]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/video/pxafb.c
[ARM] pxafb: cleanup of the color format manipulation code
[net-next-2.6.git] / drivers / video / pxafb.c
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *              Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *      linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/fb.h>
35 #include <linux/delay.h>
36 #include <linux/init.h>
37 #include <linux/ioport.h>
38 #include <linux/cpufreq.h>
39 #include <linux/platform_device.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/clk.h>
42 #include <linux/err.h>
43 #include <linux/completion.h>
44 #include <linux/mutex.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47
48 #include <mach/hardware.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/div64.h>
52 #include <mach/pxa-regs.h>
53 #include <mach/bitfield.h>
54 #include <mach/pxafb.h>
55
56 /*
57  * Complain if VAR is out of range.
58  */
59 #define DEBUG_VAR 1
60
61 #include "pxafb.h"
62
63 /* Bits which should not be set in machine configuration structures */
64 #define LCCR0_INVALID_CONFIG_MASK       (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
65                                          LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
66                                          LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
67
68 #define LCCR3_INVALID_CONFIG_MASK       (LCCR3_HSP | LCCR3_VSP |\
69                                          LCCR3_PCD | LCCR3_BPP(0xf))
70
71 static int pxafb_activate_var(struct fb_var_screeninfo *var,
72                                 struct pxafb_info *);
73 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
74 static void setup_base_frame(struct pxafb_info *fbi, int branch);
75
76 static unsigned long video_mem_size = 0;
77
78 static inline unsigned long
79 lcd_readl(struct pxafb_info *fbi, unsigned int off)
80 {
81         return __raw_readl(fbi->mmio_base + off);
82 }
83
84 static inline void
85 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
86 {
87         __raw_writel(val, fbi->mmio_base + off);
88 }
89
90 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
91 {
92         unsigned long flags;
93
94         local_irq_save(flags);
95         /*
96          * We need to handle two requests being made at the same time.
97          * There are two important cases:
98          *  1. When we are changing VT (C_REENABLE) while unblanking
99          *     (C_ENABLE) We must perform the unblanking, which will
100          *     do our REENABLE for us.
101          *  2. When we are blanking, but immediately unblank before
102          *     we have blanked.  We do the "REENABLE" thing here as
103          *     well, just to be sure.
104          */
105         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
106                 state = (u_int) -1;
107         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
108                 state = C_REENABLE;
109
110         if (state != (u_int)-1) {
111                 fbi->task_state = state;
112                 schedule_work(&fbi->task);
113         }
114         local_irq_restore(flags);
115 }
116
117 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
118 {
119         chan &= 0xffff;
120         chan >>= 16 - bf->length;
121         return chan << bf->offset;
122 }
123
124 static int
125 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
126                        u_int trans, struct fb_info *info)
127 {
128         struct pxafb_info *fbi = (struct pxafb_info *)info;
129         u_int val;
130
131         if (regno >= fbi->palette_size)
132                 return 1;
133
134         if (fbi->fb.var.grayscale) {
135                 fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
136                 return 0;
137         }
138
139         switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
140         case LCCR4_PAL_FOR_0:
141                 val  = ((red   >>  0) & 0xf800);
142                 val |= ((green >>  5) & 0x07e0);
143                 val |= ((blue  >> 11) & 0x001f);
144                 fbi->palette_cpu[regno] = val;
145                 break;
146         case LCCR4_PAL_FOR_1:
147                 val  = ((red   << 8) & 0x00f80000);
148                 val |= ((green >> 0) & 0x0000fc00);
149                 val |= ((blue  >> 8) & 0x000000f8);
150                 ((u32 *)(fbi->palette_cpu))[regno] = val;
151                 break;
152         case LCCR4_PAL_FOR_2:
153                 val  = ((red   << 8) & 0x00fc0000);
154                 val |= ((green >> 0) & 0x0000fc00);
155                 val |= ((blue  >> 8) & 0x000000fc);
156                 ((u32 *)(fbi->palette_cpu))[regno] = val;
157                 break;
158         case LCCR4_PAL_FOR_3:
159                 val  = ((red   << 8) & 0x00ff0000);
160                 val |= ((green >> 0) & 0x0000ff00);
161                 val |= ((blue  >> 8) & 0x000000ff);
162                 ((u32 *)(fbi->palette_cpu))[regno] = val;
163                 break;
164         }
165
166         return 0;
167 }
168
169 static int
170 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
171                    u_int trans, struct fb_info *info)
172 {
173         struct pxafb_info *fbi = (struct pxafb_info *)info;
174         unsigned int val;
175         int ret = 1;
176
177         /*
178          * If inverse mode was selected, invert all the colours
179          * rather than the register number.  The register number
180          * is what you poke into the framebuffer to produce the
181          * colour you requested.
182          */
183         if (fbi->cmap_inverse) {
184                 red   = 0xffff - red;
185                 green = 0xffff - green;
186                 blue  = 0xffff - blue;
187         }
188
189         /*
190          * If greyscale is true, then we convert the RGB value
191          * to greyscale no matter what visual we are using.
192          */
193         if (fbi->fb.var.grayscale)
194                 red = green = blue = (19595 * red + 38470 * green +
195                                         7471 * blue) >> 16;
196
197         switch (fbi->fb.fix.visual) {
198         case FB_VISUAL_TRUECOLOR:
199                 /*
200                  * 16-bit True Colour.  We encode the RGB value
201                  * according to the RGB bitfield information.
202                  */
203                 if (regno < 16) {
204                         u32 *pal = fbi->fb.pseudo_palette;
205
206                         val  = chan_to_field(red, &fbi->fb.var.red);
207                         val |= chan_to_field(green, &fbi->fb.var.green);
208                         val |= chan_to_field(blue, &fbi->fb.var.blue);
209
210                         pal[regno] = val;
211                         ret = 0;
212                 }
213                 break;
214
215         case FB_VISUAL_STATIC_PSEUDOCOLOR:
216         case FB_VISUAL_PSEUDOCOLOR:
217                 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
218                 break;
219         }
220
221         return ret;
222 }
223
224 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
225 static inline int var_to_depth(struct fb_var_screeninfo *var)
226 {
227         return var->red.length + var->green.length +
228                 var->blue.length + var->transp.length;
229 }
230
231 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
232 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
233 {
234         int bpp = -EINVAL;
235
236         switch (var->bits_per_pixel) {
237         case 1:  bpp = 0; break;
238         case 2:  bpp = 1; break;
239         case 4:  bpp = 2; break;
240         case 8:  bpp = 3; break;
241         case 16: bpp = 4; break;
242         case 24:
243                 switch (var_to_depth(var)) {
244                 case 18: bpp = 6; break; /* 18-bits/pixel packed */
245                 case 19: bpp = 8; break; /* 19-bits/pixel packed */
246                 case 24: bpp = 9; break;
247                 }
248                 break;
249         case 32:
250                 switch (var_to_depth(var)) {
251                 case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
252                 case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
253                 case 25: bpp = 10; break;
254                 }
255                 break;
256         }
257         return bpp;
258 }
259
260 /*
261  *  pxafb_var_to_lccr3():
262  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
263  *
264  *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
265  *  implication of the acutal use of transparency bit,  which we handle it
266  *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
267  *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
268  *
269  *  Transparency for palette pixel formats is not supported at the moment.
