *
377  *      Function fills the array of triples <key, p, bh> and returns %NULL
378  *      if everything went OK or the pointer to the last filled triple
379  *      (incomplete one) otherwise. Upon the return chain[i].key contains
380  *      the number of (i+1)-th block in the chain (as it is stored in memory,
381  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
382  *      number (it points into struct inode for i==0 and into the bh->b_data
383  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384  *      block for i>0 and NULL for i==0. In other words, it holds the block
385  *      numbers of the chain, addresses they were taken from (and where we can
386  *      verify that chain did not change) and buffer_heads hosting these
387  *      numbers.
388  *
389  *      Function stops when it stumbles upon zero pointer (absent block)
390  *              (pointer to last triple returned, *@err == 0)
391  *      or when it gets an IO error reading an indirect block
392  *              (ditto, *@err == -EIO)
393  *      or when it reads all @depth-1 indirect blocks successfully and finds
394  *      the whole chain, all way to the data (returns %NULL, *err == 0).
395  *
396  *      Need to be called with
397  *      down_read(&EXT4_I(inode)->i_data_sem)
398  */
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400                                  ext4_lblk_t  *offsets,
401                                  Indirect chain[4], int *err)
402 {
403         struct super_block *sb = inode->i_sb;
404         Indirect *p = chain;
405         struct buffer_head *bh;
406
407         *err = 0;
408         /* i_data is not going away, no lock needed */
409         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410         if (!p->key)
411                 goto no_block;
412         while (--depth) {
413                 bh = sb_getblk(sb, le32_to_cpu(p->key));
414                 if (unlikely(!bh))
415                         goto failure;
416
417                 if (!bh_uptodate_or_lock(bh)) {
418                         if (bh_submit_read(bh) < 0) {
419                                 put_bh(bh);
420                                 goto failure;
421                         }
422                         /* validate block references */
423                         if (ext4_check_indirect_blockref(inode, bh)) {
424                                 put_bh(bh);
425                                 goto failure;
426                         }
427                 }
428
429                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430                 /* Reader: end */
431                 if (!p->key)
432                         goto no_block;
433         }
434         return NULL;
435
436 failure:
437         *err = -EIO;
438 no_block:
439         return p;
440 }
441
442 /**
443  *      ext4_find_near - find a place for allocation with sufficient locality
444  *      @inode: owner
445  *      @ind: descriptor of indirect block.
446  *
447  *      This function returns the preferred place for block allocation.
448  *      It is used when heuristic for sequential allocation fails.
449  *      Rules are:
450  *        + if there is a block to the left of our position - allocate near it.
451  *        + if pointer will live in indirect block - allocate near that block.
452  *        + if pointer will live in inode - allocate in the same
453  *          cylinder group.
454  *
455  * In the latter case we colour the starting block by the callers PID to
456  * prevent it from clashing with concurrent allocations for a different inode
457  * in the same block group.   The PID is used here so that functionally related
458  * files will be close-by on-disk.
459  *
460  *      Caller must make sure that @ind is valid and will stay that way.
461  */
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463 {
464         struct ext4_inode_info *ei = EXT4_I(inode);
465         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466         __le32 *p;
467         ext4_fsblk_t bg_start;
468         ext4_fsblk_t last_block;
469         ext4_grpblk_t colour;
470         ext4_group_t block_group;
471         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472
473         /* Try to find previous block */
474         for (p = ind->p - 1; p >= start; p--) {
475                 if (*p)
476                         return le32_to_cpu(*p);
477         }
478
479         /* No such thing, so let's try location of indirect block */
480         if (ind->bh)
481                 return ind->bh->b_blocknr;
482
483         /*
484          * It is going to be referred to from the inode itself? OK, just put it
485          * into the same cylinder group then.
486          */
487         block_group = ei->i_block_group;
488         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489                 block_group &= ~(flex_size-1);
490                 if (S_ISREG(inode->i_mode))
491                         block_group++;
492         }
493         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495
496         /*
497          * If we are doing delayed allocation, we don't need take
498          * colour into account.
499          */
500         if (test_opt(inode->i_sb, DELALLOC))
501                 return bg_start;
502
503         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504                 colour = (current->pid % 16) *
505                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506         else
507                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508         return bg_start + colour;
509 }
510
511 /**
512  *      ext4_find_goal - find a preferred place for allocation.
513  *      @inode: owner
514  *      @block:  block we want
515  *      @partial: pointer to the last triple within a chain
516  *
517  *      Normally this function find the preferred place for block allocation,
518  *      returns it.
519  *      Because this is only used for non-extent files, we limit the block nr
520  *      to 32 bits.
521  */
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523                                    Indirect *partial)
524 {
525         ext4_fsblk_t goal;
526
527         /*
528          * XXX need to get goal block from mballoc's data structures
529          */
530
531         goal = ext4_find_near(inode, partial);
532         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533         return goal;
534 }
535
536 /**
537  *      ext4_blks_to_allocate: Look up the block map and count the number
538  *      of direct blocks need to be allocated for the given branch.
539  *
540  *      @branch: chain of indirect blocks
541  *      @k: number of blocks need for indirect blocks
542  *      @blks: number of data blocks to be mapped.
543  *      @blocks_to_boundary:  the offset in the indirect block
544  *
545  *      return the total number of blocks to be allocate, including the
546  *      direct and indirect blocks.
547  */
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549                                  int blocks_to_boundary)
550 {
551         unsigned int count = 0;
552
553         /*
554          * Simple case, [t,d]Indirect block(s) has not allocated yet
555          * then it's clear blocks on that path have not allocated
556          */
557         if (k > 0) {
558                 /* right now we don't handle cross boundary allocation */
559                 if (blks < blocks_to_boundary + 1)
560                         count += blks;
561                 else
562                         count += blocks_to_boundary + 1;
563                 return count;
564         }
565
566         count++;
567         while (count < blks && count <= blocks_to_boundary &&
568                 le32_to_cpu(*(branch[0].p + count)) == 0) {
569                 count++;
570         }
571         return count;
572 }
573
574 /**
575  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
576  *      @indirect_blks: the number of blocks need to allocate for indirect
577  *                      blocks
578  *
579  *      @new_blocks: on return it will store the new block numbers for
580  *      the indirect blocks(if needed) and the first direct block,
581  *      @blks:  on return it will store the total number of allocated
582  *              direct blocks
583  */
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585                              ext4_lblk_t iblock, ext4_fsblk_t goal,
586                              int indirect_blks, int blks,
587                              ext4_fsblk_t new_blocks[4], int *err)
588 {
589         struct ext4_allocation_request ar;
590         int target, i;
591         unsigned long count = 0, blk_allocated = 0;
592         int index = 0;
593         ext4_fsblk_t current_block = 0;
594         int ret = 0;
595
596         /*
597          * Here we try to allocate the requested multiple blocks at once,
598          * on a best-effort basis.
599          * To build a branch, we should allocate blocks for
600          * the indirect blocks(if not allocated yet), and at least
601          * the first direct block of this branch.  That's the
602          * minimum number of blocks need to allocate(required)
603          */
604         /* first we try to allocate the indirect blocks */
605         target = indirect_blks;
606         while (target > 0) {
607                 count = target;
608                 /* allocating blocks for indirect blocks and direct blocks */
609                 current_block = ext4_new_meta_blocks(handle, inode,
610                                                         goal, &count, err);
611                 if (*err)
612                         goto failed_out;
613
614                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615                         EXT4_ERROR_INODE(inode,
616                                          "current_block %llu + count %lu > %d!",
617                                          current_block, count,
618                                          EXT4_MAX_BLOCK_FILE_PHYS);
619                         *err = -EIO;
620                         goto failed_out;
621                 }
622
623                 target -= count;
624                 /* allocate blocks for indirect blocks */
625                 while (index < indirect_blks && count) {
626                         new_blocks[index++] = current_block++;
627                         count--;
628                 }
629                 if (count > 0) {
630                         /*
631                          * save the new block number
632                          * for the first direct block
633                          */
634                         new_blocks[index] = current_block;
635                         printk(KERN_INFO "%s returned more blocks than "
636                                                 "requested\n", __func__);
637                         WARN_ON(1);
638                         break;
639                 }
640         }
641
642         target = blks - count ;
643         blk_allocated = count;
644         if (!target)
645                 goto allocated;
646         /* Now allocate data blocks */
647         memset(&ar, 0, sizeof(ar));
648         ar.inode = inode;
649         ar.goal = goal;
650         ar.len = target;
651         ar.logical = iblock;
652         if (S_ISREG(inode->i_mode))
653                 /* enable in-core preallocation only for regular files */
654                 ar.flags = EXT4_MB_HINT_DATA;
655
656         current_block = ext4_mb_new_blocks(handle, &ar, err);
657         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658                 EXT4_ERROR_INODE(inode,
659                                  "current_block %llu + ar.len %d > %d!",
660                                  current_block, ar.len,
661                                  EXT4_MAX_BLOCK_FILE_PHYS);
662                 *err = -EIO;
663                 goto failed_out;
664         }
665
666         if (*err && (target == blks)) {
667                 /*
668                  * if the allocation failed and we didn't allocate
669                  * any blocks before
670                  */
671                 goto failed_out;
672         }
673         if (!*err) {
674                 if (target == blks) {
675                         /*
676                          * save the new block number
677                          * for the first direct block
678                          */
679                         new_blocks[index] = current_block;
680                 }
681                 blk_allocated += ar.len;
682         }
683 allocated:
684         /* total number of blocks allocated for direct blocks */
685         ret = blk_allocated;
686         *err = 0;
687         return ret;
688 failed_out:
689         for (i = 0; i < index; i++)
690                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691         return ret;
692 }
693
694 /**
695  *      ext4_alloc_branch - allocate and set up a chain of blocks.
696  *      @inode: owner
697  *      @indirect_blks: number of allocated indirect blocks
698  *      @blks: number of allocated direct blocks
699  *      @offsets: offsets (in the blocks) to store the pointers to next.
700  *      @branch: place to store the chain in.
701  *
702  *      This function allocates blocks, zeroes out all but the last one,
703  *      links them into chain and (if we are synchronous) writes them to disk.
704  *      In other words, it prepares a branch that can be spliced onto the
705  *      inode. It stores the information about that chain in the branch[], in
706  *      the same format as ext4_get_branch() would do. We are calling it after
707  *      we had read the existing part of chain and partial points to the last
708  *      triple of that (one with zero ->key). Upon the exit we have the same
709  *      picture as after the successful ext4_get_block(), except that in one
710  *      place chain is disconnected - *branch->p is still zero (we did not
711  *      set the last link), but branch->key contains the number that should
712  *      be placed into *branch->p to fill that gap.
713  *
714  *      If allocation fails we free all blocks we've allocated (and forget
715  *      their buffer_heads) and return the error value the from failed
716  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717  *      as described above and return 0.
718  */
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720                              ext4_lblk_t iblock, int indirect_blks,
721                              int *blks, ext4_fsblk_t goal,
722                              ext4_lblk_t *offsets, Indirect *branch)
723 {
724         int blocksize = inode->i_sb->s_blocksize;
725         int i, n = 0;
726         int err = 0;
727         struct buffer_head *bh;
728         int num;
729         ext4_fsblk_t new_blocks[4];
730         ext4_fsblk_t current_block;
731
732         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733                                 *blks, new_blocks, &err);
734         if (err)
735                 return err;
736
737         branch[0].key = cpu_to_le32(new_blocks[0]);
738         /*
739          * metadata blocks and data blocks are allocated.
740          */
741         for (n = 1; n <= indirect_blks;  n++) {
742                 /*
743                  * Get buffer_head for parent block, zero it out
744                  * and set the pointer to new one, then send
745                  * parent to disk.
746                  */
747                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748                 branch[n].bh = bh;
749                 lock_buffer(bh);
750                 BUFFER_TRACE(bh, "call get_create_access");
751                 err = ext4_journal_get_create_access(handle, bh);
752                 if (err) {
753                         /* Don't brelse(bh) here; it's done in
754                          * ext4_journal_forget() below */
755                         unlock_buffer(bh);
756                         goto failed;
757                 }
758
759                 memset(bh->b_data, 0, blocksize);
760                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761                 branch[n].key = cpu_to_le32(new_blocks[n]);
762                 *branch[n].p = branch[n].key;
763                 if (n == indirect_blks) {
764                         current_block = new_blocks[n];
765                         /*
766                          * End of chain, update the last new metablock of
767                          * the chain to point to the new allocated
768                          * data blocks numbers
769                          */
770                         for (i = 1; i < num; i++)
771                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
772                 }
773                 BUFFER_TRACE(bh, "marking uptodate");
774                 set_buffer_uptodate(bh);
775                 unlock_buffer(bh);
776
777                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778                 err = ext4_handle_dirty_metadata(handle, inode, bh);
779                 if (err)
780                         goto failed;
781         }
782         *blks = num;
783         return err;
784 failed:
785         /* Allocation failed, free what we already allocated */
786         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787         for (i = 1; i <= n ; i++) {
788                 /* 
789                  * branch[i].bh is newly allocated, so there is no
790                  * need to revoke the block, which is why we don't
791                  * need to set EXT4_FREE_BLOCKS_METADATA.
792                  */
793                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794                                  EXT4_FREE_BLOCKS_FORGET);
795         }
796         for (i = n+1; i < indirect_blks; i++)
797                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798
799         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800
801         return err;
802 }
803
804 /**
805  * ext4_splice_branch - splice the allocated branch onto inode.
806  * @inode: owner
807  * @block: (logical) number of block we are adding
808  * @chain: chain of indirect blocks (with a missing link - see
809  *      ext4_alloc_branch)
810  * @where: location of missing link
811  * @num:   number of indirect blocks we are adding
812  * @blks:  number of direct blocks we are adding
813  *
814  * This function fills the missing link and does all housekeeping needed in
815  * inode (->i_blocks, etc.). In case of success we end up with the full
816  * chain to new block and return 0.
817  */
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819                               ext4_lblk_t block, Indirect *where, int num,
820                               int blks)
821 {
822         int i;
823         int err = 0;
824         ext4_fsblk_t current_block;
825
826         /*
827          * If we're splicing into a [td]indirect block (as opposed to the
828          * inode) then we need to get write access to the [td]indirect block
829          * before the splice.
830          */
831         if (where->bh) {
832                 BUFFER_TRACE(where->bh, "get_write_access");
833                 err = ext4_journal_get_write_access(handle, where->bh);
834                 if (err)
835                         goto err_out;
836         }
837         /* That's it */
838
839         *where->p = where->key;
840
841         /*
842          * Update the host buffer_head or inode to point to more just allocated
843          * direct blocks blocks
844          */
845         if (num == 0 && blks > 1) {
846                 current_block = le32_to_cpu(where->key) + 1;
847                 for (i = 1; i < blks; i++)
848                         *(where->p + i) = cpu_to_le32(current_block++);
849         }
850
851         /* We are done with atomic stuff, now do the rest of housekeeping */
852         /* had we spliced it onto indirect block? */
853         if (where->bh) {
854                 /*
855                  * If we spliced it onto an indirect block, we haven't
856                  * altered the inode.  Note however that if it is being spliced
857                  * onto an indirect block at the very end of the file (the
858                  * file is growing) then we *will* alter the inode to reflect
859                  * the new i_size.  But that is not done here - it is done in
860                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861                  */
862                 jbd_debug(5, "splicing indirect only\n");
863                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865                 if (err)
866                         goto err_out;
867         } else {
868                 /*
869                  * OK, we spliced it into the inode itself on a direct block.
870                  */
871                 ext4_mark_inode_dirty(handle, inode);
872                 jbd_debug(5, "splicing direct\n");
873         }
874         return err;
875
876 err_out:
877         for (i = 1; i <= num; i++) {
878                 /* 
879                  * branch[i].bh is newly allocated, so there is no
880                  * need to revoke the block, which is why we don't
881                  * need to set EXT4_FREE_BLOCKS_METADATA.
882                  */
883                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884                                  EXT4_FREE_BLOCKS_FORGET);
885         }
886         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887                          blks, 0);
888
889         return err;
890 }
891
892 /*
893  * The ext4_ind_map_blocks() function handles non-extents inodes
894  * (i.e., using the traditional indirect/double-indirect i_blocks
895  * scheme) for ext4_map_blocks().
896  *
897  * Allocation strategy is simple: if we have to allocate something, we will
898  * have to go the whole way to leaf. So let's do it before attaching anything
899  * to tree, set linkage between the newborn blocks, write them if sync is
900  * required, recheck the path, free and repeat if check fails, otherwise
901  * set the last missing link (that will protect us from any truncate-generated
902  * removals - all blocks on the path are immune now) and possibly force the
903  * write on the parent block.
904  * That has a nice additional property: no special recovery from the failed
905  * allocations is needed - we simply release blocks and do not touch anything
906  * reachable from inode.
907  *
908  * `handle' can be NULL if create == 0.
909  *
910  * return > 0, # of blocks mapped or allocated.
911  * return = 0, if plain lookup failed.
912  * return < 0, error case.
913  *
914  * The ext4_ind_get_blocks() function should be called with
915  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918  * blocks.
919  */
920 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
921                                struct ext4_map_blocks *map,
922                                int flags)
923 {
924         int err = -EIO;
925         ext4_lblk_t offsets[4];
926         Indirect chain[4];
927         Indirect *partial;
928         ext4_fsblk_t goal;
929         int indirect_blks;
930         int blocks_to_boundary = 0;
931         int depth;
932         int count = 0;
933         ext4_fsblk_t first_block = 0;
934
935         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
938                                    &blocks_to_boundary);
939
940         if (depth == 0)
941                 goto out;
942
943         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
944
945         /* Simplest case - block found, no allocation needed */
946         if (!partial) {
947                 first_block = le32_to_cpu(chain[depth - 1].key);
948                 count++;
949                 /*map more blocks*/
950                 while (count < map->m_len && count <= blocks_to_boundary) {
951                         ext4_fsblk_t blk;
952
953                         blk = le32_to_cpu(*(chain[depth-1].p + count));
954
955                         if (blk == first_block + count)
956                                 count++;
957                         else
958                                 break;
959                 }
960                 goto got_it;
961         }
962
963         /* Next simple case - plain lookup or failed read of indirect block */
964         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
965                 goto cleanup;
966
967         /*
968          * Okay, we need to do block allocation.
969         */
970         goal = ext4_find_goal(inode, map->m_lblk, partial);
971
972         /* the number of blocks need to allocate for [d,t]indirect blocks */
973         indirect_blks = (chain + depth) - partial - 1;
974
975         /*
976          * Next look up the indirect map to count the totoal number of
977          * direct blocks to allocate for this branch.
978          */
979         count = ext4_blks_to_allocate(partial, indirect_blks,
980                                       map->m_len, blocks_to_boundary);
981         /*
982          * Block out ext4_truncate while we alter the tree
983          */
984         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
985                                 &count, goal,
986                                 offsets + (partial - chain), partial);
987
988         /*
989          * The ext4_splice_branch call will free and forget any buffers
990          * on the new chain if there is a failure, but that risks using
991          * up transaction credits, especially for bitmaps where the
992          * credits cannot be returned.  Can we handle this somehow?  We
993          * may need to return -EAGAIN upwards in the worst case.  --sct
994          */
995         if (!err)
996                 err = ext4_splice_branch(handle, inode, map->m_lblk,
997                                          partial, indirect_blks, count);
998         if (err)
999                 goto cleanup;
1000
1001         map->m_flags |= EXT4_MAP_NEW;
1002
1003         ext4_update_inode_fsync_trans(handle, inode, 1);
1004 got_it:
1005         map->m_flags |= EXT4_MAP_MAPPED;
1006         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1007         map->m_len = count;
1008         if (count > blocks_to_boundary)
1009                 map->m_flags |= EXT4_MAP_BOUNDARY;
1010         err = count;
1011         /* Clean up and exit */
1012         partial = chain + depth - 1;    /* the whole chain */
1013 cleanup:
1014         while (partial > chain) {
1015                 BUFFER_TRACE(partial->bh, "call brelse");
1016                 brelse(partial->bh);
1017                 partial--;
1018         }
1019 out:
1020         return err;
1021 }
1022
1023 #ifdef CONFIG_QUOTA
1024 qsize_t *ext4_get_reserved_space(struct inode *inode)
1025 {
1026         return &EXT4_I(inode)->i_reserved_quota;
1027 }
1028 #endif
1029
1030 /*
1031  * Calculate the number of metadata blocks need to reserve
1032  * to allocate a new block at @lblocks for non extent file based file
1033  */
1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1035                                               sector_t lblock)
1036 {
1037         struct ext4_inode_info *ei = EXT4_I(inode);
1038         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1039         int blk_bits;
1040
1041         if (lblock < EXT4_NDIR_BLOCKS)
1042                 return 0;
1043
1044         lblock -= EXT4_NDIR_BLOCKS;
1045
1046         if (ei->i_da_metadata_calc_len &&
1047             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1048                 ei->i_da_metadata_calc_len++;
1049                 return 0;
1050         }
1051         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1052         ei->i_da_metadata_calc_len = 1;
1053         blk_bits = order_base_2(lblock);
1054         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1055 }
1056
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate a block located at @lblock
1060  */
1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1062 {
1063         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064                 return ext4_ext_calc_metadata_amount(inode, lblock);
1065
1066         return ext4_indirect_calc_metadata_amount(inode, lblock);
1067 }
1068
1069 /*
1070  * Called with i_data_sem down, which is important since we can call
1071  * ext4_discard_preallocations() from here.
1072  */
1073 void ext4_da_update_reserve_space(struct inode *inode,
1074                                         int used, int quota_claim)
1075 {
1076         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077         struct ext4_inode_info *ei = EXT4_I(inode);
1078
1079         spin_lock(&ei->i_block_reservation_lock);
1080         trace_ext4_da_update_reserve_space(inode, used);
1081         if (unlikely(used > ei->i_reserved_data_blocks)) {
1082                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1083                          "with only %d reserved data blocks\n",
1084                          __func__, inode->i_ino, used,
1085                          ei->i_reserved_data_blocks);
1086                 WARN_ON(1);
1087                 used = ei->i_reserved_data_blocks;
1088         }
1089
1090         /* Update per-inode reservations */
1091         ei->i_reserved_data_blocks -= used;
1092         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1093         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1094                            used + ei->i_allocated_meta_blocks);
1095         ei->i_allocated_meta_blocks = 0;
1096
1097         if (ei->i_reserved_data_blocks == 0) {
1098                 /*
1099                  * We can release all of the reserved metadata blocks
1100                  * only when we have written all of the delayed
1101                  * allocation blocks.
1102                  */
1103                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104                                    ei->i_reserved_meta_blocks);
1105                 ei->i_reserved_meta_blocks = 0;
1106                 ei->i_da_metadata_calc_len = 0;
1107         }
1108         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1109
1110         /* Update quota subsystem for data blocks */
1111         if (quota_claim)
1112                 dquot_claim_block(inode, used);
1113         else {
1114                 /*
1115                  * We did fallocate with an offset that is already delayed
1116                  * allocated. So on delayed allocated writeback we should
1117                  * not re-claim the quota for fallocated blocks.
1118                  */
1119                 dquot_release_reservation_block(inode, used);
1120         }
1121
1122         /*
1123          * If we have done all the pending block allocations and if
1124          * there aren't any writers on the inode, we can discard the
1125          * inode's preallocations.
