]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext4/inode.c
ext4: Convert callers of ext4_get_blocks() to use ext4_map_blocks()
[net-next-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69         int ea_blocks = EXT4_I(inode)->i_file_acl ?
70                 (inode->i_sb->s_blocksize >> 9) : 0;
71
72         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81         ext4_lblk_t needed;
82
83         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85         /* Give ourselves just enough room to cope with inodes in which
86          * i_blocks is corrupt: we've seen disk corruptions in the past
87          * which resulted in random data in an inode which looked enough
88          * like a regular file for ext4 to try to delete it.  Things
89          * will go a bit crazy if that happens, but at least we should
90          * try not to panic the whole kernel. */
91         if (needed < 2)
92                 needed = 2;
93
94         /* But we need to bound the transaction so we don't overflow the
95          * journal. */
96         if (needed > EXT4_MAX_TRANS_DATA)
97                 needed = EXT4_MAX_TRANS_DATA;
98
99         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114         handle_t *result;
115
116         result = ext4_journal_start(inode, blocks_for_truncate(inode));
117         if (!IS_ERR(result))
118                 return result;
119
120         ext4_std_error(inode->i_sb, PTR_ERR(result));
121         return result;
122 }
123
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132         if (!ext4_handle_valid(handle))
133                 return 0;
134         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135                 return 0;
136         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137                 return 0;
138         return 1;
139 }
140
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147                                  int nblocks)
148 {
149         int ret;
150
151         /*
152          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153          * moment, get_block can be called only for blocks inside i_size since
154          * page cache has been already dropped and writes are blocked by
155          * i_mutex. So we can safely drop the i_data_sem here.
156          */
157         BUG_ON(EXT4_JOURNAL(inode) == NULL);
158         jbd_debug(2, "restarting handle %p\n", handle);
159         up_write(&EXT4_I(inode)->i_data_sem);
160         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161         down_write(&EXT4_I(inode)->i_data_sem);
162         ext4_discard_preallocations(inode);
163
164         return ret;
165 }
166
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172         handle_t *handle;
173         int err;
174
175         if (!is_bad_inode(inode))
176                 dquot_initialize(inode);
177
178         if (ext4_should_order_data(inode))
179                 ext4_begin_ordered_truncate(inode, 0);
180         truncate_inode_pages(&inode->i_data, 0);
181
182         if (is_bad_inode(inode))
183                 goto no_delete;
184
185         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186         if (IS_ERR(handle)) {
187                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188                 /*
189                  * If we're going to skip the normal cleanup, we still need to
190                  * make sure that the in-core orphan linked list is properly
191                  * cleaned up.
192                  */
193                 ext4_orphan_del(NULL, inode);
194                 goto no_delete;
195         }
196
197         if (IS_SYNC(inode))
198                 ext4_handle_sync(handle);
199         inode->i_size = 0;
200         err = ext4_mark_inode_dirty(handle, inode);
201         if (err) {
202                 ext4_warning(inode->i_sb,
203                              "couldn't mark inode dirty (err %d)", err);
204                 goto stop_handle;
205         }
206         if (inode->i_blocks)
207                 ext4_truncate(inode);
208
209         /*
210          * ext4_ext_truncate() doesn't reserve any slop when it
211          * restarts journal transactions; therefore there may not be
212          * enough credits left in the handle to remove the inode from
213          * the orphan list and set the dtime field.
214          */
215         if (!ext4_handle_has_enough_credits(handle, 3)) {
216                 err = ext4_journal_extend(handle, 3);
217                 if (err > 0)
218                         err = ext4_journal_restart(handle, 3);
219                 if (err != 0) {
220                         ext4_warning(inode->i_sb,
221                                      "couldn't extend journal (err %d)", err);
222                 stop_handle:
223                         ext4_journal_stop(handle);
224                         goto no_delete;
225                 }
226         }
227
228         /*
229          * Kill off the orphan record which ext4_truncate created.
230          * AKPM: I think this can be inside the above `if'.
231          * Note that ext4_orphan_del() has to be able to cope with the
232          * deletion of a non-existent orphan - this is because we don't
233          * know if ext4_truncate() actually created an orphan record.
234          * (Well, we could do this if we need to, but heck - it works)
235          */
236         ext4_orphan_del(handle, inode);
237         EXT4_I(inode)->i_dtime  = get_seconds();
238
239         /*
240          * One subtle ordering requirement: if anything has gone wrong
241          * (transaction abort, IO errors, whatever), then we can still
242          * do these next steps (the fs will already have been marked as
243          * having errors), but we can't free the inode if the mark_dirty
244          * fails.
245          */
246         if (ext4_mark_inode_dirty(handle, inode))
247                 /* If that failed, just do the required in-core inode clear. */
248                 clear_inode(inode);
249         else
250                 ext4_free_inode(handle, inode);
251         ext4_journal_stop(handle);
252         return;
253 no_delete:
254         clear_inode(inode);     /* We must guarantee clearing of inode... */
255 }
256
257 typedef struct {
258         __le32  *p;
259         __le32  key;
260         struct buffer_head *bh;
261 } Indirect;
262
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265         p->key = *(p->p = v);
266         p->bh = bh;
267 }
268
269 /**
270  *      ext4_block_to_path - parse the block number into array of offsets
271  *      @inode: inode in question (we are only interested in its superblock)
272  *      @i_block: block number to be parsed
273  *      @offsets: array to store the offsets in
274  *      @boundary: set this non-zero if the referred-to block is likely to be
275  *             followed (on disk) by an indirect block.
276  *
277  *      To store the locations of file's data ext4 uses a data structure common
278  *      for UNIX filesystems - tree of pointers anchored in the inode, with
279  *      data blocks at leaves and indirect blocks in intermediate nodes.
280  *      This function translates the block number into path in that tree -
281  *      return value is the path length and @offsets[n] is the offset of
282  *      pointer to (n+1)th node in the nth one. If @block is out of range
283  *      (negative or too large) warning is printed and zero returned.
284  *
285  *      Note: function doesn't find node addresses, so no IO is needed. All
286  *      we need to know is the capacity of indirect blocks (taken from the
287  *      inode->i_sb).
288  */
289
290 /*
291  * Portability note: the last comparison (check that we fit into triple
292  * indirect block) is spelled differently, because otherwise on an
293  * architecture with 32-bit longs and 8Kb pages we might get into trouble
294  * if our filesystem had 8Kb blocks. We might use long long, but that would
295  * kill us on x86. Oh, well, at least the sign propagation does not matter -
296  * i_block would have to be negative in the very beginning, so we would not
297  * get there at all.
298  */
299
300 static int ext4_block_to_path(struct inode *inode,
301                               ext4_lblk_t i_block,
302                               ext4_lblk_t offsets[4], int *boundary)
303 {
304         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306         const long direct_blocks = EXT4_NDIR_BLOCKS,
307                 indirect_blocks = ptrs,
308                 double_blocks = (1 << (ptrs_bits * 2));
309         int n = 0;
310         int final = 0;
311
312         if (i_block < direct_blocks) {
313                 offsets[n++] = i_block;
314                 final = direct_blocks;
315         } else if ((i_block -= direct_blocks) < indirect_blocks) {
316                 offsets[n++] = EXT4_IND_BLOCK;
317                 offsets[n++] = i_block;
318                 final = ptrs;
319         } else if ((i_block -= indirect_blocks) < double_blocks) {
320                 offsets[n++] = EXT4_DIND_BLOCK;
321                 offsets[n++] = i_block >> ptrs_bits;
322                 offsets[n++] = i_block & (ptrs - 1);
323                 final = ptrs;
324         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325                 offsets[n++] = EXT4_TIND_BLOCK;
326                 offsets[n++] = i_block >> (ptrs_bits * 2);
327                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328                 offsets[n++] = i_block & (ptrs - 1);
329                 final = ptrs;
330         } else {
331                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332                              i_block + direct_blocks +
333                              indirect_blocks + double_blocks, inode->i_ino);
334         }
335         if (boundary)
336                 *boundary = final - 1 - (i_block & (ptrs - 1));
337         return n;
338 }
339
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341                                  __le32 *p, unsigned int max)
342 {
343         __le32 *bref = p;
344         unsigned int blk;
345
346         while (bref < p+max) {
347                 blk = le32_to_cpu(*bref++);
348                 if (blk &&
349                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350                                                     blk, 1))) {
351                         __ext4_error(inode->i_sb, function,
352                                    "invalid block reference %u "
353                                    "in inode #%lu", blk, inode->i_ino);
354                         return -EIO;
355                 }
356         }
357         return 0;
358 }
359
360
361 #define ext4_check_indirect_blockref(inode, bh)                         \
362         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
363                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364
365 #define ext4_check_inode_blockref(inode)                                \
366         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
367                               EXT4_NDIR_BLOCKS)
368
369 /**
370  *      ext4_get_branch - read the chain of indirect blocks leading to data
371  *      @inode: inode in question
372  *      @depth: depth of the chain (1 - direct pointer, etc.)
373  *      @offsets: offsets of pointers in inode/indirect blocks
374  *      @chain: place to store the result
375  *      @err: here we store the error value
376  *
377  *      Function fills the array of triples <key, p, bh> and returns %NULL
378  *      if everything went OK or the pointer to the last filled triple
379  *      (incomplete one) otherwise. Upon the return chain[i].key contains
380  *      the number of (i+1)-th block in the chain (as it is stored in memory,
381  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
382  *      number (it points into struct inode for i==0 and into the bh->b_data
383  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384  *      block for i>0 and NULL for i==0. In other words, it holds the block
385  *      numbers of the chain, addresses they were taken from (and where we can
386  *      verify that chain did not change) and buffer_heads hosting these
387  *      numbers.
388  *
389  *      Function stops when it stumbles upon zero pointer (absent block)
390  *              (pointer to last triple returned, *@err == 0)
391  *      or when it gets an IO error reading an indirect block
392  *              (ditto, *@err == -EIO)
393  *      or when it reads all @depth-1 indirect blocks successfully and finds
394  *      the whole chain, all way to the data (returns %NULL, *err == 0).
395  *
396  *      Need to be called with
397  *      down_read(&EXT4_I(inode)->i_data_sem)
398  */
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400                                  ext4_lblk_t  *offsets,
401                                  Indirect chain[4], int *err)
402 {
403         struct super_block *sb = inode->i_sb;
404         Indirect *p = chain;
405         struct buffer_head *bh;
406
407         *err = 0;
408         /* i_data is not going away, no lock needed */
409         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410         if (!p->key)
411                 goto no_block;
412         while (--depth) {
413                 bh = sb_getblk(sb, le32_to_cpu(p->key));
414                 if (unlikely(!bh))
415                         goto failure;
416
417                 if (!bh_uptodate_or_lock(bh)) {
418                         if (bh_submit_read(bh) < 0) {
419                                 put_bh(bh);
420                                 goto failure;
421                         }
422                         /* validate block references */
423                         if (ext4_check_indirect_blockref(inode, bh)) {
424                                 put_bh(bh);
425                                 goto failure;
426                         }
427                 }
428
429                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430                 /* Reader: end */
431                 if (!p->key)
432                         goto no_block;
433         }
434         return NULL;
435
436 failure:
437         *err = -EIO;
438 no_block:
439         return p;
440 }
441
442 /**
443  *      ext4_find_near - find a place for allocation with sufficient locality
444  *      @inode: owner
445  *      @ind: descriptor of indirect block.
446  *
447  *      This function returns the preferred place for block allocation.
448  *      It is used when heuristic for sequential allocation fails.
449  *      Rules are:
450  *        + if there is a block to the left of our position - allocate near it.
451  *        + if pointer will live in indirect block - allocate near that block.
452  *        + if pointer will live in inode - allocate in the same
453  *          cylinder group.
454  *
455  * In the latter case we colour the starting block by the callers PID to
456  * prevent it from clashing with concurrent allocations for a different inode
457  * in the same block group.   The PID is used here so that functionally related
458  * files will be close-by on-disk.
459  *
460  *      Caller must make sure that @ind is valid and will stay that way.
461  */
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463 {
464         struct ext4_inode_info *ei = EXT4_I(inode);
465         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466         __le32 *p;
467         ext4_fsblk_t bg_start;
468         ext4_fsblk_t last_block;
469         ext4_grpblk_t colour;
470         ext4_group_t block_group;
471         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472
473         /* Try to find previous block */
474         for (p = ind->p - 1; p >= start; p--) {
475                 if (*p)
476                         return le32_to_cpu(*p);
477         }
478
479         /* No such thing, so let's try location of indirect block */
480         if (ind->bh)
481                 return ind->bh->b_blocknr;
482
483         /*
484          * It is going to be referred to from the inode itself? OK, just put it
485          * into the same cylinder group then.
486          */
487         block_group = ei->i_block_group;
488         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489                 block_group &= ~(flex_size-1);
490                 if (S_ISREG(inode->i_mode))
491                         block_group++;
492         }
493         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495
496         /*
497          * If we are doing delayed allocation, we don't need take
498          * colour into account.
499          */
500         if (test_opt(inode->i_sb, DELALLOC))
501                 return bg_start;
502
503         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504                 colour = (current->pid % 16) *
505                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506         else
507                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508         return bg_start + colour;
509 }
510
511 /**
512  *      ext4_find_goal - find a preferred place for allocation.
513  *      @inode: owner
514  *      @block:  block we want
515  *      @partial: pointer to the last triple within a chain
516  *
517  *      Normally this function find the preferred place for block allocation,
518  *      returns it.
519  *      Because this is only used for non-extent files, we limit the block nr
520  *      to 32 bits.
521  */
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523                                    Indirect *partial)
524 {
525         ext4_fsblk_t goal;
526
527         /*
528          * XXX need to get goal block from mballoc's data structures
529          */
530
531         goal = ext4_find_near(inode, partial);
532         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533         return goal;
534 }
535
536 /**
537  *      ext4_blks_to_allocate: Look up the block map and count the number
538  *      of direct blocks need to be allocated for the given branch.
539  *
540  *      @branch: chain of indirect blocks
541  *      @k: number of blocks need for indirect blocks
542  *      @blks: number of data blocks to be mapped.
543  *      @blocks_to_boundary:  the offset in the indirect block
544  *
545  *      return the total number of blocks to be allocate, including the
546  *      direct and indirect blocks.
547  */
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549                                  int blocks_to_boundary)
550 {
551         unsigned int count = 0;
552
553         /*
554          * Simple case, [t,d]Indirect block(s) has not allocated yet
555          * then it's clear blocks on that path have not allocated
556          */
557         if (k > 0) {
558                 /* right now we don't handle cross boundary allocation */
559                 if (blks < blocks_to_boundary + 1)
560                         count += blks;
561                 else
562                         count += blocks_to_boundary + 1;
563                 return count;
564         }
565
566         count++;
567         while (count < blks && count <= blocks_to_boundary &&
568                 le32_to_cpu(*(branch[0].p + count)) == 0) {
569                 count++;
570         }
571         return count;
572 }
573
574 /**
575  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
576  *      @indirect_blks: the number of blocks need to allocate for indirect
577  *                      blocks
578  *
579  *      @new_blocks: on return it will store the new block numbers for
580  *      the indirect blocks(if needed) and the first direct block,
581  *      @blks:  on return it will store the total number of allocated
582  *              direct blocks
583  */
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585                              ext4_lblk_t iblock, ext4_fsblk_t goal,
586                              int indirect_blks, int blks,
587                              ext4_fsblk_t new_blocks[4], int *err)
588 {
589         struct ext4_allocation_request ar;
590         int target, i;
591         unsigned long count = 0, blk_allocated = 0;
592         int index = 0;
593         ext4_fsblk_t current_block = 0;
594         int ret = 0;
595
596         /*
597          * Here we try to allocate the requested multiple blocks at once,
598          * on a best-effort basis.
599          * To build a branch, we should allocate blocks for
600          * the indirect blocks(if not allocated yet), and at least
601          * the first direct block of this branch.  That's the
602          * minimum number of blocks need to allocate(required)
603          */
604         /* first we try to allocate the indirect blocks */
605         target = indirect_blks;
606         while (target > 0) {
607                 count = target;
608                 /* allocating blocks for indirect blocks and direct blocks */
609                 current_block = ext4_new_meta_blocks(handle, inode,
610                                                         goal, &count, err);
611                 if (*err)
612                         goto failed_out;
613
614                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615                         EXT4_ERROR_INODE(inode,
616                                          "current_block %llu + count %lu > %d!",
617                                          current_block, count,
618                                          EXT4_MAX_BLOCK_FILE_PHYS);
619                         *err = -EIO;
620                         goto failed_out;
621                 }
622
623                 target -= count;
624                 /* allocate blocks for indirect blocks */
625                 while (index < indirect_blks && count) {
626                         new_blocks[index++] = current_block++;
627                         count--;
628                 }
629                 if (count > 0) {
630                         /*
631                          * save the new block number
632                          * for the first direct block
633                          */
634                         new_blocks[index] = current_block;
635                         printk(KERN_INFO "%s returned more blocks than "
636                                                 "requested\n", __func__);
637                         WARN_ON(1);
638                         break;
639                 }
640         }
641
642         target = blks - count ;
643         blk_allocated = count;
644         if (!target)
645                 goto allocated;
646         /* Now allocate data blocks */
647         memset(&ar, 0, sizeof(ar));
648         ar.inode = inode;
649         ar.goal = goal;
650         ar.len = target;
651         ar.logical = iblock;
652         if (S_ISREG(inode->i_mode))
653                 /* enable in-core preallocation only for regular files */
654                 ar.flags = EXT4_MB_HINT_DATA;
655
656         current_block = ext4_mb_new_blocks(handle, &ar, err);
657         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658                 EXT4_ERROR_INODE(inode,
659                                  "current_block %llu + ar.len %d > %d!",
660                                  current_block, ar.len,
661                                  EXT4_MAX_BLOCK_FILE_PHYS);
662                 *err = -EIO;
663                 goto failed_out;
664         }
665
666         if (*err && (target == blks)) {
667                 /*
668                  * if the allocation failed and we didn't allocate
669                  * any blocks before
670                  */
671                 goto failed_out;
672         }
673         if (!*err) {
674                 if (target == blks) {
675                         /*
676                          * save the new block number
677                          * for the first direct block
678                          */
679                         new_blocks[index] = current_block;
680                 }
681                 blk_allocated += ar.len;
682         }
683 allocated:
684         /* total number of blocks allocated for direct blocks */
685         ret = blk_allocated;
686         *err = 0;
687         return ret;
688 failed_out:
689         for (i = 0; i < index; i++)
690                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691         return ret;
692 }
693
694 /**
695  *      ext4_alloc_branch - allocate and set up a chain of blocks.
696  *      @inode: owner
697  *      @indirect_blks: number of allocated indirect blocks
698  *      @blks: number of allocated direct blocks
699  *      @offsets: offsets (in the blocks) to store the pointers to next.
700  *      @branch: place to store the chain in.
701  *
702  *      This function allocates blocks, zeroes out all but the last one,
703  *      links them into chain and (if we are synchronous) writes them to disk.
704  *      In other words, it prepares a branch that can be spliced onto the
705  *      inode. It stores the information about that chain in the branch[], in
706  *      the same format as ext4_get_branch() would do. We are calling it after
707  *      we had read the existing part of chain and partial points to the last
708  *      triple of that (one with zero ->key). Upon the exit we have the same
709  *      picture as after the successful ext4_get_block(), except that in one
710  *      place chain is disconnected - *branch->p is still zero (we did not
711  *      set the last link), but branch->key contains the number that should
712  *      be placed into *branch->p to fill that gap.
713  *
714  *      If allocation fails we free all blocks we've allocated (and forget
715  *      their buffer_heads) and return the error value the from failed
716  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717  *      as described above and return 0.
718  */
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720                              ext4_lblk_t iblock, int indirect_blks,
721                              int *blks, ext4_fsblk_t goal,
722                              ext4_lblk_t *offsets, Indirect *branch)
723 {
724         int blocksize = inode->i_sb->s_blocksize;
725         int i, n = 0;
726         int err = 0;
727         struct buffer_head *bh;
728         int num;
729         ext4_fsblk_t new_blocks[4];
730         ext4_fsblk_t current_block;
731
732         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733                                 *blks, new_blocks, &err);
734         if (err)
735                 return err;
736
737         branch[0].key = cpu_to_le32(new_blocks[0]);
738         /*
739          * metadata blocks and data blocks are allocated.
740          */
741         for (n = 1; n <= indirect_blks;  n++) {
742                 /*
743                  * Get buffer_head for parent block, zero it out
744                  * and set the pointer to new one, then send
745                  * parent to disk.
746                  */
747                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748                 branch[n].bh = bh;
749                 lock_buffer(bh);
750                 BUFFER_TRACE(bh, "call get_create_access");
751                 err = ext4_journal_get_create_access(handle, bh);
752                 if (err) {
753                         /* Don't brelse(bh) here; it's done in
754                          * ext4_journal_forget() below */
755                         unlock_buffer(bh);
756                         goto failed;
757                 }
758
759                 memset(bh->b_data, 0, blocksize);
760                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761                 branch[n].key = cpu_to_le32(new_blocks[n]);
762                 *branch[n].p = branch[n].key;
763                 if (n == indirect_blks) {
764                         current_block = new_blocks[n];
765                         /*
766                          * End of chain, update the last new metablock of
767                          * the chain to point to the new allocated
768                          * data blocks numbers
769                          */
770                         for (i = 1; i < num; i++)
771                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
772                 }
773                 BUFFER_TRACE(bh, "marking uptodate");
774                 set_buffer_uptodate(bh);
775                 unlock_buffer(bh);
776
777                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778                 err = ext4_handle_dirty_metadata(handle, inode, bh);
779                 if (err)
780                         goto failed;
781         }
782         *blks = num;
783         return err;
784 failed:
785         /* Allocation failed, free what we already allocated */
786         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787         for (i = 1; i <= n ; i++) {
788                 /* 
789                  * branch[i].bh is newly allocated, so there is no
790                  * need to revoke the block, which is why we don't
791                  * need to set EXT4_FREE_BLOCKS_METADATA.
792                  */
793                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794                                  EXT4_FREE_BLOCKS_FORGET);
795         }
796         for (i = n+1; i < indirect_blks; i++)
797                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798
799         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800
801         return err;
802 }
803
804 /**
805  * ext4_splice_branch - splice the allocated branch onto inode.
806  * @inode: owner
807  * @block: (logical) number of block we are adding
808  * @chain: chain of indirect blocks (with a missing link - see
809  *      ext4_alloc_branch)
810  * @where: location of missing link
811  * @num:   number of indirect blocks we are adding
812  * @blks:  number of direct blocks we are adding
813  *
814  * This function fills the missing link and does all housekeeping needed in
815  * inode (->i_blocks, etc.). In case of success we end up with the full
816  * chain to new block and return 0.
817  */
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819                               ext4_lblk_t block, Indirect *where, int num,
820                               int blks)
821 {
822         int i;
823         int err = 0;
824         ext4_fsblk_t current_block;
825
826         /*
827          * If we're splicing into a [td]indirect block (as opposed to the
828          * inode) then we need to get write access to the [td]indirect block
829          * before the splice.
830          */
831         if (where->bh) {
832                 BUFFER_TRACE(where->bh, "get_write_access");
833                 err = ext4_journal_get_write_access(handle, where->bh);
834                 if (err)
835                         goto err_out;
836         }
837         /* That's it */
838
839         *where->p = where->key;
840
841         /*
842          * Update the host buffer_head or inode to point to more just allocated
843          * direct blocks blocks
844          */
845         if (num == 0 && blks > 1) {
846                 current_block = le32_to_cpu(where->key) + 1;
847                 for (i = 1; i < blks; i++)
848                         *(where->p + i) = cpu_to_le32(current_block++);
849         }
850
851         /* We are done with atomic stuff, now do the rest of housekeeping */
852         /* had we spliced it onto indirect block? */
853         if (where->bh) {
854                 /*
855                  * If we spliced it onto an indirect block, we haven't
856                  * altered the inode.  Note however that if it is being spliced
857                  * onto an indirect block at the very end of the file (the
858                  * file is growing) then we *will* alter the inode to reflect
859                  * the new i_size.  But that is not done here - it is done in
860                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861                  */
862                 jbd_debug(5, "splicing indirect only\n");
863                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865                 if (err)
866                         goto err_out;
867         } else {
868                 /*
869                  * OK, we spliced it into the inode itself on a direct block.
