]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext3/inode.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __func__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177         int ret;
178
179         jbd_debug(2, "restarting handle %p\n", handle);
180         /*
181          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182          * At this moment, get_block can be called only for blocks inside
183          * i_size since page cache has been already dropped and writes are
184          * blocked by i_mutex. So we can safely drop the truncate_mutex.
185          */
186         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188         mutex_lock(&EXT3_I(inode)->truncate_mutex);
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext3_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198
199         if (!is_bad_inode(inode))
200                 dquot_initialize(inode);
201
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = start_transaction(inode);
208         if (IS_ERR(handle)) {
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext3_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 handle->h_sync = 1;
220         inode->i_size = 0;
221         if (inode->i_blocks)
222                 ext3_truncate(inode);
223         /*
224          * Kill off the orphan record which ext3_truncate created.
225          * AKPM: I think this can be inside the above `if'.
226          * Note that ext3_orphan_del() has to be able to cope with the
227          * deletion of a non-existent orphan - this is because we don't
228          * know if ext3_truncate() actually created an orphan record.
229          * (Well, we could do this if we need to, but heck - it works)
230          */
231         ext3_orphan_del(handle, inode);
232         EXT3_I(inode)->i_dtime  = get_seconds();
233
234         /*
235          * One subtle ordering requirement: if anything has gone wrong
236          * (transaction abort, IO errors, whatever), then we can still
237          * do these next steps (the fs will already have been marked as
238          * having errors), but we can't free the inode if the mark_dirty
239          * fails.
240          */
241         if (ext3_mark_inode_dirty(handle, inode))
242                 /* If that failed, just do the required in-core inode clear. */
243                 clear_inode(inode);
244         else
245                 ext3_free_inode(handle, inode);
246         ext3_journal_stop(handle);
247         return;
248 no_delete:
249         clear_inode(inode);     /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253         __le32  *p;
254         __le32  key;
255         struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260         p->key = *(p->p = v);
261         p->bh = bh;
262 }
263
264 static int verify_chain(Indirect *from, Indirect *to)
265 {
266         while (from <= to && from->key == *from->p)
267                 from++;
268         return (from > to);
269 }
270
271 /**
272  *      ext3_block_to_path - parse the block number into array of offsets
273  *      @inode: inode in question (we are only interested in its superblock)
274  *      @i_block: block number to be parsed
275  *      @offsets: array to store the offsets in
276  *      @boundary: set this non-zero if the referred-to block is likely to be
277  *             followed (on disk) by an indirect block.
278  *
279  *      To store the locations of file's data ext3 uses a data structure common
280  *      for UNIX filesystems - tree of pointers anchored in the inode, with
281  *      data blocks at leaves and indirect blocks in intermediate nodes.
282  *      This function translates the block number into path in that tree -
283  *      return value is the path length and @offsets[n] is the offset of
284  *      pointer to (n+1)th node in the nth one. If @block is out of range
285  *      (negative or too large) warning is printed and zero returned.
286  *
287  *      Note: function doesn't find node addresses, so no IO is needed. All
288  *      we need to know is the capacity of indirect blocks (taken from the
289  *      inode->i_sb).
290  */
291
292 /*
293  * Portability note: the last comparison (check that we fit into triple
294  * indirect block) is spelled differently, because otherwise on an
295  * architecture with 32-bit longs and 8Kb pages we might get into trouble
296  * if our filesystem had 8Kb blocks. We might use long long, but that would
297  * kill us on x86. Oh, well, at least the sign propagation does not matter -
298  * i_block would have to be negative in the very beginning, so we would not
299  * get there at all.
300  */
301
302 static int ext3_block_to_path(struct inode *inode,
303                         long i_block, int offsets[4], int *boundary)
304 {
305         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
306         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
307         const long direct_blocks = EXT3_NDIR_BLOCKS,
308                 indirect_blocks = ptrs,
309                 double_blocks = (1 << (ptrs_bits * 2));
310         int n = 0;
311         int final = 0;
312
313         if (i_block < 0) {
314                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
315         } else if (i_block < direct_blocks) {
316                 offsets[n++] = i_block;
317                 final = direct_blocks;
318         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
319                 offsets[n++] = EXT3_IND_BLOCK;
320                 offsets[n++] = i_block;
321                 final = ptrs;
322         } else if ((i_block -= indirect_blocks) < double_blocks) {
323                 offsets[n++] = EXT3_DIND_BLOCK;
324                 offsets[n++] = i_block >> ptrs_bits;
325                 offsets[n++] = i_block & (ptrs - 1);
326                 final = ptrs;
327         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
328                 offsets[n++] = EXT3_TIND_BLOCK;
329                 offsets[n++] = i_block >> (ptrs_bits * 2);
330                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
331                 offsets[n++] = i_block & (ptrs - 1);
332                 final = ptrs;
333         } else {
334                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
335         }
336         if (boundary)
337                 *boundary = final - 1 - (i_block & (ptrs - 1));
338         return n;
339 }
340
341 /**
342  *      ext3_get_branch - read the chain of indirect blocks leading to data
343  *      @inode: inode in question
344  *      @depth: depth of the chain (1 - direct pointer, etc.)
345  *      @offsets: offsets of pointers in inode/indirect blocks
346  *      @chain: place to store the result
347  *      @err: here we store the error value
348  *
349  *      Function fills the array of triples <key, p, bh> and returns %NULL
350  *      if everything went OK or the pointer to the last filled triple
351  *      (incomplete one) otherwise. Upon the return chain[i].key contains
352  *      the number of (i+1)-th block in the chain (as it is stored in memory,
353  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
354  *      number (it points into struct inode for i==0 and into the bh->b_data
355  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
356  *      block for i>0 and NULL for i==0. In other words, it holds the block
357  *      numbers of the chain, addresses they were taken from (and where we can
358  *      verify that chain did not change) and buffer_heads hosting these
359  *      numbers.
360  *
361  *      Function stops when it stumbles upon zero pointer (absent block)
362  *              (pointer to last triple returned, *@err == 0)
363  *      or when it gets an IO error reading an indirect block
364  *              (ditto, *@err == -EIO)
365  *      or when it notices that chain had been changed while it was reading
366  *              (ditto, *@err == -EAGAIN)
367  *      or when it reads all @depth-1 indirect blocks successfully and finds
368  *      the whole chain, all way to the data (returns %NULL, *err == 0).
369  */
370 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
371                                  Indirect chain[4], int *err)
372 {
373         struct super_block *sb = inode->i_sb;
374         Indirect *p = chain;
375         struct buffer_head *bh;
376
377         *err = 0;
378         /* i_data is not going away, no lock needed */
379         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
380         if (!p->key)
381                 goto no_block;
382         while (--depth) {
383                 bh = sb_bread(sb, le32_to_cpu(p->key));
384                 if (!bh)
385                         goto failure;
386                 /* Reader: pointers */
387                 if (!verify_chain(chain, p))
388                         goto changed;
389                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
390                 /* Reader: end */
391                 if (!p->key)
392                         goto no_block;
393         }
394         return NULL;
395
396 changed:
397         brelse(bh);
398         *err = -EAGAIN;
399         goto no_block;
400 failure:
401         *err = -EIO;
402 no_block:
403         return p;
404 }
405
406 /**
407  *      ext3_find_near - find a place for allocation with sufficient locality
408  *      @inode: owner
409  *      @ind: descriptor of indirect block.
410  *
411  *      This function returns the preferred place for block allocation.
412  *      It is used when heuristic for sequential allocation fails.
413  *      Rules are:
414  *        + if there is a block to the left of our position - allocate near it.
415  *        + if pointer will live in indirect block - allocate near that block.
416  *        + if pointer will live in inode - allocate in the same
417  *          cylinder group.
418  *
419  * In the latter case we colour the starting block by the callers PID to
420  * prevent it from clashing with concurrent allocations for a different inode
421  * in the same block group.   The PID is used here so that functionally related
422  * files will be close-by on-disk.
423  *
424  *      Caller must make sure that @ind is valid and will stay that way.
425  */
426 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
427 {
428         struct ext3_inode_info *ei = EXT3_I(inode);
429         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
430         __le32 *p;
431         ext3_fsblk_t bg_start;
432         ext3_grpblk_t colour;
433
434         /* Try to find previous block */
435         for (p = ind->p - 1; p >= start; p--) {
436                 if (*p)
437                         return le32_to_cpu(*p);
438         }
439
440         /* No such thing, so let's try location of indirect block */
441         if (ind->bh)
442                 return ind->bh->b_blocknr;
443
444         /*
445          * It is going to be referred to from the inode itself? OK, just put it
446          * into the same cylinder group then.
447          */
448         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
449         colour = (current->pid % 16) *
450                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
451         return bg_start + colour;
452 }
453
454 /**
455  *      ext3_find_goal - find a preferred place for allocation.
456  *      @inode: owner
457  *      @block:  block we want
458  *      @partial: pointer to the last triple within a chain
459  *
460  *      Normally this function find the preferred place for block allocation,
461  *      returns it.
462  */
463
464 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
465                                    Indirect *partial)
466 {
467         struct ext3_block_alloc_info *block_i;
468
469         block_i =  EXT3_I(inode)->i_block_alloc_info;
470
471         /*
472          * try the heuristic for sequential allocation,
473          * failing that at least try to get decent locality.
474          */
475         if (block_i && (block == block_i->last_alloc_logical_block + 1)
476                 && (block_i->last_alloc_physical_block != 0)) {
477                 return block_i->last_alloc_physical_block + 1;
478         }
479
480         return ext3_find_near(inode, partial);
481 }
482
483 /**
484  *      ext3_blks_to_allocate: Look up the block map and count the number
485  *      of direct blocks need to be allocated for the given branch.
486  *
487  *      @branch: chain of indirect blocks
488  *      @k: number of blocks need for indirect blocks
489  *      @blks: number of data blocks to be mapped.
490  *      @blocks_to_boundary:  the offset in the indirect block
491  *
492  *      return the total number of blocks to be allocate, including the
493  *      direct and indirect blocks.
494  */
495 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
496                 int blocks_to_boundary)
497 {
498         unsigned long count = 0;
499
500         /*
501          * Simple case, [t,d]Indirect block(s) has not allocated yet
502          * then it's clear blocks on that path have not allocated
503          */
504         if (k > 0) {
505                 /* right now we don't handle cross boundary allocation */
506                 if (blks < blocks_to_boundary + 1)
507                         count += blks;
508                 else
509                         count += blocks_to_boundary + 1;
510                 return count;
511         }
512
513         count++;
514         while (count < blks && count <= blocks_to_boundary &&
515                 le32_to_cpu(*(branch[0].p + count)) == 0) {
516                 count++;
517         }
518         return count;
519 }
520
521 /**
522  *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
523  *      @indirect_blks: the number of blocks need to allocate for indirect
524  *                      blocks
525  *
526  *      @new_blocks: on return it will store the new block numbers for
527  *      the indirect blocks(if needed) and the first direct block,
528  *      @blks:  on return it will store the total number of allocated
529  *              direct blocks
530  */
531 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
532                         ext3_fsblk_t goal, int indirect_blks, int blks,
533                         ext3_fsblk_t new_blocks[4], int *err)
534 {
535         int target, i;
536         unsigned long count = 0;
537         int index = 0;
538         ext3_fsblk_t current_block = 0;
539         int ret = 0;
540
541         /*
542          * Here we try to allocate the requested multiple blocks at once,
543          * on a best-effort basis.
544          * To build a branch, we should allocate blocks for
545          * the indirect blocks(if not allocated yet), and at least
546          * the first direct block of this branch.  That's the
547          * minimum number of blocks need to allocate(required)
548          */
549         target = blks + indirect_blks;
550
551         while (1) {
552                 count = target;
553                 /* allocating blocks for indirect blocks and direct blocks */
554                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
555                 if (*err)
556                         goto failed_out;
557
558                 target -= count;
559                 /* allocate blocks for indirect blocks */
560                 while (index < indirect_blks && count) {
561                         new_blocks[index++] = current_block++;
562                         count--;
563                 }
564
565                 if (count > 0)
566                         break;
567         }
568
569         /* save the new block number for the first direct block */
570         new_blocks[index] = current_block;
571
572         /* total number of blocks allocated for direct blocks */
573         ret = count;
574         *err = 0;
575         return ret;
576 failed_out:
577         for (i = 0; i <index; i++)
578                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
579         return ret;
580 }
581
582 /**
583  *      ext3_alloc_branch - allocate and set up a chain of blocks.
584  *      @inode: owner
585  *      @indirect_blks: number of allocated indirect blocks
586  *      @blks: number of allocated direct blocks
587  *      @offsets: offsets (in the blocks) to store the pointers to next.
588  *      @branch: place to store the chain in.
589  *
590  *      This function allocates blocks, zeroes out all but the last one,
591  *      links them into chain and (if we are synchronous) writes them to disk.
592  *      In other words, it prepares a branch that can be spliced onto the
593  *      inode. It stores the information about that chain in the branch[], in
594  *      the same format as ext3_get_branch() would do. We are calling it after
595  *      we had read the existing part of chain and partial points to the last
596  *      triple of that (one with zero ->key). Upon the exit we have the same
597  *      picture as after the successful ext3_get_block(), except that in one
598  *      place chain is disconnected - *branch->p is still zero (we did not
599  *      set the last link), but branch->key contains the number that should
600  *      be placed into *branch->p to fill that gap.
601  *
602  *      If allocation fails we free all blocks we've allocated (and forget
603  *      their buffer_heads) and return the error value the from failed
604  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
605  *      as described above and return 0.
