]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/usb/core/hcd.c
USB: Check results of dma_map_single
[net-next-2.6.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127
128 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor [18] = {
154         0x12,       /*  __u8  bLength; */
155         0x01,       /*  __u8  bDescriptorType; Device */
156         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
164         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor [18] = {
177         0x12,       /*  __u8  bLength; */
178         0x01,       /*  __u8  bDescriptorType; Device */
179         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
180
181         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
182         0x00,       /*  __u8  bDeviceSubClass; */
183         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
184         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
185
186         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
187         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
188         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
189
190         0x03,       /*  __u8  iManufacturer; */
191         0x02,       /*  __u8  iProduct; */
192         0x01,       /*  __u8  iSerialNumber; */
193         0x01        /*  __u8  bNumConfigurations; */
194 };
195
196
197 /*-------------------------------------------------------------------------*/
198
199 /* Configuration descriptors for our root hubs */
200
201 static const u8 fs_rh_config_descriptor [] = {
202
203         /* one configuration */
204         0x09,       /*  __u8  bLength; */
205         0x02,       /*  __u8  bDescriptorType; Configuration */
206         0x19, 0x00, /*  __le16 wTotalLength; */
207         0x01,       /*  __u8  bNumInterfaces; (1) */
208         0x01,       /*  __u8  bConfigurationValue; */
209         0x00,       /*  __u8  iConfiguration; */
210         0xc0,       /*  __u8  bmAttributes; 
211                                  Bit 7: must be set,
212                                      6: Self-powered,
213                                      5: Remote wakeup,
214                                      4..0: resvd */
215         0x00,       /*  __u8  MaxPower; */
216       
217         /* USB 1.1:
218          * USB 2.0, single TT organization (mandatory):
219          *      one interface, protocol 0
220          *
221          * USB 2.0, multiple TT organization (optional):
222          *      two interfaces, protocols 1 (like single TT)
223          *      and 2 (multiple TT mode) ... config is
224          *      sometimes settable
225          *      NOT IMPLEMENTED
226          */
227
228         /* one interface */
229         0x09,       /*  __u8  if_bLength; */
230         0x04,       /*  __u8  if_bDescriptorType; Interface */
231         0x00,       /*  __u8  if_bInterfaceNumber; */
232         0x00,       /*  __u8  if_bAlternateSetting; */
233         0x01,       /*  __u8  if_bNumEndpoints; */
234         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
235         0x00,       /*  __u8  if_bInterfaceSubClass; */
236         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
237         0x00,       /*  __u8  if_iInterface; */
238      
239         /* one endpoint (status change endpoint) */
240         0x07,       /*  __u8  ep_bLength; */
241         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
242         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
243         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
244         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
246 };
247
248 static const u8 hs_rh_config_descriptor [] = {
249
250         /* one configuration */
251         0x09,       /*  __u8  bLength; */
252         0x02,       /*  __u8  bDescriptorType; Configuration */
253         0x19, 0x00, /*  __le16 wTotalLength; */
254         0x01,       /*  __u8  bNumInterfaces; (1) */
255         0x01,       /*  __u8  bConfigurationValue; */
256         0x00,       /*  __u8  iConfiguration; */
257         0xc0,       /*  __u8  bmAttributes; 
258                                  Bit 7: must be set,
259                                      6: Self-powered,
260                                      5: Remote wakeup,
261                                      4..0: resvd */
262         0x00,       /*  __u8  MaxPower; */
263       
264         /* USB 1.1:
265          * USB 2.0, single TT organization (mandatory):
266          *      one interface, protocol 0
267          *
268          * USB 2.0, multiple TT organization (optional):
269          *      two interfaces, protocols 1 (like single TT)
270          *      and 2 (multiple TT mode) ... config is
271          *      sometimes settable
272          *      NOT IMPLEMENTED
273          */
274
275         /* one interface */
276         0x09,       /*  __u8  if_bLength; */
277         0x04,       /*  __u8  if_bDescriptorType; Interface */
278         0x00,       /*  __u8  if_bInterfaceNumber; */
279         0x00,       /*  __u8  if_bAlternateSetting; */
280         0x01,       /*  __u8  if_bNumEndpoints; */
281         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
282         0x00,       /*  __u8  if_bInterfaceSubClass; */
283         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
284         0x00,       /*  __u8  if_iInterface; */
285      
286         /* one endpoint (status change endpoint) */
287         0x07,       /*  __u8  ep_bLength; */
288         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
289         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
290         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
291                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292                      * see hub.c:hub_configure() for details. */
293         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
295 };
296
297 static const u8 ss_rh_config_descriptor[] = {
298         /* one configuration */
299         0x09,       /*  __u8  bLength; */
300         0x02,       /*  __u8  bDescriptorType; Configuration */
301         0x19, 0x00, /*  __le16 wTotalLength; FIXME */
302         0x01,       /*  __u8  bNumInterfaces; (1) */
303         0x01,       /*  __u8  bConfigurationValue; */
304         0x00,       /*  __u8  iConfiguration; */
305         0xc0,       /*  __u8  bmAttributes;
306                                  Bit 7: must be set,
307                                      6: Self-powered,
308                                      5: Remote wakeup,
309                                      4..0: resvd */
310         0x00,       /*  __u8  MaxPower; */
311
312         /* one interface */
313         0x09,       /*  __u8  if_bLength; */
314         0x04,       /*  __u8  if_bDescriptorType; Interface */
315         0x00,       /*  __u8  if_bInterfaceNumber; */
316         0x00,       /*  __u8  if_bAlternateSetting; */
317         0x01,       /*  __u8  if_bNumEndpoints; */
318         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
319         0x00,       /*  __u8  if_bInterfaceSubClass; */
320         0x00,       /*  __u8  if_bInterfaceProtocol; */
321         0x00,       /*  __u8  if_iInterface; */
322
323         /* one endpoint (status change endpoint) */
324         0x07,       /*  __u8  ep_bLength; */
325         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
326         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
327         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
328                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329                      * see hub.c:hub_configure() for details. */
330         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
332         /*
333          * All 3.0 hubs should have an endpoint companion descriptor,
334          * but we're ignoring that for now.  FIXME?
335          */
336 };
337
338 /*-------------------------------------------------------------------------*/
339
340 /**
341  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
342  * @s: Null-terminated ASCII (actually ISO-8859-1) string
343  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
344  * @len: Length (in bytes; may be odd) of descriptor buffer.
345  *
346  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
347  * buflen, whichever is less.
348  *
349  * USB String descriptors can contain at most 126 characters; input
350  * strings longer than that are truncated.
351  */
352 static unsigned
353 ascii2desc(char const *s, u8 *buf, unsigned len)
354 {
355         unsigned n, t = 2 + 2*strlen(s);
356
357         if (t > 254)
358                 t = 254;        /* Longest possible UTF string descriptor */
359         if (len > t)
360                 len = t;
361
362         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
363
364         n = len;
365         while (n--) {
366                 *buf++ = t;
367                 if (!n--)
368                         break;
369                 *buf++ = t >> 8;
370                 t = (unsigned char)*s++;
371         }
372         return len;
373 }
374
375 /**
376  * rh_string() - provides string descriptors for root hub
377  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
378  * @hcd: the host controller for this root hub
379  * @data: buffer for output packet
380  * @len: length of the provided buffer
381  *
382  * Produces either a manufacturer, product or serial number string for the
383  * virtual root hub device.
384  * Returns the number of bytes filled in: the length of the descriptor or
385  * of the provided buffer, whichever is less.