1126          */
1127         if ((ei->i_reserved_data_blocks == 0) &&
1128             (atomic_read(&inode->i_writecount) == 0))
1129                 ext4_discard_preallocations(inode);
1130 }
1131
1132 static int check_block_validity(struct inode *inode, const char *msg,
1133                                 sector_t logical, sector_t phys, int len)
1134 {
1135         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136                 __ext4_error(inode->i_sb, msg,
1137                            "inode #%lu logical block %llu mapped to %llu "
1138                            "(size %d)", inode->i_ino,
1139                            (unsigned long long) logical,
1140                            (unsigned long long) phys, len);
1141                 return -EIO;
1142         }
1143         return 0;
1144 }
1145
1146 /*
1147  * Return the number of contiguous dirty pages in a given inode
1148  * starting at page frame idx.
1149  */
1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1151                                     unsigned int max_pages)
1152 {
1153         struct address_space *mapping = inode->i_mapping;
1154         pgoff_t index;
1155         struct pagevec pvec;
1156         pgoff_t num = 0;
1157         int i, nr_pages, done = 0;
1158
1159         if (max_pages == 0)
1160                 return 0;
1161         pagevec_init(&pvec, 0);
1162         while (!done) {
1163                 index = idx;
1164                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1165                                               PAGECACHE_TAG_DIRTY,
1166                                               (pgoff_t)PAGEVEC_SIZE);
1167                 if (nr_pages == 0)
1168                         break;
1169                 for (i = 0; i < nr_pages; i++) {
1170                         struct page *page = pvec.pages[i];
1171                         struct buffer_head *bh, *head;
1172
1173                         lock_page(page);
1174                         if (unlikely(page->mapping != mapping) ||
1175                             !PageDirty(page) ||
1176                             PageWriteback(page) ||
1177                             page->index != idx) {
1178                                 done = 1;
1179                                 unlock_page(page);
1180                                 break;
1181                         }
1182                         if (page_has_buffers(page)) {
1183                                 bh = head = page_buffers(page);
1184                                 do {
1185                                         if (!buffer_delay(bh) &&
1186                                             !buffer_unwritten(bh))
1187                                                 done = 1;
1188                                         bh = bh->b_this_page;
1189                                 } while (!done && (bh != head));
1190                         }
1191                         unlock_page(page);
1192                         if (done)
1193                                 break;
1194                         idx++;
1195                         num++;
1196                         if (num >= max_pages)
1197                                 break;
1198                 }
1199                 pagevec_release(&pvec);
1200         }
1201         return num;
1202 }
1203
1204 /*
1205  * The ext4_map_blocks() function tries to look up the requested blocks,
1206  * and returns if the blocks are already mapped.
1207  *
1208  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1209  * and store the allocated blocks in the result buffer head and mark it
1210  * mapped.
1211  *
1212  * If file type is extents based, it will call ext4_ext_map_blocks(),
1213  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1214  * based files
1215  *
1216  * On success, it returns the number of blocks being mapped or allocate.
1217  * if create==0 and the blocks are pre-allocated and uninitialized block,
1218  * the result buffer head is unmapped. If the create ==1, it will make sure
1219  * the buffer head is mapped.
1220  *
1221  * It returns 0 if plain look up failed (blocks have not been allocated), in
1222  * that casem, buffer head is unmapped
1223  *
1224  * It returns the error in case of allocation failure.
1225  */
1226 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1227                     struct ext4_map_blocks *map, int flags)
1228 {
1229         int retval;
1230
1231         map->m_flags = 0;
1232         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1233                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1234                   (unsigned long) map->m_lblk);
1235         /*
1236          * Try to see if we can get the block without requesting a new
1237          * file system block.
1238          */
1239         down_read((&EXT4_I(inode)->i_data_sem));
1240         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1241                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1242         } else {
1243                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1244         }
1245         up_read((&EXT4_I(inode)->i_data_sem));
1246
1247         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1248                 int ret = check_block_validity(inode, "file system corruption",
1249                                         map->m_lblk, map->m_pblk, retval);
1250                 if (ret != 0)
1251                         return ret;
1252         }
1253
1254         /* If it is only a block(s) look up */
1255         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1256                 return retval;
1257
1258         /*
1259          * Returns if the blocks have already allocated
1260          *
1261          * Note that if blocks have been preallocated
1262          * ext4_ext_get_block() returns th create = 0
1263          * with buffer head unmapped.
1264          */
1265         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1266                 return retval;
1267
1268         /*
1269          * When we call get_blocks without the create flag, the
1270          * BH_Unwritten flag could have gotten set if the blocks
1271          * requested were part of a uninitialized extent.  We need to
1272          * clear this flag now that we are committed to convert all or
1273          * part of the uninitialized extent to be an initialized
1274          * extent.  This is because we need to avoid the combination
1275          * of BH_Unwritten and BH_Mapped flags being simultaneously
1276          * set on the buffer_head.
1277          */
1278         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1279
1280         /*
1281          * New blocks allocate and/or writing to uninitialized extent
1282          * will possibly result in updating i_data, so we take
1283          * the write lock of i_data_sem, and call get_blocks()
1284          * with create == 1 flag.
1285          */
1286         down_write((&EXT4_I(inode)->i_data_sem));
1287
1288         /*
1289          * if the caller is from delayed allocation writeout path
1290          * we have already reserved fs blocks for allocation
1291          * let the underlying get_block() function know to
1292          * avoid double accounting
1293          */
1294         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1295                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1296         /*
1297          * We need to check for EXT4 here because migrate
1298          * could have changed the inode type in between
1299          */
1300         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1301                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1302         } else {
1303                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1304
1305                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1306                         /*
1307                          * We allocated new blocks which will result in
1308                          * i_data's format changing.  Force the migrate
1309                          * to fail by clearing migrate flags
1310                          */
1311                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1312                 }
1313
1314                 /*
1315                  * Update reserved blocks/metadata blocks after successful
1316                  * block allocation which had been deferred till now. We don't
1317                  * support fallocate for non extent files. So we can update
1318                  * reserve space here.
1319                  */
1320                 if ((retval > 0) &&
1321                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1322                         ext4_da_update_reserve_space(inode, retval, 1);
1323         }
1324         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326
1327         up_write((&EXT4_I(inode)->i_data_sem));
1328         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1329                 int ret = check_block_validity(inode, "file system "
1330                                                "corruption after allocation",
1331                                                map->m_lblk, map->m_pblk,
1332                                                retval);
1333                 if (ret != 0)
1334                         return ret;
1335         }
1336         return retval;
1337 }
1338
1339 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1340                     unsigned int max_blocks, struct buffer_head *bh,
1341                     int flags)
1342 {
1343         struct ext4_map_blocks map;
1344         int ret;
1345
1346         map.m_lblk = block;
1347         map.m_len = max_blocks;
1348
1349         ret = ext4_map_blocks(handle, inode, &map, flags);
1350         if (ret < 0)
1351                 return ret;
1352
1353         bh->b_blocknr = map.m_pblk;
1354         bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1355         bh->b_bdev = inode->i_sb->s_bdev;
1356         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1357         return ret;
1358 }
1359
1360 /* Maximum number of blocks we map for direct IO at once. */
1361 #define DIO_MAX_BLOCKS 4096
1362
1363 int ext4_get_block(struct inode *inode, sector_t iblock,
1364                    struct buffer_head *bh_result, int create)
1365 {
1366         handle_t *handle = ext4_journal_current_handle();
1367         int ret = 0, started = 0;
1368         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1369         int dio_credits;
1370
1371         if (create && !handle) {
1372                 /* Direct IO write... */
1373                 if (max_blocks > DIO_MAX_BLOCKS)
1374                         max_blocks = DIO_MAX_BLOCKS;
1375                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1376                 handle = ext4_journal_start(inode, dio_credits);
1377                 if (IS_ERR(handle)) {
1378                         ret = PTR_ERR(handle);
1379                         goto out;
1380                 }
1381                 started = 1;
1382         }
1383
1384         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1385                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1386         if (ret > 0) {
1387                 bh_result->b_size = (ret << inode->i_blkbits);
1388                 ret = 0;
1389         }
1390         if (started)
1391                 ext4_journal_stop(handle);
1392 out:
1393         return ret;
1394 }
1395
1396 /*
1397  * `handle' can be NULL if create is zero
1398  */
1399 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1400                                 ext4_lblk_t block, int create, int *errp)
1401 {
1402         struct buffer_head dummy;
1403         int fatal = 0, err;
1404         int flags = 0;
1405
1406         J_ASSERT(handle != NULL || create == 0);
1407
1408         dummy.b_state = 0;
1409         dummy.b_blocknr = -1000;
1410         buffer_trace_init(&dummy.b_history);
1411         if (create)
1412                 flags |= EXT4_GET_BLOCKS_CREATE;
1413         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1414         /*
1415          * ext4_get_blocks() returns number of blocks mapped. 0 in
1416          * case of a HOLE.
1417          */
1418         if (err > 0) {
1419                 if (err > 1)
1420                         WARN_ON(1);
1421                 err = 0;
1422         }
1423         *errp = err;
1424         if (!err && buffer_mapped(&dummy)) {
1425                 struct buffer_head *bh;
1426                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1427                 if (!bh) {
1428                         *errp = -EIO;
1429                         goto err;
1430                 }
1431                 if (buffer_new(&dummy)) {
1432                         J_ASSERT(create != 0);
1433                         J_ASSERT(handle != NULL);
1434
1435                         /*
1436                          * Now that we do not always journal data, we should
1437                          * keep in mind whether this should always journal the
1438                          * new buffer as metadata.  For now, regular file
1439                          * writes use ext4_get_block instead, so it's not a
1440                          * problem.
1441                          */
1442                         lock_buffer(bh);
1443                         BUFFER_TRACE(bh, "call get_create_access");
1444                         fatal = ext4_journal_get_create_access(handle, bh);
1445                         if (!fatal && !buffer_uptodate(bh)) {
1446                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447                                 set_buffer_uptodate(bh);
1448                         }
1449                         unlock_buffer(bh);
1450                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1452                         if (!fatal)
1453                                 fatal = err;
1454                 } else {
1455                         BUFFER_TRACE(bh, "not a new buffer");
1456                 }
1457                 if (fatal) {
1458                         *errp = fatal;
1459                         brelse(bh);
1460                         bh = NULL;
1461                 }
1462                 return bh;
1463         }
1464 err:
1465         return NULL;
1466 }
1467
1468 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1469                                ext4_lblk_t block, int create, int *err)
1470 {
1471         struct buffer_head *bh;
1472
1473         bh = ext4_getblk(handle, inode, block, create, err);
1474         if (!bh)
1475                 return bh;
1476         if (buffer_uptodate(bh))
1477                 return bh;
1478         ll_rw_block(READ_META, 1, &bh);
1479         wait_on_buffer(bh);
1480         if (buffer_uptodate(bh))
1481                 return bh;
1482         put_bh(bh);
1483         *err = -EIO;
1484         return NULL;
1485 }
1486
1487 static int walk_page_buffers(handle_t *handle,
1488                              struct buffer_head *head,
1489                              unsigned from,
1490                              unsigned to,
1491                              int *partial,
1492                              int (*fn)(handle_t *handle,
1493                                        struct buffer_head *bh))
1494 {
1495         struct buffer_head *bh;
1496         unsigned block_start, block_end;
1497         unsigned blocksize = head->b_size;
1498         int err, ret = 0;
1499         struct buffer_head *next;
1500
1501         for (bh = head, block_start = 0;
1502              ret == 0 && (bh != head || !block_start);
1503              block_start = block_end, bh = next) {
1504                 next = bh->b_this_page;
1505                 block_end = block_start + blocksize;
1506                 if (block_end <= from || block_start >= to) {
1507                         if (partial && !buffer_uptodate(bh))
1508                                 *partial = 1;
1509                         continue;
1510                 }
1511                 err = (*fn)(handle, bh);
1512                 if (!ret)
1513                         ret = err;
1514         }
1515         return ret;
1516 }
1517
1518 /*
1519  * To preserve ordering, it is essential that the hole instantiation and
1520  * the data write be encapsulated in a single transaction.  We cannot
1521  * close off a transaction and start a new one between the ext4_get_block()
1522  * and the commit_write().  So doing the jbd2_journal_start at the start of
1523  * prepare_write() is the right place.
1524  *
1525  * Also, this function can nest inside ext4_writepage() ->
1526  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1527  * has generated enough buffer credits to do the whole page.  So we won't
1528  * block on the journal in that case, which is good, because the caller may
1529  * be PF_MEMALLOC.
1530  *
1531  * By accident, ext4 can be reentered when a transaction is open via
1532  * quota file writes.  If we were to commit the transaction while thus
1533  * reentered, there can be a deadlock - we would be holding a quota
1534  * lock, and the commit would never complete if another thread had a
1535  * transaction open and was blocking on the quota lock - a ranking
1536  * violation.
1537  *
1538  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1539  * will _not_ run commit under these circumstances because handle->h_ref
1540  * is elevated.  We'll still have enough credits for the tiny quotafile
1541  * write.
1542  */
1543 static int do_journal_get_write_access(handle_t *handle,
1544                                        struct buffer_head *bh)
1545 {
1546         if (!buffer_mapped(bh) || buffer_freed(bh))
1547                 return 0;
1548         return ext4_journal_get_write_access(handle, bh);
1549 }
1550
1551 /*
1552  * Truncate blocks that were not used by write. We have to truncate the
1553  * pagecache as well so that corresponding buffers get properly unmapped.
1554  */
1555 static void ext4_truncate_failed_write(struct inode *inode)
1556 {
1557         truncate_inode_pages(inode->i_mapping, inode->i_size);
1558         ext4_truncate(inode);
1559 }
1560
1561 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1562                    struct buffer_head *bh_result, int create);
1563 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1564                             loff_t pos, unsigned len, unsigned flags,
1565                             struct page **pagep, void **fsdata)
1566 {
1567         struct inode *inode = mapping->host;
1568         int ret, needed_blocks;
1569         handle_t *handle;
1570         int retries = 0;
1571         struct page *page;
1572         pgoff_t index;
1573         unsigned from, to;
1574
1575         trace_ext4_write_begin(inode, pos, len, flags);
1576         /*
1577          * Reserve one block more for addition to orphan list in case
1578          * we allocate blocks but write fails for some reason
1579          */
1580         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1581         index = pos >> PAGE_CACHE_SHIFT;
1582         from = pos & (PAGE_CACHE_SIZE - 1);
1583         to = from + len;
1584
1585 retry:
1586         handle = ext4_journal_start(inode, needed_blocks);
1587         if (IS_ERR(handle)) {
1588                 ret = PTR_ERR(handle);
1589                 goto out;
1590         }
1591
1592         /* We cannot recurse into the filesystem as the transaction is already
1593          * started */
1594         flags |= AOP_FLAG_NOFS;
1595
1596         page = grab_cache_page_write_begin(mapping, index, flags);
1597         if (!page) {
1598                 ext4_journal_stop(handle);
1599                 ret = -ENOMEM;
1600                 goto out;
1601         }
1602         *pagep = page;
1603
1604         if (ext4_should_dioread_nolock(inode))
1605                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1606                                 fsdata, ext4_get_block_write);
1607         else
1608                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1609                                 fsdata, ext4_get_block);
1610
1611         if (!ret && ext4_should_journal_data(inode)) {
1612                 ret = walk_page_buffers(handle, page_buffers(page),
1613                                 from, to, NULL, do_journal_get_write_access);
1614         }
1615
1616         if (ret) {
1617                 unlock_page(page);
1618                 page_cache_release(page);
1619                 /*
1620                  * block_write_begin may have instantiated a few blocks
1621                  * outside i_size.  Trim these off again. Don't need
1622                  * i_size_read because we hold i_mutex.
1623                  *
1624                  * Add inode to orphan list in case we crash before
1625                  * truncate finishes
1626                  */
1627                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1628                         ext4_orphan_add(handle, inode);
1629
1630                 ext4_journal_stop(handle);
1631                 if (pos + len > inode->i_size) {
1632                         ext4_truncate_failed_write(inode);
1633                         /*
1634                          * If truncate failed early the inode might
1635                          * still be on the orphan list; we need to
1636                          * make sure the inode is removed from the
1637                          * orphan list in that case.
1638                          */
1639                         if (inode->i_nlink)
1640                                 ext4_orphan_del(NULL, inode);
1641                 }
1642         }
1643
1644         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1645                 goto retry;
1646 out:
1647         return ret;
1648 }
1649
1650 /* For write_end() in data=journal mode */
1651 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1652 {
1653         if (!buffer_mapped(bh) || buffer_freed(bh))
1654                 return 0;
1655         set_buffer_uptodate(bh);
1656         return ext4_handle_dirty_metadata(handle, NULL, bh);
1657 }
1658
1659 static int ext4_generic_write_end(struct file *file,
1660                                   struct address_space *mapping,
1661                                   loff_t pos, unsigned len, unsigned copied,
1662                                   struct page *page, void *fsdata)
1663 {
1664         int i_size_changed = 0;
1665         struct inode *inode = mapping->host;
1666         handle_t *handle = ext4_journal_current_handle();
1667
1668         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1669
1670         /*
1671          * No need to use i_size_read() here, the i_size
1672          * cannot change under us because we hold i_mutex.
1673          *
1674          * But it's important to update i_size while still holding page lock:
1675          * page writeout could otherwise come in and zero beyond i_size.
1676          */
1677         if (pos + copied > inode->i_size) {
1678                 i_size_write(inode, pos + copied);
1679                 i_size_changed = 1;
1680         }
1681
1682         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1683                 /* We need to mark inode dirty even if
1684                  * new_i_size is less that inode->i_size
1685                  * bu greater than i_disksize.(hint delalloc)
1686                  */
1687                 ext4_update_i_disksize(inode, (pos + copied));
1688                 i_size_changed = 1;
1689         }
1690         unlock_page(page);
1691         page_cache_release(page);
1692
1693         /*
1694          * Don't mark the inode dirty under page lock. First, it unnecessarily
1695          * makes the holding time of page lock longer. Second, it forces lock
1696          * ordering of page lock and transaction start for journaling
1697          * filesystems.
1698          */
1699         if (i_size_changed)
1700                 ext4_mark_inode_dirty(handle, inode);
1701
1702         return copied;
1703 }
1704
1705 /*
1706  * We need to pick up the new inode size which generic_commit_write gave us
1707  * `file' can be NULL - eg, when called from page_symlink().
1708  *
1709  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1710  * buffers are managed internally.
1711  */
1712 static int ext4_ordered_write_end(struct file *file,
1713                                   struct address_space *mapping,
1714                                   loff_t pos, unsigned len, unsigned copied,
1715                                   struct page *page, void *fsdata)
1716 {
1717         handle_t *handle = ext4_journal_current_handle();
1718         struct inode *inode = mapping->host;
1719         int ret = 0, ret2;
1720
1721         trace_ext4_ordered_write_end(inode, pos, len, copied);
1722         ret = ext4_jbd2_file_inode(handle, inode);
1723
1724         if (ret == 0) {
1725                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1726                                                         page, fsdata);
1727                 copied = ret2;
1728                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1729                         /* if we have allocated more blocks and copied
1730                          * less. We will have blocks allocated outside
1731                          * inode->i_size. So truncate them
1732                          */
1733                         ext4_orphan_add(handle, inode);
1734                 if (ret2 < 0)
1735                         ret = ret2;
1736         }
1737         ret2 = ext4_journal_stop(handle);
1738         if (!ret)
1739                 ret = ret2;
1740
1741         if (pos + len > inode->i_size) {
1742                 ext4_truncate_failed_write(inode);
1743                 /*
1744                  * If truncate failed early the inode might still be
1745                  * on the orphan list; we need to make sure the inode
1746                  * is removed from the orphan list in that case.
1747                  */
1748                 if (inode->i_nlink)
1749                         ext4_orphan_del(NULL, inode);
1750         }
1751
1752
1753         return ret ? ret : copied;
1754 }
1755
1756 static int ext4_writeback_write_end(struct file *file,
1757                                     struct address_space *mapping,
1758                                     loff_t pos, unsigned len, unsigned copied,
1759                                     struct page *page, void *fsdata)
1760 {
1761         handle_t *handle = ext4_journal_current_handle();
1762         struct inode *inode = mapping->host;
1763         int ret = 0, ret2;
1764
1765         trace_ext4_writeback_write_end(inode, pos, len, copied);
1766         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1767                                                         page, fsdata);
1768         copied = ret2;
1769         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1770                 /* if we have allocated more blocks and copied
1771                  * less. We will have blocks allocated outside
1772                  * inode->i_size. So truncate them
1773                  */
1774                 ext4_orphan_add(handle, inode);
1775
1776         if (ret2 < 0)
1777                 ret = ret2;
1778
1779         ret2 = ext4_journal_stop(handle);
1780         if (!ret)
1781                 ret = ret2;
1782
1783         if (pos + len > inode->i_size) {
1784                 ext4_truncate_failed_write(inode);
1785                 /*
1786                  * If truncate failed early the inode might still be
1787                  * on the orphan list; we need to make sure the inode
1788                  * is removed from the orphan list in that case.
1789                  */
1790                 if (inode->i_nlink)
1791                         ext4_orphan_del(NULL, inode);
1792         }
1793
1794         return ret ? ret : copied;
1795 }
1796
1797 static int ext4_journalled_write_end(struct file *file,
1798                                      struct address_space *mapping,
1799                                      loff_t pos, unsigned len, unsigned copied,
1800                                      struct page *page, void *fsdata)
1801 {
1802         handle_t *handle = ext4_journal_current_handle();
1803         struct inode *inode = mapping->host;
1804         int ret = 0, ret2;
1805         int partial = 0;
1806         unsigned from, to;
1807         loff_t new_i_size;
1808
1809         trace_ext4_journalled_write_end(inode, pos, len, copied);
1810         from = pos & (PAGE_CACHE_SIZE - 1);
1811         to = from + len;
1812
1813         if (copied < len) {
1814                 if (!PageUptodate(page))
1815                         copied = 0;
1816                 page_zero_new_buffers(page, from+copied, to);
1817         }
1818
1819         ret = walk_page_buffers(handle, page_buffers(page), from,
1820                                 to, &partial, write_end_fn);
1821         if (!partial)
1822                 SetPageUptodate(page);
1823         new_i_size = pos + copied;
1824         if (new_i_size > inode->i_size)
1825                 i_size_write(inode, pos+copied);
1826         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1827         if (new_i_size > EXT4_I(inode)->i_disksize) {
1828                 ext4_update_i_disksize(inode, new_i_size);
1829                 ret2 = ext4_mark_inode_dirty(handle, inode);
1830                 if (!ret)
1831                         ret = ret2;
1832         }
1833
1834         unlock_page(page);
1835         page_cache_release(page);
1836         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1837                 /* if we have allocated more blocks and copied
1838                  * less. We will have blocks allocated outside
1839                  * inode->i_size. So truncate them
1840                  */
1841                 ext4_orphan_add(handle, inode);
1842
1843         ret2 = ext4_journal_stop(handle);
1844         if (!ret)
1845                 ret = ret2;
1846         if (pos + len > inode->i_size) {
1847                 ext4_truncate_failed_write(inode);
1848                 /*
1849                  * If truncate failed early the inode might still be
1850                  * on the orphan list; we need to make sure the inode
1851                  * is removed from the orphan list in that case.
