]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/btrfs/transaction.c
43054285f6389ba70fc3f767f903e69552b1f723
[net-next-2.6.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         free_extent_buffer(root->commit_root);
46         root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 BUG_ON(!cur_trans);
60                 root->fs_info->generation++;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71
72                 cur_trans->delayed_refs.root = RB_ROOT;
73                 cur_trans->delayed_refs.num_entries = 0;
74                 cur_trans->delayed_refs.num_heads_ready = 0;
75                 cur_trans->delayed_refs.num_heads = 0;
76                 cur_trans->delayed_refs.flushing = 0;
77                 cur_trans->delayed_refs.run_delayed_start = 0;
78                 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82                 extent_io_tree_init(&cur_trans->dirty_pages,
83                                      root->fs_info->btree_inode->i_mapping,
84                                      GFP_NOFS);
85                 spin_lock(&root->fs_info->new_trans_lock);
86                 root->fs_info->running_transaction = cur_trans;
87                 spin_unlock(&root->fs_info->new_trans_lock);
88         } else {
89                 cur_trans->num_writers++;
90                 cur_trans->num_joined++;
91         }
92
93         return 0;
94 }
95
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103                                          struct btrfs_root *root)
104 {
105         if (root->ref_cows && root->last_trans < trans->transid) {
106                 WARN_ON(root == root->fs_info->extent_root);
107                 WARN_ON(root->commit_root != root->node);
108
109                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110                            (unsigned long)root->root_key.objectid,
111                            BTRFS_ROOT_TRANS_TAG);
112                 root->last_trans = trans->transid;
113                 btrfs_init_reloc_root(trans, root);
114         }
115         return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119                                struct btrfs_root *root)
120 {
121         if (!root->ref_cows)
122                 return 0;
123
124         mutex_lock(&root->fs_info->trans_mutex);
125         if (root->last_trans == trans->transid) {
126                 mutex_unlock(&root->fs_info->trans_mutex);
127                 return 0;
128         }
129
130         record_root_in_trans(trans, root);
131         mutex_unlock(&root->fs_info->trans_mutex);
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while (1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (!cur_trans->blocked)
151                                 break;
152                         mutex_unlock(&root->fs_info->trans_mutex);
153                         schedule();
154                         mutex_lock(&root->fs_info->trans_mutex);
155                 }
156                 finish_wait(&root->fs_info->transaction_wait, &wait);
157                 put_transaction(cur_trans);
158         }
159 }
160
161 enum btrfs_trans_type {
162         TRANS_START,
163         TRANS_JOIN,
164         TRANS_USERSPACE,
165 };
166
167 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
168                                              int num_blocks, int type)
169 {
170         struct btrfs_trans_handle *h =
171                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
172         int ret;
173
174         mutex_lock(&root->fs_info->trans_mutex);
175         if (!root->fs_info->log_root_recovering &&
176             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
177              type == TRANS_USERSPACE))
178                 wait_current_trans(root);
179         ret = join_transaction(root);
180         BUG_ON(ret);
181
182         h->transid = root->fs_info->running_transaction->transid;
183         h->transaction = root->fs_info->running_transaction;
184         h->blocks_reserved = num_blocks;
185         h->blocks_used = 0;
186         h->block_group = 0;
187         h->alloc_exclude_nr = 0;
188         h->alloc_exclude_start = 0;
189         h->delayed_ref_updates = 0;
190
191         if (!current->journal_info && type != TRANS_USERSPACE)
192                 current->journal_info = h;
193
194         root->fs_info->running_transaction->use_count++;
195         record_root_in_trans(h, root);
196         mutex_unlock(&root->fs_info->trans_mutex);
197         return h;
198 }
199
200 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
201                                                    int num_blocks)
202 {
203         return start_transaction(root, num_blocks, TRANS_START);
204 }
205 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
206                                                    int num_blocks)
207 {
208         return start_transaction(root, num_blocks, TRANS_JOIN);
209 }
210
211 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
212                                                          int num_blocks)
213 {
214         return start_transaction(r, num_blocks, TRANS_USERSPACE);
215 }
216
217 /* wait for a transaction commit to be fully complete */
218 static noinline int wait_for_commit(struct btrfs_root *root,
219                                     struct btrfs_transaction *commit)
220 {
221         DEFINE_WAIT(wait);
222         mutex_lock(&root->fs_info->trans_mutex);
223         while (!commit->commit_done) {
224                 prepare_to_wait(&commit->commit_wait, &wait,
225                                 TASK_UNINTERRUPTIBLE);
226                 if (commit->commit_done)
227                         break;
228                 mutex_unlock(&root->fs_info->trans_mutex);
229                 schedule();
230                 mutex_lock(&root->fs_info->trans_mutex);
231         }
232         mutex_unlock(&root->fs_info->trans_mutex);
233         finish_wait(&commit->commit_wait, &wait);
234         return 0;
235 }
236
237 #if 0
238 /*
239  * rate limit against the drop_snapshot code.  This helps to slow down new
240  * operations if the drop_snapshot code isn't able to keep up.