386  */
387 static unsigned
388 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
389 {
390         char buf[100];
391         char const *s;
392         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
393
394         // language ids
395         switch (id) {
396         case 0:
397                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
398                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
399                 if (len > 4)
400                         len = 4;
401                 memcpy(data, langids, len);
402                 return len;
403         case 1:
404                 /* Serial number */
405                 s = hcd->self.bus_name;
406                 break;
407         case 2:
408                 /* Product name */
409                 s = hcd->product_desc;
410                 break;
411         case 3:
412                 /* Manufacturer */
413                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
414                         init_utsname()->release, hcd->driver->description);
415                 s = buf;
416                 break;
417         default:
418                 /* Can't happen; caller guarantees it */
419                 return 0;
420         }
421
422         return ascii2desc(s, data, len);
423 }
424
425
426 /* Root hub control transfers execute synchronously */
427 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
428 {
429         struct usb_ctrlrequest *cmd;
430         u16             typeReq, wValue, wIndex, wLength;
431         u8              *ubuf = urb->transfer_buffer;
432         u8              tbuf [sizeof (struct usb_hub_descriptor)]
433                 __attribute__((aligned(4)));
434         const u8        *bufp = tbuf;
435         unsigned        len = 0;
436         int             status;
437         u8              patch_wakeup = 0;
438         u8              patch_protocol = 0;
439
440         might_sleep();
441
442         spin_lock_irq(&hcd_root_hub_lock);
443         status = usb_hcd_link_urb_to_ep(hcd, urb);
444         spin_unlock_irq(&hcd_root_hub_lock);
445         if (status)
446                 return status;
447         urb->hcpriv = hcd;      /* Indicate it's queued */
448
449         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
450         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
451         wValue   = le16_to_cpu (cmd->wValue);
452         wIndex   = le16_to_cpu (cmd->wIndex);
453         wLength  = le16_to_cpu (cmd->wLength);
454
455         if (wLength > urb->transfer_buffer_length)
456                 goto error;
457
458         urb->actual_length = 0;
459         switch (typeReq) {
460
461         /* DEVICE REQUESTS */
462
463         /* The root hub's remote wakeup enable bit is implemented using
464          * driver model wakeup flags.  If this system supports wakeup
465          * through USB, userspace may change the default "allow wakeup"
466          * policy through sysfs or these calls.
467          *
468          * Most root hubs support wakeup from downstream devices, for
469          * runtime power management (disabling USB clocks and reducing
470          * VBUS power usage).  However, not all of them do so; silicon,
471          * board, and BIOS bugs here are not uncommon, so these can't
472          * be treated quite like external hubs.
473          *
474          * Likewise, not all root hubs will pass wakeup events upstream,
475          * to wake up the whole system.  So don't assume root hub and
476          * controller capabilities are identical.
477          */
478
479         case DeviceRequest | USB_REQ_GET_STATUS:
480                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
481                                         << USB_DEVICE_REMOTE_WAKEUP)
482                                 | (1 << USB_DEVICE_SELF_POWERED);
483                 tbuf [1] = 0;
484                 len = 2;
485                 break;
486         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
487                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
488                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
489                 else
490                         goto error;
491                 break;
492         case DeviceOutRequest | USB_REQ_SET_FEATURE:
493                 if (device_can_wakeup(&hcd->self.root_hub->dev)
494                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
495                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
496                 else
497                         goto error;
498                 break;
499         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
500                 tbuf [0] = 1;
501                 len = 1;
502                         /* FALLTHROUGH */
503         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
504                 break;
505         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
506                 switch (wValue & 0xff00) {
507                 case USB_DT_DEVICE << 8:
508                         switch (hcd->driver->flags & HCD_MASK) {
509                         case HCD_USB3:
510                                 bufp = usb3_rh_dev_descriptor;
511                                 break;
512                         case HCD_USB2:
513                                 bufp = usb2_rh_dev_descriptor;
514                                 break;
515                         case HCD_USB11:
516                                 bufp = usb11_rh_dev_descriptor;
517                                 break;
518                         default:
519                                 goto error;
520                         }
521                         len = 18;
522                         if (hcd->has_tt)
523                                 patch_protocol = 1;
524                         break;
525                 case USB_DT_CONFIG << 8:
526                         switch (hcd->driver->flags & HCD_MASK) {
527                         case HCD_USB3:
528                                 bufp = ss_rh_config_descriptor;
529                                 len = sizeof ss_rh_config_descriptor;
530                                 break;
531                         case HCD_USB2:
532                                 bufp = hs_rh_config_descriptor;
533                                 len = sizeof hs_rh_config_descriptor;
534                                 break;
535                         case HCD_USB11:
536                                 bufp = fs_rh_config_descriptor;
537                                 len = sizeof fs_rh_config_descriptor;
538                                 break;
539                         default:
540                                 goto error;
541                         }
542                         if (device_can_wakeup(&hcd->self.root_hub->dev))
543                                 patch_wakeup = 1;
544                         break;
545                 case USB_DT_STRING << 8:
546                         if ((wValue & 0xff) < 4)
547                                 urb->actual_length = rh_string(wValue & 0xff,
548                                                 hcd, ubuf, wLength);
549                         else /* unsupported IDs --> "protocol stall" */
550                                 goto error;
551                         break;
552                 default:
553                         goto error;
554                 }
555                 break;
556         case DeviceRequest | USB_REQ_GET_INTERFACE:
557                 tbuf [0] = 0;
558                 len = 1;
559                         /* FALLTHROUGH */
560         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
561                 break;
562         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
563                 // wValue == urb->dev->devaddr
564                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
565                         wValue);
566                 break;
567
568         /* INTERFACE REQUESTS (no defined feature/status flags) */
569
570         /* ENDPOINT REQUESTS */
571
572         case EndpointRequest | USB_REQ_GET_STATUS:
573                 // ENDPOINT_HALT flag
574                 tbuf [0] = 0;
575                 tbuf [1] = 0;
576                 len = 2;
577                         /* FALLTHROUGH */
578         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
579         case EndpointOutRequest | USB_REQ_SET_FEATURE:
580                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
581                 break;
582
583         /* CLASS REQUESTS (and errors) */
584
585         default:
586                 /* non-generic request */
587                 switch (typeReq) {
588                 case GetHubStatus:
589                 case GetPortStatus:
590                         len = 4;
591                         break;
592                 case GetHubDescriptor:
593                         len = sizeof (struct usb_hub_descriptor);
594                         break;
595                 }
596                 status = hcd->driver->hub_control (hcd,
597                         typeReq, wValue, wIndex,
598                         tbuf, wLength);
599                 break;
600 error:
601                 /* "protocol stall" on error */
602                 status = -EPIPE;
603         }
604
605         if (status) {
606                 len = 0;
607                 if (status != -EPIPE) {
608                         dev_dbg (hcd->self.controller,
609                                 "CTRL: TypeReq=0x%x val=0x%x "
610                                 "idx=0x%x len=%d ==> %d\n",
611                                 typeReq, wValue, wIndex,
612                                 wLength, status);
613                 }
614         }
615         if (len) {
616                 if (urb->transfer_buffer_length < len)
617                         len = urb->transfer_buffer_length;
618                 urb->actual_length = len;
619                 // always USB_DIR_IN, toward host
620                 memcpy (ubuf, bufp, len);
621
622                 /* report whether RH hardware supports remote wakeup */
623                 if (patch_wakeup &&
624                                 len > offsetof (struct usb_config_descriptor,
625                                                 bmAttributes))
626                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
627                                 |= USB_CONFIG_ATT_WAKEUP;
628
629                 /* report whether RH hardware has an integrated TT */
630                 if (patch_protocol &&
631                                 len > offsetof(struct usb_device_descriptor,
632                                                 bDeviceProtocol))
633                         ((struct usb_device_descriptor *) ubuf)->
634                                         bDeviceProtocol = 1;
635         }
636
637         /* any errors get returned through the urb completion */
638         spin_lock_irq(&hcd_root_hub_lock);
639         usb_hcd_unlink_urb_from_ep(hcd, urb);
640
641         /* This peculiar use of spinlocks echoes what real HC drivers do.
642          * Avoiding calls to local_irq_disable/enable makes the code
643          * RT-friendly.
644          */
645         spin_unlock(&hcd_root_hub_lock);
646         usb_hcd_giveback_urb(hcd, urb, status);
647         spin_lock(&hcd_root_hub_lock);
648
649         spin_unlock_irq(&hcd_root_hub_lock);
650         return 0;
651 }
652
653 /*-------------------------------------------------------------------------*/
654
655 /*
656  * Root Hub interrupt transfers are polled using a timer if the
657  * driver requests it; otherwise the driver is responsible for
658  * calling usb_hcd_poll_rh_status() when an event occurs.
659  *
660  * Completions are called in_interrupt(), but they may or may not
661  * be in_irq().