1852                  */
1853                 if (inode->i_nlink)
1854                         ext4_orphan_del(NULL, inode);
1855         }
1856
1857         return ret ? ret : copied;
1858 }
1859
1860 /*
1861  * Reserve a single block located at lblock
1862  */
1863 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1864 {
1865         int retries = 0;
1866         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1867         struct ext4_inode_info *ei = EXT4_I(inode);
1868         unsigned long md_needed;
1869         int ret;
1870
1871         /*
1872          * recalculate the amount of metadata blocks to reserve
1873          * in order to allocate nrblocks
1874          * worse case is one extent per block
1875          */
1876 repeat:
1877         spin_lock(&ei->i_block_reservation_lock);
1878         md_needed = ext4_calc_metadata_amount(inode, lblock);
1879         trace_ext4_da_reserve_space(inode, md_needed);
1880         spin_unlock(&ei->i_block_reservation_lock);
1881
1882         /*
1883          * We will charge metadata quota at writeout time; this saves
1884          * us from metadata over-estimation, though we may go over by
1885          * a small amount in the end.  Here we just reserve for data.
1886          */
1887         ret = dquot_reserve_block(inode, 1);
1888         if (ret)
1889                 return ret;
1890         /*
1891          * We do still charge estimated metadata to the sb though;
1892          * we cannot afford to run out of free blocks.
1893          */
1894         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1895                 dquot_release_reservation_block(inode, 1);
1896                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1897                         yield();
1898                         goto repeat;
1899                 }
1900                 return -ENOSPC;
1901         }
1902         spin_lock(&ei->i_block_reservation_lock);
1903         ei->i_reserved_data_blocks++;
1904         ei->i_reserved_meta_blocks += md_needed;
1905         spin_unlock(&ei->i_block_reservation_lock);
1906
1907         return 0;       /* success */
1908 }
1909
1910 static void ext4_da_release_space(struct inode *inode, int to_free)
1911 {
1912         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1913         struct ext4_inode_info *ei = EXT4_I(inode);
1914
1915         if (!to_free)
1916                 return;         /* Nothing to release, exit */
1917
1918         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1919
1920         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1921                 /*
1922                  * if there aren't enough reserved blocks, then the
1923                  * counter is messed up somewhere.  Since this
1924                  * function is called from invalidate page, it's
1925                  * harmless to return without any action.
1926                  */
1927                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1928                          "ino %lu, to_free %d with only %d reserved "
1929                          "data blocks\n", inode->i_ino, to_free,
1930                          ei->i_reserved_data_blocks);
1931                 WARN_ON(1);
1932                 to_free = ei->i_reserved_data_blocks;
1933         }
1934         ei->i_reserved_data_blocks -= to_free;
1935
1936         if (ei->i_reserved_data_blocks == 0) {
1937                 /*
1938                  * We can release all of the reserved metadata blocks
1939                  * only when we have written all of the delayed
1940                  * allocation blocks.
1941                  */
1942                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1943                                    ei->i_reserved_meta_blocks);
1944                 ei->i_reserved_meta_blocks = 0;
1945                 ei->i_da_metadata_calc_len = 0;
1946         }
1947
1948         /* update fs dirty data blocks counter */
1949         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1950
1951         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1952
1953         dquot_release_reservation_block(inode, to_free);
1954 }
1955
1956 static void ext4_da_page_release_reservation(struct page *page,
1957                                              unsigned long offset)
1958 {
1959         int to_release = 0;
1960         struct buffer_head *head, *bh;
1961         unsigned int curr_off = 0;
1962
1963         head = page_buffers(page);
1964         bh = head;
1965         do {
1966                 unsigned int next_off = curr_off + bh->b_size;
1967
1968                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1969                         to_release++;
1970                         clear_buffer_delay(bh);
1971                 }
1972                 curr_off = next_off;
1973         } while ((bh = bh->b_this_page) != head);
1974         ext4_da_release_space(page->mapping->host, to_release);
1975 }
1976
1977 /*
1978  * Delayed allocation stuff
1979  */
1980
1981 /*
1982  * mpage_da_submit_io - walks through extent of pages and try to write
1983  * them with writepage() call back
1984  *
1985  * @mpd->inode: inode
1986  * @mpd->first_page: first page of the extent
1987  * @mpd->next_page: page after the last page of the extent
1988  *
1989  * By the time mpage_da_submit_io() is called we expect all blocks
1990  * to be allocated. this may be wrong if allocation failed.
1991  *
1992  * As pages are already locked by write_cache_pages(), we can't use it
1993  */
1994 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1995 {
1996         long pages_skipped;
1997         struct pagevec pvec;
1998         unsigned long index, end;
1999         int ret = 0, err, nr_pages, i;
2000         struct inode *inode = mpd->inode;
2001         struct address_space *mapping = inode->i_mapping;
2002
2003         BUG_ON(mpd->next_page <= mpd->first_page);
2004         /*
2005          * We need to start from the first_page to the next_page - 1
2006          * to make sure we also write the mapped dirty buffer_heads.
2007          * If we look at mpd->b_blocknr we would only be looking
2008          * at the currently mapped buffer_heads.
2009          */
2010         index = mpd->first_page;
2011         end = mpd->next_page - 1;
2012
2013         pagevec_init(&pvec, 0);
2014         while (index <= end) {
2015                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2016                 if (nr_pages == 0)
2017                         break;
2018                 for (i = 0; i < nr_pages; i++) {
2019                         struct page *page = pvec.pages[i];
2020
2021                         index = page->index;
2022                         if (index > end)
2023                                 break;
2024                         index++;
2025
2026                         BUG_ON(!PageLocked(page));
2027                         BUG_ON(PageWriteback(page));
2028
2029                         pages_skipped = mpd->wbc->pages_skipped;
2030                         err = mapping->a_ops->writepage(page, mpd->wbc);
2031                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2032                                 /*
2033                                  * have successfully written the page
2034                                  * without skipping the same
2035                                  */
2036                                 mpd->pages_written++;
2037                         /*
2038                          * In error case, we have to continue because
2039                          * remaining pages are still locked
2040                          * XXX: unlock and re-dirty them?
2041                          */
2042                         if (ret == 0)
2043                                 ret = err;
2044                 }
2045                 pagevec_release(&pvec);
2046         }
2047         return ret;
2048 }
2049
2050 /*
2051  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2052  *
2053  * @mpd->inode - inode to walk through
2054  * @exbh->b_blocknr - first block on a disk
2055  * @exbh->b_size - amount of space in bytes
2056  * @logical - first logical block to start assignment with
2057  *
2058  * the function goes through all passed space and put actual disk
2059  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2060  */
2061 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2062                                  struct buffer_head *exbh)
2063 {
2064         struct inode *inode = mpd->inode;
2065         struct address_space *mapping = inode->i_mapping;
2066         int blocks = exbh->b_size >> inode->i_blkbits;
2067         sector_t pblock = exbh->b_blocknr, cur_logical;
2068         struct buffer_head *head, *bh;
2069         pgoff_t index, end;
2070         struct pagevec pvec;
2071         int nr_pages, i;
2072
2073         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2074         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2075         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076
2077         pagevec_init(&pvec, 0);
2078
2079         while (index <= end) {
2080                 /* XXX: optimize tail */
2081                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2082                 if (nr_pages == 0)
2083                         break;
2084                 for (i = 0; i < nr_pages; i++) {
2085                         struct page *page = pvec.pages[i];
2086
2087                         index = page->index;
2088                         if (index > end)
2089                                 break;
2090                         index++;
2091
2092                         BUG_ON(!PageLocked(page));
2093                         BUG_ON(PageWriteback(page));
2094                         BUG_ON(!page_has_buffers(page));
2095
2096                         bh = page_buffers(page);
2097                         head = bh;
2098
2099                         /* skip blocks out of the range */
2100                         do {
2101                                 if (cur_logical >= logical)
2102                                         break;
2103                                 cur_logical++;
2104                         } while ((bh = bh->b_this_page) != head);
2105
2106                         do {
2107                                 if (cur_logical >= logical + blocks)
2108                                         break;
2109
2110                                 if (buffer_delay(bh) ||
2111                                                 buffer_unwritten(bh)) {
2112
2113                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2114
2115                                         if (buffer_delay(bh)) {
2116                                                 clear_buffer_delay(bh);
2117                                                 bh->b_blocknr = pblock;
2118                                         } else {
2119                                                 /*
2120                                                  * unwritten already should have
2121                                                  * blocknr assigned. Verify that
2122                                                  */
2123                                                 clear_buffer_unwritten(bh);
2124                                                 BUG_ON(bh->b_blocknr != pblock);
2125                                         }
2126
2127                                 } else if (buffer_mapped(bh))
2128                                         BUG_ON(bh->b_blocknr != pblock);
2129
2130                                 if (buffer_uninit(exbh))
2131                                         set_buffer_uninit(bh);
2132                                 cur_logical++;
2133                                 pblock++;
2134                         } while ((bh = bh->b_this_page) != head);
2135                 }
2136                 pagevec_release(&pvec);
2137         }
2138 }
2139
2140
2141 /*
2142  * __unmap_underlying_blocks - just a helper function to unmap
2143  * set of blocks described by @bh
2144  */
2145 static inline void __unmap_underlying_blocks(struct inode *inode,
2146                                              struct buffer_head *bh)
2147 {
2148         struct block_device *bdev = inode->i_sb->s_bdev;
2149         int blocks, i;
2150
2151         blocks = bh->b_size >> inode->i_blkbits;
2152         for (i = 0; i < blocks; i++)
2153                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2154 }
2155
2156 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2157                                         sector_t logical, long blk_cnt)
2158 {
2159         int nr_pages, i;
2160         pgoff_t index, end;
2161         struct pagevec pvec;
2162         struct inode *inode = mpd->inode;
2163         struct address_space *mapping = inode->i_mapping;
2164
2165         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2166         end   = (logical + blk_cnt - 1) >>
2167                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2168         while (index <= end) {
2169                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2170                 if (nr_pages == 0)
2171                         break;
2172                 for (i = 0; i < nr_pages; i++) {
2173                         struct page *page = pvec.pages[i];
2174                         if (page->index > end)
2175                                 break;
2176                         BUG_ON(!PageLocked(page));
2177                         BUG_ON(PageWriteback(page));
2178                         block_invalidatepage(page, 0);
2179                         ClearPageUptodate(page);
2180                         unlock_page(page);
2181                 }
2182                 index = pvec.pages[nr_pages - 1]->index + 1;
2183                 pagevec_release(&pvec);
2184         }
2185         return;
2186 }
2187
2188 static void ext4_print_free_blocks(struct inode *inode)
2189 {
2190         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2191         printk(KERN_CRIT "Total free blocks count %lld\n",
2192                ext4_count_free_blocks(inode->i_sb));
2193         printk(KERN_CRIT "Free/Dirty block details\n");
2194         printk(KERN_CRIT "free_blocks=%lld\n",
2195                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2196         printk(KERN_CRIT "dirty_blocks=%lld\n",
2197                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2198         printk(KERN_CRIT "Block reservation details\n");
2199         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2200                EXT4_I(inode)->i_reserved_data_blocks);
2201         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2202                EXT4_I(inode)->i_reserved_meta_blocks);
2203         return;
2204 }
2205
2206 /*
2207  * mpage_da_map_blocks - go through given space
2208  *
2209  * @mpd - bh describing space
2210  *
2211  * The function skips space we know is already mapped to disk blocks.
2212  *
2213  */
2214 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2215 {
2216         int err, blks, get_blocks_flags;
2217         struct buffer_head new;
2218         sector_t next = mpd->b_blocknr;
2219         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2220         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2221         handle_t *handle = NULL;
2222
2223         /*
2224          * We consider only non-mapped and non-allocated blocks
2225          */
2226         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2227                 !(mpd->b_state & (1 << BH_Delay)) &&
2228                 !(mpd->b_state & (1 << BH_Unwritten)))
2229                 return 0;
2230
2231         /*
2232          * If we didn't accumulate anything to write simply return
2233          */
2234         if (!mpd->b_size)
2235                 return 0;
2236
2237         handle = ext4_journal_current_handle();
2238         BUG_ON(!handle);
2239
2240         /*
2241          * Call ext4_get_blocks() to allocate any delayed allocation
2242          * blocks, or to convert an uninitialized extent to be
2243          * initialized (in the case where we have written into
2244          * one or more preallocated blocks).
2245          *
2246          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2247          * indicate that we are on the delayed allocation path.  This
2248          * affects functions in many different parts of the allocation
2249          * call path.  This flag exists primarily because we don't
2250          * want to change *many* call functions, so ext4_get_blocks()
2251          * will set the magic i_delalloc_reserved_flag once the
2252          * inode's allocation semaphore is taken.
2253          *
2254          * If the blocks in questions were delalloc blocks, set
2255          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2256          * variables are updated after the blocks have been allocated.
2257          */
2258         new.b_state = 0;
2259         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2260         if (ext4_should_dioread_nolock(mpd->inode))
2261                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2262         if (mpd->b_state & (1 << BH_Delay))
2263                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2264
2265         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2266                                &new, get_blocks_flags);
2267         if (blks < 0) {
2268                 err = blks;
2269                 /*
2270                  * If get block returns with error we simply
2271                  * return. Later writepage will redirty the page and
2272                  * writepages will find the dirty page again
2273                  */
2274                 if (err == -EAGAIN)
2275                         return 0;
2276
2277                 if (err == -ENOSPC &&
2278                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2279                         mpd->retval = err;
2280                         return 0;
2281                 }
2282
2283                 /*
2284                  * get block failure will cause us to loop in
2285                  * writepages, because a_ops->writepage won't be able
2286                  * to make progress. The page will be redirtied by
2287                  * writepage and writepages will again try to write
2288                  * the same.
2289                  */
2290                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2291                          "delayed block allocation failed for inode %lu at "
2292                          "logical offset %llu with max blocks %zd with "
2293                          "error %d", mpd->inode->i_ino,
2294                          (unsigned long long) next,
2295                          mpd->b_size >> mpd->inode->i_blkbits, err);
2296                 printk(KERN_CRIT "This should not happen!!  "
2297                        "Data will be lost\n");
2298                 if (err == -ENOSPC) {
2299                         ext4_print_free_blocks(mpd->inode);
2300                 }
2301                 /* invalidate all the pages */
2302                 ext4_da_block_invalidatepages(mpd, next,
2303                                 mpd->b_size >> mpd->inode->i_blkbits);
2304                 return err;
2305         }
2306         BUG_ON(blks == 0);
2307
2308         new.b_size = (blks << mpd->inode->i_blkbits);
2309
2310         if (buffer_new(&new))
2311                 __unmap_underlying_blocks(mpd->inode, &new);
2312
2313         /*
2314          * If blocks are delayed marked, we need to
2315          * put actual blocknr and drop delayed bit
2316          */
2317         if ((mpd->b_state & (1 << BH_Delay)) ||
2318             (mpd->b_state & (1 << BH_Unwritten)))
2319                 mpage_put_bnr_to_bhs(mpd, next, &new);
2320
2321         if (ext4_should_order_data(mpd->inode)) {
2322                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2323                 if (err)
2324                         return err;
2325         }
2326
2327         /*
2328          * Update on-disk size along with block allocation.
2329          */
2330         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2331         if (disksize > i_size_read(mpd->inode))
2332                 disksize = i_size_read(mpd->inode);
2333         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2334                 ext4_update_i_disksize(mpd->inode, disksize);
2335                 return ext4_mark_inode_dirty(handle, mpd->inode);
2336         }
2337
2338         return 0;
2339 }
2340
2341 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2342                 (1 << BH_Delay) | (1 << BH_Unwritten))
2343
2344 /*
2345  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2346  *
2347  * @mpd->lbh - extent of blocks
2348  * @logical - logical number of the block in the file
2349  * @bh - bh of the block (used to access block's state)
2350  *
2351  * the function is used to collect contig. blocks in same state
2352  */
2353 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2354                                    sector_t logical, size_t b_size,
2355                                    unsigned long b_state)
2356 {
2357         sector_t next;
2358         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2359
2360         /*
2361          * XXX Don't go larger than mballoc is willing to allocate
2362          * This is a stopgap solution.  We eventually need to fold
2363          * mpage_da_submit_io() into this function and then call
2364          * ext4_get_blocks() multiple times in a loop
2365          */
2366         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2367                 goto flush_it;
2368
2369         /* check if thereserved journal credits might overflow */
2370         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2371                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2372                         /*
2373                          * With non-extent format we are limited by the journal
2374                          * credit available.  Total credit needed to insert
2375                          * nrblocks contiguous blocks is dependent on the
2376                          * nrblocks.  So limit nrblocks.
2377                          */
2378                         goto flush_it;
2379                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2380                                 EXT4_MAX_TRANS_DATA) {
2381                         /*
2382                          * Adding the new buffer_head would make it cross the
2383                          * allowed limit for which we have journal credit
2384                          * reserved. So limit the new bh->b_size
2385                          */
2386                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2387                                                 mpd->inode->i_blkbits;
2388                         /* we will do mpage_da_submit_io in the next loop */
2389                 }
2390         }
2391         /*
2392          * First block in the extent
2393          */
2394         if (mpd->b_size == 0) {
2395                 mpd->b_blocknr = logical;
2396                 mpd->b_size = b_size;
2397                 mpd->b_state = b_state & BH_FLAGS;
2398                 return;
2399         }
2400
2401         next = mpd->b_blocknr + nrblocks;
2402         /*
2403          * Can we merge the block to our big extent?
2404          */
2405         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2406                 mpd->b_size += b_size;
2407                 return;
2408         }
2409
2410 flush_it:
2411         /*
2412          * We couldn't merge the block to our extent, so we
2413          * need to flush current  extent and start new one
2414          */
2415         if (mpage_da_map_blocks(mpd) == 0)
2416                 mpage_da_submit_io(mpd);
2417         mpd->io_done = 1;
2418         return;
2419 }
2420
2421 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2422 {
2423         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2424 }
2425
2426 /*
2427  * __mpage_da_writepage - finds extent of pages and blocks
2428  *
2429  * @page: page to consider
2430  * @wbc: not used, we just follow rules
2431  * @data: context
2432  *
2433  * The function finds extents of pages and scan them for all blocks.
2434  */
2435 static int __mpage_da_writepage(struct page *page,
2436                                 struct writeback_control *wbc, void *data)
2437 {
2438         struct mpage_da_data *mpd = data;
2439         struct inode *inode = mpd->inode;
2440         struct buffer_head *bh, *head;
2441         sector_t logical;
2442
2443         /*
2444          * Can we merge this page to current extent?
2445          */
2446         if (mpd->next_page != page->index) {
2447                 /*
2448                  * Nope, we can't. So, we map non-allocated blocks
2449                  * and start IO on them using writepage()
2450                  */
2451                 if (mpd->next_page != mpd->first_page) {
2452                         if (mpage_da_map_blocks(mpd) == 0)
2453                                 mpage_da_submit_io(mpd);
2454                         /*
2455                          * skip rest of the page in the page_vec
2456                          */
2457                         mpd->io_done = 1;
2458                         redirty_page_for_writepage(wbc, page);
2459                         unlock_page(page);
2460                         return MPAGE_DA_EXTENT_TAIL;
2461                 }
2462
2463                 /*
2464                  * Start next extent of pages ...
2465                  */
2466                 mpd->first_page = page->index;
2467
2468                 /*
2469                  * ... and blocks
2470                  */
2471                 mpd->b_size = 0;
2472                 mpd->b_state = 0;
2473                 mpd->b_blocknr = 0;
2474         }
2475
2476         mpd->next_page = page->index + 1;
2477         logical = (sector_t) page->index <<
2478                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2479
2480         if (!page_has_buffers(page)) {
2481                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2482                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2483                 if (mpd->io_done)
2484                         return MPAGE_DA_EXTENT_TAIL;
2485         } else {
2486                 /*
2487                  * Page with regular buffer heads, just add all dirty ones
2488                  */
2489                 head = page_buffers(page);
2490                 bh = head;
2491                 do {
2492                         BUG_ON(buffer_locked(bh));
2493                         /*
2494                          * We need to try to allocate
2495                          * unmapped blocks in the same page.
2496                          * Otherwise we won't make progress
2497                          * with the page in ext4_writepage
2498                          */
2499                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2500                                 mpage_add_bh_to_extent(mpd, logical,
2501                                                        bh->b_size,
2502                                                        bh->b_state);
2503                                 if (mpd->io_done)
2504                                         return MPAGE_DA_EXTENT_TAIL;
2505                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2506                                 /*
2507                                  * mapped dirty buffer. We need to update
2508                                  * the b_state because we look at
2509                                  * b_state in mpage_da_map_blocks. We don't
2510                                  * update b_size because if we find an
2511                                  * unmapped buffer_head later we need to
2512                                  * use the b_state flag of that buffer_head.
2513                                  */
2514                                 if (mpd->b_size == 0)
2515                                         mpd->b_state = bh->b_state & BH_FLAGS;
2516                         }
2517                         logical++;
2518                 } while ((bh = bh->b_this_page) != head);
2519         }
2520
2521         return 0;
2522 }
2523
2524 /*
2525  * This is a special get_blocks_t callback which is used by
2526  * ext4_da_write_begin().  It will either return mapped block or
2527  * reserve space for a single block.
2528  *
2529  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2530  * We also have b_blocknr = -1 and b_bdev initialized properly
2531  *
2532  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2533  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2534  * initialized properly.
2535  */
2536 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2537                                   struct buffer_head *bh_result, int create)
2538 {
2539         int ret = 0;
2540         sector_t invalid_block = ~((sector_t) 0xffff);
2541
2542         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2543                 invalid_block = ~0;
2544
2545         BUG_ON(create == 0);
2546         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2547
2548         /*
2549          * first, we need to know whether the block is allocated already
2550          * preallocated blocks are unmapped but should treated
2551          * the same as allocated blocks.
2552          */
2553         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2554         if ((ret == 0) && !buffer_delay(bh_result)) {
2555                 /* the block isn't (pre)allocated yet, let's reserve space */
2556                 /*
2557                  * XXX: __block_prepare_write() unmaps passed block,
2558                  * is it OK?
2559                  */
2560                 ret = ext4_da_reserve_space(inode, iblock);
2561                 if (ret)
2562                         /* not enough space to reserve */
2563                         return ret;
2564
2565                 map_bh(bh_result, inode->i_sb, invalid_block);
2566                 set_buffer_new(bh_result);
2567                 set_buffer_delay(bh_result);
2568         } else if (ret > 0) {
2569                 bh_result->b_size = (ret << inode->i_blkbits);
2570                 if (buffer_unwritten(bh_result)) {
2571                         /* A delayed write to unwritten bh should
2572                          * be marked new and mapped.  Mapped ensures
2573                          * that we don't do get_block multiple times
2574                          * when we write to the same offset and new
2575                          * ensures that we do proper zero out for
2576                          * partial write.
