]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/btrfs/ctree.c
6921231e0efb8e279da15a0d6ff73469e2b9f886
[net-next-2.6.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42                         struct btrfs_root *root, struct btrfs_path *path,
43                         struct btrfs_key *cpu_key, u32 *data_size,
44                         u32 total_data, u32 total_size, int nr);
45
46
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49         struct btrfs_path *path;
50         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51         if (path)
52                 path->reada = 1;
53         return path;
54 }
55
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62         int i;
63         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64                 if (p->nodes[i] && p->locks[i])
65                         btrfs_set_lock_blocking(p->nodes[i]);
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held)
79 {
80         int i;
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83         /* lockdep really cares that we take all of these spinlocks
84          * in the right order.  If any of the locks in the path are not
85          * currently blocking, it is going to complain.  So, make really
86          * really sure by forcing the path to blocking before we clear
87          * the path blocking.
88          */
89         if (held)
90                 btrfs_set_lock_blocking(held);
91         btrfs_set_path_blocking(p);
92 #endif
93
94         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95                 if (p->nodes[i] && p->locks[i])
96                         btrfs_clear_lock_blocking(p->nodes[i]);
97         }
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100         if (held)
101                 btrfs_clear_lock_blocking(held);
102 #endif
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         btrfs_release_path(NULL, p);
109         kmem_cache_free(btrfs_path_cachep, p);
110 }
111
112 /*
113  * path release drops references on the extent buffers in the path
114  * and it drops any locks held by this path
115  *
116  * It is safe to call this on paths that no locks or extent buffers held.
117  */
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
119 {
120         int i;
121
122         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123                 p->slots[i] = 0;
124                 if (!p->nodes[i])
125                         continue;
126                 if (p->locks[i]) {
127                         btrfs_tree_unlock(p->nodes[i]);
128                         p->locks[i] = 0;
129                 }
130                 free_extent_buffer(p->nodes[i]);
131                 p->nodes[i] = NULL;
132         }
133 }
134
135 /*
136  * safely gets a reference on the root node of a tree.  A lock
137  * is not taken, so a concurrent writer may put a different node
138  * at the root of the tree.  See btrfs_lock_root_node for the
139  * looping required.
140  *
141  * The extent buffer returned by this has a reference taken, so
142  * it won't disappear.  It may stop being the root of the tree
143  * at any time because there are no locks held.
144  */
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
146 {
147         struct extent_buffer *eb;
148         spin_lock(&root->node_lock);
149         eb = root->node;
150         extent_buffer_get(eb);
151         spin_unlock(&root->node_lock);
152         return eb;
153 }
154
155 /* loop around taking references on and locking the root node of the
156  * tree until you end up with a lock on the root.  A locked buffer
157  * is returned, with a reference held.
158  */
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 eb = btrfs_root_node(root);
165                 btrfs_tree_lock(eb);
166
167                 spin_lock(&root->node_lock);
168                 if (eb == root->node) {
169                         spin_unlock(&root->node_lock);
170                         break;
171                 }
172                 spin_unlock(&root->node_lock);
173
174                 btrfs_tree_unlock(eb);
175                 free_extent_buffer(eb);
176         }
177         return eb;
178 }
179
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181  * put onto a simple dirty list.  transaction.c walks this to make sure they
182  * get properly updated on disk.
183  */
184 static void add_root_to_dirty_list(struct btrfs_root *root)
185 {
186         if (root->track_dirty && list_empty(&root->dirty_list)) {
187                 list_add(&root->dirty_list,
188                          &root->fs_info->dirty_cowonly_roots);
189         }
190 }
191
192 /*
193  * used by snapshot creation to make a copy of a root for a tree with
194  * a given objectid.  The buffer with the new root node is returned in
195  * cow_ret, and this func returns zero on success or a negative error code.
196  */
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198                       struct btrfs_root *root,
199                       struct extent_buffer *buf,
200                       struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202         struct extent_buffer *cow;
203         u32 nritems;
204         int ret = 0;
205         int level;
206         struct btrfs_disk_key disk_key;
207
208         WARN_ON(root->ref_cows && trans->transid !=
209                 root->fs_info->running_transaction->transid);
210         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
211
212         level = btrfs_header_level(buf);
213         nritems = btrfs_header_nritems(buf);
214         if (level == 0)
215                 btrfs_item_key(buf, &disk_key, 0);
216         else
217                 btrfs_node_key(buf, &disk_key, 0);
218
219         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220                                      new_root_objectid, &disk_key, level,
221                                      buf->start, 0);
222         if (IS_ERR(cow))
223                 return PTR_ERR(cow);
224
225         copy_extent_buffer(cow, buf, 0, 0, cow->len);
226         btrfs_set_header_bytenr(cow, cow->start);
227         btrfs_set_header_generation(cow, trans->transid);
228         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230                                      BTRFS_HEADER_FLAG_RELOC);
231         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233         else
234                 btrfs_set_header_owner(cow, new_root_objectid);
235
236         write_extent_buffer(cow, root->fs_info->fsid,
237                             (unsigned long)btrfs_header_fsid(cow),
238                             BTRFS_FSID_SIZE);
239
240         WARN_ON(btrfs_header_generation(buf) > trans->transid);
241         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242                 ret = btrfs_inc_ref(trans, root, cow, 1);
243         else
244                 ret = btrfs_inc_ref(trans, root, cow, 0);
245
246         if (ret)
247                 return ret;
248
249         btrfs_mark_buffer_dirty(cow);
250         *cow_ret = cow;
251         return 0;
252 }
253
254 /*
255  * check if the tree block can be shared by multiple trees
256  */
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258                               struct extent_buffer *buf)
259 {
260         /*
261          * Tree blocks not in refernece counted trees and tree roots
262          * are never shared. If a block was allocated after the last
263          * snapshot and the block was not allocated by tree relocation,
264          * we know the block is not shared.
265          */
266         if (root->ref_cows &&
267             buf != root->node && buf != root->commit_root &&
268             (btrfs_header_generation(buf) <=
269              btrfs_root_last_snapshot(&root->root_item) ||
270              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271                 return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273         if (root->ref_cows &&
274             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275                 return 1;
276 #endif
277         return 0;
278 }
279
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281                                        struct btrfs_root *root,
282                                        struct extent_buffer *buf,
283                                        struct extent_buffer *cow,
284                                        int *last_ref)
285 {
286         u64 refs;
287         u64 owner;
288         u64 flags;
289         u64 new_flags = 0;
290         int ret;
291
292         /*
293          * Backrefs update rules:
294          *
295          * Always use full backrefs for extent pointers in tree block
296          * allocated by tree relocation.
297          *
298          * If a shared tree block is no longer referenced by its owner
299          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
300          * use full backrefs for extent pointers in tree block.
301          *
302          * If a tree block is been relocating
303          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
304          * use full backrefs for extent pointers in tree block.
305          * The reason for this is some operations (such as drop tree)
306          * are only allowed for blocks use full backrefs.
307          */
308
309         if (btrfs_block_can_be_shared(root, buf)) {
310                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
311                                                buf->len, &refs, &flags);
312                 BUG_ON(ret);
313                 BUG_ON(refs == 0);
314         } else {
315                 refs = 1;
316                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
317                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
318                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
319                 else
320                         flags = 0;
321         }
322
323         owner = btrfs_header_owner(buf);
324         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
325                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
326
327         if (refs > 1) {
328                 if ((owner == root->root_key.objectid ||
329                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
330                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
331                         ret = btrfs_inc_ref(trans, root, buf, 1);
332                         BUG_ON(ret);
333
334                         if (root->root_key.objectid ==
335                             BTRFS_TREE_RELOC_OBJECTID) {
336                                 ret = btrfs_dec_ref(trans, root, buf, 0);
337                                 BUG_ON(ret);
338                                 ret = btrfs_inc_ref(trans, root, cow, 1);
339                                 BUG_ON(ret);
340                         }
341                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
342                 } else {
343
344                         if (root->root_key.objectid ==
345                             BTRFS_TREE_RELOC_OBJECTID)
346                                 ret = btrfs_inc_ref(trans, root, cow, 1);
347                         else
348                                 ret = btrfs_inc_ref(trans, root, cow, 0);
349                         BUG_ON(ret);
350                 }
351                 if (new_flags != 0) {
352                         ret = btrfs_set_disk_extent_flags(trans, root,
353                                                           buf->start,
354                                                           buf->len,
355                                                           new_flags, 0);
356                         BUG_ON(ret);
357                 }
358         } else {
359                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
360                         if (root->root_key.objectid ==
361                             BTRFS_TREE_RELOC_OBJECTID)
362                                 ret = btrfs_inc_ref(trans, root, cow, 1);
363                         else
364                                 ret = btrfs_inc_ref(trans, root, cow, 0);
365                         BUG_ON(ret);
366                         ret = btrfs_dec_ref(trans, root, buf, 1);
367                         BUG_ON(ret);
368                 }
369                 clean_tree_block(trans, root, buf);
370                 *last_ref = 1;
371         }
372         return 0;
373 }
374
375 /*
376  * does the dirty work in cow of a single block.  The parent block (if
377  * supplied) is updated to point to the new cow copy.  The new buffer is marked
378  * dirty and returned locked.  If you modify the block it needs to be marked
379  * dirty again.
380  *
381  * search_start -- an allocation hint for the new block
382  *
383  * empty_size -- a hint that you plan on doing more cow.  This is the size in
384  * bytes the allocator should try to find free next to the block it returns.
385  * This is just a hint and may be ignored by the allocator.
386  */
387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
388                              struct btrfs_root *root,
389                              struct extent_buffer *buf,
390                              struct extent_buffer *parent, int parent_slot,
391                              struct extent_buffer **cow_ret,
392                              u64 search_start, u64 empty_size)
393 {
394         struct btrfs_disk_key disk_key;
395         struct extent_buffer *cow;
396         int level;
397         int last_ref = 0;
398         int unlock_orig = 0;
399         u64 parent_start;
400
401         if (*cow_ret == buf)
402                 unlock_orig = 1;
403
404         btrfs_assert_tree_locked(buf);
405
406         WARN_ON(root->ref_cows && trans->transid !=
407                 root->fs_info->running_transaction->transid);
408         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
409
410         level = btrfs_header_level(buf);
411
412         if (level == 0)
413                 btrfs_item_key(buf, &disk_key, 0);
414         else
415                 btrfs_node_key(buf, &disk_key, 0);
416
417         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
418                 if (parent)
419                         parent_start = parent->start;
420                 else
421                         parent_start = 0;
422         } else
423                 parent_start = 0;
424
425         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
426                                      root->root_key.objectid, &disk_key,
427                                      level, search_start, empty_size);
428         if (IS_ERR(cow))
429                 return PTR_ERR(cow);
430
431         /* cow is set to blocking by btrfs_init_new_buffer */
432
433         copy_extent_buffer(cow, buf, 0, 0, cow->len);
434         btrfs_set_header_bytenr(cow, cow->start);
435         btrfs_set_header_generation(cow, trans->transid);
436         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
437         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
438                                      BTRFS_HEADER_FLAG_RELOC);
439         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
440                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
441         else
442                 btrfs_set_header_owner(cow, root->root_key.objectid);
443
444         write_extent_buffer(cow, root->fs_info->fsid,
445                             (unsigned long)btrfs_header_fsid(cow),
446                             BTRFS_FSID_SIZE);
447
448         update_ref_for_cow(trans, root, buf, cow, &last_ref);
449
450         if (root->ref_cows)
451                 btrfs_reloc_cow_block(trans, root, buf, cow);
452
453         if (buf == root->node) {
454                 WARN_ON(parent && parent != buf);
455                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
456                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
457                         parent_start = buf->start;
458                 else
459                         parent_start = 0;
460
461                 spin_lock(&root->node_lock);
462                 root->node = cow;
463                 extent_buffer_get(cow);
464                 spin_unlock(&root->node_lock);
465
466                 btrfs_free_tree_block(trans, root, buf, parent_start,
467                                       last_ref);
468                 free_extent_buffer(buf);
469                 add_root_to_dirty_list(root);
470         } else {
471                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
472                         parent_start = parent->start;
473                 else
474                         parent_start = 0;
475
476                 WARN_ON(trans->transid != btrfs_header_generation(parent));
477                 btrfs_set_node_blockptr(parent, parent_slot,
478                                         cow->start);
479                 btrfs_set_node_ptr_generation(parent, parent_slot,
480                                               trans->transid);
481                 btrfs_mark_buffer_dirty(parent);
482                 btrfs_free_tree_block(trans, root, buf, parent_start,
483                                       last_ref);
484         }
485         if (unlock_orig)
486                 btrfs_tree_unlock(buf);
487         free_extent_buffer(buf);
488         btrfs_mark_buffer_dirty(cow);
489         *cow_ret = cow;
490         return 0;
491 }
492
493 static inline int should_cow_block(struct btrfs_trans_handle *trans,
494                                    struct btrfs_root *root,
495                                    struct extent_buffer *buf)
496 {
497         if (btrfs_header_generation(buf) == trans->transid &&
498             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
499             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
500               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
501                 return 0;
502         return 1;
503 }
504
505 /*
506  * cows a single block, see __btrfs_cow_block for the real work.
507  * This version of it has extra checks so that a block isn't cow'd more than
508  * once per transaction, as long as it hasn't been written yet
509  */
510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
511                     struct btrfs_root *root, struct extent_buffer *buf,
512                     struct extent_buffer *parent, int parent_slot,
513                     struct extent_buffer **cow_ret)
514 {
515         u64 search_start;
516         int ret;
517
518         if (trans->transaction != root->fs_info->running_transaction) {
519                 printk(KERN_CRIT "trans %llu running %llu\n",
520                        (unsigned long long)trans->transid,
521                        (unsigned long long)
522                        root->fs_info->running_transaction->transid);
523                 WARN_ON(1);
524         }
525         if (trans->transid != root->fs_info->generation) {
526                 printk(KERN_CRIT "trans %llu running %llu\n",
527                        (unsigned long long)trans->transid,
528                        (unsigned long long)root->fs_info->generation);
529                 WARN_ON(1);
530         }
531
532         if (!should_cow_block(trans, root, buf)) {
533                 *cow_ret = buf;
534                 return 0;
535         }
536
537         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
538
539         if (parent)
540                 btrfs_set_lock_blocking(parent);
541         btrfs_set_lock_blocking(buf);
542
543         ret = __btrfs_cow_block(trans, root, buf, parent,
544                                  parent_slot, cow_ret, search_start, 0);
545         return ret;
546 }
547
548 /*
549  * helper function for defrag to decide if two blocks pointed to by a
550  * node are actually close by
551  */
552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
553 {
554         if (blocknr < other && other - (blocknr + blocksize) < 32768)
555                 return 1;
556         if (blocknr > other && blocknr - (other + blocksize) < 32768)
557                 return 1;
558         return 0;
559 }
560
561 /*
562  * compare two keys in a memcmp fashion
563  */
564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
565 {
566         struct btrfs_key k1;
567
568         btrfs_disk_key_to_cpu(&k1, disk);
569
570         return btrfs_comp_cpu_keys(&k1, k2);
571 }
572
573 /*
574  * same as comp_keys only with two btrfs_key's
575  */
576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
577 {
578         if (k1->objectid > k2->objectid)
579                 return 1;
580         if (k1->objectid < k2->objectid)
581                 return -1;
582         if (k1->type > k2->type)
583                 return 1;
584         if (k1->type < k2->type)
585                 return -1;
586         if (k1->offset > k2->offset)
587                 return 1;
588         if (k1->offset < k2->offset)
589                 return -1;
590         return 0;
591 }
592
593 /*
594  * this is used by the defrag code to go through all the
595  * leaves pointed to by a node and reallocate them so that
596  * disk order is close to key order
597  */
598 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
599                        struct btrfs_root *root, struct extent_buffer *parent,
600                        int start_slot, int cache_only, u64 *last_ret,
601                        struct btrfs_key *progress)
602 {
603         struct extent_buffer *cur;
604         u64 blocknr;
605         u64 gen;
606         u64 search_start = *last_ret;
607         u64 last_block = 0;
608         u64 other;
609         u32 parent_nritems;
610         int end_slot;
611         int i;
612         int err = 0;
613         int parent_level;
614         int uptodate;
615         u32 blocksize;
616         int progress_passed = 0;
617         struct btrfs_disk_key disk_key;
618
619         parent_level = btrfs_header_level(parent);
620         if (cache_only && parent_level != 1)
621                 return 0;
622
623         if (trans->transaction != root->fs_info->running_transaction)
624                 WARN_ON(1);
625         if (trans->transid != root->fs_info->generation)
626                 WARN_ON(1);
627
628         parent_nritems = btrfs_header_nritems(parent);
629         blocksize = btrfs_level_size(root, parent_level - 1);
630         end_slot = parent_nritems;
631
632         if (parent_nritems == 1)
633                 return 0;
634
635         btrfs_set_lock_blocking(parent);
636
637         for (i = start_slot; i < end_slot; i++) {
638                 int close = 1;
639
640                 if (!parent->map_token) {
641                         map_extent_buffer(parent,
642                                         btrfs_node_key_ptr_offset(i),
643                                         sizeof(struct btrfs_key_ptr),
644                                         &parent->map_token, &parent->kaddr,
645                                         &parent->map_start, &parent->map_len,
646                                         KM_USER1);
647                 }
648                 btrfs_node_key(parent, &disk_key, i);
649                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
650                         continue;
651
652                 progress_passed = 1;
653                 blocknr = btrfs_node_blockptr(parent, i);
654                 gen = btrfs_node_ptr_generation(parent, i);
655                 if (last_block == 0)
656                         last_block = blocknr;
657
658                 if (i > 0) {
659                         other = btrfs_node_blockptr(parent, i - 1);
660                         close = close_blocks(blocknr, other, blocksize);
661                 }
662                 if (!close && i < end_slot - 2) {
663                         other = btrfs_node_blockptr(parent, i + 1);
664                         close = close_blocks(blocknr, other, blocksize);
665                 }
666                 if (close) {
667                         last_block = blocknr;
668                         continue;
669                 }
670                 if (parent->map_token) {
671                         unmap_extent_buffer(parent, parent->map_token,
672                                             KM_USER1);
673                         parent->map_token = NULL;
674                 }
675
676                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
677                 if (cur)
678                         uptodate = btrfs_buffer_uptodate(cur, gen);
679                 else
680                         uptodate = 0;
681                 if (!cur || !uptodate) {
682                         if (cache_only) {
683                                 free_extent_buffer(cur);
684                                 continue;
685                         }
686                         if (!cur) {
687                                 cur = read_tree_block(root, blocknr,
688                                                          blocksize, gen);
689                         } else if (!uptodate) {
690                                 btrfs_read_buffer(cur, gen);
691                         }
692                 }
693                 if (search_start == 0)
694                         search_start = last_block;
695
696                 btrfs_tree_lock(cur);
697                 btrfs_set_lock_blocking(cur);
698                 err = __btrfs_cow_block(trans, root, cur, parent, i,
699                                         &cur, search_start,
700                                         min(16 * blocksize,
701                                             (end_slot - i) * blocksize));
702                 if (err) {
703                         btrfs_tree_unlock(cur);
704                         free_extent_buffer(cur);
705                         break;
706                 }
707                 search_start = cur->start;
708                 last_block = cur->start;
709                 *last_ret = search_start;
710                 btrfs_tree_unlock(cur);
711                 free_extent_buffer(cur);
712         }
713         if (parent->map_token) {
714                 unmap_extent_buffer(parent, parent->map_token,
715                                     KM_USER1);
716                 parent->map_token = NULL;
717         }
718         return err;
719 }
720
721 /*
722  * The leaf data grows from end-to-front in the node.