662  */
663 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
664 {
665         struct urb      *urb;
666         int             length;
667         unsigned long   flags;
668         char            buffer[6];      /* Any root hubs with > 31 ports? */
669
670         if (unlikely(!hcd->rh_registered))
671                 return;
672         if (!hcd->uses_new_polling && !hcd->status_urb)
673                 return;
674
675         length = hcd->driver->hub_status_data(hcd, buffer);
676         if (length > 0) {
677
678                 /* try to complete the status urb */
679                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
680                 urb = hcd->status_urb;
681                 if (urb) {
682                         hcd->poll_pending = 0;
683                         hcd->status_urb = NULL;
684                         urb->actual_length = length;
685                         memcpy(urb->transfer_buffer, buffer, length);
686
687                         usb_hcd_unlink_urb_from_ep(hcd, urb);
688                         spin_unlock(&hcd_root_hub_lock);
689                         usb_hcd_giveback_urb(hcd, urb, 0);
690                         spin_lock(&hcd_root_hub_lock);
691                 } else {
692                         length = 0;
693                         hcd->poll_pending = 1;
694                 }
695                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
696         }
697
698         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
699          * exceed that limit if HZ is 100. The math is more clunky than
700          * maybe expected, this is to make sure that all timers for USB devices
701          * fire at the same time to give the CPU a break inbetween */
702         if (hcd->uses_new_polling ? hcd->poll_rh :
703                         (length == 0 && hcd->status_urb != NULL))
704                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
705 }
706 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
707
708 /* timer callback */
709 static void rh_timer_func (unsigned long _hcd)
710 {
711         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
717 {
718         int             retval;
719         unsigned long   flags;
720         unsigned        len = 1 + (urb->dev->maxchild / 8);
721
722         spin_lock_irqsave (&hcd_root_hub_lock, flags);
723         if (hcd->status_urb || urb->transfer_buffer_length < len) {
724                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
725                 retval = -EINVAL;
726                 goto done;
727         }
728
729         retval = usb_hcd_link_urb_to_ep(hcd, urb);
730         if (retval)
731                 goto done;
732
733         hcd->status_urb = urb;
734         urb->hcpriv = hcd;      /* indicate it's queued */
735         if (!hcd->uses_new_polling)
736                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
737
738         /* If a status change has already occurred, report it ASAP */
739         else if (hcd->poll_pending)
740                 mod_timer(&hcd->rh_timer, jiffies);
741         retval = 0;
742  done:
743         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
744         return retval;
745 }
746
747 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
748 {
749         if (usb_endpoint_xfer_int(&urb->ep->desc))
750                 return rh_queue_status (hcd, urb);
751         if (usb_endpoint_xfer_control(&urb->ep->desc))
752                 return rh_call_control (hcd, urb);
753         return -EINVAL;
754 }
755
756 /*-------------------------------------------------------------------------*/
757
758 /* Unlinks of root-hub control URBs are legal, but they don't do anything
759  * since these URBs always execute synchronously.
760  */
761 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
762 {
763         unsigned long   flags;
764         int             rc;
765
766         spin_lock_irqsave(&hcd_root_hub_lock, flags);
767         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
768         if (rc)
769                 goto done;
770
771         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
772                 ;       /* Do nothing */
773
774         } else {                                /* Status URB */
775                 if (!hcd->uses_new_polling)
776                         del_timer (&hcd->rh_timer);
777                 if (urb == hcd->status_urb) {
778                         hcd->status_urb = NULL;
779                         usb_hcd_unlink_urb_from_ep(hcd, urb);
780
781                         spin_unlock(&hcd_root_hub_lock);
782                         usb_hcd_giveback_urb(hcd, urb, status);
783                         spin_lock(&hcd_root_hub_lock);
784                 }
785         }
786  done:
787         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
788         return rc;
789 }
790
791
792
793 /*
794  * Show & store the current value of authorized_default
795  */
796 static ssize_t usb_host_authorized_default_show(struct device *dev,
797                                                 struct device_attribute *attr,
798                                                 char *buf)
799 {
800         struct usb_device *rh_usb_dev = to_usb_device(dev);
801         struct usb_bus *usb_bus = rh_usb_dev->bus;
802         struct usb_hcd *usb_hcd;
803
804         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
805                 return -ENODEV;
806         usb_hcd = bus_to_hcd(usb_bus);
807         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
808 }
809
810 static ssize_t usb_host_authorized_default_store(struct device *dev,
811                                                  struct device_attribute *attr,
812                                                  const char *buf, size_t size)
813 {
814         ssize_t result;
815         unsigned val;
816         struct usb_device *rh_usb_dev = to_usb_device(dev);
817         struct usb_bus *usb_bus = rh_usb_dev->bus;
818         struct usb_hcd *usb_hcd;
819
820         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
821                 return -ENODEV;
822         usb_hcd = bus_to_hcd(usb_bus);
823         result = sscanf(buf, "%u\n", &val);
824         if (result == 1) {
825                 usb_hcd->authorized_default = val? 1 : 0;
826                 result = size;
827         }
828         else
829                 result = -EINVAL;
830         return result;
831 }
832
833 static DEVICE_ATTR(authorized_default, 0644,
834             usb_host_authorized_default_show,
835             usb_host_authorized_default_store);
836
837
838 /* Group all the USB bus attributes */
839 static struct attribute *usb_bus_attrs[] = {
840                 &dev_attr_authorized_default.attr,
841                 NULL,
842 };
843
844 static struct attribute_group usb_bus_attr_group = {
845         .name = NULL,   /* we want them in the same directory */
846         .attrs = usb_bus_attrs,
847 };
848
849
850
851 /*-------------------------------------------------------------------------*/
852
853 /**
854  * usb_bus_init - shared initialization code
855  * @bus: the bus structure being initialized
856  *
857  * This code is used to initialize a usb_bus structure, memory for which is
858  * separately managed.
859  */
860 static void usb_bus_init (struct usb_bus *bus)
861 {
862         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
863
864         bus->devnum_next = 1;
865
866         bus->root_hub = NULL;
867         bus->busnum = -1;
868         bus->bandwidth_allocated = 0;
869         bus->bandwidth_int_reqs  = 0;
870         bus->bandwidth_isoc_reqs = 0;
871
872         INIT_LIST_HEAD (&bus->bus_list);
873 }
874
875 /*-------------------------------------------------------------------------*/
876
877 /**
878  * usb_register_bus - registers the USB host controller with the usb core
879  * @bus: pointer to the bus to register
880  * Context: !in_interrupt()
881  *
882  * Assigns a bus number, and links the controller into usbcore data
883  * structures so that it can be seen by scanning the bus list.
884  */
885 static int usb_register_bus(struct usb_bus *bus)
886 {
887         int result = -E2BIG;
888         int busnum;
889
890         mutex_lock(&usb_bus_list_lock);
891         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
892         if (busnum >= USB_MAXBUS) {
893                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
894                 goto error_find_busnum;
895         }
896         set_bit (busnum, busmap.busmap);
897         bus->busnum = busnum;
898
899         /* Add it to the local list of buses */
900         list_add (&bus->bus_list, &usb_bus_list);
901         mutex_unlock(&usb_bus_list_lock);
902
903         usb_notify_add_bus(bus);
904
905         dev_info (bus->controller, "new USB bus registered, assigned bus "
906                   "number %d\n", bus->busnum);
907         return 0;
908
909 error_find_busnum:
910         mutex_unlock(&usb_bus_list_lock);
911         return result;
912 }
913
914 /**
915  * usb_deregister_bus - deregisters the USB host controller
916  * @bus: pointer to the bus to deregister
917  * Context: !in_interrupt()
918  *
919  * Recycles the bus number, and unlinks the controller from usbcore data
920  * structures so that it won't be seen by scanning the bus list.
921  */
922 static void usb_deregister_bus (struct usb_bus *bus)
923 {
924         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
925
926         /*
927          * NOTE: make sure that all the devices are removed by the
928          * controller code, as well as having it call this when cleaning
929          * itself up
930          */
931         mutex_lock(&usb_bus_list_lock);
932         list_del (&bus->bus_list);
933         mutex_unlock(&usb_bus_list_lock);
934
935         usb_notify_remove_bus(bus);
936
937         clear_bit (bus->busnum, busmap.busmap);
938 }
939
940 /**
941  * register_root_hub - called by usb_add_hcd() to register a root hub
942  * @hcd: host controller for this root hub
943  *
944  * This function registers the root hub with the USB subsystem.  It sets up
945  * the device properly in the device tree and then calls usb_new_device()
946  * to register the usb device.  It also assigns the root hub's USB address
947  * (always 1).
