]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Fix crash on USB unplug
[net-next-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable RX.
70          */
71         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72
73         /*
74          * Start watchdog monitoring.
75          */
76         rt2x00link_start_watchdog(rt2x00dev);
77
78         /*
79          * Start the TX queues.
80          */
81         ieee80211_wake_queues(rt2x00dev->hw);
82
83         return 0;
84 }
85
86 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         /*
92          * Stop the TX queues in mac80211.
93          */
94         ieee80211_stop_queues(rt2x00dev->hw);
95         rt2x00queue_stop_queues(rt2x00dev);
96
97         /*
98          * Stop watchdog monitoring.
99          */
100         rt2x00link_stop_watchdog(rt2x00dev);
101
102         /*
103          * Disable RX.
104          */
105         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
106
107         /*
108          * Disable radio.
109          */
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
111         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
112         rt2x00led_led_activity(rt2x00dev, false);
113         rt2x00leds_led_radio(rt2x00dev, false);
114 }
115
116 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
117 {
118         /*
119          * When we are disabling the RX, we should also stop the link tuner.
120          */
121         if (state == STATE_RADIO_RX_OFF)
122                 rt2x00link_stop_tuner(rt2x00dev);
123
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
125
126         /*
127          * When we are enabling the RX, we should also start the link tuner.
128          */
129         if (state == STATE_RADIO_RX_ON)
130                 rt2x00link_start_tuner(rt2x00dev);
131 }
132
133 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
134                                           struct ieee80211_vif *vif)
135 {
136         struct rt2x00_dev *rt2x00dev = data;
137         struct rt2x00_intf *intf = vif_to_intf(vif);
138         int delayed_flags;
139
140         /*
141          * Copy all data we need during this action under the protection
142          * of a spinlock. Otherwise race conditions might occur which results
143          * into an invalid configuration.
144          */
145         spin_lock(&intf->lock);
146
147         delayed_flags = intf->delayed_flags;
148         intf->delayed_flags = 0;
149
150         spin_unlock(&intf->lock);
151
152         /*
153          * It is possible the radio was disabled while the work had been
154          * scheduled. If that happens we should return here immediately,
155          * note that in the spinlock protected area above the delayed_flags
156          * have been cleared correctly.
157          */
158         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
159                 return;
160
161         if (delayed_flags & DELAYED_UPDATE_BEACON)
162                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
163 }
164
165 static void rt2x00lib_intf_scheduled(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, intf_work);
169
170         /*
171          * Iterate over each interface and perform the
172          * requested configurations.
173          */
174         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
175                                             rt2x00lib_intf_scheduled_iter,
176                                             rt2x00dev);
177 }
178
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183                                      struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186         struct sk_buff *skb;
187
188         /*
189          * Only AP mode interfaces do broad- and multicast buffering
190          */
191         if (vif->type != NL80211_IFTYPE_AP)
192                 return;
193
194         /*
195          * Send out buffered broad- and multicast frames
196          */
197         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         while (skb) {
199                 rt2x00mac_tx(rt2x00dev->hw, skb);
200                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201         }
202 }
203
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205                                         struct ieee80211_vif *vif)
206 {
207         struct rt2x00_dev *rt2x00dev = data;
208
209         if (vif->type != NL80211_IFTYPE_AP &&
210             vif->type != NL80211_IFTYPE_ADHOC &&
211             vif->type != NL80211_IFTYPE_MESH_POINT &&
212             vif->type != NL80211_IFTYPE_WDS)
213                 return;
214
215         rt2x00queue_update_beacon(rt2x00dev, vif, true);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
225                                             rt2x00lib_bc_buffer_iter,
226                                             rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
237                                             rt2x00lib_beaconupdate_iter,
238                                             rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
249                                             rt2x00lib_beaconupdate_iter,
250                                             rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmadone(struct queue_entry *entry)
255 {
256         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260
261 void rt2x00lib_txdone(struct queue_entry *entry,
262                       struct txdone_entry_desc *txdesc)
263 {
264         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
265         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
266         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
267         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
268         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
269         u8 rate_idx, rate_flags, retry_rates;
270         u8 skbdesc_flags = skbdesc->flags;
271         unsigned int i;
272         bool success;
273
274         /*
275          * Unmap the skb.