241  */
242 static void throttle_on_drops(struct btrfs_root *root)
243 {
244         struct btrfs_fs_info *info = root->fs_info;
245         int harder_count = 0;
246
247 harder:
248         if (atomic_read(&info->throttles)) {
249                 DEFINE_WAIT(wait);
250                 int thr;
251                 thr = atomic_read(&info->throttle_gen);
252
253                 do {
254                         prepare_to_wait(&info->transaction_throttle,
255                                         &wait, TASK_UNINTERRUPTIBLE);
256                         if (!atomic_read(&info->throttles)) {
257                                 finish_wait(&info->transaction_throttle, &wait);
258                                 break;
259                         }
260                         schedule();
261                         finish_wait(&info->transaction_throttle, &wait);
262                 } while (thr == atomic_read(&info->throttle_gen));
263                 harder_count++;
264
265                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
266                     harder_count < 2)
267                         goto harder;
268
269                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
270                     harder_count < 10)
271                         goto harder;
272
273                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
274                     harder_count < 20)
275                         goto harder;
276         }
277 }
278 #endif
279
280 void btrfs_throttle(struct btrfs_root *root)
281 {
282         mutex_lock(&root->fs_info->trans_mutex);
283         if (!root->fs_info->open_ioctl_trans)
284                 wait_current_trans(root);
285         mutex_unlock(&root->fs_info->trans_mutex);
286 }
287
288 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
289                           struct btrfs_root *root, int throttle)
290 {
291         struct btrfs_transaction *cur_trans;
292         struct btrfs_fs_info *info = root->fs_info;
293         int count = 0;
294
295         while (count < 4) {
296                 unsigned long cur = trans->delayed_ref_updates;
297                 trans->delayed_ref_updates = 0;
298                 if (cur &&
299                     trans->transaction->delayed_refs.num_heads_ready > 64) {
300                         trans->delayed_ref_updates = 0;
301
302                         /*
303                          * do a full flush if the transaction is trying
304                          * to close
305                          */
306                         if (trans->transaction->delayed_refs.flushing)
307                                 cur = 0;
308                         btrfs_run_delayed_refs(trans, root, cur);
309                 } else {
310                         break;
311                 }
312                 count++;
313         }
314
315         mutex_lock(&info->trans_mutex);
316         cur_trans = info->running_transaction;
317         WARN_ON(cur_trans != trans->transaction);
318         WARN_ON(cur_trans->num_writers < 1);
319         cur_trans->num_writers--;
320
321         if (waitqueue_active(&cur_trans->writer_wait))
322                 wake_up(&cur_trans->writer_wait);
323         put_transaction(cur_trans);
324         mutex_unlock(&info->trans_mutex);
325
326         if (current->journal_info == trans)
327                 current->journal_info = NULL;
328         memset(trans, 0, sizeof(*trans));
329         kmem_cache_free(btrfs_trans_handle_cachep, trans);
330
331         if (throttle)
332                 btrfs_run_delayed_iputs(root);
333
334         return 0;
335 }
336
337 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
338                           struct btrfs_root *root)
339 {
340         return __btrfs_end_transaction(trans, root, 0);
341 }
342
343 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
344                                    struct btrfs_root *root)
345 {
346         return __btrfs_end_transaction(trans, root, 1);
347 }
348
349 /*
350  * when btree blocks are allocated, they have some corresponding bits set for
351  * them in one of two extent_io trees.  This is used to make sure all of
352  * those extents are sent to disk but does not wait on them
353  */
354 int btrfs_write_marked_extents(struct btrfs_root *root,
355                                struct extent_io_tree *dirty_pages, int mark)
356 {
357         int ret;
358         int err = 0;
359         int werr = 0;
360         struct page *page;
361         struct inode *btree_inode = root->fs_info->btree_inode;
362         u64 start = 0;
363         u64 end;
364         unsigned long index;
365
366         while (1) {
367                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
368                                             mark);
369                 if (ret)
370                         break;
371                 while (start <= end) {
372                         cond_resched();
373
374                         index = start >> PAGE_CACHE_SHIFT;