606  */
607 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
608                         int indirect_blks, int *blks, ext3_fsblk_t goal,
609                         int *offsets, Indirect *branch)
610 {
611         int blocksize = inode->i_sb->s_blocksize;
612         int i, n = 0;
613         int err = 0;
614         struct buffer_head *bh;
615         int num;
616         ext3_fsblk_t new_blocks[4];
617         ext3_fsblk_t current_block;
618
619         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
620                                 *blks, new_blocks, &err);
621         if (err)
622                 return err;
623
624         branch[0].key = cpu_to_le32(new_blocks[0]);
625         /*
626          * metadata blocks and data blocks are allocated.
627          */
628         for (n = 1; n <= indirect_blks;  n++) {
629                 /*
630                  * Get buffer_head for parent block, zero it out
631                  * and set the pointer to new one, then send
632                  * parent to disk.
633                  */
634                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
635                 branch[n].bh = bh;
636                 lock_buffer(bh);
637                 BUFFER_TRACE(bh, "call get_create_access");
638                 err = ext3_journal_get_create_access(handle, bh);
639                 if (err) {
640                         unlock_buffer(bh);
641                         brelse(bh);
642                         goto failed;
643                 }
644
645                 memset(bh->b_data, 0, blocksize);
646                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
647                 branch[n].key = cpu_to_le32(new_blocks[n]);
648                 *branch[n].p = branch[n].key;
649                 if ( n == indirect_blks) {
650                         current_block = new_blocks[n];
651                         /*
652                          * End of chain, update the last new metablock of
653                          * the chain to point to the new allocated
654                          * data blocks numbers
655                          */
656                         for (i=1; i < num; i++)
657                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
658                 }
659                 BUFFER_TRACE(bh, "marking uptodate");
660                 set_buffer_uptodate(bh);
661                 unlock_buffer(bh);
662
663                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
664                 err = ext3_journal_dirty_metadata(handle, bh);
665                 if (err)
666                         goto failed;
667         }
668         *blks = num;
669         return err;
670 failed:
671         /* Allocation failed, free what we already allocated */
672         for (i = 1; i <= n ; i++) {
673                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
674                 ext3_journal_forget(handle, branch[i].bh);
675         }
676         for (i = 0; i <indirect_blks; i++)
677                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
678
679         ext3_free_blocks(handle, inode, new_blocks[i], num);
680
681         return err;
682 }
683
684 /**
685  * ext3_splice_branch - splice the allocated branch onto inode.
686  * @inode: owner
687  * @block: (logical) number of block we are adding
688  * @chain: chain of indirect blocks (with a missing link - see
689  *      ext3_alloc_branch)
690  * @where: location of missing link
691  * @num:   number of indirect blocks we are adding
692  * @blks:  number of direct blocks we are adding
693  *
694  * This function fills the missing link and does all housekeeping needed in
695  * inode (->i_blocks, etc.). In case of success we end up with the full
696  * chain to new block and return 0.
697  */
698 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
699                         long block, Indirect *where, int num, int blks)
700 {
701         int i;
702         int err = 0;
703         struct ext3_block_alloc_info *block_i;
704         ext3_fsblk_t current_block;
705         struct ext3_inode_info *ei = EXT3_I(inode);
706
707         block_i = ei->i_block_alloc_info;
708         /*
709          * If we're splicing into a [td]indirect block (as opposed to the
710          * inode) then we need to get write access to the [td]indirect block
711          * before the splice.
712          */
713         if (where->bh) {
714                 BUFFER_TRACE(where->bh, "get_write_access");
715                 err = ext3_journal_get_write_access(handle, where->bh);
716                 if (err)
717                         goto err_out;
718         }
719         /* That's it */
720
721         *where->p = where->key;
722
723         /*
724          * Update the host buffer_head or inode to point to more just allocated
725          * direct blocks blocks
726          */
727         if (num == 0 && blks > 1) {
728                 current_block = le32_to_cpu(where->key) + 1;
729                 for (i = 1; i < blks; i++)
730                         *(where->p + i ) = cpu_to_le32(current_block++);
731         }
732
733         /*
734          * update the most recently allocated logical & physical block
735          * in i_block_alloc_info, to assist find the proper goal block for next
736          * allocation
737          */
738         if (block_i) {
739                 block_i->last_alloc_logical_block = block + blks - 1;
740                 block_i->last_alloc_physical_block =
741                                 le32_to_cpu(where[num].key) + blks - 1;
742         }
743
744         /* We are done with atomic stuff, now do the rest of housekeeping */
745
746         inode->i_ctime = CURRENT_TIME_SEC;
747         ext3_mark_inode_dirty(handle, inode);
748         /* ext3_mark_inode_dirty already updated i_sync_tid */
749         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
750
751         /* had we spliced it onto indirect block? */
752         if (where->bh) {
753                 /*
754                  * If we spliced it onto an indirect block, we haven't
755                  * altered the inode.  Note however that if it is being spliced
756                  * onto an indirect block at the very end of the file (the
757                  * file is growing) then we *will* alter the inode to reflect
758                  * the new i_size.  But that is not done here - it is done in
759                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
760                  */
761                 jbd_debug(5, "splicing indirect only\n");
762                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
763                 err = ext3_journal_dirty_metadata(handle, where->bh);
764                 if (err)
765                         goto err_out;
766         } else {
767                 /*
768                  * OK, we spliced it into the inode itself on a direct block.
769                  * Inode was dirtied above.
770                  */
771                 jbd_debug(5, "splicing direct\n");
772         }
773         return err;
774
775 err_out:
776         for (i = 1; i <= num; i++) {
777                 BUFFER_TRACE(where[i].bh, "call journal_forget");
778                 ext3_journal_forget(handle, where[i].bh);
779                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
780         }
781         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
782
783         return err;
784 }
785
786 /*
787  * Allocation strategy is simple: if we have to allocate something, we will
788  * have to go the whole way to leaf. So let's do it before attaching anything
789  * to tree, set linkage between the newborn blocks, write them if sync is
790  * required, recheck the path, free and repeat if check fails, otherwise
791  * set the last missing link (that will protect us from any truncate-generated
792  * removals - all blocks on the path are immune now) and possibly force the
793  * write on the parent block.
794  * That has a nice additional property: no special recovery from the failed
795  * allocations is needed - we simply release blocks and do not touch anything
796  * reachable from inode.
797  *
798  * `handle' can be NULL if create == 0.
799  *
800  * The BKL may not be held on entry here.  Be sure to take it early.
801  * return > 0, # of blocks mapped or allocated.
802  * return = 0, if plain lookup failed.
803  * return < 0, error case.
804  */
805 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
806                 sector_t iblock, unsigned long maxblocks,
807                 struct buffer_head *bh_result,
808                 int create)
809 {
810         int err = -EIO;
811         int offsets[4];
812         Indirect chain[4];
813         Indirect *partial;
814         ext3_fsblk_t goal;
815         int indirect_blks;
816         int blocks_to_boundary = 0;
817         int depth;
818         struct ext3_inode_info *ei = EXT3_I(inode);
819         int count = 0;
820         ext3_fsblk_t first_block = 0;
821
822
823         J_ASSERT(handle != NULL || create == 0);
824         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
825
826         if (depth == 0)
827                 goto out;
828
829         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
830
831         /* Simplest case - block found, no allocation needed */
832         if (!partial) {
833                 first_block = le32_to_cpu(chain[depth - 1].key);
834                 clear_buffer_new(bh_result);
835                 count++;
836                 /*map more blocks*/
837                 while (count < maxblocks && count <= blocks_to_boundary) {
838                         ext3_fsblk_t blk;
839
840                         if (!verify_chain(chain, chain + depth - 1)) {
841                                 /*
842                                  * Indirect block might be removed by
843                                  * truncate while we were reading it.
844                                  * Handling of that case: forget what we've
845                                  * got now. Flag the err as EAGAIN, so it
846                                  * will reread.
847                                  */
848                                 err = -EAGAIN;
849                                 count = 0;
850                                 break;
851                         }
852                         blk = le32_to_cpu(*(chain[depth-1].p + count));
853
854                         if (blk == first_block + count)
855                                 count++;
856                         else
857                                 break;
858                 }
859                 if (err != -EAGAIN)
860                         goto got_it;
861         }
862
863         /* Next simple case - plain lookup or failed read of indirect block */
864         if (!create || err == -EIO)
865                 goto cleanup;
866
867         mutex_lock(&ei->truncate_mutex);
868
869         /*
870          * If the indirect block is missing while we are reading
871          * the chain(ext3_get_branch() returns -EAGAIN err), or
872          * if the chain has been changed after we grab the semaphore,
873          * (either because another process truncated this branch, or
874          * another get_block allocated this branch) re-grab the chain to see if
875          * the request block has been allocated or not.
876          *
877          * Since we already block the truncate/other get_block
878          * at this point, we will have the current copy of the chain when we
879          * splice the branch into the tree.
880          */
881         if (err == -EAGAIN || !verify_chain(chain, partial)) {
882                 while (partial > chain) {
883                         brelse(partial->bh);
884                         partial--;
885                 }
886                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
887                 if (!partial) {
888                         count++;
889                         mutex_unlock(&ei->truncate_mutex);
890                         if (err)
891                                 goto cleanup;
892                         clear_buffer_new(bh_result);
893                         goto got_it;
894                 }
895         }
896
897         /*
898          * Okay, we need to do block allocation.  Lazily initialize the block
899          * allocation info here if necessary
900         */
901         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
902                 ext3_init_block_alloc_info(inode);
903
904         goal = ext3_find_goal(inode, iblock, partial);
905
906         /* the number of blocks need to allocate for [d,t]indirect blocks */
907         indirect_blks = (chain + depth) - partial - 1;
908
909         /*
910          * Next look up the indirect map to count the totoal number of
911          * direct blocks to allocate for this branch.
912          */
913         count = ext3_blks_to_allocate(partial, indirect_blks,
914                                         maxblocks, blocks_to_boundary);
915         /*
916          * Block out ext3_truncate while we alter the tree
917          */
918         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
919                                 offsets + (partial - chain), partial);
920
921         /*
922          * The ext3_splice_branch call will free and forget any buffers
923          * on the new chain if there is a failure, but that risks using
924          * up transaction credits, especially for bitmaps where the
925          * credits cannot be returned.  Can we handle this somehow?  We
926          * may need to return -EAGAIN upwards in the worst case.  --sct
927          */
928         if (!err)
929                 err = ext3_splice_branch(handle, inode, iblock,
930                                         partial, indirect_blks, count);
931         mutex_unlock(&ei->truncate_mutex);
932         if (err)
933                 goto cleanup;
934
935         set_buffer_new(bh_result);
936 got_it:
937         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
938         if (count > blocks_to_boundary)
939                 set_buffer_boundary(bh_result);
940         err = count;
941         /* Clean up and exit */
942         partial = chain + depth - 1;    /* the whole chain */
943 cleanup:
944         while (partial > chain) {
945                 BUFFER_TRACE(partial->bh, "call brelse");
946                 brelse(partial->bh);
947                 partial--;
948         }
949         BUFFER_TRACE(bh_result, "returned");
950 out:
951         return err;
952 }
953
954 /* Maximum number of blocks we map for direct IO at once. */
955 #define DIO_MAX_BLOCKS 4096
956 /*
957  * Number of credits we need for writing DIO_MAX_BLOCKS:
958  * We need sb + group descriptor + bitmap + inode -> 4
959  * For B blocks with A block pointers per block we need:
960  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
961  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
962  */
963 #define DIO_CREDITS 25
964
965 static int ext3_get_block(struct inode *inode, sector_t iblock,
966                         struct buffer_head *bh_result, int create)
967 {
968         handle_t *handle = ext3_journal_current_handle();
969         int ret = 0, started = 0;
970         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
971
972         if (create && !handle) {        /* Direct IO write... */
973                 if (max_blocks > DIO_MAX_BLOCKS)
974                         max_blocks = DIO_MAX_BLOCKS;
975                 handle = ext3_journal_start(inode, DIO_CREDITS +
976                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
977                 if (IS_ERR(handle)) {
978                         ret = PTR_ERR(handle);
979                         goto out;
980                 }
981                 started = 1;
982         }
983
984         ret = ext3_get_blocks_handle(handle, inode, iblock,
985                                         max_blocks, bh_result, create);
986         if (ret > 0) {
987                 bh_result->b_size = (ret << inode->i_blkbits);
988                 ret = 0;
989         }
990         if (started)
991                 ext3_journal_stop(handle);
992 out:
993         return ret;
994 }
995
996 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
997                 u64 start, u64 len)
998 {
999         return generic_block_fiemap(inode, fieinfo, start, len,
1000                                     ext3_get_block);
1001 }
1002
1003 /*
1004  * `handle' can be NULL if create is zero
1005  */
1006 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1007                                 long block, int create, int *errp)
1008 {
1009         struct buffer_head dummy;
1010         int fatal = 0, err;
1011
1012         J_ASSERT(handle != NULL || create == 0);
1013
1014         dummy.b_state = 0;
1015         dummy.b_blocknr = -1000;
1016         buffer_trace_init(&dummy.b_history);
1017         err = ext3_get_blocks_handle(handle, inode, block, 1,
1018                                         &dummy, create);
1019         /*
1020          * ext3_get_blocks_handle() returns number of blocks
1021          * mapped. 0 in case of a HOLE.
1022          */
1023         if (err > 0) {
1024                 if (err > 1)
1025                         WARN_ON(1);
1026                 err = 0;
1027         }
1028         *errp = err;
1029         if (!err && buffer_mapped(&dummy)) {
1030                 struct buffer_head *bh;
1031                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1032                 if (!bh) {
1033                         *errp = -EIO;
1034                         goto err;
1035                 }
1036                 if (buffer_new(&dummy)) {
1037                         J_ASSERT(create != 0);
1038                         J_ASSERT(handle != NULL);
1039
1040                         /*
1041                          * Now that we do not always journal data, we should
1042                          * keep in mind whether this should always journal the
1043                          * new buffer as metadata.  For now, regular file
1044                          * writes use ext3_get_block instead, so it's not a
1045                          * problem.
