]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Fix dead queue when skb allocation failed
[net-next-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable RX.
70          */
71         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72
73         /*
74          * Start watchdog monitoring.
75          */
76         rt2x00link_start_watchdog(rt2x00dev);
77
78         /*
79          * Start the TX queues.
80          */
81         ieee80211_wake_queues(rt2x00dev->hw);
82
83         return 0;
84 }
85
86 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         /*
92          * Stop the TX queues in mac80211.
93          */
94         ieee80211_stop_queues(rt2x00dev->hw);
95         rt2x00queue_stop_queues(rt2x00dev);
96
97         /*
98          * Stop watchdog monitoring.
99          */
100         rt2x00link_stop_watchdog(rt2x00dev);
101
102         /*
103          * Disable RX.
104          */
105         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
106
107         /*
108          * Disable radio.
109          */
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
111         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
112         rt2x00led_led_activity(rt2x00dev, false);
113         rt2x00leds_led_radio(rt2x00dev, false);
114 }
115
116 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
117 {
118         /*
119          * When we are disabling the RX, we should also stop the link tuner.
120          */
121         if (state == STATE_RADIO_RX_OFF)
122                 rt2x00link_stop_tuner(rt2x00dev);
123
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
125
126         /*
127          * When we are enabling the RX, we should also start the link tuner.
128          */
129         if (state == STATE_RADIO_RX_ON)
130                 rt2x00link_start_tuner(rt2x00dev);
131 }
132
133 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
134                                           struct ieee80211_vif *vif)
135 {
136         struct rt2x00_dev *rt2x00dev = data;
137         struct rt2x00_intf *intf = vif_to_intf(vif);
138         int delayed_flags;
139
140         /*
141          * Copy all data we need during this action under the protection
142          * of a spinlock. Otherwise race conditions might occur which results
143          * into an invalid configuration.
144          */
145         spin_lock(&intf->lock);
146
147         delayed_flags = intf->delayed_flags;
148         intf->delayed_flags = 0;
149
150         spin_unlock(&intf->lock);
151
152         /*
153          * It is possible the radio was disabled while the work had been
154          * scheduled. If that happens we should return here immediately,
155          * note that in the spinlock protected area above the delayed_flags
156          * have been cleared correctly.
157          */
158         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
159                 return;
160
161         if (delayed_flags & DELAYED_UPDATE_BEACON)
162                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
163 }
164
165 static void rt2x00lib_intf_scheduled(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, intf_work);
169
170         /*
171          * Iterate over each interface and perform the
172          * requested configurations.
173          */
174         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
175                                             rt2x00lib_intf_scheduled_iter,
176                                             rt2x00dev);
177 }
178
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183                                      struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186         struct sk_buff *skb;
187
188         /*
189          * Only AP mode interfaces do broad- and multicast buffering
190          */
191         if (vif->type != NL80211_IFTYPE_AP)
192                 return;
193
194         /*
195          * Send out buffered broad- and multicast frames
196          */
197         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         while (skb) {
199                 rt2x00mac_tx(rt2x00dev->hw, skb);
200                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201         }
202 }
203
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205                                         struct ieee80211_vif *vif)
206 {
207         struct rt2x00_dev *rt2x00dev = data;
208
209         if (vif->type != NL80211_IFTYPE_AP &&
210             vif->type != NL80211_IFTYPE_ADHOC &&
211             vif->type != NL80211_IFTYPE_MESH_POINT &&
212             vif->type != NL80211_IFTYPE_WDS)
213                 return;
214
215         rt2x00queue_update_beacon(rt2x00dev, vif, true);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
225                                             rt2x00lib_bc_buffer_iter,
226                                             rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
237                                             rt2x00lib_beaconupdate_iter,
238                                             rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
249                                             rt2x00lib_beaconupdate_iter,
250                                             rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmadone(struct queue_entry *entry)
255 {
256         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
257 }
258 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
259
260 void rt2x00lib_txdone(struct queue_entry *entry,
261                       struct txdone_entry_desc *txdesc)
262 {
263         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
265         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
266         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
267         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
268         u8 rate_idx, rate_flags, retry_rates;
269         u8 skbdesc_flags = skbdesc->flags;
270         unsigned int i;
271         bool success;
272
273         /*
274          * Unmap the skb.
275          */
276         rt2x00queue_unmap_skb(entry);
277
278         /*
279          * Remove the extra tx headroom from the skb.
280          */
281         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
282
283         /*
284          * Signal that the TX descriptor is no longer in the skb.