723  * this returns the address of the start of the last item,
724  * which is the stop of the leaf data stack
725  */
726 static inline unsigned int leaf_data_end(struct btrfs_root *root,
727                                          struct extent_buffer *leaf)
728 {
729         u32 nr = btrfs_header_nritems(leaf);
730         if (nr == 0)
731                 return BTRFS_LEAF_DATA_SIZE(root);
732         return btrfs_item_offset_nr(leaf, nr - 1);
733 }
734
735 /*
736  * extra debugging checks to make sure all the items in a key are
737  * well formed and in the proper order
738  */
739 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
740                       int level)
741 {
742         struct extent_buffer *parent = NULL;
743         struct extent_buffer *node = path->nodes[level];
744         struct btrfs_disk_key parent_key;
745         struct btrfs_disk_key node_key;
746         int parent_slot;
747         int slot;
748         struct btrfs_key cpukey;
749         u32 nritems = btrfs_header_nritems(node);
750
751         if (path->nodes[level + 1])
752                 parent = path->nodes[level + 1];
753
754         slot = path->slots[level];
755         BUG_ON(nritems == 0);
756         if (parent) {
757                 parent_slot = path->slots[level + 1];
758                 btrfs_node_key(parent, &parent_key, parent_slot);
759                 btrfs_node_key(node, &node_key, 0);
760                 BUG_ON(memcmp(&parent_key, &node_key,
761                               sizeof(struct btrfs_disk_key)));
762                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
763                        btrfs_header_bytenr(node));
764         }
765         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
766         if (slot != 0) {
767                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
768                 btrfs_node_key(node, &node_key, slot);
769                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
770         }
771         if (slot < nritems - 1) {
772                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
773                 btrfs_node_key(node, &node_key, slot);
774                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
775         }
776         return 0;
777 }
778
779 /*
780  * extra checking to make sure all the items in a leaf are
781  * well formed and in the proper order
782  */
783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
784                       int level)
785 {
786         struct extent_buffer *leaf = path->nodes[level];
787         struct extent_buffer *parent = NULL;
788         int parent_slot;
789         struct btrfs_key cpukey;
790         struct btrfs_disk_key parent_key;
791         struct btrfs_disk_key leaf_key;
792         int slot = path->slots[0];
793
794         u32 nritems = btrfs_header_nritems(leaf);
795
796         if (path->nodes[level + 1])
797                 parent = path->nodes[level + 1];
798
799         if (nritems == 0)
800                 return 0;
801
802         if (parent) {
803                 parent_slot = path->slots[level + 1];
804                 btrfs_node_key(parent, &parent_key, parent_slot);
805                 btrfs_item_key(leaf, &leaf_key, 0);
806
807                 BUG_ON(memcmp(&parent_key, &leaf_key,
808                        sizeof(struct btrfs_disk_key)));
809                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
810                        btrfs_header_bytenr(leaf));
811         }
812         if (slot != 0 && slot < nritems - 1) {
813                 btrfs_item_key(leaf, &leaf_key, slot);
814                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
815                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
816                         btrfs_print_leaf(root, leaf);
817                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
818                         BUG_ON(1);
819                 }
820                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
821                        btrfs_item_end_nr(leaf, slot)) {
822                         btrfs_print_leaf(root, leaf);
823                         printk(KERN_CRIT "slot %d offset bad\n", slot);
824                         BUG_ON(1);
825                 }
826         }
827         if (slot < nritems - 1) {
828                 btrfs_item_key(leaf, &leaf_key, slot);
829                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
830                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
831                 if (btrfs_item_offset_nr(leaf, slot) !=
832                         btrfs_item_end_nr(leaf, slot + 1)) {
833                         btrfs_print_leaf(root, leaf);
834                         printk(KERN_CRIT "slot %d offset bad\n", slot);
835                         BUG_ON(1);
836                 }
837         }
838         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
839                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
840         return 0;
841 }
842
843 static noinline int check_block(struct btrfs_root *root,
844                                 struct btrfs_path *path, int level)
845 {
846         return 0;
847         if (level == 0)
848                 return check_leaf(root, path, level);
849         return check_node(root, path, level);
850 }
851
852 /*
853  * search for key in the extent_buffer.  The items start at offset p,
854  * and they are item_size apart.  There are 'max' items in p.
855  *
856  * the slot in the array is returned via slot, and it points to
857  * the place where you would insert key if it is not found in
858  * the array.
859  *
860  * slot may point to max if the key is bigger than all of the keys
861  */
862 static noinline int generic_bin_search(struct extent_buffer *eb,
863                                        unsigned long p,
864                                        int item_size, struct btrfs_key *key,
865                                        int max, int *slot)
866 {
867         int low = 0;
868         int high = max;
869         int mid;
870         int ret;
871         struct btrfs_disk_key *tmp = NULL;
872         struct btrfs_disk_key unaligned;
873         unsigned long offset;
874         char *map_token = NULL;
875         char *kaddr = NULL;
876         unsigned long map_start = 0;
877         unsigned long map_len = 0;
878         int err;
879
880         while (low < high) {
881                 mid = (low + high) / 2;
882                 offset = p + mid * item_size;
883
884                 if (!map_token || offset < map_start ||
885                     (offset + sizeof(struct btrfs_disk_key)) >
886                     map_start + map_len) {
887                         if (map_token) {
888                                 unmap_extent_buffer(eb, map_token, KM_USER0);
889                                 map_token = NULL;
890                         }
891
892                         err = map_private_extent_buffer(eb, offset,
893                                                 sizeof(struct btrfs_disk_key),
894                                                 &map_token, &kaddr,
895                                                 &map_start, &map_len, KM_USER0);
896
897                         if (!err) {
898                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
899                                                         map_start);
900                         } else {
901                                 read_extent_buffer(eb, &unaligned,
902                                                    offset, sizeof(unaligned));
903                                 tmp = &unaligned;
904                         }
905
906                 } else {
907                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
908                                                         map_start);
909                 }
910                 ret = comp_keys(tmp, key);
911
912                 if (ret < 0)
913                         low = mid + 1;
914                 else if (ret > 0)
915                         high = mid;
916                 else {
917                         *slot = mid;
918                         if (map_token)
919                                 unmap_extent_buffer(eb, map_token, KM_USER0);
920                         return 0;
921                 }
922         }
923         *slot = low;
924         if (map_token)
925                 unmap_extent_buffer(eb, map_token, KM_USER0);
926         return 1;
927 }
928
929 /*
930  * simple bin_search frontend that does the right thing for
931  * leaves vs nodes
932  */
933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
934                       int level, int *slot)
935 {
936         if (level == 0) {
937                 return generic_bin_search(eb,
938                                           offsetof(struct btrfs_leaf, items),
939                                           sizeof(struct btrfs_item),
940                                           key, btrfs_header_nritems(eb),
941                                           slot);
942         } else {
943                 return generic_bin_search(eb,
944                                           offsetof(struct btrfs_node, ptrs),
945                                           sizeof(struct btrfs_key_ptr),
946                                           key, btrfs_header_nritems(eb),
947                                           slot);
948         }
949         return -1;
950 }
951
952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
953                      int level, int *slot)
954 {
955         return bin_search(eb, key, level, slot);
956 }
957
958 static void root_add_used(struct btrfs_root *root, u32 size)
959 {
960         spin_lock(&root->accounting_lock);
961         btrfs_set_root_used(&root->root_item,
962                             btrfs_root_used(&root->root_item) + size);
963         spin_unlock(&root->accounting_lock);
964 }
965
966 static void root_sub_used(struct btrfs_root *root, u32 size)
967 {
968         spin_lock(&root->accounting_lock);
969         btrfs_set_root_used(&root->root_item,
970                             btrfs_root_used(&root->root_item) - size);
971         spin_unlock(&root->accounting_lock);
972 }
973
974 /* given a node and slot number, this reads the blocks it points to.  The
975  * extent buffer is returned with a reference taken (but unlocked).
976  * NULL is returned on error.
977  */
978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
979                                    struct extent_buffer *parent, int slot)
980 {
981         int level = btrfs_header_level(parent);
982         if (slot < 0)
983                 return NULL;
984         if (slot >= btrfs_header_nritems(parent))
985                 return NULL;
986
987         BUG_ON(level == 0);
988
989         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
990                        btrfs_level_size(root, level - 1),
991                        btrfs_node_ptr_generation(parent, slot));
992 }
993
994 /*
995  * node level balancing, used to make sure nodes are in proper order for
996  * item deletion.  We balance from the top down, so we have to make sure
997  * that a deletion won't leave an node completely empty later on.
998  */
999 static noinline int balance_level(struct btrfs_trans_handle *trans,
1000                          struct btrfs_root *root,
1001                          struct btrfs_path *path, int level)
1002 {
1003         struct extent_buffer *right = NULL;
1004         struct extent_buffer *mid;
1005         struct extent_buffer *left = NULL;
1006         struct extent_buffer *parent = NULL;
1007         int ret = 0;
1008         int wret;
1009         int pslot;
1010         int orig_slot = path->slots[level];
1011         int err_on_enospc = 0;
1012         u64 orig_ptr;
1013
1014         if (level == 0)
1015                 return 0;
1016
1017         mid = path->nodes[level];
1018
1019         WARN_ON(!path->locks[level]);
1020         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1021
1022         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1023
1024         if (level < BTRFS_MAX_LEVEL - 1)
1025                 parent = path->nodes[level + 1];
1026         pslot = path->slots[level + 1];
1027
1028         /*
1029          * deal with the case where there is only one pointer in the root
1030          * by promoting the node below to a root
1031          */
1032         if (!parent) {
1033                 struct extent_buffer *child;
1034
1035                 if (btrfs_header_nritems(mid) != 1)
1036                         return 0;
1037
1038                 /* promote the child to a root */
1039                 child = read_node_slot(root, mid, 0);
1040                 BUG_ON(!child);
1041                 btrfs_tree_lock(child);
1042                 btrfs_set_lock_blocking(child);
1043                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1044                 if (ret) {
1045                         btrfs_tree_unlock(child);
1046                         free_extent_buffer(child);
1047                         goto enospc;
1048                 }
1049
1050                 spin_lock(&root->node_lock);
1051                 root->node = child;
1052                 spin_unlock(&root->node_lock);
1053
1054                 add_root_to_dirty_list(root);
1055                 btrfs_tree_unlock(child);
1056
1057                 path->locks[level] = 0;
1058                 path->nodes[level] = NULL;
1059                 clean_tree_block(trans, root, mid);
1060                 btrfs_tree_unlock(mid);
1061                 /* once for the path */
1062                 free_extent_buffer(mid);
1063
1064                 root_sub_used(root, mid->len);
1065                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1066                 /* once for the root ptr */
1067                 free_extent_buffer(mid);
1068                 return 0;
1069         }
1070         if (btrfs_header_nritems(mid) >
1071             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1072                 return 0;
1073
1074         if (btrfs_header_nritems(mid) < 2)
1075                 err_on_enospc = 1;
1076
1077         left = read_node_slot(root, parent, pslot - 1);
1078         if (left) {
1079                 btrfs_tree_lock(left);
1080                 btrfs_set_lock_blocking(left);
1081                 wret = btrfs_cow_block(trans, root, left,
1082                                        parent, pslot - 1, &left);
1083                 if (wret) {
1084                         ret = wret;
1085                         goto enospc;
1086                 }
1087         }
1088         right = read_node_slot(root, parent, pslot + 1);
1089         if (right) {
1090                 btrfs_tree_lock(right);
1091                 btrfs_set_lock_blocking(right);
1092                 wret = btrfs_cow_block(trans, root, right,
1093                                        parent, pslot + 1, &right);
1094                 if (wret) {
1095                         ret = wret;
1096                         goto enospc;
1097                 }
1098         }
1099
1100         /* first, try to make some room in the middle buffer */
1101         if (left) {
1102                 orig_slot += btrfs_header_nritems(left);
1103                 wret = push_node_left(trans, root, left, mid, 1);
1104                 if (wret < 0)
1105                         ret = wret;
1106                 if (btrfs_header_nritems(mid) < 2)
1107                         err_on_enospc = 1;
1108         }
1109
1110         /*
1111          * then try to empty the right most buffer into the middle
1112          */
1113         if (right) {
1114                 wret = push_node_left(trans, root, mid, right, 1);
1115                 if (wret < 0 && wret != -ENOSPC)
1116                         ret = wret;
1117                 if (btrfs_header_nritems(right) == 0) {
1118                         clean_tree_block(trans, root, right);
1119                         btrfs_tree_unlock(right);
1120                         wret = del_ptr(trans, root, path, level + 1, pslot +
1121                                        1);
1122                         if (wret)
1123                                 ret = wret;
1124                         root_sub_used(root, right->len);
1125                         btrfs_free_tree_block(trans, root, right, 0, 1);
1126                         free_extent_buffer(right);
1127                         right = NULL;
1128                 } else {
1129                         struct btrfs_disk_key right_key;
1130                         btrfs_node_key(right, &right_key, 0);
1131                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1132                         btrfs_mark_buffer_dirty(parent);
1133                 }
1134         }
1135         if (btrfs_header_nritems(mid) == 1) {
1136                 /*
1137                  * we're not allowed to leave a node with one item in the
1138                  * tree during a delete.  A deletion from lower in the tree
1139                  * could try to delete the only pointer in this node.
1140                  * So, pull some keys from the left.
1141                  * There has to be a left pointer at this point because
1142                  * otherwise we would have pulled some pointers from the
1143                  * right
1144                  */
1145                 BUG_ON(!left);
1146                 wret = balance_node_right(trans, root, mid, left);
1147                 if (wret < 0) {
1148                         ret = wret;
1149                         goto enospc;
1150                 }
1151                 if (wret == 1) {
1152                         wret = push_node_left(trans, root, left, mid, 1);
1153                         if (wret < 0)
1154                                 ret = wret;
1155                 }
1156                 BUG_ON(wret == 1);
1157         }
1158         if (btrfs_header_nritems(mid) == 0) {
1159                 clean_tree_block(trans, root, mid);
1160                 btrfs_tree_unlock(mid);
1161                 wret = del_ptr(trans, root, path, level + 1, pslot);
1162                 if (wret)
1163                         ret = wret;
1164                 root_sub_used(root, mid->len);
1165                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1166                 free_extent_buffer(mid);
1167                 mid = NULL;
1168         } else {
1169                 /* update the parent key to reflect our changes */
1170                 struct btrfs_disk_key mid_key;
1171                 btrfs_node_key(mid, &mid_key, 0);
1172                 btrfs_set_node_key(parent, &mid_key, pslot);
1173                 btrfs_mark_buffer_dirty(parent);
1174         }
1175
1176         /* update the path */
1177         if (left) {
1178                 if (btrfs_header_nritems(left) > orig_slot) {
1179                         extent_buffer_get(left);
1180                         /* left was locked after cow */
1181                         path->nodes[level] = left;
1182                         path->slots[level + 1] -= 1;
1183                         path->slots[level] = orig_slot;
1184                         if (mid) {
1185                                 btrfs_tree_unlock(mid);
1186                                 free_extent_buffer(mid);
1187                         }
1188                 } else {
1189                         orig_slot -= btrfs_header_nritems(left);
1190                         path->slots[level] = orig_slot;
1191                 }
1192         }
1193         /* double check we haven't messed things up */
1194         check_block(root, path, level);
1195         if (orig_ptr !=
1196             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1197                 BUG();
1198 enospc:
1199         if (right) {
1200                 btrfs_tree_unlock(right);
1201                 free_extent_buffer(right);
1202         }
1203         if (left) {
1204                 if (path->nodes[level] != left)
1205                         btrfs_tree_unlock(left);
1206                 free_extent_buffer(left);
1207         }
1208         return ret;
1209 }
1210
1211 /* Node balancing for insertion.  Here we only split or push nodes around
1212  * when they are completely full.  This is also done top down, so we
1213  * have to be pessimistic.