1046                          */
1047                         lock_buffer(bh);
1048                         BUFFER_TRACE(bh, "call get_create_access");
1049                         fatal = ext3_journal_get_create_access(handle, bh);
1050                         if (!fatal && !buffer_uptodate(bh)) {
1051                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1052                                 set_buffer_uptodate(bh);
1053                         }
1054                         unlock_buffer(bh);
1055                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1056                         err = ext3_journal_dirty_metadata(handle, bh);
1057                         if (!fatal)
1058                                 fatal = err;
1059                 } else {
1060                         BUFFER_TRACE(bh, "not a new buffer");
1061                 }
1062                 if (fatal) {
1063                         *errp = fatal;
1064                         brelse(bh);
1065                         bh = NULL;
1066                 }
1067                 return bh;
1068         }
1069 err:
1070         return NULL;
1071 }
1072
1073 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1074                                int block, int create, int *err)
1075 {
1076         struct buffer_head * bh;
1077
1078         bh = ext3_getblk(handle, inode, block, create, err);
1079         if (!bh)
1080                 return bh;
1081         if (buffer_uptodate(bh))
1082                 return bh;
1083         ll_rw_block(READ_META, 1, &bh);
1084         wait_on_buffer(bh);
1085         if (buffer_uptodate(bh))
1086                 return bh;
1087         put_bh(bh);
1088         *err = -EIO;
1089         return NULL;
1090 }
1091
1092 static int walk_page_buffers(   handle_t *handle,
1093                                 struct buffer_head *head,
1094                                 unsigned from,
1095                                 unsigned to,
1096                                 int *partial,
1097                                 int (*fn)(      handle_t *handle,
1098                                                 struct buffer_head *bh))
1099 {
1100         struct buffer_head *bh;
1101         unsigned block_start, block_end;
1102         unsigned blocksize = head->b_size;
1103         int err, ret = 0;
1104         struct buffer_head *next;
1105
1106         for (   bh = head, block_start = 0;
1107                 ret == 0 && (bh != head || !block_start);
1108                 block_start = block_end, bh = next)
1109         {
1110                 next = bh->b_this_page;
1111                 block_end = block_start + blocksize;
1112                 if (block_end <= from || block_start >= to) {
1113                         if (partial && !buffer_uptodate(bh))
1114                                 *partial = 1;
1115                         continue;
1116                 }
1117                 err = (*fn)(handle, bh);
1118                 if (!ret)
1119                         ret = err;
1120         }
1121         return ret;
1122 }
1123
1124 /*
1125  * To preserve ordering, it is essential that the hole instantiation and
1126  * the data write be encapsulated in a single transaction.  We cannot
1127  * close off a transaction and start a new one between the ext3_get_block()
1128  * and the commit_write().  So doing the journal_start at the start of
1129  * prepare_write() is the right place.
1130  *
1131  * Also, this function can nest inside ext3_writepage() ->
1132  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1133  * has generated enough buffer credits to do the whole page.  So we won't
1134  * block on the journal in that case, which is good, because the caller may
1135  * be PF_MEMALLOC.
1136  *
1137  * By accident, ext3 can be reentered when a transaction is open via
1138  * quota file writes.  If we were to commit the transaction while thus
1139  * reentered, there can be a deadlock - we would be holding a quota
1140  * lock, and the commit would never complete if another thread had a
1141  * transaction open and was blocking on the quota lock - a ranking
1142  * violation.
1143  *
1144  * So what we do is to rely on the fact that journal_stop/journal_start
1145  * will _not_ run commit under these circumstances because handle->h_ref
1146  * is elevated.  We'll still have enough credits for the tiny quotafile
1147  * write.
1148  */
1149 static int do_journal_get_write_access(handle_t *handle,
1150                                         struct buffer_head *bh)
1151 {
1152         int dirty = buffer_dirty(bh);
1153         int ret;
1154
1155         if (!buffer_mapped(bh) || buffer_freed(bh))
1156                 return 0;
1157         /*
1158          * __block_prepare_write() could have dirtied some buffers. Clean
1159          * the dirty bit as jbd2_journal_get_write_access() could complain
1160          * otherwise about fs integrity issues. Setting of the dirty bit
1161          * by __block_prepare_write() isn't a real problem here as we clear
1162          * the bit before releasing a page lock and thus writeback cannot
1163          * ever write the buffer.
1164          */
1165         if (dirty)
1166                 clear_buffer_dirty(bh);
1167         ret = ext3_journal_get_write_access(handle, bh);
1168         if (!ret && dirty)
1169                 ret = ext3_journal_dirty_metadata(handle, bh);
1170         return ret;
1171 }
1172
1173 /*
1174  * Truncate blocks that were not used by write. We have to truncate the
1175  * pagecache as well so that corresponding buffers get properly unmapped.
1176  */
1177 static void ext3_truncate_failed_write(struct inode *inode)
1178 {
1179         truncate_inode_pages(inode->i_mapping, inode->i_size);
1180         ext3_truncate(inode);
1181 }
1182
1183 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1184                                 loff_t pos, unsigned len, unsigned flags,
1185                                 struct page **pagep, void **fsdata)
1186 {
1187         struct inode *inode = mapping->host;
1188         int ret;
1189         handle_t *handle;
1190         int retries = 0;
1191         struct page *page;
1192         pgoff_t index;
1193         unsigned from, to;
1194         /* Reserve one block more for addition to orphan list in case
1195          * we allocate blocks but write fails for some reason */
1196         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1197
1198         index = pos >> PAGE_CACHE_SHIFT;
1199         from = pos & (PAGE_CACHE_SIZE - 1);
1200         to = from + len;
1201
1202 retry:
1203         page = grab_cache_page_write_begin(mapping, index, flags);
1204         if (!page)
1205                 return -ENOMEM;
1206         *pagep = page;
1207
1208         handle = ext3_journal_start(inode, needed_blocks);
1209         if (IS_ERR(handle)) {
1210                 unlock_page(page);
1211                 page_cache_release(page);
1212                 ret = PTR_ERR(handle);
1213                 goto out;
1214         }
1215         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1216                                                         ext3_get_block);
1217         if (ret)
1218                 goto write_begin_failed;
1219
1220         if (ext3_should_journal_data(inode)) {
1221                 ret = walk_page_buffers(handle, page_buffers(page),
1222                                 from, to, NULL, do_journal_get_write_access);
1223         }
1224 write_begin_failed:
1225         if (ret) {
1226                 /*
1227                  * block_write_begin may have instantiated a few blocks
1228                  * outside i_size.  Trim these off again. Don't need
1229                  * i_size_read because we hold i_mutex.
1230                  *
1231                  * Add inode to orphan list in case we crash before truncate
1232                  * finishes. Do this only if ext3_can_truncate() agrees so
1233                  * that orphan processing code is happy.
1234                  */
1235                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1236                         ext3_orphan_add(handle, inode);
1237                 ext3_journal_stop(handle);
1238                 unlock_page(page);
1239                 page_cache_release(page);
1240                 if (pos + len > inode->i_size)
1241                         ext3_truncate_failed_write(inode);
1242         }
1243         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1244                 goto retry;
1245 out:
1246         return ret;
1247 }
1248
1249
1250 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1251 {
1252         int err = journal_dirty_data(handle, bh);
1253         if (err)
1254                 ext3_journal_abort_handle(__func__, __func__,
1255                                                 bh, handle, err);
1256         return err;
1257 }
1258
1259 /* For ordered writepage and write_end functions */
1260 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1261 {
1262         /*
1263          * Write could have mapped the buffer but it didn't copy the data in
1264          * yet. So avoid filing such buffer into a transaction.
1265          */
1266         if (buffer_mapped(bh) && buffer_uptodate(bh))
1267                 return ext3_journal_dirty_data(handle, bh);
1268         return 0;
1269 }
1270
1271 /* For write_end() in data=journal mode */
1272 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1273 {
1274         if (!buffer_mapped(bh) || buffer_freed(bh))
1275                 return 0;
1276         set_buffer_uptodate(bh);
1277         return ext3_journal_dirty_metadata(handle, bh);
1278 }
1279
1280 /*
1281  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1282  * for the whole page but later we failed to copy the data in. Update inode
1283  * size according to what we managed to copy. The rest is going to be
1284  * truncated in write_end function.
1285  */
1286 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1287 {
1288         /* What matters to us is i_disksize. We don't write i_size anywhere */
1289         if (pos + copied > inode->i_size)
1290                 i_size_write(inode, pos + copied);
1291         if (pos + copied > EXT3_I(inode)->i_disksize) {
1292                 EXT3_I(inode)->i_disksize = pos + copied;
1293                 mark_inode_dirty(inode);
1294         }
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext3_ordered_write_end(struct file *file,
1305                                 struct address_space *mapping,
1306                                 loff_t pos, unsigned len, unsigned copied,
1307                                 struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext3_journal_current_handle();
1310         struct inode *inode = file->f_mapping->host;
1311         unsigned from, to;
1312         int ret = 0, ret2;
1313
1314         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1315
1316         from = pos & (PAGE_CACHE_SIZE - 1);
1317         to = from + copied;
1318         ret = walk_page_buffers(handle, page_buffers(page),
1319                 from, to, NULL, journal_dirty_data_fn);
1320
1321         if (ret == 0)
1322                 update_file_sizes(inode, pos, copied);
1323         /*
1324          * There may be allocated blocks outside of i_size because
1325          * we failed to copy some data. Prepare for truncate.
1326          */
1327         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1328                 ext3_orphan_add(handle, inode);
1329         ret2 = ext3_journal_stop(handle);
1330         if (!ret)
1331                 ret = ret2;
1332         unlock_page(page);
1333         page_cache_release(page);
1334
1335         if (pos + len > inode->i_size)
1336                 ext3_truncate_failed_write(inode);
1337         return ret ? ret : copied;
1338 }
1339
1340 static int ext3_writeback_write_end(struct file *file,
1341                                 struct address_space *mapping,
1342                                 loff_t pos, unsigned len, unsigned copied,
1343                                 struct page *page, void *fsdata)
1344 {
1345         handle_t *handle = ext3_journal_current_handle();
1346         struct inode *inode = file->f_mapping->host;
1347         int ret;
1348
1349         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1350         update_file_sizes(inode, pos, copied);
1351         /*
1352          * There may be allocated blocks outside of i_size because
1353          * we failed to copy some data. Prepare for truncate.
1354          */
1355         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1356                 ext3_orphan_add(handle, inode);
1357         ret = ext3_journal_stop(handle);
1358         unlock_page(page);
1359         page_cache_release(page);
1360
1361         if (pos + len > inode->i_size)
1362                 ext3_truncate_failed_write(inode);
1363         return ret ? ret : copied;
1364 }
1365
1366 static int ext3_journalled_write_end(struct file *file,
1367                                 struct address_space *mapping,
1368                                 loff_t pos, unsigned len, unsigned copied,
1369                                 struct page *page, void *fsdata)
1370 {
1371         handle_t *handle = ext3_journal_current_handle();
1372         struct inode *inode = mapping->host;
1373         int ret = 0, ret2;
1374         int partial = 0;
1375         unsigned from, to;
1376
1377         from = pos & (PAGE_CACHE_SIZE - 1);
1378         to = from + len;
1379
1380         if (copied < len) {
1381                 if (!PageUptodate(page))
1382                         copied = 0;
1383                 page_zero_new_buffers(page, from + copied, to);
1384                 to = from + copied;
1385         }
1386
1387         ret = walk_page_buffers(handle, page_buffers(page), from,
1388                                 to, &partial, write_end_fn);
1389         if (!partial)
1390                 SetPageUptodate(page);
1391
1392         if (pos + copied > inode->i_size)
1393                 i_size_write(inode, pos + copied);
1394         /*
1395          * There may be allocated blocks outside of i_size because
1396          * we failed to copy some data. Prepare for truncate.
1397          */
1398         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1399                 ext3_orphan_add(handle, inode);
1400         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1401         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1402                 EXT3_I(inode)->i_disksize = inode->i_size;
1403                 ret2 = ext3_mark_inode_dirty(handle, inode);
1404                 if (!ret)
1405                         ret = ret2;
1406         }
1407
1408         ret2 = ext3_journal_stop(handle);
1409         if (!ret)
1410                 ret = ret2;
1411         unlock_page(page);
1412         page_cache_release(page);
1413
1414         if (pos + len > inode->i_size)
1415                 ext3_truncate_failed_write(inode);
1416         return ret ? ret : copied;
1417 }
1418
1419 /*
1420  * bmap() is special.  It gets used by applications such as lilo and by
1421  * the swapper to find the on-disk block of a specific piece of data.
1422  *
1423  * Naturally, this is dangerous if the block concerned is still in the
1424  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1425  * filesystem and enables swap, then they may get a nasty shock when the
1426  * data getting swapped to that swapfile suddenly gets overwritten by
1427  * the original zero's written out previously to the journal and
1428  * awaiting writeback in the kernel's buffer cache.
1429  *
1430  * So, if we see any bmap calls here on a modified, data-journaled file,
1431  * take extra steps to flush any blocks which might be in the cache.
1432  */
1433 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1434 {
1435         struct inode *inode = mapping->host;
1436         journal_t *journal;
1437         int err;
1438
1439         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1440                 /*
1441                  * This is a REALLY heavyweight approach, but the use of
1442                  * bmap on dirty files is expected to be extremely rare:
1443                  * only if we run lilo or swapon on a freshly made file
1444                  * do we expect this to happen.