2577                          */
2578                         set_buffer_new(bh_result);
2579                         set_buffer_mapped(bh_result);
2580                 }
2581                 ret = 0;
2582         }
2583
2584         return ret;
2585 }
2586
2587 /*
2588  * This function is used as a standard get_block_t calback function
2589  * when there is no desire to allocate any blocks.  It is used as a
2590  * callback function for block_prepare_write(), nobh_writepage(), and
2591  * block_write_full_page().  These functions should only try to map a
2592  * single block at a time.
2593  *
2594  * Since this function doesn't do block allocations even if the caller
2595  * requests it by passing in create=1, it is critically important that
2596  * any caller checks to make sure that any buffer heads are returned
2597  * by this function are either all already mapped or marked for
2598  * delayed allocation before calling nobh_writepage() or
2599  * block_write_full_page().  Otherwise, b_blocknr could be left
2600  * unitialized, and the page write functions will be taken by
2601  * surprise.
2602  */
2603 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2604                                    struct buffer_head *bh_result, int create)
2605 {
2606         int ret = 0;
2607         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2608
2609         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2610
2611         /*
2612          * we don't want to do block allocation in writepage
2613          * so call get_block_wrap with create = 0
2614          */
2615         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2616         if (ret > 0) {
2617                 bh_result->b_size = (ret << inode->i_blkbits);
2618                 ret = 0;
2619         }
2620         return ret;
2621 }
2622
2623 static int bget_one(handle_t *handle, struct buffer_head *bh)
2624 {
2625         get_bh(bh);
2626         return 0;
2627 }
2628
2629 static int bput_one(handle_t *handle, struct buffer_head *bh)
2630 {
2631         put_bh(bh);
2632         return 0;
2633 }
2634
2635 static int __ext4_journalled_writepage(struct page *page,
2636                                        unsigned int len)
2637 {
2638         struct address_space *mapping = page->mapping;
2639         struct inode *inode = mapping->host;
2640         struct buffer_head *page_bufs;
2641         handle_t *handle = NULL;
2642         int ret = 0;
2643         int err;
2644
2645         page_bufs = page_buffers(page);
2646         BUG_ON(!page_bufs);
2647         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2648         /* As soon as we unlock the page, it can go away, but we have
2649          * references to buffers so we are safe */
2650         unlock_page(page);
2651
2652         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2653         if (IS_ERR(handle)) {
2654                 ret = PTR_ERR(handle);
2655                 goto out;
2656         }
2657
2658         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2659                                 do_journal_get_write_access);
2660
2661         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2662                                 write_end_fn);
2663         if (ret == 0)
2664                 ret = err;
2665         err = ext4_journal_stop(handle);
2666         if (!ret)
2667                 ret = err;
2668
2669         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2670         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2671 out:
2672         return ret;
2673 }
2674
2675 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2676 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2677
2678 /*
2679  * Note that we don't need to start a transaction unless we're journaling data
2680  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2681  * need to file the inode to the transaction's list in ordered mode because if
2682  * we are writing back data added by write(), the inode is already there and if
2683  * we are writing back data modified via mmap(), noone guarantees in which
2684  * transaction the data will hit the disk. In case we are journaling data, we
2685  * cannot start transaction directly because transaction start ranks above page
2686  * lock so we have to do some magic.
2687  *
2688  * This function can get called via...
2689  *   - ext4_da_writepages after taking page lock (have journal handle)
2690  *   - journal_submit_inode_data_buffers (no journal handle)
2691  *   - shrink_page_list via pdflush (no journal handle)
2692  *   - grab_page_cache when doing write_begin (have journal handle)
2693  *
2694  * We don't do any block allocation in this function. If we have page with
2695  * multiple blocks we need to write those buffer_heads that are mapped. This
2696  * is important for mmaped based write. So if we do with blocksize 1K
2697  * truncate(f, 1024);
2698  * a = mmap(f, 0, 4096);
2699  * a[0] = 'a';
2700  * truncate(f, 4096);
2701  * we have in the page first buffer_head mapped via page_mkwrite call back
2702  * but other bufer_heads would be unmapped but dirty(dirty done via the
2703  * do_wp_page). So writepage should write the first block. If we modify
2704  * the mmap area beyond 1024 we will again get a page_fault and the
2705  * page_mkwrite callback will do the block allocation and mark the
2706  * buffer_heads mapped.
2707  *
2708  * We redirty the page if we have any buffer_heads that is either delay or
2709  * unwritten in the page.
2710  *
2711  * We can get recursively called as show below.
2712  *
2713  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2714  *              ext4_writepage()
2715  *
2716  * But since we don't do any block allocation we should not deadlock.
2717  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2718  */
2719 static int ext4_writepage(struct page *page,
2720                           struct writeback_control *wbc)
2721 {
2722         int ret = 0;
2723         loff_t size;
2724         unsigned int len;
2725         struct buffer_head *page_bufs = NULL;
2726         struct inode *inode = page->mapping->host;
2727
2728         trace_ext4_writepage(inode, page);
2729         size = i_size_read(inode);
2730         if (page->index == size >> PAGE_CACHE_SHIFT)
2731                 len = size & ~PAGE_CACHE_MASK;
2732         else
2733                 len = PAGE_CACHE_SIZE;
2734
2735         if (page_has_buffers(page)) {
2736                 page_bufs = page_buffers(page);
2737                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2738                                         ext4_bh_delay_or_unwritten)) {
2739                         /*
2740                          * We don't want to do  block allocation
2741                          * So redirty the page and return
2742                          * We may reach here when we do a journal commit
2743                          * via journal_submit_inode_data_buffers.
2744                          * If we don't have mapping block we just ignore
2745                          * them. We can also reach here via shrink_page_list
2746                          */
2747                         redirty_page_for_writepage(wbc, page);
2748                         unlock_page(page);
2749                         return 0;
2750                 }
2751         } else {
2752                 /*
2753                  * The test for page_has_buffers() is subtle:
2754                  * We know the page is dirty but it lost buffers. That means
2755                  * that at some moment in time after write_begin()/write_end()
2756                  * has been called all buffers have been clean and thus they
2757                  * must have been written at least once. So they are all
2758                  * mapped and we can happily proceed with mapping them
2759                  * and writing the page.
2760                  *
2761                  * Try to initialize the buffer_heads and check whether
2762                  * all are mapped and non delay. We don't want to
2763                  * do block allocation here.
2764                  */
2765                 ret = block_prepare_write(page, 0, len,
2766                                           noalloc_get_block_write);
2767                 if (!ret) {
2768                         page_bufs = page_buffers(page);
2769                         /* check whether all are mapped and non delay */
2770                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2771                                                 ext4_bh_delay_or_unwritten)) {
2772                                 redirty_page_for_writepage(wbc, page);
2773                                 unlock_page(page);
2774                                 return 0;
2775                         }
2776                 } else {
2777                         /*
2778                          * We can't do block allocation here
2779                          * so just redity the page and unlock
2780                          * and return
2781                          */
2782                         redirty_page_for_writepage(wbc, page);
2783                         unlock_page(page);
2784                         return 0;
2785                 }
2786                 /* now mark the buffer_heads as dirty and uptodate */
2787                 block_commit_write(page, 0, len);
2788         }
2789
2790         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2791                 /*
2792                  * It's mmapped pagecache.  Add buffers and journal it.  There
2793                  * doesn't seem much point in redirtying the page here.
2794                  */
2795                 ClearPageChecked(page);
2796                 return __ext4_journalled_writepage(page, len);
2797         }
2798
2799         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2800                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2801         else if (page_bufs && buffer_uninit(page_bufs)) {
2802                 ext4_set_bh_endio(page_bufs, inode);
2803                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2804                                             wbc, ext4_end_io_buffer_write);
2805         } else
2806                 ret = block_write_full_page(page, noalloc_get_block_write,
2807                                             wbc);
2808
2809         return ret;
2810 }
2811
2812 /*
2813  * This is called via ext4_da_writepages() to
2814  * calulate the total number of credits to reserve to fit
2815  * a single extent allocation into a single transaction,
2816  * ext4_da_writpeages() will loop calling this before
2817  * the block allocation.
2818  */
2819
2820 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2821 {
2822         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2823
2824         /*
2825          * With non-extent format the journal credit needed to
2826          * insert nrblocks contiguous block is dependent on
2827          * number of contiguous block. So we will limit
2828          * number of contiguous block to a sane value
2829          */
2830         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2831             (max_blocks > EXT4_MAX_TRANS_DATA))
2832                 max_blocks = EXT4_MAX_TRANS_DATA;
2833
2834         return ext4_chunk_trans_blocks(inode, max_blocks);
2835 }
2836
2837 /*
2838  * write_cache_pages_da - walk the list of dirty pages of the given
2839  * address space and call the callback function (which usually writes
2840  * the pages).
2841  *
2842  * This is a forked version of write_cache_pages().  Differences:
2843  *      Range cyclic is ignored.
2844  *      no_nrwrite_index_update is always presumed true
2845  */
2846 static int write_cache_pages_da(struct address_space *mapping,
2847                                 struct writeback_control *wbc,
2848                                 struct mpage_da_data *mpd)
2849 {
2850         int ret = 0;
2851         int done = 0;
2852         struct pagevec pvec;
2853         int nr_pages;
2854         pgoff_t index;
2855         pgoff_t end;            /* Inclusive */
2856         long nr_to_write = wbc->nr_to_write;
2857
2858         pagevec_init(&pvec, 0);
2859         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2860         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2861
2862         while (!done && (index <= end)) {
2863                 int i;
2864
2865                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2866                               PAGECACHE_TAG_DIRTY,
2867                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2868                 if (nr_pages == 0)
2869                         break;
2870
2871                 for (i = 0; i < nr_pages; i++) {
2872                         struct page *page = pvec.pages[i];
2873
2874                         /*
2875                          * At this point, the page may be truncated or
2876                          * invalidated (changing page->mapping to NULL), or
2877                          * even swizzled back from swapper_space to tmpfs file
2878                          * mapping. However, page->index will not change
2879                          * because we have a reference on the page.
2880                          */
2881                         if (page->index > end) {
2882                                 done = 1;
2883                                 break;
2884                         }
2885
2886                         lock_page(page);
2887
2888                         /*
2889                          * Page truncated or invalidated. We can freely skip it
2890                          * then, even for data integrity operations: the page
2891                          * has disappeared concurrently, so there could be no
2892                          * real expectation of this data interity operation
2893                          * even if there is now a new, dirty page at the same
2894                          * pagecache address.
2895                          */
2896                         if (unlikely(page->mapping != mapping)) {
2897 continue_unlock:
2898                                 unlock_page(page);
2899                                 continue;
2900                         }
2901
2902                         if (!PageDirty(page)) {
2903                                 /* someone wrote it for us */
2904                                 goto continue_unlock;
2905                         }
2906
2907                         if (PageWriteback(page)) {
2908                                 if (wbc->sync_mode != WB_SYNC_NONE)
2909                                         wait_on_page_writeback(page);
2910                                 else
2911                                         goto continue_unlock;
2912                         }
2913
2914                         BUG_ON(PageWriteback(page));
2915                         if (!clear_page_dirty_for_io(page))
2916                                 goto continue_unlock;
2917
2918                         ret = __mpage_da_writepage(page, wbc, mpd);
2919                         if (unlikely(ret)) {
2920                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2921                                         unlock_page(page);
2922                                         ret = 0;
2923                                 } else {
2924                                         done = 1;
2925                                         break;
2926                                 }
2927                         }
2928
2929                         if (nr_to_write > 0) {
2930                                 nr_to_write--;
2931                                 if (nr_to_write == 0 &&
2932                                     wbc->sync_mode == WB_SYNC_NONE) {
2933                                         /*
2934                                          * We stop writing back only if we are
2935                                          * not doing integrity sync. In case of
2936                                          * integrity sync we have to keep going
2937                                          * because someone may be concurrently
2938                                          * dirtying pages, and we might have
2939                                          * synced a lot of newly appeared dirty
2940                                          * pages, but have not synced all of the
2941                                          * old dirty pages.
2942                                          */
2943                                         done = 1;
2944                                         break;
2945                                 }
2946                         }
2947                 }
2948                 pagevec_release(&pvec);
2949                 cond_resched();
2950         }
2951         return ret;
2952 }
2953
2954
2955 static int ext4_da_writepages(struct address_space *mapping,
2956                               struct writeback_control *wbc)
2957 {
2958         pgoff_t index;
2959         int range_whole = 0;
2960         handle_t *handle = NULL;
2961         struct mpage_da_data mpd;
2962         struct inode *inode = mapping->host;
2963         int pages_written = 0;
2964         long pages_skipped;
2965         unsigned int max_pages;
2966         int range_cyclic, cycled = 1, io_done = 0;
2967         int needed_blocks, ret = 0;
2968         long desired_nr_to_write, nr_to_writebump = 0;
2969         loff_t range_start = wbc->range_start;
2970         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2971
2972         trace_ext4_da_writepages(inode, wbc);
2973
2974         /*
2975          * No pages to write? This is mainly a kludge to avoid starting
2976          * a transaction for special inodes like journal inode on last iput()
2977          * because that could violate lock ordering on umount
2978          */
2979         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2980                 return 0;
2981
2982         /*
2983          * If the filesystem has aborted, it is read-only, so return
2984          * right away instead of dumping stack traces later on that
2985          * will obscure the real source of the problem.  We test
2986          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2987          * the latter could be true if the filesystem is mounted
2988          * read-only, and in that case, ext4_da_writepages should
2989          * *never* be called, so if that ever happens, we would want
2990          * the stack trace.
2991          */
2992         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2993                 return -EROFS;
2994
2995         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2996                 range_whole = 1;
2997
2998         range_cyclic = wbc->range_cyclic;
2999         if (wbc->range_cyclic) {
3000                 index = mapping->writeback_index;
3001                 if (index)
3002                         cycled = 0;
3003                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3004                 wbc->range_end  = LLONG_MAX;
3005                 wbc->range_cyclic = 0;
3006         } else
3007                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3008
3009         /*
3010          * This works around two forms of stupidity.  The first is in
3011          * the writeback code, which caps the maximum number of pages
3012          * written to be 1024 pages.  This is wrong on multiple
3013          * levels; different architectues have a different page size,
3014          * which changes the maximum amount of data which gets
3015          * written.  Secondly, 4 megabytes is way too small.  XFS
3016          * forces this value to be 16 megabytes by multiplying
3017          * nr_to_write parameter by four, and then relies on its
3018          * allocator to allocate larger extents to make them
3019          * contiguous.  Unfortunately this brings us to the second
3020          * stupidity, which is that ext4's mballoc code only allocates
3021          * at most 2048 blocks.  So we force contiguous writes up to
3022          * the number of dirty blocks in the inode, or
3023          * sbi->max_writeback_mb_bump whichever is smaller.
3024          */
3025         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3026         if (!range_cyclic && range_whole)
3027                 desired_nr_to_write = wbc->nr_to_write * 8;
3028         else
3029                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3030                                                            max_pages);
3031         if (desired_nr_to_write > max_pages)
3032                 desired_nr_to_write = max_pages;
3033
3034         if (wbc->nr_to_write < desired_nr_to_write) {
3035                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3036                 wbc->nr_to_write = desired_nr_to_write;
3037         }
3038
3039         mpd.wbc = wbc;
3040         mpd.inode = mapping->host;
3041
3042         pages_skipped = wbc->pages_skipped;
3043
3044 retry:
3045         while (!ret && wbc->nr_to_write > 0) {
3046
3047                 /*
3048                  * we  insert one extent at a time. So we need
3049                  * credit needed for single extent allocation.
3050                  * journalled mode is currently not supported
3051                  * by delalloc
3052                  */
3053                 BUG_ON(ext4_should_journal_data(inode));
3054                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3055
3056                 /* start a new transaction*/
3057                 handle = ext4_journal_start(inode, needed_blocks);
3058                 if (IS_ERR(handle)) {
3059                         ret = PTR_ERR(handle);
3060                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3061                                "%ld pages, ino %lu; err %d", __func__,
3062                                 wbc->nr_to_write, inode->i_ino, ret);
3063                         goto out_writepages;
3064                 }
3065
3066                 /*
3067                  * Now call __mpage_da_writepage to find the next
3068                  * contiguous region of logical blocks that need
3069                  * blocks to be allocated by ext4.  We don't actually
3070                  * submit the blocks for I/O here, even though
3071                  * write_cache_pages thinks it will, and will set the
3072                  * pages as clean for write before calling
3073                  * __mpage_da_writepage().
3074                  */
3075                 mpd.b_size = 0;
3076                 mpd.b_state = 0;
3077                 mpd.b_blocknr = 0;
3078                 mpd.first_page = 0;
3079                 mpd.next_page = 0;
3080                 mpd.io_done = 0;
3081                 mpd.pages_written = 0;
3082                 mpd.retval = 0;
3083                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3084                 /*
3085                  * If we have a contiguous extent of pages and we
3086                  * haven't done the I/O yet, map the blocks and submit
3087                  * them for I/O.
3088                  */
3089                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3090                         if (mpage_da_map_blocks(&mpd) == 0)
3091                                 mpage_da_submit_io(&mpd);
3092                         mpd.io_done = 1;
3093                         ret = MPAGE_DA_EXTENT_TAIL;
3094                 }
3095                 trace_ext4_da_write_pages(inode, &mpd);
3096                 wbc->nr_to_write -= mpd.pages_written;
3097
3098                 ext4_journal_stop(handle);
3099
3100                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3101                         /* commit the transaction which would
3102                          * free blocks released in the transaction
3103                          * and try again
3104                          */
3105                         jbd2_journal_force_commit_nested(sbi->s_journal);
3106                         wbc->pages_skipped = pages_skipped;
3107                         ret = 0;
3108                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3109                         /*
3110                          * got one extent now try with
3111                          * rest of the pages
3112                          */
3113                         pages_written += mpd.pages_written;
3114                         wbc->pages_skipped = pages_skipped;
3115                         ret = 0;
3116                         io_done = 1;
3117                 } else if (wbc->nr_to_write)
3118                         /*
3119                          * There is no more writeout needed
3120                          * or we requested for a noblocking writeout
3121                          * and we found the device congested
3122                          */
3123                         break;
3124         }
3125         if (!io_done && !cycled) {
3126                 cycled = 1;
3127                 index = 0;
3128                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3129                 wbc->range_end  = mapping->writeback_index - 1;
3130                 goto retry;
3131         }
3132         if (pages_skipped != wbc->pages_skipped)
3133                 ext4_msg(inode->i_sb, KERN_CRIT,
3134                          "This should not happen leaving %s "
3135                          "with nr_to_write = %ld ret = %d",
3136                          __func__, wbc->nr_to_write, ret);
3137
3138         /* Update index */
3139         index += pages_written;
3140         wbc->range_cyclic = range_cyclic;
3141         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3142                 /*
3143                  * set the writeback_index so that range_cyclic
3144                  * mode will write it back later
3145                  */
3146                 mapping->writeback_index = index;
3147
3148 out_writepages:
3149         wbc->nr_to_write -= nr_to_writebump;
3150         wbc->range_start = range_start;
3151         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3152         return ret;
3153 }
3154
3155 #define FALL_BACK_TO_NONDELALLOC 1
3156 static int ext4_nonda_switch(struct super_block *sb)
3157 {
3158         s64 free_blocks, dirty_blocks;
3159         struct ext4_sb_info *sbi = EXT4_SB(sb);
3160
3161         /*
3162          * switch to non delalloc mode if we are running low
3163          * on free block. The free block accounting via percpu
3164          * counters can get slightly wrong with percpu_counter_batch getting
3165          * accumulated on each CPU without updating global counters
3166          * Delalloc need an accurate free block accounting. So switch
3167          * to non delalloc when we are near to error range.
3168          */
3169         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3170         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3171         if (2 * free_blocks < 3 * dirty_blocks ||
3172                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3173                 /*
3174                  * free block count is less than 150% of dirty blocks
3175                  * or free blocks is less than watermark
3176                  */
3177                 return 1;
3178         }
3179         /*
3180          * Even if we don't switch but are nearing capacity,
3181          * start pushing delalloc when 1/2 of free blocks are dirty.
3182          */
3183         if (free_blocks < 2 * dirty_blocks)
3184                 writeback_inodes_sb_if_idle(sb);
3185
3186         return 0;
3187 }
3188
3189 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3190                                loff_t pos, unsigned len, unsigned flags,
3191                                struct page **pagep, void **fsdata)
3192 {
3193         int ret, retries = 0;
3194         struct page *page;
3195         pgoff_t index;
3196         unsigned from, to;
3197         struct inode *inode = mapping->host;
3198         handle_t *handle;
3199
3200         index = pos >> PAGE_CACHE_SHIFT;
3201         from = pos & (PAGE_CACHE_SIZE - 1);
3202         to = from + len;
3203
3204         if (ext4_nonda_switch(inode->i_sb)) {
3205                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3206                 return ext4_write_begin(file, mapping, pos,
3207                                         len, flags, pagep, fsdata);
3208         }
3209         *fsdata = (void *)0;
3210         trace_ext4_da_write_begin(inode, pos, len, flags);
3211 retry:
3212         /*
3213          * With delayed allocation, we don't log the i_disksize update
3214          * if there is delayed block allocation. But we still need
3215          * to journalling the i_disksize update if writes to the end
3216          * of file which has an already mapped buffer.
3217          */
3218         handle = ext4_journal_start(inode, 1);
3219         if (IS_ERR(handle)) {
3220                 ret = PTR_ERR(handle);
3221                 goto out;
3222         }
3223         /* We cannot recurse into the filesystem as the transaction is already
3224          * started */
3225         flags |= AOP_FLAG_NOFS;
3226
3227         page = grab_cache_page_write_begin(mapping, index, flags);
3228         if (!page) {
3229                 ext4_journal_stop(handle);
3230                 ret = -ENOMEM;
3231                 goto out;
3232         }
3233         *pagep = page;
3234
3235         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3236                                 ext4_da_get_block_prep);
3237         if (ret < 0) {
3238                 unlock_page(page);
3239                 ext4_journal_stop(handle);
3240                 page_cache_release(page);
3241                 /*
3242                  * block_write_begin may have instantiated a few blocks
3243                  * outside i_size.  Trim these off again. Don't need
3244                  * i_size_read because we hold i_mutex.
3245                  */
3246                 if (pos + len > inode->i_size)
3247                         ext4_truncate_failed_write(inode);
3248         }
3249
3250         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3251                 goto retry;
3252 out:
3253         return ret;
3254 }
3255
3256 /*
3257  * Check if we should update i_disksize
3258  * when write to the end of file but not require block allocation
3259  */
3260 static int ext4_da_should_update_i_disksize(struct page *page,
3261                                             unsigned long offset)
3262 {
3263         struct buffer_head *bh;
3264         struct inode *inode = page->mapping->host;
3265         unsigned int idx;
3266         int i;
3267
3268         bh = page_buffers(page);
3269         idx = offset >> inode->i_blkbits;
3270
3271         for (i = 0; i < idx; i++)
3272                 bh = bh->b_this_page;
3273
3274         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3275                 return 0;
3276         return 1;
3277 }
3278
3279 static int ext4_da_write_end(struct file *file,
3280                              struct address_space *mapping,
3281                              loff_t pos, unsigned len, unsigned copied,
3282                              struct page *page, void *fsdata)
3283 {
3284         struct inode *inode = mapping->host;
3285         int ret = 0, ret2;
3286         handle_t *handle = ext4_journal_current_handle();
3287         loff_t new_i_size;
3288         unsigned long start, end;
3289         int write_mode = (int)(unsigned long)fsdata;
3290
3291         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3292                 if (ext4_should_order_data(inode)) {
3293                         return ext4_ordered_write_end(file, mapping, pos,
3294                                         len, copied, page, fsdata);
3295                 } else if (ext4_should_writeback_data(inode)) {
3296                         return ext4_writeback_write_end(file, mapping, pos,
3297                                         len, copied, page, fsdata);
3298                 } else {
3299                         BUG();
3300                 }
3301         }
3302
3303         trace_ext4_da_write_end(inode, pos, len, copied);
3304         start = pos & (PAGE_CACHE_SIZE - 1);
3305         end = start + copied - 1;
3306
3307         /*
3308          * generic_write_end() will run mark_inode_dirty() if i_size
3309          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3310          * into that.