276          */
277         rt2x00queue_unmap_skb(entry);
278
279         /*
280          * Remove the extra tx headroom from the skb.
281          */
282         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
283
284         /*
285          * Signal that the TX descriptor is no longer in the skb.
286          */
287         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
288
289         /*
290          * Remove L2 padding which was added during
291          */
292         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
293                 rt2x00queue_remove_l2pad(entry->skb, header_length);
294
295         /*
296          * If the IV/EIV data was stripped from the frame before it was
297          * passed to the hardware, we should now reinsert it again because
298          * mac80211 will expect the same data to be present it the
299          * frame as it was passed to us.
300          */
301         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
302                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
303
304         /*
305          * Send frame to debugfs immediately, after this call is completed
306          * we are going to overwrite the skb->cb array.
307          */
308         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
309
310         /*
311          * Determine if the frame has been successfully transmitted.
312          */
313         success =
314             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
315             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
316
317         /*
318          * Update TX statistics.
319          */
320         rt2x00dev->link.qual.tx_success += success;
321         rt2x00dev->link.qual.tx_failed += !success;
322
323         rate_idx = skbdesc->tx_rate_idx;
324         rate_flags = skbdesc->tx_rate_flags;
325         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
326             (txdesc->retry + 1) : 1;
327
328         /*
329          * Initialize TX status
330          */
331         memset(&tx_info->status, 0, sizeof(tx_info->status));
332         tx_info->status.ack_signal = 0;
333
334         /*
335          * Frame was send with retries, hardware tried
336          * different rates to send out the frame, at each
337          * retry it lowered the rate 1 step except when the
338          * lowest rate was used.
339          */
340         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
341                 tx_info->status.rates[i].idx = rate_idx - i;
342                 tx_info->status.rates[i].flags = rate_flags;
343
344                 if (rate_idx - i == 0) {
345                         /*
346                          * The lowest rate (index 0) was used until the
347                          * number of max retries was reached.
348                          */
349                         tx_info->status.rates[i].count = retry_rates - i;
350                         i++;
351                         break;
352                 }
353                 tx_info->status.rates[i].count = 1;
354         }
355         if (i < (IEEE80211_TX_MAX_RATES - 1))
356                 tx_info->status.rates[i].idx = -1; /* terminate */
357
358         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
359                 if (success)
360                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
361                 else
362                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
363         }
364
365         /*
366          * Every single frame has it's own tx status, hence report
367          * every frame as ampdu of size 1.
368          *
369          * TODO: if we can find out how many frames were aggregated
370          * by the hw we could provide the real ampdu_len to mac80211
371          * which would allow the rc algorithm to better decide on
372          * which rates are suitable.
373          */
374         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
375                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
376                 tx_info->status.ampdu_len = 1;
377                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
378         }
379
380         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
381                 if (success)
382                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
383                 else
384                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
385         }
386
387         /*
388          * Only send the status report to mac80211 when it's a frame
389          * that originated in mac80211. If this was a extra frame coming
390          * through a mac80211 library call (RTS/CTS) then we should not
391          * send the status report back.
392          */
393         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
394                 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395         else
396                 dev_kfree_skb_any(entry->skb);
397
398         /*
399          * Make this entry available for reuse.
400          */
401         entry->skb = NULL;
402         entry->flags = 0;
403
404         rt2x00dev->ops->lib->clear_entry(entry);
405
406         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
407
408         /*
409          * If the data queue was below the threshold before the txdone
410          * handler we must make sure the packet queue in the mac80211 stack
411          * is reenabled when the txdone handler has finished.