1445                  *
1446                  * (bmap requires CAP_SYS_RAWIO so this does not
1447                  * represent an unprivileged user DOS attack --- we'd be
1448                  * in trouble if mortal users could trigger this path at
1449                  * will.)
1450                  *
1451                  * NB. EXT3_STATE_JDATA is not set on files other than
1452                  * regular files.  If somebody wants to bmap a directory
1453                  * or symlink and gets confused because the buffer
1454                  * hasn't yet been flushed to disk, they deserve
1455                  * everything they get.
1456                  */
1457
1458                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1459                 journal = EXT3_JOURNAL(inode);
1460                 journal_lock_updates(journal);
1461                 err = journal_flush(journal);
1462                 journal_unlock_updates(journal);
1463
1464                 if (err)
1465                         return 0;
1466         }
1467
1468         return generic_block_bmap(mapping,block,ext3_get_block);
1469 }
1470
1471 static int bget_one(handle_t *handle, struct buffer_head *bh)
1472 {
1473         get_bh(bh);
1474         return 0;
1475 }
1476
1477 static int bput_one(handle_t *handle, struct buffer_head *bh)
1478 {
1479         put_bh(bh);
1480         return 0;
1481 }
1482
1483 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1484 {
1485         return !buffer_mapped(bh);
1486 }
1487
1488 /*
1489  * Note that we always start a transaction even if we're not journalling
1490  * data.  This is to preserve ordering: any hole instantiation within
1491  * __block_write_full_page -> ext3_get_block() should be journalled
1492  * along with the data so we don't crash and then get metadata which
1493  * refers to old data.
1494  *
1495  * In all journalling modes block_write_full_page() will start the I/O.
1496  *
1497  * Problem:
1498  *
1499  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1500  *              ext3_writepage()
1501  *
1502  * Similar for:
1503  *
1504  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1505  *
1506  * Same applies to ext3_get_block().  We will deadlock on various things like
1507  * lock_journal and i_truncate_mutex.
1508  *
1509  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1510  * allocations fail.
1511  *
1512  * 16May01: If we're reentered then journal_current_handle() will be
1513  *          non-zero. We simply *return*.
1514  *
1515  * 1 July 2001: @@@ FIXME:
1516  *   In journalled data mode, a data buffer may be metadata against the
1517  *   current transaction.  But the same file is part of a shared mapping
1518  *   and someone does a writepage() on it.
1519  *
1520  *   We will move the buffer onto the async_data list, but *after* it has
1521  *   been dirtied. So there's a small window where we have dirty data on
1522  *   BJ_Metadata.
1523  *
1524  *   Note that this only applies to the last partial page in the file.  The
1525  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1526  *   broken code anyway: it's wrong for msync()).
1527  *
1528  *   It's a rare case: affects the final partial page, for journalled data
1529  *   where the file is subject to bith write() and writepage() in the same
1530  *   transction.  To fix it we'll need a custom block_write_full_page().
1531  *   We'll probably need that anyway for journalling writepage() output.
1532  *
1533  * We don't honour synchronous mounts for writepage().  That would be
1534  * disastrous.  Any write() or metadata operation will sync the fs for
1535  * us.
1536  *
1537  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1538  * we don't need to open a transaction here.
1539  */
1540 static int ext3_ordered_writepage(struct page *page,
1541                                 struct writeback_control *wbc)
1542 {
1543         struct inode *inode = page->mapping->host;
1544         struct buffer_head *page_bufs;
1545         handle_t *handle = NULL;
1546         int ret = 0;
1547         int err;
1548
1549         J_ASSERT(PageLocked(page));
1550         WARN_ON_ONCE(IS_RDONLY(inode));
1551
1552         /*
1553          * We give up here if we're reentered, because it might be for a
1554          * different filesystem.
1555          */
1556         if (ext3_journal_current_handle())
1557                 goto out_fail;
1558
1559         if (!page_has_buffers(page)) {
1560                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1561                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1562                 page_bufs = page_buffers(page);
1563         } else {
1564                 page_bufs = page_buffers(page);
1565                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1566                                        NULL, buffer_unmapped)) {
1567                         /* Provide NULL get_block() to catch bugs if buffers
1568                          * weren't really mapped */
1569                         return block_write_full_page(page, NULL, wbc);
1570                 }
1571         }
1572         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1573
1574         if (IS_ERR(handle)) {
1575                 ret = PTR_ERR(handle);
1576                 goto out_fail;
1577         }
1578
1579         walk_page_buffers(handle, page_bufs, 0,
1580                         PAGE_CACHE_SIZE, NULL, bget_one);
1581
1582         ret = block_write_full_page(page, ext3_get_block, wbc);
1583
1584         /*
1585          * The page can become unlocked at any point now, and
1586          * truncate can then come in and change things.  So we
1587          * can't touch *page from now on.  But *page_bufs is
1588          * safe due to elevated refcount.
1589          */
1590
1591         /*
1592          * And attach them to the current transaction.  But only if
1593          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1594          * and generally junk.
1595          */
1596         if (ret == 0) {
1597                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1598                                         NULL, journal_dirty_data_fn);
1599                 if (!ret)
1600                         ret = err;
1601         }
1602         walk_page_buffers(handle, page_bufs, 0,
1603                         PAGE_CACHE_SIZE, NULL, bput_one);
1604         err = ext3_journal_stop(handle);
1605         if (!ret)
1606                 ret = err;
1607         return ret;
1608
1609 out_fail:
1610         redirty_page_for_writepage(wbc, page);
1611         unlock_page(page);
1612         return ret;
1613 }
1614
1615 static int ext3_writeback_writepage(struct page *page,
1616                                 struct writeback_control *wbc)
1617 {
1618         struct inode *inode = page->mapping->host;
1619         handle_t *handle = NULL;
1620         int ret = 0;
1621         int err;
1622
1623         J_ASSERT(PageLocked(page));
1624         WARN_ON_ONCE(IS_RDONLY(inode));
1625
1626         if (ext3_journal_current_handle())
1627                 goto out_fail;
1628
1629         if (page_has_buffers(page)) {
1630                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1631                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1632                         /* Provide NULL get_block() to catch bugs if buffers
1633                          * weren't really mapped */
1634                         return block_write_full_page(page, NULL, wbc);
1635                 }
1636         }
1637
1638         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1639         if (IS_ERR(handle)) {
1640                 ret = PTR_ERR(handle);
1641                 goto out_fail;
1642         }
1643
1644         ret = block_write_full_page(page, ext3_get_block, wbc);
1645
1646         err = ext3_journal_stop(handle);
1647         if (!ret)
1648                 ret = err;
1649         return ret;
1650
1651 out_fail:
1652         redirty_page_for_writepage(wbc, page);
1653         unlock_page(page);
1654         return ret;
1655 }
1656
1657 static int ext3_journalled_writepage(struct page *page,
1658                                 struct writeback_control *wbc)
1659 {
1660         struct inode *inode = page->mapping->host;
1661         handle_t *handle = NULL;
1662         int ret = 0;
1663         int err;
1664
1665         J_ASSERT(PageLocked(page));
1666         WARN_ON_ONCE(IS_RDONLY(inode));
1667
1668         if (ext3_journal_current_handle())
1669                 goto no_write;
1670
1671         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1672         if (IS_ERR(handle)) {
1673                 ret = PTR_ERR(handle);
1674                 goto no_write;
1675         }
1676
1677         if (!page_has_buffers(page) || PageChecked(page)) {
1678                 /*
1679                  * It's mmapped pagecache.  Add buffers and journal it.  There
1680                  * doesn't seem much point in redirtying the page here.
1681                  */
1682                 ClearPageChecked(page);
1683                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1684                                         ext3_get_block);
1685                 if (ret != 0) {
1686                         ext3_journal_stop(handle);
1687                         goto out_unlock;
1688                 }
1689                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1690                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1691
1692                 err = walk_page_buffers(handle, page_buffers(page), 0,
1693                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1694                 if (ret == 0)
1695                         ret = err;
1696                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1697                 unlock_page(page);
1698         } else {
1699                 /*
1700                  * It may be a page full of checkpoint-mode buffers.  We don't
1701                  * really know unless we go poke around in the buffer_heads.
1702                  * But block_write_full_page will do the right thing.
1703                  */
1704                 ret = block_write_full_page(page, ext3_get_block, wbc);
1705         }
1706         err = ext3_journal_stop(handle);
1707         if (!ret)
1708                 ret = err;
1709 out:
1710         return ret;
1711
1712 no_write:
1713         redirty_page_for_writepage(wbc, page);
1714 out_unlock:
1715         unlock_page(page);
1716         goto out;
1717 }
1718
1719 static int ext3_readpage(struct file *file, struct page *page)
1720 {
1721         return mpage_readpage(page, ext3_get_block);
1722 }
1723
1724 static int
1725 ext3_readpages(struct file *file, struct address_space *mapping,
1726                 struct list_head *pages, unsigned nr_pages)
1727 {
1728         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1729 }
1730
1731 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1732 {
1733         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1734
1735         /*
1736          * If it's a full truncate we just forget about the pending dirtying
1737          */
1738         if (offset == 0)
1739                 ClearPageChecked(page);
1740
1741         journal_invalidatepage(journal, page, offset);
1742 }
1743
1744 static int ext3_releasepage(struct page *page, gfp_t wait)
1745 {
1746         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1747
1748         WARN_ON(PageChecked(page));
1749         if (!page_has_buffers(page))
1750                 return 0;
1751         return journal_try_to_free_buffers(journal, page, wait);
1752 }
1753
1754 /*
1755  * If the O_DIRECT write will extend the file then add this inode to the
1756  * orphan list.  So recovery will truncate it back to the original size
1757  * if the machine crashes during the write.
1758  *
1759  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1760  * crashes then stale disk data _may_ be exposed inside the file. But current
1761  * VFS code falls back into buffered path in that case so we are safe.
1762  */
1763 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1764                         const struct iovec *iov, loff_t offset,
1765                         unsigned long nr_segs)
1766 {
1767         struct file *file = iocb->ki_filp;
1768         struct inode *inode = file->f_mapping->host;
1769         struct ext3_inode_info *ei = EXT3_I(inode);
1770         handle_t *handle;
1771         ssize_t ret;
1772         int orphan = 0;
1773         size_t count = iov_length(iov, nr_segs);
1774         int retries = 0;
1775
1776         if (rw == WRITE) {
1777                 loff_t final_size = offset + count;
1778
1779                 if (final_size > inode->i_size) {
1780                         /* Credits for sb + inode write */
1781                         handle = ext3_journal_start(inode, 2);
1782                         if (IS_ERR(handle)) {
1783                                 ret = PTR_ERR(handle);
1784                                 goto out;
1785                         }
1786                         ret = ext3_orphan_add(handle, inode);
1787                         if (ret) {
1788                                 ext3_journal_stop(handle);
1789                                 goto out;
1790                         }
1791                         orphan = 1;
1792                         ei->i_disksize = inode->i_size;
1793                         ext3_journal_stop(handle);
1794                 }
1795         }
1796
1797 retry:
1798         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1799                                  offset, nr_segs,
1800                                  ext3_get_block, NULL);
1801         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1802                 goto retry;
1803
1804         if (orphan) {
1805                 int err;
1806
1807                 /* Credits for sb + inode write */
1808                 handle = ext3_journal_start(inode, 2);
1809                 if (IS_ERR(handle)) {
1810                         /* This is really bad luck. We've written the data
1811                          * but cannot extend i_size. Truncate allocated blocks
1812                          * and pretend the write failed... */
1813                         ext3_truncate(inode);
1814                         ret = PTR_ERR(handle);
1815                         goto out;
1816                 }
1817                 if (inode->i_nlink)
1818                         ext3_orphan_del(handle, inode);
1819                 if (ret > 0) {
1820                         loff_t end = offset + ret;
1821                         if (end > inode->i_size) {
1822                                 ei->i_disksize = end;
1823                                 i_size_write(inode, end);
1824                                 /*
1825                                  * We're going to return a positive `ret'
1826                                  * here due to non-zero-length I/O, so there's
1827                                  * no way of reporting error returns from
1828                                  * ext3_mark_inode_dirty() to userspace.  So
1829                                  * ignore it.
1830                                  */
1831                                 ext3_mark_inode_dirty(handle, inode);
1832                         }
1833                 }
1834                 err = ext3_journal_stop(handle);
1835                 if (ret == 0)
1836                         ret = err;
1837         }
1838 out:
1839         return ret;
1840 }
1841
1842 /*
1843  * Pages can be marked dirty completely asynchronously from ext3's journalling
1844  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1845  * much here because ->set_page_dirty is called under VFS locks.  The page is
1846  * not necessarily locked.
1847  *
1848  * We cannot just dirty the page and leave attached buffers clean, because the
1849  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1850  * or jbddirty because all the journalling code will explode.
1851  *
1852  * So what we do is to mark the page "pending dirty" and next time writepage
1853  * is called, propagate that into the buffers appropriately.