3311          */
3312
3313         new_i_size = pos + copied;
3314         if (new_i_size > EXT4_I(inode)->i_disksize) {
3315                 if (ext4_da_should_update_i_disksize(page, end)) {
3316                         down_write(&EXT4_I(inode)->i_data_sem);
3317                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3318                                 /*
3319                                  * Updating i_disksize when extending file
3320                                  * without needing block allocation
3321                                  */
3322                                 if (ext4_should_order_data(inode))
3323                                         ret = ext4_jbd2_file_inode(handle,
3324                                                                    inode);
3325
3326                                 EXT4_I(inode)->i_disksize = new_i_size;
3327                         }
3328                         up_write(&EXT4_I(inode)->i_data_sem);
3329                         /* We need to mark inode dirty even if
3330                          * new_i_size is less that inode->i_size
3331                          * bu greater than i_disksize.(hint delalloc)
3332                          */
3333                         ext4_mark_inode_dirty(handle, inode);
3334                 }
3335         }
3336         ret2 = generic_write_end(file, mapping, pos, len, copied,
3337                                                         page, fsdata);
3338         copied = ret2;
3339         if (ret2 < 0)
3340                 ret = ret2;
3341         ret2 = ext4_journal_stop(handle);
3342         if (!ret)
3343                 ret = ret2;
3344
3345         return ret ? ret : copied;
3346 }
3347
3348 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3349 {
3350         /*
3351          * Drop reserved blocks
3352          */
3353         BUG_ON(!PageLocked(page));
3354         if (!page_has_buffers(page))
3355                 goto out;
3356
3357         ext4_da_page_release_reservation(page, offset);
3358
3359 out:
3360         ext4_invalidatepage(page, offset);
3361
3362         return;
3363 }
3364
3365 /*
3366  * Force all delayed allocation blocks to be allocated for a given inode.
3367  */
3368 int ext4_alloc_da_blocks(struct inode *inode)
3369 {
3370         trace_ext4_alloc_da_blocks(inode);
3371
3372         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3373             !EXT4_I(inode)->i_reserved_meta_blocks)
3374                 return 0;
3375
3376         /*
3377          * We do something simple for now.  The filemap_flush() will
3378          * also start triggering a write of the data blocks, which is
3379          * not strictly speaking necessary (and for users of
3380          * laptop_mode, not even desirable).  However, to do otherwise
3381          * would require replicating code paths in:
3382          *
3383          * ext4_da_writepages() ->
3384          *    write_cache_pages() ---> (via passed in callback function)
3385          *        __mpage_da_writepage() -->
3386          *           mpage_add_bh_to_extent()
3387          *           mpage_da_map_blocks()
3388          *
3389          * The problem is that write_cache_pages(), located in
3390          * mm/page-writeback.c, marks pages clean in preparation for
3391          * doing I/O, which is not desirable if we're not planning on
3392          * doing I/O at all.
3393          *
3394          * We could call write_cache_pages(), and then redirty all of
3395          * the pages by calling redirty_page_for_writeback() but that
3396          * would be ugly in the extreme.  So instead we would need to
3397          * replicate parts of the code in the above functions,
3398          * simplifying them becuase we wouldn't actually intend to
3399          * write out the pages, but rather only collect contiguous
3400          * logical block extents, call the multi-block allocator, and
3401          * then update the buffer heads with the block allocations.
3402          *
3403          * For now, though, we'll cheat by calling filemap_flush(),
3404          * which will map the blocks, and start the I/O, but not
3405          * actually wait for the I/O to complete.
3406          */
3407         return filemap_flush(inode->i_mapping);
3408 }
3409
3410 /*
3411  * bmap() is special.  It gets used by applications such as lilo and by
3412  * the swapper to find the on-disk block of a specific piece of data.
3413  *
3414  * Naturally, this is dangerous if the block concerned is still in the
3415  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3416  * filesystem and enables swap, then they may get a nasty shock when the
3417  * data getting swapped to that swapfile suddenly gets overwritten by
3418  * the original zero's written out previously to the journal and
3419  * awaiting writeback in the kernel's buffer cache.
3420  *
3421  * So, if we see any bmap calls here on a modified, data-journaled file,
3422  * take extra steps to flush any blocks which might be in the cache.
3423  */
3424 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3425 {
3426         struct inode *inode = mapping->host;
3427         journal_t *journal;
3428         int err;
3429
3430         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3431                         test_opt(inode->i_sb, DELALLOC)) {
3432                 /*
3433                  * With delalloc we want to sync the file
3434                  * so that we can make sure we allocate
3435                  * blocks for file
3436                  */
3437                 filemap_write_and_wait(mapping);
3438         }
3439
3440         if (EXT4_JOURNAL(inode) &&
3441             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3442                 /*
3443                  * This is a REALLY heavyweight approach, but the use of
3444                  * bmap on dirty files is expected to be extremely rare:
3445                  * only if we run lilo or swapon on a freshly made file
3446                  * do we expect this to happen.
3447                  *
3448                  * (bmap requires CAP_SYS_RAWIO so this does not
3449                  * represent an unprivileged user DOS attack --- we'd be
3450                  * in trouble if mortal users could trigger this path at
3451                  * will.)
3452                  *
3453                  * NB. EXT4_STATE_JDATA is not set on files other than
3454                  * regular files.  If somebody wants to bmap a directory
3455                  * or symlink and gets confused because the buffer
3456                  * hasn't yet been flushed to disk, they deserve
3457                  * everything they get.
3458                  */
3459
3460                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3461                 journal = EXT4_JOURNAL(inode);
3462                 jbd2_journal_lock_updates(journal);
3463                 err = jbd2_journal_flush(journal);
3464                 jbd2_journal_unlock_updates(journal);
3465
3466                 if (err)
3467                         return 0;
3468         }
3469
3470         return generic_block_bmap(mapping, block, ext4_get_block);
3471 }
3472
3473 static int ext4_readpage(struct file *file, struct page *page)
3474 {
3475         return mpage_readpage(page, ext4_get_block);
3476 }
3477
3478 static int
3479 ext4_readpages(struct file *file, struct address_space *mapping,
3480                 struct list_head *pages, unsigned nr_pages)
3481 {
3482         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3483 }
3484
3485 static void ext4_free_io_end(ext4_io_end_t *io)
3486 {
3487         BUG_ON(!io);
3488         if (io->page)
3489                 put_page(io->page);
3490         iput(io->inode);
3491         kfree(io);
3492 }
3493
3494 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3495 {
3496         struct buffer_head *head, *bh;
3497         unsigned int curr_off = 0;
3498
3499         if (!page_has_buffers(page))
3500                 return;
3501         head = bh = page_buffers(page);
3502         do {
3503                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3504                                         && bh->b_private) {
3505                         ext4_free_io_end(bh->b_private);
3506                         bh->b_private = NULL;
3507                         bh->b_end_io = NULL;
3508                 }
3509                 curr_off = curr_off + bh->b_size;
3510                 bh = bh->b_this_page;
3511         } while (bh != head);
3512 }
3513
3514 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3515 {
3516         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517
3518         /*
3519          * free any io_end structure allocated for buffers to be discarded
3520          */
3521         if (ext4_should_dioread_nolock(page->mapping->host))
3522                 ext4_invalidatepage_free_endio(page, offset);
3523         /*
3524          * If it's a full truncate we just forget about the pending dirtying
3525          */
3526         if (offset == 0)
3527                 ClearPageChecked(page);
3528
3529         if (journal)
3530                 jbd2_journal_invalidatepage(journal, page, offset);
3531         else
3532                 block_invalidatepage(page, offset);
3533 }
3534
3535 static int ext4_releasepage(struct page *page, gfp_t wait)
3536 {
3537         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3538
3539         WARN_ON(PageChecked(page));
3540         if (!page_has_buffers(page))
3541                 return 0;
3542         if (journal)
3543                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3544         else
3545                 return try_to_free_buffers(page);
3546 }
3547
3548 /*
3549  * O_DIRECT for ext3 (or indirect map) based files
3550  *
3551  * If the O_DIRECT write will extend the file then add this inode to the
3552  * orphan list.  So recovery will truncate it back to the original size
3553  * if the machine crashes during the write.
3554  *
3555  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3556  * crashes then stale disk data _may_ be exposed inside the file. But current
3557  * VFS code falls back into buffered path in that case so we are safe.
3558  */
3559 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3560                               const struct iovec *iov, loff_t offset,
3561                               unsigned long nr_segs)
3562 {
3563         struct file *file = iocb->ki_filp;
3564         struct inode *inode = file->f_mapping->host;
3565         struct ext4_inode_info *ei = EXT4_I(inode);
3566         handle_t *handle;
3567         ssize_t ret;
3568         int orphan = 0;
3569         size_t count = iov_length(iov, nr_segs);
3570         int retries = 0;
3571
3572         if (rw == WRITE) {
3573                 loff_t final_size = offset + count;
3574
3575                 if (final_size > inode->i_size) {
3576                         /* Credits for sb + inode write */
3577                         handle = ext4_journal_start(inode, 2);
3578                         if (IS_ERR(handle)) {
3579                                 ret = PTR_ERR(handle);
3580                                 goto out;
3581                         }
3582                         ret = ext4_orphan_add(handle, inode);
3583                         if (ret) {
3584                                 ext4_journal_stop(handle);
3585                                 goto out;
3586                         }
3587                         orphan = 1;
3588                         ei->i_disksize = inode->i_size;
3589                         ext4_journal_stop(handle);
3590                 }
3591         }
3592
3593 retry:
3594         if (rw == READ && ext4_should_dioread_nolock(inode))
3595                 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3596                                  inode->i_sb->s_bdev, iov,
3597                                  offset, nr_segs,
3598                                  ext4_get_block, NULL);
3599         else
3600                 ret = blockdev_direct_IO(rw, iocb, inode,
3601                                  inode->i_sb->s_bdev, iov,
3602                                  offset, nr_segs,
3603                                  ext4_get_block, NULL);
3604         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3605                 goto retry;
3606
3607         if (orphan) {
3608                 int err;
3609
3610                 /* Credits for sb + inode write */
3611                 handle = ext4_journal_start(inode, 2);
3612                 if (IS_ERR(handle)) {
3613                         /* This is really bad luck. We've written the data
3614                          * but cannot extend i_size. Bail out and pretend
3615                          * the write failed... */
3616                         ret = PTR_ERR(handle);
3617                         if (inode->i_nlink)
3618                                 ext4_orphan_del(NULL, inode);
3619
3620                         goto out;
3621                 }
3622                 if (inode->i_nlink)
3623                         ext4_orphan_del(handle, inode);
3624                 if (ret > 0) {
3625                         loff_t end = offset + ret;
3626                         if (end > inode->i_size) {
3627                                 ei->i_disksize = end;
3628                                 i_size_write(inode, end);
3629                                 /*
3630                                  * We're going to return a positive `ret'
3631                                  * here due to non-zero-length I/O, so there's
3632                                  * no way of reporting error returns from
3633                                  * ext4_mark_inode_dirty() to userspace.  So
3634                                  * ignore it.
3635                                  */
3636                                 ext4_mark_inode_dirty(handle, inode);
3637                         }
3638                 }
3639                 err = ext4_journal_stop(handle);
3640                 if (ret == 0)
3641                         ret = err;
3642         }
3643 out:
3644         return ret;
3645 }
3646
3647 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3648                    struct buffer_head *bh_result, int create)
3649 {
3650         handle_t *handle = ext4_journal_current_handle();
3651         int ret = 0;
3652         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3653         int dio_credits;
3654         int started = 0;
3655
3656         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3657                    inode->i_ino, create);
3658         /*
3659          * ext4_get_block in prepare for a DIO write or buffer write.
3660          * We allocate an uinitialized extent if blocks haven't been allocated.
3661          * The extent will be converted to initialized after IO complete.
3662          */
3663         create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3664
3665         if (!handle) {
3666                 if (max_blocks > DIO_MAX_BLOCKS)
3667                         max_blocks = DIO_MAX_BLOCKS;
3668                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3669                 handle = ext4_journal_start(inode, dio_credits);
3670                 if (IS_ERR(handle)) {
3671                         ret = PTR_ERR(handle);
3672                         goto out;
3673                 }
3674                 started = 1;
3675         }
3676
3677         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3678                               create);
3679         if (ret > 0) {
3680                 bh_result->b_size = (ret << inode->i_blkbits);
3681                 ret = 0;
3682         }
3683         if (started)
3684                 ext4_journal_stop(handle);
3685 out:
3686         return ret;
3687 }
3688
3689 static void dump_completed_IO(struct inode * inode)
3690 {
3691 #ifdef  EXT4_DEBUG
3692         struct list_head *cur, *before, *after;
3693         ext4_io_end_t *io, *io0, *io1;
3694         unsigned long flags;
3695
3696         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3697                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3698                 return;
3699         }
3700
3701         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3702         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3703         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3704                 cur = &io->list;
3705                 before = cur->prev;
3706                 io0 = container_of(before, ext4_io_end_t, list);
3707                 after = cur->next;
3708                 io1 = container_of(after, ext4_io_end_t, list);
3709
3710                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3711                             io, inode->i_ino, io0, io1);
3712         }
3713         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3714 #endif
3715 }
3716
3717 /*
3718  * check a range of space and convert unwritten extents to written.
3719  */
3720 static int ext4_end_io_nolock(ext4_io_end_t *io)
3721 {
3722         struct inode *inode = io->inode;
3723         loff_t offset = io->offset;
3724         ssize_t size = io->size;
3725         int ret = 0;
3726
3727         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3728                    "list->prev 0x%p\n",
3729                    io, inode->i_ino, io->list.next, io->list.prev);
3730
3731         if (list_empty(&io->list))
3732                 return ret;
3733
3734         if (io->flag != EXT4_IO_UNWRITTEN)
3735                 return ret;
3736
3737         ret = ext4_convert_unwritten_extents(inode, offset, size);
3738         if (ret < 0) {
3739                 printk(KERN_EMERG "%s: failed to convert unwritten"
3740                         "extents to written extents, error is %d"
3741                         " io is still on inode %lu aio dio list\n",
3742                        __func__, ret, inode->i_ino);
3743                 return ret;
3744         }
3745
3746         /* clear the DIO AIO unwritten flag */
3747         io->flag = 0;
3748         return ret;
3749 }
3750
3751 /*
3752  * work on completed aio dio IO, to convert unwritten extents to extents
3753  */
3754 static void ext4_end_io_work(struct work_struct *work)
3755 {
3756         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3757         struct inode            *inode = io->inode;
3758         struct ext4_inode_info  *ei = EXT4_I(inode);
3759         unsigned long           flags;
3760         int                     ret;
3761
3762         mutex_lock(&inode->i_mutex);
3763         ret = ext4_end_io_nolock(io);
3764         if (ret < 0) {
3765                 mutex_unlock(&inode->i_mutex);
3766                 return;
3767         }
3768
3769         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3770         if (!list_empty(&io->list))
3771                 list_del_init(&io->list);
3772         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3773         mutex_unlock(&inode->i_mutex);
3774         ext4_free_io_end(io);
3775 }
3776
3777 /*
3778  * This function is called from ext4_sync_file().
3779  *
3780  * When IO is completed, the work to convert unwritten extents to
3781  * written is queued on workqueue but may not get immediately
3782  * scheduled. When fsync is called, we need to ensure the
3783  * conversion is complete before fsync returns.
3784  * The inode keeps track of a list of pending/completed IO that
3785  * might needs to do the conversion. This function walks through
3786  * the list and convert the related unwritten extents for completed IO
3787  * to written.
3788  * The function return the number of pending IOs on success.
3789  */
3790 int flush_completed_IO(struct inode *inode)
3791 {
3792         ext4_io_end_t *io;
3793         struct ext4_inode_info *ei = EXT4_I(inode);
3794         unsigned long flags;
3795         int ret = 0;
3796         int ret2 = 0;
3797
3798         if (list_empty(&ei->i_completed_io_list))
3799                 return ret;
3800
3801         dump_completed_IO(inode);
3802         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3803         while (!list_empty(&ei->i_completed_io_list)){
3804                 io = list_entry(ei->i_completed_io_list.next,
3805                                 ext4_io_end_t, list);
3806                 /*
3807                  * Calling ext4_end_io_nolock() to convert completed
3808                  * IO to written.
3809                  *
3810                  * When ext4_sync_file() is called, run_queue() may already
3811                  * about to flush the work corresponding to this io structure.
3812                  * It will be upset if it founds the io structure related
3813                  * to the work-to-be schedule is freed.
3814                  *
3815                  * Thus we need to keep the io structure still valid here after
3816                  * convertion finished. The io structure has a flag to
3817                  * avoid double converting from both fsync and background work
3818                  * queue work.
3819                  */
3820                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3821                 ret = ext4_end_io_nolock(io);
3822                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3823                 if (ret < 0)
3824                         ret2 = ret;
3825                 else
3826                         list_del_init(&io->list);
3827         }
3828         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3829         return (ret2 < 0) ? ret2 : 0;
3830 }
3831
3832 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3833 {
3834         ext4_io_end_t *io = NULL;
3835
3836         io = kmalloc(sizeof(*io), flags);
3837
3838         if (io) {
3839                 igrab(inode);
3840                 io->inode = inode;
3841                 io->flag = 0;
3842                 io->offset = 0;
3843                 io->size = 0;
3844                 io->page = NULL;
3845                 INIT_WORK(&io->work, ext4_end_io_work);
3846                 INIT_LIST_HEAD(&io->list);
3847         }
3848
3849         return io;
3850 }
3851
3852 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3853                             ssize_t size, void *private)
3854 {
3855         ext4_io_end_t *io_end = iocb->private;
3856         struct workqueue_struct *wq;
3857         unsigned long flags;
3858         struct ext4_inode_info *ei;
3859
3860         /* if not async direct IO or dio with 0 bytes write, just return */
3861         if (!io_end || !size)
3862                 return;
3863
3864         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3865                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3866                   iocb->private, io_end->inode->i_ino, iocb, offset,
3867                   size);
3868
3869         /* if not aio dio with unwritten extents, just free io and return */
3870         if (io_end->flag != EXT4_IO_UNWRITTEN){
3871                 ext4_free_io_end(io_end);
3872                 iocb->private = NULL;
3873                 return;
3874         }
3875
3876         io_end->offset = offset;
3877         io_end->size = size;
3878         io_end->flag = EXT4_IO_UNWRITTEN;
3879         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3880
3881         /* queue the work to convert unwritten extents to written */
3882         queue_work(wq, &io_end->work);
3883
3884         /* Add the io_end to per-inode completed aio dio list*/
3885         ei = EXT4_I(io_end->inode);
3886         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3887         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3888         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3889         iocb->private = NULL;
3890 }
3891
3892 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3893 {
3894         ext4_io_end_t *io_end = bh->b_private;
3895         struct workqueue_struct *wq;
3896         struct inode *inode;
3897         unsigned long flags;
3898
3899         if (!test_clear_buffer_uninit(bh) || !io_end)
3900                 goto out;
3901
3902         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3903                 printk("sb umounted, discard end_io request for inode %lu\n",
3904                         io_end->inode->i_ino);
3905                 ext4_free_io_end(io_end);
3906                 goto out;
3907         }
3908
3909         io_end->flag = EXT4_IO_UNWRITTEN;
3910         inode = io_end->inode;
3911
3912         /* Add the io_end to per-inode completed io list*/
3913         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3914         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3915         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3916
3917         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3918         /* queue the work to convert unwritten extents to written */
3919         queue_work(wq, &io_end->work);
3920 out:
3921         bh->b_private = NULL;
3922         bh->b_end_io = NULL;
3923         clear_buffer_uninit(bh);
3924         end_buffer_async_write(bh, uptodate);
3925 }
3926
3927 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3928 {
3929         ext4_io_end_t *io_end;
3930         struct page *page = bh->b_page;
3931         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3932         size_t size = bh->b_size;
3933
3934 retry:
3935         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3936         if (!io_end) {
3937                 if (printk_ratelimit())
3938                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3939                 schedule();
3940                 goto retry;
3941         }
3942         io_end->offset = offset;
3943         io_end->size = size;
3944         /*
3945          * We need to hold a reference to the page to make sure it
3946          * doesn't get evicted before ext4_end_io_work() has a chance
3947          * to convert the extent from written to unwritten.
3948          */
3949         io_end->page = page;
3950         get_page(io_end->page);
3951
3952         bh->b_private = io_end;
3953         bh->b_end_io = ext4_end_io_buffer_write;
3954         return 0;
3955 }
3956
3957 /*
3958  * For ext4 extent files, ext4 will do direct-io write to holes,
3959  * preallocated extents, and those write extend the file, no need to
3960  * fall back to buffered IO.
3961  *
3962  * For holes, we fallocate those blocks, mark them as unintialized
3963  * If those blocks were preallocated, we mark sure they are splited, but
3964  * still keep the range to write as unintialized.
3965  *
3966  * The unwrritten extents will be converted to written when DIO is completed.
3967  * For async direct IO, since the IO may still pending when return, we
3968  * set up an end_io call back function, which will do the convertion
3969  * when async direct IO completed.
3970  *
3971  * If the O_DIRECT write will extend the file then add this inode to the
3972  * orphan list.  So recovery will truncate it back to the original size
3973  * if the machine crashes during the write.
3974  *
3975  */
3976 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3977                               const struct iovec *iov, loff_t offset,
3978                               unsigned long nr_segs)
3979 {
3980         struct file *file = iocb->ki_filp;
3981         struct inode *inode = file->f_mapping->host;
3982         ssize_t ret;
3983         size_t count = iov_length(iov, nr_segs);
3984
3985         loff_t final_size = offset + count;
3986         if (rw == WRITE && final_size <= inode->i_size) {
3987                 /*
3988                  * We could direct write to holes and fallocate.
3989                  *
3990                  * Allocated blocks to fill the hole are marked as uninitialized
3991                  * to prevent paralel buffered read to expose the stale data
3992                  * before DIO complete the data IO.
3993                  *
3994                  * As to previously fallocated extents, ext4 get_block
3995                  * will just simply mark the buffer mapped but still
3996                  * keep the extents uninitialized.
3997                  *
3998                  * for non AIO case, we will convert those unwritten extents
3999                  * to written after return back from blockdev_direct_IO.
4000                  *
4001                  * for async DIO, the conversion needs to be defered when
4002                  * the IO is completed. The ext4 end_io callback function
4003                  * will be called to take care of the conversion work.