948  */
949 static int register_root_hub(struct usb_hcd *hcd)
950 {
951         struct device *parent_dev = hcd->self.controller;
952         struct usb_device *usb_dev = hcd->self.root_hub;
953         const int devnum = 1;
954         int retval;
955
956         usb_dev->devnum = devnum;
957         usb_dev->bus->devnum_next = devnum + 1;
958         memset (&usb_dev->bus->devmap.devicemap, 0,
959                         sizeof usb_dev->bus->devmap.devicemap);
960         set_bit (devnum, usb_dev->bus->devmap.devicemap);
961         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
962
963         mutex_lock(&usb_bus_list_lock);
964
965         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
966         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
967         if (retval != sizeof usb_dev->descriptor) {
968                 mutex_unlock(&usb_bus_list_lock);
969                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
970                                 dev_name(&usb_dev->dev), retval);
971                 return (retval < 0) ? retval : -EMSGSIZE;
972         }
973
974         retval = usb_new_device (usb_dev);
975         if (retval) {
976                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
977                                 dev_name(&usb_dev->dev), retval);
978         }
979         mutex_unlock(&usb_bus_list_lock);
980
981         if (retval == 0) {
982                 spin_lock_irq (&hcd_root_hub_lock);
983                 hcd->rh_registered = 1;
984                 spin_unlock_irq (&hcd_root_hub_lock);
985
986                 /* Did the HC die before the root hub was registered? */
987                 if (hcd->state == HC_STATE_HALT)
988                         usb_hc_died (hcd);      /* This time clean up */
989         }
990
991         return retval;
992 }
993
994
995 /*-------------------------------------------------------------------------*/
996
997 /**
998  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
999  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1000  * @is_input: true iff the transaction sends data to the host
1001  * @isoc: true for isochronous transactions, false for interrupt ones
1002  * @bytecount: how many bytes in the transaction.
1003  *
1004  * Returns approximate bus time in nanoseconds for a periodic transaction.
1005  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1006  * scheduled in software, this function is only used for such scheduling.
1007  */
1008 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1009 {
1010         unsigned long   tmp;
1011
1012         switch (speed) {
1013         case USB_SPEED_LOW:     /* INTR only */
1014                 if (is_input) {
1015                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1016                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1017                 } else {
1018                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1019                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1020                 }
1021         case USB_SPEED_FULL:    /* ISOC or INTR */
1022                 if (isoc) {
1023                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1024                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1025                 } else {
1026                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1027                         return (9107L + BW_HOST_DELAY + tmp);
1028                 }
1029         case USB_SPEED_HIGH:    /* ISOC or INTR */
1030                 // FIXME adjust for input vs output
1031                 if (isoc)
1032                         tmp = HS_NSECS_ISO (bytecount);
1033                 else
1034                         tmp = HS_NSECS (bytecount);
1035                 return tmp;
1036         default:
1037                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1038                 return -1;
1039         }
1040 }
1041 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1042
1043
1044 /*-------------------------------------------------------------------------*/
1045
1046 /*
1047  * Generic HC operations.
1048  */
1049
1050 /*-------------------------------------------------------------------------*/
1051
1052 /**
1053  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1054  * @hcd: host controller to which @urb was submitted
1055  * @urb: URB being submitted
1056  *
1057  * Host controller drivers should call this routine in their enqueue()
1058  * method.  The HCD's private spinlock must be held and interrupts must
1059  * be disabled.  The actions carried out here are required for URB
1060  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1061  *
1062  * Returns 0 for no error, otherwise a negative error code (in which case
1063  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1064  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1065  * the private spinlock and returning.
1066  */
1067 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1068 {
1069         int             rc = 0;
1070
1071         spin_lock(&hcd_urb_list_lock);
1072
1073         /* Check that the URB isn't being killed */
1074         if (unlikely(atomic_read(&urb->reject))) {
1075                 rc = -EPERM;
1076                 goto done;
1077         }
1078
1079         if (unlikely(!urb->ep->enabled)) {
1080                 rc = -ENOENT;
1081                 goto done;
1082         }
1083
1084         if (unlikely(!urb->dev->can_submit)) {
1085                 rc = -EHOSTUNREACH;
1086                 goto done;
1087         }
1088
1089         /*
1090          * Check the host controller's state and add the URB to the
1091          * endpoint's queue.
1092          */
1093         switch (hcd->state) {
1094         case HC_STATE_RUNNING:
1095         case HC_STATE_RESUMING:
1096                 urb->unlinked = 0;
1097                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1098                 break;
1099         default:
1100                 rc = -ESHUTDOWN;
1101                 goto done;
1102         }
1103  done:
1104         spin_unlock(&hcd_urb_list_lock);
1105         return rc;
1106 }
1107 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1108
1109 /**
1110  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1111  * @hcd: host controller to which @urb was submitted
1112  * @urb: URB being checked for unlinkability
1113  * @status: error code to store in @urb if the unlink succeeds
1114  *
1115  * Host controller drivers should call this routine in their dequeue()
1116  * method.  The HCD's private spinlock must be held and interrupts must
1117  * be disabled.  The actions carried out here are required for making
1118  * sure than an unlink is valid.
1119  *
1120  * Returns 0 for no error, otherwise a negative error code (in which case
1121  * the dequeue() method must fail).  The possible error codes are:
1122  *
1123  *      -EIDRM: @urb was not submitted or has already completed.
1124  *              The completion function may not have been called yet.
1125  *
1126  *      -EBUSY: @urb has already been unlinked.
1127  */
1128 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1129                 int status)
1130 {
1131         struct list_head        *tmp;
1132
1133         /* insist the urb is still queued */
1134         list_for_each(tmp, &urb->ep->urb_list) {
1135                 if (tmp == &urb->urb_list)
1136                         break;
1137         }
1138         if (tmp != &urb->urb_list)
1139                 return -EIDRM;
1140
1141         /* Any status except -EINPROGRESS means something already started to
1142          * unlink this URB from the hardware.  So there's no more work to do.
1143          */
1144         if (urb->unlinked)
1145                 return -EBUSY;
1146         urb->unlinked = status;
1147
1148         /* IRQ setup can easily be broken so that USB controllers
1149          * never get completion IRQs ... maybe even the ones we need to
1150          * finish unlinking the initial failed usb_set_address()
1151          * or device descriptor fetch.
1152          */
1153         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1154                         !is_root_hub(urb->dev)) {
1155                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1156                         "Controller is probably using the wrong IRQ.\n");
1157                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1158         }
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1163
1164 /**
1165  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1166  * @hcd: host controller to which @urb was submitted
1167  * @urb: URB being unlinked
1168  *
1169  * Host controller drivers should call this routine before calling
1170  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1171  * interrupts must be disabled.  The actions carried out here are required
1172  * for URB completion.
1173  */
1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176         /* clear all state linking urb to this dev (and hcd) */
1177         spin_lock(&hcd_urb_list_lock);
1178         list_del_init(&urb->urb_list);
1179         spin_unlock(&hcd_urb_list_lock);
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1182
1183 /*
1184  * Some usb host controllers can only perform dma using a small SRAM area.
1185  * The usb core itself is however optimized for host controllers that can dma
1186  * using regular system memory - like pci devices doing bus mastering.
1187  *
1188  * To support host controllers with limited dma capabilites we provide dma
1189  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1190  * For this to work properly the host controller code must first use the
1191  * function dma_declare_coherent_memory() to point out which memory area
1192  * that should be used for dma allocations.
1193  *
1194  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1195  * dma using dma_alloc_coherent() which in turn allocates from the memory
1196  * area pointed out with dma_declare_coherent_memory().
1197  *
1198  * So, to summarize...
1199  *
1200  * - We need "local" memory, canonical example being
1201  *   a small SRAM on a discrete controller being the
1202  *   only memory that the controller can read ...
1203  *   (a) "normal" kernel memory is no good, and
1204  *   (b) there's not enough to share
1205  *
1206  * - The only *portable* hook for such stuff in the
1207  *   DMA framework is dma_declare_coherent_memory()
1208  *
1209  * - So we use that, even though the primary requirement
1210  *   is that the memory be "local" (hence addressible
1211  *   by that device), not "coherent".
1212  *
1213  */
1214
1215 static int hcd_alloc_coherent(struct usb_bus *bus,
1216                               gfp_t mem_flags, dma_addr_t *dma_handle,
1217                               void **vaddr_handle, size_t size,
1218                               enum dma_data_direction dir)
1219 {
1220         unsigned char *vaddr;
1221
1222         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1223                                  mem_flags, dma_handle);
1224         if (!vaddr)
1225                 return -ENOMEM;
1226
1227         /*
1228          * Store the virtual address of the buffer at the end
1229          * of the allocated dma buffer. The size of the buffer
1230          * may be uneven so use unaligned functions instead
1231          * of just rounding up. It makes sense to optimize for
1232          * memory footprint over access speed since the amount
1233          * of memory available for dma may be limited.