870                  */
871                 ext4_mark_inode_dirty(handle, inode);
872                 jbd_debug(5, "splicing direct\n");
873         }
874         return err;
875
876 err_out:
877         for (i = 1; i <= num; i++) {
878                 /* 
879                  * branch[i].bh is newly allocated, so there is no
880                  * need to revoke the block, which is why we don't
881                  * need to set EXT4_FREE_BLOCKS_METADATA.
882                  */
883                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884                                  EXT4_FREE_BLOCKS_FORGET);
885         }
886         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887                          blks, 0);
888
889         return err;
890 }
891
892 /*
893  * The ext4_ind_map_blocks() function handles non-extents inodes
894  * (i.e., using the traditional indirect/double-indirect i_blocks
895  * scheme) for ext4_map_blocks().
896  *
897  * Allocation strategy is simple: if we have to allocate something, we will
898  * have to go the whole way to leaf. So let's do it before attaching anything
899  * to tree, set linkage between the newborn blocks, write them if sync is
900  * required, recheck the path, free and repeat if check fails, otherwise
901  * set the last missing link (that will protect us from any truncate-generated
902  * removals - all blocks on the path are immune now) and possibly force the
903  * write on the parent block.
904  * That has a nice additional property: no special recovery from the failed
905  * allocations is needed - we simply release blocks and do not touch anything
906  * reachable from inode.
907  *
908  * `handle' can be NULL if create == 0.
909  *
910  * return > 0, # of blocks mapped or allocated.
911  * return = 0, if plain lookup failed.
912  * return < 0, error case.
913  *
914  * The ext4_ind_get_blocks() function should be called with
915  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918  * blocks.
919  */
920 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
921                                struct ext4_map_blocks *map,
922                                int flags)
923 {
924         int err = -EIO;
925         ext4_lblk_t offsets[4];
926         Indirect chain[4];
927         Indirect *partial;
928         ext4_fsblk_t goal;
929         int indirect_blks;
930         int blocks_to_boundary = 0;
931         int depth;
932         int count = 0;
933         ext4_fsblk_t first_block = 0;
934
935         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
938                                    &blocks_to_boundary);
939
940         if (depth == 0)
941                 goto out;
942
943         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
944
945         /* Simplest case - block found, no allocation needed */
946         if (!partial) {
947                 first_block = le32_to_cpu(chain[depth - 1].key);
948                 count++;
949                 /*map more blocks*/
950                 while (count < map->m_len && count <= blocks_to_boundary) {
951                         ext4_fsblk_t blk;
952
953                         blk = le32_to_cpu(*(chain[depth-1].p + count));
954
955                         if (blk == first_block + count)
956                                 count++;
957                         else
958                                 break;
959                 }
960                 goto got_it;
961         }
962
963         /* Next simple case - plain lookup or failed read of indirect block */
964         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
965                 goto cleanup;
966
967         /*
968          * Okay, we need to do block allocation.
969         */
970         goal = ext4_find_goal(inode, map->m_lblk, partial);
971
972         /* the number of blocks need to allocate for [d,t]indirect blocks */
973         indirect_blks = (chain + depth) - partial - 1;
974
975         /*
976          * Next look up the indirect map to count the totoal number of
977          * direct blocks to allocate for this branch.
978          */
979         count = ext4_blks_to_allocate(partial, indirect_blks,
980                                       map->m_len, blocks_to_boundary);
981         /*
982          * Block out ext4_truncate while we alter the tree
983          */
984         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
985                                 &count, goal,
986                                 offsets + (partial - chain), partial);
987
988         /*
989          * The ext4_splice_branch call will free and forget any buffers
990          * on the new chain if there is a failure, but that risks using
991          * up transaction credits, especially for bitmaps where the
992          * credits cannot be returned.  Can we handle this somehow?  We
993          * may need to return -EAGAIN upwards in the worst case.  --sct
994          */
995         if (!err)
996                 err = ext4_splice_branch(handle, inode, map->m_lblk,
997                                          partial, indirect_blks, count);
998         if (err)
999                 goto cleanup;
1000
1001         map->m_flags |= EXT4_MAP_NEW;
1002
1003         ext4_update_inode_fsync_trans(handle, inode, 1);
1004 got_it:
1005         map->m_flags |= EXT4_MAP_MAPPED;
1006         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1007         map->m_len = count;
1008         if (count > blocks_to_boundary)
1009                 map->m_flags |= EXT4_MAP_BOUNDARY;
1010         err = count;
1011         /* Clean up and exit */
1012         partial = chain + depth - 1;    /* the whole chain */
1013 cleanup:
1014         while (partial > chain) {
1015                 BUFFER_TRACE(partial->bh, "call brelse");
1016                 brelse(partial->bh);
1017                 partial--;
1018         }
1019 out:
1020         return err;
1021 }
1022
1023 #ifdef CONFIG_QUOTA
1024 qsize_t *ext4_get_reserved_space(struct inode *inode)
1025 {
1026         return &EXT4_I(inode)->i_reserved_quota;
1027 }
1028 #endif
1029
1030 /*
1031  * Calculate the number of metadata blocks need to reserve
1032  * to allocate a new block at @lblocks for non extent file based file
1033  */
1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1035                                               sector_t lblock)
1036 {
1037         struct ext4_inode_info *ei = EXT4_I(inode);
1038         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1039         int blk_bits;
1040
1041         if (lblock < EXT4_NDIR_BLOCKS)
1042                 return 0;
1043
1044         lblock -= EXT4_NDIR_BLOCKS;
1045
1046         if (ei->i_da_metadata_calc_len &&
1047             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1048                 ei->i_da_metadata_calc_len++;
1049                 return 0;
1050         }
1051         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1052         ei->i_da_metadata_calc_len = 1;
1053         blk_bits = order_base_2(lblock);
1054         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1055 }
1056
1057 /*
1058  * Calculate the number of metadata blocks need to reserve
1059  * to allocate a block located at @lblock
1060  */
1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1062 {
1063         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064                 return ext4_ext_calc_metadata_amount(inode, lblock);
1065
1066         return ext4_indirect_calc_metadata_amount(inode, lblock);
1067 }
1068
1069 /*
1070  * Called with i_data_sem down, which is important since we can call
1071  * ext4_discard_preallocations() from here.
1072  */
1073 void ext4_da_update_reserve_space(struct inode *inode,
1074                                         int used, int quota_claim)
1075 {
1076         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077         struct ext4_inode_info *ei = EXT4_I(inode);
1078
1079         spin_lock(&ei->i_block_reservation_lock);
1080         trace_ext4_da_update_reserve_space(inode, used);
1081         if (unlikely(used > ei->i_reserved_data_blocks)) {
1082                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1083                          "with only %d reserved data blocks\n",
1084                          __func__, inode->i_ino, used,
1085                          ei->i_reserved_data_blocks);
1086                 WARN_ON(1);
1087                 used = ei->i_reserved_data_blocks;
1088         }
1089
1090         /* Update per-inode reservations */
1091         ei->i_reserved_data_blocks -= used;
1092         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1093         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1094                            used + ei->i_allocated_meta_blocks);
1095         ei->i_allocated_meta_blocks = 0;
1096
1097         if (ei->i_reserved_data_blocks == 0) {
1098                 /*
1099                  * We can release all of the reserved metadata blocks
1100                  * only when we have written all of the delayed
1101                  * allocation blocks.
1102                  */
1103                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1104                                    ei->i_reserved_meta_blocks);
1105                 ei->i_reserved_meta_blocks = 0;
1106                 ei->i_da_metadata_calc_len = 0;
1107         }
1108         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1109
1110         /* Update quota subsystem for data blocks */
1111         if (quota_claim)
1112                 dquot_claim_block(inode, used);
1113         else {
1114                 /*
1115                  * We did fallocate with an offset that is already delayed
1116                  * allocated. So on delayed allocated writeback we should
1117                  * not re-claim the quota for fallocated blocks.
1118                  */
1119                 dquot_release_reservation_block(inode, used);
1120         }
1121
1122         /*
1123          * If we have done all the pending block allocations and if
1124          * there aren't any writers on the inode, we can discard the
1125          * inode's preallocations.
1126          */
1127         if ((ei->i_reserved_data_blocks == 0) &&
1128             (atomic_read(&inode->i_writecount) == 0))
1129                 ext4_discard_preallocations(inode);
1130 }
1131
1132 static int check_block_validity(struct inode *inode, const char *msg,
1133                                 sector_t logical, sector_t phys, int len)
1134 {
1135         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1136                 __ext4_error(inode->i_sb, msg,
1137                            "inode #%lu logical block %llu mapped to %llu "
1138                            "(size %d)", inode->i_ino,
1139                            (unsigned long long) logical,
1140                            (unsigned long long) phys, len);
1141                 return -EIO;
1142         }
1143         return 0;
1144 }
1145
1146 /*
1147  * Return the number of contiguous dirty pages in a given inode
1148  * starting at page frame idx.
1149  */
1150 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1151                                     unsigned int max_pages)
1152 {
1153         struct address_space *mapping = inode->i_mapping;
1154         pgoff_t index;
1155         struct pagevec pvec;
1156         pgoff_t num = 0;
1157         int i, nr_pages, done = 0;
1158
1159         if (max_pages == 0)
1160                 return 0;
1161         pagevec_init(&pvec, 0);
1162         while (!done) {
1163                 index = idx;
1164                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1165                                               PAGECACHE_TAG_DIRTY,
1166                                               (pgoff_t)PAGEVEC_SIZE);
1167                 if (nr_pages == 0)
1168                         break;
1169                 for (i = 0; i < nr_pages; i++) {
1170                         struct page *page = pvec.pages[i];
1171                         struct buffer_head *bh, *head;
1172
1173                         lock_page(page);
1174                         if (unlikely(page->mapping != mapping) ||
1175                             !PageDirty(page) ||
1176                             PageWriteback(page) ||
1177                             page->index != idx) {
1178                                 done = 1;
1179                                 unlock_page(page);
1180                                 break;
1181                         }
1182                         if (page_has_buffers(page)) {
1183                                 bh = head = page_buffers(page);
1184                                 do {
1185                                         if (!buffer_delay(bh) &&
1186                                             !buffer_unwritten(bh))
1187                                                 done = 1;
1188                                         bh = bh->b_this_page;
1189                                 } while (!done && (bh != head));
1190                         }
1191                         unlock_page(page);
1192                         if (done)
1193                                 break;
1194                         idx++;
1195                         num++;
1196                         if (num >= max_pages)
1197                                 break;
1198                 }
1199                 pagevec_release(&pvec);
1200         }
1201         return num;
1202 }
1203
1204 /*
1205  * The ext4_map_blocks() function tries to look up the requested blocks,
1206  * and returns if the blocks are already mapped.
1207  *
1208  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1209  * and store the allocated blocks in the result buffer head and mark it
1210  * mapped.
1211  *
1212  * If file type is extents based, it will call ext4_ext_map_blocks(),
1213  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1214  * based files
1215  *
1216  * On success, it returns the number of blocks being mapped or allocate.
1217  * if create==0 and the blocks are pre-allocated and uninitialized block,
1218  * the result buffer head is unmapped. If the create ==1, it will make sure
1219  * the buffer head is mapped.
1220  *
1221  * It returns 0 if plain look up failed (blocks have not been allocated), in
1222  * that casem, buffer head is unmapped
1223  *
1224  * It returns the error in case of allocation failure.
1225  */
1226 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1227                     struct ext4_map_blocks *map, int flags)
1228 {
1229         int retval;
1230
1231         map->m_flags = 0;
1232         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1233                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1234                   (unsigned long) map->m_lblk);
1235         /*
1236          * Try to see if we can get the block without requesting a new
1237          * file system block.
1238          */
1239         down_read((&EXT4_I(inode)->i_data_sem));
1240         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1241                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1242         } else {
1243                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1244         }
1245         up_read((&EXT4_I(inode)->i_data_sem));
1246
1247         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1248                 int ret = check_block_validity(inode, "file system corruption",
1249                                         map->m_lblk, map->m_pblk, retval);
1250                 if (ret != 0)
1251                         return ret;
1252         }
1253
1254         /* If it is only a block(s) look up */
1255         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1256                 return retval;
1257
1258         /*
1259          * Returns if the blocks have already allocated
1260          *
1261          * Note that if blocks have been preallocated
1262          * ext4_ext_get_block() returns th create = 0
1263          * with buffer head unmapped.
1264          */
1265         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1266                 return retval;
1267
1268         /*
1269          * When we call get_blocks without the create flag, the
1270          * BH_Unwritten flag could have gotten set if the blocks
1271          * requested were part of a uninitialized extent.  We need to
1272          * clear this flag now that we are committed to convert all or
1273          * part of the uninitialized extent to be an initialized
1274          * extent.  This is because we need to avoid the combination
1275          * of BH_Unwritten and BH_Mapped flags being simultaneously
1276          * set on the buffer_head.
1277          */
1278         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1279
1280         /*
1281          * New blocks allocate and/or writing to uninitialized extent
1282          * will possibly result in updating i_data, so we take
1283          * the write lock of i_data_sem, and call get_blocks()
1284          * with create == 1 flag.
1285          */
1286         down_write((&EXT4_I(inode)->i_data_sem));
1287
1288         /*
1289          * if the caller is from delayed allocation writeout path
1290          * we have already reserved fs blocks for allocation
1291          * let the underlying get_block() function know to
1292          * avoid double accounting
1293          */
1294         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1295                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1296         /*
1297          * We need to check for EXT4 here because migrate
1298          * could have changed the inode type in between
1299          */
1300         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1301                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1302         } else {
1303                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1304
1305                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1306                         /*
1307                          * We allocated new blocks which will result in
1308                          * i_data's format changing.  Force the migrate
1309                          * to fail by clearing migrate flags
1310                          */
1311                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1312                 }
1313
1314                 /*
1315                  * Update reserved blocks/metadata blocks after successful
1316                  * block allocation which had been deferred till now. We don't
1317                  * support fallocate for non extent files. So we can update
1318                  * reserve space here.
1319                  */
1320                 if ((retval > 0) &&
1321                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1322                         ext4_da_update_reserve_space(inode, retval, 1);
1323         }
1324         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1325                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326
1327         up_write((&EXT4_I(inode)->i_data_sem));
1328         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1329                 int ret = check_block_validity(inode, "file system "
1330                                                "corruption after allocation",
1331                                                map->m_lblk, map->m_pblk,
1332                                                retval);
1333                 if (ret != 0)
1334                         return ret;
1335         }
1336         return retval;
1337 }
1338
1339 /* Maximum number of blocks we map for direct IO at once. */
1340 #define DIO_MAX_BLOCKS 4096
1341
1342 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1343                            struct buffer_head *bh, int flags)
1344 {
1345         handle_t *handle = ext4_journal_current_handle();
1346         struct ext4_map_blocks map;
1347         int ret = 0, started = 0;
1348         int dio_credits;
1349
1350         map.m_lblk = iblock;
1351         map.m_len = bh->b_size >> inode->i_blkbits;
1352
1353         if (flags && !handle) {
1354                 /* Direct IO write... */
1355                 if (map.m_len > DIO_MAX_BLOCKS)
1356                         map.m_len = DIO_MAX_BLOCKS;
1357                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1358                 handle = ext4_journal_start(inode, dio_credits);
1359                 if (IS_ERR(handle)) {
1360                         ret = PTR_ERR(handle);
1361                         return ret;
1362                 }
1363                 started = 1;
1364         }
1365
1366         ret = ext4_map_blocks(handle, inode, &map, flags);
1367         if (ret > 0) {
1368                 map_bh(bh, inode->i_sb, map.m_pblk);
1369                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1370                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1371                 ret = 0;
1372         }
1373         if (started)
1374                 ext4_journal_stop(handle);
1375         return ret;
1376 }
1377
1378 int ext4_get_block(struct inode *inode, sector_t iblock,
1379                    struct buffer_head *bh, int create)
1380 {
1381         return _ext4_get_block(inode, iblock, bh,
1382                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1383 }
1384
1385 /*
1386  * `handle' can be NULL if create is zero
1387  */
1388 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1389                                 ext4_lblk_t block, int create, int *errp)
1390 {
1391         struct ext4_map_blocks map;
1392         struct buffer_head *bh;
1393         int fatal = 0, err;
1394
1395         J_ASSERT(handle != NULL || create == 0);
1396
1397         map.m_lblk = block;
1398         map.m_len = 1;
1399         err = ext4_map_blocks(handle, inode, &map,
1400                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1401
1402         if (err < 0)
1403                 *errp = err;
1404         if (err <= 0)
1405                 return NULL;
1406         *errp = 0;
1407
1408         bh = sb_getblk(inode->i_sb, map.m_pblk);
1409         if (!bh) {
1410                 *errp = -EIO;
1411                 return NULL;
1412         }
1413         if (map.m_flags & EXT4_MAP_NEW) {
1414                 J_ASSERT(create != 0);
1415                 J_ASSERT(handle != NULL);
1416
1417                 /*
1418                  * Now that we do not always journal data, we should
1419                  * keep in mind whether this should always journal the
1420                  * new buffer as metadata.  For now, regular file
1421                  * writes use ext4_get_block instead, so it's not a
1422                  * problem.
1423                  */
1424                 lock_buffer(bh);
1425                 BUFFER_TRACE(bh, "call get_create_access");
1426                 fatal = ext4_journal_get_create_access(handle, bh);
1427                 if (!fatal && !buffer_uptodate(bh)) {
1428                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1429                         set_buffer_uptodate(bh);
1430                 }
1431                 unlock_buffer(bh);
1432                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1433                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1434                 if (!fatal)
1435                         fatal = err;
1436         } else {
1437                 BUFFER_TRACE(bh, "not a new buffer");
1438         }
1439         if (fatal) {
1440                 *errp = fatal;
1441                 brelse(bh);
1442                 bh = NULL;
1443         }
1444         return bh;
1445 }
1446
1447 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1448                                ext4_lblk_t block, int create, int *err)
1449 {
1450         struct buffer_head *bh;
1451
1452         bh = ext4_getblk(handle, inode, block, create, err);
1453         if (!bh)
1454                 return bh;
1455         if (buffer_uptodate(bh))
1456                 return bh;
1457         ll_rw_block(READ_META, 1, &bh);
1458         wait_on_buffer(bh);
1459         if (buffer_uptodate(bh))
1460                 return bh;
1461         put_bh(bh);
1462         *err = -EIO;
1463         return NULL;
1464 }
1465
1466 static int walk_page_buffers(handle_t *handle,
1467                              struct buffer_head *head,
1468                              unsigned from,
1469                              unsigned to,
1470                              int *partial,
1471                              int (*fn)(handle_t *handle,
1472                                        struct buffer_head *bh))
1473 {
1474         struct buffer_head *bh;
1475         unsigned block_start, block_end;
1476         unsigned blocksize = head->b_size;
1477         int err, ret = 0;
1478         struct buffer_head *next;
1479
1480         for (bh = head, block_start = 0;
1481              ret == 0 && (bh != head || !block_start);
1482              block_start = block_end, bh = next) {
1483                 next = bh->b_this_page;
1484                 block_end = block_start + blocksize;
1485                 if (block_end <= from || block_start >= to) {
1486                         if (partial && !buffer_uptodate(bh))
1487                                 *partial = 1;
1488                         continue;
1489                 }
1490                 err = (*fn)(handle, bh);
1491                 if (!ret)
1492                         ret = err;
1493         }
1494         return ret;
1495 }
1496
1497 /*
1498  * To preserve ordering, it is essential that the hole instantiation and
1499  * the data write be encapsulated in a single transaction.  We cannot
1500  * close off a transaction and start a new one between the ext4_get_block()
1501  * and the commit_write().  So doing the jbd2_journal_start at the start of
1502  * prepare_write() is the right place.
1503  *
1504  * Also, this function can nest inside ext4_writepage() ->
1505  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1506  * has generated enough buffer credits to do the whole page.  So we won't
1507  * block on the journal in that case, which is good, because the caller may
1508  * be PF_MEMALLOC.
1509  *
1510  * By accident, ext4 can be reentered when a transaction is open via
1511  * quota file writes.  If we were to commit the transaction while thus
1512  * reentered, there can be a deadlock - we would be holding a quota
1513  * lock, and the commit would never complete if another thread had a
1514  * transaction open and was blocking on the quota lock - a ranking
1515  * violation.
1516  *
1517  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1518  * will _not_ run commit under these circumstances because handle->h_ref
1519  * is elevated.  We'll still have enough credits for the tiny quotafile
1520  * write.
1521  */
1522 static int do_journal_get_write_access(handle_t *handle,
1523                                        struct buffer_head *bh)
1524 {
1525         if (!buffer_mapped(bh) || buffer_freed(bh))
1526                 return 0;
1527         return ext4_journal_get_write_access(handle, bh);
1528 }
1529
1530 /*
1531  * Truncate blocks that were not used by write. We have to truncate the
1532  * pagecache as well so that corresponding buffers get properly unmapped.
1533  */
1534 static void ext4_truncate_failed_write(struct inode *inode)
1535 {
1536         truncate_inode_pages(inode->i_mapping, inode->i_size);
1537         ext4_truncate(inode);
1538 }
1539
1540 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1541                    struct buffer_head *bh_result, int create);
1542 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1543                             loff_t pos, unsigned len, unsigned flags,
1544                             struct page **pagep, void **fsdata)
1545 {
1546         struct inode *inode = mapping->host;
1547         int ret, needed_blocks;
1548         handle_t *handle;
1549         int retries = 0;
1550         struct page *page;
1551         pgoff_t index;
1552         unsigned from, to;
1553
1554         trace_ext4_write_begin(inode, pos, len, flags);
1555         /*
1556          * Reserve one block more for addition to orphan list in case
1557          * we allocate blocks but write fails for some reason
1558          */
1559         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1560         index = pos >> PAGE_CACHE_SHIFT;
1561         from = pos & (PAGE_CACHE_SIZE - 1);
1562         to = from + len;
1563
1564 retry:
1565         handle = ext4_journal_start(inode, needed_blocks);
1566         if (IS_ERR(handle)) {
1567                 ret = PTR_ERR(handle);
1568                 goto out;
1569         }
1570
1571         /* We cannot recurse into the filesystem as the transaction is already
1572          * started */
1573         flags |= AOP_FLAG_NOFS;
1574
1575         page = grab_cache_page_write_begin(mapping, index, flags);
1576         if (!page) {
1577                 ext4_journal_stop(handle);
1578                 ret = -ENOMEM;
1579                 goto out;
1580         }
1581         *pagep = page;
1582
1583         if (ext4_should_dioread_nolock(inode))
1584                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1585                                 fsdata, ext4_get_block_write);
1586         else
1587                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1588                                 fsdata, ext4_get_block);
1589
1590         if (!ret && ext4_should_journal_data(inode)) {
1591                 ret = walk_page_buffers(handle, page_buffers(page),
1592                                 from, to, NULL, do_journal_get_write_access);
1593         }
1594
1595         if (ret) {
1596                 unlock_page(page);
1597                 page_cache_release(page);
1598                 /*
1599                  * block_write_begin may have instantiated a few blocks
1600                  * outside i_size.  Trim these off again. Don't need
1601                  * i_size_read because we hold i_mutex.
1602                  *
1603                  * Add inode to orphan list in case we crash before
1604                  * truncate finishes
1605                  */
1606                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1607                         ext4_orphan_add(handle, inode);
1608
1609                 ext4_journal_stop(handle);
1610                 if (pos + len > inode->i_size) {
1611                         ext4_truncate_failed_write(inode);
1612                         /*
1613                          * If truncate failed early the inode might
1614                          * still be on the orphan list; we need to
1615                          * make sure the inode is removed from the
1616                          * orphan list in that case.