4004                  * Here for async case, we allocate an io_end structure to
4005                  * hook to the iocb.
4006                  */
4007                 iocb->private = NULL;
4008                 EXT4_I(inode)->cur_aio_dio = NULL;
4009                 if (!is_sync_kiocb(iocb)) {
4010                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
4011                         if (!iocb->private)
4012                                 return -ENOMEM;
4013                         /*
4014                          * we save the io structure for current async
4015                          * direct IO, so that later ext4_get_blocks()
4016                          * could flag the io structure whether there
4017                          * is a unwritten extents needs to be converted
4018                          * when IO is completed.
4019                          */
4020                         EXT4_I(inode)->cur_aio_dio = iocb->private;
4021                 }
4022
4023                 ret = blockdev_direct_IO(rw, iocb, inode,
4024                                          inode->i_sb->s_bdev, iov,
4025                                          offset, nr_segs,
4026                                          ext4_get_block_write,
4027                                          ext4_end_io_dio);
4028                 if (iocb->private)
4029                         EXT4_I(inode)->cur_aio_dio = NULL;
4030                 /*
4031                  * The io_end structure takes a reference to the inode,
4032                  * that structure needs to be destroyed and the
4033                  * reference to the inode need to be dropped, when IO is
4034                  * complete, even with 0 byte write, or failed.
4035                  *
4036                  * In the successful AIO DIO case, the io_end structure will be
4037                  * desctroyed and the reference to the inode will be dropped
4038                  * after the end_io call back function is called.
4039                  *
4040                  * In the case there is 0 byte write, or error case, since
4041                  * VFS direct IO won't invoke the end_io call back function,
4042                  * we need to free the end_io structure here.
4043                  */
4044                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4045                         ext4_free_io_end(iocb->private);
4046                         iocb->private = NULL;
4047                 } else if (ret > 0 && ext4_test_inode_state(inode,
4048                                                 EXT4_STATE_DIO_UNWRITTEN)) {
4049                         int err;
4050                         /*
4051                          * for non AIO case, since the IO is already
4052                          * completed, we could do the convertion right here
4053                          */
4054                         err = ext4_convert_unwritten_extents(inode,
4055                                                              offset, ret);
4056                         if (err < 0)
4057                                 ret = err;
4058                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4059                 }
4060                 return ret;
4061         }
4062
4063         /* for write the the end of file case, we fall back to old way */
4064         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4065 }
4066
4067 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4068                               const struct iovec *iov, loff_t offset,
4069                               unsigned long nr_segs)
4070 {
4071         struct file *file = iocb->ki_filp;
4072         struct inode *inode = file->f_mapping->host;
4073
4074         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4075                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4076
4077         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4078 }
4079
4080 /*
4081  * Pages can be marked dirty completely asynchronously from ext4's journalling
4082  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4083  * much here because ->set_page_dirty is called under VFS locks.  The page is
4084  * not necessarily locked.
4085  *
4086  * We cannot just dirty the page and leave attached buffers clean, because the
4087  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4088  * or jbddirty because all the journalling code will explode.
4089  *
4090  * So what we do is to mark the page "pending dirty" and next time writepage
4091  * is called, propagate that into the buffers appropriately.
4092  */
4093 static int ext4_journalled_set_page_dirty(struct page *page)
4094 {
4095         SetPageChecked(page);
4096         return __set_page_dirty_nobuffers(page);
4097 }
4098
4099 static const struct address_space_operations ext4_ordered_aops = {
4100         .readpage               = ext4_readpage,
4101         .readpages              = ext4_readpages,
4102         .writepage              = ext4_writepage,
4103         .sync_page              = block_sync_page,
4104         .write_begin            = ext4_write_begin,
4105         .write_end              = ext4_ordered_write_end,
4106         .bmap                   = ext4_bmap,
4107         .invalidatepage         = ext4_invalidatepage,
4108         .releasepage            = ext4_releasepage,
4109         .direct_IO              = ext4_direct_IO,
4110         .migratepage            = buffer_migrate_page,
4111         .is_partially_uptodate  = block_is_partially_uptodate,
4112         .error_remove_page      = generic_error_remove_page,
4113 };
4114
4115 static const struct address_space_operations ext4_writeback_aops = {
4116         .readpage               = ext4_readpage,
4117         .readpages              = ext4_readpages,
4118         .writepage              = ext4_writepage,
4119         .sync_page              = block_sync_page,
4120         .write_begin            = ext4_write_begin,
4121         .write_end              = ext4_writeback_write_end,
4122         .bmap                   = ext4_bmap,
4123         .invalidatepage         = ext4_invalidatepage,
4124         .releasepage            = ext4_releasepage,
4125         .direct_IO              = ext4_direct_IO,
4126         .migratepage            = buffer_migrate_page,
4127         .is_partially_uptodate  = block_is_partially_uptodate,
4128         .error_remove_page      = generic_error_remove_page,
4129 };
4130
4131 static const struct address_space_operations ext4_journalled_aops = {
4132         .readpage               = ext4_readpage,
4133         .readpages              = ext4_readpages,
4134         .writepage              = ext4_writepage,
4135         .sync_page              = block_sync_page,
4136         .write_begin            = ext4_write_begin,
4137         .write_end              = ext4_journalled_write_end,
4138         .set_page_dirty         = ext4_journalled_set_page_dirty,
4139         .bmap                   = ext4_bmap,
4140         .invalidatepage         = ext4_invalidatepage,
4141         .releasepage            = ext4_releasepage,
4142         .is_partially_uptodate  = block_is_partially_uptodate,
4143         .error_remove_page      = generic_error_remove_page,
4144 };
4145
4146 static const struct address_space_operations ext4_da_aops = {
4147         .readpage               = ext4_readpage,
4148         .readpages              = ext4_readpages,
4149         .writepage              = ext4_writepage,
4150         .writepages             = ext4_da_writepages,
4151         .sync_page              = block_sync_page,
4152         .write_begin            = ext4_da_write_begin,
4153         .write_end              = ext4_da_write_end,
4154         .bmap                   = ext4_bmap,
4155         .invalidatepage         = ext4_da_invalidatepage,
4156         .releasepage            = ext4_releasepage,
4157         .direct_IO              = ext4_direct_IO,
4158         .migratepage            = buffer_migrate_page,
4159         .is_partially_uptodate  = block_is_partially_uptodate,
4160         .error_remove_page      = generic_error_remove_page,
4161 };
4162
4163 void ext4_set_aops(struct inode *inode)
4164 {
4165         if (ext4_should_order_data(inode) &&
4166                 test_opt(inode->i_sb, DELALLOC))
4167                 inode->i_mapping->a_ops = &ext4_da_aops;
4168         else if (ext4_should_order_data(inode))
4169                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4170         else if (ext4_should_writeback_data(inode) &&
4171                  test_opt(inode->i_sb, DELALLOC))
4172                 inode->i_mapping->a_ops = &ext4_da_aops;
4173         else if (ext4_should_writeback_data(inode))
4174                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4175         else
4176                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4177 }
4178
4179 /*
4180  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4181  * up to the end of the block which corresponds to `from'.
4182  * This required during truncate. We need to physically zero the tail end
4183  * of that block so it doesn't yield old data if the file is later grown.
4184  */
4185 int ext4_block_truncate_page(handle_t *handle,
4186                 struct address_space *mapping, loff_t from)
4187 {
4188         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4189         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4190         unsigned blocksize, length, pos;
4191         ext4_lblk_t iblock;
4192         struct inode *inode = mapping->host;
4193         struct buffer_head *bh;
4194         struct page *page;
4195         int err = 0;
4196
4197         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4198                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4199         if (!page)
4200                 return -EINVAL;
4201
4202         blocksize = inode->i_sb->s_blocksize;
4203         length = blocksize - (offset & (blocksize - 1));
4204         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4205
4206         /*
4207          * For "nobh" option,  we can only work if we don't need to
4208          * read-in the page - otherwise we create buffers to do the IO.
4209          */
4210         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4211              ext4_should_writeback_data(inode) && PageUptodate(page)) {
4212                 zero_user(page, offset, length);
4213                 set_page_dirty(page);
4214                 goto unlock;
4215         }
4216
4217         if (!page_has_buffers(page))
4218                 create_empty_buffers(page, blocksize, 0);
4219
4220         /* Find the buffer that contains "offset" */
4221         bh = page_buffers(page);
4222         pos = blocksize;
4223         while (offset >= pos) {
4224                 bh = bh->b_this_page;
4225                 iblock++;
4226                 pos += blocksize;
4227         }
4228
4229         err = 0;
4230         if (buffer_freed(bh)) {
4231                 BUFFER_TRACE(bh, "freed: skip");
4232                 goto unlock;
4233         }
4234
4235         if (!buffer_mapped(bh)) {
4236                 BUFFER_TRACE(bh, "unmapped");
4237                 ext4_get_block(inode, iblock, bh, 0);
4238                 /* unmapped? It's a hole - nothing to do */
4239                 if (!buffer_mapped(bh)) {
4240                         BUFFER_TRACE(bh, "still unmapped");
4241                         goto unlock;
4242                 }
4243         }
4244
4245         /* Ok, it's mapped. Make sure it's up-to-date */
4246         if (PageUptodate(page))
4247                 set_buffer_uptodate(bh);
4248
4249         if (!buffer_uptodate(bh)) {
4250                 err = -EIO;
4251                 ll_rw_block(READ, 1, &bh);
4252                 wait_on_buffer(bh);
4253                 /* Uhhuh. Read error. Complain and punt. */
4254                 if (!buffer_uptodate(bh))
4255                         goto unlock;
4256         }
4257
4258         if (ext4_should_journal_data(inode)) {
4259                 BUFFER_TRACE(bh, "get write access");
4260                 err = ext4_journal_get_write_access(handle, bh);
4261                 if (err)
4262                         goto unlock;
4263         }
4264
4265         zero_user(page, offset, length);
4266
4267         BUFFER_TRACE(bh, "zeroed end of block");
4268
4269         err = 0;
4270         if (ext4_should_journal_data(inode)) {
4271                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4272         } else {
4273                 if (ext4_should_order_data(inode))
4274                         err = ext4_jbd2_file_inode(handle, inode);
4275                 mark_buffer_dirty(bh);
4276         }
4277
4278 unlock:
4279         unlock_page(page);
4280         page_cache_release(page);
4281         return err;
4282 }
4283
4284 /*
4285  * Probably it should be a library function... search for first non-zero word
4286  * or memcmp with zero_page, whatever is better for particular architecture.
4287  * Linus?
4288  */
4289 static inline int all_zeroes(__le32 *p, __le32 *q)
4290 {
4291         while (p < q)
4292                 if (*p++)
4293                         return 0;
4294         return 1;
4295 }
4296
4297 /**
4298  *      ext4_find_shared - find the indirect blocks for partial truncation.
4299  *      @inode:   inode in question
4300  *      @depth:   depth of the affected branch
4301  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4302  *      @chain:   place to store the pointers to partial indirect blocks
4303  *      @top:     place to the (detached) top of branch
4304  *
4305  *      This is a helper function used by ext4_truncate().
4306  *
4307  *      When we do truncate() we may have to clean the ends of several
4308  *      indirect blocks but leave the blocks themselves alive. Block is
4309  *      partially truncated if some data below the new i_size is refered
4310  *      from it (and it is on the path to the first completely truncated
4311  *      data block, indeed).  We have to free the top of that path along
4312  *      with everything to the right of the path. Since no allocation
4313  *      past the truncation point is possible until ext4_truncate()
4314  *      finishes, we may safely do the latter, but top of branch may
4315  *      require special attention - pageout below the truncation point
4316  *      might try to populate it.
4317  *
4318  *      We atomically detach the top of branch from the tree, store the
4319  *      block number of its root in *@top, pointers to buffer_heads of
4320  *      partially truncated blocks - in @chain[].bh and pointers to
4321  *      their last elements that should not be removed - in
4322  *      @chain[].p. Return value is the pointer to last filled element
4323  *      of @chain.
4324  *
4325  *      The work left to caller to do the actual freeing of subtrees:
4326  *              a) free the subtree starting from *@top
4327  *              b) free the subtrees whose roots are stored in
4328  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4329  *              c) free the subtrees growing from the inode past the @chain[0].
4330  *                      (no partially truncated stuff there).  */
4331
4332 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4333                                   ext4_lblk_t offsets[4], Indirect chain[4],
4334                                   __le32 *top)
4335 {
4336         Indirect *partial, *p;
4337         int k, err;
4338
4339         *top = 0;
4340         /* Make k index the deepest non-null offset + 1 */
4341         for (k = depth; k > 1 && !offsets[k-1]; k--)
4342                 ;
4343         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4344         /* Writer: pointers */
4345         if (!partial)
4346                 partial = chain + k-1;
4347         /*
4348          * If the branch acquired continuation since we've looked at it -
4349          * fine, it should all survive and (new) top doesn't belong to us.
4350          */
4351         if (!partial->key && *partial->p)
4352                 /* Writer: end */
4353                 goto no_top;
4354         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4355                 ;
4356         /*
4357          * OK, we've found the last block that must survive. The rest of our
4358          * branch should be detached before unlocking. However, if that rest
4359          * of branch is all ours and does not grow immediately from the inode
4360          * it's easier to cheat and just decrement partial->p.
4361          */
4362         if (p == chain + k - 1 && p > chain) {
4363                 p->p--;
4364         } else {
4365                 *top = *p->p;
4366                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4367 #if 0
4368                 *p->p = 0;
4369 #endif
4370         }
4371         /* Writer: end */
4372
4373         while (partial > p) {
4374                 brelse(partial->bh);
4375                 partial--;
4376         }
4377 no_top:
4378         return partial;
4379 }
4380
4381 /*
4382  * Zero a number of block pointers in either an inode or an indirect block.
4383  * If we restart the transaction we must again get write access to the
4384  * indirect block for further modification.
4385  *
4386  * We release `count' blocks on disk, but (last - first) may be greater
4387  * than `count' because there can be holes in there.
4388  */
4389 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4390                              struct buffer_head *bh,
4391                              ext4_fsblk_t block_to_free,
4392                              unsigned long count, __le32 *first,
4393                              __le32 *last)
4394 {
4395         __le32 *p;
4396         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4397
4398         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4399                 flags |= EXT4_FREE_BLOCKS_METADATA;
4400
4401         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4402                                    count)) {
4403                 ext4_error(inode->i_sb, "inode #%lu: "
4404                            "attempt to clear blocks %llu len %lu, invalid",
4405                            inode->i_ino, (unsigned long long) block_to_free,
4406                            count);
4407                 return 1;
4408         }
4409
4410         if (try_to_extend_transaction(handle, inode)) {
4411                 if (bh) {
4412                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413                         ext4_handle_dirty_metadata(handle, inode, bh);
4414                 }
4415                 ext4_mark_inode_dirty(handle, inode);
4416                 ext4_truncate_restart_trans(handle, inode,
4417                                             blocks_for_truncate(inode));
4418                 if (bh) {
4419                         BUFFER_TRACE(bh, "retaking write access");
4420                         ext4_journal_get_write_access(handle, bh);
4421                 }
4422         }
4423
4424         for (p = first; p < last; p++)
4425                 *p = 0;
4426
4427         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4428         return 0;
4429 }
4430
4431 /**
4432  * ext4_free_data - free a list of data blocks
4433  * @handle:     handle for this transaction
4434  * @inode:      inode we are dealing with
4435  * @this_bh:    indirect buffer_head which contains *@first and *@last
4436  * @first:      array of block numbers
4437  * @last:       points immediately past the end of array
4438  *
4439  * We are freeing all blocks refered from that array (numbers are stored as
4440  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4441  *
4442  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4443  * blocks are contiguous then releasing them at one time will only affect one
4444  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4445  * actually use a lot of journal space.
4446  *
4447  * @this_bh will be %NULL if @first and @last point into the inode's direct
4448  * block pointers.
4449  */
4450 static void ext4_free_data(handle_t *handle, struct inode *inode,
4451                            struct buffer_head *this_bh,
4452                            __le32 *first, __le32 *last)
4453 {
4454         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4455         unsigned long count = 0;            /* Number of blocks in the run */
4456         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4457                                                corresponding to
4458                                                block_to_free */
4459         ext4_fsblk_t nr;                    /* Current block # */
4460         __le32 *p;                          /* Pointer into inode/ind
4461                                                for current block */
4462         int err;
4463
4464         if (this_bh) {                          /* For indirect block */
4465                 BUFFER_TRACE(this_bh, "get_write_access");
4466                 err = ext4_journal_get_write_access(handle, this_bh);
4467                 /* Important: if we can't update the indirect pointers
4468                  * to the blocks, we can't free them. */
4469                 if (err)
4470                         return;
4471         }
4472
4473         for (p = first; p < last; p++) {
4474                 nr = le32_to_cpu(*p);
4475                 if (nr) {
4476                         /* accumulate blocks to free if they're contiguous */
4477                         if (count == 0) {
4478                                 block_to_free = nr;
4479                                 block_to_free_p = p;
4480                                 count = 1;
4481                         } else if (nr == block_to_free + count) {
4482                                 count++;
4483                         } else {
4484                                 if (ext4_clear_blocks(handle, inode, this_bh,
4485                                                       block_to_free, count,
4486                                                       block_to_free_p, p))
4487                                         break;
4488                                 block_to_free = nr;
4489                                 block_to_free_p = p;
4490                                 count = 1;
4491                         }
4492                 }
4493         }
4494
4495         if (count > 0)
4496                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4497                                   count, block_to_free_p, p);
4498
4499         if (this_bh) {
4500                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4501
4502                 /*
4503                  * The buffer head should have an attached journal head at this
4504                  * point. However, if the data is corrupted and an indirect
4505                  * block pointed to itself, it would have been detached when
4506                  * the block was cleared. Check for this instead of OOPSing.
4507                  */
4508                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4509                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4510                 else
4511                         ext4_error(inode->i_sb,
4512                                    "circular indirect block detected, "
4513                                    "inode=%lu, block=%llu",
4514                                    inode->i_ino,
4515                                    (unsigned long long) this_bh->b_blocknr);
4516         }
4517 }
4518
4519 /**
4520  *      ext4_free_branches - free an array of branches
4521  *      @handle: JBD handle for this transaction
4522  *      @inode: inode we are dealing with
4523  *      @parent_bh: the buffer_head which contains *@first and *@last
4524  *      @first: array of block numbers
4525  *      @last:  pointer immediately past the end of array
4526  *      @depth: depth of the branches to free
4527  *
4528  *      We are freeing all blocks refered from these branches (numbers are
4529  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4530  *      appropriately.
4531  */
4532 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4533                                struct buffer_head *parent_bh,
4534                                __le32 *first, __le32 *last, int depth)
4535 {
4536         ext4_fsblk_t nr;
4537         __le32 *p;
4538
4539         if (ext4_handle_is_aborted(handle))
4540                 return;
4541
4542         if (depth--) {
4543                 struct buffer_head *bh;
4544                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4545                 p = last;
4546                 while (--p >= first) {
4547                         nr = le32_to_cpu(*p);
4548                         if (!nr)
4549                                 continue;               /* A hole */
4550
4551                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4552                                                    nr, 1)) {
4553                                 ext4_error(inode->i_sb,
4554                                            "indirect mapped block in inode "
4555                                            "#%lu invalid (level %d, blk #%lu)",
4556                                            inode->i_ino, depth,
4557                                            (unsigned long) nr);
4558                                 break;
4559                         }
4560
4561                         /* Go read the buffer for the next level down */
4562                         bh = sb_bread(inode->i_sb, nr);
4563
4564                         /*
4565                          * A read failure? Report error and clear slot
4566                          * (should be rare).
4567                          */
4568                         if (!bh) {
4569                                 ext4_error(inode->i_sb,
4570                                            "Read failure, inode=%lu, block=%llu",
4571                                            inode->i_ino, nr);
4572                                 continue;
4573                         }
4574
4575                         /* This zaps the entire block.  Bottom up. */
4576                         BUFFER_TRACE(bh, "free child branches");
4577                         ext4_free_branches(handle, inode, bh,
4578                                         (__le32 *) bh->b_data,
4579                                         (__le32 *) bh->b_data + addr_per_block,
4580                                         depth);
4581
4582                         /*
4583                          * We've probably journalled the indirect block several
4584                          * times during the truncate.  But it's no longer
4585                          * needed and we now drop it from the transaction via
4586                          * jbd2_journal_revoke().
4587                          *
4588                          * That's easy if it's exclusively part of this
4589                          * transaction.  But if it's part of the committing
4590                          * transaction then jbd2_journal_forget() will simply
4591                          * brelse() it.  That means that if the underlying
4592                          * block is reallocated in ext4_get_block(),
4593                          * unmap_underlying_metadata() will find this block
4594                          * and will try to get rid of it.  damn, damn.
4595                          *
4596                          * If this block has already been committed to the
4597                          * journal, a revoke record will be written.  And
4598                          * revoke records must be emitted *before* clearing
4599                          * this block's bit in the bitmaps.
4600                          */
4601                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4602
4603                         /*
4604                          * Everything below this this pointer has been
4605                          * released.  Now let this top-of-subtree go.
4606                          *
4607                          * We want the freeing of this indirect block to be
4608                          * atomic in the journal with the updating of the
4609                          * bitmap block which owns it.  So make some room in
4610                          * the journal.
4611                          *
4612                          * We zero the parent pointer *after* freeing its
4613                          * pointee in the bitmaps, so if extend_transaction()
4614                          * for some reason fails to put the bitmap changes and
4615                          * the release into the same transaction, recovery
4616                          * will merely complain about releasing a free block,
4617                          * rather than leaking blocks.
4618                          */
4619                         if (ext4_handle_is_aborted(handle))
4620                                 return;
4621                         if (try_to_extend_transaction(handle, inode)) {
4622                                 ext4_mark_inode_dirty(handle, inode);
4623                                 ext4_truncate_restart_trans(handle, inode,
4624                                             blocks_for_truncate(inode));
4625                         }
4626
4627                         ext4_free_blocks(handle, inode, 0, nr, 1,
4628                                          EXT4_FREE_BLOCKS_METADATA);
4629
4630                         if (parent_bh) {
4631                                 /*
4632                                  * The block which we have just freed is
4633                                  * pointed to by an indirect block: journal it
4634                                  */
4635                                 BUFFER_TRACE(parent_bh, "get_write_access");
4636                                 if (!ext4_journal_get_write_access(handle,
4637                                                                    parent_bh)){
4638                                         *p = 0;
4639                                         BUFFER_TRACE(parent_bh,
4640                                         "call ext4_handle_dirty_metadata");
4641                                         ext4_handle_dirty_metadata(handle,
4642                                                                    inode,
4643                                                                    parent_bh);
4644                                 }
4645                         }
4646                 }
4647         } else {
4648                 /* We have reached the bottom of the tree. */
4649                 BUFFER_TRACE(parent_bh, "free data blocks");
4650                 ext4_free_data(handle, inode, parent_bh, first, last);
4651         }
4652 }
4653
4654 int ext4_can_truncate(struct inode *inode)
4655 {
4656         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4657                 return 0;
4658         if (S_ISREG(inode->i_mode))
4659                 return 1;
4660         if (S_ISDIR(inode->i_mode))
4661                 return 1;
4662         if (S_ISLNK(inode->i_mode))
4663                 return !ext4_inode_is_fast_symlink(inode);
4664         return 0;
4665 }
4666
4667 /*
4668  * ext4_truncate()
4669  *
4670  * We block out ext4_get_block() block instantiations across the entire
4671  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4672  * simultaneously on behalf of the same inode.