1234          */
1235         put_unaligned((unsigned long)*vaddr_handle,
1236                       (unsigned long *)(vaddr + size));
1237
1238         if (dir == DMA_TO_DEVICE)
1239                 memcpy(vaddr, *vaddr_handle, size);
1240
1241         *vaddr_handle = vaddr;
1242         return 0;
1243 }
1244
1245 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1246                               void **vaddr_handle, size_t size,
1247                               enum dma_data_direction dir)
1248 {
1249         unsigned char *vaddr = *vaddr_handle;
1250
1251         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1252
1253         if (dir == DMA_FROM_DEVICE)
1254                 memcpy(vaddr, *vaddr_handle, size);
1255
1256         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1257
1258         *vaddr_handle = vaddr;
1259         *dma_handle = 0;
1260 }
1261
1262 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1263                            gfp_t mem_flags)
1264 {
1265         enum dma_data_direction dir;
1266         int ret = 0;
1267
1268         /* Map the URB's buffers for DMA access.
1269          * Lower level HCD code should use *_dma exclusively,
1270          * unless it uses pio or talks to another transport,
1271          * or uses the provided scatter gather list for bulk.
1272          */
1273         if (is_root_hub(urb->dev))
1274                 return 0;
1275
1276         if (usb_endpoint_xfer_control(&urb->ep->desc)
1277             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1278                 if (hcd->self.uses_dma) {
1279                         urb->setup_dma = dma_map_single(
1280                                         hcd->self.controller,
1281                                         urb->setup_packet,
1282                                         sizeof(struct usb_ctrlrequest),
1283                                         DMA_TO_DEVICE);
1284                         if (dma_mapping_error(hcd->self.controller,
1285                                                 urb->setup_dma))
1286                                 return -EAGAIN;
1287                 } else if (hcd->driver->flags & HCD_LOCAL_MEM)
1288                         ret = hcd_alloc_coherent(
1289                                         urb->dev->bus, mem_flags,
1290                                         &urb->setup_dma,
1291                                         (void **)&urb->setup_packet,
1292                                         sizeof(struct usb_ctrlrequest),
1293                                         DMA_TO_DEVICE);
1294         }
1295
1296         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1297         if (ret == 0 && urb->transfer_buffer_length != 0
1298             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1299                 if (hcd->self.uses_dma) {
1300                         urb->transfer_dma = dma_map_single (
1301                                         hcd->self.controller,
1302                                         urb->transfer_buffer,
1303                                         urb->transfer_buffer_length,
1304                                         dir);
1305                         if (dma_mapping_error(hcd->self.controller,
1306                                                 urb->transfer_dma))
1307                                 return -EAGAIN;
1308                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1309                         ret = hcd_alloc_coherent(
1310                                         urb->dev->bus, mem_flags,
1311                                         &urb->transfer_dma,
1312                                         &urb->transfer_buffer,
1313                                         urb->transfer_buffer_length,
1314                                         dir);
1315
1316                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1317                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1318                                 hcd_free_coherent(urb->dev->bus,
1319                                         &urb->setup_dma,
1320                                         (void **)&urb->setup_packet,
1321                                         sizeof(struct usb_ctrlrequest),
1322                                         DMA_TO_DEVICE);
1323                 }
1324         }
1325         return ret;
1326 }
1327
1328 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1329 {
1330         enum dma_data_direction dir;
1331
1332         if (is_root_hub(urb->dev))
1333                 return;
1334
1335         if (usb_endpoint_xfer_control(&urb->ep->desc)
1336             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1337                 if (hcd->self.uses_dma)
1338                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1339                                         sizeof(struct usb_ctrlrequest),
1340                                         DMA_TO_DEVICE);
1341                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1342                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1343                                         (void **)&urb->setup_packet,
1344                                         sizeof(struct usb_ctrlrequest),
1345                                         DMA_TO_DEVICE);
1346         }
1347
1348         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1349         if (urb->transfer_buffer_length != 0
1350             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1351                 if (hcd->self.uses_dma)
1352                         dma_unmap_single(hcd->self.controller,
1353                                         urb->transfer_dma,
1354                                         urb->transfer_buffer_length,
1355                                         dir);
1356                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1357                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1358                                         &urb->transfer_buffer,
1359                                         urb->transfer_buffer_length,
1360                                         dir);
1361         }
1362 }
1363
1364 /*-------------------------------------------------------------------------*/
1365
1366 /* may be called in any context with a valid urb->dev usecount
1367  * caller surrenders "ownership" of urb
1368  * expects usb_submit_urb() to have sanity checked and conditioned all
1369  * inputs in the urb
1370  */
1371 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1372 {
1373         int                     status;
1374         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1375
1376         /* increment urb's reference count as part of giving it to the HCD
1377          * (which will control it).  HCD guarantees that it either returns
1378          * an error or calls giveback(), but not both.
1379          */
1380         usb_get_urb(urb);
1381         atomic_inc(&urb->use_count);
1382         atomic_inc(&urb->dev->urbnum);
1383         usbmon_urb_submit(&hcd->self, urb);
1384
1385         /* NOTE requirements on root-hub callers (usbfs and the hub
1386          * driver, for now):  URBs' urb->transfer_buffer must be
1387          * valid and usb_buffer_{sync,unmap}() not be needed, since
1388          * they could clobber root hub response data.  Also, control
1389          * URBs must be submitted in process context with interrupts
1390          * enabled.
1391          */
1392         status = map_urb_for_dma(hcd, urb, mem_flags);
1393         if (unlikely(status)) {
1394                 usbmon_urb_submit_error(&hcd->self, urb, status);
1395                 goto error;
1396         }
1397
1398         if (is_root_hub(urb->dev))
1399                 status = rh_urb_enqueue(hcd, urb);
1400         else
1401                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1402
1403         if (unlikely(status)) {
1404                 usbmon_urb_submit_error(&hcd->self, urb, status);
1405                 unmap_urb_for_dma(hcd, urb);
1406  error:
1407                 urb->hcpriv = NULL;
1408                 INIT_LIST_HEAD(&urb->urb_list);
1409                 atomic_dec(&urb->use_count);
1410                 atomic_dec(&urb->dev->urbnum);
1411                 if (atomic_read(&urb->reject))
1412                         wake_up(&usb_kill_urb_queue);
1413                 usb_put_urb(urb);
1414         }
1415         return status;
1416 }
1417
1418 /*-------------------------------------------------------------------------*/
1419
1420 /* this makes the hcd giveback() the urb more quickly, by kicking it
1421  * off hardware queues (which may take a while) and returning it as
1422  * soon as practical.  we've already set up the urb's return status,
1423  * but we can't know if the callback completed already.
1424  */
1425 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1426 {
1427         int             value;
1428
1429         if (is_root_hub(urb->dev))
1430                 value = usb_rh_urb_dequeue(hcd, urb, status);
1431         else {
1432
1433                 /* The only reason an HCD might fail this call is if
1434                  * it has not yet fully queued the urb to begin with.
1435                  * Such failures should be harmless. */
1436                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1437         }
1438         return value;
1439 }
1440
1441 /*
1442  * called in any context
1443  *
1444  * caller guarantees urb won't be recycled till both unlink()
1445  * and the urb's completion function return
1446  */
1447 int usb_hcd_unlink_urb (struct urb *urb, int status)
1448 {
1449         struct usb_hcd          *hcd;
1450         int                     retval = -EIDRM;
1451         unsigned long           flags;
1452
1453         /* Prevent the device and bus from going away while
1454          * the unlink is carried out.  If they are already gone
1455          * then urb->use_count must be 0, since disconnected
1456          * devices can't have any active URBs.
1457          */
1458         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1459         if (atomic_read(&urb->use_count) > 0) {
1460                 retval = 0;
1461                 usb_get_dev(urb->dev);
1462         }
1463         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1464         if (retval == 0) {
1465                 hcd = bus_to_hcd(urb->dev->bus);
1466                 retval = unlink1(hcd, urb, status);
1467                 usb_put_dev(urb->dev);
1468         }
1469
1470         if (retval == 0)
1471                 retval = -EINPROGRESS;
1472         else if (retval != -EIDRM && retval != -EBUSY)
1473                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1474                                 urb, retval);
1475         return retval;
1476 }
1477
1478 /*-------------------------------------------------------------------------*/
1479
1480 /**
1481  * usb_hcd_giveback_urb - return URB from HCD to device driver
1482  * @hcd: host controller returning the URB
1483  * @urb: urb being returned to the USB device driver.
1484  * @status: completion status code for the URB.
1485  * Context: in_interrupt()
1486  *
1487  * This hands the URB from HCD to its USB device driver, using its
1488  * completion function.  The HCD has freed all per-urb resources
1489  * (and is done using urb->hcpriv).  It also released all HCD locks;
1490  * the device driver won't cause problems if it frees, modifies,
1491  * or resubmits this URB.