1617                          */
1618                         if (inode->i_nlink)
1619                                 ext4_orphan_del(NULL, inode);
1620                 }
1621         }
1622
1623         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1624                 goto retry;
1625 out:
1626         return ret;
1627 }
1628
1629 /* For write_end() in data=journal mode */
1630 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1631 {
1632         if (!buffer_mapped(bh) || buffer_freed(bh))
1633                 return 0;
1634         set_buffer_uptodate(bh);
1635         return ext4_handle_dirty_metadata(handle, NULL, bh);
1636 }
1637
1638 static int ext4_generic_write_end(struct file *file,
1639                                   struct address_space *mapping,
1640                                   loff_t pos, unsigned len, unsigned copied,
1641                                   struct page *page, void *fsdata)
1642 {
1643         int i_size_changed = 0;
1644         struct inode *inode = mapping->host;
1645         handle_t *handle = ext4_journal_current_handle();
1646
1647         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1648
1649         /*
1650          * No need to use i_size_read() here, the i_size
1651          * cannot change under us because we hold i_mutex.
1652          *
1653          * But it's important to update i_size while still holding page lock:
1654          * page writeout could otherwise come in and zero beyond i_size.
1655          */
1656         if (pos + copied > inode->i_size) {
1657                 i_size_write(inode, pos + copied);
1658                 i_size_changed = 1;
1659         }
1660
1661         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1662                 /* We need to mark inode dirty even if
1663                  * new_i_size is less that inode->i_size
1664                  * bu greater than i_disksize.(hint delalloc)
1665                  */
1666                 ext4_update_i_disksize(inode, (pos + copied));
1667                 i_size_changed = 1;
1668         }
1669         unlock_page(page);
1670         page_cache_release(page);
1671
1672         /*
1673          * Don't mark the inode dirty under page lock. First, it unnecessarily
1674          * makes the holding time of page lock longer. Second, it forces lock
1675          * ordering of page lock and transaction start for journaling
1676          * filesystems.
1677          */
1678         if (i_size_changed)
1679                 ext4_mark_inode_dirty(handle, inode);
1680
1681         return copied;
1682 }
1683
1684 /*
1685  * We need to pick up the new inode size which generic_commit_write gave us
1686  * `file' can be NULL - eg, when called from page_symlink().
1687  *
1688  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1689  * buffers are managed internally.
1690  */
1691 static int ext4_ordered_write_end(struct file *file,
1692                                   struct address_space *mapping,
1693                                   loff_t pos, unsigned len, unsigned copied,
1694                                   struct page *page, void *fsdata)
1695 {
1696         handle_t *handle = ext4_journal_current_handle();
1697         struct inode *inode = mapping->host;
1698         int ret = 0, ret2;
1699
1700         trace_ext4_ordered_write_end(inode, pos, len, copied);
1701         ret = ext4_jbd2_file_inode(handle, inode);
1702
1703         if (ret == 0) {
1704                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1705                                                         page, fsdata);
1706                 copied = ret2;
1707                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1708                         /* if we have allocated more blocks and copied
1709                          * less. We will have blocks allocated outside
1710                          * inode->i_size. So truncate them
1711                          */
1712                         ext4_orphan_add(handle, inode);
1713                 if (ret2 < 0)
1714                         ret = ret2;
1715         }
1716         ret2 = ext4_journal_stop(handle);
1717         if (!ret)
1718                 ret = ret2;
1719
1720         if (pos + len > inode->i_size) {
1721                 ext4_truncate_failed_write(inode);
1722                 /*
1723                  * If truncate failed early the inode might still be
1724                  * on the orphan list; we need to make sure the inode
1725                  * is removed from the orphan list in that case.
1726                  */
1727                 if (inode->i_nlink)
1728                         ext4_orphan_del(NULL, inode);
1729         }
1730
1731
1732         return ret ? ret : copied;
1733 }
1734
1735 static int ext4_writeback_write_end(struct file *file,
1736                                     struct address_space *mapping,
1737                                     loff_t pos, unsigned len, unsigned copied,
1738                                     struct page *page, void *fsdata)
1739 {
1740         handle_t *handle = ext4_journal_current_handle();
1741         struct inode *inode = mapping->host;
1742         int ret = 0, ret2;
1743
1744         trace_ext4_writeback_write_end(inode, pos, len, copied);
1745         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1746                                                         page, fsdata);
1747         copied = ret2;
1748         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1749                 /* if we have allocated more blocks and copied
1750                  * less. We will have blocks allocated outside
1751                  * inode->i_size. So truncate them
1752                  */
1753                 ext4_orphan_add(handle, inode);
1754
1755         if (ret2 < 0)
1756                 ret = ret2;
1757
1758         ret2 = ext4_journal_stop(handle);
1759         if (!ret)
1760                 ret = ret2;
1761
1762         if (pos + len > inode->i_size) {
1763                 ext4_truncate_failed_write(inode);
1764                 /*
1765                  * If truncate failed early the inode might still be
1766                  * on the orphan list; we need to make sure the inode
1767                  * is removed from the orphan list in that case.
1768                  */
1769                 if (inode->i_nlink)
1770                         ext4_orphan_del(NULL, inode);
1771         }
1772
1773         return ret ? ret : copied;
1774 }
1775
1776 static int ext4_journalled_write_end(struct file *file,
1777                                      struct address_space *mapping,
1778                                      loff_t pos, unsigned len, unsigned copied,
1779                                      struct page *page, void *fsdata)
1780 {
1781         handle_t *handle = ext4_journal_current_handle();
1782         struct inode *inode = mapping->host;
1783         int ret = 0, ret2;
1784         int partial = 0;
1785         unsigned from, to;
1786         loff_t new_i_size;
1787
1788         trace_ext4_journalled_write_end(inode, pos, len, copied);
1789         from = pos & (PAGE_CACHE_SIZE - 1);
1790         to = from + len;
1791
1792         if (copied < len) {
1793                 if (!PageUptodate(page))
1794                         copied = 0;
1795                 page_zero_new_buffers(page, from+copied, to);
1796         }
1797
1798         ret = walk_page_buffers(handle, page_buffers(page), from,
1799                                 to, &partial, write_end_fn);
1800         if (!partial)
1801                 SetPageUptodate(page);
1802         new_i_size = pos + copied;
1803         if (new_i_size > inode->i_size)
1804                 i_size_write(inode, pos+copied);
1805         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1806         if (new_i_size > EXT4_I(inode)->i_disksize) {
1807                 ext4_update_i_disksize(inode, new_i_size);
1808                 ret2 = ext4_mark_inode_dirty(handle, inode);
1809                 if (!ret)
1810                         ret = ret2;
1811         }
1812
1813         unlock_page(page);
1814         page_cache_release(page);
1815         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1816                 /* if we have allocated more blocks and copied
1817                  * less. We will have blocks allocated outside
1818                  * inode->i_size. So truncate them
1819                  */
1820                 ext4_orphan_add(handle, inode);
1821
1822         ret2 = ext4_journal_stop(handle);
1823         if (!ret)
1824                 ret = ret2;
1825         if (pos + len > inode->i_size) {
1826                 ext4_truncate_failed_write(inode);
1827                 /*
1828                  * If truncate failed early the inode might still be
1829                  * on the orphan list; we need to make sure the inode
1830                  * is removed from the orphan list in that case.
1831                  */
1832                 if (inode->i_nlink)
1833                         ext4_orphan_del(NULL, inode);
1834         }
1835
1836         return ret ? ret : copied;
1837 }
1838
1839 /*
1840  * Reserve a single block located at lblock
1841  */
1842 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1843 {
1844         int retries = 0;
1845         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1846         struct ext4_inode_info *ei = EXT4_I(inode);
1847         unsigned long md_needed;
1848         int ret;
1849
1850         /*
1851          * recalculate the amount of metadata blocks to reserve
1852          * in order to allocate nrblocks
1853          * worse case is one extent per block
1854          */
1855 repeat:
1856         spin_lock(&ei->i_block_reservation_lock);
1857         md_needed = ext4_calc_metadata_amount(inode, lblock);
1858         trace_ext4_da_reserve_space(inode, md_needed);
1859         spin_unlock(&ei->i_block_reservation_lock);
1860
1861         /*
1862          * We will charge metadata quota at writeout time; this saves
1863          * us from metadata over-estimation, though we may go over by
1864          * a small amount in the end.  Here we just reserve for data.
1865          */
1866         ret = dquot_reserve_block(inode, 1);
1867         if (ret)
1868                 return ret;
1869         /*
1870          * We do still charge estimated metadata to the sb though;
1871          * we cannot afford to run out of free blocks.
1872          */
1873         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1874                 dquot_release_reservation_block(inode, 1);
1875                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1876                         yield();
1877                         goto repeat;
1878                 }
1879                 return -ENOSPC;
1880         }
1881         spin_lock(&ei->i_block_reservation_lock);
1882         ei->i_reserved_data_blocks++;
1883         ei->i_reserved_meta_blocks += md_needed;
1884         spin_unlock(&ei->i_block_reservation_lock);
1885
1886         return 0;       /* success */
1887 }
1888
1889 static void ext4_da_release_space(struct inode *inode, int to_free)
1890 {
1891         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1892         struct ext4_inode_info *ei = EXT4_I(inode);
1893
1894         if (!to_free)
1895                 return;         /* Nothing to release, exit */
1896
1897         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1898
1899         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1900                 /*
1901                  * if there aren't enough reserved blocks, then the
1902                  * counter is messed up somewhere.  Since this
1903                  * function is called from invalidate page, it's
1904                  * harmless to return without any action.
1905                  */
1906                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1907                          "ino %lu, to_free %d with only %d reserved "
1908                          "data blocks\n", inode->i_ino, to_free,
1909                          ei->i_reserved_data_blocks);
1910                 WARN_ON(1);
1911                 to_free = ei->i_reserved_data_blocks;
1912         }
1913         ei->i_reserved_data_blocks -= to_free;
1914
1915         if (ei->i_reserved_data_blocks == 0) {
1916                 /*
1917                  * We can release all of the reserved metadata blocks
1918                  * only when we have written all of the delayed
1919                  * allocation blocks.
1920                  */
1921                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1922                                    ei->i_reserved_meta_blocks);
1923                 ei->i_reserved_meta_blocks = 0;
1924                 ei->i_da_metadata_calc_len = 0;
1925         }
1926
1927         /* update fs dirty data blocks counter */
1928         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1929
1930         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1931
1932         dquot_release_reservation_block(inode, to_free);
1933 }
1934
1935 static void ext4_da_page_release_reservation(struct page *page,
1936                                              unsigned long offset)
1937 {
1938         int to_release = 0;
1939         struct buffer_head *head, *bh;
1940         unsigned int curr_off = 0;
1941
1942         head = page_buffers(page);
1943         bh = head;
1944         do {
1945                 unsigned int next_off = curr_off + bh->b_size;
1946
1947                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1948                         to_release++;
1949                         clear_buffer_delay(bh);
1950                 }
1951                 curr_off = next_off;
1952         } while ((bh = bh->b_this_page) != head);
1953         ext4_da_release_space(page->mapping->host, to_release);
1954 }
1955
1956 /*
1957  * Delayed allocation stuff
1958  */
1959
1960 /*
1961  * mpage_da_submit_io - walks through extent of pages and try to write
1962  * them with writepage() call back
1963  *
1964  * @mpd->inode: inode
1965  * @mpd->first_page: first page of the extent
1966  * @mpd->next_page: page after the last page of the extent
1967  *
1968  * By the time mpage_da_submit_io() is called we expect all blocks
1969  * to be allocated. this may be wrong if allocation failed.
1970  *
1971  * As pages are already locked by write_cache_pages(), we can't use it
1972  */
1973 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1974 {
1975         long pages_skipped;
1976         struct pagevec pvec;
1977         unsigned long index, end;
1978         int ret = 0, err, nr_pages, i;
1979         struct inode *inode = mpd->inode;
1980         struct address_space *mapping = inode->i_mapping;
1981
1982         BUG_ON(mpd->next_page <= mpd->first_page);
1983         /*
1984          * We need to start from the first_page to the next_page - 1
1985          * to make sure we also write the mapped dirty buffer_heads.
1986          * If we look at mpd->b_blocknr we would only be looking
1987          * at the currently mapped buffer_heads.
1988          */
1989         index = mpd->first_page;
1990         end = mpd->next_page - 1;
1991
1992         pagevec_init(&pvec, 0);
1993         while (index <= end) {
1994                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1995                 if (nr_pages == 0)
1996                         break;
1997                 for (i = 0; i < nr_pages; i++) {
1998                         struct page *page = pvec.pages[i];
1999
2000                         index = page->index;
2001                         if (index > end)
2002                                 break;
2003                         index++;
2004
2005                         BUG_ON(!PageLocked(page));
2006                         BUG_ON(PageWriteback(page));
2007
2008                         pages_skipped = mpd->wbc->pages_skipped;
2009                         err = mapping->a_ops->writepage(page, mpd->wbc);
2010                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2011                                 /*
2012                                  * have successfully written the page
2013                                  * without skipping the same
2014                                  */
2015                                 mpd->pages_written++;
2016                         /*
2017                          * In error case, we have to continue because
2018                          * remaining pages are still locked
2019                          * XXX: unlock and re-dirty them?
2020                          */
2021                         if (ret == 0)
2022                                 ret = err;
2023                 }
2024                 pagevec_release(&pvec);
2025         }
2026         return ret;
2027 }
2028
2029 /*
2030  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2031  *
2032  * the function goes through all passed space and put actual disk
2033  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2034  */
2035 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2036                                  struct ext4_map_blocks *map)
2037 {
2038         struct inode *inode = mpd->inode;
2039         struct address_space *mapping = inode->i_mapping;
2040         int blocks = map->m_len;
2041         sector_t pblock = map->m_pblk, cur_logical;
2042         struct buffer_head *head, *bh;
2043         pgoff_t index, end;
2044         struct pagevec pvec;
2045         int nr_pages, i;
2046
2047         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048         end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2049         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2050
2051         pagevec_init(&pvec, 0);
2052
2053         while (index <= end) {
2054                 /* XXX: optimize tail */
2055                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2056                 if (nr_pages == 0)
2057                         break;
2058                 for (i = 0; i < nr_pages; i++) {
2059                         struct page *page = pvec.pages[i];
2060
2061                         index = page->index;
2062                         if (index > end)
2063                                 break;
2064                         index++;
2065
2066                         BUG_ON(!PageLocked(page));
2067                         BUG_ON(PageWriteback(page));
2068                         BUG_ON(!page_has_buffers(page));
2069
2070                         bh = page_buffers(page);
2071                         head = bh;
2072
2073                         /* skip blocks out of the range */
2074                         do {
2075                                 if (cur_logical >= map->m_lblk)
2076                                         break;
2077                                 cur_logical++;
2078                         } while ((bh = bh->b_this_page) != head);
2079
2080                         do {
2081                                 if (cur_logical >= map->m_lblk + blocks)
2082                                         break;
2083
2084                                 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2085
2086                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2087
2088                                         if (buffer_delay(bh)) {
2089                                                 clear_buffer_delay(bh);
2090                                                 bh->b_blocknr = pblock;
2091                                         } else {
2092                                                 /*
2093                                                  * unwritten already should have
2094                                                  * blocknr assigned. Verify that
2095                                                  */
2096                                                 clear_buffer_unwritten(bh);
2097                                                 BUG_ON(bh->b_blocknr != pblock);
2098                                         }
2099
2100                                 } else if (buffer_mapped(bh))
2101                                         BUG_ON(bh->b_blocknr != pblock);
2102
2103                                 if (map->m_flags & EXT4_MAP_UNINIT)
2104                                         set_buffer_uninit(bh);
2105                                 cur_logical++;
2106                                 pblock++;
2107                         } while ((bh = bh->b_this_page) != head);
2108                 }
2109                 pagevec_release(&pvec);
2110         }
2111 }
2112
2113
2114 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2115                                         sector_t logical, long blk_cnt)
2116 {
2117         int nr_pages, i;
2118         pgoff_t index, end;
2119         struct pagevec pvec;
2120         struct inode *inode = mpd->inode;
2121         struct address_space *mapping = inode->i_mapping;
2122
2123         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124         end   = (logical + blk_cnt - 1) >>
2125                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126         while (index <= end) {
2127                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2128                 if (nr_pages == 0)
2129                         break;
2130                 for (i = 0; i < nr_pages; i++) {
2131                         struct page *page = pvec.pages[i];
2132                         if (page->index > end)
2133                                 break;
2134                         BUG_ON(!PageLocked(page));
2135                         BUG_ON(PageWriteback(page));
2136                         block_invalidatepage(page, 0);
2137                         ClearPageUptodate(page);
2138                         unlock_page(page);
2139                 }
2140                 index = pvec.pages[nr_pages - 1]->index + 1;
2141                 pagevec_release(&pvec);
2142         }
2143         return;
2144 }
2145
2146 static void ext4_print_free_blocks(struct inode *inode)
2147 {
2148         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2149         printk(KERN_CRIT "Total free blocks count %lld\n",
2150                ext4_count_free_blocks(inode->i_sb));
2151         printk(KERN_CRIT "Free/Dirty block details\n");
2152         printk(KERN_CRIT "free_blocks=%lld\n",
2153                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2154         printk(KERN_CRIT "dirty_blocks=%lld\n",
2155                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2156         printk(KERN_CRIT "Block reservation details\n");
2157         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2158                EXT4_I(inode)->i_reserved_data_blocks);
2159         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2160                EXT4_I(inode)->i_reserved_meta_blocks);
2161         return;
2162 }
2163
2164 /*
2165  * mpage_da_map_blocks - go through given space
2166  *
2167  * @mpd - bh describing space
2168  *
2169  * The function skips space we know is already mapped to disk blocks.
2170  *
2171  */
2172 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2173 {
2174         int err, blks, get_blocks_flags;
2175         struct ext4_map_blocks map;
2176         sector_t next = mpd->b_blocknr;
2177         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2178         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2179         handle_t *handle = NULL;
2180
2181         /*
2182          * We consider only non-mapped and non-allocated blocks
2183          */
2184         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2185                 !(mpd->b_state & (1 << BH_Delay)) &&
2186                 !(mpd->b_state & (1 << BH_Unwritten)))
2187                 return 0;
2188
2189         /*
2190          * If we didn't accumulate anything to write simply return
2191          */
2192         if (!mpd->b_size)
2193                 return 0;
2194
2195         handle = ext4_journal_current_handle();
2196         BUG_ON(!handle);
2197
2198         /*
2199          * Call ext4_get_blocks() to allocate any delayed allocation
2200          * blocks, or to convert an uninitialized extent to be
2201          * initialized (in the case where we have written into
2202          * one or more preallocated blocks).
2203          *
2204          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2205          * indicate that we are on the delayed allocation path.  This
2206          * affects functions in many different parts of the allocation
2207          * call path.  This flag exists primarily because we don't
2208          * want to change *many* call functions, so ext4_get_blocks()
2209          * will set the magic i_delalloc_reserved_flag once the
2210          * inode's allocation semaphore is taken.
2211          *
2212          * If the blocks in questions were delalloc blocks, set
2213          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2214          * variables are updated after the blocks have been allocated.
2215          */
2216         map.m_lblk = next;
2217         map.m_len = max_blocks;
2218         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2219         if (ext4_should_dioread_nolock(mpd->inode))
2220                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2221         if (mpd->b_state & (1 << BH_Delay))
2222                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2223
2224         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2225         if (blks < 0) {
2226                 err = blks;
2227                 /*
2228                  * If get block returns with error we simply
2229                  * return. Later writepage will redirty the page and
2230                  * writepages will find the dirty page again
2231                  */
2232                 if (err == -EAGAIN)
2233                         return 0;
2234
2235                 if (err == -ENOSPC &&
2236                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2237                         mpd->retval = err;
2238                         return 0;
2239                 }
2240
2241                 /*
2242                  * get block failure will cause us to loop in
2243                  * writepages, because a_ops->writepage won't be able
2244                  * to make progress. The page will be redirtied by
2245                  * writepage and writepages will again try to write
2246                  * the same.
2247                  */
2248                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2249                          "delayed block allocation failed for inode %lu at "
2250                          "logical offset %llu with max blocks %zd with "
2251                          "error %d", mpd->inode->i_ino,
2252                          (unsigned long long) next,
2253                          mpd->b_size >> mpd->inode->i_blkbits, err);
2254                 printk(KERN_CRIT "This should not happen!!  "
2255                        "Data will be lost\n");
2256                 if (err == -ENOSPC) {
2257                         ext4_print_free_blocks(mpd->inode);
2258                 }
2259                 /* invalidate all the pages */
2260                 ext4_da_block_invalidatepages(mpd, next,
2261                                 mpd->b_size >> mpd->inode->i_blkbits);
2262                 return err;
2263         }
2264         BUG_ON(blks == 0);
2265
2266         if (map.m_flags & EXT4_MAP_NEW) {
2267                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2268                 int i;
2269
2270                 for (i = 0; i < map.m_len; i++)
2271                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2272         }
2273
2274         /*
2275          * If blocks are delayed marked, we need to
2276          * put actual blocknr and drop delayed bit
2277          */
2278         if ((mpd->b_state & (1 << BH_Delay)) ||
2279             (mpd->b_state & (1 << BH_Unwritten)))
2280                 mpage_put_bnr_to_bhs(mpd, &map);
2281
2282         if (ext4_should_order_data(mpd->inode)) {
2283                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2284                 if (err)
2285                         return err;
2286         }
2287
2288         /*
2289          * Update on-disk size along with block allocation.
2290          */
2291         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2292         if (disksize > i_size_read(mpd->inode))
2293                 disksize = i_size_read(mpd->inode);
2294         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2295                 ext4_update_i_disksize(mpd->inode, disksize);
2296                 return ext4_mark_inode_dirty(handle, mpd->inode);
2297         }
2298
2299         return 0;
2300 }
2301
2302 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2303                 (1 << BH_Delay) | (1 << BH_Unwritten))
2304
2305 /*
2306  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2307  *
2308  * @mpd->lbh - extent of blocks
2309  * @logical - logical number of the block in the file
2310  * @bh - bh of the block (used to access block's state)
2311  *
2312  * the function is used to collect contig. blocks in same state
2313  */
2314 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2315                                    sector_t logical, size_t b_size,
2316                                    unsigned long b_state)
2317 {
2318         sector_t next;
2319         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2320
2321         /*
2322          * XXX Don't go larger than mballoc is willing to allocate
2323          * This is a stopgap solution.  We eventually need to fold
2324          * mpage_da_submit_io() into this function and then call
2325          * ext4_get_blocks() multiple times in a loop
2326          */
2327         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2328                 goto flush_it;
2329
2330         /* check if thereserved journal credits might overflow */
2331         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2332                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2333                         /*
2334                          * With non-extent format we are limited by the journal
2335                          * credit available.  Total credit needed to insert
2336                          * nrblocks contiguous blocks is dependent on the
2337                          * nrblocks.  So limit nrblocks.
2338                          */
2339                         goto flush_it;
2340                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2341                                 EXT4_MAX_TRANS_DATA) {
2342                         /*
2343                          * Adding the new buffer_head would make it cross the
2344                          * allowed limit for which we have journal credit
2345                          * reserved. So limit the new bh->b_size
2346                          */
2347                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2348                                                 mpd->inode->i_blkbits;
2349                         /* we will do mpage_da_submit_io in the next loop */
2350                 }
2351         }
2352         /*
2353          * First block in the extent
2354          */
2355         if (mpd->b_size == 0) {
2356                 mpd->b_blocknr = logical;
2357                 mpd->b_size = b_size;
2358                 mpd->b_state = b_state & BH_FLAGS;
2359                 return;
2360         }
2361
2362         next = mpd->b_blocknr + nrblocks;
2363         /*
2364          * Can we merge the block to our big extent?