1854  */
1855 static int ext3_journalled_set_page_dirty(struct page *page)
1856 {
1857         SetPageChecked(page);
1858         return __set_page_dirty_nobuffers(page);
1859 }
1860
1861 static const struct address_space_operations ext3_ordered_aops = {
1862         .readpage               = ext3_readpage,
1863         .readpages              = ext3_readpages,
1864         .writepage              = ext3_ordered_writepage,
1865         .sync_page              = block_sync_page,
1866         .write_begin            = ext3_write_begin,
1867         .write_end              = ext3_ordered_write_end,
1868         .bmap                   = ext3_bmap,
1869         .invalidatepage         = ext3_invalidatepage,
1870         .releasepage            = ext3_releasepage,
1871         .direct_IO              = ext3_direct_IO,
1872         .migratepage            = buffer_migrate_page,
1873         .is_partially_uptodate  = block_is_partially_uptodate,
1874         .error_remove_page      = generic_error_remove_page,
1875 };
1876
1877 static const struct address_space_operations ext3_writeback_aops = {
1878         .readpage               = ext3_readpage,
1879         .readpages              = ext3_readpages,
1880         .writepage              = ext3_writeback_writepage,
1881         .sync_page              = block_sync_page,
1882         .write_begin            = ext3_write_begin,
1883         .write_end              = ext3_writeback_write_end,
1884         .bmap                   = ext3_bmap,
1885         .invalidatepage         = ext3_invalidatepage,
1886         .releasepage            = ext3_releasepage,
1887         .direct_IO              = ext3_direct_IO,
1888         .migratepage            = buffer_migrate_page,
1889         .is_partially_uptodate  = block_is_partially_uptodate,
1890         .error_remove_page      = generic_error_remove_page,
1891 };
1892
1893 static const struct address_space_operations ext3_journalled_aops = {
1894         .readpage               = ext3_readpage,
1895         .readpages              = ext3_readpages,
1896         .writepage              = ext3_journalled_writepage,
1897         .sync_page              = block_sync_page,
1898         .write_begin            = ext3_write_begin,
1899         .write_end              = ext3_journalled_write_end,
1900         .set_page_dirty         = ext3_journalled_set_page_dirty,
1901         .bmap                   = ext3_bmap,
1902         .invalidatepage         = ext3_invalidatepage,
1903         .releasepage            = ext3_releasepage,
1904         .is_partially_uptodate  = block_is_partially_uptodate,
1905         .error_remove_page      = generic_error_remove_page,
1906 };
1907
1908 void ext3_set_aops(struct inode *inode)
1909 {
1910         if (ext3_should_order_data(inode))
1911                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1912         else if (ext3_should_writeback_data(inode))
1913                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1914         else
1915                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1916 }
1917
1918 /*
1919  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1920  * up to the end of the block which corresponds to `from'.
1921  * This required during truncate. We need to physically zero the tail end
1922  * of that block so it doesn't yield old data if the file is later grown.
1923  */
1924 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1925                 struct address_space *mapping, loff_t from)
1926 {
1927         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1928         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1929         unsigned blocksize, iblock, length, pos;
1930         struct inode *inode = mapping->host;
1931         struct buffer_head *bh;
1932         int err = 0;
1933
1934         blocksize = inode->i_sb->s_blocksize;
1935         length = blocksize - (offset & (blocksize - 1));
1936         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1937
1938         if (!page_has_buffers(page))
1939                 create_empty_buffers(page, blocksize, 0);
1940
1941         /* Find the buffer that contains "offset" */
1942         bh = page_buffers(page);
1943         pos = blocksize;
1944         while (offset >= pos) {
1945                 bh = bh->b_this_page;
1946                 iblock++;
1947                 pos += blocksize;
1948         }
1949
1950         err = 0;
1951         if (buffer_freed(bh)) {
1952                 BUFFER_TRACE(bh, "freed: skip");
1953                 goto unlock;
1954         }
1955
1956         if (!buffer_mapped(bh)) {
1957                 BUFFER_TRACE(bh, "unmapped");
1958                 ext3_get_block(inode, iblock, bh, 0);
1959                 /* unmapped? It's a hole - nothing to do */
1960                 if (!buffer_mapped(bh)) {
1961                         BUFFER_TRACE(bh, "still unmapped");
1962                         goto unlock;
1963                 }
1964         }
1965
1966         /* Ok, it's mapped. Make sure it's up-to-date */
1967         if (PageUptodate(page))
1968                 set_buffer_uptodate(bh);
1969
1970         if (!buffer_uptodate(bh)) {
1971                 err = -EIO;
1972                 ll_rw_block(READ, 1, &bh);
1973                 wait_on_buffer(bh);
1974                 /* Uhhuh. Read error. Complain and punt. */
1975                 if (!buffer_uptodate(bh))
1976                         goto unlock;
1977         }
1978
1979         if (ext3_should_journal_data(inode)) {
1980                 BUFFER_TRACE(bh, "get write access");
1981                 err = ext3_journal_get_write_access(handle, bh);
1982                 if (err)
1983                         goto unlock;
1984         }
1985
1986         zero_user(page, offset, length);
1987         BUFFER_TRACE(bh, "zeroed end of block");
1988
1989         err = 0;
1990         if (ext3_should_journal_data(inode)) {
1991                 err = ext3_journal_dirty_metadata(handle, bh);
1992         } else {
1993                 if (ext3_should_order_data(inode))
1994                         err = ext3_journal_dirty_data(handle, bh);
1995                 mark_buffer_dirty(bh);
1996         }
1997
1998 unlock:
1999         unlock_page(page);
2000         page_cache_release(page);
2001         return err;
2002 }
2003
2004 /*
2005  * Probably it should be a library function... search for first non-zero word
2006  * or memcmp with zero_page, whatever is better for particular architecture.
2007  * Linus?
2008  */
2009 static inline int all_zeroes(__le32 *p, __le32 *q)
2010 {
2011         while (p < q)
2012                 if (*p++)
2013                         return 0;
2014         return 1;
2015 }
2016
2017 /**
2018  *      ext3_find_shared - find the indirect blocks for partial truncation.
2019  *      @inode:   inode in question
2020  *      @depth:   depth of the affected branch
2021  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2022  *      @chain:   place to store the pointers to partial indirect blocks
2023  *      @top:     place to the (detached) top of branch
2024  *
2025  *      This is a helper function used by ext3_truncate().
2026  *
2027  *      When we do truncate() we may have to clean the ends of several
2028  *      indirect blocks but leave the blocks themselves alive. Block is
2029  *      partially truncated if some data below the new i_size is refered
2030  *      from it (and it is on the path to the first completely truncated
2031  *      data block, indeed).  We have to free the top of that path along
2032  *      with everything to the right of the path. Since no allocation
2033  *      past the truncation point is possible until ext3_truncate()
2034  *      finishes, we may safely do the latter, but top of branch may
2035  *      require special attention - pageout below the truncation point
2036  *      might try to populate it.
2037  *
2038  *      We atomically detach the top of branch from the tree, store the
2039  *      block number of its root in *@top, pointers to buffer_heads of
2040  *      partially truncated blocks - in @chain[].bh and pointers to
2041  *      their last elements that should not be removed - in
2042  *      @chain[].p. Return value is the pointer to last filled element
2043  *      of @chain.
2044  *
2045  *      The work left to caller to do the actual freeing of subtrees:
2046  *              a) free the subtree starting from *@top
2047  *              b) free the subtrees whose roots are stored in
2048  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2049  *              c) free the subtrees growing from the inode past the @chain[0].
2050  *                      (no partially truncated stuff there).  */
2051
2052 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2053                         int offsets[4], Indirect chain[4], __le32 *top)
2054 {
2055         Indirect *partial, *p;
2056         int k, err;
2057
2058         *top = 0;
2059         /* Make k index the deepest non-null offset + 1 */
2060         for (k = depth; k > 1 && !offsets[k-1]; k--)
2061                 ;
2062         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2063         /* Writer: pointers */
2064         if (!partial)
2065                 partial = chain + k-1;
2066         /*
2067          * If the branch acquired continuation since we've looked at it -
2068          * fine, it should all survive and (new) top doesn't belong to us.
2069          */
2070         if (!partial->key && *partial->p)
2071                 /* Writer: end */
2072                 goto no_top;
2073         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2074                 ;
2075         /*
2076          * OK, we've found the last block that must survive. The rest of our
2077          * branch should be detached before unlocking. However, if that rest
2078          * of branch is all ours and does not grow immediately from the inode
2079          * it's easier to cheat and just decrement partial->p.
2080          */
2081         if (p == chain + k - 1 && p > chain) {
2082                 p->p--;
2083         } else {
2084                 *top = *p->p;
2085                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2086 #if 0
2087                 *p->p = 0;
2088 #endif
2089         }
2090         /* Writer: end */
2091
2092         while(partial > p) {
2093                 brelse(partial->bh);
2094                 partial--;
2095         }
2096 no_top:
2097         return partial;
2098 }
2099
2100 /*
2101  * Zero a number of block pointers in either an inode or an indirect block.
2102  * If we restart the transaction we must again get write access to the
2103  * indirect block for further modification.
2104  *
2105  * We release `count' blocks on disk, but (last - first) may be greater
2106  * than `count' because there can be holes in there.
2107  */
2108 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2109                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2110                 unsigned long count, __le32 *first, __le32 *last)
2111 {
2112         __le32 *p;
2113         if (try_to_extend_transaction(handle, inode)) {
2114                 if (bh) {
2115                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2116                         ext3_journal_dirty_metadata(handle, bh);
2117                 }
2118                 ext3_mark_inode_dirty(handle, inode);
2119                 truncate_restart_transaction(handle, inode);
2120                 if (bh) {
2121                         BUFFER_TRACE(bh, "retaking write access");
2122                         ext3_journal_get_write_access(handle, bh);
2123                 }
2124         }
2125
2126         /*
2127          * Any buffers which are on the journal will be in memory. We find
2128          * them on the hash table so journal_revoke() will run journal_forget()
2129          * on them.  We've already detached each block from the file, so
2130          * bforget() in journal_forget() should be safe.
2131          *
2132          * AKPM: turn on bforget in journal_forget()!!!
2133          */
2134         for (p = first; p < last; p++) {
2135                 u32 nr = le32_to_cpu(*p);
2136                 if (nr) {
2137                         struct buffer_head *bh;
2138
2139                         *p = 0;
2140                         bh = sb_find_get_block(inode->i_sb, nr);
2141                         ext3_forget(handle, 0, inode, bh, nr);
2142                 }
2143         }
2144
2145         ext3_free_blocks(handle, inode, block_to_free, count);
2146 }
2147
2148 /**
2149  * ext3_free_data - free a list of data blocks
2150  * @handle:     handle for this transaction
2151  * @inode:      inode we are dealing with
2152  * @this_bh:    indirect buffer_head which contains *@first and *@last
2153  * @first:      array of block numbers
2154  * @last:       points immediately past the end of array
2155  *
2156  * We are freeing all blocks refered from that array (numbers are stored as
2157  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2158  *
2159  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2160  * blocks are contiguous then releasing them at one time will only affect one
2161  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2162  * actually use a lot of journal space.
2163  *
2164  * @this_bh will be %NULL if @first and @last point into the inode's direct
2165  * block pointers.
2166  */
2167 static void ext3_free_data(handle_t *handle, struct inode *inode,
2168                            struct buffer_head *this_bh,
2169                            __le32 *first, __le32 *last)
2170 {
2171         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2172         unsigned long count = 0;            /* Number of blocks in the run */
2173         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2174                                                corresponding to
2175                                                block_to_free */
2176         ext3_fsblk_t nr;                    /* Current block # */
2177         __le32 *p;                          /* Pointer into inode/ind
2178                                                for current block */
2179         int err;
2180
2181         if (this_bh) {                          /* For indirect block */
2182                 BUFFER_TRACE(this_bh, "get_write_access");
2183                 err = ext3_journal_get_write_access(handle, this_bh);
2184                 /* Important: if we can't update the indirect pointers
2185                  * to the blocks, we can't free them. */
2186                 if (err)
2187                         return;
2188         }
2189
2190         for (p = first; p < last; p++) {
2191                 nr = le32_to_cpu(*p);
2192                 if (nr) {
2193                         /* accumulate blocks to free if they're contiguous */
2194                         if (count == 0) {
2195                                 block_to_free = nr;
2196                                 block_to_free_p = p;
2197                                 count = 1;
2198                         } else if (nr == block_to_free + count) {
2199                                 count++;
2200                         } else {
2201                                 ext3_clear_blocks(handle, inode, this_bh,
2202                                                   block_to_free,
2203                                                   count, block_to_free_p, p);
2204                                 block_to_free = nr;
2205                                 block_to_free_p = p;
2206                                 count = 1;
2207                         }
2208                 }
2209         }
2210
2211         if (count > 0)
2212                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2213                                   count, block_to_free_p, p);
2214
2215         if (this_bh) {
2216                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2217
2218                 /*
2219                  * The buffer head should have an attached journal head at this
2220                  * point. However, if the data is corrupted and an indirect
2221                  * block pointed to itself, it would have been detached when
2222                  * the block was cleared. Check for this instead of OOPSing.
2223                  */
2224                 if (bh2jh(this_bh))
2225                         ext3_journal_dirty_metadata(handle, this_bh);
2226                 else
2227                         ext3_error(inode->i_sb, "ext3_free_data",
2228                                    "circular indirect block detected, "
2229                                    "inode=%lu, block=%llu",
2230                                    inode->i_ino,
2231                                    (unsigned long long)this_bh->b_blocknr);
2232         }
2233 }
2234
2235 /**
2236  *      ext3_free_branches - free an array of branches
2237  *      @handle: JBD handle for this transaction
2238  *      @inode: inode we are dealing with
2239  *      @parent_bh: the buffer_head which contains *@first and *@last
2240  *      @first: array of block numbers
2241  *      @last:  pointer immediately past the end of array
2242  *      @depth: depth of the branches to free
2243  *
2244  *      We are freeing all blocks refered from these branches (numbers are
2245  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2246  *      appropriately.