1492  *
1493  * If @urb was unlinked, the value of @status will be overridden by
1494  * @urb->unlinked.  Erroneous short transfers are detected in case
1495  * the HCD hasn't checked for them.
1496  */
1497 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499         urb->hcpriv = NULL;
1500         if (unlikely(urb->unlinked))
1501                 status = urb->unlinked;
1502         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1503                         urb->actual_length < urb->transfer_buffer_length &&
1504                         !status))
1505                 status = -EREMOTEIO;
1506
1507         unmap_urb_for_dma(hcd, urb);
1508         usbmon_urb_complete(&hcd->self, urb, status);
1509         usb_unanchor_urb(urb);
1510
1511         /* pass ownership to the completion handler */
1512         urb->status = status;
1513         urb->complete (urb);
1514         atomic_dec (&urb->use_count);
1515         if (unlikely(atomic_read(&urb->reject)))
1516                 wake_up (&usb_kill_urb_queue);
1517         usb_put_urb (urb);
1518 }
1519 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1520
1521 /*-------------------------------------------------------------------------*/
1522
1523 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1524  * queue to drain completely.  The caller must first insure that no more
1525  * URBs can be submitted for this endpoint.
1526  */
1527 void usb_hcd_flush_endpoint(struct usb_device *udev,
1528                 struct usb_host_endpoint *ep)
1529 {
1530         struct usb_hcd          *hcd;
1531         struct urb              *urb;
1532
1533         if (!ep)
1534                 return;
1535         might_sleep();
1536         hcd = bus_to_hcd(udev->bus);
1537
1538         /* No more submits can occur */
1539         spin_lock_irq(&hcd_urb_list_lock);
1540 rescan:
1541         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1542                 int     is_in;
1543
1544                 if (urb->unlinked)
1545                         continue;
1546                 usb_get_urb (urb);
1547                 is_in = usb_urb_dir_in(urb);
1548                 spin_unlock(&hcd_urb_list_lock);
1549
1550                 /* kick hcd */
1551                 unlink1(hcd, urb, -ESHUTDOWN);
1552                 dev_dbg (hcd->self.controller,
1553                         "shutdown urb %p ep%d%s%s\n",
1554                         urb, usb_endpoint_num(&ep->desc),
1555                         is_in ? "in" : "out",
1556                         ({      char *s;
1557
1558                                  switch (usb_endpoint_type(&ep->desc)) {
1559                                  case USB_ENDPOINT_XFER_CONTROL:
1560                                         s = ""; break;
1561                                  case USB_ENDPOINT_XFER_BULK:
1562                                         s = "-bulk"; break;
1563                                  case USB_ENDPOINT_XFER_INT:
1564                                         s = "-intr"; break;
1565                                  default:
1566                                         s = "-iso"; break;
1567                                 };
1568                                 s;
1569                         }));
1570                 usb_put_urb (urb);
1571
1572                 /* list contents may have changed */
1573                 spin_lock(&hcd_urb_list_lock);
1574                 goto rescan;
1575         }
1576         spin_unlock_irq(&hcd_urb_list_lock);
1577
1578         /* Wait until the endpoint queue is completely empty */
1579         while (!list_empty (&ep->urb_list)) {
1580                 spin_lock_irq(&hcd_urb_list_lock);
1581
1582                 /* The list may have changed while we acquired the spinlock */
1583                 urb = NULL;
1584                 if (!list_empty (&ep->urb_list)) {
1585                         urb = list_entry (ep->urb_list.prev, struct urb,
1586                                         urb_list);
1587                         usb_get_urb (urb);
1588                 }
1589                 spin_unlock_irq(&hcd_urb_list_lock);
1590
1591                 if (urb) {
1592                         usb_kill_urb (urb);
1593                         usb_put_urb (urb);
1594                 }
1595         }
1596 }
1597
1598 /* Check whether a new configuration or alt setting for an interface
1599  * will exceed the bandwidth for the bus (or the host controller resources).
1600  * Only pass in a non-NULL config or interface, not both!
1601  * Passing NULL for both new_config and new_intf means the device will be
1602  * de-configured by issuing a set configuration 0 command.
1603  */
1604 int usb_hcd_check_bandwidth(struct usb_device *udev,
1605                 struct usb_host_config *new_config,
1606                 struct usb_interface *new_intf)
1607 {
1608         int num_intfs, i, j;
1609         struct usb_interface_cache *intf_cache;
1610         struct usb_host_interface *alt = 0;
1611         int ret = 0;
1612         struct usb_hcd *hcd;
1613         struct usb_host_endpoint *ep;
1614
1615         hcd = bus_to_hcd(udev->bus);
1616         if (!hcd->driver->check_bandwidth)
1617                 return 0;
1618
1619         /* Configuration is being removed - set configuration 0 */
1620         if (!new_config && !new_intf) {
1621                 for (i = 1; i < 16; ++i) {
1622                         ep = udev->ep_out[i];
1623                         if (ep)
1624                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1625                         ep = udev->ep_in[i];
1626                         if (ep)
1627                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1628                 }
1629                 hcd->driver->check_bandwidth(hcd, udev);
1630                 return 0;
1631         }
1632         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1633          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1634          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1635          * ok to exclude it.
1636          */
1637         if (new_config) {
1638                 num_intfs = new_config->desc.bNumInterfaces;
1639                 /* Remove endpoints (except endpoint 0, which is always on the
1640                  * schedule) from the old config from the schedule
1641                  */
1642                 for (i = 1; i < 16; ++i) {
1643                         ep = udev->ep_out[i];
1644                         if (ep) {
1645                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1646                                 if (ret < 0)
1647                                         goto reset;
1648                         }
1649                         ep = udev->ep_in[i];
1650                         if (ep) {
1651                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1652                                 if (ret < 0)
1653                                         goto reset;
1654                         }
1655                 }
1656                 for (i = 0; i < num_intfs; ++i) {
1657
1658                         /* Dig the endpoints for alt setting 0 out of the
1659                          * interface cache for this interface
1660                          */
1661                         intf_cache = new_config->intf_cache[i];
1662                         for (j = 0; j < intf_cache->num_altsetting; j++) {
1663                                 if (intf_cache->altsetting[j].desc.bAlternateSetting == 0)
1664                                         alt = &intf_cache->altsetting[j];
1665                         }
1666                         if (!alt) {
1667                                 printk(KERN_DEBUG "Did not find alt setting 0 for intf %d\n", i);
1668                                 continue;
1669                         }
1670                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1671                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1672                                 if (ret < 0)
1673                                         goto reset;
1674                         }
1675                 }
1676         }
1677         ret = hcd->driver->check_bandwidth(hcd, udev);
1678 reset:
1679         if (ret < 0)
1680                 hcd->driver->reset_bandwidth(hcd, udev);
1681         return ret;
1682 }
1683
1684 /* Disables the endpoint: synchronizes with the hcd to make sure all
1685  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1686  * have been called previously.  Use for set_configuration, set_interface,
1687  * driver removal, physical disconnect.
1688  *
1689  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1690  * type, maxpacket size, toggle, halt status, and scheduling.
1691  */
1692 void usb_hcd_disable_endpoint(struct usb_device *udev,
1693                 struct usb_host_endpoint *ep)
1694 {
1695         struct usb_hcd          *hcd;
1696
1697         might_sleep();
1698         hcd = bus_to_hcd(udev->bus);
1699         if (hcd->driver->endpoint_disable)
1700                 hcd->driver->endpoint_disable(hcd, ep);
1701 }
1702
1703 /**
1704  * usb_hcd_reset_endpoint - reset host endpoint state
1705  * @udev: USB device.
1706  * @ep:   the endpoint to reset.
1707  *
1708  * Resets any host endpoint state such as the toggle bit, sequence
1709  * number and current window.
1710  */
1711 void usb_hcd_reset_endpoint(struct usb_device *udev,
1712                             struct usb_host_endpoint *ep)
1713 {
1714         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1715
1716         if (hcd->driver->endpoint_reset)
1717                 hcd->driver->endpoint_reset(hcd, ep);
1718         else {
1719                 int epnum = usb_endpoint_num(&ep->desc);
1720                 int is_out = usb_endpoint_dir_out(&ep->desc);
1721                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1722
1723                 usb_settoggle(udev, epnum, is_out, 0);
1724                 if (is_control)
1725                         usb_settoggle(udev, epnum, !is_out, 0);
1726         }
1727 }
1728
1729 /* Protect against drivers that try to unlink URBs after the device
1730  * is gone, by waiting until all unlinks for @udev are finished.