270  */
271 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
272 {
273         int bpp = pxafb_var_to_bpp(var);
274         uint32_t lccr3;
275
276         if (bpp < 0)
277                 return 0;
278
279         lccr3 = LCCR3_BPP(bpp);
280
281         switch (var_to_depth(var)) {
282         case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
283         case 18: lccr3 |= LCCR3_PDFOR_3; break;
284         case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
285                  break;
286         case 19:
287         case 25: lccr3 |= LCCR3_PDFOR_0; break;
288         }
289         return lccr3;
290 }
291
292 #define SET_PIXFMT(v, r, g, b, t)                               \
293 ({                                                              \
294         (v)->transp.offset = (t) ? (r) + (g) + (b) : 0;         \
295         (v)->transp.length = (t) ? (t) : 0;                     \
296         (v)->blue.length   = (b); (v)->blue.offset = 0;         \
297         (v)->green.length  = (g); (v)->green.offset = (b);      \
298         (v)->red.length    = (r); (v)->red.offset = (b) + (g);  \
299 })
300
301 /* set the RGBT bitfields of fb_var_screeninf according to
302  * var->bits_per_pixel and given depth
303  */
304 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
305 {
306         if (depth == 0)
307                 depth = var->bits_per_pixel;
308
309         if (var->bits_per_pixel < 16) {
310                 /* indexed pixel formats */
311                 var->red.offset    = 0; var->red.length    = 8;
312                 var->green.offset  = 0; var->green.length  = 8;
313                 var->blue.offset   = 0; var->blue.length   = 8;
314                 var->transp.offset = 0; var->transp.length = 8;
315         }
316
317         switch (depth) {
318         case 16: var->transp.length ?
319                  SET_PIXFMT(var, 5, 5, 5, 1) :          /* RGBT555 */
320                  SET_PIXFMT(var, 5, 6, 5, 0); break;    /* RGB565 */
321         case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;    /* RGB666 */
322         case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;    /* RGBT666 */
323         case 24: var->transp.length ?
324                  SET_PIXFMT(var, 8, 8, 7, 1) :          /* RGBT887 */
325                  SET_PIXFMT(var, 8, 8, 8, 0); break;    /* RGB888 */
326         case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;    /* RGBT888 */
327         }
328 }
329
330 #ifdef CONFIG_CPU_FREQ
331 /*
332  *  pxafb_display_dma_period()
333  *    Calculate the minimum period (in picoseconds) between two DMA
334  *    requests for the LCD controller.  If we hit this, it means we're
335  *    doing nothing but LCD DMA.
336  */
337 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
338 {
339         /*
340          * Period = pixclock * bits_per_byte * bytes_per_transfer
341          *              / memory_bits_per_pixel;
342          */
343         return var->pixclock * 8 * 16 / var->bits_per_pixel;
344 }
345 #endif
346
347 /*
348  * Select the smallest mode that allows the desired resolution to be
349  * displayed. If desired parameters can be rounded up.
350  */
351 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
352                                              struct fb_var_screeninfo *var)
353 {
354         struct pxafb_mode_info *mode = NULL;
355         struct pxafb_mode_info *modelist = mach->modes;
356         unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
357         unsigned int i;
358
359         for (i = 0; i < mach->num_modes; i++) {
360                 if (modelist[i].xres >= var->xres &&
361                     modelist[i].yres >= var->yres &&
362                     modelist[i].xres < best_x &&
363                     modelist[i].yres < best_y &&
364                     modelist[i].bpp >= var->bits_per_pixel) {
365                         best_x = modelist[i].xres;
366                         best_y = modelist[i].yres;
367                         mode = &modelist[i];
368                 }
369         }
370
371         return mode;
372 }
373
374 static void pxafb_setmode(struct fb_var_screeninfo *var,
375                           struct pxafb_mode_info *mode)
376 {
377         var->xres               = mode->xres;
378         var->yres               = mode->yres;
379         var->bits_per_pixel     = mode->bpp;
380         var->pixclock           = mode->pixclock;
381         var->hsync_len          = mode->hsync_len;
382         var->left_margin        = mode->left_margin;
383         var->right_margin       = mode->right_margin;
384         var->vsync_len          = mode->vsync_len;
385         var->upper_margin       = mode->upper_margin;
386         var->lower_margin       = mode->lower_margin;
387         var->sync               = mode->sync;
388         var->grayscale          = mode->cmap_greyscale;
389
390         /* set the initial RGBA bitfields */
391         pxafb_set_pixfmt(var, mode->depth);
392 }
393
394 /*
395  *  pxafb_check_var():
396  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
397  *    if it's too big, return -EINVAL.
398  *
399  *    Round up in the following order: bits_per_pixel, xres,
400  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
401  *    bitfields, horizontal timing, vertical timing.
402  */
403 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
404 {
405         struct pxafb_info *fbi = (struct pxafb_info *)info;
406         struct pxafb_mach_info *inf = fbi->dev->platform_data;
407         int err;
408
409         if (var->xres < MIN_XRES)
410                 var->xres = MIN_XRES;
411         if (var->yres < MIN_YRES)
412                 var->yres = MIN_YRES;
413
414         if (inf->fixed_modes) {
415                 struct pxafb_mode_info *mode;
416
417                 mode = pxafb_getmode(inf, var);
418                 if (!mode)
419                         return -EINVAL;
420                 pxafb_setmode(var, mode);
421         } else {
422                 if (var->xres > inf->modes->xres)
423                         return -EINVAL;
424                 if (var->yres > inf->modes->yres)
425                         return -EINVAL;
426                 if (var->bits_per_pixel > inf->modes->bpp)
427                         return -EINVAL;
428         }
429
430         /* we don't support xpan, force xres_virtual to be equal to xres */
431         var->xres_virtual = var->xres;
432
433         if (var->accel_flags & FB_ACCELF_TEXT)
434                 var->yres_virtual = fbi->fb.fix.smem_len /
435                         (var->xres_virtual * var->bits_per_pixel / 8);
436         else
437                 var->yres_virtual = max(var->yres_virtual, var->yres);
438
439         /* do a test conversion to BPP fields to check the color formats */
440         err = pxafb_var_to_bpp(var);
441         if (err < 0)
442                 return err;
443
444         pxafb_set_pixfmt(var, var_to_depth(var));
445
446 #ifdef CONFIG_CPU_FREQ
447         pr_debug("pxafb: dma period = %d ps\n",
448                  pxafb_display_dma_period(var));
449 #endif
450
451         return 0;
452 }
453
454 /*
455  * pxafb_set_par():
456  *      Set the user defined part of the display for the specified console
457  */
458 static int pxafb_set_par(struct fb_info *info)
459 {
460         struct pxafb_info *fbi = (struct pxafb_info *)info;
461         struct fb_var_screeninfo *var = &info->var;
462
463         if (var->bits_per_pixel >= 16)
464                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
465         else if (!fbi->cmap_static)
466                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
467         else {
468                 /*
469                  * Some people have weird ideas about wanting static
470                  * pseudocolor maps.  I suspect their user space
471                  * applications are broken.
472                  */
473                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
474         }
475
476         fbi->fb.fix.line_length = var->xres_virtual *
477                                   var->bits_per_pixel / 8;
478         if (var->bits_per_pixel >= 16)
479                 fbi->palette_size = 0;
480         else
481                 fbi->palette_size = var->bits_per_pixel == 1 ?