1214  */
1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1216                                           struct btrfs_root *root,
1217                                           struct btrfs_path *path, int level)
1218 {
1219         struct extent_buffer *right = NULL;
1220         struct extent_buffer *mid;
1221         struct extent_buffer *left = NULL;
1222         struct extent_buffer *parent = NULL;
1223         int ret = 0;
1224         int wret;
1225         int pslot;
1226         int orig_slot = path->slots[level];
1227         u64 orig_ptr;
1228
1229         if (level == 0)
1230                 return 1;
1231
1232         mid = path->nodes[level];
1233         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1234         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1235
1236         if (level < BTRFS_MAX_LEVEL - 1)
1237                 parent = path->nodes[level + 1];
1238         pslot = path->slots[level + 1];
1239
1240         if (!parent)
1241                 return 1;
1242
1243         left = read_node_slot(root, parent, pslot - 1);
1244
1245         /* first, try to make some room in the middle buffer */
1246         if (left) {
1247                 u32 left_nr;
1248
1249                 btrfs_tree_lock(left);
1250                 btrfs_set_lock_blocking(left);
1251
1252                 left_nr = btrfs_header_nritems(left);
1253                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1254                         wret = 1;
1255                 } else {
1256                         ret = btrfs_cow_block(trans, root, left, parent,
1257                                               pslot - 1, &left);
1258                         if (ret)
1259                                 wret = 1;
1260                         else {
1261                                 wret = push_node_left(trans, root,
1262                                                       left, mid, 0);
1263                         }
1264                 }
1265                 if (wret < 0)
1266                         ret = wret;
1267                 if (wret == 0) {
1268                         struct btrfs_disk_key disk_key;
1269                         orig_slot += left_nr;
1270                         btrfs_node_key(mid, &disk_key, 0);
1271                         btrfs_set_node_key(parent, &disk_key, pslot);
1272                         btrfs_mark_buffer_dirty(parent);
1273                         if (btrfs_header_nritems(left) > orig_slot) {
1274                                 path->nodes[level] = left;
1275                                 path->slots[level + 1] -= 1;
1276                                 path->slots[level] = orig_slot;
1277                                 btrfs_tree_unlock(mid);
1278                                 free_extent_buffer(mid);
1279                         } else {
1280                                 orig_slot -=
1281                                         btrfs_header_nritems(left);
1282                                 path->slots[level] = orig_slot;
1283                                 btrfs_tree_unlock(left);
1284                                 free_extent_buffer(left);
1285                         }
1286                         return 0;
1287                 }
1288                 btrfs_tree_unlock(left);
1289                 free_extent_buffer(left);
1290         }
1291         right = read_node_slot(root, parent, pslot + 1);
1292
1293         /*
1294          * then try to empty the right most buffer into the middle
1295          */
1296         if (right) {
1297                 u32 right_nr;
1298
1299                 btrfs_tree_lock(right);
1300                 btrfs_set_lock_blocking(right);
1301
1302                 right_nr = btrfs_header_nritems(right);
1303                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1304                         wret = 1;
1305                 } else {
1306                         ret = btrfs_cow_block(trans, root, right,
1307                                               parent, pslot + 1,
1308                                               &right);
1309                         if (ret)
1310                                 wret = 1;
1311                         else {
1312                                 wret = balance_node_right(trans, root,
1313                                                           right, mid);
1314                         }
1315                 }
1316                 if (wret < 0)
1317                         ret = wret;
1318                 if (wret == 0) {
1319                         struct btrfs_disk_key disk_key;
1320
1321                         btrfs_node_key(right, &disk_key, 0);
1322                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1323                         btrfs_mark_buffer_dirty(parent);
1324
1325                         if (btrfs_header_nritems(mid) <= orig_slot) {
1326                                 path->nodes[level] = right;
1327                                 path->slots[level + 1] += 1;
1328                                 path->slots[level] = orig_slot -
1329                                         btrfs_header_nritems(mid);
1330                                 btrfs_tree_unlock(mid);
1331                                 free_extent_buffer(mid);
1332                         } else {
1333                                 btrfs_tree_unlock(right);
1334                                 free_extent_buffer(right);
1335                         }
1336                         return 0;
1337                 }
1338                 btrfs_tree_unlock(right);
1339                 free_extent_buffer(right);
1340         }
1341         return 1;
1342 }
1343
1344 /*
1345  * readahead one full node of leaves, finding things that are close
1346  * to the block in 'slot', and triggering ra on them.
1347  */
1348 static void reada_for_search(struct btrfs_root *root,
1349                              struct btrfs_path *path,
1350                              int level, int slot, u64 objectid)
1351 {
1352         struct extent_buffer *node;
1353         struct btrfs_disk_key disk_key;
1354         u32 nritems;
1355         u64 search;
1356         u64 target;
1357         u64 nread = 0;
1358         int direction = path->reada;
1359         struct extent_buffer *eb;
1360         u32 nr;
1361         u32 blocksize;
1362         u32 nscan = 0;
1363
1364         if (level != 1)
1365                 return;
1366
1367         if (!path->nodes[level])
1368                 return;
1369
1370         node = path->nodes[level];
1371
1372         search = btrfs_node_blockptr(node, slot);
1373         blocksize = btrfs_level_size(root, level - 1);
1374         eb = btrfs_find_tree_block(root, search, blocksize);
1375         if (eb) {
1376                 free_extent_buffer(eb);
1377                 return;
1378         }
1379
1380         target = search;
1381
1382         nritems = btrfs_header_nritems(node);
1383         nr = slot;
1384         while (1) {
1385                 if (direction < 0) {
1386                         if (nr == 0)
1387                                 break;
1388                         nr--;
1389                 } else if (direction > 0) {
1390                         nr++;
1391                         if (nr >= nritems)
1392                                 break;
1393                 }
1394                 if (path->reada < 0 && objectid) {
1395                         btrfs_node_key(node, &disk_key, nr);
1396                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1397                                 break;
1398                 }
1399                 search = btrfs_node_blockptr(node, nr);
1400                 if ((search <= target && target - search <= 65536) ||
1401                     (search > target && search - target <= 65536)) {
1402                         readahead_tree_block(root, search, blocksize,
1403                                      btrfs_node_ptr_generation(node, nr));
1404                         nread += blocksize;
1405                 }
1406                 nscan++;
1407                 if ((nread > 65536 || nscan > 32))
1408                         break;
1409         }
1410 }
1411
1412 /*
1413  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1414  * cache
1415  */
1416 static noinline int reada_for_balance(struct btrfs_root *root,
1417                                       struct btrfs_path *path, int level)
1418 {
1419         int slot;
1420         int nritems;
1421         struct extent_buffer *parent;
1422         struct extent_buffer *eb;
1423         u64 gen;
1424         u64 block1 = 0;
1425         u64 block2 = 0;
1426         int ret = 0;
1427         int blocksize;
1428
1429         parent = path->nodes[level + 1];
1430         if (!parent)
1431                 return 0;
1432
1433         nritems = btrfs_header_nritems(parent);
1434         slot = path->slots[level + 1];
1435         blocksize = btrfs_level_size(root, level);
1436
1437         if (slot > 0) {
1438                 block1 = btrfs_node_blockptr(parent, slot - 1);
1439                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1440                 eb = btrfs_find_tree_block(root, block1, blocksize);
1441                 if (eb && btrfs_buffer_uptodate(eb, gen))
1442                         block1 = 0;
1443                 free_extent_buffer(eb);
1444         }
1445         if (slot + 1 < nritems) {
1446                 block2 = btrfs_node_blockptr(parent, slot + 1);
1447                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1448                 eb = btrfs_find_tree_block(root, block2, blocksize);
1449                 if (eb && btrfs_buffer_uptodate(eb, gen))
1450                         block2 = 0;
1451                 free_extent_buffer(eb);
1452         }
1453         if (block1 || block2) {
1454                 ret = -EAGAIN;
1455
1456                 /* release the whole path */
1457                 btrfs_release_path(root, path);
1458
1459                 /* read the blocks */
1460                 if (block1)
1461                         readahead_tree_block(root, block1, blocksize, 0);
1462                 if (block2)
1463                         readahead_tree_block(root, block2, blocksize, 0);
1464
1465                 if (block1) {
1466                         eb = read_tree_block(root, block1, blocksize, 0);
1467                         free_extent_buffer(eb);
1468                 }
1469                 if (block2) {
1470                         eb = read_tree_block(root, block2, blocksize, 0);
1471                         free_extent_buffer(eb);
1472                 }
1473         }
1474         return ret;
1475 }
1476
1477
1478 /*
1479  * when we walk down the tree, it is usually safe to unlock the higher layers
1480  * in the tree.  The exceptions are when our path goes through slot 0, because
1481  * operations on the tree might require changing key pointers higher up in the
1482  * tree.
1483  *
1484  * callers might also have set path->keep_locks, which tells this code to keep
1485  * the lock if the path points to the last slot in the block.  This is part of
1486  * walking through the tree, and selecting the next slot in the higher block.
1487  *
1488  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1489  * if lowest_unlock is 1, level 0 won't be unlocked
1490  */
1491 static noinline void unlock_up(struct btrfs_path *path, int level,
1492                                int lowest_unlock)
1493 {
1494         int i;
1495         int skip_level = level;
1496         int no_skips = 0;
1497         struct extent_buffer *t;
1498
1499         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1500                 if (!path->nodes[i])
1501                         break;
1502                 if (!path->locks[i])
1503                         break;
1504                 if (!no_skips && path->slots[i] == 0) {
1505                         skip_level = i + 1;
1506                         continue;
1507                 }
1508                 if (!no_skips && path->keep_locks) {
1509                         u32 nritems;
1510                         t = path->nodes[i];
1511                         nritems = btrfs_header_nritems(t);
1512                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1513                                 skip_level = i + 1;
1514                                 continue;
1515                         }
1516                 }
1517                 if (skip_level < i && i >= lowest_unlock)
1518                         no_skips = 1;
1519
1520                 t = path->nodes[i];
1521                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1522                         btrfs_tree_unlock(t);
1523                         path->locks[i] = 0;
1524                 }
1525         }
1526 }
1527
1528 /*
1529  * This releases any locks held in the path starting at level and
1530  * going all the way up to the root.
1531  *
1532  * btrfs_search_slot will keep the lock held on higher nodes in a few
1533  * corner cases, such as COW of the block at slot zero in the node.  This
1534  * ignores those rules, and it should only be called when there are no
1535  * more updates to be done higher up in the tree.
1536  */
1537 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1538 {
1539         int i;
1540
1541         if (path->keep_locks)
1542                 return;
1543
1544         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1545                 if (!path->nodes[i])
1546                         continue;
1547                 if (!path->locks[i])
1548                         continue;
1549                 btrfs_tree_unlock(path->nodes[i]);
1550                 path->locks[i] = 0;
1551         }
1552 }
1553
1554 /*
1555  * helper function for btrfs_search_slot.  The goal is to find a block
1556  * in cache without setting the path to blocking.  If we find the block
1557  * we return zero and the path is unchanged.
1558  *
1559  * If we can't find the block, we set the path blocking and do some
1560  * reada.  -EAGAIN is returned and the search must be repeated.
1561  */
1562 static int
1563 read_block_for_search(struct btrfs_trans_handle *trans,
1564                        struct btrfs_root *root, struct btrfs_path *p,
1565                        struct extent_buffer **eb_ret, int level, int slot,
1566                        struct btrfs_key *key)
1567 {
1568         u64 blocknr;
1569         u64 gen;
1570         u32 blocksize;
1571         struct extent_buffer *b = *eb_ret;
1572         struct extent_buffer *tmp;
1573         int ret;
1574
1575         blocknr = btrfs_node_blockptr(b, slot);
1576         gen = btrfs_node_ptr_generation(b, slot);
1577         blocksize = btrfs_level_size(root, level - 1);
1578
1579         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1580         if (tmp) {
1581                 if (btrfs_buffer_uptodate(tmp, 0)) {
1582                         if (btrfs_buffer_uptodate(tmp, gen)) {
1583                                 /*
1584                                  * we found an up to date block without
1585                                  * sleeping, return
1586                                  * right away
1587                                  */
1588                                 *eb_ret = tmp;
1589                                 return 0;
1590                         }
1591                         /* the pages were up to date, but we failed
1592                          * the generation number check.  Do a full
1593                          * read for the generation number that is correct.
1594                          * We must do this without dropping locks so
1595                          * we can trust our generation number
1596                          */
1597                         free_extent_buffer(tmp);
1598                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1599                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1600                                 *eb_ret = tmp;
1601                                 return 0;
1602                         }
1603                         free_extent_buffer(tmp);
1604                         btrfs_release_path(NULL, p);
1605                         return -EIO;
1606                 }
1607         }
1608
1609         /*
1610          * reduce lock contention at high levels
1611          * of the btree by dropping locks before
1612          * we read.  Don't release the lock on the current
1613          * level because we need to walk this node to figure
1614          * out which blocks to read.
1615          */
1616         btrfs_unlock_up_safe(p, level + 1);
1617         btrfs_set_path_blocking(p);
1618
1619         free_extent_buffer(tmp);
1620         if (p->reada)
1621                 reada_for_search(root, p, level, slot, key->objectid);
1622
1623         btrfs_release_path(NULL, p);
1624
1625         ret = -EAGAIN;
1626         tmp = read_tree_block(root, blocknr, blocksize, 0);
1627         if (tmp) {
1628                 /*
1629                  * If the read above didn't mark this buffer up to date,
1630                  * it will never end up being up to date.  Set ret to EIO now
1631                  * and give up so that our caller doesn't loop forever
1632                  * on our EAGAINs.
1633                  */
1634                 if (!btrfs_buffer_uptodate(tmp, 0))
1635                         ret = -EIO;
1636                 free_extent_buffer(tmp);
1637         }
1638         return ret;
1639 }
1640
1641 /*
1642  * helper function for btrfs_search_slot.  This does all of the checks
1643  * for node-level blocks and does any balancing required based on
1644  * the ins_len.
1645  *
1646  * If no extra work was required, zero is returned.  If we had to
1647  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1648  * start over
1649  */
1650 static int
1651 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1652                        struct btrfs_root *root, struct btrfs_path *p,
1653                        struct extent_buffer *b, int level, int ins_len)
1654 {
1655         int ret;
1656         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1657             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1658                 int sret;
1659
1660                 sret = reada_for_balance(root, p, level);
1661                 if (sret)
1662                         goto again;
1663
1664                 btrfs_set_path_blocking(p);
1665                 sret = split_node(trans, root, p, level);
1666                 btrfs_clear_path_blocking(p, NULL);
1667
1668                 BUG_ON(sret > 0);
1669                 if (sret) {
1670                         ret = sret;
1671                         goto done;
1672                 }
1673                 b = p->nodes[level];
1674         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1675                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1676                 int sret;
1677
1678                 sret = reada_for_balance(root, p, level);
1679                 if (sret)
1680                         goto again;
1681
1682                 btrfs_set_path_blocking(p);
1683                 sret = balance_level(trans, root, p, level);
1684                 btrfs_clear_path_blocking(p, NULL);
1685
1686                 if (sret) {
1687                         ret = sret;
1688                         goto done;
1689                 }
1690                 b = p->nodes[level];
1691                 if (!b) {
1692                         btrfs_release_path(NULL, p);
1693                         goto again;
1694                 }
1695                 BUG_ON(btrfs_header_nritems(b) == 1);
1696         }
1697         return 0;
1698
1699 again:
1700         ret = -EAGAIN;
1701 done:
1702         return ret;
1703 }
1704
1705 /*
1706  * look for key in the tree.  path is filled in with nodes along the way
1707  * if key is found, we return zero and you can find the item in the leaf
1708  * level of the path (level 0)
1709  *
1710  * If the key isn't found, the path points to the slot where it should
1711  * be inserted, and 1 is returned.  If there are other errors during the
1712  * search a negative error number is returned.