1731  * Since we don't currently track URBs by device, simply wait until
1732  * nothing is running in the locked region of usb_hcd_unlink_urb().
1733  */
1734 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1735 {
1736         spin_lock_irq(&hcd_urb_unlink_lock);
1737         spin_unlock_irq(&hcd_urb_unlink_lock);
1738 }
1739
1740 /*-------------------------------------------------------------------------*/
1741
1742 /* called in any context */
1743 int usb_hcd_get_frame_number (struct usb_device *udev)
1744 {
1745         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1746
1747         if (!HC_IS_RUNNING (hcd->state))
1748                 return -ESHUTDOWN;
1749         return hcd->driver->get_frame_number (hcd);
1750 }
1751
1752 /*-------------------------------------------------------------------------*/
1753
1754 #ifdef  CONFIG_PM
1755
1756 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1757 {
1758         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1759         int             status;
1760         int             old_state = hcd->state;
1761
1762         dev_dbg(&rhdev->dev, "bus %s%s\n",
1763                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1764         if (!hcd->driver->bus_suspend) {
1765                 status = -ENOENT;
1766         } else {
1767                 hcd->state = HC_STATE_QUIESCING;
1768                 status = hcd->driver->bus_suspend(hcd);
1769         }
1770         if (status == 0) {
1771                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1772                 hcd->state = HC_STATE_SUSPENDED;
1773         } else {
1774                 hcd->state = old_state;
1775                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1776                                 "suspend", status);
1777         }
1778         return status;
1779 }
1780
1781 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1782 {
1783         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1784         int             status;
1785         int             old_state = hcd->state;
1786
1787         dev_dbg(&rhdev->dev, "usb %s%s\n",
1788                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1789         if (!hcd->driver->bus_resume)
1790                 return -ENOENT;
1791         if (hcd->state == HC_STATE_RUNNING)
1792                 return 0;
1793
1794         hcd->state = HC_STATE_RESUMING;
1795         status = hcd->driver->bus_resume(hcd);
1796         if (status == 0) {
1797                 /* TRSMRCY = 10 msec */
1798                 msleep(10);
1799                 usb_set_device_state(rhdev, rhdev->actconfig
1800                                 ? USB_STATE_CONFIGURED
1801                                 : USB_STATE_ADDRESS);
1802                 hcd->state = HC_STATE_RUNNING;
1803         } else {
1804                 hcd->state = old_state;
1805                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1806                                 "resume", status);
1807                 if (status != -ESHUTDOWN)
1808                         usb_hc_died(hcd);
1809         }
1810         return status;
1811 }
1812
1813 /* Workqueue routine for root-hub remote wakeup */
1814 static void hcd_resume_work(struct work_struct *work)
1815 {
1816         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1817         struct usb_device *udev = hcd->self.root_hub;
1818
1819         usb_lock_device(udev);
1820         usb_mark_last_busy(udev);
1821         usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1822         usb_unlock_device(udev);
1823 }
1824
1825 /**
1826  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1827  * @hcd: host controller for this root hub
1828  *
1829  * The USB host controller calls this function when its root hub is
1830  * suspended (with the remote wakeup feature enabled) and a remote
1831  * wakeup request is received.  The routine submits a workqueue request
1832  * to resume the root hub (that is, manage its downstream ports again).
1833  */
1834 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1835 {
1836         unsigned long flags;
1837
1838         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1839         if (hcd->rh_registered)
1840                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1841         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1842 }
1843 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1844
1845 #endif
1846
1847 /*-------------------------------------------------------------------------*/
1848
1849 #ifdef  CONFIG_USB_OTG
1850
1851 /**
1852  * usb_bus_start_enum - start immediate enumeration (for OTG)
1853  * @bus: the bus (must use hcd framework)
1854  * @port_num: 1-based number of port; usually bus->otg_port
1855  * Context: in_interrupt()
1856  *
1857  * Starts enumeration, with an immediate reset followed later by
1858  * khubd identifying and possibly configuring the device.
1859  * This is needed by OTG controller drivers, where it helps meet
1860  * HNP protocol timing requirements for starting a port reset.
1861  */
1862 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1863 {
1864         struct usb_hcd          *hcd;
1865         int                     status = -EOPNOTSUPP;
1866
1867         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1868          * boards with root hubs hooked up to internal devices (instead of
1869          * just the OTG port) may need more attention to resetting...
1870          */
1871         hcd = container_of (bus, struct usb_hcd, self);
1872         if (port_num && hcd->driver->start_port_reset)
1873                 status = hcd->driver->start_port_reset(hcd, port_num);
1874
1875         /* run khubd shortly after (first) root port reset finishes;
1876          * it may issue others, until at least 50 msecs have passed.
1877          */
1878         if (status == 0)
1879                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1880         return status;
1881 }
1882 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1883
1884 #endif
1885
1886 /*-------------------------------------------------------------------------*/
1887
1888 /**
1889  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1890  * @irq: the IRQ being raised
1891  * @__hcd: pointer to the HCD whose IRQ is being signaled
1892  *
1893  * If the controller isn't HALTed, calls the driver's irq handler.
1894  * Checks whether the controller is now dead.
1895  */
1896 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1897 {
1898         struct usb_hcd          *hcd = __hcd;
1899         unsigned long           flags;
1900         irqreturn_t             rc;
1901
1902         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1903          * when the first handler doesn't use it.  So let's just
1904          * assume it's never used.
1905          */
1906         local_irq_save(flags);
1907
1908         if (unlikely(hcd->state == HC_STATE_HALT ||
1909                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1910                 rc = IRQ_NONE;
1911         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1912                 rc = IRQ_NONE;
1913         } else {
1914                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1915
1916                 if (unlikely(hcd->state == HC_STATE_HALT))
1917                         usb_hc_died(hcd);
1918                 rc = IRQ_HANDLED;
1919         }
1920
1921         local_irq_restore(flags);
1922         return rc;
1923 }
1924
1925 /*-------------------------------------------------------------------------*/
1926
1927 /**
1928  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1929  * @hcd: pointer to the HCD representing the controller
1930  *
1931  * This is called by bus glue to report a USB host controller that died
1932  * while operations may still have been pending.  It's called automatically
1933  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1934  */
1935 void usb_hc_died (struct usb_hcd *hcd)
1936 {
1937         unsigned long flags;
1938
1939         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1940
1941         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1942         if (hcd->rh_registered) {
1943                 hcd->poll_rh = 0;
1944
1945                 /* make khubd clean up old urbs and devices */
1946                 usb_set_device_state (hcd->self.root_hub,
1947                                 USB_STATE_NOTATTACHED);
1948                 usb_kick_khubd (hcd->self.root_hub);
1949         }
1950         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1951 }
1952 EXPORT_SYMBOL_GPL (usb_hc_died);
1953
1954 /*-------------------------------------------------------------------------*/
1955
1956 /**
1957  * usb_create_hcd - create and initialize an HCD structure
1958  * @driver: HC driver that will use this hcd
1959  * @dev: device for this HC, stored in hcd->self.controller
1960  * @bus_name: value to store in hcd->self.bus_name
1961  * Context: !in_interrupt()
1962  *
1963  * Allocate a struct usb_hcd, with extra space at the end for the
1964  * HC driver's private data.  Initialize the generic members of the
1965  * hcd structure.
1966  *
1967  * If memory is unavailable, returns NULL.
1968  */
1969 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1970                 struct device *dev, const char *bus_name)
1971 {
1972         struct usb_hcd *hcd;
1973
1974         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1975         if (!hcd) {
1976                 dev_dbg (dev, "hcd alloc failed\n");
1977                 return NULL;
1978         }
1979         dev_set_drvdata(dev, hcd);
1980         kref_init(&hcd->kref);
1981
1982         usb_bus_init(&hcd->self);
1983         hcd->self.controller = dev;
1984         hcd->self.bus_name = bus_name;
1985         hcd->self.uses_dma = (dev->dma_mask != NULL);
1986
1987         init_timer(&hcd->rh_timer);
1988         hcd->rh_timer.function = rh_timer_func;
1989         hcd->rh_timer.data = (unsigned long) hcd;
1990 #ifdef CONFIG_PM
1991         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1992 #endif
1993
1994         hcd->driver = driver;
1995         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1996                         "USB Host Controller";
1997         return hcd;
1998 }
1999 EXPORT_SYMBOL_GPL(usb_create_hcd);
2000
2001 static void hcd_release (struct kref *kref)
2002 {
2003         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2004
2005         kfree(hcd);
2006 }
2007
2008 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2009 {
2010         if (hcd)
2011                 kref_get (&hcd->kref);
2012         return hcd;
2013 }
2014 EXPORT_SYMBOL_GPL(usb_get_hcd);
2015
2016 void usb_put_hcd (struct usb_hcd *hcd)
2017 {
2018         if (hcd)
2019                 kref_put (&hcd->kref, hcd_release);
2020 }
2021 EXPORT_SYMBOL_GPL(usb_put_hcd);
2022
2023 /**
2024  * usb_add_hcd - finish generic HCD structure initialization and register
2025  * @hcd: the usb_hcd structure to initialize
2026  * @irqnum: Interrupt line to allocate
2027  * @irqflags: Interrupt type flags
2028  *
2029  * Finish the remaining parts of generic HCD initialization: allocate the
2030  * buffers of consistent memory, register the bus, request the IRQ line,
2031  * and call the driver's reset() and start() routines.