2365          */
2366         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2367                 mpd->b_size += b_size;
2368                 return;
2369         }
2370
2371 flush_it:
2372         /*
2373          * We couldn't merge the block to our extent, so we
2374          * need to flush current  extent and start new one
2375          */
2376         if (mpage_da_map_blocks(mpd) == 0)
2377                 mpage_da_submit_io(mpd);
2378         mpd->io_done = 1;
2379         return;
2380 }
2381
2382 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2383 {
2384         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2385 }
2386
2387 /*
2388  * __mpage_da_writepage - finds extent of pages and blocks
2389  *
2390  * @page: page to consider
2391  * @wbc: not used, we just follow rules
2392  * @data: context
2393  *
2394  * The function finds extents of pages and scan them for all blocks.
2395  */
2396 static int __mpage_da_writepage(struct page *page,
2397                                 struct writeback_control *wbc, void *data)
2398 {
2399         struct mpage_da_data *mpd = data;
2400         struct inode *inode = mpd->inode;
2401         struct buffer_head *bh, *head;
2402         sector_t logical;
2403
2404         /*
2405          * Can we merge this page to current extent?
2406          */
2407         if (mpd->next_page != page->index) {
2408                 /*
2409                  * Nope, we can't. So, we map non-allocated blocks
2410                  * and start IO on them using writepage()
2411                  */
2412                 if (mpd->next_page != mpd->first_page) {
2413                         if (mpage_da_map_blocks(mpd) == 0)
2414                                 mpage_da_submit_io(mpd);
2415                         /*
2416                          * skip rest of the page in the page_vec
2417                          */
2418                         mpd->io_done = 1;
2419                         redirty_page_for_writepage(wbc, page);
2420                         unlock_page(page);
2421                         return MPAGE_DA_EXTENT_TAIL;
2422                 }
2423
2424                 /*
2425                  * Start next extent of pages ...
2426                  */
2427                 mpd->first_page = page->index;
2428
2429                 /*
2430                  * ... and blocks
2431                  */
2432                 mpd->b_size = 0;
2433                 mpd->b_state = 0;
2434                 mpd->b_blocknr = 0;
2435         }
2436
2437         mpd->next_page = page->index + 1;
2438         logical = (sector_t) page->index <<
2439                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2440
2441         if (!page_has_buffers(page)) {
2442                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2443                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2444                 if (mpd->io_done)
2445                         return MPAGE_DA_EXTENT_TAIL;
2446         } else {
2447                 /*
2448                  * Page with regular buffer heads, just add all dirty ones
2449                  */
2450                 head = page_buffers(page);
2451                 bh = head;
2452                 do {
2453                         BUG_ON(buffer_locked(bh));
2454                         /*
2455                          * We need to try to allocate
2456                          * unmapped blocks in the same page.
2457                          * Otherwise we won't make progress
2458                          * with the page in ext4_writepage
2459                          */
2460                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2461                                 mpage_add_bh_to_extent(mpd, logical,
2462                                                        bh->b_size,
2463                                                        bh->b_state);
2464                                 if (mpd->io_done)
2465                                         return MPAGE_DA_EXTENT_TAIL;
2466                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2467                                 /*
2468                                  * mapped dirty buffer. We need to update
2469                                  * the b_state because we look at
2470                                  * b_state in mpage_da_map_blocks. We don't
2471                                  * update b_size because if we find an
2472                                  * unmapped buffer_head later we need to
2473                                  * use the b_state flag of that buffer_head.
2474                                  */
2475                                 if (mpd->b_size == 0)
2476                                         mpd->b_state = bh->b_state & BH_FLAGS;
2477                         }
2478                         logical++;
2479                 } while ((bh = bh->b_this_page) != head);
2480         }
2481
2482         return 0;
2483 }
2484
2485 /*
2486  * This is a special get_blocks_t callback which is used by
2487  * ext4_da_write_begin().  It will either return mapped block or
2488  * reserve space for a single block.
2489  *
2490  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2491  * We also have b_blocknr = -1 and b_bdev initialized properly
2492  *
2493  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2494  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2495  * initialized properly.
2496  */
2497 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2498                                   struct buffer_head *bh, int create)
2499 {
2500         struct ext4_map_blocks map;
2501         int ret = 0;
2502         sector_t invalid_block = ~((sector_t) 0xffff);
2503
2504         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2505                 invalid_block = ~0;
2506
2507         BUG_ON(create == 0);
2508         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2509
2510         map.m_lblk = iblock;
2511         map.m_len = 1;
2512
2513         /*
2514          * first, we need to know whether the block is allocated already
2515          * preallocated blocks are unmapped but should treated
2516          * the same as allocated blocks.
2517          */
2518         ret = ext4_map_blocks(NULL, inode, &map, 0);
2519         if (ret < 0)
2520                 return ret;
2521         if (ret == 0) {
2522                 if (buffer_delay(bh))
2523                         return 0; /* Not sure this could or should happen */
2524                 /*
2525                  * XXX: __block_prepare_write() unmaps passed block,
2526                  * is it OK?
2527                  */
2528                 ret = ext4_da_reserve_space(inode, iblock);
2529                 if (ret)
2530                         /* not enough space to reserve */
2531                         return ret;
2532
2533                 map_bh(bh, inode->i_sb, invalid_block);
2534                 set_buffer_new(bh);
2535                 set_buffer_delay(bh);
2536                 return 0;
2537         }
2538
2539         map_bh(bh, inode->i_sb, map.m_pblk);
2540         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2541
2542         if (buffer_unwritten(bh)) {
2543                 /* A delayed write to unwritten bh should be marked
2544                  * new and mapped.  Mapped ensures that we don't do
2545                  * get_block multiple times when we write to the same
2546                  * offset and new ensures that we do proper zero out
2547                  * for partial write.
2548                  */
2549                 set_buffer_new(bh);
2550                 set_buffer_mapped(bh);
2551         }
2552         return 0;
2553 }
2554
2555 /*
2556  * This function is used as a standard get_block_t calback function
2557  * when there is no desire to allocate any blocks.  It is used as a
2558  * callback function for block_prepare_write(), nobh_writepage(), and
2559  * block_write_full_page().  These functions should only try to map a
2560  * single block at a time.
2561  *
2562  * Since this function doesn't do block allocations even if the caller
2563  * requests it by passing in create=1, it is critically important that
2564  * any caller checks to make sure that any buffer heads are returned
2565  * by this function are either all already mapped or marked for
2566  * delayed allocation before calling nobh_writepage() or
2567  * block_write_full_page().  Otherwise, b_blocknr could be left
2568  * unitialized, and the page write functions will be taken by
2569  * surprise.
2570  */
2571 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2572                                    struct buffer_head *bh_result, int create)
2573 {
2574         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2575         return _ext4_get_block(inode, iblock, bh_result, 0);
2576 }
2577
2578 static int bget_one(handle_t *handle, struct buffer_head *bh)
2579 {
2580         get_bh(bh);
2581         return 0;
2582 }
2583
2584 static int bput_one(handle_t *handle, struct buffer_head *bh)
2585 {
2586         put_bh(bh);
2587         return 0;
2588 }
2589
2590 static int __ext4_journalled_writepage(struct page *page,
2591                                        unsigned int len)
2592 {
2593         struct address_space *mapping = page->mapping;
2594         struct inode *inode = mapping->host;
2595         struct buffer_head *page_bufs;
2596         handle_t *handle = NULL;
2597         int ret = 0;
2598         int err;
2599
2600         page_bufs = page_buffers(page);
2601         BUG_ON(!page_bufs);
2602         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2603         /* As soon as we unlock the page, it can go away, but we have
2604          * references to buffers so we are safe */
2605         unlock_page(page);
2606
2607         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2608         if (IS_ERR(handle)) {
2609                 ret = PTR_ERR(handle);
2610                 goto out;
2611         }
2612
2613         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2614                                 do_journal_get_write_access);
2615
2616         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2617                                 write_end_fn);
2618         if (ret == 0)
2619                 ret = err;
2620         err = ext4_journal_stop(handle);
2621         if (!ret)
2622                 ret = err;
2623
2624         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2625         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2626 out:
2627         return ret;
2628 }
2629
2630 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2631 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2632
2633 /*
2634  * Note that we don't need to start a transaction unless we're journaling data
2635  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2636  * need to file the inode to the transaction's list in ordered mode because if
2637  * we are writing back data added by write(), the inode is already there and if
2638  * we are writing back data modified via mmap(), noone guarantees in which
2639  * transaction the data will hit the disk. In case we are journaling data, we
2640  * cannot start transaction directly because transaction start ranks above page
2641  * lock so we have to do some magic.
2642  *
2643  * This function can get called via...
2644  *   - ext4_da_writepages after taking page lock (have journal handle)
2645  *   - journal_submit_inode_data_buffers (no journal handle)
2646  *   - shrink_page_list via pdflush (no journal handle)
2647  *   - grab_page_cache when doing write_begin (have journal handle)
2648  *
2649  * We don't do any block allocation in this function. If we have page with
2650  * multiple blocks we need to write those buffer_heads that are mapped. This
2651  * is important for mmaped based write. So if we do with blocksize 1K
2652  * truncate(f, 1024);
2653  * a = mmap(f, 0, 4096);
2654  * a[0] = 'a';
2655  * truncate(f, 4096);
2656  * we have in the page first buffer_head mapped via page_mkwrite call back
2657  * but other bufer_heads would be unmapped but dirty(dirty done via the
2658  * do_wp_page). So writepage should write the first block. If we modify
2659  * the mmap area beyond 1024 we will again get a page_fault and the
2660  * page_mkwrite callback will do the block allocation and mark the
2661  * buffer_heads mapped.
2662  *
2663  * We redirty the page if we have any buffer_heads that is either delay or
2664  * unwritten in the page.
2665  *
2666  * We can get recursively called as show below.
2667  *
2668  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2669  *              ext4_writepage()
2670  *
2671  * But since we don't do any block allocation we should not deadlock.
2672  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2673  */
2674 static int ext4_writepage(struct page *page,
2675                           struct writeback_control *wbc)
2676 {
2677         int ret = 0;
2678         loff_t size;
2679         unsigned int len;
2680         struct buffer_head *page_bufs = NULL;
2681         struct inode *inode = page->mapping->host;
2682
2683         trace_ext4_writepage(inode, page);
2684         size = i_size_read(inode);
2685         if (page->index == size >> PAGE_CACHE_SHIFT)
2686                 len = size & ~PAGE_CACHE_MASK;
2687         else
2688                 len = PAGE_CACHE_SIZE;
2689
2690         if (page_has_buffers(page)) {
2691                 page_bufs = page_buffers(page);
2692                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2693                                         ext4_bh_delay_or_unwritten)) {
2694                         /*
2695                          * We don't want to do  block allocation
2696                          * So redirty the page and return
2697                          * We may reach here when we do a journal commit
2698                          * via journal_submit_inode_data_buffers.
2699                          * If we don't have mapping block we just ignore
2700                          * them. We can also reach here via shrink_page_list
2701                          */
2702                         redirty_page_for_writepage(wbc, page);
2703                         unlock_page(page);
2704                         return 0;
2705                 }
2706         } else {
2707                 /*
2708                  * The test for page_has_buffers() is subtle:
2709                  * We know the page is dirty but it lost buffers. That means
2710                  * that at some moment in time after write_begin()/write_end()
2711                  * has been called all buffers have been clean and thus they
2712                  * must have been written at least once. So they are all
2713                  * mapped and we can happily proceed with mapping them
2714                  * and writing the page.
2715                  *
2716                  * Try to initialize the buffer_heads and check whether
2717                  * all are mapped and non delay. We don't want to
2718                  * do block allocation here.
2719                  */
2720                 ret = block_prepare_write(page, 0, len,
2721                                           noalloc_get_block_write);
2722                 if (!ret) {
2723                         page_bufs = page_buffers(page);
2724                         /* check whether all are mapped and non delay */
2725                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2726                                                 ext4_bh_delay_or_unwritten)) {
2727                                 redirty_page_for_writepage(wbc, page);
2728                                 unlock_page(page);
2729                                 return 0;
2730                         }
2731                 } else {
2732                         /*
2733                          * We can't do block allocation here
2734                          * so just redity the page and unlock
2735                          * and return
2736                          */
2737                         redirty_page_for_writepage(wbc, page);
2738                         unlock_page(page);
2739                         return 0;
2740                 }
2741                 /* now mark the buffer_heads as dirty and uptodate */
2742                 block_commit_write(page, 0, len);
2743         }
2744
2745         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2746                 /*
2747                  * It's mmapped pagecache.  Add buffers and journal it.  There
2748                  * doesn't seem much point in redirtying the page here.
2749                  */
2750                 ClearPageChecked(page);
2751                 return __ext4_journalled_writepage(page, len);
2752         }
2753
2754         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2755                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2756         else if (page_bufs && buffer_uninit(page_bufs)) {
2757                 ext4_set_bh_endio(page_bufs, inode);
2758                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2759                                             wbc, ext4_end_io_buffer_write);
2760         } else
2761                 ret = block_write_full_page(page, noalloc_get_block_write,
2762                                             wbc);
2763
2764         return ret;
2765 }
2766
2767 /*
2768  * This is called via ext4_da_writepages() to
2769  * calulate the total number of credits to reserve to fit
2770  * a single extent allocation into a single transaction,
2771  * ext4_da_writpeages() will loop calling this before
2772  * the block allocation.
2773  */
2774
2775 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2776 {
2777         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2778
2779         /*
2780          * With non-extent format the journal credit needed to
2781          * insert nrblocks contiguous block is dependent on
2782          * number of contiguous block. So we will limit
2783          * number of contiguous block to a sane value
2784          */
2785         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2786             (max_blocks > EXT4_MAX_TRANS_DATA))
2787                 max_blocks = EXT4_MAX_TRANS_DATA;
2788
2789         return ext4_chunk_trans_blocks(inode, max_blocks);
2790 }
2791
2792 /*
2793  * write_cache_pages_da - walk the list of dirty pages of the given
2794  * address space and call the callback function (which usually writes
2795  * the pages).
2796  *
2797  * This is a forked version of write_cache_pages().  Differences:
2798  *      Range cyclic is ignored.
2799  *      no_nrwrite_index_update is always presumed true
2800  */
2801 static int write_cache_pages_da(struct address_space *mapping,
2802                                 struct writeback_control *wbc,
2803                                 struct mpage_da_data *mpd)
2804 {
2805         int ret = 0;
2806         int done = 0;
2807         struct pagevec pvec;
2808         int nr_pages;
2809         pgoff_t index;
2810         pgoff_t end;            /* Inclusive */
2811         long nr_to_write = wbc->nr_to_write;
2812
2813         pagevec_init(&pvec, 0);
2814         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2815         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2816
2817         while (!done && (index <= end)) {
2818                 int i;
2819
2820                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2821                               PAGECACHE_TAG_DIRTY,
2822                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2823                 if (nr_pages == 0)
2824                         break;
2825
2826                 for (i = 0; i < nr_pages; i++) {
2827                         struct page *page = pvec.pages[i];
2828
2829                         /*
2830                          * At this point, the page may be truncated or
2831                          * invalidated (changing page->mapping to NULL), or
2832                          * even swizzled back from swapper_space to tmpfs file
2833                          * mapping. However, page->index will not change
2834                          * because we have a reference on the page.
2835                          */
2836                         if (page->index > end) {
2837                                 done = 1;
2838                                 break;
2839                         }
2840
2841                         lock_page(page);
2842
2843                         /*
2844                          * Page truncated or invalidated. We can freely skip it
2845                          * then, even for data integrity operations: the page
2846                          * has disappeared concurrently, so there could be no
2847                          * real expectation of this data interity operation
2848                          * even if there is now a new, dirty page at the same
2849                          * pagecache address.
2850                          */
2851                         if (unlikely(page->mapping != mapping)) {
2852 continue_unlock:
2853                                 unlock_page(page);
2854                                 continue;
2855                         }
2856
2857                         if (!PageDirty(page)) {
2858                                 /* someone wrote it for us */
2859                                 goto continue_unlock;
2860                         }
2861
2862                         if (PageWriteback(page)) {
2863                                 if (wbc->sync_mode != WB_SYNC_NONE)
2864                                         wait_on_page_writeback(page);
2865                                 else
2866                                         goto continue_unlock;
2867                         }
2868
2869                         BUG_ON(PageWriteback(page));
2870                         if (!clear_page_dirty_for_io(page))
2871                                 goto continue_unlock;
2872
2873                         ret = __mpage_da_writepage(page, wbc, mpd);
2874                         if (unlikely(ret)) {
2875                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2876                                         unlock_page(page);
2877                                         ret = 0;
2878                                 } else {
2879                                         done = 1;
2880                                         break;
2881                                 }
2882                         }
2883
2884                         if (nr_to_write > 0) {
2885                                 nr_to_write--;
2886                                 if (nr_to_write == 0 &&
2887                                     wbc->sync_mode == WB_SYNC_NONE) {
2888                                         /*
2889                                          * We stop writing back only if we are
2890                                          * not doing integrity sync. In case of
2891                                          * integrity sync we have to keep going
2892                                          * because someone may be concurrently
2893                                          * dirtying pages, and we might have
2894                                          * synced a lot of newly appeared dirty
2895                                          * pages, but have not synced all of the
2896                                          * old dirty pages.
2897                                          */
2898                                         done = 1;
2899                                         break;
2900                                 }
2901                         }
2902                 }
2903                 pagevec_release(&pvec);
2904                 cond_resched();
2905         }
2906         return ret;
2907 }
2908
2909
2910 static int ext4_da_writepages(struct address_space *mapping,
2911                               struct writeback_control *wbc)
2912 {
2913         pgoff_t index;
2914         int range_whole = 0;
2915         handle_t *handle = NULL;
2916         struct mpage_da_data mpd;
2917         struct inode *inode = mapping->host;
2918         int pages_written = 0;
2919         long pages_skipped;
2920         unsigned int max_pages;
2921         int range_cyclic, cycled = 1, io_done = 0;
2922         int needed_blocks, ret = 0;
2923         long desired_nr_to_write, nr_to_writebump = 0;
2924         loff_t range_start = wbc->range_start;
2925         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2926
2927         trace_ext4_da_writepages(inode, wbc);
2928
2929         /*
2930          * No pages to write? This is mainly a kludge to avoid starting
2931          * a transaction for special inodes like journal inode on last iput()
2932          * because that could violate lock ordering on umount
2933          */
2934         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2935                 return 0;
2936
2937         /*
2938          * If the filesystem has aborted, it is read-only, so return
2939          * right away instead of dumping stack traces later on that
2940          * will obscure the real source of the problem.  We test
2941          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2942          * the latter could be true if the filesystem is mounted
2943          * read-only, and in that case, ext4_da_writepages should
2944          * *never* be called, so if that ever happens, we would want
2945          * the stack trace.
2946          */
2947         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2948                 return -EROFS;
2949
2950         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951                 range_whole = 1;
2952
2953         range_cyclic = wbc->range_cyclic;
2954         if (wbc->range_cyclic) {
2955                 index = mapping->writeback_index;
2956                 if (index)
2957                         cycled = 0;
2958                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2959                 wbc->range_end  = LLONG_MAX;
2960                 wbc->range_cyclic = 0;
2961         } else
2962                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2963
2964         /*
2965          * This works around two forms of stupidity.  The first is in
2966          * the writeback code, which caps the maximum number of pages
2967          * written to be 1024 pages.  This is wrong on multiple
2968          * levels; different architectues have a different page size,
2969          * which changes the maximum amount of data which gets
2970          * written.  Secondly, 4 megabytes is way too small.  XFS
2971          * forces this value to be 16 megabytes by multiplying
2972          * nr_to_write parameter by four, and then relies on its
2973          * allocator to allocate larger extents to make them
2974          * contiguous.  Unfortunately this brings us to the second
2975          * stupidity, which is that ext4's mballoc code only allocates
2976          * at most 2048 blocks.  So we force contiguous writes up to
2977          * the number of dirty blocks in the inode, or
2978          * sbi->max_writeback_mb_bump whichever is smaller.
2979          */
2980         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2981         if (!range_cyclic && range_whole)
2982                 desired_nr_to_write = wbc->nr_to_write * 8;
2983         else
2984                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2985                                                            max_pages);
2986         if (desired_nr_to_write > max_pages)
2987                 desired_nr_to_write = max_pages;
2988
2989         if (wbc->nr_to_write < desired_nr_to_write) {
2990                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2991                 wbc->nr_to_write = desired_nr_to_write;
2992         }
2993
2994         mpd.wbc = wbc;
2995         mpd.inode = mapping->host;
2996
2997         pages_skipped = wbc->pages_skipped;
2998
2999 retry:
3000         while (!ret && wbc->nr_to_write > 0) {
3001
3002                 /*
3003                  * we  insert one extent at a time. So we need
3004                  * credit needed for single extent allocation.
3005                  * journalled mode is currently not supported
3006                  * by delalloc
3007                  */
3008                 BUG_ON(ext4_should_journal_data(inode));
3009                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3010
3011                 /* start a new transaction*/
3012                 handle = ext4_journal_start(inode, needed_blocks);
3013                 if (IS_ERR(handle)) {
3014                         ret = PTR_ERR(handle);
3015                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3016                                "%ld pages, ino %lu; err %d", __func__,
3017                                 wbc->nr_to_write, inode->i_ino, ret);
3018                         goto out_writepages;
3019                 }
3020
3021                 /*
3022                  * Now call __mpage_da_writepage to find the next
3023                  * contiguous region of logical blocks that need
3024                  * blocks to be allocated by ext4.  We don't actually
3025                  * submit the blocks for I/O here, even though
3026                  * write_cache_pages thinks it will, and will set the
3027                  * pages as clean for write before calling
3028                  * __mpage_da_writepage().
3029                  */
3030                 mpd.b_size = 0;
3031                 mpd.b_state = 0;
3032                 mpd.b_blocknr = 0;
3033                 mpd.first_page = 0;
3034                 mpd.next_page = 0;
3035                 mpd.io_done = 0;
3036                 mpd.pages_written = 0;
3037                 mpd.retval = 0;
3038                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3039                 /*
3040                  * If we have a contiguous extent of pages and we
3041                  * haven't done the I/O yet, map the blocks and submit
3042                  * them for I/O.
3043                  */
3044                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3045                         if (mpage_da_map_blocks(&mpd) == 0)
3046                                 mpage_da_submit_io(&mpd);
3047                         mpd.io_done = 1;
3048                         ret = MPAGE_DA_EXTENT_TAIL;
3049                 }
3050                 trace_ext4_da_write_pages(inode, &mpd);
3051                 wbc->nr_to_write -= mpd.pages_written;
3052
3053                 ext4_journal_stop(handle);
3054
3055                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3056                         /* commit the transaction which would
3057                          * free blocks released in the transaction
3058                          * and try again
3059                          */
3060                         jbd2_journal_force_commit_nested(sbi->s_journal);
3061                         wbc->pages_skipped = pages_skipped;
3062                         ret = 0;
3063                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3064                         /*
3065                          * got one extent now try with
3066                          * rest of the pages
3067                          */
3068                         pages_written += mpd.pages_written;
3069                         wbc->pages_skipped = pages_skipped;
3070                         ret = 0;
3071                         io_done = 1;
3072                 } else if (wbc->nr_to_write)
3073                         /*
3074                          * There is no more writeout needed
3075                          * or we requested for a noblocking writeout
3076                          * and we found the device congested
3077                          */
3078                         break;
3079         }
3080         if (!io_done && !cycled) {
3081                 cycled = 1;
3082                 index = 0;
3083                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3084                 wbc->range_end  = mapping->writeback_index - 1;
3085                 goto retry;
3086         }
3087         if (pages_skipped != wbc->pages_skipped)
3088                 ext4_msg(inode->i_sb, KERN_CRIT,
3089                          "This should not happen leaving %s "
3090                          "with nr_to_write = %ld ret = %d",
3091                          __func__, wbc->nr_to_write, ret);
3092
3093         /* Update index */
3094         index += pages_written;
3095         wbc->range_cyclic = range_cyclic;
3096         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3097                 /*
3098                  * set the writeback_index so that range_cyclic
3099                  * mode will write it back later
3100                  */
3101                 mapping->writeback_index = index;
3102
3103 out_writepages:
3104         wbc->nr_to_write -= nr_to_writebump;
3105         wbc->range_start = range_start;
3106         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3107         return ret;
3108 }
3109
3110 #define FALL_BACK_TO_NONDELALLOC 1
3111 static int ext4_nonda_switch(struct super_block *sb)
3112 {
3113         s64 free_blocks, dirty_blocks;
3114         struct ext4_sb_info *sbi = EXT4_SB(sb);
3115
3116         /*
3117          * switch to non delalloc mode if we are running low
3118          * on free block. The free block accounting via percpu
3119          * counters can get slightly wrong with percpu_counter_batch getting
3120          * accumulated on each CPU without updating global counters
3121          * Delalloc need an accurate free block accounting. So switch
3122          * to non delalloc when we are near to error range.