482                                         4 : 1 << var->bits_per_pixel;
483
484         fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
485
486         if (fbi->fb.var.bits_per_pixel >= 16)
487                 fb_dealloc_cmap(&fbi->fb.cmap);
488         else
489                 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
490
491         pxafb_activate_var(var, fbi);
492
493         return 0;
494 }
495
496 static int pxafb_pan_display(struct fb_var_screeninfo *var,
497                              struct fb_info *info)
498 {
499         struct pxafb_info *fbi = (struct pxafb_info *)info;
500         int dma = DMA_MAX + DMA_BASE;
501
502         if (fbi->state != C_ENABLE)
503                 return 0;
504
505         setup_base_frame(fbi, 1);
506
507         if (fbi->lccr0 & LCCR0_SDS)
508                 lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
509
510         lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
511         return 0;
512 }
513
514 /*
515  * pxafb_blank():
516  *      Blank the display by setting all palette values to zero.  Note, the
517  *      16 bpp mode does not really use the palette, so this will not
518  *      blank the display in all modes.
519  */
520 static int pxafb_blank(int blank, struct fb_info *info)
521 {
522         struct pxafb_info *fbi = (struct pxafb_info *)info;
523         int i;
524
525         switch (blank) {
526         case FB_BLANK_POWERDOWN:
527         case FB_BLANK_VSYNC_SUSPEND:
528         case FB_BLANK_HSYNC_SUSPEND:
529         case FB_BLANK_NORMAL:
530                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
531                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
532                         for (i = 0; i < fbi->palette_size; i++)
533                                 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
534
535                 pxafb_schedule_work(fbi, C_DISABLE);
536                 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
537                 break;
538
539         case FB_BLANK_UNBLANK:
540                 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
541                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
542                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
543                         fb_set_cmap(&fbi->fb.cmap, info);
544                 pxafb_schedule_work(fbi, C_ENABLE);
545         }
546         return 0;
547 }
548
549 static struct fb_ops pxafb_ops = {
550         .owner          = THIS_MODULE,
551         .fb_check_var   = pxafb_check_var,
552         .fb_set_par     = pxafb_set_par,
553         .fb_pan_display = pxafb_pan_display,
554         .fb_setcolreg   = pxafb_setcolreg,
555         .fb_fillrect    = cfb_fillrect,
556         .fb_copyarea    = cfb_copyarea,
557         .fb_imageblit   = cfb_imageblit,
558         .fb_blank       = pxafb_blank,
559 };
560
561 /*
562  * Calculate the PCD value from the clock rate (in picoseconds).
563  * We take account of the PPCR clock setting.
564  * From PXA Developer's Manual:
565  *
566  *   PixelClock =      LCLK
567  *                -------------
568  *                2 ( PCD + 1 )
569  *
570  *   PCD =      LCLK
571  *         ------------- - 1
572  *         2(PixelClock)
573  *
574  * Where:
575  *   LCLK = LCD/Memory Clock
576  *   PCD = LCCR3[7:0]
577  *
578  * PixelClock here is in Hz while the pixclock argument given is the
579  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
580  *
581  * The function get_lclk_frequency_10khz returns LCLK in units of
582  * 10khz. Calling the result of this function lclk gives us the
583  * following
584  *
585  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
586  *          -------------------------------------- - 1
587  *                          2
588  *
589  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
590  */
591 static inline unsigned int get_pcd(struct pxafb_info *fbi,
592                                    unsigned int pixclock)
593 {
594         unsigned long long pcd;
595
596         /* FIXME: Need to take into account Double Pixel Clock mode
597          * (DPC) bit? or perhaps set it based on the various clock
598          * speeds */
599         pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
600         pcd *= pixclock;
601         do_div(pcd, 100000000 * 2);
602         /* no need for this, since we should subtract 1 anyway. they cancel */
603         /* pcd += 1; */ /* make up for integer math truncations */
604         return (unsigned int)pcd;
605 }
606
607 /*
608  * Some touchscreens need hsync information from the video driver to
609  * function correctly. We export it here.  Note that 'hsync_time' and
610  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
611  * of the hsync period in seconds.
612  */
613 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
614 {
615         unsigned long htime;
616
617         if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
618                 fbi->hsync_time = 0;
619                 return;
620         }
621
622         htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
623
624         fbi->hsync_time = htime;
625 }
626
627 unsigned long pxafb_get_hsync_time(struct device *dev)
628 {
629         struct pxafb_info *fbi = dev_get_drvdata(dev);
630
631         /* If display is blanked/suspended, hsync isn't active */
632         if (!fbi || (fbi->state != C_ENABLE))
633                 return 0;
634
635         return fbi->hsync_time;
636 }
637 EXPORT_SYMBOL(pxafb_get_hsync_time);
638
639 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
640                 unsigned int offset, size_t size)
641 {
642         struct pxafb_dma_descriptor *dma_desc, *pal_desc;
643         unsigned int dma_desc_off, pal_desc_off;
644
645         if (dma < 0 || dma >= DMA_MAX * 2)
646                 return -EINVAL;
647
648         dma_desc = &fbi->dma_buff->dma_desc[dma];
649         dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
650
651         dma_desc->fsadr = fbi->video_mem_phys + offset;
652         dma_desc->fidr  = 0;
653         dma_desc->ldcmd = size;
654
655         if (pal < 0 || pal >= PAL_MAX * 2) {
656                 dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
657                 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
658         } else {
659                 pal_desc = &fbi->dma_buff->pal_desc[pal];
660                 pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
661
662                 pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
663                 pal_desc->fidr  = 0;
664
665                 if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
666                         pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
667                 else
668                         pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
669
670                 pal_desc->ldcmd |= LDCMD_PAL;
671
672                 /* flip back and forth between palette and frame buffer */
673                 pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
674                 dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
675                 fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
676         }
677
678         return 0;
679 }
680
681 static void setup_base_frame(struct pxafb_info *fbi, int branch)
682 {
683         struct fb_var_screeninfo *var = &fbi->fb.var;
684         struct fb_fix_screeninfo *fix = &fbi->fb.fix;
685         unsigned int nbytes, offset;
686         int dma, pal, bpp = var->bits_per_pixel;
687
688         dma = DMA_BASE + (branch ? DMA_MAX : 0);
689         pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
690
691         nbytes = fix->line_length * var->yres;
692         offset = fix->line_length * var->yoffset;
693
694         if (fbi->lccr0 & LCCR0_SDS) {
695                 nbytes = nbytes / 2;
696                 setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
697         }
698
699         setup_frame_dma(fbi, dma, pal, offset, nbytes);
700 }
701
702 #ifdef CONFIG_FB_PXA_SMARTPANEL
703 static int setup_smart_dma(struct pxafb_info *fbi)
704 {
705         struct pxafb_dma_descriptor *dma_desc;
706         unsigned long dma_desc_off, cmd_buff_off;
707
708         dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
709         dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
710         cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
711
712         dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
713         dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
714         dma_desc->fidr  = 0;
715         dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
716
717         fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
718         return 0;
719 }
720
721 int pxafb_smart_flush(struct fb_info *info)
722 {
723         struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
724         uint32_t prsr;
725         int ret = 0;
726
727         /* disable controller until all registers are set up */
728         lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
729
730         /* 1. make it an even number of commands to align on 32-bit boundary
731          * 2. add the interrupt command to the end of the chain so we can
732          *    keep track of the end of the transfer
733          */
734
735         while (fbi->n_smart_cmds & 1)
736                 fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
737
738         fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
739         fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
740         setup_smart_dma(fbi);
741
742         /* continue to execute next command */
743         prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
744         lcd_writel(fbi, PRSR, prsr);
745
746         /* stop the processor in case it executed "wait for sync" cmd */
747         lcd_writel(fbi, CMDCR, 0x0001);
748
749         /* don't send interrupts for fifo underruns on channel 6 */
750         lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
751
752         lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
753         lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
754         lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