1713  *
1714  * if ins_len > 0, nodes and leaves will be split as we walk down the
1715  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1716  * possible)
1717  */
1718 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1719                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1720                       ins_len, int cow)
1721 {
1722         struct extent_buffer *b;
1723         int slot;
1724         int ret;
1725         int err;
1726         int level;
1727         int lowest_unlock = 1;
1728         u8 lowest_level = 0;
1729
1730         lowest_level = p->lowest_level;
1731         WARN_ON(lowest_level && ins_len > 0);
1732         WARN_ON(p->nodes[0] != NULL);
1733
1734         if (ins_len < 0)
1735                 lowest_unlock = 2;
1736
1737 again:
1738         if (p->search_commit_root) {
1739                 b = root->commit_root;
1740                 extent_buffer_get(b);
1741                 if (!p->skip_locking)
1742                         btrfs_tree_lock(b);
1743         } else {
1744                 if (p->skip_locking)
1745                         b = btrfs_root_node(root);
1746                 else
1747                         b = btrfs_lock_root_node(root);
1748         }
1749
1750         while (b) {
1751                 level = btrfs_header_level(b);
1752
1753                 /*
1754                  * setup the path here so we can release it under lock
1755                  * contention with the cow code
1756                  */
1757                 p->nodes[level] = b;
1758                 if (!p->skip_locking)
1759                         p->locks[level] = 1;
1760
1761                 if (cow) {
1762                         /*
1763                          * if we don't really need to cow this block
1764                          * then we don't want to set the path blocking,
1765                          * so we test it here
1766                          */
1767                         if (!should_cow_block(trans, root, b))
1768                                 goto cow_done;
1769
1770                         btrfs_set_path_blocking(p);
1771
1772                         err = btrfs_cow_block(trans, root, b,
1773                                               p->nodes[level + 1],
1774                                               p->slots[level + 1], &b);
1775                         if (err) {
1776                                 ret = err;
1777                                 goto done;
1778                         }
1779                 }
1780 cow_done:
1781                 BUG_ON(!cow && ins_len);
1782                 if (level != btrfs_header_level(b))
1783                         WARN_ON(1);
1784                 level = btrfs_header_level(b);
1785
1786                 p->nodes[level] = b;
1787                 if (!p->skip_locking)
1788                         p->locks[level] = 1;
1789
1790                 btrfs_clear_path_blocking(p, NULL);
1791
1792                 /*
1793                  * we have a lock on b and as long as we aren't changing
1794                  * the tree, there is no way to for the items in b to change.
1795                  * It is safe to drop the lock on our parent before we
1796                  * go through the expensive btree search on b.
1797                  *
1798                  * If cow is true, then we might be changing slot zero,
1799                  * which may require changing the parent.  So, we can't
1800                  * drop the lock until after we know which slot we're
1801                  * operating on.
1802                  */
1803                 if (!cow)
1804                         btrfs_unlock_up_safe(p, level + 1);
1805
1806                 ret = check_block(root, p, level);
1807                 if (ret) {
1808                         ret = -1;
1809                         goto done;
1810                 }
1811
1812                 ret = bin_search(b, key, level, &slot);
1813
1814                 if (level != 0) {
1815                         int dec = 0;
1816                         if (ret && slot > 0) {
1817                                 dec = 1;
1818                                 slot -= 1;
1819                         }
1820                         p->slots[level] = slot;
1821                         err = setup_nodes_for_search(trans, root, p, b, level,
1822                                                      ins_len);
1823                         if (err == -EAGAIN)
1824                                 goto again;
1825                         if (err) {
1826                                 ret = err;
1827                                 goto done;
1828                         }
1829                         b = p->nodes[level];
1830                         slot = p->slots[level];
1831
1832                         unlock_up(p, level, lowest_unlock);
1833
1834                         if (level == lowest_level) {
1835                                 if (dec)
1836                                         p->slots[level]++;
1837                                 goto done;
1838                         }
1839
1840                         err = read_block_for_search(trans, root, p,
1841                                                     &b, level, slot, key);
1842                         if (err == -EAGAIN)
1843                                 goto again;
1844                         if (err) {
1845                                 ret = err;
1846                                 goto done;
1847                         }
1848
1849                         if (!p->skip_locking) {
1850                                 btrfs_clear_path_blocking(p, NULL);
1851                                 err = btrfs_try_spin_lock(b);
1852
1853                                 if (!err) {
1854                                         btrfs_set_path_blocking(p);
1855                                         btrfs_tree_lock(b);
1856                                         btrfs_clear_path_blocking(p, b);
1857                                 }
1858                         }
1859                 } else {
1860                         p->slots[level] = slot;
1861                         if (ins_len > 0 &&
1862                             btrfs_leaf_free_space(root, b) < ins_len) {
1863                                 btrfs_set_path_blocking(p);
1864                                 err = split_leaf(trans, root, key,
1865                                                  p, ins_len, ret == 0);
1866                                 btrfs_clear_path_blocking(p, NULL);
1867
1868                                 BUG_ON(err > 0);
1869                                 if (err) {
1870                                         ret = err;
1871                                         goto done;
1872                                 }
1873                         }
1874                         if (!p->search_for_split)
1875                                 unlock_up(p, level, lowest_unlock);
1876                         goto done;
1877                 }
1878         }
1879         ret = 1;
1880 done:
1881         /*
1882          * we don't really know what they plan on doing with the path
1883          * from here on, so for now just mark it as blocking
1884          */
1885         if (!p->leave_spinning)
1886                 btrfs_set_path_blocking(p);
1887         if (ret < 0)
1888                 btrfs_release_path(root, p);
1889         return ret;
1890 }
1891
1892 /*
1893  * adjust the pointers going up the tree, starting at level
1894  * making sure the right key of each node is points to 'key'.
1895  * This is used after shifting pointers to the left, so it stops
1896  * fixing up pointers when a given leaf/node is not in slot 0 of the
1897  * higher levels
1898  *
1899  * If this fails to write a tree block, it returns -1, but continues
1900  * fixing up the blocks in ram so the tree is consistent.
1901  */
1902 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1903                           struct btrfs_root *root, struct btrfs_path *path,
1904                           struct btrfs_disk_key *key, int level)
1905 {
1906         int i;
1907         int ret = 0;
1908         struct extent_buffer *t;
1909
1910         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1911                 int tslot = path->slots[i];
1912                 if (!path->nodes[i])
1913                         break;
1914                 t = path->nodes[i];
1915                 btrfs_set_node_key(t, key, tslot);
1916                 btrfs_mark_buffer_dirty(path->nodes[i]);
1917                 if (tslot != 0)
1918                         break;
1919         }
1920         return ret;
1921 }
1922
1923 /*
1924  * update item key.
1925  *
1926  * This function isn't completely safe. It's the caller's responsibility
1927  * that the new key won't break the order
1928  */
1929 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1930                             struct btrfs_root *root, struct btrfs_path *path,
1931                             struct btrfs_key *new_key)
1932 {
1933         struct btrfs_disk_key disk_key;
1934         struct extent_buffer *eb;
1935         int slot;
1936
1937         eb = path->nodes[0];
1938         slot = path->slots[0];
1939         if (slot > 0) {
1940                 btrfs_item_key(eb, &disk_key, slot - 1);
1941                 if (comp_keys(&disk_key, new_key) >= 0)
1942                         return -1;
1943         }
1944         if (slot < btrfs_header_nritems(eb) - 1) {
1945                 btrfs_item_key(eb, &disk_key, slot + 1);
1946                 if (comp_keys(&disk_key, new_key) <= 0)
1947                         return -1;
1948         }
1949
1950         btrfs_cpu_key_to_disk(&disk_key, new_key);
1951         btrfs_set_item_key(eb, &disk_key, slot);
1952         btrfs_mark_buffer_dirty(eb);
1953         if (slot == 0)
1954                 fixup_low_keys(trans, root, path, &disk_key, 1);
1955         return 0;
1956 }
1957
1958 /*
1959  * try to push data from one node into the next node left in the
1960  * tree.
1961  *
1962  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1963  * error, and > 0 if there was no room in the left hand block.
1964  */
1965 static int push_node_left(struct btrfs_trans_handle *trans,
1966                           struct btrfs_root *root, struct extent_buffer *dst,
1967                           struct extent_buffer *src, int empty)
1968 {
1969         int push_items = 0;
1970         int src_nritems;
1971         int dst_nritems;
1972         int ret = 0;
1973
1974         src_nritems = btrfs_header_nritems(src);
1975         dst_nritems = btrfs_header_nritems(dst);
1976         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1977         WARN_ON(btrfs_header_generation(src) != trans->transid);
1978         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1979
1980         if (!empty && src_nritems <= 8)
1981                 return 1;
1982
1983         if (push_items <= 0)
1984                 return 1;
1985
1986         if (empty) {
1987                 push_items = min(src_nritems, push_items);
1988                 if (push_items < src_nritems) {
1989                         /* leave at least 8 pointers in the node if
1990                          * we aren't going to empty it
1991                          */
1992                         if (src_nritems - push_items < 8) {
1993                                 if (push_items <= 8)
1994                                         return 1;
1995                                 push_items -= 8;
1996                         }
1997                 }
1998         } else
1999                 push_items = min(src_nritems - 8, push_items);
2000
2001         copy_extent_buffer(dst, src,
2002                            btrfs_node_key_ptr_offset(dst_nritems),
2003                            btrfs_node_key_ptr_offset(0),
2004                            push_items * sizeof(struct btrfs_key_ptr));
2005
2006         if (push_items < src_nritems) {
2007                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2008                                       btrfs_node_key_ptr_offset(push_items),
2009                                       (src_nritems - push_items) *
2010                                       sizeof(struct btrfs_key_ptr));
2011         }
2012         btrfs_set_header_nritems(src, src_nritems - push_items);
2013         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2014         btrfs_mark_buffer_dirty(src);
2015         btrfs_mark_buffer_dirty(dst);
2016
2017         return ret;
2018 }
2019
2020 /*
2021  * try to push data from one node into the next node right in the
2022  * tree.
2023  *
2024  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2025  * error, and > 0 if there was no room in the right hand block.
2026  *
2027  * this will  only push up to 1/2 the contents of the left node over
2028  */
2029 static int balance_node_right(struct btrfs_trans_handle *trans,
2030                               struct btrfs_root *root,
2031                               struct extent_buffer *dst,
2032                               struct extent_buffer *src)
2033 {
2034         int push_items = 0;
2035         int max_push;
2036         int src_nritems;
2037         int dst_nritems;
2038         int ret = 0;
2039
2040         WARN_ON(btrfs_header_generation(src) != trans->transid);
2041         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2042
2043         src_nritems = btrfs_header_nritems(src);
2044         dst_nritems = btrfs_header_nritems(dst);
2045         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2046         if (push_items <= 0)
2047                 return 1;
2048
2049         if (src_nritems < 4)
2050                 return 1;
2051
2052         max_push = src_nritems / 2 + 1;
2053         /* don't try to empty the node */
2054         if (max_push >= src_nritems)
2055                 return 1;
2056
2057         if (max_push < push_items)
2058                 push_items = max_push;
2059
2060         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2061                                       btrfs_node_key_ptr_offset(0),
2062                                       (dst_nritems) *
2063                                       sizeof(struct btrfs_key_ptr));
2064
2065         copy_extent_buffer(dst, src,
2066                            btrfs_node_key_ptr_offset(0),
2067                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2068                            push_items * sizeof(struct btrfs_key_ptr));
2069
2070         btrfs_set_header_nritems(src, src_nritems - push_items);
2071         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2072
2073         btrfs_mark_buffer_dirty(src);
2074         btrfs_mark_buffer_dirty(dst);
2075
2076         return ret;
2077 }
2078
2079 /*
2080  * helper function to insert a new root level in the tree.
2081  * A new node is allocated, and a single item is inserted to
2082  * point to the existing root
2083  *
2084  * returns zero on success or < 0 on failure.
2085  */
2086 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2087                            struct btrfs_root *root,
2088                            struct btrfs_path *path, int level)
2089 {
2090         u64 lower_gen;
2091         struct extent_buffer *lower;
2092         struct extent_buffer *c;
2093         struct extent_buffer *old;
2094         struct btrfs_disk_key lower_key;
2095
2096         BUG_ON(path->nodes[level]);
2097         BUG_ON(path->nodes[level-1] != root->node);
2098
2099         lower = path->nodes[level-1];
2100         if (level == 1)
2101                 btrfs_item_key(lower, &lower_key, 0);
2102         else
2103                 btrfs_node_key(lower, &lower_key, 0);
2104
2105         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2106                                    root->root_key.objectid, &lower_key,
2107                                    level, root->node->start, 0);
2108         if (IS_ERR(c))
2109                 return PTR_ERR(c);
2110
2111         root_add_used(root, root->nodesize);
2112
2113         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2114         btrfs_set_header_nritems(c, 1);
2115         btrfs_set_header_level(c, level);
2116         btrfs_set_header_bytenr(c, c->start);
2117         btrfs_set_header_generation(c, trans->transid);
2118         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2119         btrfs_set_header_owner(c, root->root_key.objectid);
2120
2121         write_extent_buffer(c, root->fs_info->fsid,
2122                             (unsigned long)btrfs_header_fsid(c),
2123                             BTRFS_FSID_SIZE);
2124
2125         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2126                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2127                             BTRFS_UUID_SIZE);
2128
2129         btrfs_set_node_key(c, &lower_key, 0);
2130         btrfs_set_node_blockptr(c, 0, lower->start);
2131         lower_gen = btrfs_header_generation(lower);
2132         WARN_ON(lower_gen != trans->transid);
2133
2134         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2135
2136         btrfs_mark_buffer_dirty(c);
2137
2138         spin_lock(&root->node_lock);
2139         old = root->node;
2140         root->node = c;
2141         spin_unlock(&root->node_lock);
2142
2143         /* the super has an extra ref to root->node */
2144         free_extent_buffer(old);
2145
2146         add_root_to_dirty_list(root);
2147         extent_buffer_get(c);
2148         path->nodes[level] = c;
2149         path->locks[level] = 1;
2150         path->slots[level] = 0;
2151         return 0;
2152 }
2153
2154 /*
2155  * worker function to insert a single pointer in a node.
2156  * the node should have enough room for the pointer already
2157  *
2158  * slot and level indicate where you want the key to go, and
2159  * blocknr is the block the key points to.
2160  *
2161  * returns zero on success and < 0 on any error
2162  */
2163 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2164                       *root, struct btrfs_path *path, struct btrfs_disk_key
2165                       *key, u64 bytenr, int slot, int level)
2166 {
2167         struct extent_buffer *lower;
2168         int nritems;
2169
2170         BUG_ON(!path->nodes[level]);
2171         btrfs_assert_tree_locked(path->nodes[level]);
2172         lower = path->nodes[level];
2173         nritems = btrfs_header_nritems(lower);
2174         BUG_ON(slot > nritems);
2175         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2176                 BUG();
2177         if (slot != nritems) {
2178                 memmove_extent_buffer(lower,
2179                               btrfs_node_key_ptr_offset(slot + 1),
2180                               btrfs_node_key_ptr_offset(slot),
2181                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2182         }
2183         btrfs_set_node_key(lower, key, slot);
2184         btrfs_set_node_blockptr(lower, slot, bytenr);
2185         WARN_ON(trans->transid == 0);
2186         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2187         btrfs_set_header_nritems(lower, nritems + 1);
2188         btrfs_mark_buffer_dirty(lower);
2189         return 0;
2190 }
2191
2192 /*
2193  * split the node at the specified level in path in two.
2194  * The path is corrected to point to the appropriate node after the split
2195  *
2196  * Before splitting this tries to make some room in the node by pushing
2197  * left and right, if either one works, it returns right away.
2198  *
2199  * returns 0 on success and < 0 on failure
2200  */
2201 static noinline int split_node(struct btrfs_trans_handle *trans,
2202                                struct btrfs_root *root,
2203                                struct btrfs_path *path, int level)
2204 {
2205         struct extent_buffer *c;
2206         struct extent_buffer *split;
2207         struct btrfs_disk_key disk_key;
2208         int mid;
2209         int ret;
2210         int wret;
2211         u32 c_nritems;
2212
2213         c = path->nodes[level];
2214         WARN_ON(btrfs_header_generation(c) != trans->transid);
2215         if (c == root->node) {
2216                 /* trying to split the root, lets make a new one */
2217                 ret = insert_new_root(trans, root, path, level + 1);
2218                 if (ret)
2219                         return ret;
2220         } else {
2221                 ret = push_nodes_for_insert(trans, root, path, level);
2222                 c = path->nodes[level];
2223                 if (!ret && btrfs_header_nritems(c) <
2224                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2225                         return 0;
2226                 if (ret < 0)
2227                         return ret;
2228         }
2229
2230         c_nritems = btrfs_header_nritems(c);
2231         mid = (c_nritems + 1) / 2;
2232         btrfs_node_key(c, &disk_key, mid);
2233
2234         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2235                                         root->root_key.objectid,
2236                                         &disk_key, level, c->start, 0);
2237         if (IS_ERR(split))
2238                 return PTR_ERR(split);
2239
2240         root_add_used(root, root->nodesize);
2241
2242         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2243         btrfs_set_header_level(split, btrfs_header_level(c));
2244         btrfs_set_header_bytenr(split, split->start);
2245         btrfs_set_header_generation(split, trans->transid);
2246         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2247         btrfs_set_header_owner(split, root->root_key.objectid);
2248         write_extent_buffer(split, root->fs_info->fsid,
2249                             (unsigned long)btrfs_header_fsid(split),
2250                             BTRFS_FSID_SIZE);
2251         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2252                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2253                             BTRFS_UUID_SIZE);
2254
2255
2256         copy_extent_buffer(split, c,
2257                            btrfs_node_key_ptr_offset(0),
2258                            btrfs_node_key_ptr_offset(mid),
2259                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2260         btrfs_set_header_nritems(split, c_nritems - mid);
2261         btrfs_set_header_nritems(c, mid);
2262         ret = 0;
2263
2264         btrfs_mark_buffer_dirty(c);
2265         btrfs_mark_buffer_dirty(split);
2266
2267         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2268                           path->slots[level + 1] + 1,
2269                           level + 1);
2270         if (wret)
2271                 ret = wret;
2272
2273         if (path->slots[level] >= mid) {
2274                 path->slots[level] -= mid;
2275                 btrfs_tree_unlock(c);
2276                 free_extent_buffer(c);
2277                 path->nodes[level] = split;
2278                 path->slots[level + 1] += 1;
2279         } else {
2280                 btrfs_tree_unlock(split);
2281                 free_extent_buffer(split);
2282         }
2283         return ret;
2284 }
2285
2286 /*
2287  * how many bytes are required to store the items in a leaf.  start
2288  * and nr indicate which items in the leaf to check.  This totals up the
2289  * space used both by the item structs and the item data
2290  */
2291 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2292 {
2293         int data_len;
2294         int nritems = btrfs_header_nritems(l);
2295         int end = min(nritems, start + nr) - 1;
2296
2297         if (!nr)
2298                 return 0;
2299         data_len = btrfs_item_end_nr(l, start);
2300         data_len = data_len - btrfs_item_offset_nr(l, end);
2301         data_len += sizeof(struct btrfs_item) * nr;
2302         WARN_ON(data_len < 0);
2303         return data_len;
2304 }
2305
2306 /*
2307  * The space between the end of the leaf items and
2308  * the start of the leaf data.  IOW, how much room
2309  * the leaf has left for both items and data
2310  */
2311 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2312                                    struct extent_buffer *leaf)
2313 {
2314         int nritems = btrfs_header_nritems(leaf);
2315         int ret;
2316         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2317         if (ret < 0) {
2318                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2319                        "used %d nritems %d\n",
2320                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2321                        leaf_space_used(leaf, 0, nritems), nritems);
2322         }
2323         return ret;
2324 }
2325
2326 /*
2327  * min slot controls the lowest index we're willing to push to the
2328  * right.  We'll push up to and including min_slot, but no lower
2329  */
2330 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2331                                       struct btrfs_root *root,
2332                                       struct btrfs_path *path,
2333                                       int data_size, int empty,
2334                                       struct extent_buffer *right,
2335                                       int free_space, u32 left_nritems,
2336                                       u32 min_slot)
2337 {
2338         struct extent_buffer *left = path->nodes[0];
2339         struct extent_buffer *upper = path->nodes[1];
2340         struct btrfs_disk_key disk_key;
2341         int slot;
2342         u32 i;
2343         int push_space = 0;
2344         int push_items = 0;
2345         struct btrfs_item *item;
2346         u32 nr;
2347         u32 right_nritems;
2348         u32 data_end;
2349         u32 this_item_size;
2350
2351         if (empty)
2352                 nr = 0;
2353         else
2354                 nr = max_t(u32, 1, min_slot);
2355
2356         if (path->slots[0] >= left_nritems)
2357                 push_space += data_size;
2358
2359         slot = path->slots[1];
2360         i = left_nritems - 1;
2361         while (i >= nr) {
2362                 item = btrfs_item_nr(left, i);
2363
2364                 if (!empty && push_items > 0) {
2365                         if (path->slots[0] > i)
2366                                 break;
2367                         if (path->slots[0] == i) {
2368                                 int space = btrfs_leaf_free_space(root, left);
2369                                 if (space + push_space * 2 > free_space)
2370                                         break;
2371                         }
2372                 }
2373
2374                 if (path->slots[0] == i)
2375                         push_space += data_size;
2376
2377                 if (!left->map_token) {
2378                         map_extent_buffer(left, (unsigned long)item,
2379                                         sizeof(struct btrfs_item),
2380                                         &left->map_token, &left->kaddr,
2381                                         &left->map_start, &left->map_len,
2382                                         KM_USER1);
2383                 }
2384
2385                 this_item_size = btrfs_item_size(left, item);
2386                 if (this_item_size + sizeof(*item) + push_space > free_space)
2387                         break;
2388
2389                 push_items++;
2390                 push_space += this_item_size + sizeof(*item);
2391                 if (i == 0)
2392                         break;
2393                 i--;
2394         }
2395         if (left->map_token) {
2396                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2397                 left->map_token = NULL;
2398         }
2399
2400         if (push_items == 0)
2401                 goto out_unlock;
2402
2403         if (!empty && push_items == left_nritems)
2404                 WARN_ON(1);
2405
2406         /* push left to right */
2407         right_nritems = btrfs_header_nritems(right);
2408
2409         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2410         push_space -= leaf_data_end(root, left);
2411
2412         /* make room in the right data area */
2413         data_end = leaf_data_end(root, right);
2414         memmove_extent_buffer(right,
2415                               btrfs_leaf_data(right) + data_end - push_space,
2416                               btrfs_leaf_data(right) + data_end,
2417                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2418
2419         /* copy from the left data area */
2420         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2421                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2422                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2423                      push_space);
2424
2425         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2426                               btrfs_item_nr_offset(0),
2427                               right_nritems * sizeof(struct btrfs_item));
2428
2429         /* copy the items from left to right */
2430         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2431                    btrfs_item_nr_offset(left_nritems - push_items),
2432                    push_items * sizeof(struct btrfs_item));
2433
2434         /* update the item pointers */
2435         right_nritems += push_items;
2436         btrfs_set_header_nritems(right, right_nritems);
2437         push_space = BTRFS_LEAF_DATA_SIZE(root);
2438         for (i = 0; i < right_nritems; i++) {
2439                 item = btrfs_item_nr(right, i);
2440                 if (!right->map_token) {
2441                         map_extent_buffer(right, (unsigned long)item,
2442                                         sizeof(struct btrfs_item),
2443                                         &right->map_token, &right->kaddr,
2444                                         &right->map_start, &right->map_len,
2445                                         KM_USER1);
2446                 }
2447                 push_space -= btrfs_item_size(right, item);
2448                 btrfs_set_item_offset(right, item, push_space);
2449         }
2450
2451         if (right->map_token) {
2452                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2453                 right->map_token = NULL;
2454         }
2455         left_nritems -= push_items;
2456         btrfs_set_header_nritems(left, left_nritems);
2457
2458         if (left_nritems)
2459                 btrfs_mark_buffer_dirty(left);
2460         else
2461                 clean_tree_block(trans, root, left);
2462
2463         btrfs_mark_buffer_dirty(right);
2464
2465         btrfs_item_key(right, &disk_key, 0);
2466         btrfs_set_node_key(upper, &disk_key, slot + 1);
2467         btrfs_mark_buffer_dirty(upper);
2468
2469         /* then fixup the leaf pointer in the path */
2470         if (path->slots[0] >= left_nritems) {
2471                 path->slots[0] -= left_nritems;
2472                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2473                         clean_tree_block(trans, root, path->nodes[0]);
2474                 btrfs_tree_unlock(path->nodes[0]);
2475                 free_extent_buffer(path->nodes[0]);
2476                 path->nodes[0] = right;
2477                 path->slots[1] += 1;
2478         } else {
2479                 btrfs_tree_unlock(right);
2480                 free_extent_buffer(right);
2481         }
2482         return 0;
2483
2484 out_unlock:
2485         btrfs_tree_unlock(right);
2486         free_extent_buffer(right);
2487         return 1;
2488 }
2489
2490 /*
2491  * push some data in the path leaf to the right, trying to free up at
2492  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2493  *
2494  * returns 1 if the push failed because the other node didn't have enough
2495  * room, 0 if everything worked out and < 0 if there were major errors.
2496  *
2497  * this will push starting from min_slot to the end of the leaf.  It won't
2498  * push any slot lower than min_slot
2499  */
2500 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2501                            *root, struct btrfs_path *path,
2502                            int min_data_size, int data_size,
2503                            int empty, u32 min_slot)
2504 {
2505         struct extent_buffer *left = path->nodes[0];
2506         struct extent_buffer *right;
2507         struct extent_buffer *upper;
2508         int slot;
2509         int free_space;
2510         u32 left_nritems;
2511         int ret;
2512
2513         if (!path->nodes[1])
2514                 return 1;
2515
2516         slot = path->slots[1];
2517         upper = path->nodes[1];
2518         if (slot >= btrfs_header_nritems(upper) - 1)
2519                 return 1;
2520
2521         btrfs_assert_tree_locked(path->nodes[1]);
2522
2523         right = read_node_slot(root, upper, slot + 1);
2524         btrfs_tree_lock(right);
2525         btrfs_set_lock_blocking(right);
2526
2527         free_space = btrfs_leaf_free_space(root, right);
2528         if (free_space < data_size)
2529                 goto out_unlock;
2530
2531         /* cow and double check */
2532         ret = btrfs_cow_block(trans, root, right, upper,
2533                               slot + 1, &right);
2534         if (ret)
2535                 goto out_unlock;
2536
2537         free_space = btrfs_leaf_free_space(root, right);
2538         if (free_space < data_size)
2539                 goto out_unlock;
2540
2541         left_nritems = btrfs_header_nritems(left);
2542         if (left_nritems == 0)
2543                 goto out_unlock;
2544
2545         return __push_leaf_right(trans, root, path, min_data_size, empty,
2546                                 right, free_space, left_nritems, min_slot);
2547 out_unlock:
2548         btrfs_tree_unlock(right);
2549         free_extent_buffer(right);
2550         return 1;
2551 }
2552
2553 /*
2554  * push some data in the path leaf to the left, trying to free up at
2555  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2556  *
2557  * max_slot can put a limit on how far into the leaf we'll push items.  The
2558  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2559  * items
2560  */
2561 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2562                                      struct btrfs_root *root,
2563                                      struct btrfs_path *path, int data_size,
2564                                      int empty, struct extent_buffer *left,
2565                                      int free_space, u32 right_nritems,
2566                                      u32 max_slot)
2567 {
2568         struct btrfs_disk_key disk_key;
2569         struct extent_buffer *right = path->nodes[0];
2570         int slot;
2571         int i;
2572         int push_space = 0;
2573         int push_items = 0;
2574         struct btrfs_item *item;
2575         u32 old_left_nritems;
2576         u32 nr;
2577         int ret = 0;
2578         int wret;
2579         u32 this_item_size;
2580         u32 old_left_item_size;
2581
2582         slot = path->slots[1];
2583
2584         if (empty)
2585                 nr = min(right_nritems, max_slot);
2586         else
2587                 nr = min(right_nritems - 1, max_slot);
2588
2589         for (i = 0; i < nr; i++) {
2590                 item = btrfs_item_nr(right, i);
2591                 if (!right->map_token) {
2592                         map_extent_buffer(right, (unsigned long)item,
2593                                         sizeof(struct btrfs_item),
2594                                         &right->map_token, &right->kaddr,
2595                                         &right->map_start, &right->map_len,
2596                                         KM_USER1);
2597                 }
2598
2599                 if (!empty && push_items > 0) {
2600                         if (path->slots[0] < i)
2601                                 break;
2602                         if (path->slots[0] == i) {
2603                                 int space = btrfs_leaf_free_space(root, right);
2604                                 if (space + push_space * 2 > free_space)
2605                                         break;
2606                         }
2607                 }
2608
2609                 if (path->slots[0] == i)
2610                         push_space += data_size;
2611
2612                 this_item_size = btrfs_item_size(right, item);
2613                 if (this_item_size + sizeof(*item) + push_space > free_space)
2614                         break;
2615
2616                 push_items++;
2617                 push_space += this_item_size + sizeof(*item);
2618         }
2619
2620         if (right->map_token) {
2621                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2622                 right->map_token = NULL;
2623         }
2624
2625         if (push_items == 0) {
2626                 ret = 1;
2627                 goto out;
2628         }
2629         if (!empty && push_items == btrfs_header_nritems(right))
2630                 WARN_ON(1);
2631
2632         /* push data from right to left */
2633         copy_extent_buffer(left, right,
2634                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2635                            btrfs_item_nr_offset(0),
2636                            push_items * sizeof(struct btrfs_item));
2637
2638         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2639                      btrfs_item_offset_nr(right, push_items - 1);
2640
2641         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2642                      leaf_data_end(root, left) - push_space,
2643                      btrfs_leaf_data(right) +
2644                      btrfs_item_offset_nr(right, push_items - 1),
2645                      push_space);
2646         old_left_nritems = btrfs_header_nritems(left);
2647         BUG_ON(old_left_nritems <= 0);
2648
2649         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2650         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2651                 u32 ioff;
2652
2653                 item = btrfs_item_nr(left, i);
2654                 if (!left->map_token) {
2655                         map_extent_buffer(left, (unsigned long)item,
2656                                         sizeof(struct btrfs_item),
2657                                         &left->map_token, &left->kaddr,
2658                                         &left->map_start, &left->map_len,
2659                                         KM_USER1);
2660                 }
2661
2662                 ioff = btrfs_item_offset(left, item);
2663                 btrfs_set_item_offset(left, item,
2664                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2665         }
2666         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2667         if (left->map_token) {
2668                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2669                 left->map_token = NULL;
2670         }
2671
2672         /* fixup right node */
2673         if (push_items > right_nritems) {
2674                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2675                        right_nritems);
2676                 WARN_ON(1);
2677         }
2678
2679         if (push_items < right_nritems) {
2680                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2681                                                   leaf_data_end(root, right);
2682                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2683                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2684                                       btrfs_leaf_data(right) +
2685                                       leaf_data_end(root, right), push_space);
2686
2687                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2688                               btrfs_item_nr_offset(push_items),
2689                              (btrfs_header_nritems(right) - push_items) *
2690                              sizeof(struct btrfs_item));
2691         }
2692         right_nritems -= push_items;
2693         btrfs_set_header_nritems(right, right_nritems);
2694         push_space = BTRFS_LEAF_DATA_SIZE(root);
2695         for (i = 0; i < right_nritems; i++) {
2696                 item = btrfs_item_nr(right, i);
2697
2698                 if (!right->map_token) {
2699                         map_extent_buffer(right, (unsigned long)item,
2700                                         sizeof(struct btrfs_item),
2701                                         &right->map_token, &right->kaddr,
2702                                         &right->map_start, &right->map_len,
2703                                         KM_USER1);
2704                 }
2705
2706                 push_space = push_space - btrfs_item_size(right, item);
2707                 btrfs_set_item_offset(right, item, push_space);
2708         }
2709         if (right->map_token) {
2710                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2711                 right->map_token = NULL;
2712         }
2713
2714         btrfs_mark_buffer_dirty(left);
2715         if (right_nritems)
2716                 btrfs_mark_buffer_dirty(right);
2717         else
2718                 clean_tree_block(trans, root, right);
2719
2720         btrfs_item_key(right, &disk_key, 0);
2721         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2722         if (wret)
2723                 ret = wret;
2724
2725         /* then fixup the leaf pointer in the path */
2726         if (path->slots[0] < push_items) {
2727                 path->slots[0] += old_left_nritems;
2728                 btrfs_tree_unlock(path->nodes[0]);
2729                 free_extent_buffer(path->nodes[0]);
2730                 path->nodes[0] = left;
2731                 path->slots[1] -= 1;
2732         } else {
2733                 btrfs_tree_unlock(left);
2734                 free_extent_buffer(left);
2735                 path->slots[0] -= push_items;
2736         }
2737         BUG_ON(path->slots[0] < 0);
2738         return ret;
2739 out:
2740         btrfs_tree_unlock(left);
2741         free_extent_buffer(left);
2742         return ret;
2743 }
2744
2745 /*
2746  * push some data in the path leaf to the left, trying to free up at
2747  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2748  *
2749  * max_slot can put a limit on how far into the leaf we'll push items.  The
2750  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2751  * items
2752  */
2753 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2754                           *root, struct btrfs_path *path, int min_data_size,
2755                           int data_size, int empty, u32 max_slot)
2756 {
2757         struct extent_buffer *right = path->nodes[0];
2758         struct extent_buffer *left;
2759         int slot;
2760         int free_space;
2761         u32 right_nritems;
2762         int ret = 0;
2763
2764         slot = path->slots[1];
2765         if (slot == 0)
2766                 return 1;
2767         if (!path->nodes[1])
2768                 return 1;
2769
2770         right_nritems = btrfs_header_nritems(right);
2771         if (right_nritems == 0)
2772                 return 1;
2773
2774         btrfs_assert_tree_locked(path->nodes[1]);
2775
2776         left = read_node_slot(root, path->nodes[1], slot - 1);
2777         btrfs_tree_lock(left);
2778         btrfs_set_lock_blocking(left);
2779
2780         free_space = btrfs_leaf_free_space(root, left);
2781         if (free_space < data_size) {
2782                 ret = 1;
2783                 goto out;
2784         }
2785
2786         /* cow and double check */
2787         ret = btrfs_cow_block(trans, root, left,
2788                               path->nodes[1], slot - 1, &left);
2789         if (ret) {
2790                 /* we hit -ENOSPC, but it isn't fatal here */
2791                 ret = 1;
2792                 goto out;
2793         }
2794
2795         free_space = btrfs_leaf_free_space(root, left);
2796         if (free_space < data_size) {
2797                 ret = 1;
2798                 goto out;
2799         }
2800
2801         return __push_leaf_left(trans, root, path, min_data_size,
2802                                empty, left, free_space, right_nritems,
2803                                max_slot);
2804 out:
2805         btrfs_tree_unlock(left);
2806         free_extent_buffer(left);
2807         return ret;
2808 }
2809
2810 /*
2811  * split the path's leaf in two, making sure there is at least data_size
2812  * available for the resulting leaf level of the path.
2813  *
2814  * returns 0 if all went well and < 0 on failure.
2815  */
2816 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2817                                struct btrfs_root *root,
2818                                struct btrfs_path *path,
2819                                struct extent_buffer *l,
2820                                struct extent_buffer *right,
2821                                int slot, int mid, int nritems)
2822 {
2823         int data_copy_size;
2824         int rt_data_off;
2825         int i;
2826         int ret = 0;
2827         int wret;
2828         struct btrfs_disk_key disk_key;
2829
2830         nritems = nritems - mid;
2831         btrfs_set_header_nritems(right, nritems);
2832         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2833
2834         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2835                            btrfs_item_nr_offset(mid),
2836                            nritems * sizeof(struct btrfs_item));
2837
2838         copy_extent_buffer(right, l,
2839                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2840                      data_copy_size, btrfs_leaf_data(l) +
2841                      leaf_data_end(root, l), data_copy_size);
2842
2843         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2844                       btrfs_item_end_nr(l, mid);
2845
2846         for (i = 0; i < nritems; i++) {
2847                 struct btrfs_item *item = btrfs_item_nr(right, i);
2848                 u32 ioff;
2849
2850                 if (!right->map_token) {
2851                         map_extent_buffer(right, (unsigned long)item,
2852                                         sizeof(struct btrfs_item),
2853                                         &right->map_token, &right->kaddr,
2854                                         &right->map_start, &right->map_len,
2855                                         KM_USER1);
2856                 }
2857
2858                 ioff = btrfs_item_offset(right, item);
2859                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2860         }
2861
2862         if (right->map_token) {
2863                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2864                 right->map_token = NULL;
2865         }
2866
2867         btrfs_set_header_nritems(l, mid);
2868         ret = 0;
2869         btrfs_item_key(right, &disk_key, 0);
2870         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2871                           path->slots[1] + 1, 1);
2872         if (wret)
2873                 ret = wret;
2874
2875         btrfs_mark_buffer_dirty(right);
2876         btrfs_mark_buffer_dirty(l);
2877         BUG_ON(path->slots[0] != slot);
2878
2879         if (mid <= slot) {
2880                 btrfs_tree_unlock(path->nodes[0]);
2881                 free_extent_buffer(path->nodes[0]);
2882                 path->nodes[0] = right;
2883                 path->slots[0] -= mid;
2884                 path->slots[1] += 1;
2885         } else {
2886                 btrfs_tree_unlock(right);
2887                 free_extent_buffer(right);
2888         }
2889
2890         BUG_ON(path->slots[0] < 0);
2891
2892         return ret;
2893 }
2894
2895 /*
2896  * double splits happen when we need to insert a big item in the middle
2897  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2898  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2899  *          A                 B                 C
2900  *
2901  * We avoid this by trying to push the items on either side of our target
2902  * into the adjacent leaves.  If all goes well we can avoid the double split
2903  * completely.
2904  */
2905 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2906                                           struct btrfs_root *root,
2907                                           struct btrfs_path *path,
2908                                           int data_size)
2909 {
2910         int ret;
2911         int progress = 0;
2912         int slot;
2913         u32 nritems;
2914
2915         slot = path->slots[0];
2916
2917         /*
2918          * try to push all the items after our slot into the
2919          * right leaf
2920          */
2921         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2922         if (ret < 0)
2923                 return ret;
2924
2925         if (ret == 0)
2926                 progress++;
2927
2928         nritems = btrfs_header_nritems(path->nodes[0]);
2929         /*
2930          * our goal is to get our slot at the start or end of a leaf.  If
2931          * we've done so we're done
2932          */
2933         if (path->slots[0] == 0 || path->slots[0] == nritems)
2934                 return 0;
2935
2936         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2937                 return 0;
2938
2939         /* try to push all the items before our slot into the next leaf */
2940         slot = path->slots[0];
2941         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2942         if (ret < 0)
2943                 return ret;
2944
2945         if (ret == 0)
2946                 progress++;
2947
2948         if (progress)
2949                 return 0;
2950         return 1;
2951 }
2952
2953 /*
2954  * split the path's leaf in two, making sure there is at least data_size
2955  * available for the resulting leaf level of the path.
2956  *
2957  * returns 0 if all went well and < 0 on failure.
2958  */
2959 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2960                                struct btrfs_root *root,
2961                                struct btrfs_key *ins_key,
2962                                struct btrfs_path *path, int data_size,
2963                                int extend)
2964 {
2965         struct btrfs_disk_key disk_key;
2966         struct extent_buffer *l;
2967         u32 nritems;
2968         int mid;
2969         int slot;
2970         struct extent_buffer *right;
2971         int ret = 0;
2972         int wret;
2973         int split;
2974         int num_doubles = 0;
2975         int tried_avoid_double = 0;
2976
2977         l = path->nodes[0];
2978         slot = path->slots[0];
2979         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2980             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2981                 return -EOVERFLOW;
2982
2983         /* first try to make some room by pushing left and right */
2984         if (data_size) {
2985                 wret = push_leaf_right(trans, root, path, data_size,
2986                                        data_size, 0, 0);
2987                 if (wret < 0)
2988                         return wret;
2989                 if (wret) {
2990                         wret = push_leaf_left(trans, root, path, data_size,
2991                                               data_size, 0, (u32)-1);
2992                         if (wret < 0)
2993                                 return wret;
2994                 }
2995                 l = path->nodes[0];
2996
2997                 /* did the pushes work? */
2998                 if (btrfs_leaf_free_space(root, l) >= data_size)
2999                         return 0;
3000         }
3001
3002         if (!path->nodes[1]) {
3003                 ret = insert_new_root(trans, root, path, 1);
3004                 if (ret)
3005                         return ret;
3006         }
3007 again:
3008         split = 1;
3009         l = path->nodes[0];
3010         slot = path->slots[0];
3011         nritems = btrfs_header_nritems(l);
3012         mid = (nritems + 1) / 2;
3013
3014         if (mid <= slot) {
3015                 if (nritems == 1 ||
3016                     leaf_space_used(l, mid, nritems - mid) + data_size >
3017                         BTRFS_LEAF_DATA_SIZE(root)) {
3018                         if (slot >= nritems) {
3019                                 split = 0;
3020                         } else {
3021                                 mid = slot;
3022                                 if (mid != nritems &&
3023                                     leaf_space_used(l, mid, nritems - mid) +
3024                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3025                                         if (data_size && !tried_avoid_double)
3026                                                 goto push_for_double;
3027                                         split = 2;
3028                                 }
3029                         }
3030                 }
3031         } else {
3032                 if (leaf_space_used(l, 0, mid) + data_size >
3033                         BTRFS_LEAF_DATA_SIZE(root)) {
3034                         if (!extend && data_size && slot == 0) {
3035                                 split = 0;
3036                         } else if ((extend || !data_size) && slot == 0) {
3037                                 mid = 1;
3038                         } else {
3039                                 mid = slot;
3040                                 if (mid != nritems &&
3041                                     leaf_space_used(l, mid, nritems - mid) +
3042                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3043                                         if (data_size && !tried_avoid_double)
3044                                                 goto push_for_double;
3045                                         split = 2 ;
3046                                 }
3047                         }
3048                 }
3049         }
3050
3051         if (split == 0)
3052                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3053         else
3054                 btrfs_item_key(l, &disk_key, mid);
3055
3056         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3057                                         root->root_key.objectid,
3058                                         &disk_key, 0, l->start, 0);
3059         if (IS_ERR(right))
3060                 return PTR_ERR(right);
3061
3062         root_add_used(root, root->leafsize);
3063
3064         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3065         btrfs_set_header_bytenr(right, right->start);
3066         btrfs_set_header_generation(right, trans->transid);
3067         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3068         btrfs_set_header_owner(right, root->root_key.objectid);
3069         btrfs_set_header_level(right, 0);
3070         write_extent_buffer(right, root->fs_info->fsid,
3071                             (unsigned long)btrfs_header_fsid(right),
3072                             BTRFS_FSID_SIZE);
3073
3074         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3075                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3076                             BTRFS_UUID_SIZE);
3077
3078         if (split == 0) {
3079                 if (mid <= slot) {
3080                         btrfs_set_header_nritems(right, 0);
3081                         wret = insert_ptr(trans, root, path,
3082                                           &disk_key, right->start,
3083                                           path->slots[1] + 1, 1);
3084                         if (wret)
3085                                 ret = wret;
3086
3087                         btrfs_tree_unlock(path->nodes[0]);
3088                         free_extent_buffer(path->nodes[0]);
3089                         path->nodes[0] = right;
3090                         path->slots[0] = 0;
3091                         path->slots[1] += 1;
3092                 } else {
3093                         btrfs_set_header_nritems(right, 0);
3094                         wret = insert_ptr(trans, root, path,
3095                                           &disk_key,
3096                                           right->start,
3097                                           path->slots[1], 1);
3098                         if (wret)
3099                                 ret = wret;
3100                         btrfs_tree_unlock(path->nodes[0]);
3101                         free_extent_buffer(path->nodes[0]);
3102                         path->nodes[0] = right;
3103                         path->slots[0] = 0;
3104                         if (path->slots[1] == 0) {
3105                                 wret = fixup_low_keys(trans, root,
3106                                                 path, &disk_key, 1);
3107                                 if (wret)
3108                                         ret = wret;
3109                         }
3110                 }
3111                 btrfs_mark_buffer_dirty(right);
3112                 return ret;
3113         }
3114
3115         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3116         BUG_ON(ret);
3117
3118         if (split == 2) {
3119                 BUG_ON(num_doubles != 0);
3120                 num_doubles++;
3121                 goto again;
3122         }
3123
3124         return ret;
3125
3126 push_for_double:
3127         push_for_double_split(trans, root, path, data_size);
3128         tried_avoid_double = 1;
3129         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3130                 return 0;
3131         goto again;
3132 }
3133
3134 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3135                                          struct btrfs_root *root,
3136                                          struct btrfs_path *path, int ins_len)
3137 {
3138         struct btrfs_key key;
3139         struct extent_buffer *leaf;
3140         struct btrfs_file_extent_item *fi;
3141         u64 extent_len = 0;
3142         u32 item_size;
3143         int ret;
3144
3145         leaf = path->nodes[0];
3146         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3147
3148         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3149                key.type != BTRFS_EXTENT_CSUM_KEY);
3150
3151         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3152                 return 0;
3153
3154         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3155         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3156                 fi = btrfs_item_ptr(leaf, path->slots[0],
3157                                     struct btrfs_file_extent_item);
3158                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3159         }
3160         btrfs_release_path(root, path);
3161
3162         path->keep_locks = 1;
3163         path->search_for_split = 1;
3164         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3165         path->search_for_split = 0;
3166         if (ret < 0)
3167                 goto err;
3168
3169         ret = -EAGAIN;
3170         leaf = path->nodes[0];
3171         /* if our item isn't there or got smaller, return now */
3172         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3173                 goto err;
3174
3175         /* the leaf has  changed, it now has room.  return now */
3176         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3177                 goto err;
3178
3179         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3180                 fi = btrfs_item_ptr(leaf, path->slots[0],
3181                                     struct btrfs_file_extent_item);
3182                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3183                         goto err;
3184         }
3185
3186         btrfs_set_path_blocking(path);
3187         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3188         if (ret)
3189                 goto err;
3190
3191         path->keep_locks = 0;
3192         btrfs_unlock_up_safe(path, 1);
3193         return 0;
3194 err:
3195         path->keep_locks = 0;
3196         return ret;
3197 }
3198
3199 static noinline int split_item(struct btrfs_trans_handle *trans,
3200                                struct btrfs_root *root,
3201                                struct btrfs_path *path,
3202                                struct btrfs_key *new_key,
3203                                unsigned long split_offset)
3204 {
3205         struct extent_buffer *leaf;
3206         struct btrfs_item *item;
3207         struct btrfs_item *new_item;
3208         int slot;
3209         char *buf;
3210         u32 nritems;
3211         u32 item_size;
3212         u32 orig_offset;
3213         struct btrfs_disk_key disk_key;
3214
3215         leaf = path->nodes[0];
3216         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3217
3218         btrfs_set_path_blocking(path);
3219
3220         item = btrfs_item_nr(leaf, path->slots[0]);
3221         orig_offset = btrfs_item_offset(leaf, item);
3222         item_size = btrfs_item_size(leaf, item);
3223
3224         buf = kmalloc(item_size, GFP_NOFS);
3225         if (!buf)
3226                 return -ENOMEM;
3227
3228         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3229                             path->slots[0]), item_size);
3230
3231         slot = path->slots[0] + 1;
3232         nritems = btrfs_header_nritems(leaf);
3233         if (slot != nritems) {
3234                 /* shift the items */
3235                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3236                                 btrfs_item_nr_offset(slot),
3237                                 (nritems - slot) * sizeof(struct btrfs_item));
3238         }
3239
3240         btrfs_cpu_key_to_disk(&disk_key, new_key);
3241         btrfs_set_item_key(leaf, &disk_key, slot);
3242
3243         new_item = btrfs_item_nr(leaf, slot);
3244
3245         btrfs_set_item_offset(leaf, new_item, orig_offset);
3246         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3247
3248         btrfs_set_item_offset(leaf, item,
3249                               orig_offset + item_size - split_offset);
3250         btrfs_set_item_size(leaf, item, split_offset);
3251
3252         btrfs_set_header_nritems(leaf, nritems + 1);
3253
3254         /* write the data for the start of the original item */
3255         write_extent_buffer(leaf, buf,
3256                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3257                             split_offset);
3258
3259         /* write the data for the new item */
3260         write_extent_buffer(leaf, buf + split_offset,
3261                             btrfs_item_ptr_offset(leaf, slot),
3262                             item_size - split_offset);
3263         btrfs_mark_buffer_dirty(leaf);
3264
3265         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3266         kfree(buf);
3267         return 0;
3268 }
3269
3270 /*
3271  * This function splits a single item into two items,
3272  * giving 'new_key' to the new item and splitting the
3273  * old one at split_offset (from the start of the item).
3274  *
3275  * The path may be released by this operation.  After
3276  * the split, the path is pointing to the old item.  The
3277  * new item is going to be in the same node as the old one.
3278  *
3279  * Note, the item being split must be smaller enough to live alone on
3280  * a tree block with room for one extra struct btrfs_item
3281  *
3282  * This allows us to split the item in place, keeping a lock on the
3283  * leaf the entire time.
3284  */
3285 int btrfs_split_item(struct btrfs_trans_handle *trans,
3286                      struct btrfs_root *root,
3287                      struct btrfs_path *path,
3288                      struct btrfs_key *new_key,
3289                      unsigned long split_offset)
3290 {
3291         int ret;
3292         ret = setup_leaf_for_split(trans, root, path,
3293                                    sizeof(struct btrfs_item));
3294         if (ret)
3295                 return ret;
3296
3297         ret = split_item(trans, root, path, new_key, split_offset);
3298         return ret;
3299 }
3300
3301 /*
3302  * This function duplicate a item, giving 'new_key' to the new item.
3303  * It guarantees both items live in the same tree leaf and the new item
3304  * is contiguous with the original item.
3305  *
3306  * This allows us to split file extent in place, keeping a lock on the
3307  * leaf the entire time.
3308  */
3309 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3310                          struct btrfs_root *root,
3311                          struct btrfs_path *path,
3312                          struct btrfs_key *new_key)
3313 {
3314         struct extent_buffer *leaf;
3315         int ret;
3316         u32 item_size;
3317
3318         leaf = path->nodes[0];
3319         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3320         ret = setup_leaf_for_split(trans, root, path,
3321                                    item_size + sizeof(struct btrfs_item));
3322         if (ret)
3323                 return ret;
3324
3325         path->slots[0]++;
3326         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3327                                      item_size, item_size +
3328                                      sizeof(struct btrfs_item), 1);
3329         BUG_ON(ret);
3330
3331         leaf = path->nodes[0];
3332         memcpy_extent_buffer(leaf,
3333                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3334                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3335                              item_size);
3336         return 0;
3337 }
3338
3339 /*
3340  * make the item pointed to by the path smaller.  new_size indicates
3341  * how small to make it, and from_end tells us if we just chop bytes
3342  * off the end of the item or if we shift the item to chop bytes off
3343  * the front.
3344  */
3345 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3346                         struct btrfs_root *root,
3347                         struct btrfs_path *path,
3348                         u32 new_size, int from_end)
3349 {
3350         int ret = 0;
3351         int slot;
3352         int slot_orig;
3353         struct extent_buffer *leaf;
3354         struct btrfs_item *item;
3355         u32 nritems;
3356         unsigned int data_end;
3357         unsigned int old_data_start;
3358         unsigned int old_size;
3359         unsigned int size_diff;
3360         int i;
3361
3362         slot_orig = path->slots[0];
3363         leaf = path->nodes[0];
3364         slot = path->slots[0];
3365
3366         old_size = btrfs_item_size_nr(leaf, slot);
3367         if (old_size == new_size)
3368                 return 0;
3369
3370         nritems = btrfs_header_nritems(leaf);
3371         data_end = leaf_data_end(root, leaf);
3372
3373         old_data_start = btrfs_item_offset_nr(leaf, slot);
3374
3375         size_diff = old_size - new_size;
3376
3377         BUG_ON(slot < 0);
3378         BUG_ON(slot >= nritems);
3379
3380         /*
3381          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3382          */
3383         /* first correct the data pointers */
3384         for (i = slot; i < nritems; i++) {
3385                 u32 ioff;
3386                 item = btrfs_item_nr(leaf, i);
3387
3388                 if (!leaf->map_token) {
3389                         map_extent_buffer(leaf, (unsigned long)item,
3390                                         sizeof(struct btrfs_item),
3391                                         &leaf->map_token, &leaf->kaddr,
3392                                         &leaf->map_start, &leaf->map_len,
3393                                         KM_USER1);
3394                 }
3395
3396                 ioff = btrfs_item_offset(leaf, item);
3397                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3398         }
3399
3400         if (leaf->map_token) {
3401                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3402                 leaf->map_token = NULL;
3403         }
3404
3405         /* shift the data */
3406         if (from_end) {
3407                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3408                               data_end + size_diff, btrfs_leaf_data(leaf) +
3409                               data_end, old_data_start + new_size - data_end);
3410         } else {
3411                 struct btrfs_disk_key disk_key;
3412                 u64 offset;
3413
3414                 btrfs_item_key(leaf, &disk_key, slot);
3415
3416                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3417                         unsigned long ptr;
3418                         struct btrfs_file_extent_item *fi;
3419
3420                         fi = btrfs_item_ptr(leaf, slot,
3421                                             struct btrfs_file_extent_item);
3422                         fi = (struct btrfs_file_extent_item *)(
3423                              (unsigned long)fi - size_diff);
3424
3425                         if (btrfs_file_extent_type(leaf, fi) ==
3426                             BTRFS_FILE_EXTENT_INLINE) {
3427                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3428                                 memmove_extent_buffer(leaf, ptr,
3429                                       (unsigned long)fi,
3430                                       offsetof(struct btrfs_file_extent_item,
3431                                                  disk_bytenr));
3432                         }
3433                 }
3434
3435                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3436                               data_end + size_diff, btrfs_leaf_data(leaf) +
3437                               data_end, old_data_start - data_end);
3438
3439                 offset = btrfs_disk_key_offset(&disk_key);
3440                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3441                 btrfs_set_item_key(leaf, &disk_key, slot);
3442                 if (slot == 0)
3443                         fixup_low_keys(trans, root, path, &disk_key, 1);
3444         }
3445
3446         item = btrfs_item_nr(leaf, slot);
3447         btrfs_set_item_size(leaf, item, new_size);
3448         btrfs_mark_buffer_dirty(leaf);
3449
3450         ret = 0;
3451         if (btrfs_leaf_free_space(root, leaf) < 0) {
3452                 btrfs_print_leaf(root, leaf);
3453                 BUG();
3454         }
3455         return ret;
3456 }
3457
3458 /*
3459  * make the item pointed to by the path bigger, data_size is the new size.
3460  */
3461 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3462                       struct btrfs_root *root, struct btrfs_path *path,
3463                       u32 data_size)
3464 {
3465         int ret = 0;
3466         int slot;
3467         int slot_orig;
3468         struct extent_buffer *leaf;
3469         struct btrfs_item *item;
3470         u32 nritems;
3471         unsigned int data_end;
3472         unsigned int old_data;
3473         unsigned int old_size;
3474         int i;
3475
3476         slot_orig = path->slots[0];
3477         leaf = path->nodes[0];
3478
3479         nritems = btrfs_header_nritems(leaf);
3480         data_end = leaf_data_end(root, leaf);
3481
3482         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3483                 btrfs_print_leaf(root, leaf);
3484                 BUG();
3485         }
3486         slot = path->slots[0];
3487         old_data = btrfs_item_end_nr(leaf, slot);
3488
3489         BUG_ON(slot < 0);
3490         if (slot >= nritems) {
3491                 btrfs_print_leaf(root, leaf);
3492                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3493                        slot, nritems);
3494                 BUG_ON(1);
3495         }
3496
3497         /*
3498          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3499          */
3500         /* first correct the data pointers */
3501         for (i = slot; i < nritems; i++) {
3502                 u32 ioff;
3503                 item = btrfs_item_nr(leaf, i);
3504
3505                 if (!leaf->map_token) {
3506                         map_extent_buffer(leaf, (unsigned long)item,
3507                                         sizeof(struct btrfs_item),
3508                                         &leaf->map_token, &leaf->kaddr,
3509                                         &leaf->map_start, &leaf->map_len,
3510                                         KM_USER1);
3511                 }
3512                 ioff = btrfs_item_offset(leaf, item);
3513                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3514         }
3515
3516         if (leaf->map_token) {
3517                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3518                 leaf->map_token = NULL;
3519         }
3520
3521         /* shift the data */
3522         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3523                       data_end - data_size, btrfs_leaf_data(leaf) +
3524                       data_end, old_data - data_end);
3525
3526         data_end = old_data;
3527         old_size = btrfs_item_size_nr(leaf, slot);
3528         item = btrfs_item_nr(leaf, slot);
3529         btrfs_set_item_size(leaf, item, old_size + data_size);
3530         btrfs_mark_buffer_dirty(leaf);
3531
3532         ret = 0;
3533         if (btrfs_leaf_free_space(root, leaf) < 0) {
3534                 btrfs_print_leaf(root, leaf);
3535                 BUG();
3536         }
3537         return ret;
3538 }
3539
3540 /*
3541  * Given a key and some data, insert items into the tree.
3542  * This does all the path init required, making room in the tree if needed.
3543  * Returns the number of keys that were inserted.
3544  */
3545 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3546                             struct btrfs_root *root,
3547                             struct btrfs_path *path,
3548                             struct btrfs_key *cpu_key, u32 *data_size,
3549                             int nr)
3550 {
3551         struct extent_buffer *leaf;
3552         struct btrfs_item *item;
3553         int ret = 0;
3554         int slot;
3555         int i;
3556         u32 nritems;
3557         u32 total_data = 0;
3558         u32 total_size = 0;
3559         unsigned int data_end;
3560         struct btrfs_disk_key disk_key;
3561         struct btrfs_key found_key;
3562
3563         for (i = 0; i < nr; i++) {
3564                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3565                     BTRFS_LEAF_DATA_SIZE(root)) {
3566                         break;
3567                         nr = i;
3568                 }
3569                 total_data += data_size[i];
3570                 total_size += data_size[i] + sizeof(struct btrfs_item);
3571         }
3572         BUG_ON(nr == 0);
3573
3574         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3575         if (ret == 0)
3576                 return -EEXIST;
3577         if (ret < 0)
3578                 goto out;
3579
3580         leaf = path->nodes[0];
3581
3582         nritems = btrfs_header_nritems(leaf);
3583         data_end = leaf_data_end(root, leaf);
3584
3585         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3586                 for (i = nr; i >= 0; i--) {
3587                         total_data -= data_size[i];
3588                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3589                         if (total_size < btrfs_leaf_free_space(root, leaf))
3590                                 break;
3591                 }
3592                 nr = i;
3593         }
3594
3595         slot = path->slots[0];
3596         BUG_ON(slot < 0);
3597
3598         if (slot != nritems) {
3599                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3600
3601                 item = btrfs_item_nr(leaf, slot);
3602                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3603
3604                 /* figure out how many keys we can insert in here */
3605                 total_data = data_size[0];
3606                 for (i = 1; i < nr; i++) {
3607                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3608                                 break;
3609                         total_data += data_size[i];
3610                 }
3611                 nr = i;
3612
3613                 if (old_data < data_end) {
3614                         btrfs_print_leaf(root, leaf);
3615                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3616                                slot, old_data, data_end);
3617                         BUG_ON(1);
3618                 }
3619                 /*
3620                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3621                  */
3622                 /* first correct the data pointers */
3623                 WARN_ON(leaf->map_token);
3624                 for (i = slot; i < nritems; i++) {
3625                         u32 ioff;
3626
3627                         item = btrfs_item_nr(leaf, i);
3628                         if (!leaf->map_token) {
3629                                 map_extent_buffer(leaf, (unsigned long)item,
3630                                         sizeof(struct btrfs_item),
3631                                         &leaf->map_token, &leaf->kaddr,
3632                                         &leaf->map_start, &leaf->map_len,
3633                                         KM_USER1);
3634                         }
3635
3636                         ioff = btrfs_item_offset(leaf, item);
3637                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3638                 }
3639                 if (leaf->map_token) {
3640                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3641                         leaf->map_token = NULL;
3642                 }
3643
3644                 /* shift the items */
3645                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3646                               btrfs_item_nr_offset(slot),
3647                               (nritems - slot) * sizeof(struct btrfs_item));
3648
3649                 /* shift the data */
3650                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3651                               data_end - total_data, btrfs_leaf_data(leaf) +
3652                               data_end, old_data - data_end);
3653                 data_end = old_data;
3654         } else {
3655                 /*
3656                  * this sucks but it has to be done, if we are inserting at
3657                  * the end of the leaf only insert 1 of the items, since we
3658                  * have no way of knowing whats on the next leaf and we'd have
3659                  * to drop our current locks to figure it out
3660                  */
3661                 nr = 1;
3662         }
3663
3664         /* setup the item for the new data */
3665         for (i = 0; i < nr; i++) {
3666                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3667                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3668                 item = btrfs_item_nr(leaf, slot + i);
3669                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3670                 data_end -= data_size[i];
3671                 btrfs_set_item_size(leaf, item, data_size[i]);
3672         }
3673         btrfs_set_header_nritems(leaf, nritems + nr);
3674         btrfs_mark_buffer_dirty(leaf);
3675
3676         ret = 0;
3677         if (slot == 0) {
3678                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3679                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3680         }
3681
3682         if (btrfs_leaf_free_space(root, leaf) < 0) {
3683                 btrfs_print_leaf(root, leaf);
3684                 BUG();
3685         }
3686 out:
3687         if (!ret)
3688                 ret = nr;
3689         return ret;
3690 }
3691
3692 /*
3693  * this is a helper for btrfs_insert_empty_items, the main goal here is
3694  * to save stack depth by doing the bulk of the work in a function
3695  * that doesn't call btrfs_search_slot
3696  */
3697 static noinline_for_stack int
3698 setup_items_for_insert(struct btrfs_trans_handle *trans,
3699                       struct btrfs_root *root, struct btrfs_path *path,
3700                       struct btrfs_key *cpu_key, u32 *data_size,
3701                       u32 total_data, u32 total_size, int nr)
3702 {
3703         struct btrfs_item *item;
3704         int i;
3705         u32 nritems;
3706         unsigned int data_end;
3707         struct btrfs_disk_key disk_key;
3708         int ret;
3709         struct extent_buffer *leaf;
3710         int slot;
3711
3712         leaf = path->nodes[0];
3713         slot = path->slots[0];
3714
3715         nritems = btrfs_header_nritems(leaf);
3716         data_end = leaf_data_end(root, leaf);
3717
3718         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3719                 btrfs_print_leaf(root, leaf);
3720                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3721                        total_size, btrfs_leaf_free_space(root, leaf));
3722                 BUG();
3723         }
3724
3725         if (slot != nritems) {
3726                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3727
3728                 if (old_data < data_end) {
3729                         btrfs_print_leaf(root, leaf);
3730                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3731                                slot, old_data, data_end);
3732                         BUG_ON(1);
3733                 }
3734                 /*
3735                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3736                  */
3737                 /* first correct the data pointers */
3738                 WARN_ON(leaf->map_token);
3739                 for (i = slot; i < nritems; i++) {
3740                         u32 ioff;
3741
3742                         item = btrfs_item_nr(leaf, i);
3743                         if (!leaf->map_token) {
3744                                 map_extent_buffer(leaf, (unsigned long)item,
3745                                         sizeof(struct btrfs_item),
3746                                         &leaf->map_token, &leaf->kaddr,
3747                                         &leaf->map_start, &leaf->map_len,
3748                                         KM_USER1);
3749                         }
3750
3751                         ioff = btrfs_item_offset(leaf, item);
3752                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3753                 }
3754                 if (leaf->map_token) {
3755                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3756                         leaf->map_token = NULL;
3757                 }
3758
3759                 /* shift the items */
3760                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3761                               btrfs_item_nr_offset(slot),
3762                               (nritems - slot) * sizeof(struct btrfs_item));
3763
3764                 /* shift the data */
3765                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3766                               data_end - total_data, btrfs_leaf_data(leaf) +
3767                               data_end, old_data - data_end);
3768                 data_end = old_data;
3769         }
3770
3771         /* setup the item for the new data */
3772         for (i = 0; i < nr; i++) {
3773                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3774                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3775                 item = btrfs_item_nr(leaf, slot + i);
3776                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3777                 data_end -= data_size[i];
3778                 btrfs_set_item_size(leaf, item, data_size[i]);
3779         }
3780
3781         btrfs_set_header_nritems(leaf, nritems + nr);
3782
3783         ret = 0;
3784         if (slot == 0) {
3785                 struct btrfs_disk_key disk_key;
3786                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3787                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3788         }
3789         btrfs_unlock_up_safe(path, 1);
3790         btrfs_mark_buffer_dirty(leaf);
3791
3792         if (btrfs_leaf_free_space(root, leaf) < 0) {
3793                 btrfs_print_leaf(root, leaf);
3794                 BUG();
3795         }
3796         return ret;
3797 }
3798
3799 /*
3800  * Given a key and some data, insert items into the tree.
3801  * This does all the path init required, making room in the tree if needed.
3802  */
3803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3804                             struct btrfs_root *root,
3805                             struct btrfs_path *path,
3806                             struct btrfs_key *cpu_key, u32 *data_size,
3807                             int nr)
3808 {
3809         struct extent_buffer *leaf;
3810         int ret = 0;
3811         int slot;
3812         int i;
3813         u32 total_size = 0;
3814         u32 total_data = 0;
3815
3816         for (i = 0; i < nr; i++)
3817                 total_data += data_size[i];
3818
3819         total_size = total_data + (nr * sizeof(struct btrfs_item));
3820         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3821         if (ret == 0)
3822                 return -EEXIST;
3823         if (ret < 0)
3824                 goto out;
3825
3826         leaf = path->nodes[0];
3827         slot = path->slots[0];
3828         BUG_ON(slot < 0);
3829
3830         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3831                                total_data, total_size, nr);
3832
3833 out:
3834         return ret;
3835 }
3836
3837 /*
3838  * Given a key and some data, insert an item into the tree.
3839  * This does all the path init required, making room in the tree if needed.
3840  */
3841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3842                       *root, struct btrfs_key *cpu_key, void *data, u32
3843                       data_size)
3844 {
3845         int ret = 0;
3846         struct btrfs_path *path;
3847         struct extent_buffer *leaf;
3848         unsigned long ptr;
3849
3850         path = btrfs_alloc_path();
3851         BUG_ON(!path);
3852         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3853         if (!ret) {
3854                 leaf = path->nodes[0];
3855                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3856                 write_extent_buffer(leaf, data, ptr, data_size);
3857                 btrfs_mark_buffer_dirty(leaf);
3858         }
3859         btrfs_free_path(path);
3860         return ret;
3861 }
3862
3863 /*
3864  * delete the pointer from a given node.
3865  *
3866  * the tree should have been previously balanced so the deletion does not
3867  * empty a node.
3868  */
3869 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3870                    struct btrfs_path *path, int level, int slot)
3871 {
3872         struct extent_buffer *parent = path->nodes[level];
3873         u32 nritems;
3874         int ret = 0;
3875         int wret;
3876
3877         nritems = btrfs_header_nritems(parent);
3878         if (slot != nritems - 1) {
3879                 memmove_extent_buffer(parent,
3880                               btrfs_node_key_ptr_offset(slot),
3881                               btrfs_node_key_ptr_offset(slot + 1),
3882                               sizeof(struct btrfs_key_ptr) *
3883                               (nritems - slot - 1));
3884         }
3885         nritems--;
3886         btrfs_set_header_nritems(parent, nritems);
3887         if (nritems == 0 && parent == root->node) {
3888                 BUG_ON(btrfs_header_level(root->node) != 1);
3889                 /* just turn the root into a leaf and break */
3890                 btrfs_set_header_level(root->node, 0);
3891         } else if (slot == 0) {
3892                 struct btrfs_disk_key disk_key;
3893
3894                 btrfs_node_key(parent, &disk_key, 0);
3895                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3896                 if (wret)
3897                         ret = wret;
3898         }
3899         btrfs_mark_buffer_dirty(parent);
3900         return ret;
3901 }
3902
3903 /*
3904  * a helper function to delete the leaf pointed to by path->slots[1] and
3905  * path->nodes[1].
3906  *
3907  * This deletes the pointer in path->nodes[1] and frees the leaf
3908  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3909  *
3910  * The path must have already been setup for deleting the leaf, including
3911  * all the proper balancing.  path->nodes[1] must be locked.
3912  */
3913 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3914                                    struct btrfs_root *root,
3915                                    struct btrfs_path *path,
3916                                    struct extent_buffer *leaf)
3917 {
3918         int ret;
3919
3920         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3921         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3922         if (ret)
3923                 return ret;
3924
3925         /*
3926          * btrfs_free_extent is expensive, we want to make sure we
3927          * aren't holding any locks when we call it
3928          */
3929         btrfs_unlock_up_safe(path, 0);
3930
3931         root_sub_used(root, leaf->len);
3932
3933         btrfs_free_tree_block(trans, root, leaf, 0, 1);
3934         return 0;
3935 }
3936 /*
3937  * delete the item at the leaf level in path.  If that empties
3938  * the leaf, remove it from the tree
3939  */
3940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3941                     struct btrfs_path *path, int slot, int nr)
3942 {
3943         struct extent_buffer *leaf;
3944         struct btrfs_item *item;
3945         int last_off;
3946         int dsize = 0;
3947         int ret = 0;
3948         int wret;
3949         int i;
3950         u32 nritems;
3951
3952         leaf = path->nodes[0];
3953         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3954
3955         for (i = 0; i < nr; i++)
3956                 dsize += btrfs_item_size_nr(leaf, slot + i);
3957
3958         nritems = btrfs_header_nritems(leaf);
3959
3960         if (slot + nr != nritems) {
3961                 int data_end = leaf_data_end(root, leaf);
3962
3963                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3964                               data_end + dsize,
3965                               btrfs_leaf_data(leaf) + data_end,
3966                               last_off - data_end);
3967
3968                 for (i = slot + nr; i < nritems; i++) {
3969                         u32 ioff;
3970
3971                         item = btrfs_item_nr(leaf, i);
3972                         if (!leaf->map_token) {
3973                                 map_extent_buffer(leaf, (unsigned long)item,
3974                                         sizeof(struct btrfs_item),
3975                                         &leaf->map_token, &leaf->kaddr,
3976                                         &leaf->map_start, &leaf->map_len,
3977                                         KM_USER1);
3978                         }
3979                         ioff = btrfs_item_offset(leaf, item);
3980                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3981                 }
3982
3983                 if (leaf->map_token) {
3984                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3985                         leaf->map_token = NULL;
3986                 }
3987
3988                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3989                               btrfs_item_nr_offset(slot + nr),
3990                               sizeof(struct btrfs_item) *
3991                               (nritems - slot - nr));
3992         }
3993         btrfs_set_header_nritems(leaf, nritems - nr);
3994         nritems -= nr;
3995
3996         /* delete the leaf if we've emptied it */
3997         if (nritems == 0) {
3998                 if (leaf == root->node) {
3999                         btrfs_set_header_level(leaf, 0);
4000                 } else {
4001                         btrfs_set_path_blocking(path);
4002                         clean_tree_block(trans, root, leaf);
4003                         ret = btrfs_del_leaf(trans, root, path, leaf);
4004                         BUG_ON(ret);
4005                 }
4006         } else {
4007                 int used = leaf_space_used(leaf, 0, nritems);
4008                 if (slot == 0) {
4009                         struct btrfs_disk_key disk_key;
4010
4011                         btrfs_item_key(leaf, &disk_key, 0);
4012                         wret = fixup_low_keys(trans, root, path,
4013                                               &disk_key, 1);
4014                         if (wret)
4015                                 ret = wret;
4016                 }
4017
4018                 /* delete the leaf if it is mostly empty */
4019                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4020                         /* push_leaf_left fixes the path.