285          */
286         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
287
288         /*
289          * Remove L2 padding which was added during
290          */
291         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
292                 rt2x00queue_remove_l2pad(entry->skb, header_length);
293
294         /*
295          * If the IV/EIV data was stripped from the frame before it was
296          * passed to the hardware, we should now reinsert it again because
297          * mac80211 will expect the same data to be present it the
298          * frame as it was passed to us.
299          */
300         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
301                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
302
303         /*
304          * Send frame to debugfs immediately, after this call is completed
305          * we are going to overwrite the skb->cb array.
306          */
307         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
308
309         /*
310          * Determine if the frame has been successfully transmitted.
311          */
312         success =
313             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
314             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
315
316         /*
317          * Update TX statistics.
318          */
319         rt2x00dev->link.qual.tx_success += success;
320         rt2x00dev->link.qual.tx_failed += !success;
321
322         rate_idx = skbdesc->tx_rate_idx;
323         rate_flags = skbdesc->tx_rate_flags;
324         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
325             (txdesc->retry + 1) : 1;
326
327         /*
328          * Initialize TX status
329          */
330         memset(&tx_info->status, 0, sizeof(tx_info->status));
331         tx_info->status.ack_signal = 0;
332
333         /*
334          * Frame was send with retries, hardware tried
335          * different rates to send out the frame, at each
336          * retry it lowered the rate 1 step except when the
337          * lowest rate was used.
338          */
339         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
340                 tx_info->status.rates[i].idx = rate_idx - i;
341                 tx_info->status.rates[i].flags = rate_flags;
342
343                 if (rate_idx - i == 0) {
344                         /*
345                          * The lowest rate (index 0) was used until the
346                          * number of max retries was reached.
347                          */
348                         tx_info->status.rates[i].count = retry_rates - i;
349                         i++;
350                         break;
351                 }
352                 tx_info->status.rates[i].count = 1;
353         }
354         if (i < (IEEE80211_TX_MAX_RATES - 1))
355                 tx_info->status.rates[i].idx = -1; /* terminate */
356
357         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
358                 if (success)
359                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
360                 else
361                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
362         }
363
364         /*
365          * Every single frame has it's own tx status, hence report
366          * every frame as ampdu of size 1.
367          *
368          * TODO: if we can find out how many frames were aggregated
369          * by the hw we could provide the real ampdu_len to mac80211
370          * which would allow the rc algorithm to better decide on
371          * which rates are suitable.
372          */
373         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
374                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
375                 tx_info->status.ampdu_len = 1;
376                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
377         }
378
379         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380                 if (success)
381                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382                 else
383                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
384         }
385
386         /*
387          * Only send the status report to mac80211 when it's a frame
388          * that originated in mac80211. If this was a extra frame coming
389          * through a mac80211 library call (RTS/CTS) then we should not
390          * send the status report back.
391          */
392         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
393                 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
394         else
395                 dev_kfree_skb_any(entry->skb);
396
397         /*
398          * Make this entry available for reuse.
399          */
400         entry->skb = NULL;
401         entry->flags = 0;
402
403         rt2x00dev->ops->lib->clear_entry(entry);
404
405         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
406
407         /*
408          * If the data queue was below the threshold before the txdone
409          * handler we must make sure the packet queue in the mac80211 stack
410          * is reenabled when the txdone handler has finished.
411          */
412         if (!rt2x00queue_threshold(entry->queue))
413                 ieee80211_wake_queue(rt2x00dev->hw, qid);
414 }
415 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
416
417 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
418 {
419         struct txdone_entry_desc txdesc;
420
421         txdesc.flags = 0;
422         __set_bit(status, &txdesc.flags);
423         txdesc.retry = 0;
424
425         rt2x00lib_txdone(entry, &txdesc);
426 }
427 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
428
429 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
430                                         struct rxdone_entry_desc *rxdesc)
431 {
432         struct ieee80211_supported_band *sband;
433         const struct rt2x00_rate *rate;
434         unsigned int i;
435         int signal = rxdesc->signal;
436         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
437
438         switch (rxdesc->rate_mode) {
439         case RATE_MODE_CCK:
440         case RATE_MODE_OFDM:
441                 /*
442                  * For non-HT rates the MCS value needs to contain the
443                  * actually used rate modulation (CCK or OFDM).