375                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
376                         page = find_get_page(btree_inode->i_mapping, index);
377                         if (!page)
378                                 continue;
379
380                         btree_lock_page_hook(page);
381                         if (!page->mapping) {
382                                 unlock_page(page);
383                                 page_cache_release(page);
384                                 continue;
385                         }
386
387                         if (PageWriteback(page)) {
388                                 if (PageDirty(page))
389                                         wait_on_page_writeback(page);
390                                 else {
391                                         unlock_page(page);
392                                         page_cache_release(page);
393                                         continue;
394                                 }
395                         }
396                         err = write_one_page(page, 0);
397                         if (err)
398                                 werr = err;
399                         page_cache_release(page);
400                 }
401         }
402         if (err)
403                 werr = err;
404         return werr;
405 }
406
407 /*
408  * when btree blocks are allocated, they have some corresponding bits set for
409  * them in one of two extent_io trees.  This is used to make sure all of
410  * those extents are on disk for transaction or log commit.  We wait
411  * on all the pages and clear them from the dirty pages state tree
412  */
413 int btrfs_wait_marked_extents(struct btrfs_root *root,
414                               struct extent_io_tree *dirty_pages, int mark)
415 {
416         int ret;
417         int err = 0;
418         int werr = 0;
419         struct page *page;
420         struct inode *btree_inode = root->fs_info->btree_inode;
421         u64 start = 0;
422         u64 end;
423         unsigned long index;
424
425         while (1) {
426                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
427                                             mark);
428                 if (ret)
429                         break;
430
431                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
432                 while (start <= end) {
433                         index = start >> PAGE_CACHE_SHIFT;
434                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
435                         page = find_get_page(btree_inode->i_mapping, index);
436                         if (!page)
437                                 continue;
438                         if (PageDirty(page)) {
439                                 btree_lock_page_hook(page);
440                                 wait_on_page_writeback(page);
441                                 err = write_one_page(page, 0);
442                                 if (err)
443                                         werr = err;
444                         }
445                         wait_on_page_writeback(page);
446                         page_cache_release(page);
447                         cond_resched();
448                 }
449         }
450         if (err)
451                 werr = err;
452         return werr;
453 }
454
455 /*
456  * when btree blocks are allocated, they have some corresponding bits set for
457  * them in one of two extent_io trees.  This is used to make sure all of
458  * those extents are on disk for transaction or log commit
459  */
460 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
461                                 struct extent_io_tree *dirty_pages, int mark)
462 {
463         int ret;
464         int ret2;
465
466         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
467         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
468         return ret || ret2;
469 }
470
471 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
472                                      struct btrfs_root *root)
473 {
474         if (!trans || !trans->transaction) {
475                 struct inode *btree_inode;
476                 btree_inode = root->fs_info->btree_inode;
477                 return filemap_write_and_wait(btree_inode->i_mapping);
478         }
479         return btrfs_write_and_wait_marked_extents(root,
480                                            &trans->transaction->dirty_pages,
481                                            EXTENT_DIRTY);
482 }
483
484 /*
485  * this is used to update the root pointer in the tree of tree roots.
486  *
487  * But, in the case of the extent allocation tree, updating the root
488  * pointer may allocate blocks which may change the root of the extent
489  * allocation tree.
490  *
491  * So, this loops and repeats and makes sure the cowonly root didn't
492  * change while the root pointer was being updated in the metadata.