4673  *
4674  * As we work through the truncate and commmit bits of it to the journal there
4675  * is one core, guiding principle: the file's tree must always be consistent on
4676  * disk.  We must be able to restart the truncate after a crash.
4677  *
4678  * The file's tree may be transiently inconsistent in memory (although it
4679  * probably isn't), but whenever we close off and commit a journal transaction,
4680  * the contents of (the filesystem + the journal) must be consistent and
4681  * restartable.  It's pretty simple, really: bottom up, right to left (although
4682  * left-to-right works OK too).
4683  *
4684  * Note that at recovery time, journal replay occurs *before* the restart of
4685  * truncate against the orphan inode list.
4686  *
4687  * The committed inode has the new, desired i_size (which is the same as
4688  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4689  * that this inode's truncate did not complete and it will again call
4690  * ext4_truncate() to have another go.  So there will be instantiated blocks
4691  * to the right of the truncation point in a crashed ext4 filesystem.  But
4692  * that's fine - as long as they are linked from the inode, the post-crash
4693  * ext4_truncate() run will find them and release them.
4694  */
4695 void ext4_truncate(struct inode *inode)
4696 {
4697         handle_t *handle;
4698         struct ext4_inode_info *ei = EXT4_I(inode);
4699         __le32 *i_data = ei->i_data;
4700         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4701         struct address_space *mapping = inode->i_mapping;
4702         ext4_lblk_t offsets[4];
4703         Indirect chain[4];
4704         Indirect *partial;
4705         __le32 nr = 0;
4706         int n;
4707         ext4_lblk_t last_block;
4708         unsigned blocksize = inode->i_sb->s_blocksize;
4709
4710         if (!ext4_can_truncate(inode))
4711                 return;
4712
4713         EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4714
4715         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4716                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4717
4718         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4719                 ext4_ext_truncate(inode);
4720                 return;
4721         }
4722
4723         handle = start_transaction(inode);
4724         if (IS_ERR(handle))
4725                 return;         /* AKPM: return what? */
4726
4727         last_block = (inode->i_size + blocksize-1)
4728                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4729
4730         if (inode->i_size & (blocksize - 1))
4731                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4732                         goto out_stop;
4733
4734         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4735         if (n == 0)
4736                 goto out_stop;  /* error */
4737
4738         /*
4739          * OK.  This truncate is going to happen.  We add the inode to the
4740          * orphan list, so that if this truncate spans multiple transactions,
4741          * and we crash, we will resume the truncate when the filesystem
4742          * recovers.  It also marks the inode dirty, to catch the new size.
4743          *
4744          * Implication: the file must always be in a sane, consistent
4745          * truncatable state while each transaction commits.
4746          */
4747         if (ext4_orphan_add(handle, inode))
4748                 goto out_stop;
4749
4750         /*
4751          * From here we block out all ext4_get_block() callers who want to
4752          * modify the block allocation tree.
4753          */
4754         down_write(&ei->i_data_sem);
4755
4756         ext4_discard_preallocations(inode);
4757
4758         /*
4759          * The orphan list entry will now protect us from any crash which
4760          * occurs before the truncate completes, so it is now safe to propagate
4761          * the new, shorter inode size (held for now in i_size) into the
4762          * on-disk inode. We do this via i_disksize, which is the value which
4763          * ext4 *really* writes onto the disk inode.
4764          */
4765         ei->i_disksize = inode->i_size;
4766
4767         if (n == 1) {           /* direct blocks */
4768                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4769                                i_data + EXT4_NDIR_BLOCKS);
4770                 goto do_indirects;
4771         }
4772
4773         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4774         /* Kill the top of shared branch (not detached) */
4775         if (nr) {
4776                 if (partial == chain) {
4777                         /* Shared branch grows from the inode */
4778                         ext4_free_branches(handle, inode, NULL,
4779                                            &nr, &nr+1, (chain+n-1) - partial);
4780                         *partial->p = 0;
4781                         /*
4782                          * We mark the inode dirty prior to restart,
4783                          * and prior to stop.  No need for it here.
4784                          */
4785                 } else {
4786                         /* Shared branch grows from an indirect block */
4787                         BUFFER_TRACE(partial->bh, "get_write_access");
4788                         ext4_free_branches(handle, inode, partial->bh,
4789                                         partial->p,
4790                                         partial->p+1, (chain+n-1) - partial);
4791                 }
4792         }
4793         /* Clear the ends of indirect blocks on the shared branch */
4794         while (partial > chain) {
4795                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4796                                    (__le32*)partial->bh->b_data+addr_per_block,
4797                                    (chain+n-1) - partial);
4798                 BUFFER_TRACE(partial->bh, "call brelse");
4799                 brelse(partial->bh);
4800                 partial--;
4801         }
4802 do_indirects:
4803         /* Kill the remaining (whole) subtrees */
4804         switch (offsets[0]) {
4805         default:
4806                 nr = i_data[EXT4_IND_BLOCK];
4807                 if (nr) {
4808                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4809                         i_data[EXT4_IND_BLOCK] = 0;
4810                 }
4811         case EXT4_IND_BLOCK:
4812                 nr = i_data[EXT4_DIND_BLOCK];
4813                 if (nr) {
4814                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4815                         i_data[EXT4_DIND_BLOCK] = 0;
4816                 }
4817         case EXT4_DIND_BLOCK:
4818                 nr = i_data[EXT4_TIND_BLOCK];
4819                 if (nr) {
4820                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4821                         i_data[EXT4_TIND_BLOCK] = 0;
4822                 }
4823         case EXT4_TIND_BLOCK:
4824                 ;
4825         }
4826
4827         up_write(&ei->i_data_sem);
4828         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4829         ext4_mark_inode_dirty(handle, inode);
4830
4831         /*
4832          * In a multi-transaction truncate, we only make the final transaction
4833          * synchronous
4834          */
4835         if (IS_SYNC(inode))
4836                 ext4_handle_sync(handle);
4837 out_stop:
4838         /*
4839          * If this was a simple ftruncate(), and the file will remain alive
4840          * then we need to clear up the orphan record which we created above.
4841          * However, if this was a real unlink then we were called by
4842          * ext4_delete_inode(), and we allow that function to clean up the
4843          * orphan info for us.
4844          */
4845         if (inode->i_nlink)
4846                 ext4_orphan_del(handle, inode);
4847
4848         ext4_journal_stop(handle);
4849 }
4850
4851 /*
4852  * ext4_get_inode_loc returns with an extra refcount against the inode's
4853  * underlying buffer_head on success. If 'in_mem' is true, we have all
4854  * data in memory that is needed to recreate the on-disk version of this
4855  * inode.
4856  */
4857 static int __ext4_get_inode_loc(struct inode *inode,
4858                                 struct ext4_iloc *iloc, int in_mem)
4859 {
4860         struct ext4_group_desc  *gdp;
4861         struct buffer_head      *bh;
4862         struct super_block      *sb = inode->i_sb;
4863         ext4_fsblk_t            block;
4864         int                     inodes_per_block, inode_offset;
4865
4866         iloc->bh = NULL;
4867         if (!ext4_valid_inum(sb, inode->i_ino))
4868                 return -EIO;
4869
4870         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4871         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4872         if (!gdp)
4873                 return -EIO;
4874
4875         /*
4876          * Figure out the offset within the block group inode table
4877          */
4878         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4879         inode_offset = ((inode->i_ino - 1) %
4880                         EXT4_INODES_PER_GROUP(sb));
4881         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4882         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4883
4884         bh = sb_getblk(sb, block);
4885         if (!bh) {
4886                 ext4_error(sb, "unable to read inode block - "
4887                            "inode=%lu, block=%llu", inode->i_ino, block);
4888                 return -EIO;
4889         }
4890         if (!buffer_uptodate(bh)) {
4891                 lock_buffer(bh);
4892
4893                 /*
4894                  * If the buffer has the write error flag, we have failed
4895                  * to write out another inode in the same block.  In this
4896                  * case, we don't have to read the block because we may
4897                  * read the old inode data successfully.
4898                  */
4899                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4900                         set_buffer_uptodate(bh);
4901
4902                 if (buffer_uptodate(bh)) {
4903                         /* someone brought it uptodate while we waited */
4904                         unlock_buffer(bh);
4905                         goto has_buffer;
4906                 }
4907
4908                 /*
4909                  * If we have all information of the inode in memory and this
4910                  * is the only valid inode in the block, we need not read the
4911                  * block.
4912                  */
4913                 if (in_mem) {
4914                         struct buffer_head *bitmap_bh;
4915                         int i, start;
4916
4917                         start = inode_offset & ~(inodes_per_block - 1);
4918
4919                         /* Is the inode bitmap in cache? */
4920                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4921                         if (!bitmap_bh)
4922                                 goto make_io;
4923
4924                         /*
4925                          * If the inode bitmap isn't in cache then the
4926                          * optimisation may end up performing two reads instead
4927                          * of one, so skip it.
4928                          */
4929                         if (!buffer_uptodate(bitmap_bh)) {
4930                                 brelse(bitmap_bh);
4931                                 goto make_io;
4932                         }
4933                         for (i = start; i < start + inodes_per_block; i++) {
4934                                 if (i == inode_offset)
4935                                         continue;
4936                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4937                                         break;
4938                         }
4939                         brelse(bitmap_bh);
4940                         if (i == start + inodes_per_block) {
4941                                 /* all other inodes are free, so skip I/O */
4942                                 memset(bh->b_data, 0, bh->b_size);
4943                                 set_buffer_uptodate(bh);
4944                                 unlock_buffer(bh);
4945                                 goto has_buffer;
4946                         }
4947                 }
4948
4949 make_io:
4950                 /*
4951                  * If we need to do any I/O, try to pre-readahead extra
4952                  * blocks from the inode table.
4953                  */
4954                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4955                         ext4_fsblk_t b, end, table;
4956                         unsigned num;
4957
4958                         table = ext4_inode_table(sb, gdp);
4959                         /* s_inode_readahead_blks is always a power of 2 */
4960                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4961                         if (table > b)
4962                                 b = table;
4963                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4964                         num = EXT4_INODES_PER_GROUP(sb);
4965                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4966                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4967                                 num -= ext4_itable_unused_count(sb, gdp);
4968                         table += num / inodes_per_block;
4969                         if (end > table)
4970                                 end = table;
4971                         while (b <= end)
4972                                 sb_breadahead(sb, b++);
4973                 }
4974
4975                 /*
4976                  * There are other valid inodes in the buffer, this inode
4977                  * has in-inode xattrs, or we don't have this inode in memory.
4978                  * Read the block from disk.
4979                  */
4980                 get_bh(bh);
4981                 bh->b_end_io = end_buffer_read_sync;
4982                 submit_bh(READ_META, bh);
4983                 wait_on_buffer(bh);
4984                 if (!buffer_uptodate(bh)) {
4985                         ext4_error(sb, "unable to read inode block - inode=%lu,"
4986                                    " block=%llu", inode->i_ino, block);
4987                         brelse(bh);
4988                         return -EIO;
4989                 }
4990         }
4991 has_buffer:
4992         iloc->bh = bh;
4993         return 0;
4994 }
4995
4996 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4997 {
4998         /* We have all inode data except xattrs in memory here. */
4999         return __ext4_get_inode_loc(inode, iloc,
5000                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
5001 }
5002
5003 void ext4_set_inode_flags(struct inode *inode)
5004 {
5005         unsigned int flags = EXT4_I(inode)->i_flags;
5006
5007         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
5008         if (flags & EXT4_SYNC_FL)
5009                 inode->i_flags |= S_SYNC;
5010         if (flags & EXT4_APPEND_FL)
5011                 inode->i_flags |= S_APPEND;
5012         if (flags & EXT4_IMMUTABLE_FL)
5013                 inode->i_flags |= S_IMMUTABLE;
5014         if (flags & EXT4_NOATIME_FL)
5015                 inode->i_flags |= S_NOATIME;
5016         if (flags & EXT4_DIRSYNC_FL)
5017                 inode->i_flags |= S_DIRSYNC;
5018 }
5019
5020 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
5021 void ext4_get_inode_flags(struct ext4_inode_info *ei)
5022 {
5023         unsigned int flags = ei->vfs_inode.i_flags;
5024
5025         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
5026                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
5027         if (flags & S_SYNC)
5028                 ei->i_flags |= EXT4_SYNC_FL;
5029         if (flags & S_APPEND)
5030                 ei->i_flags |= EXT4_APPEND_FL;
5031         if (flags & S_IMMUTABLE)
5032                 ei->i_flags |= EXT4_IMMUTABLE_FL;
5033         if (flags & S_NOATIME)
5034                 ei->i_flags |= EXT4_NOATIME_FL;
5035         if (flags & S_DIRSYNC)
5036                 ei->i_flags |= EXT4_DIRSYNC_FL;
5037 }
5038
5039 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5040                                   struct ext4_inode_info *ei)
5041 {
5042         blkcnt_t i_blocks ;
5043         struct inode *inode = &(ei->vfs_inode);
5044         struct super_block *sb = inode->i_sb;
5045
5046         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5047                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
5048                 /* we are using combined 48 bit field */
5049                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5050                                         le32_to_cpu(raw_inode->i_blocks_lo);
5051                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
5052                         /* i_blocks represent file system block size */
5053                         return i_blocks  << (inode->i_blkbits - 9);
5054                 } else {
5055                         return i_blocks;
5056                 }
5057         } else {
5058                 return le32_to_cpu(raw_inode->i_blocks_lo);
5059         }
5060 }
5061
5062 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5063 {
5064         struct ext4_iloc iloc;
5065         struct ext4_inode *raw_inode;
5066         struct ext4_inode_info *ei;
5067         struct inode *inode;
5068         journal_t *journal = EXT4_SB(sb)->s_journal;
5069         long ret;
5070         int block;
5071
5072         inode = iget_locked(sb, ino);
5073         if (!inode)
5074                 return ERR_PTR(-ENOMEM);
5075         if (!(inode->i_state & I_NEW))
5076                 return inode;
5077
5078         ei = EXT4_I(inode);
5079         iloc.bh = 0;
5080
5081         ret = __ext4_get_inode_loc(inode, &iloc, 0);
5082         if (ret < 0)
5083                 goto bad_inode;
5084         raw_inode = ext4_raw_inode(&iloc);
5085         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5086         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5087         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5088         if (!(test_opt(inode->i_sb, NO_UID32))) {
5089                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5090                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5091         }
5092         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5093
5094         ei->i_state_flags = 0;
5095         ei->i_dir_start_lookup = 0;
5096         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5097         /* We now have enough fields to check if the inode was active or not.
5098          * This is needed because nfsd might try to access dead inodes
5099          * the test is that same one that e2fsck uses
5100          * NeilBrown 1999oct15
5101          */
5102         if (inode->i_nlink == 0) {
5103                 if (inode->i_mode == 0 ||
5104                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5105                         /* this inode is deleted */
5106                         ret = -ESTALE;
5107                         goto bad_inode;
5108                 }
5109                 /* The only unlinked inodes we let through here have
5110                  * valid i_mode and are being read by the orphan
5111                  * recovery code: that's fine, we're about to complete
5112                  * the process of deleting those. */
5113         }
5114         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5115         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5116         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5117         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5118                 ei->i_file_acl |=
5119                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5120         inode->i_size = ext4_isize(raw_inode);
5121         ei->i_disksize = inode->i_size;
5122 #ifdef CONFIG_QUOTA
5123         ei->i_reserved_quota = 0;
5124 #endif
5125         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5126         ei->i_block_group = iloc.block_group;
5127         ei->i_last_alloc_group = ~0;
5128         /*
5129          * NOTE! The in-memory inode i_data array is in little-endian order
5130          * even on big-endian machines: we do NOT byteswap the block numbers!
5131          */
5132         for (block = 0; block < EXT4_N_BLOCKS; block++)
5133                 ei->i_data[block] = raw_inode->i_block[block];
5134         INIT_LIST_HEAD(&ei->i_orphan);
5135
5136         /*
5137          * Set transaction id's of transactions that have to be committed
5138          * to finish f[data]sync. We set them to currently running transaction
5139          * as we cannot be sure that the inode or some of its metadata isn't
5140          * part of the transaction - the inode could have been reclaimed and
5141          * now it is reread from disk.
5142          */
5143         if (journal) {
5144                 transaction_t *transaction;
5145                 tid_t tid;
5146
5147                 spin_lock(&journal->j_state_lock);
5148                 if (journal->j_running_transaction)
5149                         transaction = journal->j_running_transaction;
5150                 else
5151                         transaction = journal->j_committing_transaction;
5152                 if (transaction)
5153                         tid = transaction->t_tid;
5154                 else
5155                         tid = journal->j_commit_sequence;
5156                 spin_unlock(&journal->j_state_lock);
5157                 ei->i_sync_tid = tid;
5158                 ei->i_datasync_tid = tid;
5159         }
5160
5161         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5162                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5163                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5164                     EXT4_INODE_SIZE(inode->i_sb)) {
5165                         ret = -EIO;
5166                         goto bad_inode;
5167                 }
5168                 if (ei->i_extra_isize == 0) {
5169                         /* The extra space is currently unused. Use it. */
5170                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5171                                             EXT4_GOOD_OLD_INODE_SIZE;
5172                 } else {
5173                         __le32 *magic = (void *)raw_inode +
5174                                         EXT4_GOOD_OLD_INODE_SIZE +
5175                                         ei->i_extra_isize;
5176                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5177                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5178                 }
5179         } else
5180                 ei->i_extra_isize = 0;
5181
5182         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5183         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5184         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5185         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5186
5187         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5188         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5189                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5190                         inode->i_version |=
5191                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5192         }
5193
5194         ret = 0;
5195         if (ei->i_file_acl &&
5196             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5197                 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5198                            ei->i_file_acl, inode->i_ino);
5199                 ret = -EIO;
5200                 goto bad_inode;
5201         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5202                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5203                     (S_ISLNK(inode->i_mode) &&
5204                      !ext4_inode_is_fast_symlink(inode)))
5205                         /* Validate extent which is part of inode */
5206                         ret = ext4_ext_check_inode(inode);
5207         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5208                    (S_ISLNK(inode->i_mode) &&
5209                     !ext4_inode_is_fast_symlink(inode))) {
5210                 /* Validate block references which are part of inode */
5211                 ret = ext4_check_inode_blockref(inode);
5212         }
5213         if (ret)
5214                 goto bad_inode;
5215
5216         if (S_ISREG(inode->i_mode)) {
5217                 inode->i_op = &ext4_file_inode_operations;
5218                 inode->i_fop = &ext4_file_operations;
5219                 ext4_set_aops(inode);
5220         } else if (S_ISDIR(inode->i_mode)) {
5221                 inode->i_op = &ext4_dir_inode_operations;
5222                 inode->i_fop = &ext4_dir_operations;
5223         } else if (S_ISLNK(inode->i_mode)) {
5224                 if (ext4_inode_is_fast_symlink(inode)) {
5225                         inode->i_op = &ext4_fast_symlink_inode_operations;
5226                         nd_terminate_link(ei->i_data, inode->i_size,
5227                                 sizeof(ei->i_data) - 1);
5228                 } else {
5229                         inode->i_op = &ext4_symlink_inode_operations;
5230                         ext4_set_aops(inode);
5231                 }
5232         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5233               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5234                 inode->i_op = &ext4_special_inode_operations;
5235                 if (raw_inode->i_block[0])
5236                         init_special_inode(inode, inode->i_mode,
5237                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5238                 else
5239                         init_special_inode(inode, inode->i_mode,
5240                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5241         } else {
5242                 ret = -EIO;
5243                 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5244                            inode->i_mode, inode->i_ino);
5245                 goto bad_inode;
5246         }
5247         brelse(iloc.bh);
5248         ext4_set_inode_flags(inode);
5249         unlock_new_inode(inode);
5250         return inode;
5251
5252 bad_inode:
5253         brelse(iloc.bh);
5254         iget_failed(inode);
5255         return ERR_PTR(ret);
5256 }
5257
5258 static int ext4_inode_blocks_set(handle_t *handle,
5259                                 struct ext4_inode *raw_inode,
5260                                 struct ext4_inode_info *ei)
5261 {
5262         struct inode *inode = &(ei->vfs_inode);
5263         u64 i_blocks = inode->i_blocks;
5264         struct super_block *sb = inode->i_sb;
5265
5266         if (i_blocks <= ~0U) {
5267                 /*
5268                  * i_blocks can be represnted in a 32 bit variable
5269                  * as multiple of 512 bytes
5270                  */
5271                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5272                 raw_inode->i_blocks_high = 0;
5273                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5274                 return 0;
5275         }
5276         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5277                 return -EFBIG;
5278
5279         if (i_blocks <= 0xffffffffffffULL) {
5280                 /*
5281                  * i_blocks can be represented in a 48 bit variable
5282                  * as multiple of 512 bytes
5283                  */
5284                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5285                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5286                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5287         } else {
5288                 ei->i_flags |= EXT4_HUGE_FILE_FL;
5289                 /* i_block is stored in file system block size */
5290                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5291                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5292                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5293         }
5294         return 0;
5295 }
5296
5297 /*
5298  * Post the struct inode info into an on-disk inode location in the
5299  * buffer-cache.  This gobbles the caller's reference to the
5300  * buffer_head in the inode location struct.
5301  *
5302  * The caller must have write access to iloc->bh.
5303  */
5304 static int ext4_do_update_inode(handle_t *handle,
5305                                 struct inode *inode,
5306                                 struct ext4_iloc *iloc)
5307 {
5308         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5309         struct ext4_inode_info *ei = EXT4_I(inode);
5310         struct buffer_head *bh = iloc->bh;
5311         int err = 0, rc, block;
5312
5313         /* For fields not not tracking in the in-memory inode,
5314          * initialise them to zero for new inodes. */
5315         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5316                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5317
5318         ext4_get_inode_flags(ei);
5319         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5320         if (!(test_opt(inode->i_sb, NO_UID32))) {
5321                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5322                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5323 /*
5324  * Fix up interoperability with old kernels. Otherwise, old inodes get
5325  * re-used with the upper 16 bits of the uid/gid intact
5326  */
5327                 if (!ei->i_dtime) {
5328                         raw_inode->i_uid_high =
5329                                 cpu_to_le16(high_16_bits(inode->i_uid));
5330                         raw_inode->i_gid_high =
5331                                 cpu_to_le16(high_16_bits(inode->i_gid));
5332                 } else {
5333                         raw_inode->i_uid_high = 0;
5334                         raw_inode->i_gid_high = 0;
5335                 }
5336         } else {
5337                 raw_inode->i_uid_low =
5338                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5339                 raw_inode->i_gid_low =
5340                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5341                 raw_inode->i_uid_high = 0;
5342                 raw_inode->i_gid_high = 0;
5343         }
5344         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5345
5346         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5347         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5348         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5349         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5350
5351         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5352                 goto out_brelse;
5353         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5354         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5355         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5356             cpu_to_le32(EXT4_OS_HURD))
5357                 raw_inode->i_file_acl_high =
5358                         cpu_to_le16(ei->i_file_acl >> 32);
5359         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5360         ext4_isize_set(raw_inode, ei->i_disksize);
5361         if (ei->i_disksize > 0x7fffffffULL) {
5362                 struct super_block *sb = inode->i_sb;
5363                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5364                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5365                                 EXT4_SB(sb)->s_es->s_rev_level ==
5366                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5367                         /* If this is the first large file
5368                          * created, add a flag to the superblock.
5369                          */
5370                         err = ext4_journal_get_write_access(handle,
5371                                         EXT4_SB(sb)->s_sbh);
5372                         if (err)
5373                                 goto out_brelse;
5374                         ext4_update_dynamic_rev(sb);
5375                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5376                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5377                         sb->s_dirt = 1;
5378                         ext4_handle_sync(handle);
5379                         err = ext4_handle_dirty_metadata(handle, NULL,
5380                                         EXT4_SB(sb)->s_sbh);
5381                 }
5382         }
5383         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5384         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5385                 if (old_valid_dev(inode->i_rdev)) {
5386                         raw_inode->i_block[0] =
5387                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5388                         raw_inode->i_block[1] = 0;
5389                 } else {
5390                         raw_inode->i_block[0] = 0;
5391                         raw_inode->i_block[1] =
5392                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5393                         raw_inode->i_block[2] = 0;
5394                 }
5395         } else
5396                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5397                         raw_inode->i_block[block] = ei->i_data[block];
5398
5399         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5400         if (ei->i_extra_isize) {
5401                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5402                         raw_inode->i_version_hi =
5403                         cpu_to_le32(inode->i_version >> 32);
5404                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5405         }
5406
5407         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5408         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5409         if (!err)
5410                 err = rc;
5411         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5412
5413         ext4_update_inode_fsync_trans(handle, inode, 0);
5414 out_brelse:
5415         brelse(bh);
5416         ext4_std_error(inode->i_sb, err);
5417         return err;
5418 }
5419
5420 /*
5421  * ext4_write_inode()
5422  *
5423  * We are called from a few places:
5424  *
5425  * - Within generic_file_write() for O_SYNC files.
5426  *   Here, there will be no transaction running. We wait for any running
5427  *   trasnaction to commit.
5428  *
5429  * - Within sys_sync(), kupdate and such.
5430  *   We wait on commit, if tol to.
5431  *
5432  * - Within prune_icache() (PF_MEMALLOC == true)
5433  *   Here we simply return.  We can't afford to block kswapd on the
5434  *   journal commit.
5435  *
5436  * In all cases it is actually safe for us to return without doing anything,
5437  * because the inode has been copied into a raw inode buffer in
5438  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5439  * knfsd.
5440  *
5441  * Note that we are absolutely dependent upon all inode dirtiers doing the
5442  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5443  * which we are interested.
5444  *
5445  * It would be a bug for them to not do this.  The code:
5446  *
5447  *      mark_inode_dirty(inode)
5448  *      stuff();
5449  *      inode->i_size = expr;
5450  *
5451  * is in error because a kswapd-driven write_inode() could occur while
5452  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5453  * will no longer be on the superblock's dirty inode list.
5454  */
5455 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5456 {
5457         int err;
5458
5459         if (current->flags & PF_MEMALLOC)
5460                 return 0;
5461
5462         if (EXT4_SB(inode->i_sb)->s_journal) {
5463                 if (ext4_journal_current_handle()) {
5464                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5465                         dump_stack();
5466                         return -EIO;
5467                 }
5468
5469                 if (wbc->sync_mode != WB_SYNC_ALL)
5470                         return 0;
5471
5472                 err = ext4_force_commit(inode->i_sb);
5473         } else {
5474                 struct ext4_iloc iloc;
5475
5476                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5477                 if (err)
5478                         return err;
5479                 if (wbc->sync_mode == WB_SYNC_ALL)
5480                         sync_dirty_buffer(iloc.bh);
5481                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5482                         ext4_error(inode->i_sb, "IO error syncing inode, "
5483                                    "inode=%lu, block=%llu", inode->i_ino,
5484                                    (unsigned long long)iloc.bh->b_blocknr);
5485                         err = -EIO;
5486                 }
5487                 brelse(iloc.bh);
5488         }
5489         return err;
5490 }
5491
5492 /*
5493  * ext4_setattr()
5494  *
5495  * Called from notify_change.
5496  *
5497  * We want to trap VFS attempts to truncate the file as soon as
5498  * possible.  In particular, we want to make sure that when the VFS
5499  * shrinks i_size, we put the inode on the orphan list and modify
5500  * i_disksize immediately, so that during the subsequent flushing of
5501  * dirty pages and freeing of disk blocks, we can guarantee that any
5502  * commit will leave the blocks being flushed in an unused state on
5503  * disk.  (On recovery, the inode will get truncated and the blocks will
5504  * be freed, so we have a strong guarantee that no future commit will
5505  * leave these blocks visible to the user.)
5506  *
5507  * Another thing we have to assure is that if we are in ordered mode
5508  * and inode is still attached to the committing transaction, we must
5509  * we start writeout of all the dirty pages which are being truncated.
5510  * This way we are sure that all the data written in the previous
5511  * transaction are already on disk (truncate waits for pages under
5512  * writeback).
5513  *
5514  * Called with inode->i_mutex down.
5515  */
5516 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5517 {
5518         struct inode *inode = dentry->d_inode;
5519         int error, rc = 0;
5520         const unsigned int ia_valid = attr->ia_valid;
5521
5522         error = inode_change_ok(inode, attr);
5523         if (error)
5524                 return error;
5525
5526         if (ia_valid & ATTR_SIZE)
5527                 dquot_initialize(inode);
5528         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5529                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5530                 handle_t *handle;
5531
5532                 /* (user+group)*(old+new) structure, inode write (sb,
5533                  * inode block, ? - but truncate inode update has it) */
5534                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5535                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5536                 if (IS_ERR(handle)) {
5537                         error = PTR_ERR(handle);
5538                         goto err_out;
5539                 }
5540                 error = dquot_transfer(inode, attr);
5541                 if (error) {
5542                         ext4_journal_stop(handle);
5543                         return error;
5544                 }
5545                 /* Update corresponding info in inode so that everything is in
5546                  * one transaction */
5547                 if (attr->ia_valid & ATTR_UID)
5548                         inode->i_uid = attr->ia_uid;
5549                 if (attr->ia_valid & ATTR_GID)
5550                         inode->i_gid = attr->ia_gid;
5551                 error = ext4_mark_inode_dirty(handle, inode);
5552                 ext4_journal_stop(handle);
5553         }
5554
5555         if (attr->ia_valid & ATTR_SIZE) {
5556                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5557                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5558
5559                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5560                                 error = -EFBIG;
5561                                 goto err_out;
5562                         }
5563                 }
5564         }
5565
5566         if (S_ISREG(inode->i_mode) &&
5567             attr->ia_valid & ATTR_SIZE &&
5568             (attr->ia_size < inode->i_size ||
5569              (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5570                 handle_t *handle;
5571
5572                 handle = ext4_journal_start(inode, 3);
5573                 if (IS_ERR(handle)) {
5574                         error = PTR_ERR(handle);
5575                         goto err_out;
5576                 }
5577
5578                 error = ext4_orphan_add(handle, inode);
5579                 EXT4_I(inode)->i_disksize = attr->ia_size;
5580                 rc = ext4_mark_inode_dirty(handle, inode);
5581                 if (!error)
5582                         error = rc;
5583                 ext4_journal_stop(handle);
5584
5585                 if (ext4_should_order_data(inode)) {
5586                         error = ext4_begin_ordered_truncate(inode,
5587                                                             attr->ia_size);
5588                         if (error) {
5589                                 /* Do as much error cleanup as possible */
5590                                 handle = ext4_journal_start(inode, 3);
5591                                 if (IS_ERR(handle)) {
5592                                         ext4_orphan_del(NULL, inode);
5593                                         goto err_out;
5594                                 }
5595                                 ext4_orphan_del(handle, inode);
5596                                 ext4_journal_stop(handle);
5597                                 goto err_out;
5598                         }
5599                 }
5600                 /* ext4_truncate will clear the flag */
5601                 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5602                         ext4_truncate(inode);
5603         }
5604
5605         rc = inode_setattr(inode, attr);
5606
5607         /* If inode_setattr's call to ext4_truncate failed to get a
5608          * transaction handle at all, we need to clean up the in-core
5609          * orphan list manually. */
5610         if (inode->i_nlink)
5611                 ext4_orphan_del(NULL, inode);
5612
5613         if (!rc && (ia_valid & ATTR_MODE))
5614                 rc = ext4_acl_chmod(inode);
5615
5616 err_out:
5617         ext4_std_error(inode->i_sb, error);
5618         if (!error)
5619                 error = rc;
5620         return error;
5621 }
5622
5623 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5624                  struct kstat *stat)
5625 {
5626         struct inode *inode;
5627         unsigned long delalloc_blocks;
5628
5629         inode = dentry->d_inode;
5630         generic_fillattr(inode, stat);
5631
5632         /*
5633          * We can't update i_blocks if the block allocation is delayed
5634          * otherwise in the case of system crash before the real block
5635          * allocation is done, we will have i_blocks inconsistent with
5636          * on-disk file blocks.
5637          * We always keep i_blocks updated together with real
5638          * allocation. But to not confuse with user, stat
5639          * will return the blocks that include the delayed allocation
5640          * blocks for this file.
5641          */
5642         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5643         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5644         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5645
5646         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5647         return 0;
5648 }
5649
5650 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5651                                       int chunk)
5652 {
5653         int indirects;
5654
5655         /* if nrblocks are contiguous */
5656         if (chunk) {
5657                 /*
5658                  * With N contiguous data blocks, it need at most
5659                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5660                  * 2 dindirect blocks
5661                  * 1 tindirect block
5662                  */
5663                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5664                 return indirects + 3;
5665         }
5666         /*
5667          * if nrblocks are not contiguous, worse case, each block touch
5668          * a indirect block, and each indirect block touch a double indirect
5669          * block, plus a triple indirect block
5670          */
5671         indirects = nrblocks * 2 + 1;
5672         return indirects;
5673 }
5674
5675 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5676 {
5677         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5678                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5679         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5680 }
5681
5682 /*
5683  * Account for index blocks, block groups bitmaps and block group
5684  * descriptor blocks if modify datablocks and index blocks
5685  * worse case, the indexs blocks spread over different block groups
5686  *
5687  * If datablocks are discontiguous, they are possible to spread over
5688  * different block groups too. If they are contiuguous, with flexbg,
5689  * they could still across block group boundary.
5690  *
5691  * Also account for superblock, inode, quota and xattr blocks
5692  */
5693 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5694 {
5695         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5696         int gdpblocks;
5697         int idxblocks;
5698         int ret = 0;
5699
5700         /*
5701          * How many index blocks need to touch to modify nrblocks?
5702          * The "Chunk" flag indicating whether the nrblocks is
5703          * physically contiguous on disk
5704          *
5705          * For Direct IO and fallocate, they calls get_block to allocate
5706          * one single extent at a time, so they could set the "Chunk" flag
5707          */
5708         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5709
5710         ret = idxblocks;
5711
5712         /*
5713          * Now let's see how many group bitmaps and group descriptors need
5714          * to account
5715          */
5716         groups = idxblocks;
5717         if (chunk)
5718                 groups += 1;
5719         else
5720                 groups += nrblocks;
5721
5722         gdpblocks = groups;
5723         if (groups > ngroups)
5724                 groups = ngroups;
5725         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5726                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5727
5728         /* bitmaps and block group descriptor blocks */
5729         ret += groups + gdpblocks;
5730
5731         /* Blocks for super block, inode, quota and xattr blocks */
5732         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5733
5734         return ret;
5735 }
5736
5737 /*
5738  * Calulate the total number of credits to reserve to fit
5739  * the modification of a single pages into a single transaction,
5740  * which may include multiple chunks of block allocations.
5741  *
5742  * This could be called via ext4_write_begin()
5743  *
5744  * We need to consider the worse case, when
5745  * one new block per extent.
5746  */
5747 int ext4_writepage_trans_blocks(struct inode *inode)
5748 {
5749         int bpp = ext4_journal_blocks_per_page(inode);
5750         int ret;
5751
5752         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5753
5754         /* Account for data blocks for journalled mode */
5755         if (ext4_should_journal_data(inode))
5756                 ret += bpp;
5757         return ret;
5758 }
5759
5760 /*
5761  * Calculate the journal credits for a chunk of data modification.
5762  *
5763  * This is called from DIO, fallocate or whoever calling
5764  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5765  *
5766  * journal buffers for data blocks are not included here, as DIO
5767  * and fallocate do no need to journal data buffers.
5768  */
5769 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5770 {
5771         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5772 }
5773
5774 /*
5775  * The caller must have previously called ext4_reserve_inode_write().
5776  * Give this, we know that the caller already has write access to iloc->bh.
5777  */
5778 int ext4_mark_iloc_dirty(handle_t *handle,
5779                          struct inode *inode, struct ext4_iloc *iloc)
5780 {
5781         int err = 0;
5782
5783         if (test_opt(inode->i_sb, I_VERSION))
5784                 inode_inc_iversion(inode);
5785
5786         /* the do_update_inode consumes one bh->b_count */
5787         get_bh(iloc->bh);
5788
5789         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5790         err = ext4_do_update_inode(handle, inode, iloc);
5791         put_bh(iloc->bh);
5792         return err;
5793 }
5794
5795 /*
5796  * On success, We end up with an outstanding reference count against
5797  * iloc->bh.  This _must_ be cleaned up later.
5798  */
5799
5800 int
5801 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5802                          struct ext4_iloc *iloc)
5803 {
5804         int err;
5805
5806         err = ext4_get_inode_loc(inode, iloc);
5807         if (!err) {
5808                 BUFFER_TRACE(iloc->bh, "get_write_access");
5809                 err = ext4_journal_get_write_access(handle, iloc->bh);
5810                 if (err) {
5811                         brelse(iloc->bh);
5812                         iloc->bh = NULL;
5813                 }
5814         }
5815         ext4_std_error(inode->i_sb, err);
5816         return err;
5817 }
5818
5819 /*
5820  * Expand an inode by new_extra_isize bytes.
5821  * Returns 0 on success or negative error number on failure.
5822  */
5823 static int ext4_expand_extra_isize(struct inode *inode,
5824                                    unsigned int new_extra_isize,
5825                                    struct ext4_iloc iloc,
5826                                    handle_t *handle)
5827 {
5828         struct ext4_inode *raw_inode;
5829         struct ext4_xattr_ibody_header *header;
5830         struct ext4_xattr_entry *entry;
5831
5832         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5833                 return 0;
5834
5835         raw_inode = ext4_raw_inode(&iloc);
5836
5837         header = IHDR(inode, raw_inode);
5838         entry = IFIRST(header);
5839
5840         /* No extended attributes present */
5841         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5842             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5843                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5844                         new_extra_isize);
5845                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5846                 return 0;
5847         }
5848
5849         /* try to expand with EAs present */
5850         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5851                                           raw_inode, handle);
5852 }
5853
5854 /*
5855  * What we do here is to mark the in-core inode as clean with respect to inode
5856  * dirtiness (it may still be data-dirty).
5857  * This means that the in-core inode may be reaped by prune_icache
5858  * without having to perform any I/O.  This is a very good thing,
5859  * because *any* task may call prune_icache - even ones which
5860  * have a transaction open against a different journal.
5861  *
5862  * Is this cheating?  Not really.  Sure, we haven't written the
5863  * inode out, but prune_icache isn't a user-visible syncing function.
5864  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5865  * we start and wait on commits.
5866  *
5867  * Is this efficient/effective?  Well, we're being nice to the system
5868  * by cleaning up our inodes proactively so they can be reaped
5869  * without I/O.  But we are potentially leaving up to five seconds'
5870  * worth of inodes floating about which prune_icache wants us to
5871  * write out.  One way to fix that would be to get prune_icache()
5872  * to do a write_super() to free up some memory.  It has the desired
5873  * effect.
5874  */
5875 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5876 {
5877         struct ext4_iloc iloc;
5878         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5879         static unsigned int mnt_count;
5880         int err, ret;
5881
5882         might_sleep();
5883         err = ext4_reserve_inode_write(handle, inode, &iloc);
5884         if (ext4_handle_valid(handle) &&
5885             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5886             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5887                 /*
5888                  * We need extra buffer credits since we may write into EA block
5889                  * with this same handle. If journal_extend fails, then it will
5890                  * only result in a minor loss of functionality for that inode.
5891                  * If this is felt to be critical, then e2fsck should be run to
5892                  * force a large enough s_min_extra_isize.
5893                  */
5894                 if ((jbd2_journal_extend(handle,
5895                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5896                         ret = ext4_expand_extra_isize(inode,
5897                                                       sbi->s_want_extra_isize,
5898                                                       iloc, handle);
5899                         if (ret) {
5900                                 ext4_set_inode_state(inode,
5901                                                      EXT4_STATE_NO_EXPAND);
5902                                 if (mnt_count !=
5903                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5904                                         ext4_warning(inode->i_sb,
5905                                         "Unable to expand inode %lu. Delete"
5906                                         " some EAs or run e2fsck.",
5907                                         inode->i_ino);
5908                                         mnt_count =
5909                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5910                                 }
5911                         }
5912                 }
5913         }
5914         if (!err)
5915                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5916         return err;
5917 }
5918
5919 /*
5920  * ext4_dirty_inode() is called from __mark_inode_dirty()
5921  *
5922  * We're really interested in the case where a file is being extended.
5923  * i_size has been changed by generic_commit_write() and we thus need
5924  * to include the updated inode in the current transaction.
5925  *
5926  * Also, dquot_alloc_block() will always dirty the inode when blocks
5927  * are allocated to the file.
5928  *
5929  * If the inode is marked synchronous, we don't honour that here - doing
5930  * so would cause a commit on atime updates, which we don't bother doing.
5931  * We handle synchronous inodes at the highest possible level.
5932  */
5933 void ext4_dirty_inode(struct inode *inode)
5934 {
5935         handle_t *handle;
5936
5937         handle = ext4_journal_start(inode, 2);
5938         if (IS_ERR(handle))
5939                 goto out;
5940
5941         ext4_mark_inode_dirty(handle, inode);
5942
5943         ext4_journal_stop(handle);
5944 out:
5945         return;
5946 }
5947
5948 #if 0
5949 /*
5950  * Bind an inode's backing buffer_head into this transaction, to prevent
5951  * it from being flushed to disk early.  Unlike
5952  * ext4_reserve_inode_write, this leaves behind no bh reference and
5953  * returns no iloc structure, so the caller needs to repeat the iloc
5954  * lookup to mark the inode dirty later.
5955  */
5956 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5957 {
5958         struct ext4_iloc iloc;
5959
5960         int err = 0;
5961         if (handle) {
5962                 err = ext4_get_inode_loc(inode, &iloc);
5963                 if (!err) {
5964                         BUFFER_TRACE(iloc.bh, "get_write_access");
5965                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5966                         if (!err)
5967                                 err = ext4_handle_dirty_metadata(handle,
5968                                                                  NULL,
5969                                                                  iloc.bh);
5970                         brelse(iloc.bh);
5971                 }
5972         }
5973         ext4_std_error(inode->i_sb, err);
5974         return err;
5975 }
5976 #endif
5977
5978 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5979 {
5980         journal_t *journal;
5981         handle_t *handle;
5982         int err;
5983
5984         /*
5985          * We have to be very careful here: changing a data block's
5986          * journaling status dynamically is dangerous.  If we write a
5987          * data block to the journal, change the status and then delete
5988          * that block, we risk forgetting to revoke the old log record
5989          * from the journal and so a subsequent replay can corrupt data.
5990          * So, first we make sure that the journal is empty and that
5991          * nobody is changing anything.
5992          */
5993
5994         journal = EXT4_JOURNAL(inode);
5995         if (!journal)
5996                 return 0;
5997         if (is_journal_aborted(journal))
5998                 return -EROFS;
5999
6000         jbd2_journal_lock_updates(journal);
6001         jbd2_journal_flush(journal);
6002
6003         /*
6004          * OK, there are no updates running now, and all cached data is
6005          * synced to disk.  We are now in a completely consistent state
6006          * which doesn't have anything in the journal, and we know that
6007          * no filesystem updates are running, so it is safe to modify
6008          * the inode's in-core data-journaling state flag now.
6009          */
6010
6011         if (val)
6012                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
6013         else
6014                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
6015         ext4_set_aops(inode);
6016
6017         jbd2_journal_unlock_updates(journal);
6018
6019         /* Finally we can mark the inode as dirty. */
6020
6021         handle = ext4_journal_start(inode, 1);
6022         if (IS_ERR(handle))
6023                 return PTR_ERR(handle);
6024
6025         err = ext4_mark_inode_dirty(handle, inode);
6026         ext4_handle_sync(handle);
6027         ext4_journal_stop(handle);
6028         ext4_std_error(inode->i_sb, err);
6029
6030         return err;
6031 }
6032
6033 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6034 {
6035         return !buffer_mapped(bh);
6036 }
6037
6038 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6039 {
6040         struct page *page = vmf->page;
6041         loff_t size;
6042         unsigned long len;
6043         int ret = -EINVAL;
6044         void *fsdata;
6045         struct file *file = vma->vm_file;
6046         struct inode *inode = file->f_path.dentry->d_inode;
6047         struct address_space *mapping = inode->i_mapping;
6048
6049         /*
6050          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6051          * get i_mutex because we are already holding mmap_sem.
6052          */
6053         down_read(&inode->i_alloc_sem);
6054         size = i_size_read(inode);
6055         if (page->mapping != mapping || size <= page_offset(page)
6056             || !PageUptodate(page)) {
6057                 /* page got truncated from under us? */
6058                 goto out_unlock;
6059         }
6060         ret = 0;
6061         if (PageMappedToDisk(page))
6062                 goto out_unlock;
6063
6064         if (page->index == size >> PAGE_CACHE_SHIFT)
6065                 len = size & ~PAGE_CACHE_MASK;
6066         else
6067                 len = PAGE_CACHE_SIZE;
6068
6069         lock_page(page);
6070         /*
6071          * return if we have all the buffers mapped. This avoid
6072          * the need to call write_begin/write_end which does a
6073          * journal_start/journal_stop which can block and take
6074          * long time
6075          */
6076         if (page_has_buffers(page)) {
6077                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6078                                         ext4_bh_unmapped)) {
6079                         unlock_page(page);
6080                         goto out_unlock;
6081                 }
6082         }
6083         unlock_page(page);
6084         /*
6085          * OK, we need to fill the hole... Do write_begin write_end
6086          * to do block allocation/reservation.We are not holding
6087          * inode.i__mutex here. That allow * parallel write_begin,
6088          * write_end call. lock_page prevent this from happening
6089          * on the same page though
6090          */
6091         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6092                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6093         if (ret < 0)
6094                 goto out_unlock;
6095         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6096                         len, len, page, fsdata);
6097         if (ret < 0)
6098                 goto out_unlock;
6099         ret = 0;
6100 out_unlock:
6101         if (ret)
6102                 ret = VM_FAULT_SIGBUS;
6103         up_read(&inode->i_alloc_sem);
6104         return ret;
6105 }