444                  */
445                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
446                         signal = RATE_MCS(rxdesc->rate_mode, signal);
447
448                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
449                 for (i = 0; i < sband->n_bitrates; i++) {
450                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
451                         if (((type == RXDONE_SIGNAL_PLCP) &&
452                              (rate->plcp == signal)) ||
453                             ((type == RXDONE_SIGNAL_BITRATE) &&
454                               (rate->bitrate == signal)) ||
455                             ((type == RXDONE_SIGNAL_MCS) &&
456                               (rate->mcs == signal))) {
457                                 return i;
458                         }
459                 }
460                 break;
461         case RATE_MODE_HT_MIX:
462         case RATE_MODE_HT_GREENFIELD:
463                 if (signal >= 0 && signal <= 76)
464                         return signal;
465                 break;
466         default:
467                 break;
468         }
469
470         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
471                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
472                 rxdesc->rate_mode, signal, type);
473         return 0;
474 }
475
476 void rt2x00lib_rxdone(struct queue_entry *entry)
477 {
478         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
479         struct rxdone_entry_desc rxdesc;
480         struct sk_buff *skb;
481         struct ieee80211_rx_status *rx_status;
482         unsigned int header_length;
483         int rate_idx;
484
485         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
486                 goto submit_entry;
487
488         /*
489          * Allocate a new sk_buffer. If no new buffer available, drop the
490          * received frame and reuse the existing buffer.
491          */
492         skb = rt2x00queue_alloc_rxskb(entry);
493         if (!skb)
494                 goto submit_entry;
495
496         /*
497          * Unmap the skb.
498          */
499         rt2x00queue_unmap_skb(entry);
500
501         /*
502          * Extract the RXD details.
503          */
504         memset(&rxdesc, 0, sizeof(rxdesc));
505         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
506
507         /*
508          * The data behind the ieee80211 header must be
509          * aligned on a 4 byte boundary.
510          */
511         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
512
513         /*
514          * Hardware might have stripped the IV/EIV/ICV data,
515          * in that case it is possible that the data was
516          * provided separately (through hardware descriptor)
517          * in which case we should reinsert the data into the frame.
518          */
519         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
520             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
521                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
522                                           &rxdesc);
523         else if (header_length &&
524                  (rxdesc.size > header_length) &&
525                  (rxdesc.dev_flags & RXDONE_L2PAD))
526                 rt2x00queue_remove_l2pad(entry->skb, header_length);
527         else
528                 rt2x00queue_align_payload(entry->skb, header_length);
529
530         /* Trim buffer to correct size */
531         skb_trim(entry->skb, rxdesc.size);
532
533         /*
534          * Translate the signal to the correct bitrate index.
535          */
536         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
537         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
538             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
539                 rxdesc.flags |= RX_FLAG_HT;
540
541         /*
542          * Update extra components
543          */
544         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
545         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
546         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
547
548         /*
549          * Initialize RX status information, and send frame
550          * to mac80211.
551          */
552         rx_status = IEEE80211_SKB_RXCB(entry->skb);
553         rx_status->mactime = rxdesc.timestamp;
554         rx_status->band = rt2x00dev->curr_band;
555         rx_status->freq = rt2x00dev->curr_freq;
556         rx_status->rate_idx = rate_idx;
557         rx_status->signal = rxdesc.rssi;
558         rx_status->flag = rxdesc.flags;
559         rx_status->antenna = rt2x00dev->link.ant.active.rx;
560
561         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
562
563         /*
564          * Replace the skb with the freshly allocated one.
565          */
566         entry->skb = skb;
567
568 submit_entry:
569         rt2x00dev->ops->lib->clear_entry(entry);
570         rt2x00queue_index_inc(entry->queue, Q_INDEX);
571         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
572 }
573 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
574
575 /*
576  * Driver initialization handlers.