3123          */
3124         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3125         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3126         if (2 * free_blocks < 3 * dirty_blocks ||
3127                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3128                 /*
3129                  * free block count is less than 150% of dirty blocks
3130                  * or free blocks is less than watermark
3131                  */
3132                 return 1;
3133         }
3134         /*
3135          * Even if we don't switch but are nearing capacity,
3136          * start pushing delalloc when 1/2 of free blocks are dirty.
3137          */
3138         if (free_blocks < 2 * dirty_blocks)
3139                 writeback_inodes_sb_if_idle(sb);
3140
3141         return 0;
3142 }
3143
3144 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3145                                loff_t pos, unsigned len, unsigned flags,
3146                                struct page **pagep, void **fsdata)
3147 {
3148         int ret, retries = 0;
3149         struct page *page;
3150         pgoff_t index;
3151         unsigned from, to;
3152         struct inode *inode = mapping->host;
3153         handle_t *handle;
3154
3155         index = pos >> PAGE_CACHE_SHIFT;
3156         from = pos & (PAGE_CACHE_SIZE - 1);
3157         to = from + len;
3158
3159         if (ext4_nonda_switch(inode->i_sb)) {
3160                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3161                 return ext4_write_begin(file, mapping, pos,
3162                                         len, flags, pagep, fsdata);
3163         }
3164         *fsdata = (void *)0;
3165         trace_ext4_da_write_begin(inode, pos, len, flags);
3166 retry:
3167         /*
3168          * With delayed allocation, we don't log the i_disksize update
3169          * if there is delayed block allocation. But we still need
3170          * to journalling the i_disksize update if writes to the end
3171          * of file which has an already mapped buffer.
3172          */
3173         handle = ext4_journal_start(inode, 1);
3174         if (IS_ERR(handle)) {
3175                 ret = PTR_ERR(handle);
3176                 goto out;
3177         }
3178         /* We cannot recurse into the filesystem as the transaction is already
3179          * started */
3180         flags |= AOP_FLAG_NOFS;
3181
3182         page = grab_cache_page_write_begin(mapping, index, flags);
3183         if (!page) {
3184                 ext4_journal_stop(handle);
3185                 ret = -ENOMEM;
3186                 goto out;
3187         }
3188         *pagep = page;
3189
3190         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3191                                 ext4_da_get_block_prep);
3192         if (ret < 0) {
3193                 unlock_page(page);
3194                 ext4_journal_stop(handle);
3195                 page_cache_release(page);
3196                 /*
3197                  * block_write_begin may have instantiated a few blocks
3198                  * outside i_size.  Trim these off again. Don't need
3199                  * i_size_read because we hold i_mutex.
3200                  */
3201                 if (pos + len > inode->i_size)
3202                         ext4_truncate_failed_write(inode);
3203         }
3204
3205         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3206                 goto retry;
3207 out:
3208         return ret;
3209 }
3210
3211 /*
3212  * Check if we should update i_disksize
3213  * when write to the end of file but not require block allocation
3214  */
3215 static int ext4_da_should_update_i_disksize(struct page *page,
3216                                             unsigned long offset)
3217 {
3218         struct buffer_head *bh;
3219         struct inode *inode = page->mapping->host;
3220         unsigned int idx;
3221         int i;
3222
3223         bh = page_buffers(page);
3224         idx = offset >> inode->i_blkbits;
3225
3226         for (i = 0; i < idx; i++)
3227                 bh = bh->b_this_page;
3228
3229         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3230                 return 0;
3231         return 1;
3232 }
3233
3234 static int ext4_da_write_end(struct file *file,
3235                              struct address_space *mapping,
3236                              loff_t pos, unsigned len, unsigned copied,
3237                              struct page *page, void *fsdata)
3238 {
3239         struct inode *inode = mapping->host;
3240         int ret = 0, ret2;
3241         handle_t *handle = ext4_journal_current_handle();
3242         loff_t new_i_size;
3243         unsigned long start, end;
3244         int write_mode = (int)(unsigned long)fsdata;
3245
3246         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3247                 if (ext4_should_order_data(inode)) {
3248                         return ext4_ordered_write_end(file, mapping, pos,
3249                                         len, copied, page, fsdata);
3250                 } else if (ext4_should_writeback_data(inode)) {
3251                         return ext4_writeback_write_end(file, mapping, pos,
3252                                         len, copied, page, fsdata);
3253                 } else {
3254                         BUG();
3255                 }
3256         }
3257
3258         trace_ext4_da_write_end(inode, pos, len, copied);
3259         start = pos & (PAGE_CACHE_SIZE - 1);
3260         end = start + copied - 1;
3261
3262         /*
3263          * generic_write_end() will run mark_inode_dirty() if i_size
3264          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3265          * into that.
3266          */
3267
3268         new_i_size = pos + copied;
3269         if (new_i_size > EXT4_I(inode)->i_disksize) {
3270                 if (ext4_da_should_update_i_disksize(page, end)) {
3271                         down_write(&EXT4_I(inode)->i_data_sem);
3272                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3273                                 /*
3274                                  * Updating i_disksize when extending file
3275                                  * without needing block allocation
3276                                  */
3277                                 if (ext4_should_order_data(inode))
3278                                         ret = ext4_jbd2_file_inode(handle,
3279                                                                    inode);
3280
3281                                 EXT4_I(inode)->i_disksize = new_i_size;
3282                         }
3283                         up_write(&EXT4_I(inode)->i_data_sem);
3284                         /* We need to mark inode dirty even if
3285                          * new_i_size is less that inode->i_size
3286                          * bu greater than i_disksize.(hint delalloc)
3287                          */
3288                         ext4_mark_inode_dirty(handle, inode);
3289                 }
3290         }
3291         ret2 = generic_write_end(file, mapping, pos, len, copied,
3292                                                         page, fsdata);
3293         copied = ret2;
3294         if (ret2 < 0)
3295                 ret = ret2;
3296         ret2 = ext4_journal_stop(handle);
3297         if (!ret)
3298                 ret = ret2;
3299
3300         return ret ? ret : copied;
3301 }
3302
3303 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3304 {
3305         /*
3306          * Drop reserved blocks
3307          */
3308         BUG_ON(!PageLocked(page));
3309         if (!page_has_buffers(page))
3310                 goto out;
3311
3312         ext4_da_page_release_reservation(page, offset);
3313
3314 out:
3315         ext4_invalidatepage(page, offset);
3316
3317         return;
3318 }
3319
3320 /*
3321  * Force all delayed allocation blocks to be allocated for a given inode.
3322  */
3323 int ext4_alloc_da_blocks(struct inode *inode)
3324 {
3325         trace_ext4_alloc_da_blocks(inode);
3326
3327         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3328             !EXT4_I(inode)->i_reserved_meta_blocks)
3329                 return 0;
3330
3331         /*
3332          * We do something simple for now.  The filemap_flush() will
3333          * also start triggering a write of the data blocks, which is
3334          * not strictly speaking necessary (and for users of
3335          * laptop_mode, not even desirable).  However, to do otherwise
3336          * would require replicating code paths in:
3337          *
3338          * ext4_da_writepages() ->
3339          *    write_cache_pages() ---> (via passed in callback function)
3340          *        __mpage_da_writepage() -->
3341          *           mpage_add_bh_to_extent()
3342          *           mpage_da_map_blocks()
3343          *
3344          * The problem is that write_cache_pages(), located in
3345          * mm/page-writeback.c, marks pages clean in preparation for
3346          * doing I/O, which is not desirable if we're not planning on
3347          * doing I/O at all.
3348          *
3349          * We could call write_cache_pages(), and then redirty all of
3350          * the pages by calling redirty_page_for_writeback() but that
3351          * would be ugly in the extreme.  So instead we would need to
3352          * replicate parts of the code in the above functions,
3353          * simplifying them becuase we wouldn't actually intend to
3354          * write out the pages, but rather only collect contiguous
3355          * logical block extents, call the multi-block allocator, and
3356          * then update the buffer heads with the block allocations.
3357          *
3358          * For now, though, we'll cheat by calling filemap_flush(),
3359          * which will map the blocks, and start the I/O, but not
3360          * actually wait for the I/O to complete.
3361          */
3362         return filemap_flush(inode->i_mapping);
3363 }
3364
3365 /*
3366  * bmap() is special.  It gets used by applications such as lilo and by
3367  * the swapper to find the on-disk block of a specific piece of data.
3368  *
3369  * Naturally, this is dangerous if the block concerned is still in the
3370  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3371  * filesystem and enables swap, then they may get a nasty shock when the
3372  * data getting swapped to that swapfile suddenly gets overwritten by
3373  * the original zero's written out previously to the journal and
3374  * awaiting writeback in the kernel's buffer cache.
3375  *
3376  * So, if we see any bmap calls here on a modified, data-journaled file,
3377  * take extra steps to flush any blocks which might be in the cache.
3378  */
3379 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3380 {
3381         struct inode *inode = mapping->host;
3382         journal_t *journal;
3383         int err;
3384
3385         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3386                         test_opt(inode->i_sb, DELALLOC)) {
3387                 /*
3388                  * With delalloc we want to sync the file
3389                  * so that we can make sure we allocate
3390                  * blocks for file
3391                  */
3392                 filemap_write_and_wait(mapping);
3393         }
3394
3395         if (EXT4_JOURNAL(inode) &&
3396             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3397                 /*
3398                  * This is a REALLY heavyweight approach, but the use of
3399                  * bmap on dirty files is expected to be extremely rare:
3400                  * only if we run lilo or swapon on a freshly made file
3401                  * do we expect this to happen.
3402                  *
3403                  * (bmap requires CAP_SYS_RAWIO so this does not
3404                  * represent an unprivileged user DOS attack --- we'd be
3405                  * in trouble if mortal users could trigger this path at
3406                  * will.)
3407                  *
3408                  * NB. EXT4_STATE_JDATA is not set on files other than
3409                  * regular files.  If somebody wants to bmap a directory
3410                  * or symlink and gets confused because the buffer
3411                  * hasn't yet been flushed to disk, they deserve
3412                  * everything they get.
3413                  */
3414
3415                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3416                 journal = EXT4_JOURNAL(inode);
3417                 jbd2_journal_lock_updates(journal);
3418                 err = jbd2_journal_flush(journal);
3419                 jbd2_journal_unlock_updates(journal);
3420
3421                 if (err)
3422                         return 0;
3423         }
3424
3425         return generic_block_bmap(mapping, block, ext4_get_block);
3426 }
3427
3428 static int ext4_readpage(struct file *file, struct page *page)
3429 {
3430         return mpage_readpage(page, ext4_get_block);
3431 }
3432
3433 static int
3434 ext4_readpages(struct file *file, struct address_space *mapping,
3435                 struct list_head *pages, unsigned nr_pages)
3436 {
3437         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3438 }
3439
3440 static void ext4_free_io_end(ext4_io_end_t *io)
3441 {
3442         BUG_ON(!io);
3443         if (io->page)
3444                 put_page(io->page);
3445         iput(io->inode);
3446         kfree(io);
3447 }
3448
3449 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3450 {
3451         struct buffer_head *head, *bh;
3452         unsigned int curr_off = 0;
3453
3454         if (!page_has_buffers(page))
3455                 return;
3456         head = bh = page_buffers(page);
3457         do {
3458                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3459                                         && bh->b_private) {
3460                         ext4_free_io_end(bh->b_private);
3461                         bh->b_private = NULL;
3462                         bh->b_end_io = NULL;
3463                 }
3464                 curr_off = curr_off + bh->b_size;
3465                 bh = bh->b_this_page;
3466         } while (bh != head);
3467 }
3468
3469 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3470 {
3471         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3472
3473         /*
3474          * free any io_end structure allocated for buffers to be discarded
3475          */
3476         if (ext4_should_dioread_nolock(page->mapping->host))
3477                 ext4_invalidatepage_free_endio(page, offset);
3478         /*
3479          * If it's a full truncate we just forget about the pending dirtying
3480          */
3481         if (offset == 0)
3482                 ClearPageChecked(page);
3483
3484         if (journal)
3485                 jbd2_journal_invalidatepage(journal, page, offset);
3486         else
3487                 block_invalidatepage(page, offset);
3488 }
3489
3490 static int ext4_releasepage(struct page *page, gfp_t wait)
3491 {
3492         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3493
3494         WARN_ON(PageChecked(page));
3495         if (!page_has_buffers(page))
3496                 return 0;
3497         if (journal)
3498                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3499         else
3500                 return try_to_free_buffers(page);
3501 }
3502
3503 /*
3504  * O_DIRECT for ext3 (or indirect map) based files
3505  *
3506  * If the O_DIRECT write will extend the file then add this inode to the
3507  * orphan list.  So recovery will truncate it back to the original size
3508  * if the machine crashes during the write.
3509  *
3510  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3511  * crashes then stale disk data _may_ be exposed inside the file. But current
3512  * VFS code falls back into buffered path in that case so we are safe.
3513  */
3514 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3515                               const struct iovec *iov, loff_t offset,
3516                               unsigned long nr_segs)
3517 {
3518         struct file *file = iocb->ki_filp;
3519         struct inode *inode = file->f_mapping->host;
3520         struct ext4_inode_info *ei = EXT4_I(inode);
3521         handle_t *handle;
3522         ssize_t ret;
3523         int orphan = 0;
3524         size_t count = iov_length(iov, nr_segs);
3525         int retries = 0;
3526
3527         if (rw == WRITE) {
3528                 loff_t final_size = offset + count;
3529
3530                 if (final_size > inode->i_size) {
3531                         /* Credits for sb + inode write */
3532                         handle = ext4_journal_start(inode, 2);
3533                         if (IS_ERR(handle)) {
3534                                 ret = PTR_ERR(handle);
3535                                 goto out;
3536                         }
3537                         ret = ext4_orphan_add(handle, inode);
3538                         if (ret) {
3539                                 ext4_journal_stop(handle);
3540                                 goto out;
3541                         }
3542                         orphan = 1;
3543                         ei->i_disksize = inode->i_size;
3544                         ext4_journal_stop(handle);
3545                 }
3546         }
3547
3548 retry:
3549         if (rw == READ && ext4_should_dioread_nolock(inode))
3550                 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3551                                  inode->i_sb->s_bdev, iov,
3552                                  offset, nr_segs,
3553                                  ext4_get_block, NULL);
3554         else
3555                 ret = blockdev_direct_IO(rw, iocb, inode,
3556                                  inode->i_sb->s_bdev, iov,
3557                                  offset, nr_segs,
3558                                  ext4_get_block, NULL);
3559         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3560                 goto retry;
3561
3562         if (orphan) {
3563                 int err;
3564
3565                 /* Credits for sb + inode write */
3566                 handle = ext4_journal_start(inode, 2);
3567                 if (IS_ERR(handle)) {
3568                         /* This is really bad luck. We've written the data
3569                          * but cannot extend i_size. Bail out and pretend
3570                          * the write failed... */
3571                         ret = PTR_ERR(handle);
3572                         if (inode->i_nlink)
3573                                 ext4_orphan_del(NULL, inode);
3574
3575                         goto out;
3576                 }
3577                 if (inode->i_nlink)
3578                         ext4_orphan_del(handle, inode);
3579                 if (ret > 0) {
3580                         loff_t end = offset + ret;
3581                         if (end > inode->i_size) {
3582                                 ei->i_disksize = end;
3583                                 i_size_write(inode, end);
3584                                 /*
3585                                  * We're going to return a positive `ret'
3586                                  * here due to non-zero-length I/O, so there's
3587                                  * no way of reporting error returns from
3588                                  * ext4_mark_inode_dirty() to userspace.  So
3589                                  * ignore it.
3590                                  */
3591                                 ext4_mark_inode_dirty(handle, inode);
3592                         }
3593                 }
3594                 err = ext4_journal_stop(handle);
3595                 if (ret == 0)
3596                         ret = err;
3597         }
3598 out:
3599         return ret;
3600 }
3601
3602 /*
3603  * ext4_get_block used when preparing for a DIO write or buffer write.
3604  * We allocate an uinitialized extent if blocks haven't been allocated.
3605  * The extent will be converted to initialized after the IO is complete.
3606  */
3607 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3608                    struct buffer_head *bh_result, int create)
3609 {
3610         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3611                    inode->i_ino, create);
3612         return _ext4_get_block(inode, iblock, bh_result,
3613                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3614 }
3615
3616 static void dump_completed_IO(struct inode * inode)
3617 {
3618 #ifdef  EXT4_DEBUG
3619         struct list_head *cur, *before, *after;
3620         ext4_io_end_t *io, *io0, *io1;
3621         unsigned long flags;
3622
3623         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3624                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3625                 return;
3626         }
3627
3628         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3629         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3630         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3631                 cur = &io->list;
3632                 before = cur->prev;
3633                 io0 = container_of(before, ext4_io_end_t, list);
3634                 after = cur->next;
3635                 io1 = container_of(after, ext4_io_end_t, list);
3636
3637                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3638                             io, inode->i_ino, io0, io1);
3639         }
3640         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3641 #endif
3642 }
3643
3644 /*
3645  * check a range of space and convert unwritten extents to written.
3646  */
3647 static int ext4_end_io_nolock(ext4_io_end_t *io)
3648 {
3649         struct inode *inode = io->inode;
3650         loff_t offset = io->offset;
3651         ssize_t size = io->size;
3652         int ret = 0;
3653
3654         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3655                    "list->prev 0x%p\n",
3656                    io, inode->i_ino, io->list.next, io->list.prev);
3657
3658         if (list_empty(&io->list))
3659                 return ret;
3660
3661         if (io->flag != EXT4_IO_UNWRITTEN)
3662                 return ret;
3663
3664         ret = ext4_convert_unwritten_extents(inode, offset, size);
3665         if (ret < 0) {
3666                 printk(KERN_EMERG "%s: failed to convert unwritten"
3667                         "extents to written extents, error is %d"
3668                         " io is still on inode %lu aio dio list\n",
3669                        __func__, ret, inode->i_ino);
3670                 return ret;
3671         }
3672
3673         /* clear the DIO AIO unwritten flag */
3674         io->flag = 0;
3675         return ret;
3676 }
3677
3678 /*
3679  * work on completed aio dio IO, to convert unwritten extents to extents
3680  */
3681 static void ext4_end_io_work(struct work_struct *work)
3682 {
3683         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3684         struct inode            *inode = io->inode;
3685         struct ext4_inode_info  *ei = EXT4_I(inode);
3686         unsigned long           flags;
3687         int                     ret;
3688
3689         mutex_lock(&inode->i_mutex);
3690         ret = ext4_end_io_nolock(io);
3691         if (ret < 0) {
3692                 mutex_unlock(&inode->i_mutex);
3693                 return;
3694         }
3695
3696         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3697         if (!list_empty(&io->list))
3698                 list_del_init(&io->list);
3699         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3700         mutex_unlock(&inode->i_mutex);
3701         ext4_free_io_end(io);
3702 }
3703
3704 /*
3705  * This function is called from ext4_sync_file().
3706  *
3707  * When IO is completed, the work to convert unwritten extents to
3708  * written is queued on workqueue but may not get immediately
3709  * scheduled. When fsync is called, we need to ensure the
3710  * conversion is complete before fsync returns.
3711  * The inode keeps track of a list of pending/completed IO that
3712  * might needs to do the conversion. This function walks through
3713  * the list and convert the related unwritten extents for completed IO
3714  * to written.
3715  * The function return the number of pending IOs on success.
3716  */
3717 int flush_completed_IO(struct inode *inode)
3718 {
3719         ext4_io_end_t *io;
3720         struct ext4_inode_info *ei = EXT4_I(inode);
3721         unsigned long flags;
3722         int ret = 0;
3723         int ret2 = 0;
3724
3725         if (list_empty(&ei->i_completed_io_list))
3726                 return ret;
3727
3728         dump_completed_IO(inode);
3729         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730         while (!list_empty(&ei->i_completed_io_list)){
3731                 io = list_entry(ei->i_completed_io_list.next,
3732                                 ext4_io_end_t, list);
3733                 /*
3734                  * Calling ext4_end_io_nolock() to convert completed
3735                  * IO to written.
3736                  *
3737                  * When ext4_sync_file() is called, run_queue() may already
3738                  * about to flush the work corresponding to this io structure.
3739                  * It will be upset if it founds the io structure related
3740                  * to the work-to-be schedule is freed.
3741                  *
3742                  * Thus we need to keep the io structure still valid here after
3743                  * convertion finished. The io structure has a flag to
3744                  * avoid double converting from both fsync and background work
3745                  * queue work.
3746                  */
3747                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3748                 ret = ext4_end_io_nolock(io);
3749                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3750                 if (ret < 0)
3751                         ret2 = ret;
3752                 else
3753                         list_del_init(&io->list);
3754         }
3755         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3756         return (ret2 < 0) ? ret2 : 0;
3757 }
3758
3759 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3760 {
3761         ext4_io_end_t *io = NULL;
3762
3763         io = kmalloc(sizeof(*io), flags);
3764
3765         if (io) {
3766                 igrab(inode);
3767                 io->inode = inode;
3768                 io->flag = 0;
3769                 io->offset = 0;
3770                 io->size = 0;
3771                 io->page = NULL;
3772                 INIT_WORK(&io->work, ext4_end_io_work);
3773                 INIT_LIST_HEAD(&io->list);
3774         }
3775
3776         return io;
3777 }
3778
3779 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3780                             ssize_t size, void *private)
3781 {
3782         ext4_io_end_t *io_end = iocb->private;
3783         struct workqueue_struct *wq;
3784         unsigned long flags;
3785         struct ext4_inode_info *ei;
3786
3787         /* if not async direct IO or dio with 0 bytes write, just return */
3788         if (!io_end || !size)
3789                 return;
3790
3791         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3792                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3793                   iocb->private, io_end->inode->i_ino, iocb, offset,
3794                   size);
3795
3796         /* if not aio dio with unwritten extents, just free io and return */
3797         if (io_end->flag != EXT4_IO_UNWRITTEN){
3798                 ext4_free_io_end(io_end);
3799                 iocb->private = NULL;
3800                 return;
3801         }
3802
3803         io_end->offset = offset;
3804         io_end->size = size;
3805         io_end->flag = EXT4_IO_UNWRITTEN;
3806         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3807
3808         /* queue the work to convert unwritten extents to written */
3809         queue_work(wq, &io_end->work);
3810
3811         /* Add the io_end to per-inode completed aio dio list*/
3812         ei = EXT4_I(io_end->inode);
3813         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3814         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3815         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3816         iocb->private = NULL;
3817 }
3818
3819 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3820 {
3821         ext4_io_end_t *io_end = bh->b_private;
3822         struct workqueue_struct *wq;
3823         struct inode *inode;
3824         unsigned long flags;
3825
3826         if (!test_clear_buffer_uninit(bh) || !io_end)
3827                 goto out;
3828
3829         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3830                 printk("sb umounted, discard end_io request for inode %lu\n",
3831                         io_end->inode->i_ino);
3832                 ext4_free_io_end(io_end);
3833                 goto out;
3834         }
3835
3836         io_end->flag = EXT4_IO_UNWRITTEN;
3837         inode = io_end->inode;
3838
3839         /* Add the io_end to per-inode completed io list*/
3840         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3841         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3842         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3843
3844         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3845         /* queue the work to convert unwritten extents to written */
3846         queue_work(wq, &io_end->work);
3847 out:
3848         bh->b_private = NULL;
3849         bh->b_end_io = NULL;
3850         clear_buffer_uninit(bh);
3851         end_buffer_async_write(bh, uptodate);
3852 }
3853
3854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3855 {
3856         ext4_io_end_t *io_end;
3857         struct page *page = bh->b_page;
3858         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3859         size_t size = bh->b_size;
3860
3861 retry:
3862         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3863         if (!io_end) {
3864                 if (printk_ratelimit())
3865                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3866                 schedule();
3867                 goto retry;
3868         }
3869         io_end->offset = offset;
3870         io_end->size = size;
3871         /*
3872          * We need to hold a reference to the page to make sure it
3873          * doesn't get evicted before ext4_end_io_work() has a chance
3874          * to convert the extent from written to unwritten.