2247  */
2248 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2249                                struct buffer_head *parent_bh,
2250                                __le32 *first, __le32 *last, int depth)
2251 {
2252         ext3_fsblk_t nr;
2253         __le32 *p;
2254
2255         if (is_handle_aborted(handle))
2256                 return;
2257
2258         if (depth--) {
2259                 struct buffer_head *bh;
2260                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2261                 p = last;
2262                 while (--p >= first) {
2263                         nr = le32_to_cpu(*p);
2264                         if (!nr)
2265                                 continue;               /* A hole */
2266
2267                         /* Go read the buffer for the next level down */
2268                         bh = sb_bread(inode->i_sb, nr);
2269
2270                         /*
2271                          * A read failure? Report error and clear slot
2272                          * (should be rare).
2273                          */
2274                         if (!bh) {
2275                                 ext3_error(inode->i_sb, "ext3_free_branches",
2276                                            "Read failure, inode=%lu, block="E3FSBLK,
2277                                            inode->i_ino, nr);
2278                                 continue;
2279                         }
2280
2281                         /* This zaps the entire block.  Bottom up. */
2282                         BUFFER_TRACE(bh, "free child branches");
2283                         ext3_free_branches(handle, inode, bh,
2284                                            (__le32*)bh->b_data,
2285                                            (__le32*)bh->b_data + addr_per_block,
2286                                            depth);
2287
2288                         /*
2289                          * Everything below this this pointer has been
2290                          * released.  Now let this top-of-subtree go.
2291                          *
2292                          * We want the freeing of this indirect block to be
2293                          * atomic in the journal with the updating of the
2294                          * bitmap block which owns it.  So make some room in
2295                          * the journal.
2296                          *
2297                          * We zero the parent pointer *after* freeing its
2298                          * pointee in the bitmaps, so if extend_transaction()
2299                          * for some reason fails to put the bitmap changes and
2300                          * the release into the same transaction, recovery
2301                          * will merely complain about releasing a free block,
2302                          * rather than leaking blocks.
2303                          */
2304                         if (is_handle_aborted(handle))
2305                                 return;
2306                         if (try_to_extend_transaction(handle, inode)) {
2307                                 ext3_mark_inode_dirty(handle, inode);
2308                                 truncate_restart_transaction(handle, inode);
2309                         }
2310
2311                         /*
2312                          * We've probably journalled the indirect block several
2313                          * times during the truncate.  But it's no longer
2314                          * needed and we now drop it from the transaction via
2315                          * journal_revoke().
2316                          *
2317                          * That's easy if it's exclusively part of this
2318                          * transaction.  But if it's part of the committing
2319                          * transaction then journal_forget() will simply
2320                          * brelse() it.  That means that if the underlying
2321                          * block is reallocated in ext3_get_block(),
2322                          * unmap_underlying_metadata() will find this block
2323                          * and will try to get rid of it.  damn, damn. Thus
2324                          * we don't allow a block to be reallocated until
2325                          * a transaction freeing it has fully committed.
2326                          *
2327                          * We also have to make sure journal replay after a
2328                          * crash does not overwrite non-journaled data blocks
2329                          * with old metadata when the block got reallocated for
2330                          * data.  Thus we have to store a revoke record for a
2331                          * block in the same transaction in which we free the
2332                          * block.
2333                          */
2334                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2335
2336                         ext3_free_blocks(handle, inode, nr, 1);
2337
2338                         if (parent_bh) {
2339                                 /*
2340                                  * The block which we have just freed is
2341                                  * pointed to by an indirect block: journal it
2342                                  */
2343                                 BUFFER_TRACE(parent_bh, "get_write_access");
2344                                 if (!ext3_journal_get_write_access(handle,
2345                                                                    parent_bh)){
2346                                         *p = 0;
2347                                         BUFFER_TRACE(parent_bh,
2348                                         "call ext3_journal_dirty_metadata");
2349                                         ext3_journal_dirty_metadata(handle,
2350                                                                     parent_bh);
2351                                 }
2352                         }
2353                 }
2354         } else {
2355                 /* We have reached the bottom of the tree. */
2356                 BUFFER_TRACE(parent_bh, "free data blocks");
2357                 ext3_free_data(handle, inode, parent_bh, first, last);
2358         }
2359 }
2360
2361 int ext3_can_truncate(struct inode *inode)
2362 {
2363         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2364                 return 0;
2365         if (S_ISREG(inode->i_mode))
2366                 return 1;
2367         if (S_ISDIR(inode->i_mode))
2368                 return 1;
2369         if (S_ISLNK(inode->i_mode))
2370                 return !ext3_inode_is_fast_symlink(inode);
2371         return 0;
2372 }
2373
2374 /*
2375  * ext3_truncate()
2376  *
2377  * We block out ext3_get_block() block instantiations across the entire
2378  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2379  * simultaneously on behalf of the same inode.
2380  *
2381  * As we work through the truncate and commmit bits of it to the journal there
2382  * is one core, guiding principle: the file's tree must always be consistent on
2383  * disk.  We must be able to restart the truncate after a crash.
2384  *
2385  * The file's tree may be transiently inconsistent in memory (although it
2386  * probably isn't), but whenever we close off and commit a journal transaction,
2387  * the contents of (the filesystem + the journal) must be consistent and
2388  * restartable.  It's pretty simple, really: bottom up, right to left (although
2389  * left-to-right works OK too).
2390  *
2391  * Note that at recovery time, journal replay occurs *before* the restart of
2392  * truncate against the orphan inode list.
2393  *
2394  * The committed inode has the new, desired i_size (which is the same as
2395  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2396  * that this inode's truncate did not complete and it will again call
2397  * ext3_truncate() to have another go.  So there will be instantiated blocks
2398  * to the right of the truncation point in a crashed ext3 filesystem.  But
2399  * that's fine - as long as they are linked from the inode, the post-crash
2400  * ext3_truncate() run will find them and release them.
2401  */
2402 void ext3_truncate(struct inode *inode)
2403 {
2404         handle_t *handle;
2405         struct ext3_inode_info *ei = EXT3_I(inode);
2406         __le32 *i_data = ei->i_data;
2407         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2408         struct address_space *mapping = inode->i_mapping;
2409         int offsets[4];
2410         Indirect chain[4];
2411         Indirect *partial;
2412         __le32 nr = 0;
2413         int n;
2414         long last_block;
2415         unsigned blocksize = inode->i_sb->s_blocksize;
2416         struct page *page;
2417
2418         if (!ext3_can_truncate(inode))
2419                 goto out_notrans;
2420
2421         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2422                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2423
2424         /*
2425          * We have to lock the EOF page here, because lock_page() nests
2426          * outside journal_start().
2427          */
2428         if ((inode->i_size & (blocksize - 1)) == 0) {
2429                 /* Block boundary? Nothing to do */
2430                 page = NULL;
2431         } else {
2432                 page = grab_cache_page(mapping,
2433                                 inode->i_size >> PAGE_CACHE_SHIFT);
2434                 if (!page)
2435                         goto out_notrans;
2436         }
2437
2438         handle = start_transaction(inode);
2439         if (IS_ERR(handle)) {
2440                 if (page) {
2441                         clear_highpage(page);
2442                         flush_dcache_page(page);
2443                         unlock_page(page);
2444                         page_cache_release(page);
2445                 }
2446                 goto out_notrans;
2447         }
2448
2449         last_block = (inode->i_size + blocksize-1)
2450                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2451
2452         if (page)
2453                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2454
2455         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2456         if (n == 0)
2457                 goto out_stop;  /* error */
2458
2459         /*
2460          * OK.  This truncate is going to happen.  We add the inode to the
2461          * orphan list, so that if this truncate spans multiple transactions,
2462          * and we crash, we will resume the truncate when the filesystem
2463          * recovers.  It also marks the inode dirty, to catch the new size.
2464          *
2465          * Implication: the file must always be in a sane, consistent
2466          * truncatable state while each transaction commits.
2467          */
2468         if (ext3_orphan_add(handle, inode))
2469                 goto out_stop;
2470
2471         /*
2472          * The orphan list entry will now protect us from any crash which
2473          * occurs before the truncate completes, so it is now safe to propagate
2474          * the new, shorter inode size (held for now in i_size) into the
2475          * on-disk inode. We do this via i_disksize, which is the value which
2476          * ext3 *really* writes onto the disk inode.
2477          */
2478         ei->i_disksize = inode->i_size;
2479
2480         /*
2481          * From here we block out all ext3_get_block() callers who want to
2482          * modify the block allocation tree.
2483          */
2484         mutex_lock(&ei->truncate_mutex);
2485
2486         if (n == 1) {           /* direct blocks */
2487                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2488                                i_data + EXT3_NDIR_BLOCKS);
2489                 goto do_indirects;
2490         }
2491
2492         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2493         /* Kill the top of shared branch (not detached) */
2494         if (nr) {
2495                 if (partial == chain) {
2496                         /* Shared branch grows from the inode */
2497                         ext3_free_branches(handle, inode, NULL,
2498                                            &nr, &nr+1, (chain+n-1) - partial);
2499                         *partial->p = 0;
2500                         /*
2501                          * We mark the inode dirty prior to restart,
2502                          * and prior to stop.  No need for it here.
2503                          */
2504                 } else {
2505                         /* Shared branch grows from an indirect block */
2506                         BUFFER_TRACE(partial->bh, "get_write_access");
2507                         ext3_free_branches(handle, inode, partial->bh,
2508                                         partial->p,
2509                                         partial->p+1, (chain+n-1) - partial);
2510                 }
2511         }
2512         /* Clear the ends of indirect blocks on the shared branch */
2513         while (partial > chain) {
2514                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2515                                    (__le32*)partial->bh->b_data+addr_per_block,
2516                                    (chain+n-1) - partial);
2517                 BUFFER_TRACE(partial->bh, "call brelse");
2518                 brelse (partial->bh);
2519                 partial--;
2520         }
2521 do_indirects:
2522         /* Kill the remaining (whole) subtrees */
2523         switch (offsets[0]) {
2524         default:
2525                 nr = i_data[EXT3_IND_BLOCK];
2526                 if (nr) {
2527                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2528                         i_data[EXT3_IND_BLOCK] = 0;
2529                 }
2530         case EXT3_IND_BLOCK:
2531                 nr = i_data[EXT3_DIND_BLOCK];
2532                 if (nr) {
2533                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2534                         i_data[EXT3_DIND_BLOCK] = 0;
2535                 }
2536         case EXT3_DIND_BLOCK:
2537                 nr = i_data[EXT3_TIND_BLOCK];
2538                 if (nr) {
2539                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2540                         i_data[EXT3_TIND_BLOCK] = 0;
2541                 }
2542         case EXT3_TIND_BLOCK:
2543                 ;
2544         }
2545
2546         ext3_discard_reservation(inode);
2547
2548         mutex_unlock(&ei->truncate_mutex);
2549         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2550         ext3_mark_inode_dirty(handle, inode);
2551
2552         /*
2553          * In a multi-transaction truncate, we only make the final transaction
2554          * synchronous
2555          */
2556         if (IS_SYNC(inode))
2557                 handle->h_sync = 1;
2558 out_stop:
2559         /*
2560          * If this was a simple ftruncate(), and the file will remain alive
2561          * then we need to clear up the orphan record which we created above.
2562          * However, if this was a real unlink then we were called by
2563          * ext3_delete_inode(), and we allow that function to clean up the
2564          * orphan info for us.
2565          */
2566         if (inode->i_nlink)
2567                 ext3_orphan_del(handle, inode);
2568
2569         ext3_journal_stop(handle);
2570         return;
2571 out_notrans:
2572         /*
2573          * Delete the inode from orphan list so that it doesn't stay there
2574          * forever and trigger assertion on umount.
2575          */
2576         if (inode->i_nlink)
2577                 ext3_orphan_del(NULL, inode);
2578 }
2579
2580 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2581                 unsigned long ino, struct ext3_iloc *iloc)
2582 {
2583         unsigned long block_group;
2584         unsigned long offset;
2585         ext3_fsblk_t block;
2586         struct ext3_group_desc *gdp;
2587
2588         if (!ext3_valid_inum(sb, ino)) {
2589                 /*
2590                  * This error is already checked for in namei.c unless we are
2591                  * looking at an NFS filehandle, in which case no error
2592                  * report is needed
2593                  */
2594                 return 0;
2595         }
2596
2597         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2598         gdp = ext3_get_group_desc(sb, block_group, NULL);
2599         if (!gdp)
2600                 return 0;
2601         /*
2602          * Figure out the offset within the block group inode table
2603          */
2604         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2605                 EXT3_INODE_SIZE(sb);
2606         block = le32_to_cpu(gdp->bg_inode_table) +
2607                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2608
2609         iloc->block_group = block_group;
2610         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2611         return block;
2612 }
2613
2614 /*
2615  * ext3_get_inode_loc returns with an extra refcount against the inode's
2616  * underlying buffer_head on success. If 'in_mem' is true, we have all
2617  * data in memory that is needed to recreate the on-disk version of this
2618  * inode.
2619  */
2620 static int __ext3_get_inode_loc(struct inode *inode,
2621                                 struct ext3_iloc *iloc, int in_mem)
2622 {
2623         ext3_fsblk_t block;
2624         struct buffer_head *bh;
2625
2626         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2627         if (!block)
2628                 return -EIO;
2629
2630         bh = sb_getblk(inode->i_sb, block);
2631         if (!bh) {
2632                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2633                                 "unable to read inode block - "
2634                                 "inode=%lu, block="E3FSBLK,
2635                                  inode->i_ino, block);
2636                 return -EIO;
2637         }
2638         if (!buffer_uptodate(bh)) {
2639                 lock_buffer(bh);
2640
2641                 /*
2642                  * If the buffer has the write error flag, we have failed
2643                  * to write out another inode in the same block.  In this
2644                  * case, we don't have to read the block because we may
2645                  * read the old inode data successfully.
2646                  */
2647                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2648                         set_buffer_uptodate(bh);
2649
2650                 if (buffer_uptodate(bh)) {
2651                         /* someone brought it uptodate while we waited */
2652                         unlock_buffer(bh);
2653                         goto has_buffer;
2654                 }
2655
2656                 /*
2657                  * If we have all information of the inode in memory and this
2658                  * is the only valid inode in the block, we need not read the
2659                  * block.
2660                  */
2661                 if (in_mem) {
2662                         struct buffer_head *bitmap_bh;
2663                         struct ext3_group_desc *desc;
2664                         int inodes_per_buffer;
2665                         int inode_offset, i;
2666                         int block_group;
2667                         int start;
2668
2669                         block_group = (inode->i_ino - 1) /
2670                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2671                         inodes_per_buffer = bh->b_size /
2672                                 EXT3_INODE_SIZE(inode->i_sb);
2673                         inode_offset = ((inode->i_ino - 1) %
2674                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2675                         start = inode_offset & ~(inodes_per_buffer - 1);
2676
2677                         /* Is the inode bitmap in cache? */
2678                         desc = ext3_get_group_desc(inode->i_sb,
2679                                                 block_group, NULL);
2680                         if (!desc)
2681                                 goto make_io;
2682
2683                         bitmap_bh = sb_getblk(inode->i_sb,
2684                                         le32_to_cpu(desc->bg_inode_bitmap));
2685                         if (!bitmap_bh)
2686                                 goto make_io;
2687
2688                         /*
2689                          * If the inode bitmap isn't in cache then the
2690                          * optimisation may end up performing two reads instead
2691                          * of one, so skip it.
2692                          */
2693                         if (!buffer_uptodate(bitmap_bh)) {
2694                                 brelse(bitmap_bh);
2695                                 goto make_io;
2696                         }
2697                         for (i = start; i < start + inodes_per_buffer; i++) {
2698                                 if (i == inode_offset)
2699                                         continue;
2700                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2701                                         break;
2702                         }
2703                         brelse(bitmap_bh);
2704                         if (i == start + inodes_per_buffer) {
2705                                 /* all other inodes are free, so skip I/O */
2706                                 memset(bh->b_data, 0, bh->b_size);
2707                                 set_buffer_uptodate(bh);
2708                                 unlock_buffer(bh);
2709                                 goto has_buffer;
2710                         }
2711                 }
2712
2713 make_io:
2714                 /*
2715                  * There are other valid inodes in the buffer, this inode
2716                  * has in-inode xattrs, or we don't have this inode in memory.
2717                  * Read the block from disk.
2718                  */
2719                 get_bh(bh);
2720                 bh->b_end_io = end_buffer_read_sync;
2721                 submit_bh(READ_META, bh);
2722                 wait_on_buffer(bh);
2723                 if (!buffer_uptodate(bh)) {
2724                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2725                                         "unable to read inode block - "
2726                                         "inode=%lu, block="E3FSBLK,
2727                                         inode->i_ino, block);
2728                         brelse(bh);
2729                         return -EIO;
2730                 }
2731         }
2732 has_buffer:
2733         iloc->bh = bh;
2734         return 0;
2735 }
2736
2737 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2738 {
2739         /* We have all inode data except xattrs in memory here. */
2740         return __ext3_get_inode_loc(inode, iloc,
2741                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2742 }
2743
2744 void ext3_set_inode_flags(struct inode *inode)
2745 {
2746         unsigned int flags = EXT3_I(inode)->i_flags;
2747
2748         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2749         if (flags & EXT3_SYNC_FL)
2750                 inode->i_flags |= S_SYNC;
2751         if (flags & EXT3_APPEND_FL)
2752                 inode->i_flags |= S_APPEND;
2753         if (flags & EXT3_IMMUTABLE_FL)
2754                 inode->i_flags |= S_IMMUTABLE;
2755         if (flags & EXT3_NOATIME_FL)
2756                 inode->i_flags |= S_NOATIME;
2757         if (flags & EXT3_DIRSYNC_FL)
2758                 inode->i_flags |= S_DIRSYNC;
2759 }
2760
2761 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2762 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2763 {
2764         unsigned int flags = ei->vfs_inode.i_flags;
2765
2766         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2767                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2768         if (flags & S_SYNC)
2769                 ei->i_flags |= EXT3_SYNC_FL;
2770         if (flags & S_APPEND)
2771                 ei->i_flags |= EXT3_APPEND_FL;
2772         if (flags & S_IMMUTABLE)
2773                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2774         if (flags & S_NOATIME)
2775                 ei->i_flags |= EXT3_NOATIME_FL;
2776         if (flags & S_DIRSYNC)
2777                 ei->i_flags |= EXT3_DIRSYNC_FL;
2778 }
2779
2780 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2781 {
2782         struct ext3_iloc iloc;
2783         struct ext3_inode *raw_inode;
2784         struct ext3_inode_info *ei;
2785         struct buffer_head *bh;
2786         struct inode *inode;
2787         journal_t *journal = EXT3_SB(sb)->s_journal;
2788         transaction_t *transaction;
2789         long ret;
2790         int block;
2791
2792         inode = iget_locked(sb, ino);
2793         if (!inode)
2794                 return ERR_PTR(-ENOMEM);
2795         if (!(inode->i_state & I_NEW))
2796                 return inode;
2797
2798         ei = EXT3_I(inode);
2799         ei->i_block_alloc_info = NULL;
2800
2801         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2802         if (ret < 0)
2803                 goto bad_inode;
2804         bh = iloc.bh;
2805         raw_inode = ext3_raw_inode(&iloc);
2806         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2807         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2808         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2809         if(!(test_opt (inode->i_sb, NO_UID32))) {
2810                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2811                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2812         }
2813         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2814         inode->i_size = le32_to_cpu(raw_inode->i_size);
2815         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2816         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2817         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2818         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2819
2820         ei->i_state_flags = 0;
2821         ei->i_dir_start_lookup = 0;
2822         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2823         /* We now have enough fields to check if the inode was active or not.
2824          * This is needed because nfsd might try to access dead inodes
2825          * the test is that same one that e2fsck uses
2826          * NeilBrown 1999oct15
2827          */
2828         if (inode->i_nlink == 0) {
2829                 if (inode->i_mode == 0 ||
2830                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2831                         /* this inode is deleted */
2832                         brelse (bh);
2833                         ret = -ESTALE;
2834                         goto bad_inode;
2835                 }
2836                 /* The only unlinked inodes we let through here have
2837                  * valid i_mode and are being read by the orphan
2838                  * recovery code: that's fine, we're about to complete
2839                  * the process of deleting those. */
2840         }
2841         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2842         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2843 #ifdef EXT3_FRAGMENTS
2844         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2845         ei->i_frag_no = raw_inode->i_frag;
2846         ei->i_frag_size = raw_inode->i_fsize;
2847 #endif
2848         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2849         if (!S_ISREG(inode->i_mode)) {
2850                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2851         } else {
2852                 inode->i_size |=
2853                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2854         }
2855         ei->i_disksize = inode->i_size;
2856         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2857         ei->i_block_group = iloc.block_group;
2858         /*
2859          * NOTE! The in-memory inode i_data array is in little-endian order
2860          * even on big-endian machines: we do NOT byteswap the block numbers!
2861          */
2862         for (block = 0; block < EXT3_N_BLOCKS; block++)
2863                 ei->i_data[block] = raw_inode->i_block[block];
2864         INIT_LIST_HEAD(&ei->i_orphan);
2865
2866         /*
2867          * Set transaction id's of transactions that have to be committed
2868          * to finish f[data]sync. We set them to currently running transaction
2869          * as we cannot be sure that the inode or some of its metadata isn't
2870          * part of the transaction - the inode could have been reclaimed and
2871          * now it is reread from disk.
2872          */
2873         if (journal) {
2874                 tid_t tid;
2875
2876                 spin_lock(&journal->j_state_lock);
2877                 if (journal->j_running_transaction)
2878                         transaction = journal->j_running_transaction;
2879                 else
2880                         transaction = journal->j_committing_transaction;
2881                 if (transaction)
2882                         tid = transaction->t_tid;
2883                 else
2884                         tid = journal->j_commit_sequence;
2885                 spin_unlock(&journal->j_state_lock);
2886                 atomic_set(&ei->i_sync_tid, tid);
2887                 atomic_set(&ei->i_datasync_tid, tid);
2888         }
2889
2890         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2891             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2892                 /*
2893                  * When mke2fs creates big inodes it does not zero out
2894                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2895                  * so ignore those first few inodes.
2896                  */
2897                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2898                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2899                     EXT3_INODE_SIZE(inode->i_sb)) {
2900                         brelse (bh);
2901                         ret = -EIO;
2902                         goto bad_inode;
2903                 }
2904                 if (ei->i_extra_isize == 0) {
2905                         /* The extra space is currently unused. Use it. */
2906                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2907                                             EXT3_GOOD_OLD_INODE_SIZE;
2908                 } else {
2909                         __le32 *magic = (void *)raw_inode +
2910                                         EXT3_GOOD_OLD_INODE_SIZE +
2911                                         ei->i_extra_isize;
2912                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2913                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2914                 }
2915         } else
2916                 ei->i_extra_isize = 0;
2917
2918         if (S_ISREG(inode->i_mode)) {
2919                 inode->i_op = &ext3_file_inode_operations;
2920                 inode->i_fop = &ext3_file_operations;
2921                 ext3_set_aops(inode);
2922         } else if (S_ISDIR(inode->i_mode)) {
2923                 inode->i_op = &ext3_dir_inode_operations;
2924                 inode->i_fop = &ext3_dir_operations;
2925         } else if (S_ISLNK(inode->i_mode)) {
2926                 if (ext3_inode_is_fast_symlink(inode)) {
2927                         inode->i_op = &ext3_fast_symlink_inode_operations;
2928                         nd_terminate_link(ei->i_data, inode->i_size,
2929                                 sizeof(ei->i_data) - 1);
2930                 } else {
2931                         inode->i_op = &ext3_symlink_inode_operations;
2932                         ext3_set_aops(inode);
2933                 }
2934         } else {
2935                 inode->i_op = &ext3_special_inode_operations;
2936                 if (raw_inode->i_block[0])
2937                         init_special_inode(inode, inode->i_mode,
2938                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2939                 else
2940                         init_special_inode(inode, inode->i_mode,
2941                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2942         }
2943         brelse (iloc.bh);
2944         ext3_set_inode_flags(inode);
2945         unlock_new_inode(inode);
2946         return inode;
2947
2948 bad_inode:
2949         iget_failed(inode);
2950         return ERR_PTR(ret);
2951 }
2952
2953 /*
2954  * Post the struct inode info into an on-disk inode location in the
2955  * buffer-cache.  This gobbles the caller's reference to the
2956  * buffer_head in the inode location struct.
2957  *
2958  * The caller must have write access to iloc->bh.
2959  */
2960 static int ext3_do_update_inode(handle_t *handle,
2961                                 struct inode *inode,
2962                                 struct ext3_iloc *iloc)
2963 {
2964         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2965         struct ext3_inode_info *ei = EXT3_I(inode);
2966         struct buffer_head *bh = iloc->bh;
2967         int err = 0, rc, block;
2968
2969 again:
2970         /* we can't allow multiple procs in here at once, its a bit racey */
2971         lock_buffer(bh);
2972
2973         /* For fields not not tracking in the in-memory inode,
2974          * initialise them to zero for new inodes. */
2975         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
2976                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2977
2978         ext3_get_inode_flags(ei);
2979         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2980         if(!(test_opt(inode->i_sb, NO_UID32))) {
2981                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2982                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2983 /*
2984  * Fix up interoperability with old kernels. Otherwise, old inodes get
2985  * re-used with the upper 16 bits of the uid/gid intact
2986  */
2987                 if(!ei->i_dtime) {
2988                         raw_inode->i_uid_high =
2989                                 cpu_to_le16(high_16_bits(inode->i_uid));
2990                         raw_inode->i_gid_high =
2991                                 cpu_to_le16(high_16_bits(inode->i_gid));
2992                 } else {
2993                         raw_inode->i_uid_high = 0;
2994                         raw_inode->i_gid_high = 0;
2995                 }
2996         } else {
2997                 raw_inode->i_uid_low =
2998                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2999                 raw_inode->i_gid_low =
3000                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3001                 raw_inode->i_uid_high = 0;
3002                 raw_inode->i_gid_high = 0;
3003         }
3004         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3005         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3006         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3007         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3008         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3009         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3010         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3011         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3012 #ifdef EXT3_FRAGMENTS
3013         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3014         raw_inode->i_frag = ei->i_frag_no;
3015         raw_inode->i_fsize = ei->i_frag_size;
3016 #endif
3017         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3018         if (!S_ISREG(inode->i_mode)) {
3019                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3020         } else {
3021                 raw_inode->i_size_high =
3022                         cpu_to_le32(ei->i_disksize >> 32);
3023                 if (ei->i_disksize > 0x7fffffffULL) {
3024                         struct super_block *sb = inode->i_sb;
3025                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3026                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3027                             EXT3_SB(sb)->s_es->s_rev_level ==
3028                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3029                                /* If this is the first large file
3030                                 * created, add a flag to the superblock.
3031                                 */
3032                                 unlock_buffer(bh);
3033                                 err = ext3_journal_get_write_access(handle,
3034                                                 EXT3_SB(sb)->s_sbh);
3035                                 if (err)
3036                                         goto out_brelse;
3037
3038                                 ext3_update_dynamic_rev(sb);
3039                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3040                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3041                                 handle->h_sync = 1;
3042                                 err = ext3_journal_dirty_metadata(handle,
3043                                                 EXT3_SB(sb)->s_sbh);
3044                                 /* get our lock and start over */
3045                                 goto again;
3046                         }
3047                 }
3048         }
3049         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3050         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3051                 if (old_valid_dev(inode->i_rdev)) {
3052                         raw_inode->i_block[0] =
3053                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3054                         raw_inode->i_block[1] = 0;
3055                 } else {
3056                         raw_inode->i_block[0] = 0;
3057                         raw_inode->i_block[1] =
3058                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3059                         raw_inode->i_block[2] = 0;
3060                 }
3061         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3062                 raw_inode->i_block[block] = ei->i_data[block];
3063
3064         if (ei->i_extra_isize)
3065                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3066
3067         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3068         unlock_buffer(bh);
3069         rc = ext3_journal_dirty_metadata(handle, bh);
3070         if (!err)
3071                 err = rc;
3072         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3073
3074         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3075 out_brelse:
3076         brelse (bh);
3077         ext3_std_error(inode->i_sb, err);
3078         return err;
3079 }
3080
3081 /*
3082  * ext3_write_inode()
3083  *
3084  * We are called from a few places:
3085  *
3086  * - Within generic_file_write() for O_SYNC files.
3087  *   Here, there will be no transaction running. We wait for any running
3088  *   trasnaction to commit.
3089  *
3090  * - Within sys_sync(), kupdate and such.
3091  *   We wait on commit, if tol to.
3092  *
3093  * - Within prune_icache() (PF_MEMALLOC == true)
3094  *   Here we simply return.  We can't afford to block kswapd on the
3095  *   journal commit.
3096  *
3097  * In all cases it is actually safe for us to return without doing anything,
3098  * because the inode has been copied into a raw inode buffer in
3099  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3100  * knfsd.
3101  *
3102  * Note that we are absolutely dependent upon all inode dirtiers doing the
3103  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3104  * which we are interested.
3105  *
3106  * It would be a bug for them to not do this.  The code:
3107  *
3108  *      mark_inode_dirty(inode)
3109  *      stuff();
3110  *      inode->i_size = expr;
3111  *
3112  * is in error because a kswapd-driven write_inode() could occur while
3113  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3114  * will no longer be on the superblock's dirty inode list.
3115  */
3116 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3117 {
3118         if (current->flags & PF_MEMALLOC)
3119                 return 0;
3120
3121         if (ext3_journal_current_handle()) {
3122                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3123                 dump_stack();
3124                 return -EIO;
3125         }
3126
3127         if (wbc->sync_mode != WB_SYNC_ALL)
3128                 return 0;
3129
3130         return ext3_force_commit(inode->i_sb);
3131 }
3132
3133 /*
3134  * ext3_setattr()
3135  *
3136  * Called from notify_change.
3137  *
3138  * We want to trap VFS attempts to truncate the file as soon as
3139  * possible.  In particular, we want to make sure that when the VFS
3140  * shrinks i_size, we put the inode on the orphan list and modify
3141  * i_disksize immediately, so that during the subsequent flushing of
3142  * dirty pages and freeing of disk blocks, we can guarantee that any
3143  * commit will leave the blocks being flushed in an unused state on
3144  * disk.  (On recovery, the inode will get truncated and the blocks will
3145  * be freed, so we have a strong guarantee that no future commit will
3146  * leave these blocks visible to the user.)
3147  *
3148  * Called with inode->sem down.
3149  */
3150 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3151 {
3152         struct inode *inode = dentry->d_inode;
3153         int error, rc = 0;
3154         const unsigned int ia_valid = attr->ia_valid;
3155
3156         error = inode_change_ok(inode, attr);
3157         if (error)
3158                 return error;
3159
3160         if (is_quota_modification(inode, attr))
3161                 dquot_initialize(inode);
3162         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3163                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3164                 handle_t *handle;
3165
3166                 /* (user+group)*(old+new) structure, inode write (sb,
3167                  * inode block, ? - but truncate inode update has it) */
3168                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3169                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3170                 if (IS_ERR(handle)) {
3171                         error = PTR_ERR(handle);
3172                         goto err_out;
3173                 }
3174                 error = dquot_transfer(inode, attr);
3175                 if (error) {
3176                         ext3_journal_stop(handle);
3177                         return error;
3178                 }
3179                 /* Update corresponding info in inode so that everything is in
3180                  * one transaction */
3181                 if (attr->ia_valid & ATTR_UID)
3182                         inode->i_uid = attr->ia_uid;
3183                 if (attr->ia_valid & ATTR_GID)
3184                         inode->i_gid = attr->ia_gid;
3185                 error = ext3_mark_inode_dirty(handle, inode);
3186                 ext3_journal_stop(handle);
3187         }
3188
3189         if (S_ISREG(inode->i_mode) &&
3190             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3191                 handle_t *handle;
3192
3193                 handle = ext3_journal_start(inode, 3);
3194                 if (IS_ERR(handle)) {
3195                         error = PTR_ERR(handle);
3196                         goto err_out;
3197                 }
3198
3199                 error = ext3_orphan_add(handle, inode);
3200                 EXT3_I(inode)->i_disksize = attr->ia_size;
3201                 rc = ext3_mark_inode_dirty(handle, inode);
3202                 if (!error)
3203                         error = rc;
3204                 ext3_journal_stop(handle);
3205         }
3206
3207         rc = inode_setattr(inode, attr);
3208
3209         if (!rc && (ia_valid & ATTR_MODE))
3210                 rc = ext3_acl_chmod(inode);
3211
3212 err_out:
3213         ext3_std_error(inode->i_sb, error);
3214         if (!error)
3215                 error = rc;
3216         return error;
3217 }
3218
3219
3220 /*
3221  * How many blocks doth make a writepage()?
3222  *
3223  * With N blocks per page, it may be:
3224  * N data blocks
3225  * 2 indirect block
3226  * 2 dindirect
3227  * 1 tindirect
3228  * N+5 bitmap blocks (from the above)
3229  * N+5 group descriptor summary blocks
3230  * 1 inode block
3231  * 1 superblock.
3232  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3233  *
3234  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3235  *
3236  * With ordered or writeback data it's the same, less the N data blocks.
3237  *
3238  * If the inode's direct blocks can hold an integral number of pages then a
3239  * page cannot straddle two indirect blocks, and we can only touch one indirect
3240  * and dindirect block, and the "5" above becomes "3".
3241  *
3242  * This still overestimates under most circumstances.  If we were to pass the
3243  * start and end offsets in here as well we could do block_to_path() on each
3244  * block and work out the exact number of indirects which are touched.  Pah.
3245  */
3246
3247 static int ext3_writepage_trans_blocks(struct inode *inode)
3248 {
3249         int bpp = ext3_journal_blocks_per_page(inode);
3250         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3251         int ret;
3252
3253         if (ext3_should_journal_data(inode))
3254                 ret = 3 * (bpp + indirects) + 2;
3255         else
3256                 ret = 2 * (bpp + indirects) + 2;
3257
3258 #ifdef CONFIG_QUOTA
3259         /* We know that structure was already allocated during dquot_initialize so
3260          * we will be updating only the data blocks + inodes */
3261         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3262 #endif
3263
3264         return ret;
3265 }
3266
3267 /*
3268  * The caller must have previously called ext3_reserve_inode_write().
3269  * Give this, we know that the caller already has write access to iloc->bh.
3270  */
3271 int ext3_mark_iloc_dirty(handle_t *handle,
3272                 struct inode *inode, struct ext3_iloc *iloc)
3273 {
3274         int err = 0;
3275
3276         /* the do_update_inode consumes one bh->b_count */
3277         get_bh(iloc->bh);
3278
3279         /* ext3_do_update_inode() does journal_dirty_metadata */
3280         err = ext3_do_update_inode(handle, inode, iloc);
3281         put_bh(iloc->bh);
3282         return err;
3283 }
3284
3285 /*
3286  * On success, We end up with an outstanding reference count against
3287  * iloc->bh.  This _must_ be cleaned up later.
3288  */
3289
3290 int
3291 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3292                          struct ext3_iloc *iloc)
3293 {
3294         int err = 0;
3295         if (handle) {
3296                 err = ext3_get_inode_loc(inode, iloc);
3297                 if (!err) {
3298                         BUFFER_TRACE(iloc->bh, "get_write_access");
3299                         err = ext3_journal_get_write_access(handle, iloc->bh);
3300                         if (err) {
3301                                 brelse(iloc->bh);
3302                                 iloc->bh = NULL;
3303                         }
3304                 }
3305         }
3306         ext3_std_error(inode->i_sb, err);
3307         return err;
3308 }
3309
3310 /*
3311  * What we do here is to mark the in-core inode as clean with respect to inode
3312  * dirtiness (it may still be data-dirty).
3313  * This means that the in-core inode may be reaped by prune_icache
3314  * without having to perform any I/O.  This is a very good thing,
3315  * because *any* task may call prune_icache - even ones which
3316  * have a transaction open against a different journal.
3317  *
3318  * Is this cheating?  Not really.  Sure, we haven't written the
3319  * inode out, but prune_icache isn't a user-visible syncing function.
3320  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3321  * we start and wait on commits.
3322  *
3323  * Is this efficient/effective?  Well, we're being nice to the system
3324  * by cleaning up our inodes proactively so they can be reaped
3325  * without I/O.  But we are potentially leaving up to five seconds'
3326  * worth of inodes floating about which prune_icache wants us to
3327  * write out.  One way to fix that would be to get prune_icache()
3328  * to do a write_super() to free up some memory.  It has the desired
3329  * effect.
3330  */
3331 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3332 {
3333         struct ext3_iloc iloc;
3334         int err;
3335
3336         might_sleep();
3337         err = ext3_reserve_inode_write(handle, inode, &iloc);
3338         if (!err)
3339                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3340         return err;
3341 }
3342
3343 /*
3344  * ext3_dirty_inode() is called from __mark_inode_dirty()
3345  *
3346  * We're really interested in the case where a file is being extended.
3347  * i_size has been changed by generic_commit_write() and we thus need
3348  * to include the updated inode in the current transaction.
3349  *
3350  * Also, dquot_alloc_space() will always dirty the inode when blocks
3351  * are allocated to the file.
3352  *
3353  * If the inode is marked synchronous, we don't honour that here - doing
3354  * so would cause a commit on atime updates, which we don't bother doing.
3355  * We handle synchronous inodes at the highest possible level.
3356  */
3357 void ext3_dirty_inode(struct inode *inode)
3358 {
3359         handle_t *current_handle = ext3_journal_current_handle();
3360         handle_t *handle;
3361
3362         handle = ext3_journal_start(inode, 2);
3363         if (IS_ERR(handle))
3364                 goto out;
3365         if (current_handle &&
3366                 current_handle->h_transaction != handle->h_transaction) {
3367                 /* This task has a transaction open against a different fs */
3368                 printk(KERN_EMERG "%s: transactions do not match!\n",
3369                        __func__);
3370         } else {
3371                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3372                                 current_handle);
3373                 ext3_mark_inode_dirty(handle, inode);
3374         }
3375         ext3_journal_stop(handle);
3376 out:
3377         return;
3378 }
3379
3380 #if 0
3381 /*
3382  * Bind an inode's backing buffer_head into this transaction, to prevent
3383  * it from being flushed to disk early.  Unlike
3384  * ext3_reserve_inode_write, this leaves behind no bh reference and
3385  * returns no iloc structure, so the caller needs to repeat the iloc
3386  * lookup to mark the inode dirty later.
3387  */
3388 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3389 {
3390         struct ext3_iloc iloc;
3391
3392         int err = 0;
3393         if (handle) {
3394                 err = ext3_get_inode_loc(inode, &iloc);
3395                 if (!err) {
3396                         BUFFER_TRACE(iloc.bh, "get_write_access");
3397                         err = journal_get_write_access(handle, iloc.bh);
3398                         if (!err)
3399                                 err = ext3_journal_dirty_metadata(handle,
3400                                                                   iloc.bh);
3401                         brelse(iloc.bh);
3402                 }
3403         }
3404         ext3_std_error(inode->i_sb, err);
3405         return err;
3406 }
3407 #endif
3408
3409 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3410 {
3411         journal_t *journal;
3412         handle_t *handle;
3413         int err;
3414
3415         /*
3416          * We have to be very careful here: changing a data block's
3417          * journaling status dynamically is dangerous.  If we write a
3418          * data block to the journal, change the status and then delete
3419          * that block, we risk forgetting to revoke the old log record
3420          * from the journal and so a subsequent replay can corrupt data.
3421          * So, first we make sure that the journal is empty and that
3422          * nobody is changing anything.
3423          */
3424
3425         journal = EXT3_JOURNAL(inode);
3426         if (is_journal_aborted(journal))
3427                 return -EROFS;
3428
3429         journal_lock_updates(journal);
3430         journal_flush(journal);
3431
3432         /*
3433          * OK, there are no updates running now, and all cached data is
3434          * synced to disk.  We are now in a completely consistent state
3435          * which doesn't have anything in the journal, and we know that
3436          * no filesystem updates are running, so it is safe to modify
3437          * the inode's in-core data-journaling state flag now.
3438          */
3439
3440         if (val)
3441                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3442         else
3443                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3444         ext3_set_aops(inode);
3445
3446         journal_unlock_updates(journal);
3447
3448         /* Finally we can mark the inode as dirty. */
3449
3450         handle = ext3_journal_start(inode, 1);
3451         if (IS_ERR(handle))
3452                 return PTR_ERR(handle);
3453
3454         err = ext3_mark_inode_dirty(handle, inode);
3455         handle->h_sync = 1;
3456         ext3_journal_stop(handle);
3457         ext3_std_error(inode->i_sb, err);
3458
3459         return err;
3460 }