4021                          * make sure the path still points to our leaf
4022                          * for possible call to del_ptr below
4023                          */
4024                         slot = path->slots[1];
4025                         extent_buffer_get(leaf);
4026
4027                         btrfs_set_path_blocking(path);
4028                         wret = push_leaf_left(trans, root, path, 1, 1,
4029                                               1, (u32)-1);
4030                         if (wret < 0 && wret != -ENOSPC)
4031                                 ret = wret;
4032
4033                         if (path->nodes[0] == leaf &&
4034                             btrfs_header_nritems(leaf)) {
4035                                 wret = push_leaf_right(trans, root, path, 1,
4036                                                        1, 1, 0);
4037                                 if (wret < 0 && wret != -ENOSPC)
4038                                         ret = wret;
4039                         }
4040
4041                         if (btrfs_header_nritems(leaf) == 0) {
4042                                 path->slots[1] = slot;
4043                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4044                                 BUG_ON(ret);
4045                                 free_extent_buffer(leaf);
4046                         } else {
4047                                 /* if we're still in the path, make sure
4048                                  * we're dirty.  Otherwise, one of the
4049                                  * push_leaf functions must have already
4050                                  * dirtied this buffer
4051                                  */
4052                                 if (path->nodes[0] == leaf)
4053                                         btrfs_mark_buffer_dirty(leaf);
4054                                 free_extent_buffer(leaf);
4055                         }
4056                 } else {
4057                         btrfs_mark_buffer_dirty(leaf);
4058                 }
4059         }
4060         return ret;
4061 }
4062
4063 /*
4064  * search the tree again to find a leaf with lesser keys
4065  * returns 0 if it found something or 1 if there are no lesser leaves.
4066  * returns < 0 on io errors.
4067  *
4068  * This may release the path, and so you may lose any locks held at the
4069  * time you call it.
4070  */
4071 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4072 {
4073         struct btrfs_key key;
4074         struct btrfs_disk_key found_key;
4075         int ret;
4076
4077         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4078
4079         if (key.offset > 0)
4080                 key.offset--;
4081         else if (key.type > 0)
4082                 key.type--;
4083         else if (key.objectid > 0)
4084                 key.objectid--;
4085         else
4086                 return 1;
4087
4088         btrfs_release_path(root, path);
4089         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4090         if (ret < 0)
4091                 return ret;
4092         btrfs_item_key(path->nodes[0], &found_key, 0);
4093         ret = comp_keys(&found_key, &key);
4094         if (ret < 0)
4095                 return 0;
4096         return 1;
4097 }
4098
4099 /*
4100  * A helper function to walk down the tree starting at min_key, and looking
4101  * for nodes or leaves that are either in cache or have a minimum
4102  * transaction id.  This is used by the btree defrag code, and tree logging
4103  *
4104  * This does not cow, but it does stuff the starting key it finds back
4105  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4106  * key and get a writable path.
4107  *
4108  * This does lock as it descends, and path->keep_locks should be set
4109  * to 1 by the caller.
4110  *
4111  * This honors path->lowest_level to prevent descent past a given level
4112  * of the tree.
4113  *
4114  * min_trans indicates the oldest transaction that you are interested
4115  * in walking through.  Any nodes or leaves older than min_trans are
4116  * skipped over (without reading them).
4117  *
4118  * returns zero if something useful was found, < 0 on error and 1 if there
4119  * was nothing in the tree that matched the search criteria.
4120  */
4121 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4122                          struct btrfs_key *max_key,
4123                          struct btrfs_path *path, int cache_only,
4124                          u64 min_trans)
4125 {
4126         struct extent_buffer *cur;
4127         struct btrfs_key found_key;
4128         int slot;
4129         int sret;
4130         u32 nritems;
4131         int level;
4132         int ret = 1;
4133
4134         WARN_ON(!path->keep_locks);
4135 again:
4136         cur = btrfs_lock_root_node(root);
4137         level = btrfs_header_level(cur);
4138         WARN_ON(path->nodes[level]);
4139         path->nodes[level] = cur;
4140         path->locks[level] = 1;
4141
4142         if (btrfs_header_generation(cur) < min_trans) {
4143                 ret = 1;
4144                 goto out;
4145         }
4146         while (1) {
4147                 nritems = btrfs_header_nritems(cur);
4148                 level = btrfs_header_level(cur);
4149                 sret = bin_search(cur, min_key, level, &slot);
4150
4151                 /* at the lowest level, we're done, setup the path and exit */
4152                 if (level == path->lowest_level) {
4153                         if (slot >= nritems)
4154                                 goto find_next_key;
4155                         ret = 0;
4156                         path->slots[level] = slot;
4157                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4158                         goto out;
4159                 }
4160                 if (sret && slot > 0)
4161                         slot--;
4162                 /*
4163                  * check this node pointer against the cache_only and
4164                  * min_trans parameters.  If it isn't in cache or is too
4165                  * old, skip to the next one.
4166                  */
4167                 while (slot < nritems) {
4168                         u64 blockptr;
4169                         u64 gen;
4170                         struct extent_buffer *tmp;
4171                         struct btrfs_disk_key disk_key;
4172
4173                         blockptr = btrfs_node_blockptr(cur, slot);
4174                         gen = btrfs_node_ptr_generation(cur, slot);
4175                         if (gen < min_trans) {
4176                                 slot++;
4177                                 continue;
4178                         }
4179                         if (!cache_only)
4180                                 break;
4181
4182                         if (max_key) {
4183                                 btrfs_node_key(cur, &disk_key, slot);
4184                                 if (comp_keys(&disk_key, max_key) >= 0) {
4185                                         ret = 1;
4186                                         goto out;
4187                                 }
4188                         }
4189
4190                         tmp = btrfs_find_tree_block(root, blockptr,
4191                                             btrfs_level_size(root, level - 1));
4192
4193                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4194                                 free_extent_buffer(tmp);
4195                                 break;
4196                         }
4197                         if (tmp)
4198                                 free_extent_buffer(tmp);
4199                         slot++;
4200                 }
4201 find_next_key:
4202                 /*
4203                  * we didn't find a candidate key in this node, walk forward
4204                  * and find another one
4205                  */
4206                 if (slot >= nritems) {
4207                         path->slots[level] = slot;
4208                         btrfs_set_path_blocking(path);
4209                         sret = btrfs_find_next_key(root, path, min_key, level,
4210                                                   cache_only, min_trans);
4211                         if (sret == 0) {
4212                                 btrfs_release_path(root, path);
4213                                 goto again;
4214                         } else {
4215                                 goto out;
4216                         }
4217                 }
4218                 /* save our key for returning back */
4219                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4220                 path->slots[level] = slot;
4221                 if (level == path->lowest_level) {
4222                         ret = 0;
4223                         unlock_up(path, level, 1);
4224                         goto out;
4225                 }
4226                 btrfs_set_path_blocking(path);
4227                 cur = read_node_slot(root, cur, slot);
4228
4229                 btrfs_tree_lock(cur);
4230
4231                 path->locks[level - 1] = 1;
4232                 path->nodes[level - 1] = cur;
4233                 unlock_up(path, level, 1);
4234                 btrfs_clear_path_blocking(path, NULL);
4235         }
4236 out:
4237         if (ret == 0)
4238                 memcpy(min_key, &found_key, sizeof(found_key));
4239         btrfs_set_path_blocking(path);
4240         return ret;
4241 }
4242
4243 /*
4244  * this is similar to btrfs_next_leaf, but does not try to preserve
4245  * and fixup the path.  It looks for and returns the next key in the
4246  * tree based on the current path and the cache_only and min_trans
4247  * parameters.
4248  *
4249  * 0 is returned if another key is found, < 0 if there are any errors
4250  * and 1 is returned if there are no higher keys in the tree
4251  *
4252  * path->keep_locks should be set to 1 on the search made before
4253  * calling this function.
4254  */
4255 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4256                         struct btrfs_key *key, int level,
4257                         int cache_only, u64 min_trans)
4258 {
4259         int slot;
4260         struct extent_buffer *c;
4261
4262         WARN_ON(!path->keep_locks);
4263         while (level < BTRFS_MAX_LEVEL) {
4264                 if (!path->nodes[level])
4265                         return 1;
4266
4267                 slot = path->slots[level] + 1;
4268                 c = path->nodes[level];
4269 next:
4270                 if (slot >= btrfs_header_nritems(c)) {
4271                         int ret;
4272                         int orig_lowest;
4273                         struct btrfs_key cur_key;
4274                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4275                             !path->nodes[level + 1])
4276                                 return 1;
4277
4278                         if (path->locks[level + 1]) {
4279                                 level++;
4280                                 continue;
4281                         }
4282
4283                         slot = btrfs_header_nritems(c) - 1;
4284                         if (level == 0)
4285                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4286                         else
4287                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4288
4289                         orig_lowest = path->lowest_level;
4290                         btrfs_release_path(root, path);
4291                         path->lowest_level = level;
4292                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4293                                                 0, 0);
4294                         path->lowest_level = orig_lowest;
4295                         if (ret < 0)
4296                                 return ret;
4297
4298                         c = path->nodes[level];
4299                         slot = path->slots[level];
4300                         if (ret == 0)
4301                                 slot++;
4302                         goto next;
4303                 }
4304
4305                 if (level == 0)
4306                         btrfs_item_key_to_cpu(c, key, slot);
4307                 else {
4308                         u64 blockptr = btrfs_node_blockptr(c, slot);
4309                         u64 gen = btrfs_node_ptr_generation(c, slot);
4310
4311                         if (cache_only) {
4312                                 struct extent_buffer *cur;
4313                                 cur = btrfs_find_tree_block(root, blockptr,
4314                                             btrfs_level_size(root, level - 1));
4315                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4316                                         slot++;
4317                                         if (cur)
4318                                                 free_extent_buffer(cur);
4319                                         goto next;
4320                                 }
4321                                 free_extent_buffer(cur);
4322                         }
4323                         if (gen < min_trans) {
4324                                 slot++;
4325                                 goto next;
4326                         }
4327                         btrfs_node_key_to_cpu(c, key, slot);
4328                 }
4329                 return 0;
4330         }
4331         return 1;
4332 }
4333
4334 /*
4335  * search the tree again to find a leaf with greater keys
4336  * returns 0 if it found something or 1 if there are no greater leaves.
4337  * returns < 0 on io errors.
4338  */
4339 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4340 {
4341         int slot;
4342         int level;
4343         struct extent_buffer *c;
4344         struct extent_buffer *next;
4345         struct btrfs_key key;
4346         u32 nritems;
4347         int ret;
4348         int old_spinning = path->leave_spinning;
4349         int force_blocking = 0;
4350
4351         nritems = btrfs_header_nritems(path->nodes[0]);
4352         if (nritems == 0)
4353                 return 1;
4354
4355         /*
4356          * we take the blocks in an order that upsets lockdep.  Using
4357          * blocking mode is the only way around it.
4358          */
4359 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4360         force_blocking = 1;
4361 #endif
4362
4363         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4364 again:
4365         level = 1;
4366         next = NULL;
4367         btrfs_release_path(root, path);
4368
4369         path->keep_locks = 1;
4370
4371         if (!force_blocking)
4372                 path->leave_spinning = 1;
4373
4374         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4375         path->keep_locks = 0;
4376
4377         if (ret < 0)
4378                 return ret;
4379
4380         nritems = btrfs_header_nritems(path->nodes[0]);
4381         /*
4382          * by releasing the path above we dropped all our locks.  A balance
4383          * could have added more items next to the key that used to be
4384          * at the very end of the block.  So, check again here and
4385          * advance the path if there are now more items available.
4386          */
4387         if (nritems > 0 && path->slots[0] < nritems - 1) {
4388                 if (ret == 0)
4389                         path->slots[0]++;
4390                 ret = 0;
4391                 goto done;
4392         }
4393
4394         while (level < BTRFS_MAX_LEVEL) {
4395                 if (!path->nodes[level]) {
4396                         ret = 1;
4397                         goto done;
4398                 }
4399
4400                 slot = path->slots[level] + 1;
4401                 c = path->nodes[level];
4402                 if (slot >= btrfs_header_nritems(c)) {
4403                         level++;
4404                         if (level == BTRFS_MAX_LEVEL) {
4405                                 ret = 1;
4406                                 goto done;
4407                         }
4408                         continue;
4409                 }
4410
4411                 if (next) {
4412                         btrfs_tree_unlock(next);
4413                         free_extent_buffer(next);
4414                 }
4415
4416                 next = c;
4417                 ret = read_block_for_search(NULL, root, path, &next, level,
4418                                             slot, &key);
4419                 if (ret == -EAGAIN)
4420                         goto again;
4421
4422                 if (ret < 0) {
4423                         btrfs_release_path(root, path);
4424                         goto done;
4425                 }
4426
4427                 if (!path->skip_locking) {
4428                         ret = btrfs_try_spin_lock(next);
4429                         if (!ret) {
4430                                 btrfs_set_path_blocking(path);
4431                                 btrfs_tree_lock(next);
4432                                 if (!force_blocking)
4433                                         btrfs_clear_path_blocking(path, next);
4434                         }
4435                         if (force_blocking)
4436                                 btrfs_set_lock_blocking(next);
4437                 }
4438                 break;
4439         }
4440         path->slots[level] = slot;
4441         while (1) {
4442                 level--;
4443                 c = path->nodes[level];
4444                 if (path->locks[level])
4445                         btrfs_tree_unlock(c);
4446
4447                 free_extent_buffer(c);
4448                 path->nodes[level] = next;
4449                 path->slots[level] = 0;
4450                 if (!path->skip_locking)
4451                         path->locks[level] = 1;
4452
4453                 if (!level)
4454                         break;
4455
4456                 ret = read_block_for_search(NULL, root, path, &next, level,
4457                                             0, &key);
4458                 if (ret == -EAGAIN)
4459                         goto again;
4460
4461                 if (ret < 0) {
4462                         btrfs_release_path(root, path);
4463                         goto done;
4464                 }
4465
4466                 if (!path->skip_locking) {
4467                         btrfs_assert_tree_locked(path->nodes[level]);
4468                         ret = btrfs_try_spin_lock(next);
4469                         if (!ret) {
4470                                 btrfs_set_path_blocking(path);
4471                                 btrfs_tree_lock(next);
4472                                 if (!force_blocking)
4473                                         btrfs_clear_path_blocking(path, next);
4474                         }
4475                         if (force_blocking)
4476                                 btrfs_set_lock_blocking(next);
4477                 }
4478         }
4479         ret = 0;
4480 done:
4481         unlock_up(path, 0, 1);
4482         path->leave_spinning = old_spinning;
4483         if (!old_spinning)
4484                 btrfs_set_path_blocking(path);
4485
4486         return ret;
4487 }
4488
4489 /*
4490  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4491  * searching until it gets past min_objectid or finds an item of 'type'
4492  *
4493  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4494  */
4495 int btrfs_previous_item(struct btrfs_root *root,
4496                         struct btrfs_path *path, u64 min_objectid,
4497                         int type)
4498 {
4499         struct btrfs_key found_key;
4500         struct extent_buffer *leaf;
4501         u32 nritems;
4502         int ret;
4503
4504         while (1) {
4505                 if (path->slots[0] == 0) {
4506                         btrfs_set_path_blocking(path);
4507                         ret = btrfs_prev_leaf(root, path);
4508                         if (ret != 0)
4509                                 return ret;
4510                 } else {
4511                         path->slots[0]--;
4512                 }
4513                 leaf = path->nodes[0];
4514                 nritems = btrfs_header_nritems(leaf);
4515                 if (nritems == 0)
4516                         return 1;
4517                 if (path->slots[0] == nritems)
4518                         path->slots[0]--;
4519
4520                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4521                 if (found_key.objectid < min_objectid)
4522                         break;
4523                 if (found_key.type == type)
4524                         return 0;
4525                 if (found_key.objectid == min_objectid &&
4526                     found_key.type < type)
4527                         break;
4528         }
4529         return 1;
4530 }