412          */
413         if (!rt2x00queue_threshold(entry->queue))
414                 ieee80211_wake_queue(rt2x00dev->hw, qid);
415 }
416 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
417
418 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
419 {
420         struct txdone_entry_desc txdesc;
421
422         txdesc.flags = 0;
423         __set_bit(status, &txdesc.flags);
424         txdesc.retry = 0;
425
426         rt2x00lib_txdone(entry, &txdesc);
427 }
428 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
429
430 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
431                                         struct rxdone_entry_desc *rxdesc)
432 {
433         struct ieee80211_supported_band *sband;
434         const struct rt2x00_rate *rate;
435         unsigned int i;
436         int signal = rxdesc->signal;
437         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
438
439         switch (rxdesc->rate_mode) {
440         case RATE_MODE_CCK:
441         case RATE_MODE_OFDM:
442                 /*
443                  * For non-HT rates the MCS value needs to contain the
444                  * actually used rate modulation (CCK or OFDM).
445                  */
446                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
447                         signal = RATE_MCS(rxdesc->rate_mode, signal);
448
449                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
450                 for (i = 0; i < sband->n_bitrates; i++) {
451                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
452                         if (((type == RXDONE_SIGNAL_PLCP) &&
453                              (rate->plcp == signal)) ||
454                             ((type == RXDONE_SIGNAL_BITRATE) &&
455                               (rate->bitrate == signal)) ||
456                             ((type == RXDONE_SIGNAL_MCS) &&
457                               (rate->mcs == signal))) {
458                                 return i;
459                         }
460                 }
461                 break;
462         case RATE_MODE_HT_MIX:
463         case RATE_MODE_HT_GREENFIELD:
464                 if (signal >= 0 && signal <= 76)
465                         return signal;
466                 break;
467         default:
468                 break;
469         }
470
471         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
472                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
473                 rxdesc->rate_mode, signal, type);
474         return 0;
475 }
476
477 void rt2x00lib_rxdone(struct queue_entry *entry)
478 {
479         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
480         struct rxdone_entry_desc rxdesc;
481         struct sk_buff *skb;
482         struct ieee80211_rx_status *rx_status;
483         unsigned int header_length;
484         int rate_idx;
485
486         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
487             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
488                 goto submit_entry;
489
490         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
491                 goto submit_entry;
492
493         /*
494          * Allocate a new sk_buffer. If no new buffer available, drop the
495          * received frame and reuse the existing buffer.
496          */
497         skb = rt2x00queue_alloc_rxskb(entry);
498         if (!skb)
499                 goto submit_entry;
500
501         /*
502          * Unmap the skb.
503          */
504         rt2x00queue_unmap_skb(entry);
505
506         /*
507          * Extract the RXD details.
508          */
509         memset(&rxdesc, 0, sizeof(rxdesc));
510         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
511
512         /*
513          * The data behind the ieee80211 header must be
514          * aligned on a 4 byte boundary.
515          */
516         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
517
518         /*
519          * Hardware might have stripped the IV/EIV/ICV data,
520          * in that case it is possible that the data was
521          * provided separately (through hardware descriptor)
522          * in which case we should reinsert the data into the frame.
523          */
524         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
525             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
526                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
527                                           &rxdesc);
528         else if (header_length &&
529                  (rxdesc.size > header_length) &&
530                  (rxdesc.dev_flags & RXDONE_L2PAD))
531                 rt2x00queue_remove_l2pad(entry->skb, header_length);
532         else
533                 rt2x00queue_align_payload(entry->skb, header_length);
534
535         /* Trim buffer to correct size */
536         skb_trim(entry->skb, rxdesc.size);
537
538         /*
539          * Translate the signal to the correct bitrate index.