493  */
494 static int update_cowonly_root(struct btrfs_trans_handle *trans,
495                                struct btrfs_root *root)
496 {
497         int ret;
498         u64 old_root_bytenr;
499         u64 old_root_used;
500         struct btrfs_root *tree_root = root->fs_info->tree_root;
501
502         old_root_used = btrfs_root_used(&root->root_item);
503         btrfs_write_dirty_block_groups(trans, root);
504
505         while (1) {
506                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
507                 if (old_root_bytenr == root->node->start &&
508                     old_root_used == btrfs_root_used(&root->root_item))
509                         break;
510
511                 btrfs_set_root_node(&root->root_item, root->node);
512                 ret = btrfs_update_root(trans, tree_root,
513                                         &root->root_key,
514                                         &root->root_item);
515                 BUG_ON(ret);
516
517                 old_root_used = btrfs_root_used(&root->root_item);
518                 ret = btrfs_write_dirty_block_groups(trans, root);
519                 BUG_ON(ret);
520         }
521
522         if (root != root->fs_info->extent_root)
523                 switch_commit_root(root);
524
525         return 0;
526 }
527
528 /*
529  * update all the cowonly tree roots on disk
530  */
531 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
532                                          struct btrfs_root *root)
533 {
534         struct btrfs_fs_info *fs_info = root->fs_info;
535         struct list_head *next;
536         struct extent_buffer *eb;
537         int ret;
538
539         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
540         BUG_ON(ret);
541
542         eb = btrfs_lock_root_node(fs_info->tree_root);
543         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
544         btrfs_tree_unlock(eb);
545         free_extent_buffer(eb);
546
547         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
548         BUG_ON(ret);
549
550         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
551                 next = fs_info->dirty_cowonly_roots.next;
552                 list_del_init(next);
553                 root = list_entry(next, struct btrfs_root, dirty_list);
554
555                 update_cowonly_root(trans, root);
556         }
557
558         down_write(&fs_info->extent_commit_sem);
559         switch_commit_root(fs_info->extent_root);
560         up_write(&fs_info->extent_commit_sem);
561
562         return 0;
563 }
564
565 /*
566  * dead roots are old snapshots that need to be deleted.  This allocates
567  * a dirty root struct and adds it into the list of dead roots that need to
568  * be deleted
569  */
570 int btrfs_add_dead_root(struct btrfs_root *root)
571 {
572         mutex_lock(&root->fs_info->trans_mutex);
573         list_add(&root->root_list, &root->fs_info->dead_roots);
574         mutex_unlock(&root->fs_info->trans_mutex);
575         return 0;
576 }
577
578 /*
579  * update all the cowonly tree roots on disk
580  */
581 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
582                                     struct btrfs_root *root)
583 {
584         struct btrfs_root *gang[8];
585         struct btrfs_fs_info *fs_info = root->fs_info;
586         int i;
587         int ret;
588         int err = 0;
589
590         while (1) {
591                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
592                                                  (void **)gang, 0,
593                                                  ARRAY_SIZE(gang),
594                                                  BTRFS_ROOT_TRANS_TAG);
595                 if (ret == 0)
596                         break;
597                 for (i = 0; i < ret; i++) {
598                         root = gang[i];
599                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
600                                         (unsigned long)root->root_key.objectid,
601                                         BTRFS_ROOT_TRANS_TAG);
602
603                         btrfs_free_log(trans, root);
604                         btrfs_update_reloc_root(trans, root);
605
606                         if (root->commit_root != root->node) {
607                                 switch_commit_root(root);
608                                 btrfs_set_root_node(&root->root_item,
609                                                     root->node);
610                         }
611
612                         err = btrfs_update_root(trans, fs_info->tree_root,
613                                                 &root->root_key,
614                                                 &root->root_item);
615                         if (err)
616                                 break;
617                 }
618         }
619         return err;
620 }
621
622 /*
623  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
624  * otherwise every leaf in the btree is read and defragged.
625  */
626 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
627 {
628         struct btrfs_fs_info *info = root->fs_info;
629         int ret;
630         struct btrfs_trans_handle *trans;
631         unsigned long nr;
632
633         smp_mb();
634         if (root->defrag_running)
635                 return 0;
636         trans = btrfs_start_transaction(root, 1);
637         while (1) {
638                 root->defrag_running = 1;
639                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
640                 nr = trans->blocks_used;
641                 btrfs_end_transaction(trans, root);
642                 btrfs_btree_balance_dirty(info->tree_root, nr);
643                 cond_resched();
644
645                 trans = btrfs_start_transaction(root, 1);
646                 if (root->fs_info->closing || ret != -EAGAIN)
647                         break;
648         }
649         root->defrag_running = 0;
650         smp_mb();
651         btrfs_end_transaction(trans, root);
652         return 0;
653 }
654
655 #if 0
656 /*
657  * when dropping snapshots, we generate a ton of delayed refs, and it makes
658  * sense not to join the transaction while it is trying to flush the current
659  * queue of delayed refs out.
660  *
661  * This is used by the drop snapshot code only
662  */
663 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
664 {
665         DEFINE_WAIT(wait);
666
667         mutex_lock(&info->trans_mutex);
668         while (info->running_transaction &&
669                info->running_transaction->delayed_refs.flushing) {
670                 prepare_to_wait(&info->transaction_wait, &wait,
671                                 TASK_UNINTERRUPTIBLE);
672                 mutex_unlock(&info->trans_mutex);
673
674                 schedule();
675
676                 mutex_lock(&info->trans_mutex);
677                 finish_wait(&info->transaction_wait, &wait);
678         }
679         mutex_unlock(&info->trans_mutex);
680         return 0;
681 }
682
683 /*
684  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
685  * all of them
686  */
687 int btrfs_drop_dead_root(struct btrfs_root *root)
688 {
689         struct btrfs_trans_handle *trans;
690         struct btrfs_root *tree_root = root->fs_info->tree_root;
691         unsigned long nr;
692         int ret;
693
694         while (1) {
695                 /*
696                  * we don't want to jump in and create a bunch of
697                  * delayed refs if the transaction is starting to close
698                  */
699                 wait_transaction_pre_flush(tree_root->fs_info);
700                 trans = btrfs_start_transaction(tree_root, 1);
701
702                 /*
703                  * we've joined a transaction, make sure it isn't
704                  * closing right now
705                  */
706                 if (trans->transaction->delayed_refs.flushing) {
707                         btrfs_end_transaction(trans, tree_root);
708                         continue;
709                 }
710
711                 ret = btrfs_drop_snapshot(trans, root);
712                 if (ret != -EAGAIN)
713                         break;
714
715                 ret = btrfs_update_root(trans, tree_root,
716                                         &root->root_key,
717                                         &root->root_item);
718                 if (ret)
719                         break;
720
721                 nr = trans->blocks_used;
722                 ret = btrfs_end_transaction(trans, tree_root);
723                 BUG_ON(ret);
724
725                 btrfs_btree_balance_dirty(tree_root, nr);
726                 cond_resched();
727         }
728         BUG_ON(ret);
729
730         ret = btrfs_del_root(trans, tree_root, &root->root_key);
731         BUG_ON(ret);
732
733         nr = trans->blocks_used;
734         ret = btrfs_end_transaction(trans, tree_root);
735         BUG_ON(ret);
736
737         free_extent_buffer(root->node);
738         free_extent_buffer(root->commit_root);
739         kfree(root);
740
741         btrfs_btree_balance_dirty(tree_root, nr);
742         return ret;
743 }
744 #endif
745
746 /*
747  * new snapshots need to be created at a very specific time in the
748  * transaction commit.  This does the actual creation
749  */
750 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
751                                    struct btrfs_fs_info *fs_info,
752                                    struct btrfs_pending_snapshot *pending)
753 {
754         struct btrfs_key key;
755         struct btrfs_root_item *new_root_item;
756         struct btrfs_root *tree_root = fs_info->tree_root;
757         struct btrfs_root *root = pending->root;
758         struct extent_buffer *tmp;
759         struct extent_buffer *old;
760         int ret;
761         u64 objectid;
762
763         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
764         if (!new_root_item) {
765                 ret = -ENOMEM;
766                 goto fail;
767         }
768         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
769         if (ret)
770                 goto fail;
771
772         record_root_in_trans(trans, root);
773         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
774         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
775
776         key.objectid = objectid;
777         /* record when the snapshot was created in key.offset */
778         key.offset = trans->transid;
779         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
780
781         old = btrfs_lock_root_node(root);
782         btrfs_cow_block(trans, root, old, NULL, 0, &old);
783         btrfs_set_lock_blocking(old);
784
785         btrfs_copy_root(trans, root, old, &tmp, objectid);
786         btrfs_tree_unlock(old);
787         free_extent_buffer(old);
788
789         btrfs_set_root_node(new_root_item, tmp);
790         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
791                                 new_root_item);
792         btrfs_tree_unlock(tmp);
793         free_extent_buffer(tmp);
794         if (ret)
795                 goto fail;
796
797         key.offset = (u64)-1;
798         memcpy(&pending->root_key, &key, sizeof(key));
799 fail:
800         kfree(new_root_item);
801         return ret;
802 }
803
804 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
805                                    struct btrfs_pending_snapshot *pending)
806 {
807         int ret;
808         int namelen;
809         u64 index = 0;
810         struct btrfs_trans_handle *trans;
811         struct inode *parent_inode;
812         struct btrfs_root *parent_root;
813
814         parent_inode = pending->dentry->d_parent->d_inode;
815         parent_root = BTRFS_I(parent_inode)->root;
816         trans = btrfs_join_transaction(parent_root, 1);
817
818         /*
819          * insert the directory item
820          */
821         namelen = strlen(pending->name);
822         ret = btrfs_set_inode_index(parent_inode, &index);
823         ret = btrfs_insert_dir_item(trans, parent_root,
824                             pending->name, namelen,
825                             parent_inode->i_ino,
826                             &pending->root_key, BTRFS_FT_DIR, index);
827
828         if (ret)
829                 goto fail;
830
831         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
832         ret = btrfs_update_inode(trans, parent_root, parent_inode);
833         BUG_ON(ret);
834
835         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
836                                  pending->root_key.objectid,
837                                  parent_root->root_key.objectid,
838                                  parent_inode->i_ino, index, pending->name,
839                                  namelen);
840
841         BUG_ON(ret);
842
843 fail:
844         btrfs_end_transaction(trans, fs_info->fs_root);
845         return ret;
846 }
847
848 /*
849  * create all the snapshots we've scheduled for creation
850  */
851 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
852                                              struct btrfs_fs_info *fs_info)
853 {
854         struct btrfs_pending_snapshot *pending;
855         struct list_head *head = &trans->transaction->pending_snapshots;
856         int ret;
857
858         list_for_each_entry(pending, head, list) {
859                 ret = create_pending_snapshot(trans, fs_info, pending);
860                 BUG_ON(ret);
861         }
862         return 0;
863 }
864
865 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
866                                              struct btrfs_fs_info *fs_info)
867 {
868         struct btrfs_pending_snapshot *pending;
869         struct list_head *head = &trans->transaction->pending_snapshots;
870         int ret;
871
872         while (!list_empty(head)) {
873                 pending = list_entry(head->next,
874                                      struct btrfs_pending_snapshot, list);
875                 ret = finish_pending_snapshot(fs_info, pending);
876                 BUG_ON(ret);
877                 list_del(&pending->list);
878                 kfree(pending->name);
879                 kfree(pending);
880         }
881         return 0;
882 }
883
884 static void update_super_roots(struct btrfs_root *root)
885 {
886         struct btrfs_root_item *root_item;
887         struct btrfs_super_block *super;
888
889         super = &root->fs_info->super_copy;
890
891         root_item = &root->fs_info->chunk_root->root_item;
892         super->chunk_root = root_item->bytenr;
893         super->chunk_root_generation = root_item->generation;
894         super->chunk_root_level = root_item->level;
895
896         root_item = &root->fs_info->tree_root->root_item;
897         super->root = root_item->bytenr;
898         super->generation = root_item->generation;
899         super->root_level = root_item->level;
900 }
901
902 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
903 {
904         int ret = 0;
905         spin_lock(&info->new_trans_lock);
906         if (info->running_transaction)
907                 ret = info->running_transaction->in_commit;
908         spin_unlock(&info->new_trans_lock);
909         return ret;
910 }
911
912 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
913                              struct btrfs_root *root)
914 {
915         unsigned long joined = 0;
916         unsigned long timeout = 1;
917         struct btrfs_transaction *cur_trans;
918         struct btrfs_transaction *prev_trans = NULL;
919         DEFINE_WAIT(wait);
920         int ret;
921         int should_grow = 0;
922         unsigned long now = get_seconds();
923         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
924
925         btrfs_run_ordered_operations(root, 0);
926
927         /* make a pass through all the delayed refs we have so far
928          * any runnings procs may add more while we are here
929          */
930         ret = btrfs_run_delayed_refs(trans, root, 0);
931         BUG_ON(ret);
932
933         cur_trans = trans->transaction;
934         /*
935          * set the flushing flag so procs in this transaction have to
936          * start sending their work down.
937          */
938         cur_trans->delayed_refs.flushing = 1;
939
940         ret = btrfs_run_delayed_refs(trans, root, 0);
941         BUG_ON(ret);
942
943         mutex_lock(&root->fs_info->trans_mutex);
944         if (cur_trans->in_commit) {
945                 cur_trans->use_count++;
946                 mutex_unlock(&root->fs_info->trans_mutex);
947                 btrfs_end_transaction(trans, root);
948
949                 ret = wait_for_commit(root, cur_trans);
950                 BUG_ON(ret);
951
952                 mutex_lock(&root->fs_info->trans_mutex);
953                 put_transaction(cur_trans);
954                 mutex_unlock(&root->fs_info->trans_mutex);
955
956                 return 0;
957         }
958
959         trans->transaction->in_commit = 1;
960         trans->transaction->blocked = 1;
961         if (cur_trans->list.prev != &root->fs_info->trans_list) {
962                 prev_trans = list_entry(cur_trans->list.prev,
963                                         struct btrfs_transaction, list);
964                 if (!prev_trans->commit_done) {
965                         prev_trans->use_count++;
966                         mutex_unlock(&root->fs_info->trans_mutex);
967
968                         wait_for_commit(root, prev_trans);
969
970                         mutex_lock(&root->fs_info->trans_mutex);
971                         put_transaction(prev_trans);
972                 }
973         }
974
975         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
976                 should_grow = 1;
977
978         do {
979                 int snap_pending = 0;
980                 joined = cur_trans->num_joined;
981                 if (!list_empty(&trans->transaction->pending_snapshots))
982                         snap_pending = 1;
983
984                 WARN_ON(cur_trans != trans->transaction);
985                 prepare_to_wait(&cur_trans->writer_wait, &wait,
986                                 TASK_UNINTERRUPTIBLE);
987
988                 if (cur_trans->num_writers > 1)
989                         timeout = MAX_SCHEDULE_TIMEOUT;
990                 else if (should_grow)
991                         timeout = 1;
992
993                 mutex_unlock(&root->fs_info->trans_mutex);
994
995                 if (flush_on_commit || snap_pending) {
996                         btrfs_start_delalloc_inodes(root, 1);
997                         ret = btrfs_wait_ordered_extents(root, 0, 1);
998                         BUG_ON(ret);
999                 }
1000
1001                 /*
1002                  * rename don't use btrfs_join_transaction, so, once we
1003                  * set the transaction to blocked above, we aren't going
1004                  * to get any new ordered operations.  We can safely run
1005                  * it here and no for sure that nothing new will be added
1006                  * to the list
1007                  */
1008                 btrfs_run_ordered_operations(root, 1);
1009
1010                 smp_mb();
1011                 if (cur_trans->num_writers > 1 || should_grow)
1012                         schedule_timeout(timeout);
1013
1014                 mutex_lock(&root->fs_info->trans_mutex);
1015                 finish_wait(&cur_trans->writer_wait, &wait);
1016         } while (cur_trans->num_writers > 1 ||
1017                  (should_grow && cur_trans->num_joined != joined));
1018
1019         ret = create_pending_snapshots(trans, root->fs_info);
1020         BUG_ON(ret);
1021
1022         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1023         BUG_ON(ret);
1024
1025         WARN_ON(cur_trans != trans->transaction);
1026
1027         /* btrfs_commit_tree_roots is responsible for getting the
1028          * various roots consistent with each other.  Every pointer
1029          * in the tree of tree roots has to point to the most up to date
1030          * root for every subvolume and other tree.  So, we have to keep
1031          * the tree logging code from jumping in and changing any
1032          * of the trees.
1033          *
1034          * At this point in the commit, there can't be any tree-log
1035          * writers, but a little lower down we drop the trans mutex
1036          * and let new people in.  By holding the tree_log_mutex
1037          * from now until after the super is written, we avoid races
1038          * with the tree-log code.
1039          */
1040         mutex_lock(&root->fs_info->tree_log_mutex);
1041
1042         ret = commit_fs_roots(trans, root);
1043         BUG_ON(ret);
1044
1045         /* commit_fs_roots gets rid of all the tree log roots, it is now
1046          * safe to free the root of tree log roots
1047          */
1048         btrfs_free_log_root_tree(trans, root->fs_info);
1049
1050         ret = commit_cowonly_roots(trans, root);
1051         BUG_ON(ret);
1052
1053         btrfs_prepare_extent_commit(trans, root);
1054
1055         cur_trans = root->fs_info->running_transaction;
1056         spin_lock(&root->fs_info->new_trans_lock);
1057         root->fs_info->running_transaction = NULL;
1058         spin_unlock(&root->fs_info->new_trans_lock);
1059
1060         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1061                             root->fs_info->tree_root->node);
1062         switch_commit_root(root->fs_info->tree_root);
1063
1064         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1065                             root->fs_info->chunk_root->node);
1066         switch_commit_root(root->fs_info->chunk_root);
1067
1068         update_super_roots(root);
1069
1070         if (!root->fs_info->log_root_recovering) {
1071                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1072                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1073         }
1074
1075         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1076                sizeof(root->fs_info->super_copy));
1077
1078         trans->transaction->blocked = 0;
1079
1080         wake_up(&root->fs_info->transaction_wait);
1081
1082         mutex_unlock(&root->fs_info->trans_mutex);
1083         ret = btrfs_write_and_wait_transaction(trans, root);
1084         BUG_ON(ret);
1085         write_ctree_super(trans, root, 0);
1086
1087         /*
1088          * the super is written, we can safely allow the tree-loggers
1089          * to go about their business
1090          */
1091         mutex_unlock(&root->fs_info->tree_log_mutex);
1092
1093         btrfs_finish_extent_commit(trans, root);
1094
1095         /* do the directory inserts of any pending snapshot creations */
1096         finish_pending_snapshots(trans, root->fs_info);
1097
1098         mutex_lock(&root->fs_info->trans_mutex);
1099
1100         cur_trans->commit_done = 1;
1101
1102         root->fs_info->last_trans_committed = cur_trans->transid;
1103
1104         wake_up(&cur_trans->commit_wait);
1105
1106         put_transaction(cur_trans);
1107         put_transaction(cur_trans);
1108
1109         mutex_unlock(&root->fs_info->trans_mutex);
1110
1111         if (current->journal_info == trans)
1112                 current->journal_info = NULL;
1113
1114         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1115
1116         if (current != root->fs_info->transaction_kthread)
1117                 btrfs_run_delayed_iputs(root);
1118
1119         return ret;
1120 }
1121
1122 /*
1123  * interface function to delete all the snapshots we have scheduled for deletion
1124  */
1125 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1126 {
1127         LIST_HEAD(list);
1128         struct btrfs_fs_info *fs_info = root->fs_info;
1129
1130         mutex_lock(&fs_info->trans_mutex);
1131         list_splice_init(&fs_info->dead_roots, &list);
1132         mutex_unlock(&fs_info->trans_mutex);
1133
1134         while (!list_empty(&list)) {
1135                 root = list_entry(list.next, struct btrfs_root, root_list);
1136                 list_del(&root->root_list);
1137
1138                 if (btrfs_header_backref_rev(root->node) <
1139                     BTRFS_MIXED_BACKREF_REV)
1140                         btrfs_drop_snapshot(root, 0);
1141                 else
1142                         btrfs_drop_snapshot(root, 1);
1143         }
1144         return 0;
1145 }