3875          */
3876         io_end->page = page;
3877         get_page(io_end->page);
3878
3879         bh->b_private = io_end;
3880         bh->b_end_io = ext4_end_io_buffer_write;
3881         return 0;
3882 }
3883
3884 /*
3885  * For ext4 extent files, ext4 will do direct-io write to holes,
3886  * preallocated extents, and those write extend the file, no need to
3887  * fall back to buffered IO.
3888  *
3889  * For holes, we fallocate those blocks, mark them as unintialized
3890  * If those blocks were preallocated, we mark sure they are splited, but
3891  * still keep the range to write as unintialized.
3892  *
3893  * The unwrritten extents will be converted to written when DIO is completed.
3894  * For async direct IO, since the IO may still pending when return, we
3895  * set up an end_io call back function, which will do the convertion
3896  * when async direct IO completed.
3897  *
3898  * If the O_DIRECT write will extend the file then add this inode to the
3899  * orphan list.  So recovery will truncate it back to the original size
3900  * if the machine crashes during the write.
3901  *
3902  */
3903 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3904                               const struct iovec *iov, loff_t offset,
3905                               unsigned long nr_segs)
3906 {
3907         struct file *file = iocb->ki_filp;
3908         struct inode *inode = file->f_mapping->host;
3909         ssize_t ret;
3910         size_t count = iov_length(iov, nr_segs);
3911
3912         loff_t final_size = offset + count;
3913         if (rw == WRITE && final_size <= inode->i_size) {
3914                 /*
3915                  * We could direct write to holes and fallocate.
3916                  *
3917                  * Allocated blocks to fill the hole are marked as uninitialized
3918                  * to prevent paralel buffered read to expose the stale data
3919                  * before DIO complete the data IO.
3920                  *
3921                  * As to previously fallocated extents, ext4 get_block
3922                  * will just simply mark the buffer mapped but still
3923                  * keep the extents uninitialized.
3924                  *
3925                  * for non AIO case, we will convert those unwritten extents
3926                  * to written after return back from blockdev_direct_IO.
3927                  *
3928                  * for async DIO, the conversion needs to be defered when
3929                  * the IO is completed. The ext4 end_io callback function
3930                  * will be called to take care of the conversion work.
3931                  * Here for async case, we allocate an io_end structure to
3932                  * hook to the iocb.
3933                  */
3934                 iocb->private = NULL;
3935                 EXT4_I(inode)->cur_aio_dio = NULL;
3936                 if (!is_sync_kiocb(iocb)) {
3937                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3938                         if (!iocb->private)
3939                                 return -ENOMEM;
3940                         /*
3941                          * we save the io structure for current async
3942                          * direct IO, so that later ext4_get_blocks()
3943                          * could flag the io structure whether there
3944                          * is a unwritten extents needs to be converted
3945                          * when IO is completed.
3946                          */
3947                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3948                 }
3949
3950                 ret = blockdev_direct_IO(rw, iocb, inode,
3951                                          inode->i_sb->s_bdev, iov,
3952                                          offset, nr_segs,
3953                                          ext4_get_block_write,
3954                                          ext4_end_io_dio);
3955                 if (iocb->private)
3956                         EXT4_I(inode)->cur_aio_dio = NULL;
3957                 /*
3958                  * The io_end structure takes a reference to the inode,
3959                  * that structure needs to be destroyed and the
3960                  * reference to the inode need to be dropped, when IO is
3961                  * complete, even with 0 byte write, or failed.
3962                  *
3963                  * In the successful AIO DIO case, the io_end structure will be
3964                  * desctroyed and the reference to the inode will be dropped
3965                  * after the end_io call back function is called.
3966                  *
3967                  * In the case there is 0 byte write, or error case, since
3968                  * VFS direct IO won't invoke the end_io call back function,
3969                  * we need to free the end_io structure here.
3970                  */
3971                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3972                         ext4_free_io_end(iocb->private);
3973                         iocb->private = NULL;
3974                 } else if (ret > 0 && ext4_test_inode_state(inode,
3975                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3976                         int err;
3977                         /*
3978                          * for non AIO case, since the IO is already
3979                          * completed, we could do the convertion right here
3980                          */
3981                         err = ext4_convert_unwritten_extents(inode,
3982                                                              offset, ret);
3983                         if (err < 0)
3984                                 ret = err;
3985                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3986                 }
3987                 return ret;
3988         }
3989
3990         /* for write the the end of file case, we fall back to old way */
3991         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3992 }
3993
3994 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3995                               const struct iovec *iov, loff_t offset,
3996                               unsigned long nr_segs)
3997 {
3998         struct file *file = iocb->ki_filp;
3999         struct inode *inode = file->f_mapping->host;
4000
4001         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4002                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4003
4004         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4005 }
4006
4007 /*
4008  * Pages can be marked dirty completely asynchronously from ext4's journalling
4009  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4010  * much here because ->set_page_dirty is called under VFS locks.  The page is
4011  * not necessarily locked.
4012  *
4013  * We cannot just dirty the page and leave attached buffers clean, because the
4014  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4015  * or jbddirty because all the journalling code will explode.
4016  *
4017  * So what we do is to mark the page "pending dirty" and next time writepage
4018  * is called, propagate that into the buffers appropriately.
4019  */
4020 static int ext4_journalled_set_page_dirty(struct page *page)
4021 {
4022         SetPageChecked(page);
4023         return __set_page_dirty_nobuffers(page);
4024 }
4025
4026 static const struct address_space_operations ext4_ordered_aops = {
4027         .readpage               = ext4_readpage,
4028         .readpages              = ext4_readpages,
4029         .writepage              = ext4_writepage,
4030         .sync_page              = block_sync_page,
4031         .write_begin            = ext4_write_begin,
4032         .write_end              = ext4_ordered_write_end,
4033         .bmap                   = ext4_bmap,
4034         .invalidatepage         = ext4_invalidatepage,
4035         .releasepage            = ext4_releasepage,
4036         .direct_IO              = ext4_direct_IO,
4037         .migratepage            = buffer_migrate_page,
4038         .is_partially_uptodate  = block_is_partially_uptodate,
4039         .error_remove_page      = generic_error_remove_page,
4040 };
4041
4042 static const struct address_space_operations ext4_writeback_aops = {
4043         .readpage               = ext4_readpage,
4044         .readpages              = ext4_readpages,
4045         .writepage              = ext4_writepage,
4046         .sync_page              = block_sync_page,
4047         .write_begin            = ext4_write_begin,
4048         .write_end              = ext4_writeback_write_end,
4049         .bmap                   = ext4_bmap,
4050         .invalidatepage         = ext4_invalidatepage,
4051         .releasepage            = ext4_releasepage,
4052         .direct_IO              = ext4_direct_IO,
4053         .migratepage            = buffer_migrate_page,
4054         .is_partially_uptodate  = block_is_partially_uptodate,
4055         .error_remove_page      = generic_error_remove_page,
4056 };
4057
4058 static const struct address_space_operations ext4_journalled_aops = {
4059         .readpage               = ext4_readpage,
4060         .readpages              = ext4_readpages,
4061         .writepage              = ext4_writepage,
4062         .sync_page              = block_sync_page,
4063         .write_begin            = ext4_write_begin,
4064         .write_end              = ext4_journalled_write_end,
4065         .set_page_dirty         = ext4_journalled_set_page_dirty,
4066         .bmap                   = ext4_bmap,
4067         .invalidatepage         = ext4_invalidatepage,
4068         .releasepage            = ext4_releasepage,
4069         .is_partially_uptodate  = block_is_partially_uptodate,
4070         .error_remove_page      = generic_error_remove_page,
4071 };
4072
4073 static const struct address_space_operations ext4_da_aops = {
4074         .readpage               = ext4_readpage,
4075         .readpages              = ext4_readpages,
4076         .writepage              = ext4_writepage,
4077         .writepages             = ext4_da_writepages,
4078         .sync_page              = block_sync_page,
4079         .write_begin            = ext4_da_write_begin,
4080         .write_end              = ext4_da_write_end,
4081         .bmap                   = ext4_bmap,
4082         .invalidatepage         = ext4_da_invalidatepage,
4083         .releasepage            = ext4_releasepage,
4084         .direct_IO              = ext4_direct_IO,
4085         .migratepage            = buffer_migrate_page,
4086         .is_partially_uptodate  = block_is_partially_uptodate,
4087         .error_remove_page      = generic_error_remove_page,
4088 };
4089
4090 void ext4_set_aops(struct inode *inode)
4091 {
4092         if (ext4_should_order_data(inode) &&
4093                 test_opt(inode->i_sb, DELALLOC))
4094                 inode->i_mapping->a_ops = &ext4_da_aops;
4095         else if (ext4_should_order_data(inode))
4096                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4097         else if (ext4_should_writeback_data(inode) &&
4098                  test_opt(inode->i_sb, DELALLOC))
4099                 inode->i_mapping->a_ops = &ext4_da_aops;
4100         else if (ext4_should_writeback_data(inode))
4101                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4102         else
4103                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4104 }
4105
4106 /*
4107  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4108  * up to the end of the block which corresponds to `from'.
4109  * This required during truncate. We need to physically zero the tail end
4110  * of that block so it doesn't yield old data if the file is later grown.
4111  */
4112 int ext4_block_truncate_page(handle_t *handle,
4113                 struct address_space *mapping, loff_t from)
4114 {
4115         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4116         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4117         unsigned blocksize, length, pos;
4118         ext4_lblk_t iblock;
4119         struct inode *inode = mapping->host;
4120         struct buffer_head *bh;
4121         struct page *page;
4122         int err = 0;
4123
4124         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4125                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4126         if (!page)
4127                 return -EINVAL;
4128
4129         blocksize = inode->i_sb->s_blocksize;
4130         length = blocksize - (offset & (blocksize - 1));
4131         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4132
4133         /*
4134          * For "nobh" option,  we can only work if we don't need to
4135          * read-in the page - otherwise we create buffers to do the IO.
4136          */
4137         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4138              ext4_should_writeback_data(inode) && PageUptodate(page)) {
4139                 zero_user(page, offset, length);
4140                 set_page_dirty(page);
4141                 goto unlock;
4142         }
4143
4144         if (!page_has_buffers(page))
4145                 create_empty_buffers(page, blocksize, 0);
4146
4147         /* Find the buffer that contains "offset" */
4148         bh = page_buffers(page);
4149         pos = blocksize;
4150         while (offset >= pos) {
4151                 bh = bh->b_this_page;
4152                 iblock++;
4153                 pos += blocksize;
4154         }
4155
4156         err = 0;
4157         if (buffer_freed(bh)) {
4158                 BUFFER_TRACE(bh, "freed: skip");
4159                 goto unlock;
4160         }
4161
4162         if (!buffer_mapped(bh)) {
4163                 BUFFER_TRACE(bh, "unmapped");
4164                 ext4_get_block(inode, iblock, bh, 0);
4165                 /* unmapped? It's a hole - nothing to do */
4166                 if (!buffer_mapped(bh)) {
4167                         BUFFER_TRACE(bh, "still unmapped");
4168                         goto unlock;
4169                 }
4170         }
4171
4172         /* Ok, it's mapped. Make sure it's up-to-date */
4173         if (PageUptodate(page))
4174                 set_buffer_uptodate(bh);
4175
4176         if (!buffer_uptodate(bh)) {
4177                 err = -EIO;
4178                 ll_rw_block(READ, 1, &bh);
4179                 wait_on_buffer(bh);
4180                 /* Uhhuh. Read error. Complain and punt. */
4181                 if (!buffer_uptodate(bh))
4182                         goto unlock;
4183         }
4184
4185         if (ext4_should_journal_data(inode)) {
4186                 BUFFER_TRACE(bh, "get write access");
4187                 err = ext4_journal_get_write_access(handle, bh);
4188                 if (err)
4189                         goto unlock;
4190         }
4191
4192         zero_user(page, offset, length);
4193
4194         BUFFER_TRACE(bh, "zeroed end of block");
4195
4196         err = 0;
4197         if (ext4_should_journal_data(inode)) {
4198                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4199         } else {
4200                 if (ext4_should_order_data(inode))
4201                         err = ext4_jbd2_file_inode(handle, inode);
4202                 mark_buffer_dirty(bh);
4203         }
4204
4205 unlock:
4206         unlock_page(page);
4207         page_cache_release(page);
4208         return err;
4209 }
4210
4211 /*
4212  * Probably it should be a library function... search for first non-zero word
4213  * or memcmp with zero_page, whatever is better for particular architecture.
4214  * Linus?
4215  */
4216 static inline int all_zeroes(__le32 *p, __le32 *q)
4217 {
4218         while (p < q)
4219                 if (*p++)
4220                         return 0;
4221         return 1;
4222 }
4223
4224 /**
4225  *      ext4_find_shared - find the indirect blocks for partial truncation.
4226  *      @inode:   inode in question
4227  *      @depth:   depth of the affected branch
4228  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4229  *      @chain:   place to store the pointers to partial indirect blocks
4230  *      @top:     place to the (detached) top of branch
4231  *
4232  *      This is a helper function used by ext4_truncate().
4233  *
4234  *      When we do truncate() we may have to clean the ends of several
4235  *      indirect blocks but leave the blocks themselves alive. Block is
4236  *      partially truncated if some data below the new i_size is refered
4237  *      from it (and it is on the path to the first completely truncated
4238  *      data block, indeed).  We have to free the top of that path along
4239  *      with everything to the right of the path. Since no allocation
4240  *      past the truncation point is possible until ext4_truncate()
4241  *      finishes, we may safely do the latter, but top of branch may
4242  *      require special attention - pageout below the truncation point
4243  *      might try to populate it.
4244  *
4245  *      We atomically detach the top of branch from the tree, store the
4246  *      block number of its root in *@top, pointers to buffer_heads of
4247  *      partially truncated blocks - in @chain[].bh and pointers to
4248  *      their last elements that should not be removed - in
4249  *      @chain[].p. Return value is the pointer to last filled element
4250  *      of @chain.
4251  *
4252  *      The work left to caller to do the actual freeing of subtrees:
4253  *              a) free the subtree starting from *@top
4254  *              b) free the subtrees whose roots are stored in
4255  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4256  *              c) free the subtrees growing from the inode past the @chain[0].
4257  *                      (no partially truncated stuff there).  */
4258
4259 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4260                                   ext4_lblk_t offsets[4], Indirect chain[4],
4261                                   __le32 *top)
4262 {
4263         Indirect *partial, *p;
4264         int k, err;
4265
4266         *top = 0;
4267         /* Make k index the deepest non-null offset + 1 */
4268         for (k = depth; k > 1 && !offsets[k-1]; k--)
4269                 ;
4270         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4271         /* Writer: pointers */
4272         if (!partial)
4273                 partial = chain + k-1;
4274         /*
4275          * If the branch acquired continuation since we've looked at it -
4276          * fine, it should all survive and (new) top doesn't belong to us.
4277          */
4278         if (!partial->key && *partial->p)
4279                 /* Writer: end */
4280                 goto no_top;
4281         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4282                 ;
4283         /*
4284          * OK, we've found the last block that must survive. The rest of our
4285          * branch should be detached before unlocking. However, if that rest
4286          * of branch is all ours and does not grow immediately from the inode
4287          * it's easier to cheat and just decrement partial->p.
4288          */
4289         if (p == chain + k - 1 && p > chain) {
4290                 p->p--;
4291         } else {
4292                 *top = *p->p;
4293                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4294 #if 0
4295                 *p->p = 0;
4296 #endif
4297         }
4298         /* Writer: end */
4299
4300         while (partial > p) {
4301                 brelse(partial->bh);
4302                 partial--;
4303         }
4304 no_top:
4305         return partial;
4306 }
4307
4308 /*
4309  * Zero a number of block pointers in either an inode or an indirect block.
4310  * If we restart the transaction we must again get write access to the
4311  * indirect block for further modification.
4312  *
4313  * We release `count' blocks on disk, but (last - first) may be greater
4314  * than `count' because there can be holes in there.
4315  */
4316 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4317                              struct buffer_head *bh,
4318                              ext4_fsblk_t block_to_free,
4319                              unsigned long count, __le32 *first,
4320                              __le32 *last)
4321 {
4322         __le32 *p;
4323         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4324
4325         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4326                 flags |= EXT4_FREE_BLOCKS_METADATA;
4327
4328         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4329                                    count)) {
4330                 ext4_error(inode->i_sb, "inode #%lu: "
4331                            "attempt to clear blocks %llu len %lu, invalid",
4332                            inode->i_ino, (unsigned long long) block_to_free,
4333                            count);
4334                 return 1;
4335         }
4336
4337         if (try_to_extend_transaction(handle, inode)) {
4338                 if (bh) {
4339                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4340                         ext4_handle_dirty_metadata(handle, inode, bh);
4341                 }
4342                 ext4_mark_inode_dirty(handle, inode);
4343                 ext4_truncate_restart_trans(handle, inode,
4344                                             blocks_for_truncate(inode));
4345                 if (bh) {
4346                         BUFFER_TRACE(bh, "retaking write access");
4347                         ext4_journal_get_write_access(handle, bh);
4348                 }
4349         }
4350
4351         for (p = first; p < last; p++)
4352                 *p = 0;
4353
4354         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4355         return 0;
4356 }
4357
4358 /**
4359  * ext4_free_data - free a list of data blocks
4360  * @handle:     handle for this transaction
4361  * @inode:      inode we are dealing with
4362  * @this_bh:    indirect buffer_head which contains *@first and *@last
4363  * @first:      array of block numbers
4364  * @last:       points immediately past the end of array
4365  *
4366  * We are freeing all blocks refered from that array (numbers are stored as
4367  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4368  *
4369  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4370  * blocks are contiguous then releasing them at one time will only affect one
4371  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4372  * actually use a lot of journal space.
4373  *
4374  * @this_bh will be %NULL if @first and @last point into the inode's direct
4375  * block pointers.
4376  */
4377 static void ext4_free_data(handle_t *handle, struct inode *inode,
4378                            struct buffer_head *this_bh,
4379                            __le32 *first, __le32 *last)
4380 {
4381         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4382         unsigned long count = 0;            /* Number of blocks in the run */
4383         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4384                                                corresponding to
4385                                                block_to_free */
4386         ext4_fsblk_t nr;                    /* Current block # */
4387         __le32 *p;                          /* Pointer into inode/ind
4388                                                for current block */
4389         int err;
4390
4391         if (this_bh) {                          /* For indirect block */
4392                 BUFFER_TRACE(this_bh, "get_write_access");
4393                 err = ext4_journal_get_write_access(handle, this_bh);
4394                 /* Important: if we can't update the indirect pointers
4395                  * to the blocks, we can't free them. */
4396                 if (err)
4397                         return;
4398         }
4399
4400         for (p = first; p < last; p++) {
4401                 nr = le32_to_cpu(*p);
4402                 if (nr) {
4403                         /* accumulate blocks to free if they're contiguous */
4404                         if (count == 0) {
4405                                 block_to_free = nr;
4406                                 block_to_free_p = p;
4407                                 count = 1;
4408                         } else if (nr == block_to_free + count) {
4409                                 count++;
4410                         } else {
4411                                 if (ext4_clear_blocks(handle, inode, this_bh,
4412                                                       block_to_free, count,
4413                                                       block_to_free_p, p))
4414                                         break;
4415                                 block_to_free = nr;
4416                                 block_to_free_p = p;
4417                                 count = 1;
4418                         }
4419                 }
4420         }
4421
4422         if (count > 0)
4423                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4424                                   count, block_to_free_p, p);
4425
4426         if (this_bh) {
4427                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4428
4429                 /*
4430                  * The buffer head should have an attached journal head at this
4431                  * point. However, if the data is corrupted and an indirect
4432                  * block pointed to itself, it would have been detached when
4433                  * the block was cleared. Check for this instead of OOPSing.
4434                  */
4435                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4436                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4437                 else
4438                         ext4_error(inode->i_sb,
4439                                    "circular indirect block detected, "
4440                                    "inode=%lu, block=%llu",
4441                                    inode->i_ino,
4442                                    (unsigned long long) this_bh->b_blocknr);
4443         }
4444 }
4445
4446 /**
4447  *      ext4_free_branches - free an array of branches
4448  *      @handle: JBD handle for this transaction
4449  *      @inode: inode we are dealing with
4450  *      @parent_bh: the buffer_head which contains *@first and *@last
4451  *      @first: array of block numbers
4452  *      @last:  pointer immediately past the end of array
4453  *      @depth: depth of the branches to free
4454  *
4455  *      We are freeing all blocks refered from these branches (numbers are
4456  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4457  *      appropriately.
4458  */
4459 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4460                                struct buffer_head *parent_bh,
4461                                __le32 *first, __le32 *last, int depth)
4462 {
4463         ext4_fsblk_t nr;
4464         __le32 *p;
4465
4466         if (ext4_handle_is_aborted(handle))
4467                 return;
4468
4469         if (depth--) {
4470                 struct buffer_head *bh;
4471                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472                 p = last;
4473                 while (--p >= first) {
4474                         nr = le32_to_cpu(*p);
4475                         if (!nr)
4476                                 continue;               /* A hole */
4477
4478                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4479                                                    nr, 1)) {
4480                                 ext4_error(inode->i_sb,
4481                                            "indirect mapped block in inode "
4482                                            "#%lu invalid (level %d, blk #%lu)",
4483                                            inode->i_ino, depth,
4484                                            (unsigned long) nr);
4485                                 break;
4486                         }
4487
4488                         /* Go read the buffer for the next level down */
4489                         bh = sb_bread(inode->i_sb, nr);
4490
4491                         /*
4492                          * A read failure? Report error and clear slot
4493                          * (should be rare).
4494                          */
4495                         if (!bh) {
4496                                 ext4_error(inode->i_sb,
4497                                            "Read failure, inode=%lu, block=%llu",
4498                                            inode->i_ino, nr);
4499                                 continue;
4500                         }
4501
4502                         /* This zaps the entire block.  Bottom up. */
4503                         BUFFER_TRACE(bh, "free child branches");
4504                         ext4_free_branches(handle, inode, bh,
4505                                         (__le32 *) bh->b_data,
4506                                         (__le32 *) bh->b_data + addr_per_block,
4507                                         depth);
4508
4509                         /*
4510                          * We've probably journalled the indirect block several
4511                          * times during the truncate.  But it's no longer
4512                          * needed and we now drop it from the transaction via
4513                          * jbd2_journal_revoke().
4514                          *
4515                          * That's easy if it's exclusively part of this
4516                          * transaction.  But if it's part of the committing
4517                          * transaction then jbd2_journal_forget() will simply
4518                          * brelse() it.  That means that if the underlying
4519                          * block is reallocated in ext4_get_block(),
4520                          * unmap_underlying_metadata() will find this block
4521                          * and will try to get rid of it.  damn, damn.
4522                          *
4523                          * If this block has already been committed to the
4524                          * journal, a revoke record will be written.  And
4525                          * revoke records must be emitted *before* clearing
4526                          * this block's bit in the bitmaps.
4527                          */
4528                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4529
4530                         /*
4531                          * Everything below this this pointer has been
4532                          * released.  Now let this top-of-subtree go.
4533                          *
4534                          * We want the freeing of this indirect block to be
4535                          * atomic in the journal with the updating of the
4536                          * bitmap block which owns it.  So make some room in
4537                          * the journal.
4538                          *
4539                          * We zero the parent pointer *after* freeing its
4540                          * pointee in the bitmaps, so if extend_transaction()
4541                          * for some reason fails to put the bitmap changes and
4542                          * the release into the same transaction, recovery
4543                          * will merely complain about releasing a free block,
4544                          * rather than leaking blocks.
4545                          */
4546                         if (ext4_handle_is_aborted(handle))
4547                                 return;
4548                         if (try_to_extend_transaction(handle, inode)) {
4549                                 ext4_mark_inode_dirty(handle, inode);
4550                                 ext4_truncate_restart_trans(handle, inode,
4551                                             blocks_for_truncate(inode));
4552                         }
4553
4554                         ext4_free_blocks(handle, inode, 0, nr, 1,
4555                                          EXT4_FREE_BLOCKS_METADATA);
4556
4557                         if (parent_bh) {
4558                                 /*
4559                                  * The block which we have just freed is
4560                                  * pointed to by an indirect block: journal it
4561                                  */
4562                                 BUFFER_TRACE(parent_bh, "get_write_access");
4563                                 if (!ext4_journal_get_write_access(handle,
4564                                                                    parent_bh)){
4565                                         *p = 0;
4566                                         BUFFER_TRACE(parent_bh,
4567                                         "call ext4_handle_dirty_metadata");
4568                                         ext4_handle_dirty_metadata(handle,
4569                                                                    inode,
4570                                                                    parent_bh);
4571                                 }
4572                         }
4573                 }
4574         } else {
4575                 /* We have reached the bottom of the tree. */
4576                 BUFFER_TRACE(parent_bh, "free data blocks");
4577                 ext4_free_data(handle, inode, parent_bh, first, last);
4578         }
4579 }
4580
4581 int ext4_can_truncate(struct inode *inode)
4582 {
4583         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4584                 return 0;
4585         if (S_ISREG(inode->i_mode))
4586                 return 1;
4587         if (S_ISDIR(inode->i_mode))
4588                 return 1;
4589         if (S_ISLNK(inode->i_mode))
4590                 return !ext4_inode_is_fast_symlink(inode);
4591         return 0;
4592 }
4593
4594 /*
4595  * ext4_truncate()
4596  *
4597  * We block out ext4_get_block() block instantiations across the entire
4598  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4599  * simultaneously on behalf of the same inode.
4600  *
4601  * As we work through the truncate and commmit bits of it to the journal there
4602  * is one core, guiding principle: the file's tree must always be consistent on
4603  * disk.  We must be able to restart the truncate after a crash.
4604  *
4605  * The file's tree may be transiently inconsistent in memory (although it
4606  * probably isn't), but whenever we close off and commit a journal transaction,
4607  * the contents of (the filesystem + the journal) must be consistent and
4608  * restartable.  It's pretty simple, really: bottom up, right to left (although
4609  * left-to-right works OK too).
4610  *
4611  * Note that at recovery time, journal replay occurs *before* the restart of
4612  * truncate against the orphan inode list.
4613  *
4614  * The committed inode has the new, desired i_size (which is the same as
4615  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4616  * that this inode's truncate did not complete and it will again call
4617  * ext4_truncate() to have another go.  So there will be instantiated blocks
4618  * to the right of the truncation point in a crashed ext4 filesystem.  But
4619  * that's fine - as long as they are linked from the inode, the post-crash
4620  * ext4_truncate() run will find them and release them.
4621  */
4622 void ext4_truncate(struct inode *inode)
4623 {
4624         handle_t *handle;
4625         struct ext4_inode_info *ei = EXT4_I(inode);
4626         __le32 *i_data = ei->i_data;
4627         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4628         struct address_space *mapping = inode->i_mapping;
4629         ext4_lblk_t offsets[4];
4630         Indirect chain[4];
4631         Indirect *partial;
4632         __le32 nr = 0;
4633         int n;
4634         ext4_lblk_t last_block;
4635         unsigned blocksize = inode->i_sb->s_blocksize;
4636
4637         if (!ext4_can_truncate(inode))
4638                 return;
4639
4640         EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4641
4642         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4643                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4644
4645         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4646                 ext4_ext_truncate(inode);
4647                 return;
4648         }
4649
4650         handle = start_transaction(inode);
4651         if (IS_ERR(handle))
4652                 return;         /* AKPM: return what? */
4653
4654         last_block = (inode->i_size + blocksize-1)
4655                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4656
4657         if (inode->i_size & (blocksize - 1))
4658                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4659                         goto out_stop;
4660
4661         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4662         if (n == 0)
4663                 goto out_stop;  /* error */
4664
4665         /*
4666          * OK.  This truncate is going to happen.  We add the inode to the
4667          * orphan list, so that if this truncate spans multiple transactions,
4668          * and we crash, we will resume the truncate when the filesystem
4669          * recovers.  It also marks the inode dirty, to catch the new size.
4670          *
4671          * Implication: the file must always be in a sane, consistent
4672          * truncatable state while each transaction commits.
4673          */
4674         if (ext4_orphan_add(handle, inode))
4675                 goto out_stop;
4676
4677         /*
4678          * From here we block out all ext4_get_block() callers who want to
4679          * modify the block allocation tree.
4680          */
4681         down_write(&ei->i_data_sem);
4682
4683         ext4_discard_preallocations(inode);
4684
4685         /*
4686          * The orphan list entry will now protect us from any crash which
4687          * occurs before the truncate completes, so it is now safe to propagate
4688          * the new, shorter inode size (held for now in i_size) into the
4689          * on-disk inode. We do this via i_disksize, which is the value which
4690          * ext4 *really* writes onto the disk inode.
4691          */
4692         ei->i_disksize = inode->i_size;
4693
4694         if (n == 1) {           /* direct blocks */
4695                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4696                                i_data + EXT4_NDIR_BLOCKS);
4697                 goto do_indirects;
4698         }
4699
4700         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4701         /* Kill the top of shared branch (not detached) */
4702         if (nr) {
4703                 if (partial == chain) {
4704                         /* Shared branch grows from the inode */
4705                         ext4_free_branches(handle, inode, NULL,
4706                                            &nr, &nr+1, (chain+n-1) - partial);
4707                         *partial->p = 0;
4708                         /*
4709                          * We mark the inode dirty prior to restart,
4710                          * and prior to stop.  No need for it here.
4711                          */
4712                 } else {
4713                         /* Shared branch grows from an indirect block */
4714                         BUFFER_TRACE(partial->bh, "get_write_access");
4715                         ext4_free_branches(handle, inode, partial->bh,
4716                                         partial->p,
4717                                         partial->p+1, (chain+n-1) - partial);
4718                 }
4719         }
4720         /* Clear the ends of indirect blocks on the shared branch */
4721         while (partial > chain) {
4722                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4723                                    (__le32*)partial->bh->b_data+addr_per_block,
4724                                    (chain+n-1) - partial);
4725                 BUFFER_TRACE(partial->bh, "call brelse");
4726                 brelse(partial->bh);
4727                 partial--;
4728         }
4729 do_indirects:
4730         /* Kill the remaining (whole) subtrees */
4731         switch (offsets[0]) {
4732         default:
4733                 nr = i_data[EXT4_IND_BLOCK];
4734                 if (nr) {
4735                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4736                         i_data[EXT4_IND_BLOCK] = 0;
4737                 }
4738         case EXT4_IND_BLOCK:
4739                 nr = i_data[EXT4_DIND_BLOCK];
4740                 if (nr) {
4741                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4742                         i_data[EXT4_DIND_BLOCK] = 0;
4743                 }
4744         case EXT4_DIND_BLOCK:
4745                 nr = i_data[EXT4_TIND_BLOCK];
4746                 if (nr) {
4747                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4748                         i_data[EXT4_TIND_BLOCK] = 0;
4749                 }
4750         case EXT4_TIND_BLOCK:
4751                 ;
4752         }
4753
4754         up_write(&ei->i_data_sem);
4755         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4756         ext4_mark_inode_dirty(handle, inode);
4757
4758         /*
4759          * In a multi-transaction truncate, we only make the final transaction
4760          * synchronous
4761          */
4762         if (IS_SYNC(inode))
4763                 ext4_handle_sync(handle);
4764 out_stop:
4765         /*
4766          * If this was a simple ftruncate(), and the file will remain alive
4767          * then we need to clear up the orphan record which we created above.
4768          * However, if this was a real unlink then we were called by
4769          * ext4_delete_inode(), and we allow that function to clean up the
4770          * orphan info for us.
4771          */
4772         if (inode->i_nlink)
4773                 ext4_orphan_del(handle, inode);
4774
4775         ext4_journal_stop(handle);
4776 }
4777
4778 /*
4779  * ext4_get_inode_loc returns with an extra refcount against the inode's
4780  * underlying buffer_head on success. If 'in_mem' is true, we have all
4781  * data in memory that is needed to recreate the on-disk version of this
4782  * inode.
4783  */
4784 static int __ext4_get_inode_loc(struct inode *inode,
4785                                 struct ext4_iloc *iloc, int in_mem)
4786 {
4787         struct ext4_group_desc  *gdp;
4788         struct buffer_head      *bh;
4789         struct super_block      *sb = inode->i_sb;
4790         ext4_fsblk_t            block;
4791         int                     inodes_per_block, inode_offset;
4792
4793         iloc->bh = NULL;
4794         if (!ext4_valid_inum(sb, inode->i_ino))
4795                 return -EIO;
4796
4797         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4798         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4799         if (!gdp)
4800                 return -EIO;
4801
4802         /*
4803          * Figure out the offset within the block group inode table
4804          */
4805         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4806         inode_offset = ((inode->i_ino - 1) %
4807                         EXT4_INODES_PER_GROUP(sb));
4808         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4809         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4810
4811         bh = sb_getblk(sb, block);
4812         if (!bh) {
4813                 ext4_error(sb, "unable to read inode block - "
4814                            "inode=%lu, block=%llu", inode->i_ino, block);
4815                 return -EIO;
4816         }
4817         if (!buffer_uptodate(bh)) {
4818                 lock_buffer(bh);
4819
4820                 /*
4821                  * If the buffer has the write error flag, we have failed
4822                  * to write out another inode in the same block.  In this
4823                  * case, we don't have to read the block because we may
4824                  * read the old inode data successfully.
4825                  */
4826                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4827                         set_buffer_uptodate(bh);
4828
4829                 if (buffer_uptodate(bh)) {
4830                         /* someone brought it uptodate while we waited */
4831                         unlock_buffer(bh);
4832                         goto has_buffer;
4833                 }
4834
4835                 /*
4836                  * If we have all information of the inode in memory and this
4837                  * is the only valid inode in the block, we need not read the
4838                  * block.
4839                  */
4840                 if (in_mem) {
4841                         struct buffer_head *bitmap_bh;
4842                         int i, start;
4843
4844                         start = inode_offset & ~(inodes_per_block - 1);
4845
4846                         /* Is the inode bitmap in cache? */
4847                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4848                         if (!bitmap_bh)
4849                                 goto make_io;
4850
4851                         /*
4852                          * If the inode bitmap isn't in cache then the
4853                          * optimisation may end up performing two reads instead
4854                          * of one, so skip it.
4855                          */
4856                         if (!buffer_uptodate(bitmap_bh)) {
4857                                 brelse(bitmap_bh);
4858                                 goto make_io;
4859                         }
4860                         for (i = start; i < start + inodes_per_block; i++) {
4861                                 if (i == inode_offset)
4862                                         continue;
4863                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4864                                         break;
4865                         }
4866                         brelse(bitmap_bh);
4867                         if (i == start + inodes_per_block) {
4868                                 /* all other inodes are free, so skip I/O */
4869                                 memset(bh->b_data, 0, bh->b_size);
4870                                 set_buffer_uptodate(bh);
4871                                 unlock_buffer(bh);
4872                                 goto has_buffer;
4873                         }
4874                 }
4875
4876 make_io:
4877                 /*
4878                  * If we need to do any I/O, try to pre-readahead extra
4879                  * blocks from the inode table.
4880                  */
4881                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4882                         ext4_fsblk_t b, end, table;
4883                         unsigned num;
4884
4885                         table = ext4_inode_table(sb, gdp);
4886                         /* s_inode_readahead_blks is always a power of 2 */
4887                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4888                         if (table > b)
4889                                 b = table;
4890                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4891                         num = EXT4_INODES_PER_GROUP(sb);
4892                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4893                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4894                                 num -= ext4_itable_unused_count(sb, gdp);
4895                         table += num / inodes_per_block;
4896                         if (end > table)
4897                                 end = table;
4898                         while (b <= end)
4899                                 sb_breadahead(sb, b++);
4900                 }
4901
4902                 /*
4903                  * There are other valid inodes in the buffer, this inode
4904                  * has in-inode xattrs, or we don't have this inode in memory.
4905                  * Read the block from disk.
4906                  */
4907                 get_bh(bh);
4908                 bh->b_end_io = end_buffer_read_sync;
4909                 submit_bh(READ_META, bh);
4910                 wait_on_buffer(bh);
4911                 if (!buffer_uptodate(bh)) {
4912                         ext4_error(sb, "unable to read inode block - inode=%lu,"
4913                                    " block=%llu", inode->i_ino, block);
4914                         brelse(bh);
4915                         return -EIO;
4916                 }
4917         }
4918 has_buffer:
4919         iloc->bh = bh;
4920         return 0;
4921 }
4922
4923 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4924 {
4925         /* We have all inode data except xattrs in memory here. */
4926         return __ext4_get_inode_loc(inode, iloc,
4927                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4928 }
4929
4930 void ext4_set_inode_flags(struct inode *inode)
4931 {
4932         unsigned int flags = EXT4_I(inode)->i_flags;
4933
4934         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4935         if (flags & EXT4_SYNC_FL)
4936                 inode->i_flags |= S_SYNC;
4937         if (flags & EXT4_APPEND_FL)
4938                 inode->i_flags |= S_APPEND;
4939         if (flags & EXT4_IMMUTABLE_FL)
4940                 inode->i_flags |= S_IMMUTABLE;
4941         if (flags & EXT4_NOATIME_FL)
4942                 inode->i_flags |= S_NOATIME;
4943         if (flags & EXT4_DIRSYNC_FL)
4944                 inode->i_flags |= S_DIRSYNC;
4945 }
4946
4947 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4948 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4949 {
4950         unsigned int flags = ei->vfs_inode.i_flags;
4951
4952         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4953                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4954         if (flags & S_SYNC)
4955                 ei->i_flags |= EXT4_SYNC_FL;
4956         if (flags & S_APPEND)
4957                 ei->i_flags |= EXT4_APPEND_FL;
4958         if (flags & S_IMMUTABLE)
4959                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4960         if (flags & S_NOATIME)
4961                 ei->i_flags |= EXT4_NOATIME_FL;
4962         if (flags & S_DIRSYNC)
4963                 ei->i_flags |= EXT4_DIRSYNC_FL;
4964 }
4965
4966 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4967                                   struct ext4_inode_info *ei)
4968 {
4969         blkcnt_t i_blocks ;
4970         struct inode *inode = &(ei->vfs_inode);
4971         struct super_block *sb = inode->i_sb;
4972
4973         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4974                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4975                 /* we are using combined 48 bit field */
4976                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4977                                         le32_to_cpu(raw_inode->i_blocks_lo);
4978                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4979                         /* i_blocks represent file system block size */
4980                         return i_blocks  << (inode->i_blkbits - 9);
4981                 } else {
4982                         return i_blocks;
4983                 }
4984         } else {
4985                 return le32_to_cpu(raw_inode->i_blocks_lo);
4986         }
4987 }
4988
4989 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4990 {
4991         struct ext4_iloc iloc;
4992         struct ext4_inode *raw_inode;
4993         struct ext4_inode_info *ei;
4994         struct inode *inode;
4995         journal_t *journal = EXT4_SB(sb)->s_journal;
4996         long ret;
4997         int block;
4998
4999         inode = iget_locked(sb, ino);
5000         if (!inode)
5001                 return ERR_PTR(-ENOMEM);
5002         if (!(inode->i_state & I_NEW))
5003                 return inode;
5004
5005         ei = EXT4_I(inode);
5006         iloc.bh = 0;
5007
5008         ret = __ext4_get_inode_loc(inode, &iloc, 0);
5009         if (ret < 0)
5010                 goto bad_inode;
5011         raw_inode = ext4_raw_inode(&iloc);
5012         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5013         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5014         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5015         if (!(test_opt(inode->i_sb, NO_UID32))) {
5016                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5017                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5018         }
5019         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5020
5021         ei->i_state_flags = 0;
5022         ei->i_dir_start_lookup = 0;
5023         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5024         /* We now have enough fields to check if the inode was active or not.
5025          * This is needed because nfsd might try to access dead inodes
5026          * the test is that same one that e2fsck uses
5027          * NeilBrown 1999oct15
5028          */
5029         if (inode->i_nlink == 0) {
5030                 if (inode->i_mode == 0 ||
5031                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5032                         /* this inode is deleted */
5033                         ret = -ESTALE;
5034                         goto bad_inode;
5035                 }
5036                 /* The only unlinked inodes we let through here have
5037                  * valid i_mode and are being read by the orphan
5038                  * recovery code: that's fine, we're about to complete
5039                  * the process of deleting those. */
5040         }
5041         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5042         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5043         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5044         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5045                 ei->i_file_acl |=
5046                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5047         inode->i_size = ext4_isize(raw_inode);
5048         ei->i_disksize = inode->i_size;
5049 #ifdef CONFIG_QUOTA
5050         ei->i_reserved_quota = 0;
5051 #endif
5052         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5053         ei->i_block_group = iloc.block_group;
5054         ei->i_last_alloc_group = ~0;
5055         /*
5056          * NOTE! The in-memory inode i_data array is in little-endian order
5057          * even on big-endian machines: we do NOT byteswap the block numbers!
5058          */
5059         for (block = 0; block < EXT4_N_BLOCKS; block++)
5060                 ei->i_data[block] = raw_inode->i_block[block];
5061         INIT_LIST_HEAD(&ei->i_orphan);
5062
5063         /*
5064          * Set transaction id's of transactions that have to be committed
5065          * to finish f[data]sync. We set them to currently running transaction
5066          * as we cannot be sure that the inode or some of its metadata isn't
5067          * part of the transaction - the inode could have been reclaimed and
5068          * now it is reread from disk.
5069          */
5070         if (journal) {
5071                 transaction_t *transaction;
5072                 tid_t tid;
5073
5074                 spin_lock(&journal->j_state_lock);
5075                 if (journal->j_running_transaction)
5076                         transaction = journal->j_running_transaction;
5077                 else
5078                         transaction = journal->j_committing_transaction;
5079                 if (transaction)
5080                         tid = transaction->t_tid;
5081                 else
5082                         tid = journal->j_commit_sequence;
5083                 spin_unlock(&journal->j_state_lock);
5084                 ei->i_sync_tid = tid;
5085                 ei->i_datasync_tid = tid;
5086         }
5087
5088         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5089                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5090                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5091                     EXT4_INODE_SIZE(inode->i_sb)) {
5092                         ret = -EIO;
5093                         goto bad_inode;
5094                 }
5095                 if (ei->i_extra_isize == 0) {
5096                         /* The extra space is currently unused. Use it. */
5097                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5098                                             EXT4_GOOD_OLD_INODE_SIZE;
5099                 } else {
5100                         __le32 *magic = (void *)raw_inode +
5101                                         EXT4_GOOD_OLD_INODE_SIZE +
5102                                         ei->i_extra_isize;
5103                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5104                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5105                 }
5106         } else
5107                 ei->i_extra_isize = 0;
5108
5109         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5110         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5111         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5112         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5113
5114         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5115         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5116                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5117                         inode->i_version |=
5118                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5119         }
5120
5121         ret = 0;
5122         if (ei->i_file_acl &&
5123             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5124                 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5125                            ei->i_file_acl, inode->i_ino);
5126                 ret = -EIO;
5127                 goto bad_inode;
5128         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5129                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5130                     (S_ISLNK(inode->i_mode) &&
5131                      !ext4_inode_is_fast_symlink(inode)))
5132                         /* Validate extent which is part of inode */
5133                         ret = ext4_ext_check_inode(inode);
5134         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5135                    (S_ISLNK(inode->i_mode) &&
5136                     !ext4_inode_is_fast_symlink(inode))) {
5137                 /* Validate block references which are part of inode */
5138                 ret = ext4_check_inode_blockref(inode);
5139         }
5140         if (ret)
5141                 goto bad_inode;
5142
5143         if (S_ISREG(inode->i_mode)) {
5144                 inode->i_op = &ext4_file_inode_operations;
5145                 inode->i_fop = &ext4_file_operations;
5146                 ext4_set_aops(inode);
5147         } else if (S_ISDIR(inode->i_mode)) {
5148                 inode->i_op = &ext4_dir_inode_operations;
5149                 inode->i_fop = &ext4_dir_operations;
5150         } else if (S_ISLNK(inode->i_mode)) {
5151                 if (ext4_inode_is_fast_symlink(inode)) {
5152                         inode->i_op = &ext4_fast_symlink_inode_operations;
5153                         nd_terminate_link(ei->i_data, inode->i_size,
5154                                 sizeof(ei->i_data) - 1);
5155                 } else {
5156                         inode->i_op = &ext4_symlink_inode_operations;
5157                         ext4_set_aops(inode);
5158                 }
5159         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5160               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5161                 inode->i_op = &ext4_special_inode_operations;
5162                 if (raw_inode->i_block[0])
5163                         init_special_inode(inode, inode->i_mode,
5164                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5165                 else
5166                         init_special_inode(inode, inode->i_mode,
5167                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5168         } else {
5169                 ret = -EIO;
5170                 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5171                            inode->i_mode, inode->i_ino);
5172                 goto bad_inode;
5173         }
5174         brelse(iloc.bh);
5175         ext4_set_inode_flags(inode);
5176         unlock_new_inode(inode);
5177         return inode;
5178
5179 bad_inode:
5180         brelse(iloc.bh);
5181         iget_failed(inode);
5182         return ERR_PTR(ret);
5183 }
5184
5185 static int ext4_inode_blocks_set(handle_t *handle,
5186                                 struct ext4_inode *raw_inode,
5187                                 struct ext4_inode_info *ei)
5188 {
5189         struct inode *inode = &(ei->vfs_inode);
5190         u64 i_blocks = inode->i_blocks;
5191         struct super_block *sb = inode->i_sb;
5192
5193         if (i_blocks <= ~0U) {
5194                 /*
5195                  * i_blocks can be represnted in a 32 bit variable
5196                  * as multiple of 512 bytes
5197                  */
5198                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5199                 raw_inode->i_blocks_high = 0;
5200                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5201                 return 0;
5202         }
5203         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5204                 return -EFBIG;
5205
5206         if (i_blocks <= 0xffffffffffffULL) {
5207                 /*
5208                  * i_blocks can be represented in a 48 bit variable
5209                  * as multiple of 512 bytes
5210                  */
5211                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5212                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5213                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5214         } else {
5215                 ei->i_flags |= EXT4_HUGE_FILE_FL;
5216                 /* i_block is stored in file system block size */
5217                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5218                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5219                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5220         }
5221         return 0;
5222 }
5223
5224 /*
5225  * Post the struct inode info into an on-disk inode location in the
5226  * buffer-cache.  This gobbles the caller's reference to the
5227  * buffer_head in the inode location struct.
5228  *
5229  * The caller must have write access to iloc->bh.
5230  */
5231 static int ext4_do_update_inode(handle_t *handle,
5232                                 struct inode *inode,
5233                                 struct ext4_iloc *iloc)
5234 {
5235         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5236         struct ext4_inode_info *ei = EXT4_I(inode);
5237         struct buffer_head *bh = iloc->bh;
5238         int err = 0, rc, block;
5239
5240         /* For fields not not tracking in the in-memory inode,
5241          * initialise them to zero for new inodes. */
5242         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5243                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5244
5245         ext4_get_inode_flags(ei);
5246         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5247         if (!(test_opt(inode->i_sb, NO_UID32))) {
5248                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5249                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5250 /*
5251  * Fix up interoperability with old kernels. Otherwise, old inodes get
5252  * re-used with the upper 16 bits of the uid/gid intact
5253  */
5254                 if (!ei->i_dtime) {
5255                         raw_inode->i_uid_high =
5256                                 cpu_to_le16(high_16_bits(inode->i_uid));
5257                         raw_inode->i_gid_high =
5258                                 cpu_to_le16(high_16_bits(inode->i_gid));
5259                 } else {
5260                         raw_inode->i_uid_high = 0;
5261                         raw_inode->i_gid_high = 0;
5262                 }
5263         } else {
5264                 raw_inode->i_uid_low =
5265                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5266                 raw_inode->i_gid_low =
5267                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5268                 raw_inode->i_uid_high = 0;
5269                 raw_inode->i_gid_high = 0;
5270         }
5271         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5272
5273         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5274         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5275         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5276         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5277
5278         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5279                 goto out_brelse;
5280         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5281         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5282         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5283             cpu_to_le32(EXT4_OS_HURD))
5284                 raw_inode->i_file_acl_high =
5285                         cpu_to_le16(ei->i_file_acl >> 32);
5286         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5287         ext4_isize_set(raw_inode, ei->i_disksize);
5288         if (ei->i_disksize > 0x7fffffffULL) {
5289                 struct super_block *sb = inode->i_sb;
5290                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5291                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5292                                 EXT4_SB(sb)->s_es->s_rev_level ==
5293                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5294                         /* If this is the first large file
5295                          * created, add a flag to the superblock.
5296                          */
5297                         err = ext4_journal_get_write_access(handle,
5298                                         EXT4_SB(sb)->s_sbh);
5299                         if (err)
5300                                 goto out_brelse;
5301                         ext4_update_dynamic_rev(sb);
5302                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5303                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5304                         sb->s_dirt = 1;
5305                         ext4_handle_sync(handle);
5306                         err = ext4_handle_dirty_metadata(handle, NULL,
5307                                         EXT4_SB(sb)->s_sbh);
5308                 }
5309         }
5310         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5311         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5312                 if (old_valid_dev(inode->i_rdev)) {
5313                         raw_inode->i_block[0] =
5314                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5315                         raw_inode->i_block[1] = 0;
5316                 } else {
5317                         raw_inode->i_block[0] = 0;
5318                         raw_inode->i_block[1] =
5319                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5320                         raw_inode->i_block[2] = 0;
5321                 }
5322         } else
5323                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5324                         raw_inode->i_block[block] = ei->i_data[block];
5325
5326         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5327         if (ei->i_extra_isize) {
5328                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5329                         raw_inode->i_version_hi =
5330                         cpu_to_le32(inode->i_version >> 32);
5331                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5332         }
5333
5334         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5335         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5336         if (!err)
5337                 err = rc;
5338         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5339
5340         ext4_update_inode_fsync_trans(handle, inode, 0);
5341 out_brelse:
5342         brelse(bh);
5343         ext4_std_error(inode->i_sb, err);
5344         return err;
5345 }
5346
5347 /*
5348  * ext4_write_inode()
5349  *
5350  * We are called from a few places:
5351  *
5352  * - Within generic_file_write() for O_SYNC files.
5353  *   Here, there will be no transaction running. We wait for any running
5354  *   trasnaction to commit.
5355  *
5356  * - Within sys_sync(), kupdate and such.
5357  *   We wait on commit, if tol to.
5358  *
5359  * - Within prune_icache() (PF_MEMALLOC == true)
5360  *   Here we simply return.  We can't afford to block kswapd on the
5361  *   journal commit.
5362  *
5363  * In all cases it is actually safe for us to return without doing anything,
5364  * because the inode has been copied into a raw inode buffer in
5365  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5366  * knfsd.
5367  *
5368  * Note that we are absolutely dependent upon all inode dirtiers doing the
5369  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5370  * which we are interested.
5371  *
5372  * It would be a bug for them to not do this.  The code:
5373  *
5374  *      mark_inode_dirty(inode)
5375  *      stuff();
5376  *      inode->i_size = expr;
5377  *
5378  * is in error because a kswapd-driven write_inode() could occur while
5379  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5380  * will no longer be on the superblock's dirty inode list.
5381  */
5382 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5383 {
5384         int err;
5385
5386         if (current->flags & PF_MEMALLOC)
5387                 return 0;
5388
5389         if (EXT4_SB(inode->i_sb)->s_journal) {
5390                 if (ext4_journal_current_handle()) {
5391                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5392                         dump_stack();
5393                         return -EIO;
5394                 }
5395
5396                 if (wbc->sync_mode != WB_SYNC_ALL)
5397                         return 0;
5398
5399                 err = ext4_force_commit(inode->i_sb);
5400         } else {
5401                 struct ext4_iloc iloc;
5402
5403                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5404                 if (err)
5405                         return err;
5406                 if (wbc->sync_mode == WB_SYNC_ALL)
5407                         sync_dirty_buffer(iloc.bh);
5408                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5409                         ext4_error(inode->i_sb, "IO error syncing inode, "
5410                                    "inode=%lu, block=%llu", inode->i_ino,
5411                                    (unsigned long long)iloc.bh->b_blocknr);
5412                         err = -EIO;
5413                 }
5414                 brelse(iloc.bh);
5415         }
5416         return err;
5417 }
5418
5419 /*
5420  * ext4_setattr()
5421  *
5422  * Called from notify_change.
5423  *
5424  * We want to trap VFS attempts to truncate the file as soon as
5425  * possible.  In particular, we want to make sure that when the VFS
5426  * shrinks i_size, we put the inode on the orphan list and modify
5427  * i_disksize immediately, so that during the subsequent flushing of
5428  * dirty pages and freeing of disk blocks, we can guarantee that any
5429  * commit will leave the blocks being flushed in an unused state on
5430  * disk.  (On recovery, the inode will get truncated and the blocks will
5431  * be freed, so we have a strong guarantee that no future commit will
5432  * leave these blocks visible to the user.)
5433  *
5434  * Another thing we have to assure is that if we are in ordered mode
5435  * and inode is still attached to the committing transaction, we must
5436  * we start writeout of all the dirty pages which are being truncated.
5437  * This way we are sure that all the data written in the previous
5438  * transaction are already on disk (truncate waits for pages under
5439  * writeback).
5440  *
5441  * Called with inode->i_mutex down.
5442  */
5443 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5444 {
5445         struct inode *inode = dentry->d_inode;
5446         int error, rc = 0;
5447         const unsigned int ia_valid = attr->ia_valid;
5448
5449         error = inode_change_ok(inode, attr);
5450         if (error)
5451                 return error;
5452
5453         if (ia_valid & ATTR_SIZE)
5454                 dquot_initialize(inode);
5455         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5456                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5457                 handle_t *handle;
5458
5459                 /* (user+group)*(old+new) structure, inode write (sb,
5460                  * inode block, ? - but truncate inode update has it) */
5461                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5462                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5463                 if (IS_ERR(handle)) {
5464                         error = PTR_ERR(handle);
5465                         goto err_out;
5466                 }
5467                 error = dquot_transfer(inode, attr);
5468                 if (error) {
5469                         ext4_journal_stop(handle);
5470                         return error;
5471                 }
5472                 /* Update corresponding info in inode so that everything is in
5473                  * one transaction */
5474                 if (attr->ia_valid & ATTR_UID)
5475                         inode->i_uid = attr->ia_uid;
5476                 if (attr->ia_valid & ATTR_GID)
5477                         inode->i_gid = attr->ia_gid;
5478                 error = ext4_mark_inode_dirty(handle, inode);
5479                 ext4_journal_stop(handle);
5480         }
5481
5482         if (attr->ia_valid & ATTR_SIZE) {
5483                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5484                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5485
5486                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5487                                 error = -EFBIG;
5488                                 goto err_out;
5489                         }
5490                 }
5491         }
5492
5493         if (S_ISREG(inode->i_mode) &&
5494             attr->ia_valid & ATTR_SIZE &&
5495             (attr->ia_size < inode->i_size ||
5496              (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5497                 handle_t *handle;
5498
5499                 handle = ext4_journal_start(inode, 3);
5500                 if (IS_ERR(handle)) {
5501                         error = PTR_ERR(handle);
5502                         goto err_out;
5503                 }
5504
5505                 error = ext4_orphan_add(handle, inode);
5506                 EXT4_I(inode)->i_disksize = attr->ia_size;
5507                 rc = ext4_mark_inode_dirty(handle, inode);
5508                 if (!error)
5509                         error = rc;
5510                 ext4_journal_stop(handle);
5511
5512                 if (ext4_should_order_data(inode)) {
5513                         error = ext4_begin_ordered_truncate(inode,
5514                                                             attr->ia_size);
5515                         if (error) {
5516                                 /* Do as much error cleanup as possible */
5517                                 handle = ext4_journal_start(inode, 3);
5518                                 if (IS_ERR(handle)) {
5519                                         ext4_orphan_del(NULL, inode);
5520                                         goto err_out;
5521                                 }
5522                                 ext4_orphan_del(handle, inode);
5523                                 ext4_journal_stop(handle);
5524                                 goto err_out;
5525                         }
5526                 }
5527                 /* ext4_truncate will clear the flag */
5528                 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5529                         ext4_truncate(inode);
5530         }
5531
5532         rc = inode_setattr(inode, attr);
5533
5534         /* If inode_setattr's call to ext4_truncate failed to get a
5535          * transaction handle at all, we need to clean up the in-core
5536          * orphan list manually. */
5537         if (inode->i_nlink)
5538                 ext4_orphan_del(NULL, inode);
5539
5540         if (!rc && (ia_valid & ATTR_MODE))
5541                 rc = ext4_acl_chmod(inode);
5542
5543 err_out:
5544         ext4_std_error(inode->i_sb, error);
5545         if (!error)
5546                 error = rc;
5547         return error;
5548 }
5549
5550 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5551                  struct kstat *stat)
5552 {
5553         struct inode *inode;
5554         unsigned long delalloc_blocks;
5555
5556         inode = dentry->d_inode;
5557         generic_fillattr(inode, stat);
5558
5559         /*
5560          * We can't update i_blocks if the block allocation is delayed
5561          * otherwise in the case of system crash before the real block
5562          * allocation is done, we will have i_blocks inconsistent with
5563          * on-disk file blocks.
5564          * We always keep i_blocks updated together with real
5565          * allocation. But to not confuse with user, stat
5566          * will return the blocks that include the delayed allocation
5567          * blocks for this file.
5568          */
5569         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5570         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5571         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5572
5573         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5574         return 0;
5575 }
5576
5577 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5578                                       int chunk)
5579 {
5580         int indirects;
5581
5582         /* if nrblocks are contiguous */
5583         if (chunk) {
5584                 /*
5585                  * With N contiguous data blocks, it need at most
5586                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5587                  * 2 dindirect blocks
5588                  * 1 tindirect block
5589                  */
5590                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5591                 return indirects + 3;
5592         }
5593         /*
5594          * if nrblocks are not contiguous, worse case, each block touch
5595          * a indirect block, and each indirect block touch a double indirect
5596          * block, plus a triple indirect block
5597          */
5598         indirects = nrblocks * 2 + 1;
5599         return indirects;
5600 }
5601
5602 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5603 {
5604         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5605                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5606         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5607 }
5608
5609 /*
5610  * Account for index blocks, block groups bitmaps and block group
5611  * descriptor blocks if modify datablocks and index blocks
5612  * worse case, the indexs blocks spread over different block groups
5613  *
5614  * If datablocks are discontiguous, they are possible to spread over
5615  * different block groups too. If they are contiuguous, with flexbg,
5616  * they could still across block group boundary.
5617  *
5618  * Also account for superblock, inode, quota and xattr blocks
5619  */
5620 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5621 {
5622         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5623         int gdpblocks;
5624         int idxblocks;
5625         int ret = 0;
5626
5627         /*
5628          * How many index blocks need to touch to modify nrblocks?
5629          * The "Chunk" flag indicating whether the nrblocks is
5630          * physically contiguous on disk
5631          *
5632          * For Direct IO and fallocate, they calls get_block to allocate
5633          * one single extent at a time, so they could set the "Chunk" flag
5634          */
5635         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5636
5637         ret = idxblocks;
5638
5639         /*
5640          * Now let's see how many group bitmaps and group descriptors need
5641          * to account
5642          */
5643         groups = idxblocks;
5644         if (chunk)
5645                 groups += 1;
5646         else
5647                 groups += nrblocks;
5648
5649         gdpblocks = groups;
5650         if (groups > ngroups)
5651                 groups = ngroups;
5652         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5653                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5654
5655         /* bitmaps and block group descriptor blocks */
5656         ret += groups + gdpblocks;
5657
5658         /* Blocks for super block, inode, quota and xattr blocks */
5659         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5660
5661         return ret;
5662 }
5663
5664 /*
5665  * Calulate the total number of credits to reserve to fit
5666  * the modification of a single pages into a single transaction,
5667  * which may include multiple chunks of block allocations.
5668  *
5669  * This could be called via ext4_write_begin()
5670  *
5671  * We need to consider the worse case, when
5672  * one new block per extent.
5673  */
5674 int ext4_writepage_trans_blocks(struct inode *inode)
5675 {
5676         int bpp = ext4_journal_blocks_per_page(inode);
5677         int ret;
5678
5679         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5680
5681         /* Account for data blocks for journalled mode */
5682         if (ext4_should_journal_data(inode))
5683                 ret += bpp;
5684         return ret;
5685 }
5686
5687 /*
5688  * Calculate the journal credits for a chunk of data modification.
5689  *
5690  * This is called from DIO, fallocate or whoever calling
5691  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5692  *
5693  * journal buffers for data blocks are not included here, as DIO
5694  * and fallocate do no need to journal data buffers.
5695  */
5696 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5697 {
5698         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5699 }
5700
5701 /*
5702  * The caller must have previously called ext4_reserve_inode_write().
5703  * Give this, we know that the caller already has write access to iloc->bh.
5704  */
5705 int ext4_mark_iloc_dirty(handle_t *handle,
5706                          struct inode *inode, struct ext4_iloc *iloc)
5707 {
5708         int err = 0;
5709
5710         if (test_opt(inode->i_sb, I_VERSION))
5711                 inode_inc_iversion(inode);
5712
5713         /* the do_update_inode consumes one bh->b_count */
5714         get_bh(iloc->bh);
5715
5716         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5717         err = ext4_do_update_inode(handle, inode, iloc);
5718         put_bh(iloc->bh);
5719         return err;
5720 }
5721
5722 /*
5723  * On success, We end up with an outstanding reference count against
5724  * iloc->bh.  This _must_ be cleaned up later.
5725  */
5726
5727 int
5728 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5729                          struct ext4_iloc *iloc)
5730 {
5731         int err;
5732
5733         err = ext4_get_inode_loc(inode, iloc);
5734         if (!err) {
5735                 BUFFER_TRACE(iloc->bh, "get_write_access");
5736                 err = ext4_journal_get_write_access(handle, iloc->bh);
5737                 if (err) {
5738                         brelse(iloc->bh);
5739                         iloc->bh = NULL;
5740                 }
5741         }
5742         ext4_std_error(inode->i_sb, err);
5743         return err;
5744 }
5745
5746 /*
5747  * Expand an inode by new_extra_isize bytes.
5748  * Returns 0 on success or negative error number on failure.
5749  */
5750 static int ext4_expand_extra_isize(struct inode *inode,
5751                                    unsigned int new_extra_isize,
5752                                    struct ext4_iloc iloc,
5753                                    handle_t *handle)
5754 {
5755         struct ext4_inode *raw_inode;
5756         struct ext4_xattr_ibody_header *header;
5757         struct ext4_xattr_entry *entry;
5758
5759         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5760                 return 0;
5761
5762         raw_inode = ext4_raw_inode(&iloc);
5763
5764         header = IHDR(inode, raw_inode);
5765         entry = IFIRST(header);
5766
5767         /* No extended attributes present */
5768         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5769             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5770                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5771                         new_extra_isize);
5772                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5773                 return 0;
5774         }
5775
5776         /* try to expand with EAs present */
5777         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5778                                           raw_inode, handle);
5779 }
5780
5781 /*
5782  * What we do here is to mark the in-core inode as clean with respect to inode
5783  * dirtiness (it may still be data-dirty).
5784  * This means that the in-core inode may be reaped by prune_icache
5785  * without having to perform any I/O.  This is a very good thing,
5786  * because *any* task may call prune_icache - even ones which
5787  * have a transaction open against a different journal.
5788  *
5789  * Is this cheating?  Not really.  Sure, we haven't written the
5790  * inode out, but prune_icache isn't a user-visible syncing function.
5791  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5792  * we start and wait on commits.
5793  *
5794  * Is this efficient/effective?  Well, we're being nice to the system
5795  * by cleaning up our inodes proactively so they can be reaped
5796  * without I/O.  But we are potentially leaving up to five seconds'
5797  * worth of inodes floating about which prune_icache wants us to
5798  * write out.  One way to fix that would be to get prune_icache()
5799  * to do a write_super() to free up some memory.  It has the desired
5800  * effect.
5801  */
5802 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5803 {
5804         struct ext4_iloc iloc;
5805         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806         static unsigned int mnt_count;
5807         int err, ret;
5808
5809         might_sleep();
5810         err = ext4_reserve_inode_write(handle, inode, &iloc);
5811         if (ext4_handle_valid(handle) &&
5812             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5813             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5814                 /*
5815                  * We need extra buffer credits since we may write into EA block
5816                  * with this same handle. If journal_extend fails, then it will
5817                  * only result in a minor loss of functionality for that inode.
5818                  * If this is felt to be critical, then e2fsck should be run to
5819                  * force a large enough s_min_extra_isize.
5820                  */
5821                 if ((jbd2_journal_extend(handle,
5822                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5823                         ret = ext4_expand_extra_isize(inode,
5824                                                       sbi->s_want_extra_isize,
5825                                                       iloc, handle);
5826                         if (ret) {
5827                                 ext4_set_inode_state(inode,
5828                                                      EXT4_STATE_NO_EXPAND);
5829                                 if (mnt_count !=
5830                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5831                                         ext4_warning(inode->i_sb,
5832                                         "Unable to expand inode %lu. Delete"
5833                                         " some EAs or run e2fsck.",
5834                                         inode->i_ino);
5835                                         mnt_count =
5836                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5837                                 }
5838                         }
5839                 }
5840         }
5841         if (!err)
5842                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5843         return err;
5844 }
5845
5846 /*
5847  * ext4_dirty_inode() is called from __mark_inode_dirty()
5848  *
5849  * We're really interested in the case where a file is being extended.
5850  * i_size has been changed by generic_commit_write() and we thus need
5851  * to include the updated inode in the current transaction.
5852  *
5853  * Also, dquot_alloc_block() will always dirty the inode when blocks
5854  * are allocated to the file.
5855  *
5856  * If the inode is marked synchronous, we don't honour that here - doing
5857  * so would cause a commit on atime updates, which we don't bother doing.
5858  * We handle synchronous inodes at the highest possible level.
5859  */
5860 void ext4_dirty_inode(struct inode *inode)
5861 {
5862         handle_t *handle;
5863
5864         handle = ext4_journal_start(inode, 2);
5865         if (IS_ERR(handle))
5866                 goto out;
5867
5868         ext4_mark_inode_dirty(handle, inode);
5869
5870         ext4_journal_stop(handle);
5871 out:
5872         return;
5873 }
5874
5875 #if 0
5876 /*
5877  * Bind an inode's backing buffer_head into this transaction, to prevent
5878  * it from being flushed to disk early.  Unlike
5879  * ext4_reserve_inode_write, this leaves behind no bh reference and
5880  * returns no iloc structure, so the caller needs to repeat the iloc
5881  * lookup to mark the inode dirty later.
5882  */
5883 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5884 {
5885         struct ext4_iloc iloc;
5886
5887         int err = 0;
5888         if (handle) {
5889                 err = ext4_get_inode_loc(inode, &iloc);
5890                 if (!err) {
5891                         BUFFER_TRACE(iloc.bh, "get_write_access");
5892                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5893                         if (!err)
5894                                 err = ext4_handle_dirty_metadata(handle,
5895                                                                  NULL,
5896                                                                  iloc.bh);
5897                         brelse(iloc.bh);
5898                 }
5899         }
5900         ext4_std_error(inode->i_sb, err);
5901         return err;
5902 }
5903 #endif
5904
5905 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5906 {
5907         journal_t *journal;
5908         handle_t *handle;
5909         int err;
5910
5911         /*
5912          * We have to be very careful here: changing a data block's
5913          * journaling status dynamically is dangerous.  If we write a
5914          * data block to the journal, change the status and then delete
5915          * that block, we risk forgetting to revoke the old log record
5916          * from the journal and so a subsequent replay can corrupt data.
5917          * So, first we make sure that the journal is empty and that
5918          * nobody is changing anything.
5919          */
5920
5921         journal = EXT4_JOURNAL(inode);
5922         if (!journal)
5923                 return 0;
5924         if (is_journal_aborted(journal))
5925                 return -EROFS;
5926
5927         jbd2_journal_lock_updates(journal);
5928         jbd2_journal_flush(journal);
5929
5930         /*
5931          * OK, there are no updates running now, and all cached data is
5932          * synced to disk.  We are now in a completely consistent state
5933          * which doesn't have anything in the journal, and we know that
5934          * no filesystem updates are running, so it is safe to modify
5935          * the inode's in-core data-journaling state flag now.
5936          */
5937
5938         if (val)
5939                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5940         else
5941                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5942         ext4_set_aops(inode);
5943
5944         jbd2_journal_unlock_updates(journal);
5945
5946         /* Finally we can mark the inode as dirty. */
5947
5948         handle = ext4_journal_start(inode, 1);
5949         if (IS_ERR(handle))
5950                 return PTR_ERR(handle);
5951
5952         err = ext4_mark_inode_dirty(handle, inode);
5953         ext4_handle_sync(handle);
5954         ext4_journal_stop(handle);
5955         ext4_std_error(inode->i_sb, err);
5956
5957         return err;
5958 }
5959
5960 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5961 {
5962         return !buffer_mapped(bh);
5963 }
5964
5965 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5966 {
5967         struct page *page = vmf->page;
5968         loff_t size;
5969         unsigned long len;
5970         int ret = -EINVAL;
5971         void *fsdata;
5972         struct file *file = vma->vm_file;
5973         struct inode *inode = file->f_path.dentry->d_inode;
5974         struct address_space *mapping = inode->i_mapping;
5975
5976         /*
5977          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5978          * get i_mutex because we are already holding mmap_sem.
5979          */
5980         down_read(&inode->i_alloc_sem);
5981         size = i_size_read(inode);
5982         if (page->mapping != mapping || size <= page_offset(page)
5983             || !PageUptodate(page)) {
5984                 /* page got truncated from under us? */
5985                 goto out_unlock;
5986         }
5987         ret = 0;
5988         if (PageMappedToDisk(page))
5989                 goto out_unlock;
5990
5991         if (page->index == size >> PAGE_CACHE_SHIFT)
5992                 len = size & ~PAGE_CACHE_MASK;
5993         else
5994                 len = PAGE_CACHE_SIZE;
5995
5996         lock_page(page);
5997         /*
5998          * return if we have all the buffers mapped. This avoid
5999          * the need to call write_begin/write_end which does a
6000          * journal_start/journal_stop which can block and take
6001          * long time
6002          */
6003         if (page_has_buffers(page)) {
6004                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6005                                         ext4_bh_unmapped)) {
6006                         unlock_page(page);
6007                         goto out_unlock;
6008                 }
6009         }
6010         unlock_page(page);
6011         /*
6012          * OK, we need to fill the hole... Do write_begin write_end
6013          * to do block allocation/reservation.We are not holding
6014          * inode.i__mutex here. That allow * parallel write_begin,
6015          * write_end call. lock_page prevent this from happening
6016          * on the same page though
6017          */
6018         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6019                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6020         if (ret < 0)
6021                 goto out_unlock;
6022         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6023                         len, len, page, fsdata);
6024         if (ret < 0)
6025                 goto out_unlock;
6026         ret = 0;
6027 out_unlock:
6028         if (ret)
6029                 ret = VM_FAULT_SIGBUS;
6030         up_read(&inode->i_alloc_sem);
6031         return ret;
6032 }