540          */
541         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
542         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
543             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
544                 rxdesc.flags |= RX_FLAG_HT;
545
546         /*
547          * Update extra components
548          */
549         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
550         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
551         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
552
553         /*
554          * Initialize RX status information, and send frame
555          * to mac80211.
556          */
557         rx_status = IEEE80211_SKB_RXCB(entry->skb);
558         rx_status->mactime = rxdesc.timestamp;
559         rx_status->band = rt2x00dev->curr_band;
560         rx_status->freq = rt2x00dev->curr_freq;
561         rx_status->rate_idx = rate_idx;
562         rx_status->signal = rxdesc.rssi;
563         rx_status->flag = rxdesc.flags;
564         rx_status->antenna = rt2x00dev->link.ant.active.rx;
565
566         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
567
568         /*
569          * Replace the skb with the freshly allocated one.
570          */
571         entry->skb = skb;
572
573 submit_entry:
574         entry->flags = 0;
575         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
576         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
577             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
578                 rt2x00dev->ops->lib->clear_entry(entry);
579                 rt2x00queue_index_inc(entry->queue, Q_INDEX);
580         }
581 }
582 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
583
584 /*
585  * Driver initialization handlers.
586  */
587 const struct rt2x00_rate rt2x00_supported_rates[12] = {
588         {
589                 .flags = DEV_RATE_CCK,
590                 .bitrate = 10,
591                 .ratemask = BIT(0),
592                 .plcp = 0x00,
593                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
594         },
595         {
596                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
597                 .bitrate = 20,
598                 .ratemask = BIT(1),
599                 .plcp = 0x01,
600                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
601         },
602         {
603                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
604                 .bitrate = 55,
605                 .ratemask = BIT(2),
606                 .plcp = 0x02,
607                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
608         },
609         {
610                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
611                 .bitrate = 110,
612                 .ratemask = BIT(3),
613                 .plcp = 0x03,
614                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
615         },
616         {
617                 .flags = DEV_RATE_OFDM,
618                 .bitrate = 60,
619                 .ratemask = BIT(4),
620                 .plcp = 0x0b,
621                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
622         },
623         {
624                 .flags = DEV_RATE_OFDM,
625                 .bitrate = 90,
626                 .ratemask = BIT(5),
627                 .plcp = 0x0f,
628                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
629         },
630         {
631                 .flags = DEV_RATE_OFDM,
632                 .bitrate = 120,
633                 .ratemask = BIT(6),
634                 .plcp = 0x0a,
635                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
636         },
637         {
638                 .flags = DEV_RATE_OFDM,
639                 .bitrate = 180,
640                 .ratemask = BIT(7),
641                 .plcp = 0x0e,
642                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
643         },
644         {
645                 .flags = DEV_RATE_OFDM,
646                 .bitrate = 240,
647                 .ratemask = BIT(8),
648                 .plcp = 0x09,
649                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
650         },
651         {
652                 .flags = DEV_RATE_OFDM,
653                 .bitrate = 360,
654                 .ratemask = BIT(9),
655                 .plcp = 0x0d,
656                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
657         },
658         {
659                 .flags = DEV_RATE_OFDM,
660                 .bitrate = 480,
661                 .ratemask = BIT(10),
662                 .plcp = 0x08,
663                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
664         },
665         {
666                 .flags = DEV_RATE_OFDM,
667                 .bitrate = 540,
668                 .ratemask = BIT(11),
669                 .plcp = 0x0c,
670                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
671         },
672 };
673
674 static void rt2x00lib_channel(struct ieee80211_channel *entry,
675                               const int channel, const int tx_power,
676                               const int value)
677 {
678         entry->center_freq = ieee80211_channel_to_frequency(channel);
679         entry->hw_value = value;
680         entry->max_power = tx_power;
681         entry->max_antenna_gain = 0xff;
682 }
683
684 static void rt2x00lib_rate(struct ieee80211_rate *entry,
685                            const u16 index, const struct rt2x00_rate *rate)
686 {
687         entry->flags = 0;
688         entry->bitrate = rate->bitrate;
689         entry->hw_value =index;
690         entry->hw_value_short = index;
691
692         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
693                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
694 }
695
696 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
697                                     struct hw_mode_spec *spec)
698 {
699         struct ieee80211_hw *hw = rt2x00dev->hw;
700         struct ieee80211_channel *channels;
701         struct ieee80211_rate *rates;
702         unsigned int num_rates;
703         unsigned int i;
704
705         num_rates = 0;
706         if (spec->supported_rates & SUPPORT_RATE_CCK)
707                 num_rates += 4;
708         if (spec->supported_rates & SUPPORT_RATE_OFDM)
709                 num_rates += 8;
710
711         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
712         if (!channels)
713                 return -ENOMEM;
714
715         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
716         if (!rates)
717                 goto exit_free_channels;
718
719         /*
720          * Initialize Rate list.
721          */
722         for (i = 0; i < num_rates; i++)
723                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
724
725         /*
726          * Initialize Channel list.
727          */
728         for (i = 0; i < spec->num_channels; i++) {
729                 rt2x00lib_channel(&channels[i],
730                                   spec->channels[i].channel,
731                                   spec->channels_info[i].max_power, i);
732         }
733
734         /*
735          * Intitialize 802.11b, 802.11g
736          * Rates: CCK, OFDM.
737          * Channels: 2.4 GHz
738          */
739         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
740                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
741                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
742                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
743                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
744                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
745                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
746                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
747                        &spec->ht, sizeof(spec->ht));
748         }
749
750         /*
751          * Intitialize 802.11a
752          * Rates: OFDM.
753          * Channels: OFDM, UNII, HiperLAN2.
754          */
755         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
756                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
757                     spec->num_channels - 14;
758                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
759                     num_rates - 4;
760                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
761                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
762                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
763                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
764                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
765                        &spec->ht, sizeof(spec->ht));
766         }
767
768         return 0;
769
770  exit_free_channels:
771         kfree(channels);
772         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
773         return -ENOMEM;
774 }
775
776 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
777 {
778         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
779                 ieee80211_unregister_hw(rt2x00dev->hw);
780
781         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
782                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
783                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
784                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
785                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
786         }
787
788         kfree(rt2x00dev->spec.channels_info);
789 }
790
791 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
792 {
793         struct hw_mode_spec *spec = &rt2x00dev->spec;
794         int status;
795
796         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
797                 return 0;
798
799         /*
800          * Initialize HW modes.
801          */
802         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
803         if (status)
804                 return status;
805
806         /*
807          * Initialize HW fields.
808          */
809         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
810
811         /*
812          * Initialize extra TX headroom required.
813          */
814         rt2x00dev->hw->extra_tx_headroom =
815                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
816                       rt2x00dev->ops->extra_tx_headroom);
817
818         /*
819          * Take TX headroom required for alignment into account.
820          */
821         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
822                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
823         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
824                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
825
826         /*
827          * Allocate tx status FIFO for driver use.
828          */
829         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
830             rt2x00dev->ops->lib->txstatus_tasklet) {
831                 /*
832                  * Allocate txstatus fifo and tasklet, we use a size of 512
833                  * for the kfifo which is big enough to store 512/4=128 tx
834                  * status reports. In the worst case (tx status for all tx
835                  * queues gets reported before we've got a chance to handle
836                  * them) 24*4=384 tx status reports need to be cached.
837                  */
838                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
839                                      GFP_KERNEL);
840                 if (status)
841                         return status;
842
843                 /* tasklet for processing the tx status reports. */
844                 tasklet_init(&rt2x00dev->txstatus_tasklet,
845                              rt2x00dev->ops->lib->txstatus_tasklet,
846                              (unsigned long)rt2x00dev);
847
848         }
849
850         /*
851          * Register HW.
852          */
853         status = ieee80211_register_hw(rt2x00dev->hw);
854         if (status)
855                 return status;
856
857         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
858
859         return 0;
860 }
861
862 /*
863  * Initialization/uninitialization handlers.
864  */
865 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
866 {
867         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
868                 return;
869
870         /*
871          * Unregister extra components.
872          */
873         rt2x00rfkill_unregister(rt2x00dev);
874
875         /*
876          * Allow the HW to uninitialize.
877          */
878         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
879
880         /*
881          * Free allocated queue entries.
882          */
883         rt2x00queue_uninitialize(rt2x00dev);
884 }
885
886 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
887 {
888         int status;
889
890         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
891                 return 0;
892
893         /*
894          * Allocate all queue entries.
895          */
896         status = rt2x00queue_initialize(rt2x00dev);
897         if (status)
898                 return status;
899
900         /*
901          * Initialize the device.
902          */
903         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
904         if (status) {
905                 rt2x00queue_uninitialize(rt2x00dev);
906                 return status;
907         }
908
909         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
910
911         /*
912          * Register the extra components.
913          */
914         rt2x00rfkill_register(rt2x00dev);
915
916         return 0;
917 }
918
919 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
920 {
921         int retval;
922
923         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
924                 return 0;
925
926         /*
927          * If this is the first interface which is added,
928          * we should load the firmware now.
929          */
930         retval = rt2x00lib_load_firmware(rt2x00dev);
931         if (retval)
932                 return retval;
933
934         /*
935          * Initialize the device.
936          */
937         retval = rt2x00lib_initialize(rt2x00dev);
938         if (retval)
939                 return retval;
940
941         rt2x00dev->intf_ap_count = 0;
942         rt2x00dev->intf_sta_count = 0;
943         rt2x00dev->intf_associated = 0;
944
945         /* Enable the radio */
946         retval = rt2x00lib_enable_radio(rt2x00dev);
947         if (retval)
948                 return retval;
949
950         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
951
952         return 0;
953 }
954
955 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
956 {
957         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
958                 return;
959
960         /*
961          * Perhaps we can add something smarter here,
962          * but for now just disabling the radio should do.
963          */
964         rt2x00lib_disable_radio(rt2x00dev);
965
966         rt2x00dev->intf_ap_count = 0;
967         rt2x00dev->intf_sta_count = 0;
968         rt2x00dev->intf_associated = 0;
969 }
970
971 /*
972  * driver allocation handlers.
973  */
974 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
975 {
976         int retval = -ENOMEM;
977
978         mutex_init(&rt2x00dev->csr_mutex);
979
980         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
981
982         /*
983          * Make room for rt2x00_intf inside the per-interface
984          * structure ieee80211_vif.
985          */
986         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
987
988         /*
989          * Determine which operating modes are supported, all modes
990          * which require beaconing, depend on the availability of
991          * beacon entries.
992          */
993         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
994         if (rt2x00dev->ops->bcn->entry_num > 0)
995                 rt2x00dev->hw->wiphy->interface_modes |=
996                     BIT(NL80211_IFTYPE_ADHOC) |
997                     BIT(NL80211_IFTYPE_AP) |
998                     BIT(NL80211_IFTYPE_MESH_POINT) |
999                     BIT(NL80211_IFTYPE_WDS);
1000
1001         /*
1002          * Initialize configuration work.
1003          */
1004         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1005
1006         /*
1007          * Let the driver probe the device to detect the capabilities.
1008          */
1009         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1010         if (retval) {
1011                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1012                 goto exit;
1013         }
1014
1015         /*
1016          * Allocate queue array.
1017          */
1018         retval = rt2x00queue_allocate(rt2x00dev);
1019         if (retval)
1020                 goto exit;
1021
1022         /*
1023          * Initialize ieee80211 structure.
1024          */
1025         retval = rt2x00lib_probe_hw(rt2x00dev);
1026         if (retval) {
1027                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1028                 goto exit;
1029         }
1030
1031         /*
1032          * Register extra components.
1033          */
1034         rt2x00link_register(rt2x00dev);
1035         rt2x00leds_register(rt2x00dev);
1036         rt2x00debug_register(rt2x00dev);
1037
1038         return 0;
1039
1040 exit:
1041         rt2x00lib_remove_dev(rt2x00dev);
1042
1043         return retval;
1044 }
1045 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1046
1047 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1048 {
1049         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1050
1051         /*
1052          * Disable radio.
1053          */
1054         rt2x00lib_disable_radio(rt2x00dev);
1055
1056         /*
1057          * Stop all work.
1058          */
1059         cancel_work_sync(&rt2x00dev->intf_work);
1060         cancel_work_sync(&rt2x00dev->rxdone_work);
1061         cancel_work_sync(&rt2x00dev->txdone_work);
1062
1063         /*
1064          * Free the tx status fifo.
1065          */
1066         kfifo_free(&rt2x00dev->txstatus_fifo);
1067
1068         /*
1069          * Kill the tx status tasklet.
1070          */
1071         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1072
1073         /*
1074          * Uninitialize device.
1075          */
1076         rt2x00lib_uninitialize(rt2x00dev);
1077
1078         /*
1079          * Free extra components
1080          */
1081         rt2x00debug_deregister(rt2x00dev);
1082         rt2x00leds_unregister(rt2x00dev);
1083
1084         /*
1085          * Free ieee80211_hw memory.
1086          */
1087         rt2x00lib_remove_hw(rt2x00dev);
1088
1089         /*
1090          * Free firmware image.
1091          */
1092         rt2x00lib_free_firmware(rt2x00dev);
1093
1094         /*
1095          * Free queue structures.
1096          */
1097         rt2x00queue_free(rt2x00dev);
1098 }
1099 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1100
1101 /*
1102  * Device state handlers
1103  */
1104 #ifdef CONFIG_PM
1105 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1106 {
1107         NOTICE(rt2x00dev, "Going to sleep.\n");
1108
1109         /*
1110          * Prevent mac80211 from accessing driver while suspended.
1111          */
1112         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1113                 return 0;
1114
1115         /*
1116          * Cleanup as much as possible.
1117          */
1118         rt2x00lib_uninitialize(rt2x00dev);
1119
1120         /*
1121          * Suspend/disable extra components.
1122          */
1123         rt2x00leds_suspend(rt2x00dev);
1124         rt2x00debug_deregister(rt2x00dev);
1125
1126         /*
1127          * Set device mode to sleep for power management,
1128          * on some hardware this call seems to consistently fail.
1129          * From the specifications it is hard to tell why it fails,
1130          * and if this is a "bad thing".
1131          * Overall it is safe to just ignore the failure and
1132          * continue suspending. The only downside is that the
1133          * device will not be in optimal power save mode, but with
1134          * the radio and the other components already disabled the
1135          * device is as good as disabled.
1136          */
1137         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1138                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1139                         "continue suspending.\n");
1140
1141         return 0;
1142 }
1143 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1144
1145 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1146 {
1147         NOTICE(rt2x00dev, "Waking up.\n");
1148
1149         /*
1150          * Restore/enable extra components.
1151          */
1152         rt2x00debug_register(rt2x00dev);
1153         rt2x00leds_resume(rt2x00dev);
1154
1155         /*
1156          * We are ready again to receive requests from mac80211.
1157          */
1158         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1163 #endif /* CONFIG_PM */
1164
1165 /*
1166  * rt2x00lib module information.
1167  */
1168 MODULE_AUTHOR(DRV_PROJECT);
1169 MODULE_VERSION(DRV_VERSION);
1170 MODULE_DESCRIPTION("rt2x00 library");
1171 MODULE_LICENSE("GPL");