577  */
578 const struct rt2x00_rate rt2x00_supported_rates[12] = {
579         {
580                 .flags = DEV_RATE_CCK,
581                 .bitrate = 10,
582                 .ratemask = BIT(0),
583                 .plcp = 0x00,
584                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
585         },
586         {
587                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
588                 .bitrate = 20,
589                 .ratemask = BIT(1),
590                 .plcp = 0x01,
591                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
592         },
593         {
594                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
595                 .bitrate = 55,
596                 .ratemask = BIT(2),
597                 .plcp = 0x02,
598                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
599         },
600         {
601                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
602                 .bitrate = 110,
603                 .ratemask = BIT(3),
604                 .plcp = 0x03,
605                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
606         },
607         {
608                 .flags = DEV_RATE_OFDM,
609                 .bitrate = 60,
610                 .ratemask = BIT(4),
611                 .plcp = 0x0b,
612                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
613         },
614         {
615                 .flags = DEV_RATE_OFDM,
616                 .bitrate = 90,
617                 .ratemask = BIT(5),
618                 .plcp = 0x0f,
619                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
620         },
621         {
622                 .flags = DEV_RATE_OFDM,
623                 .bitrate = 120,
624                 .ratemask = BIT(6),
625                 .plcp = 0x0a,
626                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
627         },
628         {
629                 .flags = DEV_RATE_OFDM,
630                 .bitrate = 180,
631                 .ratemask = BIT(7),
632                 .plcp = 0x0e,
633                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
634         },
635         {
636                 .flags = DEV_RATE_OFDM,
637                 .bitrate = 240,
638                 .ratemask = BIT(8),
639                 .plcp = 0x09,
640                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
641         },
642         {
643                 .flags = DEV_RATE_OFDM,
644                 .bitrate = 360,
645                 .ratemask = BIT(9),
646                 .plcp = 0x0d,
647                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
648         },
649         {
650                 .flags = DEV_RATE_OFDM,
651                 .bitrate = 480,
652                 .ratemask = BIT(10),
653                 .plcp = 0x08,
654                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
655         },
656         {
657                 .flags = DEV_RATE_OFDM,
658                 .bitrate = 540,
659                 .ratemask = BIT(11),
660                 .plcp = 0x0c,
661                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
662         },
663 };
664
665 static void rt2x00lib_channel(struct ieee80211_channel *entry,
666                               const int channel, const int tx_power,
667                               const int value)
668 {
669         entry->center_freq = ieee80211_channel_to_frequency(channel);
670         entry->hw_value = value;
671         entry->max_power = tx_power;
672         entry->max_antenna_gain = 0xff;
673 }
674
675 static void rt2x00lib_rate(struct ieee80211_rate *entry,
676                            const u16 index, const struct rt2x00_rate *rate)
677 {
678         entry->flags = 0;
679         entry->bitrate = rate->bitrate;
680         entry->hw_value =index;
681         entry->hw_value_short = index;
682
683         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
684                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
685 }
686
687 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
688                                     struct hw_mode_spec *spec)
689 {
690         struct ieee80211_hw *hw = rt2x00dev->hw;
691         struct ieee80211_channel *channels;
692         struct ieee80211_rate *rates;
693         unsigned int num_rates;
694         unsigned int i;
695
696         num_rates = 0;
697         if (spec->supported_rates & SUPPORT_RATE_CCK)
698                 num_rates += 4;
699         if (spec->supported_rates & SUPPORT_RATE_OFDM)
700                 num_rates += 8;
701
702         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
703         if (!channels)
704                 return -ENOMEM;
705
706         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
707         if (!rates)
708                 goto exit_free_channels;
709
710         /*
711          * Initialize Rate list.
712          */
713         for (i = 0; i < num_rates; i++)
714                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
715
716         /*
717          * Initialize Channel list.
718          */
719         for (i = 0; i < spec->num_channels; i++) {
720                 rt2x00lib_channel(&channels[i],
721                                   spec->channels[i].channel,
722                                   spec->channels_info[i].max_power, i);
723         }
724
725         /*
726          * Intitialize 802.11b, 802.11g
727          * Rates: CCK, OFDM.
728          * Channels: 2.4 GHz
729          */
730         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
731                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
732                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
733                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
734                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
735                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
736                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
737                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
738                        &spec->ht, sizeof(spec->ht));
739         }
740
741         /*
742          * Intitialize 802.11a
743          * Rates: OFDM.
744          * Channels: OFDM, UNII, HiperLAN2.
745          */
746         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
747                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
748                     spec->num_channels - 14;
749                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
750                     num_rates - 4;
751                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
752                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
753                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
754                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
755                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
756                        &spec->ht, sizeof(spec->ht));
757         }
758
759         return 0;
760
761  exit_free_channels:
762         kfree(channels);
763         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
764         return -ENOMEM;
765 }
766
767 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
768 {
769         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
770                 ieee80211_unregister_hw(rt2x00dev->hw);
771
772         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
773                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
774                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
775                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
776                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
777         }
778
779         kfree(rt2x00dev->spec.channels_info);
780 }
781
782 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
783 {
784         struct hw_mode_spec *spec = &rt2x00dev->spec;
785         int status;
786
787         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
788                 return 0;
789
790         /*
791          * Initialize HW modes.
792          */
793         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
794         if (status)
795                 return status;
796
797         /*
798          * Initialize HW fields.
799          */
800         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
801
802         /*
803          * Initialize extra TX headroom required.
804          */
805         rt2x00dev->hw->extra_tx_headroom =
806                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
807                       rt2x00dev->ops->extra_tx_headroom);
808
809         /*
810          * Take TX headroom required for alignment into account.
811          */
812         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
813                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
814         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
815                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
816
817         /*
818          * Allocate tx status FIFO for driver use.
819          */
820         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
821             rt2x00dev->ops->lib->txstatus_tasklet) {
822                 /*
823                  * Allocate txstatus fifo and tasklet, we use a size of 512
824                  * for the kfifo which is big enough to store 512/4=128 tx
825                  * status reports. In the worst case (tx status for all tx
826                  * queues gets reported before we've got a chance to handle
827                  * them) 24*4=384 tx status reports need to be cached.
828                  */
829                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
830                                      GFP_KERNEL);
831                 if (status)
832                         return status;
833
834                 /* tasklet for processing the tx status reports. */
835                 tasklet_init(&rt2x00dev->txstatus_tasklet,
836                              rt2x00dev->ops->lib->txstatus_tasklet,
837                              (unsigned long)rt2x00dev);
838
839         }
840
841         /*
842          * Register HW.
843          */
844         status = ieee80211_register_hw(rt2x00dev->hw);
845         if (status)
846                 return status;
847
848         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
849
850         return 0;
851 }
852
853 /*
854  * Initialization/uninitialization handlers.
855  */
856 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
857 {
858         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
859                 return;
860
861         /*
862          * Unregister extra components.
863          */
864         rt2x00rfkill_unregister(rt2x00dev);
865
866         /*
867          * Allow the HW to uninitialize.
868          */
869         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
870
871         /*
872          * Free allocated queue entries.
873          */
874         rt2x00queue_uninitialize(rt2x00dev);
875 }
876
877 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
878 {
879         int status;
880
881         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
882                 return 0;
883
884         /*
885          * Allocate all queue entries.
886          */
887         status = rt2x00queue_initialize(rt2x00dev);
888         if (status)
889                 return status;
890
891         /*
892          * Initialize the device.
893          */
894         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
895         if (status) {
896                 rt2x00queue_uninitialize(rt2x00dev);
897                 return status;
898         }
899
900         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
901
902         /*
903          * Register the extra components.
904          */
905         rt2x00rfkill_register(rt2x00dev);
906
907         return 0;
908 }
909
910 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
911 {
912         int retval;
913
914         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
915                 return 0;
916
917         /*
918          * If this is the first interface which is added,
919          * we should load the firmware now.
920          */
921         retval = rt2x00lib_load_firmware(rt2x00dev);
922         if (retval)
923                 return retval;
924
925         /*
926          * Initialize the device.
927          */
928         retval = rt2x00lib_initialize(rt2x00dev);
929         if (retval)
930                 return retval;
931
932         rt2x00dev->intf_ap_count = 0;
933         rt2x00dev->intf_sta_count = 0;
934         rt2x00dev->intf_associated = 0;
935
936         /* Enable the radio */
937         retval = rt2x00lib_enable_radio(rt2x00dev);
938         if (retval)
939                 return retval;
940
941         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
942
943         return 0;
944 }
945
946 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
947 {
948         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
949                 return;
950
951         /*
952          * Perhaps we can add something smarter here,
953          * but for now just disabling the radio should do.
954          */
955         rt2x00lib_disable_radio(rt2x00dev);
956
957         rt2x00dev->intf_ap_count = 0;
958         rt2x00dev->intf_sta_count = 0;
959         rt2x00dev->intf_associated = 0;
960 }
961
962 /*
963  * driver allocation handlers.
964  */
965 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
966 {
967         int retval = -ENOMEM;
968
969         mutex_init(&rt2x00dev->csr_mutex);
970
971         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
972
973         /*
974          * Make room for rt2x00_intf inside the per-interface
975          * structure ieee80211_vif.
976          */
977         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
978
979         /*
980          * Determine which operating modes are supported, all modes
981          * which require beaconing, depend on the availability of
982          * beacon entries.
983          */
984         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
985         if (rt2x00dev->ops->bcn->entry_num > 0)
986                 rt2x00dev->hw->wiphy->interface_modes |=
987                     BIT(NL80211_IFTYPE_ADHOC) |
988                     BIT(NL80211_IFTYPE_AP) |
989                     BIT(NL80211_IFTYPE_MESH_POINT) |
990                     BIT(NL80211_IFTYPE_WDS);
991
992         /*
993          * Initialize configuration work.
994          */
995         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
996
997         /*
998          * Let the driver probe the device to detect the capabilities.
999          */
1000         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1001         if (retval) {
1002                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1003                 goto exit;
1004         }
1005
1006         /*
1007          * Allocate queue array.
1008          */
1009         retval = rt2x00queue_allocate(rt2x00dev);
1010         if (retval)
1011                 goto exit;
1012
1013         /*
1014          * Initialize ieee80211 structure.
1015          */
1016         retval = rt2x00lib_probe_hw(rt2x00dev);
1017         if (retval) {
1018                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1019                 goto exit;
1020         }
1021
1022         /*
1023          * Register extra components.
1024          */
1025         rt2x00link_register(rt2x00dev);
1026         rt2x00leds_register(rt2x00dev);
1027         rt2x00debug_register(rt2x00dev);
1028
1029         return 0;
1030
1031 exit:
1032         rt2x00lib_remove_dev(rt2x00dev);
1033
1034         return retval;
1035 }
1036 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1037
1038 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1039 {
1040         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1041
1042         /*
1043          * Disable radio.
1044          */
1045         rt2x00lib_disable_radio(rt2x00dev);
1046
1047         /*
1048          * Stop all work.
1049          */
1050         cancel_work_sync(&rt2x00dev->intf_work);
1051         cancel_work_sync(&rt2x00dev->rxdone_work);
1052         cancel_work_sync(&rt2x00dev->txdone_work);
1053
1054         /*
1055          * Free the tx status fifo.
1056          */
1057         kfifo_free(&rt2x00dev->txstatus_fifo);
1058
1059         /*
1060          * Kill the tx status tasklet.
1061          */
1062         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1063
1064         /*
1065          * Uninitialize device.
1066          */
1067         rt2x00lib_uninitialize(rt2x00dev);
1068
1069         /*
1070          * Free extra components
1071          */
1072         rt2x00debug_deregister(rt2x00dev);
1073         rt2x00leds_unregister(rt2x00dev);
1074
1075         /*
1076          * Free ieee80211_hw memory.
1077          */
1078         rt2x00lib_remove_hw(rt2x00dev);
1079
1080         /*
1081          * Free firmware image.
1082          */
1083         rt2x00lib_free_firmware(rt2x00dev);
1084
1085         /*
1086          * Free queue structures.
1087          */
1088         rt2x00queue_free(rt2x00dev);
1089 }
1090 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1091
1092 /*
1093  * Device state handlers
1094  */
1095 #ifdef CONFIG_PM
1096 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1097 {
1098         NOTICE(rt2x00dev, "Going to sleep.\n");
1099
1100         /*
1101          * Prevent mac80211 from accessing driver while suspended.
1102          */
1103         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1104                 return 0;
1105
1106         /*
1107          * Cleanup as much as possible.
1108          */
1109         rt2x00lib_uninitialize(rt2x00dev);
1110
1111         /*
1112          * Suspend/disable extra components.
1113          */
1114         rt2x00leds_suspend(rt2x00dev);
1115         rt2x00debug_deregister(rt2x00dev);
1116
1117         /*
1118          * Set device mode to sleep for power management,
1119          * on some hardware this call seems to consistently fail.
1120          * From the specifications it is hard to tell why it fails,
1121          * and if this is a "bad thing".
1122          * Overall it is safe to just ignore the failure and
1123          * continue suspending. The only downside is that the
1124          * device will not be in optimal power save mode, but with
1125          * the radio and the other components already disabled the
1126          * device is as good as disabled.
1127          */
1128         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1129                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1130                         "continue suspending.\n");
1131
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1135
1136 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1137 {
1138         NOTICE(rt2x00dev, "Waking up.\n");
1139
1140         /*
1141          * Restore/enable extra components.
1142          */
1143         rt2x00debug_register(rt2x00dev);
1144         rt2x00leds_resume(rt2x00dev);
1145
1146         /*
1147          * We are ready again to receive requests from mac80211.
1148          */
1149         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1150
1151         return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1154 #endif /* CONFIG_PM */
1155
1156 /*
1157  * rt2x00lib module information.
1158  */
1159 MODULE_AUTHOR(DRV_PROJECT);
1160 MODULE_VERSION(DRV_VERSION);
1161 MODULE_DESCRIPTION("rt2x00 library");
1162 MODULE_LICENSE("GPL");