755         lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
756         lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
757         lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
758
759         /* begin sending */
760         lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
761
762         if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
763                 pr_warning("%s: timeout waiting for command done\n",
764                                 __func__);
765                 ret = -ETIMEDOUT;
766         }
767
768         /* quick disable */
769         prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
770         lcd_writel(fbi, PRSR, prsr);
771         lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
772         lcd_writel(fbi, FDADR6, 0);
773         fbi->n_smart_cmds = 0;
774         return ret;
775 }
776
777 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
778 {
779         int i;
780         struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
781
782         for (i = 0; i < n_cmds; i++, cmds++) {
783                 /* if it is a software delay, flush and delay */
784                 if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
785                         pxafb_smart_flush(info);
786                         mdelay(*cmds & 0xff);
787                         continue;
788                 }
789
790                 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
791                 if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
792                         pxafb_smart_flush(info);
793
794                 fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
795         }
796
797         return 0;
798 }
799
800 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
801 {
802         unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
803         return (t == 0) ? 1 : t;
804 }
805
806 static void setup_smart_timing(struct pxafb_info *fbi,
807                                 struct fb_var_screeninfo *var)
808 {
809         struct pxafb_mach_info *inf = fbi->dev->platform_data;
810         struct pxafb_mode_info *mode = &inf->modes[0];
811         unsigned long lclk = clk_get_rate(fbi->clk);
812         unsigned t1, t2, t3, t4;
813
814         t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
815         t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
816         t3 = mode->op_hold_time;
817         t4 = mode->cmd_inh_time;
818
819         fbi->reg_lccr1 =
820                 LCCR1_DisWdth(var->xres) |
821                 LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
822                 LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
823                 LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
824
825         fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
826         fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
827         fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
828         fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
829
830         /* FIXME: make this configurable */
831         fbi->reg_cmdcr = 1;
832 }
833
834 static int pxafb_smart_thread(void *arg)
835 {
836         struct pxafb_info *fbi = arg;
837         struct pxafb_mach_info *inf = fbi->dev->platform_data;
838
839         if (!fbi || !inf->smart_update) {
840                 pr_err("%s: not properly initialized, thread terminated\n",
841                                 __func__);
842                 return -EINVAL;
843         }
844
845         pr_debug("%s(): task starting\n", __func__);
846
847         set_freezable();
848         while (!kthread_should_stop()) {
849
850                 if (try_to_freeze())
851                         continue;
852
853                 mutex_lock(&fbi->ctrlr_lock);
854
855                 if (fbi->state == C_ENABLE) {
856                         inf->smart_update(&fbi->fb);
857                         complete(&fbi->refresh_done);
858                 }
859
860                 mutex_unlock(&fbi->ctrlr_lock);
861
862                 set_current_state(TASK_INTERRUPTIBLE);
863                 schedule_timeout(30 * HZ / 1000);
864         }
865
866         pr_debug("%s(): task ending\n", __func__);
867         return 0;
868 }
869
870 static int pxafb_smart_init(struct pxafb_info *fbi)
871 {
872         if (!(fbi->lccr0 & LCCR0_LCDT))
873                 return 0;
874
875         fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
876         fbi->n_smart_cmds = 0;
877
878         init_completion(&fbi->command_done);
879         init_completion(&fbi->refresh_done);
880
881         fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
882                                         "lcd_refresh");
883         if (IS_ERR(fbi->smart_thread)) {
884                 pr_err("%s: unable to create kernel thread\n", __func__);
885                 return PTR_ERR(fbi->smart_thread);
886         }
887
888         return 0;
889 }
890 #else
891 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
892 {
893         return 0;
894 }
895
896 int pxafb_smart_flush(struct fb_info *info)
897 {
898         return 0;
899 }
900
901 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
902 #endif /* CONFIG_FB_PXA_SMARTPANEL */
903
904 static void setup_parallel_timing(struct pxafb_info *fbi,
905                                   struct fb_var_screeninfo *var)
906 {
907         unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
908
909         fbi->reg_lccr1 =
910                 LCCR1_DisWdth(var->xres) +
911                 LCCR1_HorSnchWdth(var->hsync_len) +
912                 LCCR1_BegLnDel(var->left_margin) +
913                 LCCR1_EndLnDel(var->right_margin);
914
915         /*
916          * If we have a dual scan LCD, we need to halve
917          * the YRES parameter.
918          */
919         lines_per_panel = var->yres;
920         if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
921                 lines_per_panel /= 2;
922
923         fbi->reg_lccr2 =
924                 LCCR2_DisHght(lines_per_panel) +
925                 LCCR2_VrtSnchWdth(var->vsync_len) +
926                 LCCR2_BegFrmDel(var->upper_margin) +
927                 LCCR2_EndFrmDel(var->lower_margin);
928
929         fbi->reg_lccr3 = fbi->lccr3 |
930                 (var->sync & FB_SYNC_HOR_HIGH_ACT ?
931                  LCCR3_HorSnchH : LCCR3_HorSnchL) |
932                 (var->sync & FB_SYNC_VERT_HIGH_ACT ?
933                  LCCR3_VrtSnchH : LCCR3_VrtSnchL);
934
935         if (pcd) {
936                 fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
937                 set_hsync_time(fbi, pcd);
938         }
939 }
940
941 /*
942  * pxafb_activate_var():
943  *      Configures LCD Controller based on entries in var parameter.
944  *      Settings are only written to the controller if changes were made.
945  */
946 static int pxafb_activate_var(struct fb_var_screeninfo *var,
947                               struct pxafb_info *fbi)
948 {
949         u_long flags;
950
951 #if DEBUG_VAR
952         if (!(fbi->lccr0 & LCCR0_LCDT)) {
953                 if (var->xres < 16 || var->xres > 1024)
954                         printk(KERN_ERR "%s: invalid xres %d\n",
955                                 fbi->fb.fix.id, var->xres);
956                 switch (var->bits_per_pixel) {
957                 case 1:
958                 case 2:
959                 case 4:
960                 case 8:
961                 case 16:
962                 case 24:
963                 case 32:
964                         break;
965                 default:
966                         printk(KERN_ERR "%s: invalid bit depth %d\n",
967                                fbi->fb.fix.id, var->bits_per_pixel);
968                         break;
969                 }
970
971                 if (var->hsync_len < 1 || var->hsync_len > 64)
972                         printk(KERN_ERR "%s: invalid hsync_len %d\n",
973                                 fbi->fb.fix.id, var->hsync_len);
974                 if (var->left_margin < 1 || var->left_margin > 255)
975                         printk(KERN_ERR "%s: invalid left_margin %d\n",
976                                 fbi->fb.fix.id, var->left_margin);
977                 if (var->right_margin < 1 || var->right_margin > 255)
978                         printk(KERN_ERR "%s: invalid right_margin %d\n",
979                                 fbi->fb.fix.id, var->right_margin);
980                 if (var->yres < 1 || var->yres > 1024)
981                         printk(KERN_ERR "%s: invalid yres %d\n",
982                                 fbi->fb.fix.id, var->yres);
983                 if (var->vsync_len < 1 || var->vsync_len > 64)
984                         printk(KERN_ERR "%s: invalid vsync_len %d\n",
985                                 fbi->fb.fix.id, var->vsync_len);
986                 if (var->upper_margin < 0 || var->upper_margin > 255)
987                         printk(KERN_ERR "%s: invalid upper_margin %d\n",
988                                 fbi->fb.fix.id, var->upper_margin);
989                 if (var->lower_margin < 0 || var->lower_margin > 255)
990                         printk(KERN_ERR "%s: invalid lower_margin %d\n",
991                                 fbi->fb.fix.id, var->lower_margin);
992         }
993 #endif
994         /* Update shadow copy atomically */
995         local_irq_save(flags);
996
997 #ifdef CONFIG_FB_PXA_SMARTPANEL
998         if (fbi->lccr0 & LCCR0_LCDT)
999                 setup_smart_timing(fbi, var);
1000         else
1001 #endif
1002                 setup_parallel_timing(fbi, var);
1003
1004         setup_base_frame(fbi, 0);
1005
1006         fbi->reg_lccr0 = fbi->lccr0 |
1007                 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1008                  LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1009
1010         fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1011
1012         fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1013         fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1014         local_irq_restore(flags);
1015
1016         /*
1017          * Only update the registers if the controller is enabled
1018          * and something has changed.
1019          */
1020         if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1021             (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1022             (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1023             (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1024             (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1025             (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1026             (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
1027                 pxafb_schedule_work(fbi, C_REENABLE);
1028
1029         return 0;
1030 }
1031
1032 /*
1033  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1034  * Do not call them directly; set_ctrlr_state does the correct serialisation
1035  * to ensure that things happen in the right way 100% of time time.
1036  *      -- rmk
1037  */
1038 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1039 {
1040         pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1041
1042         if (fbi->backlight_power)
1043                 fbi->backlight_power(on);
1044 }
1045
1046 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1047 {
1048         pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1049
1050         if (fbi->lcd_power)
1051                 fbi->lcd_power(on, &fbi->fb.var);
1052 }
1053
1054 static void pxafb_enable_controller(struct pxafb_info *fbi)
1055 {
1056         pr_debug("pxafb: Enabling LCD controller\n");
1057         pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1058         pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1059         pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1060         pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1061         pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1062         pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1063
1064         /* enable LCD controller clock */
1065         clk_enable(fbi->clk);
1066
1067         if (fbi->lccr0 & LCCR0_LCDT)
1068                 return;
1069
1070         /* Sequence from 11.7.10 */
1071         lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1072         lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1073         lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1074         lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1075         lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1076
1077         lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1078         lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1079         lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1080 }
1081
1082 static void pxafb_disable_controller(struct pxafb_info *fbi)
1083 {
1084         uint32_t lccr0;
1085
1086 #ifdef CONFIG_FB_PXA_SMARTPANEL
1087         if (fbi->lccr0 & LCCR0_LCDT) {
1088                 wait_for_completion_timeout(&fbi->refresh_done,
1089                                 200 * HZ / 1000);
1090                 return;
1091         }
1092 #endif
1093
1094         /* Clear LCD Status Register */
1095         lcd_writel(fbi, LCSR, 0xffffffff);
1096
1097         lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1098         lcd_writel(fbi, LCCR0, lccr0);
1099         lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1100
1101         wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1102
1103         /* disable LCD controller clock */
1104         clk_disable(fbi->clk);
1105 }
1106
1107 /*
1108  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1109  */
1110 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1111 {
1112         struct pxafb_info *fbi = dev_id;
1113         unsigned int lccr0, lcsr = lcd_readl(fbi, LCSR);
1114
1115         if (lcsr & LCSR_LDD) {
1116                 lccr0 = lcd_readl(fbi, LCCR0);
1117                 lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1118                 complete(&fbi->disable_done);
1119         }
1120
1121 #ifdef CONFIG_FB_PXA_SMARTPANEL
1122         if (lcsr & LCSR_CMD_INT)
1123                 complete(&fbi->command_done);
1124 #endif
1125
1126         lcd_writel(fbi, LCSR, lcsr);
1127         return IRQ_HANDLED;
1128 }
1129
1130 /*
1131  * This function must be called from task context only, since it will
1132  * sleep when disabling the LCD controller, or if we get two contending
1133  * processes trying to alter state.
1134  */
1135 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1136 {
1137         u_int old_state;
1138
1139         mutex_lock(&fbi->ctrlr_lock);
1140
1141         old_state = fbi->state;
1142
1143         /*
1144          * Hack around fbcon initialisation.
1145          */
1146         if (old_state == C_STARTUP && state == C_REENABLE)
1147                 state = C_ENABLE;
1148
1149         switch (state) {
1150         case C_DISABLE_CLKCHANGE:
1151                 /*
1152                  * Disable controller for clock change.  If the
1153                  * controller is already disabled, then do nothing.
1154                  */
1155                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1156                         fbi->state = state;
1157                         /* TODO __pxafb_lcd_power(fbi, 0); */
1158                         pxafb_disable_controller(fbi);
1159                 }
1160                 break;
1161
1162         case C_DISABLE_PM:
1163         case C_DISABLE:
1164                 /*
1165                  * Disable controller
1166                  */
1167                 if (old_state != C_DISABLE) {
1168                         fbi->state = state;
1169                         __pxafb_backlight_power(fbi, 0);
1170                         __pxafb_lcd_power(fbi, 0);
1171                         if (old_state != C_DISABLE_CLKCHANGE)
1172                                 pxafb_disable_controller(fbi);
1173                 }
1174                 break;
1175
1176         case C_ENABLE_CLKCHANGE:
1177                 /*
1178                  * Enable the controller after clock change.  Only
1179                  * do this if we were disabled for the clock change.
1180                  */
1181                 if (old_state == C_DISABLE_CLKCHANGE) {
1182                         fbi->state = C_ENABLE;
1183                         pxafb_enable_controller(fbi);
1184                         /* TODO __pxafb_lcd_power(fbi, 1); */
1185                 }
1186                 break;
1187
1188         case C_REENABLE:
1189                 /*
1190                  * Re-enable the controller only if it was already
1191                  * enabled.  This is so we reprogram the control
1192                  * registers.
1193                  */
1194                 if (old_state == C_ENABLE) {
1195                         __pxafb_lcd_power(fbi, 0);
1196                         pxafb_disable_controller(fbi);
1197                         pxafb_enable_controller(fbi);
1198                         __pxafb_lcd_power(fbi, 1);
1199                 }
1200                 break;
1201
1202         case C_ENABLE_PM:
1203                 /*
1204                  * Re-enable the controller after PM.  This is not
1205                  * perfect - think about the case where we were doing
1206                  * a clock change, and we suspended half-way through.
1207                  */
1208                 if (old_state != C_DISABLE_PM)
1209                         break;
1210                 /* fall through */
1211
1212         case C_ENABLE:
1213                 /*
1214                  * Power up the LCD screen, enable controller, and
1215                  * turn on the backlight.
1216                  */
1217                 if (old_state != C_ENABLE) {
1218                         fbi->state = C_ENABLE;
1219                         pxafb_enable_controller(fbi);
1220                         __pxafb_lcd_power(fbi, 1);
1221                         __pxafb_backlight_power(fbi, 1);
1222                 }
1223                 break;
1224         }
1225         mutex_unlock(&fbi->ctrlr_lock);
1226 }
1227
1228 /*
1229  * Our LCD controller task (which is called when we blank or unblank)
1230  * via keventd.
1231  */
1232 static void pxafb_task(struct work_struct *work)
1233 {
1234         struct pxafb_info *fbi =
1235                 container_of(work, struct pxafb_info, task);
1236         u_int state = xchg(&fbi->task_state, -1);
1237
1238         set_ctrlr_state(fbi, state);
1239 }
1240
1241 #ifdef CONFIG_CPU_FREQ
1242 /*
1243  * CPU clock speed change handler.  We need to adjust the LCD timing
1244  * parameters when the CPU clock is adjusted by the power management
1245  * subsystem.
1246  *
1247  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1248  */
1249 static int
1250 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1251 {
1252         struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1253         /* TODO struct cpufreq_freqs *f = data; */
1254         u_int pcd;
1255
1256         switch (val) {
1257         case CPUFREQ_PRECHANGE:
1258                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1259                 break;
1260
1261         case CPUFREQ_POSTCHANGE:
1262                 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1263                 set_hsync_time(fbi, pcd);
1264                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1265                                   LCCR3_PixClkDiv(pcd);
1266                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1267                 break;
1268         }
1269         return 0;
1270 }
1271
1272 static int
1273 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1274 {
1275         struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1276         struct fb_var_screeninfo *var = &fbi->fb.var;
1277         struct cpufreq_policy *policy = data;
1278
1279         switch (val) {
1280         case CPUFREQ_ADJUST:
1281         case CPUFREQ_INCOMPATIBLE:
1282                 pr_debug("min dma period: %d ps, "
1283                         "new clock %d kHz\n", pxafb_display_dma_period(var),
1284                         policy->max);
1285                 /* TODO: fill in min/max values */
1286                 break;
1287         }
1288         return 0;
1289 }
1290 #endif
1291
1292 #ifdef CONFIG_PM
1293 /*
1294  * Power management hooks.  Note that we won't be called from IRQ context,
1295  * unlike the blank functions above, so we may sleep.
1296  */
1297 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1298 {
1299         struct pxafb_info *fbi = platform_get_drvdata(dev);
1300
1301         set_ctrlr_state(fbi, C_DISABLE_PM);
1302         return 0;
1303 }
1304
1305 static int pxafb_resume(struct platform_device *dev)
1306 {
1307         struct pxafb_info *fbi = platform_get_drvdata(dev);
1308
1309         set_ctrlr_state(fbi, C_ENABLE_PM);
1310         return 0;
1311 }
1312 #else
1313 #define pxafb_suspend   NULL
1314 #define pxafb_resume    NULL
1315 #endif
1316
1317 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1318 {
1319         int size = PAGE_ALIGN(fbi->video_mem_size);
1320
1321         fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1322         if (fbi->video_mem == NULL)
1323                 return -ENOMEM;
1324
1325         fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1326         fbi->video_mem_size = size;
1327
1328         fbi->fb.fix.smem_start  = fbi->video_mem_phys;
1329         fbi->fb.fix.smem_len    = fbi->video_mem_size;
1330         fbi->fb.screen_base     = fbi->video_mem;
1331
1332         return fbi->video_mem ? 0 : -ENOMEM;
1333 }
1334
1335 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1336                                    struct pxafb_mach_info *inf)
1337 {
1338         unsigned int lcd_conn = inf->lcd_conn;
1339         struct pxafb_mode_info *m;
1340         int i;
1341
1342         fbi->cmap_inverse       = inf->cmap_inverse;
1343         fbi->cmap_static        = inf->cmap_static;
1344         fbi->lccr4              = inf->lccr4;
1345
1346         switch (lcd_conn & LCD_TYPE_MASK) {
1347         case LCD_TYPE_MONO_STN:
1348                 fbi->lccr0 = LCCR0_CMS;
1349                 break;
1350         case LCD_TYPE_MONO_DSTN:
1351                 fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1352                 break;
1353         case LCD_TYPE_COLOR_STN:
1354                 fbi->lccr0 = 0;
1355                 break;
1356         case LCD_TYPE_COLOR_DSTN:
1357                 fbi->lccr0 = LCCR0_SDS;
1358                 break;
1359         case LCD_TYPE_COLOR_TFT:
1360                 fbi->lccr0 = LCCR0_PAS;
1361                 break;
1362         case LCD_TYPE_SMART_PANEL:
1363                 fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1364                 break;
1365         default:
1366                 /* fall back to backward compatibility way */
1367                 fbi->lccr0 = inf->lccr0;
1368                 fbi->lccr3 = inf->lccr3;
1369                 goto decode_mode;
1370         }
1371
1372         if (lcd_conn == LCD_MONO_STN_8BPP)
1373                 fbi->lccr0 |= LCCR0_DPD;
1374
1375         fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1376
1377         fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1378         fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1379         fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1380
1381 decode_mode:
1382         pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1383
1384         /* decide video memory size as follows:
1385          * 1. default to mode of maximum resolution
1386          * 2. allow platform to override
1387          * 3. allow module parameter to override
1388          */
1389         for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1390                 fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1391                                 m->xres * m->yres * m->bpp / 8);
1392
1393         if (inf->video_mem_size > fbi->video_mem_size)
1394                 fbi->video_mem_size = inf->video_mem_size;
1395
1396         if (video_mem_size > fbi->video_mem_size)
1397                 fbi->video_mem_size = video_mem_size;
1398 }
1399
1400 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1401 {
1402         struct pxafb_info *fbi;
1403         void *addr;
1404         struct pxafb_mach_info *inf = dev->platform_data;
1405
1406         /* Alloc the pxafb_info and pseudo_palette in one step */
1407         fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1408         if (!fbi)
1409                 return NULL;
1410
1411         memset(fbi, 0, sizeof(struct pxafb_info));
1412         fbi->dev = dev;
1413
1414         fbi->clk = clk_get(dev, "LCDCLK");
1415         if (IS_ERR(fbi->clk)) {
1416                 kfree(fbi);
1417                 return NULL;
1418         }
1419
1420         strcpy(fbi->fb.fix.id, PXA_NAME);
1421
1422         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1423         fbi->fb.fix.type_aux    = 0;
1424         fbi->fb.fix.xpanstep    = 0;
1425         fbi->fb.fix.ypanstep    = 1;
1426         fbi->fb.fix.ywrapstep   = 0;
1427         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1428
1429         fbi->fb.var.nonstd      = 0;
1430         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1431         fbi->fb.var.height      = -1;
1432         fbi->fb.var.width       = -1;
1433         fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1434         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1435
1436         fbi->fb.fbops           = &pxafb_ops;
1437         fbi->fb.flags           = FBINFO_DEFAULT;
1438         fbi->fb.node            = -1;
1439
1440         addr = fbi;
1441         addr = addr + sizeof(struct pxafb_info);
1442         fbi->fb.pseudo_palette  = addr;
1443
1444         fbi->state              = C_STARTUP;
1445         fbi->task_state         = (u_char)-1;
1446
1447         pxafb_decode_mach_info(fbi, inf);
1448
1449         init_waitqueue_head(&fbi->ctrlr_wait);
1450         INIT_WORK(&fbi->task, pxafb_task);
1451         mutex_init(&fbi->ctrlr_lock);
1452         init_completion(&fbi->disable_done);
1453
1454         return fbi;
1455 }
1456
1457 #ifdef CONFIG_FB_PXA_PARAMETERS
1458 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1459 {
1460         struct pxafb_mach_info *inf = dev->platform_data;
1461
1462         const char *name = this_opt+5;
1463         unsigned int namelen = strlen(name);
1464         int res_specified = 0, bpp_specified = 0;
1465         unsigned int xres = 0, yres = 0, bpp = 0;
1466         int yres_specified = 0;
1467         int i;
1468         for (i = namelen-1; i >= 0; i--) {
1469                 switch (name[i]) {
1470                 case '-':
1471                         namelen = i;
1472                         if (!bpp_specified && !yres_specified) {
1473                                 bpp = simple_strtoul(&name[i+1], NULL, 0);
1474                                 bpp_specified = 1;
1475                         } else
1476                                 goto done;
1477                         break;
1478                 case 'x':
1479                         if (!yres_specified) {
1480                                 yres = simple_strtoul(&name[i+1], NULL, 0);
1481                                 yres_specified = 1;
1482                         } else
1483                                 goto done;
1484                         break;
1485                 case '0' ... '9':
1486                         break;
1487                 default:
1488                         goto done;
1489                 }
1490         }
1491         if (i < 0 && yres_specified) {
1492                 xres = simple_strtoul(name, NULL, 0);
1493                 res_specified = 1;
1494         }
1495 done:
1496         if (res_specified) {
1497                 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1498                 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1499         }
1500         if (bpp_specified)
1501                 switch (bpp) {
1502                 case 1:
1503                 case 2:
1504                 case 4:
1505                 case 8:
1506                 case 16:
1507                         inf->modes[0].bpp = bpp;
1508                         dev_info(dev, "overriding bit depth: %d\n", bpp);
1509                         break;
1510                 default:
1511                         dev_err(dev, "Depth %d is not valid\n", bpp);
1512                         return -EINVAL;
1513                 }
1514         return 0;
1515 }
1516
1517 static int __devinit parse_opt(struct device *dev, char *this_opt)
1518 {
1519         struct pxafb_mach_info *inf = dev->platform_data;
1520         struct pxafb_mode_info *mode = &inf->modes[0];
1521         char s[64];
1522
1523         s[0] = '\0';
1524
1525         if (!strncmp(this_opt, "vmem:", 5)) {
1526                 video_mem_size = memparse(this_opt + 5, NULL);
1527         } else if (!strncmp(this_opt, "mode:", 5)) {
1528                 return parse_opt_mode(dev, this_opt);
1529         } else if (!strncmp(this_opt, "pixclock:", 9)) {
1530                 mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1531                 sprintf(s, "pixclock: %ld\n", mode->pixclock);
1532         } else if (!strncmp(this_opt, "left:", 5)) {
1533                 mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1534                 sprintf(s, "left: %u\n", mode->left_margin);
1535         } else if (!strncmp(this_opt, "right:", 6)) {
1536                 mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1537                 sprintf(s, "right: %u\n", mode->right_margin);
1538         } else if (!strncmp(this_opt, "upper:", 6)) {
1539                 mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1540                 sprintf(s, "upper: %u\n", mode->upper_margin);
1541         } else if (!strncmp(this_opt, "lower:", 6)) {
1542                 mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1543                 sprintf(s, "lower: %u\n", mode->lower_margin);
1544         } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1545                 mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1546                 sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1547         } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1548                 mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1549                 sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1550         } else if (!strncmp(this_opt, "hsync:", 6)) {
1551                 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1552                         sprintf(s, "hsync: Active Low\n");
1553                         mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1554                 } else {
1555                         sprintf(s, "hsync: Active High\n");
1556                         mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1557                 }
1558         } else if (!strncmp(this_opt, "vsync:", 6)) {
1559                 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1560                         sprintf(s, "vsync: Active Low\n");
1561                         mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1562                 } else {
1563                         sprintf(s, "vsync: Active High\n");
1564                         mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1565                 }
1566         } else if (!strncmp(this_opt, "dpc:", 4)) {
1567                 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1568                         sprintf(s, "double pixel clock: false\n");
1569                         inf->lccr3 &= ~LCCR3_DPC;
1570                 } else {
1571                         sprintf(s, "double pixel clock: true\n");
1572                         inf->lccr3 |= LCCR3_DPC;
1573                 }
1574         } else if (!strncmp(this_opt, "outputen:", 9)) {
1575                 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1576                         sprintf(s, "output enable: active low\n");
1577                         inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1578                 } else {
1579                         sprintf(s, "output enable: active high\n");
1580                         inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1581                 }
1582         } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1583                 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1584                         sprintf(s, "pixel clock polarity: falling edge\n");
1585                         inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1586                 } else {
1587                         sprintf(s, "pixel clock polarity: rising edge\n");
1588                         inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1589                 }
1590         } else if (!strncmp(this_opt, "color", 5)) {
1591                 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1592         } else if (!strncmp(this_opt, "mono", 4)) {
1593                 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1594         } else if (!strncmp(this_opt, "active", 6)) {
1595                 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1596         } else if (!strncmp(this_opt, "passive", 7)) {
1597                 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1598         } else if (!strncmp(this_opt, "single", 6)) {
1599                 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1600         } else if (!strncmp(this_opt, "dual", 4)) {
1601                 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1602         } else if (!strncmp(this_opt, "4pix", 4)) {
1603                 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1604         } else if (!strncmp(this_opt, "8pix", 4)) {
1605                 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1606         } else {
1607                 dev_err(dev, "unknown option: %s\n", this_opt);
1608                 return -EINVAL;
1609         }
1610
1611         if (s[0] != '\0')
1612                 dev_info(dev, "override %s", s);
1613
1614         return 0;
1615 }
1616
1617 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1618 {
1619         char *this_opt;
1620         int ret;
1621
1622         if (!options || !*options)
1623                 return 0;
1624
1625         dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1626
1627         /* could be made table driven or similar?... */
1628         while ((this_opt = strsep(&options, ",")) != NULL) {
1629                 ret = parse_opt(dev, this_opt);
1630                 if (ret)
1631                         return ret;
1632         }
1633         return 0;
1634 }
1635
1636 static char g_options[256] __devinitdata = "";
1637
1638 #ifndef MODULE
1639 static int __init pxafb_setup_options(void)
1640 {
1641         char *options = NULL;
1642
1643         if (fb_get_options("pxafb", &options))
1644                 return -ENODEV;
1645
1646         if (options)
1647                 strlcpy(g_options, options, sizeof(g_options));
1648
1649         return 0;
1650 }
1651 #else
1652 #define pxafb_setup_options()           (0)
1653
1654 module_param_string(options, g_options, sizeof(g_options), 0);
1655 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1656 #endif
1657
1658 #else
1659 #define pxafb_parse_options(...)        (0)
1660 #define pxafb_setup_options()           (0)
1661 #endif
1662
1663 #ifdef DEBUG_VAR
1664 /* Check for various illegal bit-combinations. Currently only
1665  * a warning is given. */
1666 static void __devinit pxafb_check_options(struct device *dev,
1667                                           struct pxafb_mach_info *inf)
1668 {
1669         if (inf->lcd_conn)
1670                 return;
1671
1672         if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1673                 dev_warn(dev, "machine LCCR0 setting contains "
1674                                 "illegal bits: %08x\n",
1675                         inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1676         if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1677                 dev_warn(dev, "machine LCCR3 setting contains "
1678                                 "illegal bits: %08x\n",
1679                         inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1680         if (inf->lccr0 & LCCR0_DPD &&
1681             ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1682              (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1683              (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1684                 dev_warn(dev, "Double Pixel Data (DPD) mode is "
1685                                 "only valid in passive mono"
1686                                 " single panel mode\n");
1687         if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1688             (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1689                 dev_warn(dev, "Dual panel only valid in passive mode\n");
1690         if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1691              (inf->modes->upper_margin || inf->modes->lower_margin))
1692                 dev_warn(dev, "Upper and lower margins must be 0 in "
1693                                 "passive mode\n");
1694 }
1695 #else
1696 #define pxafb_check_options(...)        do {} while (0)
1697 #endif
1698
1699 static int __devinit pxafb_probe(struct platform_device *dev)
1700 {
1701         struct pxafb_info *fbi;
1702         struct pxafb_mach_info *inf;
1703         struct resource *r;
1704         int irq, ret;
1705
1706         dev_dbg(&dev->dev, "pxafb_probe\n");
1707
1708         inf = dev->dev.platform_data;
1709         ret = -ENOMEM;
1710         fbi = NULL;
1711         if (!inf)
1712                 goto failed;
1713
1714         ret = pxafb_parse_options(&dev->dev, g_options);
1715         if (ret < 0)
1716                 goto failed;
1717
1718         pxafb_check_options(&dev->dev, inf);
1719
1720         dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
1721                         inf->modes->xres,
1722                         inf->modes->yres,
1723                         inf->modes->bpp);
1724         if (inf->modes->xres == 0 ||
1725             inf->modes->yres == 0 ||
1726             inf->modes->bpp == 0) {
1727                 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1728                 ret = -EINVAL;
1729                 goto failed;
1730         }
1731
1732         fbi = pxafb_init_fbinfo(&dev->dev);
1733         if (!fbi) {
1734                 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1735                 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1736                 ret = -ENOMEM;
1737                 goto failed;
1738         }
1739
1740         fbi->backlight_power = inf->pxafb_backlight_power;
1741         fbi->lcd_power = inf->pxafb_lcd_power;
1742
1743         r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1744         if (r == NULL) {
1745                 dev_err(&dev->dev, "no I/O memory resource defined\n");
1746                 ret = -ENODEV;
1747                 goto failed_fbi;
1748         }
1749
1750         r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
1751         if (r == NULL) {
1752                 dev_err(&dev->dev, "failed to request I/O memory\n");
1753                 ret = -EBUSY;
1754                 goto failed_fbi;
1755         }
1756
1757         fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
1758         if (fbi->mmio_base == NULL) {
1759                 dev_err(&dev->dev, "failed to map I/O memory\n");
1760                 ret = -EBUSY;
1761                 goto failed_free_res;
1762         }
1763
1764         fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
1765         fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
1766                                 &fbi->dma_buff_phys, GFP_KERNEL);
1767         if (fbi->dma_buff == NULL) {
1768                 dev_err(&dev->dev, "failed to allocate memory for DMA\n");
1769                 ret = -ENOMEM;
1770                 goto failed_free_io;
1771         }
1772
1773         ret = pxafb_init_video_memory(fbi);
1774         if (ret) {
1775                 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1776                 ret = -ENOMEM;
1777                 goto failed_free_dma;
1778         }
1779
1780         irq = platform_get_irq(dev, 0);
1781         if (irq < 0) {
1782                 dev_err(&dev->dev, "no IRQ defined\n");
1783                 ret = -ENODEV;
1784                 goto failed_free_mem;
1785         }
1786
1787         ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1788         if (ret) {
1789                 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1790                 ret = -EBUSY;
1791                 goto failed_free_mem;
1792         }
1793
1794         ret = pxafb_smart_init(fbi);
1795         if (ret) {
1796                 dev_err(&dev->dev, "failed to initialize smartpanel\n");
1797                 goto failed_free_irq;
1798         }
1799
1800         /*
1801          * This makes sure that our colour bitfield
1802          * descriptors are correctly initialised.
1803          */
1804         ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
1805         if (ret) {
1806                 dev_err(&dev->dev, "failed to get suitable mode\n");
1807                 goto failed_free_irq;
1808         }
1809
1810         ret = pxafb_set_par(&fbi->fb);
1811         if (ret) {
1812                 dev_err(&dev->dev, "Failed to set parameters\n");
1813                 goto failed_free_irq;
1814         }
1815
1816         platform_set_drvdata(dev, fbi);
1817
1818         ret = register_framebuffer(&fbi->fb);
1819         if (ret < 0) {
1820                 dev_err(&dev->dev,
1821                         "Failed to register framebuffer device: %d\n", ret);
1822                 goto failed_free_cmap;
1823         }
1824
1825 #ifdef CONFIG_CPU_FREQ
1826         fbi->freq_transition.notifier_call = pxafb_freq_transition;
1827         fbi->freq_policy.notifier_call = pxafb_freq_policy;
1828         cpufreq_register_notifier(&fbi->freq_transition,
1829                                 CPUFREQ_TRANSITION_NOTIFIER);
1830         cpufreq_register_notifier(&fbi->freq_policy,
1831                                 CPUFREQ_POLICY_NOTIFIER);
1832 #endif
1833
1834         /*
1835          * Ok, now enable the LCD controller
1836          */
1837         set_ctrlr_state(fbi, C_ENABLE);
1838
1839         return 0;
1840
1841 failed_free_cmap:
1842         if (fbi->fb.cmap.len)
1843                 fb_dealloc_cmap(&fbi->fb.cmap);
1844 failed_free_irq:
1845         free_irq(irq, fbi);
1846 failed_free_mem:
1847         free_pages_exact(fbi->video_mem, fbi->video_mem_size);
1848 failed_free_dma:
1849         dma_free_coherent(&dev->dev, fbi->dma_buff_size,
1850                         fbi->dma_buff, fbi->dma_buff_phys);
1851 failed_free_io:
1852         iounmap(fbi->mmio_base);
1853 failed_free_res:
1854         release_mem_region(r->start, r->end - r->start + 1);
1855 failed_fbi:
1856         clk_put(fbi->clk);
1857         platform_set_drvdata(dev, NULL);
1858         kfree(fbi);
1859 failed:
1860         return ret;
1861 }
1862
1863 static int __devexit pxafb_remove(struct platform_device *dev)
1864 {
1865         struct pxafb_info *fbi = platform_get_drvdata(dev);
1866         struct resource *r;
1867         int irq;
1868         struct fb_info *info;
1869
1870         if (!fbi)
1871                 return 0;
1872
1873         info = &fbi->fb;
1874
1875         unregister_framebuffer(info);
1876
1877         pxafb_disable_controller(fbi);
1878
1879         if (fbi->fb.cmap.len)
1880                 fb_dealloc_cmap(&fbi->fb.cmap);
1881
1882         irq = platform_get_irq(dev, 0);
1883         free_irq(irq, fbi);
1884
1885         free_pages_exact(fbi->video_mem, fbi->video_mem_size);
1886
1887         dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
1888                         fbi->dma_buff, fbi->dma_buff_phys);
1889
1890         iounmap(fbi->mmio_base);
1891
1892         r = platform_get_resource(dev, IORESOURCE_MEM, 0);
1893         release_mem_region(r->start, r->end - r->start + 1);
1894
1895         clk_put(fbi->clk);
1896         kfree(fbi);
1897
1898         return 0;
1899 }
1900
1901 static struct platform_driver pxafb_driver = {
1902         .probe          = pxafb_probe,
1903         .remove         = pxafb_remove,
1904         .suspend        = pxafb_suspend,
1905         .resume         = pxafb_resume,
1906         .driver         = {
1907                 .owner  = THIS_MODULE,
1908                 .name   = "pxa2xx-fb",
1909         },
1910 };
1911
1912 static int __init pxafb_init(void)
1913 {
1914         if (pxafb_setup_options())
1915                 return -EINVAL;
1916
1917         return platform_driver_register(&pxafb_driver);
1918 }
1919
1920 static void __exit pxafb_exit(void)
1921 {
1922         platform_driver_unregister(&pxafb_driver);
1923 }
1924
1925 module_init(pxafb_init);
1926 module_exit(pxafb_exit);
1927
1928 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1929 MODULE_LICENSE("GPL");