2032  */
2033 int usb_add_hcd(struct usb_hcd *hcd,
2034                 unsigned int irqnum, unsigned long irqflags)
2035 {
2036         int retval;
2037         struct usb_device *rhdev;
2038
2039         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2040
2041         hcd->authorized_default = hcd->wireless? 0 : 1;
2042         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2043
2044         /* HC is in reset state, but accessible.  Now do the one-time init,
2045          * bottom up so that hcds can customize the root hubs before khubd
2046          * starts talking to them.  (Note, bus id is assigned early too.)
2047          */
2048         if ((retval = hcd_buffer_create(hcd)) != 0) {
2049                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2050                 return retval;
2051         }
2052
2053         if ((retval = usb_register_bus(&hcd->self)) < 0)
2054                 goto err_register_bus;
2055
2056         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2057                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2058                 retval = -ENOMEM;
2059                 goto err_allocate_root_hub;
2060         }
2061
2062         switch (hcd->driver->flags & HCD_MASK) {
2063         case HCD_USB11:
2064                 rhdev->speed = USB_SPEED_FULL;
2065                 break;
2066         case HCD_USB2:
2067                 rhdev->speed = USB_SPEED_HIGH;
2068                 break;
2069         case HCD_USB3:
2070                 rhdev->speed = USB_SPEED_SUPER;
2071                 break;
2072         default:
2073                 goto err_allocate_root_hub;
2074         }
2075         hcd->self.root_hub = rhdev;
2076
2077         /* wakeup flag init defaults to "everything works" for root hubs,
2078          * but drivers can override it in reset() if needed, along with
2079          * recording the overall controller's system wakeup capability.
2080          */
2081         device_init_wakeup(&rhdev->dev, 1);
2082
2083         /* "reset" is misnamed; its role is now one-time init. the controller
2084          * should already have been reset (and boot firmware kicked off etc).
2085          */
2086         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2087                 dev_err(hcd->self.controller, "can't setup\n");
2088                 goto err_hcd_driver_setup;
2089         }
2090
2091         /* NOTE: root hub and controller capabilities may not be the same */
2092         if (device_can_wakeup(hcd->self.controller)
2093                         && device_can_wakeup(&hcd->self.root_hub->dev))
2094                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2095
2096         /* enable irqs just before we start the controller */
2097         if (hcd->driver->irq) {
2098
2099                 /* IRQF_DISABLED doesn't work as advertised when used together
2100                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2101                  * interrupts we can remove it here.
2102                  */
2103                 if (irqflags & IRQF_SHARED)
2104                         irqflags &= ~IRQF_DISABLED;
2105
2106                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2107                                 hcd->driver->description, hcd->self.busnum);
2108                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2109                                 hcd->irq_descr, hcd)) != 0) {
2110                         dev_err(hcd->self.controller,
2111                                         "request interrupt %d failed\n", irqnum);
2112                         goto err_request_irq;
2113                 }
2114                 hcd->irq = irqnum;
2115                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2116                                 (hcd->driver->flags & HCD_MEMORY) ?
2117                                         "io mem" : "io base",
2118                                         (unsigned long long)hcd->rsrc_start);
2119         } else {
2120                 hcd->irq = -1;
2121                 if (hcd->rsrc_start)
2122                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2123                                         (hcd->driver->flags & HCD_MEMORY) ?
2124                                         "io mem" : "io base",
2125                                         (unsigned long long)hcd->rsrc_start);
2126         }
2127
2128         if ((retval = hcd->driver->start(hcd)) < 0) {
2129                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2130                 goto err_hcd_driver_start;
2131         }
2132
2133         /* starting here, usbcore will pay attention to this root hub */
2134         rhdev->bus_mA = min(500u, hcd->power_budget);
2135         if ((retval = register_root_hub(hcd)) != 0)
2136                 goto err_register_root_hub;
2137
2138         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2139         if (retval < 0) {
2140                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2141                        retval);
2142                 goto error_create_attr_group;
2143         }
2144         if (hcd->uses_new_polling && hcd->poll_rh)
2145                 usb_hcd_poll_rh_status(hcd);
2146         return retval;
2147
2148 error_create_attr_group:
2149         mutex_lock(&usb_bus_list_lock);
2150         usb_disconnect(&hcd->self.root_hub);
2151         mutex_unlock(&usb_bus_list_lock);
2152 err_register_root_hub:
2153         hcd->driver->stop(hcd);
2154 err_hcd_driver_start:
2155         if (hcd->irq >= 0)
2156                 free_irq(irqnum, hcd);
2157 err_request_irq:
2158 err_hcd_driver_setup:
2159         hcd->self.root_hub = NULL;
2160         usb_put_dev(rhdev);
2161 err_allocate_root_hub:
2162         usb_deregister_bus(&hcd->self);
2163 err_register_bus:
2164         hcd_buffer_destroy(hcd);
2165         return retval;
2166
2167 EXPORT_SYMBOL_GPL(usb_add_hcd);
2168
2169 /**
2170  * usb_remove_hcd - shutdown processing for generic HCDs
2171  * @hcd: the usb_hcd structure to remove
2172  * Context: !in_interrupt()
2173  *
2174  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2175  * invoking the HCD's stop() method.
2176  */
2177 void usb_remove_hcd(struct usb_hcd *hcd)
2178 {
2179         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2180
2181         if (HC_IS_RUNNING (hcd->state))
2182                 hcd->state = HC_STATE_QUIESCING;
2183
2184         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2185         spin_lock_irq (&hcd_root_hub_lock);
2186         hcd->rh_registered = 0;
2187         spin_unlock_irq (&hcd_root_hub_lock);
2188
2189 #ifdef CONFIG_PM
2190         cancel_work_sync(&hcd->wakeup_work);
2191 #endif
2192
2193         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2194         mutex_lock(&usb_bus_list_lock);
2195         usb_disconnect(&hcd->self.root_hub);
2196         mutex_unlock(&usb_bus_list_lock);
2197
2198         hcd->driver->stop(hcd);
2199         hcd->state = HC_STATE_HALT;
2200
2201         hcd->poll_rh = 0;
2202         del_timer_sync(&hcd->rh_timer);
2203
2204         if (hcd->irq >= 0)
2205                 free_irq(hcd->irq, hcd);
2206         usb_deregister_bus(&hcd->self);
2207         hcd_buffer_destroy(hcd);
2208 }
2209 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2210
2211 void
2212 usb_hcd_platform_shutdown(struct platform_device* dev)
2213 {
2214         struct usb_hcd *hcd = platform_get_drvdata(dev);
2215
2216         if (hcd->driver->shutdown)
2217                 hcd->driver->shutdown(hcd);
2218 }
2219 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2220
2221 /*-------------------------------------------------------------------------*/
2222
2223 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2224
2225 struct usb_mon_operations *mon_ops;
2226
2227 /*
2228  * The registration is unlocked.
2229  * We do it this way because we do not want to lock in hot paths.
2230  *
2231  * Notice that the code is minimally error-proof. Because usbmon needs
2232  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2233  */
2234  
2235 int usb_mon_register (struct usb_mon_operations *ops)
2236 {
2237
2238         if (mon_ops)
2239                 return -EBUSY;
2240
2241         mon_ops = ops;
2242         mb();
2243         return 0;
2244 }
2245 EXPORT_SYMBOL_GPL (usb_mon_register);
2246
2247 void usb_mon_deregister (void)
2248 {
2249
2250         if (mon_ops == NULL) {
2251                 printk(KERN_ERR "USB: monitor was not registered\n");
2252                 return;
2253         }
2254         mon_ops = NULL;
2255         mb();
2256 }
2257 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2258
2259 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */