]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/ipw2200.c
[PATCH] ipw2200: remove unused struct ipw_rx_buffer
[net-next-2.6.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 static char *ipw_error_desc(u32 val)
571 {
572         switch (val) {
573         case IPW_FW_ERROR_OK:
574                 return "ERROR_OK";
575         case IPW_FW_ERROR_FAIL:
576                 return "ERROR_FAIL";
577         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
578                 return "MEMORY_UNDERFLOW";
579         case IPW_FW_ERROR_MEMORY_OVERFLOW:
580                 return "MEMORY_OVERFLOW";
581         case IPW_FW_ERROR_BAD_PARAM:
582                 return "BAD_PARAM";
583         case IPW_FW_ERROR_BAD_CHECKSUM:
584                 return "BAD_CHECKSUM";
585         case IPW_FW_ERROR_NMI_INTERRUPT:
586                 return "NMI_INTERRUPT";
587         case IPW_FW_ERROR_BAD_DATABASE:
588                 return "BAD_DATABASE";
589         case IPW_FW_ERROR_ALLOC_FAIL:
590                 return "ALLOC_FAIL";
591         case IPW_FW_ERROR_DMA_UNDERRUN:
592                 return "DMA_UNDERRUN";
593         case IPW_FW_ERROR_DMA_STATUS:
594                 return "DMA_STATUS";
595         case IPW_FW_ERROR_DINO_ERROR:
596                 return "DINO_ERROR";
597         case IPW_FW_ERROR_EEPROM_ERROR:
598                 return "EEPROM_ERROR";
599         case IPW_FW_ERROR_SYSASSERT:
600                 return "SYSASSERT";
601         case IPW_FW_ERROR_FATAL_ERROR:
602                 return "FATAL_ERROR";
603         default:
604                 return "UNKNOWN_ERROR";
605         }
606 }
607
608 static void ipw_dump_error_log(struct ipw_priv *priv,
609                                struct ipw_fw_error *error)
610 {
611         u32 i;
612
613         if (!error) {
614                 IPW_ERROR("Error allocating and capturing error log.  "
615                           "Nothing to dump.\n");
616                 return;
617         }
618
619         IPW_ERROR("Start IPW Error Log Dump:\n");
620         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
621                   error->status, error->config);
622
623         for (i = 0; i < error->elem_len; i++)
624                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
625                           ipw_error_desc(error->elem[i].desc),
626                           error->elem[i].time,
627                           error->elem[i].blink1,
628                           error->elem[i].blink2,
629                           error->elem[i].link1,
630                           error->elem[i].link2, error->elem[i].data);
631         for (i = 0; i < error->log_len; i++)
632                 IPW_ERROR("%i\t0x%08x\t%i\n",
633                           error->log[i].time,
634                           error->log[i].data, error->log[i].event);
635 }
636
637 static inline int ipw_is_init(struct ipw_priv *priv)
638 {
639         return (priv->status & STATUS_INIT) ? 1 : 0;
640 }
641
642 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
643 {
644         u32 addr, field_info, field_len, field_count, total_len;
645
646         IPW_DEBUG_ORD("ordinal = %i\n", ord);
647
648         if (!priv || !val || !len) {
649                 IPW_DEBUG_ORD("Invalid argument\n");
650                 return -EINVAL;
651         }
652
653         /* verify device ordinal tables have been initialized */
654         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
655                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
656                 return -EINVAL;
657         }
658
659         switch (IPW_ORD_TABLE_ID_MASK & ord) {
660         case IPW_ORD_TABLE_0_MASK:
661                 /*
662                  * TABLE 0: Direct access to a table of 32 bit values
663                  *
664                  * This is a very simple table with the data directly
665                  * read from the table
666                  */
667
668                 /* remove the table id from the ordinal */
669                 ord &= IPW_ORD_TABLE_VALUE_MASK;
670
671                 /* boundary check */
672                 if (ord > priv->table0_len) {
673                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
674                                       "max (%i)\n", ord, priv->table0_len);
675                         return -EINVAL;
676                 }
677
678                 /* verify we have enough room to store the value */
679                 if (*len < sizeof(u32)) {
680                         IPW_DEBUG_ORD("ordinal buffer length too small, "
681                                       "need %zd\n", sizeof(u32));
682                         return -EINVAL;
683                 }
684
685                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
686                               ord, priv->table0_addr + (ord << 2));
687
688                 *len = sizeof(u32);
689                 ord <<= 2;
690                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691                 break;
692
693         case IPW_ORD_TABLE_1_MASK:
694                 /*
695                  * TABLE 1: Indirect access to a table of 32 bit values
696                  *
697                  * This is a fairly large table of u32 values each
698                  * representing starting addr for the data (which is
699                  * also a u32)
700                  */
701
702                 /* remove the table id from the ordinal */
703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705                 /* boundary check */
706                 if (ord > priv->table1_len) {
707                         IPW_DEBUG_ORD("ordinal value too long\n");
708                         return -EINVAL;
709                 }
710
711                 /* verify we have enough room to store the value */
712                 if (*len < sizeof(u32)) {
713                         IPW_DEBUG_ORD("ordinal buffer length too small, "
714                                       "need %zd\n", sizeof(u32));
715                         return -EINVAL;
716                 }
717
718                 *((u32 *) val) =
719                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
720                 *len = sizeof(u32);
721                 break;
722
723         case IPW_ORD_TABLE_2_MASK:
724                 /*
725                  * TABLE 2: Indirect access to a table of variable sized values
726                  *
727                  * This table consist of six values, each containing
728                  *     - dword containing the starting offset of the data
729                  *     - dword containing the lengh in the first 16bits
730                  *       and the count in the second 16bits
731                  */
732
733                 /* remove the table id from the ordinal */
734                 ord &= IPW_ORD_TABLE_VALUE_MASK;
735
736                 /* boundary check */
737                 if (ord > priv->table2_len) {
738                         IPW_DEBUG_ORD("ordinal value too long\n");
739                         return -EINVAL;
740                 }
741
742                 /* get the address of statistic */
743                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
744
745                 /* get the second DW of statistics ;
746                  * two 16-bit words - first is length, second is count */
747                 field_info =
748                     ipw_read_reg32(priv,
749                                    priv->table2_addr + (ord << 3) +
750                                    sizeof(u32));
751
752                 /* get each entry length */
753                 field_len = *((u16 *) & field_info);
754
755                 /* get number of entries */
756                 field_count = *(((u16 *) & field_info) + 1);
757
758                 /* abort if not enought memory */
759                 total_len = field_len * field_count;
760                 if (total_len > *len) {
761                         *len = total_len;
762                         return -EINVAL;
763                 }
764
765                 *len = total_len;
766                 if (!total_len)
767                         return 0;
768
769                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
770                               "field_info = 0x%08x\n",
771                               addr, total_len, field_info);
772                 ipw_read_indirect(priv, addr, val, total_len);
773                 break;
774
775         default:
776                 IPW_DEBUG_ORD("Invalid ordinal!\n");
777                 return -EINVAL;
778
779         }
780
781         return 0;
782 }
783
784 static void ipw_init_ordinals(struct ipw_priv *priv)
785 {
786         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
787         priv->table0_len = ipw_read32(priv, priv->table0_addr);
788
789         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
790                       priv->table0_addr, priv->table0_len);
791
792         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
793         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
794
795         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
796                       priv->table1_addr, priv->table1_len);
797
798         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
799         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
800         priv->table2_len &= 0x0000ffff; /* use first two bytes */
801
802         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
803                       priv->table2_addr, priv->table2_len);
804
805 }
806
807 static u32 ipw_register_toggle(u32 reg)
808 {
809         reg &= ~IPW_START_STANDBY;
810         if (reg & IPW_GATE_ODMA)
811                 reg &= ~IPW_GATE_ODMA;
812         if (reg & IPW_GATE_IDMA)
813                 reg &= ~IPW_GATE_IDMA;
814         if (reg & IPW_GATE_ADMA)
815                 reg &= ~IPW_GATE_ADMA;
816         return reg;
817 }
818
819 /*
820  * LED behavior:
821  * - On radio ON, turn on any LEDs that require to be on during start
822  * - On initialization, start unassociated blink
823  * - On association, disable unassociated blink
824  * - On disassociation, start unassociated blink
825  * - On radio OFF, turn off any LEDs started during radio on
826  *
827  */
828 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
829 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
830 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
831
832 static void ipw_led_link_on(struct ipw_priv *priv)
833 {
834         unsigned long flags;
835         u32 led;
836
837         /* If configured to not use LEDs, or nic_type is 1,
838          * then we don't toggle a LINK led */
839         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840                 return;
841
842         spin_lock_irqsave(&priv->lock, flags);
843
844         if (!(priv->status & STATUS_RF_KILL_MASK) &&
845             !(priv->status & STATUS_LED_LINK_ON)) {
846                 IPW_DEBUG_LED("Link LED On\n");
847                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
848                 led |= priv->led_association_on;
849
850                 led = ipw_register_toggle(led);
851
852                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
853                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
854
855                 priv->status |= STATUS_LED_LINK_ON;
856
857                 /* If we aren't associated, schedule turning the LED off */
858                 if (!(priv->status & STATUS_ASSOCIATED))
859                         queue_delayed_work(priv->workqueue,
860                                            &priv->led_link_off,
861                                            LD_TIME_LINK_ON);
862         }
863
864         spin_unlock_irqrestore(&priv->lock, flags);
865 }
866
867 static void ipw_bg_led_link_on(void *data)
868 {
869         struct ipw_priv *priv = data;
870         mutex_lock(&priv->mutex);
871         ipw_led_link_on(data);
872         mutex_unlock(&priv->mutex);
873 }
874
875 static void ipw_led_link_off(struct ipw_priv *priv)
876 {
877         unsigned long flags;
878         u32 led;
879
880         /* If configured not to use LEDs, or nic type is 1,
881          * then we don't goggle the LINK led. */
882         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883                 return;
884
885         spin_lock_irqsave(&priv->lock, flags);
886
887         if (priv->status & STATUS_LED_LINK_ON) {
888                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889                 led &= priv->led_association_off;
890                 led = ipw_register_toggle(led);
891
892                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894
895                 IPW_DEBUG_LED("Link LED Off\n");
896
897                 priv->status &= ~STATUS_LED_LINK_ON;
898
899                 /* If we aren't associated and the radio is on, schedule
900                  * turning the LED on (blink while unassociated) */
901                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902                     !(priv->status & STATUS_ASSOCIATED))
903                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
904                                            LD_TIME_LINK_OFF);
905
906         }
907
908         spin_unlock_irqrestore(&priv->lock, flags);
909 }
910
911 static void ipw_bg_led_link_off(void *data)
912 {
913         struct ipw_priv *priv = data;
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(data);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(void *data)
991 {
992         struct ipw_priv *priv = data;
993         mutex_lock(&priv->mutex);
994         ipw_led_activity_off(data);
995         mutex_unlock(&priv->mutex);
996 }
997
998 static void ipw_led_band_on(struct ipw_priv *priv)
999 {
1000         unsigned long flags;
1001         u32 led;
1002
1003         /* Only nic type 1 supports mode LEDs */
1004         if (priv->config & CFG_NO_LED ||
1005             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1006                 return;
1007
1008         spin_lock_irqsave(&priv->lock, flags);
1009
1010         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1011         if (priv->assoc_network->mode == IEEE_A) {
1012                 led |= priv->led_ofdm_on;
1013                 led &= priv->led_association_off;
1014                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1015         } else if (priv->assoc_network->mode == IEEE_G) {
1016                 led |= priv->led_ofdm_on;
1017                 led |= priv->led_association_on;
1018                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1019         } else {
1020                 led &= priv->led_ofdm_off;
1021                 led |= priv->led_association_on;
1022                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1023         }
1024
1025         led = ipw_register_toggle(led);
1026
1027         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1028         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1029
1030         spin_unlock_irqrestore(&priv->lock, flags);
1031 }
1032
1033 static void ipw_led_band_off(struct ipw_priv *priv)
1034 {
1035         unsigned long flags;
1036         u32 led;
1037
1038         /* Only nic type 1 supports mode LEDs */
1039         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1040                 return;
1041
1042         spin_lock_irqsave(&priv->lock, flags);
1043
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         led &= priv->led_ofdm_off;
1046         led &= priv->led_association_off;
1047
1048         led = ipw_register_toggle(led);
1049
1050         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1051         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1052
1053         spin_unlock_irqrestore(&priv->lock, flags);
1054 }
1055
1056 static void ipw_led_radio_on(struct ipw_priv *priv)
1057 {
1058         ipw_led_link_on(priv);
1059 }
1060
1061 static void ipw_led_radio_off(struct ipw_priv *priv)
1062 {
1063         ipw_led_activity_off(priv);
1064         ipw_led_link_off(priv);
1065 }
1066
1067 static void ipw_led_link_up(struct ipw_priv *priv)
1068 {
1069         /* Set the Link Led on for all nic types */
1070         ipw_led_link_on(priv);
1071 }
1072
1073 static void ipw_led_link_down(struct ipw_priv *priv)
1074 {
1075         ipw_led_activity_off(priv);
1076         ipw_led_link_off(priv);
1077
1078         if (priv->status & STATUS_RF_KILL_MASK)
1079                 ipw_led_radio_off(priv);
1080 }
1081
1082 static void ipw_led_init(struct ipw_priv *priv)
1083 {
1084         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1085
1086         /* Set the default PINs for the link and activity leds */
1087         priv->led_activity_on = IPW_ACTIVITY_LED;
1088         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1089
1090         priv->led_association_on = IPW_ASSOCIATED_LED;
1091         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1092
1093         /* Set the default PINs for the OFDM leds */
1094         priv->led_ofdm_on = IPW_OFDM_LED;
1095         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1096
1097         switch (priv->nic_type) {
1098         case EEPROM_NIC_TYPE_1:
1099                 /* In this NIC type, the LEDs are reversed.... */
1100                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1101                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1102                 priv->led_association_on = IPW_ACTIVITY_LED;
1103                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1104
1105                 if (!(priv->config & CFG_NO_LED))
1106                         ipw_led_band_on(priv);
1107
1108                 /* And we don't blink link LEDs for this nic, so
1109                  * just return here */
1110                 return;
1111
1112         case EEPROM_NIC_TYPE_3:
1113         case EEPROM_NIC_TYPE_2:
1114         case EEPROM_NIC_TYPE_4:
1115         case EEPROM_NIC_TYPE_0:
1116                 break;
1117
1118         default:
1119                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1120                                priv->nic_type);
1121                 priv->nic_type = EEPROM_NIC_TYPE_0;
1122                 break;
1123         }
1124
1125         if (!(priv->config & CFG_NO_LED)) {
1126                 if (priv->status & STATUS_ASSOCIATED)
1127                         ipw_led_link_on(priv);
1128                 else
1129                         ipw_led_link_off(priv);
1130         }
1131 }
1132
1133 static void ipw_led_shutdown(struct ipw_priv *priv)
1134 {
1135         ipw_led_activity_off(priv);
1136         ipw_led_link_off(priv);
1137         ipw_led_band_off(priv);
1138         cancel_delayed_work(&priv->led_link_on);
1139         cancel_delayed_work(&priv->led_link_off);
1140         cancel_delayed_work(&priv->led_act_off);
1141 }
1142
1143 /*
1144  * The following adds a new attribute to the sysfs representation
1145  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1146  * used for controling the debug level.
1147  *
1148  * See the level definitions in ipw for details.
1149  */
1150 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1151 {
1152         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1153 }
1154
1155 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1156                                  size_t count)
1157 {
1158         char *p = (char *)buf;
1159         u32 val;
1160
1161         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1162                 p++;
1163                 if (p[0] == 'x' || p[0] == 'X')
1164                         p++;
1165                 val = simple_strtoul(p, &p, 16);
1166         } else
1167                 val = simple_strtoul(p, &p, 10);
1168         if (p == buf)
1169                 printk(KERN_INFO DRV_NAME
1170                        ": %s is not in hex or decimal form.\n", buf);
1171         else
1172                 ipw_debug_level = val;
1173
1174         return strnlen(buf, count);
1175 }
1176
1177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1178                    show_debug_level, store_debug_level);
1179
1180 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1181 {
1182         /* length = 1st dword in log */
1183         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1184 }
1185
1186 static void ipw_capture_event_log(struct ipw_priv *priv,
1187                                   u32 log_len, struct ipw_event *log)
1188 {
1189         u32 base;
1190
1191         if (log_len) {
1192                 base = ipw_read32(priv, IPW_EVENT_LOG);
1193                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1194                                   (u8 *) log, sizeof(*log) * log_len);
1195         }
1196 }
1197
1198 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1199 {
1200         struct ipw_fw_error *error;
1201         u32 log_len = ipw_get_event_log_len(priv);
1202         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1203         u32 elem_len = ipw_read_reg32(priv, base);
1204
1205         error = kmalloc(sizeof(*error) +
1206                         sizeof(*error->elem) * elem_len +
1207                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1208         if (!error) {
1209                 IPW_ERROR("Memory allocation for firmware error log "
1210                           "failed.\n");
1211                 return NULL;
1212         }
1213         error->jiffies = jiffies;
1214         error->status = priv->status;
1215         error->config = priv->config;
1216         error->elem_len = elem_len;
1217         error->log_len = log_len;
1218         error->elem = (struct ipw_error_elem *)error->payload;
1219         error->log = (struct ipw_event *)(error->elem + elem_len);
1220
1221         ipw_capture_event_log(priv, log_len, error->log);
1222
1223         if (elem_len)
1224                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1225                                   sizeof(*error->elem) * elem_len);
1226
1227         return error;
1228 }
1229
1230 static ssize_t show_event_log(struct device *d,
1231                               struct device_attribute *attr, char *buf)
1232 {
1233         struct ipw_priv *priv = dev_get_drvdata(d);
1234         u32 log_len = ipw_get_event_log_len(priv);
1235         struct ipw_event log[log_len];
1236         u32 len = 0, i;
1237
1238         ipw_capture_event_log(priv, log_len, log);
1239
1240         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1241         for (i = 0; i < log_len; i++)
1242                 len += snprintf(buf + len, PAGE_SIZE - len,
1243                                 "\n%08X%08X%08X",
1244                                 log[i].time, log[i].event, log[i].data);
1245         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1246         return len;
1247 }
1248
1249 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1250
1251 static ssize_t show_error(struct device *d,
1252                           struct device_attribute *attr, char *buf)
1253 {
1254         struct ipw_priv *priv = dev_get_drvdata(d);
1255         u32 len = 0, i;
1256         if (!priv->error)
1257                 return 0;
1258         len += snprintf(buf + len, PAGE_SIZE - len,
1259                         "%08lX%08X%08X%08X",
1260                         priv->error->jiffies,
1261                         priv->error->status,
1262                         priv->error->config, priv->error->elem_len);
1263         for (i = 0; i < priv->error->elem_len; i++)
1264                 len += snprintf(buf + len, PAGE_SIZE - len,
1265                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1266                                 priv->error->elem[i].time,
1267                                 priv->error->elem[i].desc,
1268                                 priv->error->elem[i].blink1,
1269                                 priv->error->elem[i].blink2,
1270                                 priv->error->elem[i].link1,
1271                                 priv->error->elem[i].link2,
1272                                 priv->error->elem[i].data);
1273
1274         len += snprintf(buf + len, PAGE_SIZE - len,
1275                         "\n%08X", priv->error->log_len);
1276         for (i = 0; i < priv->error->log_len; i++)
1277                 len += snprintf(buf + len, PAGE_SIZE - len,
1278                                 "\n%08X%08X%08X",
1279                                 priv->error->log[i].time,
1280                                 priv->error->log[i].event,
1281                                 priv->error->log[i].data);
1282         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1283         return len;
1284 }
1285
1286 static ssize_t clear_error(struct device *d,
1287                            struct device_attribute *attr,
1288                            const char *buf, size_t count)
1289 {
1290         struct ipw_priv *priv = dev_get_drvdata(d);
1291
1292         kfree(priv->error);
1293         priv->error = NULL;
1294         return count;
1295 }
1296
1297 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1298
1299 static ssize_t show_cmd_log(struct device *d,
1300                             struct device_attribute *attr, char *buf)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303         u32 len = 0, i;
1304         if (!priv->cmdlog)
1305                 return 0;
1306         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1307              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1308              i = (i + 1) % priv->cmdlog_len) {
1309                 len +=
1310                     snprintf(buf + len, PAGE_SIZE - len,
1311                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1312                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1313                              priv->cmdlog[i].cmd.len);
1314                 len +=
1315                     snprintk_buf(buf + len, PAGE_SIZE - len,
1316                                  (u8 *) priv->cmdlog[i].cmd.param,
1317                                  priv->cmdlog[i].cmd.len);
1318                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1319         }
1320         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321         return len;
1322 }
1323
1324 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1325
1326 #ifdef CONFIG_IPW2200_PROMISCUOUS
1327 static void ipw_prom_free(struct ipw_priv *priv);
1328 static int ipw_prom_alloc(struct ipw_priv *priv);
1329 static ssize_t store_rtap_iface(struct device *d,
1330                          struct device_attribute *attr,
1331                          const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334         int rc = 0;
1335
1336         if (count < 1)
1337                 return -EINVAL;
1338
1339         switch (buf[0]) {
1340         case '0':
1341                 if (!rtap_iface)
1342                         return count;
1343
1344                 if (netif_running(priv->prom_net_dev)) {
1345                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1346                         return count;
1347                 }
1348
1349                 ipw_prom_free(priv);
1350                 rtap_iface = 0;
1351                 break;
1352
1353         case '1':
1354                 if (rtap_iface)
1355                         return count;
1356
1357                 rc = ipw_prom_alloc(priv);
1358                 if (!rc)
1359                         rtap_iface = 1;
1360                 break;
1361
1362         default:
1363                 return -EINVAL;
1364         }
1365
1366         if (rc) {
1367                 IPW_ERROR("Failed to register promiscuous network "
1368                           "device (error %d).\n", rc);
1369         }
1370
1371         return count;
1372 }
1373
1374 static ssize_t show_rtap_iface(struct device *d,
1375                         struct device_attribute *attr,
1376                         char *buf)
1377 {
1378         struct ipw_priv *priv = dev_get_drvdata(d);
1379         if (rtap_iface)
1380                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1381         else {
1382                 buf[0] = '-';
1383                 buf[1] = '1';
1384                 buf[2] = '\0';
1385                 return 3;
1386         }
1387 }
1388
1389 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1390                    store_rtap_iface);
1391
1392 static ssize_t store_rtap_filter(struct device *d,
1393                          struct device_attribute *attr,
1394                          const char *buf, size_t count)
1395 {
1396         struct ipw_priv *priv = dev_get_drvdata(d);
1397
1398         if (!priv->prom_priv) {
1399                 IPW_ERROR("Attempting to set filter without "
1400                           "rtap_iface enabled.\n");
1401                 return -EPERM;
1402         }
1403
1404         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1405
1406         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1407                        BIT_ARG16(priv->prom_priv->filter));
1408
1409         return count;
1410 }
1411
1412 static ssize_t show_rtap_filter(struct device *d,
1413                         struct device_attribute *attr,
1414                         char *buf)
1415 {
1416         struct ipw_priv *priv = dev_get_drvdata(d);
1417         return sprintf(buf, "0x%04X",
1418                        priv->prom_priv ? priv->prom_priv->filter : 0);
1419 }
1420
1421 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1422                    store_rtap_filter);
1423 #endif
1424
1425 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1426                              char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1430 }
1431
1432 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1433                               const char *buf, size_t count)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         struct net_device *dev = priv->net_dev;
1437         char buffer[] = "00000000";
1438         unsigned long len =
1439             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1440         unsigned long val;
1441         char *p = buffer;
1442
1443         IPW_DEBUG_INFO("enter\n");
1444
1445         strncpy(buffer, buf, len);
1446         buffer[len] = 0;
1447
1448         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1449                 p++;
1450                 if (p[0] == 'x' || p[0] == 'X')
1451                         p++;
1452                 val = simple_strtoul(p, &p, 16);
1453         } else
1454                 val = simple_strtoul(p, &p, 10);
1455         if (p == buffer) {
1456                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1457         } else {
1458                 priv->ieee->scan_age = val;
1459                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1460         }
1461
1462         IPW_DEBUG_INFO("exit\n");
1463         return len;
1464 }
1465
1466 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1467
1468 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1469                         char *buf)
1470 {
1471         struct ipw_priv *priv = dev_get_drvdata(d);
1472         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1473 }
1474
1475 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1476                          const char *buf, size_t count)
1477 {
1478         struct ipw_priv *priv = dev_get_drvdata(d);
1479
1480         IPW_DEBUG_INFO("enter\n");
1481
1482         if (count == 0)
1483                 return 0;
1484
1485         if (*buf == 0) {
1486                 IPW_DEBUG_LED("Disabling LED control.\n");
1487                 priv->config |= CFG_NO_LED;
1488                 ipw_led_shutdown(priv);
1489         } else {
1490                 IPW_DEBUG_LED("Enabling LED control.\n");
1491                 priv->config &= ~CFG_NO_LED;
1492                 ipw_led_init(priv);
1493         }
1494
1495         IPW_DEBUG_INFO("exit\n");
1496         return count;
1497 }
1498
1499 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1500
1501 static ssize_t show_status(struct device *d,
1502                            struct device_attribute *attr, char *buf)
1503 {
1504         struct ipw_priv *p = d->driver_data;
1505         return sprintf(buf, "0x%08x\n", (int)p->status);
1506 }
1507
1508 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1509
1510 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1511                         char *buf)
1512 {
1513         struct ipw_priv *p = d->driver_data;
1514         return sprintf(buf, "0x%08x\n", (int)p->config);
1515 }
1516
1517 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1518
1519 static ssize_t show_nic_type(struct device *d,
1520                              struct device_attribute *attr, char *buf)
1521 {
1522         struct ipw_priv *priv = d->driver_data;
1523         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1524 }
1525
1526 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1527
1528 static ssize_t show_ucode_version(struct device *d,
1529                                   struct device_attribute *attr, char *buf)
1530 {
1531         u32 len = sizeof(u32), tmp = 0;
1532         struct ipw_priv *p = d->driver_data;
1533
1534         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1535                 return 0;
1536
1537         return sprintf(buf, "0x%08x\n", tmp);
1538 }
1539
1540 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1541
1542 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1543                         char *buf)
1544 {
1545         u32 len = sizeof(u32), tmp = 0;
1546         struct ipw_priv *p = d->driver_data;
1547
1548         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1549                 return 0;
1550
1551         return sprintf(buf, "0x%08x\n", tmp);
1552 }
1553
1554 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1555
1556 /*
1557  * Add a device attribute to view/control the delay between eeprom
1558  * operations.
1559  */
1560 static ssize_t show_eeprom_delay(struct device *d,
1561                                  struct device_attribute *attr, char *buf)
1562 {
1563         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1564         return sprintf(buf, "%i\n", n);
1565 }
1566 static ssize_t store_eeprom_delay(struct device *d,
1567                                   struct device_attribute *attr,
1568                                   const char *buf, size_t count)
1569 {
1570         struct ipw_priv *p = d->driver_data;
1571         sscanf(buf, "%i", &p->eeprom_delay);
1572         return strnlen(buf, count);
1573 }
1574
1575 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1576                    show_eeprom_delay, store_eeprom_delay);
1577
1578 static ssize_t show_command_event_reg(struct device *d,
1579                                       struct device_attribute *attr, char *buf)
1580 {
1581         u32 reg = 0;
1582         struct ipw_priv *p = d->driver_data;
1583
1584         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1585         return sprintf(buf, "0x%08x\n", reg);
1586 }
1587 static ssize_t store_command_event_reg(struct device *d,
1588                                        struct device_attribute *attr,
1589                                        const char *buf, size_t count)
1590 {
1591         u32 reg;
1592         struct ipw_priv *p = d->driver_data;
1593
1594         sscanf(buf, "%x", &reg);
1595         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1596         return strnlen(buf, count);
1597 }
1598
1599 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1600                    show_command_event_reg, store_command_event_reg);
1601
1602 static ssize_t show_mem_gpio_reg(struct device *d,
1603                                  struct device_attribute *attr, char *buf)
1604 {
1605         u32 reg = 0;
1606         struct ipw_priv *p = d->driver_data;
1607
1608         reg = ipw_read_reg32(p, 0x301100);
1609         return sprintf(buf, "0x%08x\n", reg);
1610 }
1611 static ssize_t store_mem_gpio_reg(struct device *d,
1612                                   struct device_attribute *attr,
1613                                   const char *buf, size_t count)
1614 {
1615         u32 reg;
1616         struct ipw_priv *p = d->driver_data;
1617
1618         sscanf(buf, "%x", &reg);
1619         ipw_write_reg32(p, 0x301100, reg);
1620         return strnlen(buf, count);
1621 }
1622
1623 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1624                    show_mem_gpio_reg, store_mem_gpio_reg);
1625
1626 static ssize_t show_indirect_dword(struct device *d,
1627                                    struct device_attribute *attr, char *buf)
1628 {
1629         u32 reg = 0;
1630         struct ipw_priv *priv = d->driver_data;
1631
1632         if (priv->status & STATUS_INDIRECT_DWORD)
1633                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1634         else
1635                 reg = 0;
1636
1637         return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_indirect_dword(struct device *d,
1640                                     struct device_attribute *attr,
1641                                     const char *buf, size_t count)
1642 {
1643         struct ipw_priv *priv = d->driver_data;
1644
1645         sscanf(buf, "%x", &priv->indirect_dword);
1646         priv->status |= STATUS_INDIRECT_DWORD;
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1651                    show_indirect_dword, store_indirect_dword);
1652
1653 static ssize_t show_indirect_byte(struct device *d,
1654                                   struct device_attribute *attr, char *buf)
1655 {
1656         u8 reg = 0;
1657         struct ipw_priv *priv = d->driver_data;
1658
1659         if (priv->status & STATUS_INDIRECT_BYTE)
1660                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%02x\n", reg);
1665 }
1666 static ssize_t store_indirect_byte(struct device *d,
1667                                    struct device_attribute *attr,
1668                                    const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = d->driver_data;
1671
1672         sscanf(buf, "%x", &priv->indirect_byte);
1673         priv->status |= STATUS_INDIRECT_BYTE;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1678                    show_indirect_byte, store_indirect_byte);
1679
1680 static ssize_t show_direct_dword(struct device *d,
1681                                  struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = d->driver_data;
1685
1686         if (priv->status & STATUS_DIRECT_DWORD)
1687                 reg = ipw_read32(priv, priv->direct_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_direct_dword(struct device *d,
1694                                   struct device_attribute *attr,
1695                                   const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = d->driver_data;
1698
1699         sscanf(buf, "%x", &priv->direct_dword);
1700         priv->status |= STATUS_DIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1705                    show_direct_dword, store_direct_dword);
1706
1707 static int rf_kill_active(struct ipw_priv *priv)
1708 {
1709         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1710                 priv->status |= STATUS_RF_KILL_HW;
1711         else
1712                 priv->status &= ~STATUS_RF_KILL_HW;
1713
1714         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1715 }
1716
1717 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1718                             char *buf)
1719 {
1720         /* 0 - RF kill not enabled
1721            1 - SW based RF kill active (sysfs)
1722            2 - HW based RF kill active
1723            3 - Both HW and SW baed RF kill active */
1724         struct ipw_priv *priv = d->driver_data;
1725         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1726             (rf_kill_active(priv) ? 0x2 : 0x0);
1727         return sprintf(buf, "%i\n", val);
1728 }
1729
1730 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1731 {
1732         if ((disable_radio ? 1 : 0) ==
1733             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1734                 return 0;
1735
1736         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1737                           disable_radio ? "OFF" : "ON");
1738
1739         if (disable_radio) {
1740                 priv->status |= STATUS_RF_KILL_SW;
1741
1742                 if (priv->workqueue)
1743                         cancel_delayed_work(&priv->request_scan);
1744                 queue_work(priv->workqueue, &priv->down);
1745         } else {
1746                 priv->status &= ~STATUS_RF_KILL_SW;
1747                 if (rf_kill_active(priv)) {
1748                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1749                                           "disabled by HW switch\n");
1750                         /* Make sure the RF_KILL check timer is running */
1751                         cancel_delayed_work(&priv->rf_kill);
1752                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1753                                            2 * HZ);
1754                 } else
1755                         queue_work(priv->workqueue, &priv->up);
1756         }
1757
1758         return 1;
1759 }
1760
1761 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1762                              const char *buf, size_t count)
1763 {
1764         struct ipw_priv *priv = d->driver_data;
1765
1766         ipw_radio_kill_sw(priv, buf[0] == '1');
1767
1768         return count;
1769 }
1770
1771 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1772
1773 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1774                                char *buf)
1775 {
1776         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1777         int pos = 0, len = 0;
1778         if (priv->config & CFG_SPEED_SCAN) {
1779                 while (priv->speed_scan[pos] != 0)
1780                         len += sprintf(&buf[len], "%d ",
1781                                        priv->speed_scan[pos++]);
1782                 return len + sprintf(&buf[len], "\n");
1783         }
1784
1785         return sprintf(buf, "0\n");
1786 }
1787
1788 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1789                                 const char *buf, size_t count)
1790 {
1791         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1792         int channel, pos = 0;
1793         const char *p = buf;
1794
1795         /* list of space separated channels to scan, optionally ending with 0 */
1796         while ((channel = simple_strtol(p, NULL, 0))) {
1797                 if (pos == MAX_SPEED_SCAN - 1) {
1798                         priv->speed_scan[pos] = 0;
1799                         break;
1800                 }
1801
1802                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1803                         priv->speed_scan[pos++] = channel;
1804                 else
1805                         IPW_WARNING("Skipping invalid channel request: %d\n",
1806                                     channel);
1807                 p = strchr(p, ' ');
1808                 if (!p)
1809                         break;
1810                 while (*p == ' ' || *p == '\t')
1811                         p++;
1812         }
1813
1814         if (pos == 0)
1815                 priv->config &= ~CFG_SPEED_SCAN;
1816         else {
1817                 priv->speed_scan_pos = 0;
1818                 priv->config |= CFG_SPEED_SCAN;
1819         }
1820
1821         return count;
1822 }
1823
1824 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1825                    store_speed_scan);
1826
1827 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1828                               char *buf)
1829 {
1830         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1831         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1832 }
1833
1834 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1835                                const char *buf, size_t count)
1836 {
1837         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1838         if (buf[0] == '1')
1839                 priv->config |= CFG_NET_STATS;
1840         else
1841                 priv->config &= ~CFG_NET_STATS;
1842
1843         return count;
1844 }
1845
1846 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1847                    show_net_stats, store_net_stats);
1848
1849 static void notify_wx_assoc_event(struct ipw_priv *priv)
1850 {
1851         union iwreq_data wrqu;
1852         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1853         if (priv->status & STATUS_ASSOCIATED)
1854                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1855         else
1856                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1857         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1858 }
1859
1860 static void ipw_irq_tasklet(struct ipw_priv *priv)
1861 {
1862         u32 inta, inta_mask, handled = 0;
1863         unsigned long flags;
1864         int rc = 0;
1865
1866         spin_lock_irqsave(&priv->irq_lock, flags);
1867
1868         inta = ipw_read32(priv, IPW_INTA_RW);
1869         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1870         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1871
1872         /* Add any cached INTA values that need to be handled */
1873         inta |= priv->isr_inta;
1874
1875         spin_unlock_irqrestore(&priv->irq_lock, flags);
1876
1877         spin_lock_irqsave(&priv->lock, flags);
1878
1879         /* handle all the justifications for the interrupt */
1880         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1881                 ipw_rx(priv);
1882                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1883         }
1884
1885         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1886                 IPW_DEBUG_HC("Command completed.\n");
1887                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1888                 priv->status &= ~STATUS_HCMD_ACTIVE;
1889                 wake_up_interruptible(&priv->wait_command_queue);
1890                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1891         }
1892
1893         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1894                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1895                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1896                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1897         }
1898
1899         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1900                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1901                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1902                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1903         }
1904
1905         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1906                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1907                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1908                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1909         }
1910
1911         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1912                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1913                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1914                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1915         }
1916
1917         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1918                 IPW_WARNING("STATUS_CHANGE\n");
1919                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1920         }
1921
1922         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1923                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1924                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1925         }
1926
1927         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1928                 IPW_WARNING("HOST_CMD_DONE\n");
1929                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1933                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1934                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1935         }
1936
1937         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1938                 IPW_WARNING("PHY_OFF_DONE\n");
1939                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1940         }
1941
1942         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1943                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1944                 priv->status |= STATUS_RF_KILL_HW;
1945                 wake_up_interruptible(&priv->wait_command_queue);
1946                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1947                 cancel_delayed_work(&priv->request_scan);
1948                 schedule_work(&priv->link_down);
1949                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1950                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1954                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1955                 if (priv->error) {
1956                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1957                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1958                                 struct ipw_fw_error *error =
1959                                     ipw_alloc_error_log(priv);
1960                                 ipw_dump_error_log(priv, error);
1961                                 kfree(error);
1962                         }
1963                 } else {
1964                         priv->error = ipw_alloc_error_log(priv);
1965                         if (priv->error)
1966                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1967                         else
1968                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1969                                              "log.\n");
1970                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1971                                 ipw_dump_error_log(priv, priv->error);
1972                 }
1973
1974                 /* XXX: If hardware encryption is for WPA/WPA2,
1975                  * we have to notify the supplicant. */
1976                 if (priv->ieee->sec.encrypt) {
1977                         priv->status &= ~STATUS_ASSOCIATED;
1978                         notify_wx_assoc_event(priv);
1979                 }
1980
1981                 /* Keep the restart process from trying to send host
1982                  * commands by clearing the INIT status bit */
1983                 priv->status &= ~STATUS_INIT;
1984
1985                 /* Cancel currently queued command. */
1986                 priv->status &= ~STATUS_HCMD_ACTIVE;
1987                 wake_up_interruptible(&priv->wait_command_queue);
1988
1989                 queue_work(priv->workqueue, &priv->adapter_restart);
1990                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1994                 IPW_ERROR("Parity error\n");
1995                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1996         }
1997
1998         if (handled != inta) {
1999                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2000         }
2001
2002         spin_unlock_irqrestore(&priv->lock, flags);
2003
2004         /* enable all interrupts */
2005         ipw_enable_interrupts(priv);
2006 }
2007
2008 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2009 static char *get_cmd_string(u8 cmd)
2010 {
2011         switch (cmd) {
2012                 IPW_CMD(HOST_COMPLETE);
2013                 IPW_CMD(POWER_DOWN);
2014                 IPW_CMD(SYSTEM_CONFIG);
2015                 IPW_CMD(MULTICAST_ADDRESS);
2016                 IPW_CMD(SSID);
2017                 IPW_CMD(ADAPTER_ADDRESS);
2018                 IPW_CMD(PORT_TYPE);
2019                 IPW_CMD(RTS_THRESHOLD);
2020                 IPW_CMD(FRAG_THRESHOLD);
2021                 IPW_CMD(POWER_MODE);
2022                 IPW_CMD(WEP_KEY);
2023                 IPW_CMD(TGI_TX_KEY);
2024                 IPW_CMD(SCAN_REQUEST);
2025                 IPW_CMD(SCAN_REQUEST_EXT);
2026                 IPW_CMD(ASSOCIATE);
2027                 IPW_CMD(SUPPORTED_RATES);
2028                 IPW_CMD(SCAN_ABORT);
2029                 IPW_CMD(TX_FLUSH);
2030                 IPW_CMD(QOS_PARAMETERS);
2031                 IPW_CMD(DINO_CONFIG);
2032                 IPW_CMD(RSN_CAPABILITIES);
2033                 IPW_CMD(RX_KEY);
2034                 IPW_CMD(CARD_DISABLE);
2035                 IPW_CMD(SEED_NUMBER);
2036                 IPW_CMD(TX_POWER);
2037                 IPW_CMD(COUNTRY_INFO);
2038                 IPW_CMD(AIRONET_INFO);
2039                 IPW_CMD(AP_TX_POWER);
2040                 IPW_CMD(CCKM_INFO);
2041                 IPW_CMD(CCX_VER_INFO);
2042                 IPW_CMD(SET_CALIBRATION);
2043                 IPW_CMD(SENSITIVITY_CALIB);
2044                 IPW_CMD(RETRY_LIMIT);
2045                 IPW_CMD(IPW_PRE_POWER_DOWN);
2046                 IPW_CMD(VAP_BEACON_TEMPLATE);
2047                 IPW_CMD(VAP_DTIM_PERIOD);
2048                 IPW_CMD(EXT_SUPPORTED_RATES);
2049                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2050                 IPW_CMD(VAP_QUIET_INTERVALS);
2051                 IPW_CMD(VAP_CHANNEL_SWITCH);
2052                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2053                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2054                 IPW_CMD(VAP_CF_PARAM_SET);
2055                 IPW_CMD(VAP_SET_BEACONING_STATE);
2056                 IPW_CMD(MEASUREMENT);
2057                 IPW_CMD(POWER_CAPABILITY);
2058                 IPW_CMD(SUPPORTED_CHANNELS);
2059                 IPW_CMD(TPC_REPORT);
2060                 IPW_CMD(WME_INFO);
2061                 IPW_CMD(PRODUCTION_COMMAND);
2062         default:
2063                 return "UNKNOWN";
2064         }
2065 }
2066
2067 #define HOST_COMPLETE_TIMEOUT HZ
2068
2069 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2070 {
2071         int rc = 0;
2072         unsigned long flags;
2073
2074         spin_lock_irqsave(&priv->lock, flags);
2075         if (priv->status & STATUS_HCMD_ACTIVE) {
2076                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2077                           get_cmd_string(cmd->cmd));
2078                 spin_unlock_irqrestore(&priv->lock, flags);
2079                 return -EAGAIN;
2080         }
2081
2082         priv->status |= STATUS_HCMD_ACTIVE;
2083
2084         if (priv->cmdlog) {
2085                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2086                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2087                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2088                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2089                        cmd->len);
2090                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2091         }
2092
2093         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2094                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2095                      priv->status);
2096
2097 #ifndef DEBUG_CMD_WEP_KEY
2098         if (cmd->cmd == IPW_CMD_WEP_KEY)
2099                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2100         else
2101 #endif
2102                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2103
2104         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2105         if (rc) {
2106                 priv->status &= ~STATUS_HCMD_ACTIVE;
2107                 IPW_ERROR("Failed to send %s: Reason %d\n",
2108                           get_cmd_string(cmd->cmd), rc);
2109                 spin_unlock_irqrestore(&priv->lock, flags);
2110                 goto exit;
2111         }
2112         spin_unlock_irqrestore(&priv->lock, flags);
2113
2114         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2115                                               !(priv->
2116                                                 status & STATUS_HCMD_ACTIVE),
2117                                               HOST_COMPLETE_TIMEOUT);
2118         if (rc == 0) {
2119                 spin_lock_irqsave(&priv->lock, flags);
2120                 if (priv->status & STATUS_HCMD_ACTIVE) {
2121                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2122                                   get_cmd_string(cmd->cmd));
2123                         priv->status &= ~STATUS_HCMD_ACTIVE;
2124                         spin_unlock_irqrestore(&priv->lock, flags);
2125                         rc = -EIO;
2126                         goto exit;
2127                 }
2128                 spin_unlock_irqrestore(&priv->lock, flags);
2129         } else
2130                 rc = 0;
2131
2132         if (priv->status & STATUS_RF_KILL_HW) {
2133                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2134                           get_cmd_string(cmd->cmd));
2135                 rc = -EIO;
2136                 goto exit;
2137         }
2138
2139       exit:
2140         if (priv->cmdlog) {
2141                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2142                 priv->cmdlog_pos %= priv->cmdlog_len;
2143         }
2144         return rc;
2145 }
2146
2147 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2148 {
2149         struct host_cmd cmd = {
2150                 .cmd = command,
2151         };
2152
2153         return __ipw_send_cmd(priv, &cmd);
2154 }
2155
2156 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2157                             void *data)
2158 {
2159         struct host_cmd cmd = {
2160                 .cmd = command,
2161                 .len = len,
2162                 .param = data,
2163         };
2164
2165         return __ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_host_complete(struct ipw_priv *priv)
2169 {
2170         if (!priv) {
2171                 IPW_ERROR("Invalid args\n");
2172                 return -1;
2173         }
2174
2175         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2176 }
2177
2178 static int ipw_send_system_config(struct ipw_priv *priv)
2179 {
2180         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2181                                 sizeof(priv->sys_config),
2182                                 &priv->sys_config);
2183 }
2184
2185 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2186 {
2187         if (!priv || !ssid) {
2188                 IPW_ERROR("Invalid args\n");
2189                 return -1;
2190         }
2191
2192         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2193                                 ssid);
2194 }
2195
2196 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2197 {
2198         if (!priv || !mac) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2204                        priv->net_dev->name, MAC_ARG(mac));
2205
2206         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2207 }
2208
2209 /*
2210  * NOTE: This must be executed from our workqueue as it results in udelay
2211  * being called which may corrupt the keyboard if executed on default
2212  * workqueue
2213  */
2214 static void ipw_adapter_restart(void *adapter)
2215 {
2216         struct ipw_priv *priv = adapter;
2217
2218         if (priv->status & STATUS_RF_KILL_MASK)
2219                 return;
2220
2221         ipw_down(priv);
2222
2223         if (priv->assoc_network &&
2224             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2225                 ipw_remove_current_network(priv);
2226
2227         if (ipw_up(priv)) {
2228                 IPW_ERROR("Failed to up device\n");
2229                 return;
2230         }
2231 }
2232
2233 static void ipw_bg_adapter_restart(void *data)
2234 {
2235         struct ipw_priv *priv = data;
2236         mutex_lock(&priv->mutex);
2237         ipw_adapter_restart(data);
2238         mutex_unlock(&priv->mutex);
2239 }
2240
2241 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2242
2243 static void ipw_scan_check(void *data)
2244 {
2245         struct ipw_priv *priv = data;
2246         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2247                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2248                                "adapter after (%dms).\n",
2249                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2250                 queue_work(priv->workqueue, &priv->adapter_restart);
2251         }
2252 }
2253
2254 static void ipw_bg_scan_check(void *data)
2255 {
2256         struct ipw_priv *priv = data;
2257         mutex_lock(&priv->mutex);
2258         ipw_scan_check(data);
2259         mutex_unlock(&priv->mutex);
2260 }
2261
2262 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2263                                      struct ipw_scan_request_ext *request)
2264 {
2265         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2266                                 sizeof(*request), request);
2267 }
2268
2269 static int ipw_send_scan_abort(struct ipw_priv *priv)
2270 {
2271         if (!priv) {
2272                 IPW_ERROR("Invalid args\n");
2273                 return -1;
2274         }
2275
2276         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2277 }
2278
2279 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2280 {
2281         struct ipw_sensitivity_calib calib = {
2282                 .beacon_rssi_raw = sens,
2283         };
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2286                                 &calib);
2287 }
2288
2289 static int ipw_send_associate(struct ipw_priv *priv,
2290                               struct ipw_associate *associate)
2291 {
2292         struct ipw_associate tmp_associate;
2293
2294         if (!priv || !associate) {
2295                 IPW_ERROR("Invalid args\n");
2296                 return -1;
2297         }
2298
2299         memcpy(&tmp_associate, associate, sizeof(*associate));
2300         tmp_associate.policy_support =
2301             cpu_to_le16(tmp_associate.policy_support);
2302         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2303         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2304         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2305         tmp_associate.listen_interval =
2306             cpu_to_le16(tmp_associate.listen_interval);
2307         tmp_associate.beacon_interval =
2308             cpu_to_le16(tmp_associate.beacon_interval);
2309         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2310
2311         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2312                                 &tmp_associate);
2313 }
2314
2315 static int ipw_send_supported_rates(struct ipw_priv *priv,
2316                                     struct ipw_supported_rates *rates)
2317 {
2318         if (!priv || !rates) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2324                                 rates);
2325 }
2326
2327 static int ipw_set_random_seed(struct ipw_priv *priv)
2328 {
2329         u32 val;
2330
2331         if (!priv) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         get_random_bytes(&val, sizeof(val));
2337
2338         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2339 }
2340
2341 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2342 {
2343         if (!priv) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2349                                 &phy_off);
2350 }
2351
2352 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2353 {
2354         if (!priv || !power) {
2355                 IPW_ERROR("Invalid args\n");
2356                 return -1;
2357         }
2358
2359         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2360 }
2361
2362 static int ipw_set_tx_power(struct ipw_priv *priv)
2363 {
2364         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2365         struct ipw_tx_power tx_power;
2366         s8 max_power;
2367         int i;
2368
2369         memset(&tx_power, 0, sizeof(tx_power));
2370
2371         /* configure device for 'G' band */
2372         tx_power.ieee_mode = IPW_G_MODE;
2373         tx_power.num_channels = geo->bg_channels;
2374         for (i = 0; i < geo->bg_channels; i++) {
2375                 max_power = geo->bg[i].max_power;
2376                 tx_power.channels_tx_power[i].channel_number =
2377                     geo->bg[i].channel;
2378                 tx_power.channels_tx_power[i].tx_power = max_power ?
2379                     min(max_power, priv->tx_power) : priv->tx_power;
2380         }
2381         if (ipw_send_tx_power(priv, &tx_power))
2382                 return -EIO;
2383
2384         /* configure device to also handle 'B' band */
2385         tx_power.ieee_mode = IPW_B_MODE;
2386         if (ipw_send_tx_power(priv, &tx_power))
2387                 return -EIO;
2388
2389         /* configure device to also handle 'A' band */
2390         if (priv->ieee->abg_true) {
2391                 tx_power.ieee_mode = IPW_A_MODE;
2392                 tx_power.num_channels = geo->a_channels;
2393                 for (i = 0; i < tx_power.num_channels; i++) {
2394                         max_power = geo->a[i].max_power;
2395                         tx_power.channels_tx_power[i].channel_number =
2396                             geo->a[i].channel;
2397                         tx_power.channels_tx_power[i].tx_power = max_power ?
2398                             min(max_power, priv->tx_power) : priv->tx_power;
2399                 }
2400                 if (ipw_send_tx_power(priv, &tx_power))
2401                         return -EIO;
2402         }
2403         return 0;
2404 }
2405
2406 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2407 {
2408         struct ipw_rts_threshold rts_threshold = {
2409                 .rts_threshold = rts,
2410         };
2411
2412         if (!priv) {
2413                 IPW_ERROR("Invalid args\n");
2414                 return -1;
2415         }
2416
2417         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2418                                 sizeof(rts_threshold), &rts_threshold);
2419 }
2420
2421 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2422 {
2423         struct ipw_frag_threshold frag_threshold = {
2424                 .frag_threshold = frag,
2425         };
2426
2427         if (!priv) {
2428                 IPW_ERROR("Invalid args\n");
2429                 return -1;
2430         }
2431
2432         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2433                                 sizeof(frag_threshold), &frag_threshold);
2434 }
2435
2436 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2437 {
2438         u32 param;
2439
2440         if (!priv) {
2441                 IPW_ERROR("Invalid args\n");
2442                 return -1;
2443         }
2444
2445         /* If on battery, set to 3, if AC set to CAM, else user
2446          * level */
2447         switch (mode) {
2448         case IPW_POWER_BATTERY:
2449                 param = IPW_POWER_INDEX_3;
2450                 break;
2451         case IPW_POWER_AC:
2452                 param = IPW_POWER_MODE_CAM;
2453                 break;
2454         default:
2455                 param = mode;
2456                 break;
2457         }
2458
2459         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2460                                 &param);
2461 }
2462
2463 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2464 {
2465         struct ipw_retry_limit retry_limit = {
2466                 .short_retry_limit = slimit,
2467                 .long_retry_limit = llimit
2468         };
2469
2470         if (!priv) {
2471                 IPW_ERROR("Invalid args\n");
2472                 return -1;
2473         }
2474
2475         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2476                                 &retry_limit);
2477 }
2478
2479 /*
2480  * The IPW device contains a Microwire compatible EEPROM that stores
2481  * various data like the MAC address.  Usually the firmware has exclusive
2482  * access to the eeprom, but during device initialization (before the
2483  * device driver has sent the HostComplete command to the firmware) the
2484  * device driver has read access to the EEPROM by way of indirect addressing
2485  * through a couple of memory mapped registers.
2486  *
2487  * The following is a simplified implementation for pulling data out of the
2488  * the eeprom, along with some helper functions to find information in
2489  * the per device private data's copy of the eeprom.
2490  *
2491  * NOTE: To better understand how these functions work (i.e what is a chip
2492  *       select and why do have to keep driving the eeprom clock?), read
2493  *       just about any data sheet for a Microwire compatible EEPROM.
2494  */
2495
2496 /* write a 32 bit value into the indirect accessor register */
2497 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2498 {
2499         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2500
2501         /* the eeprom requires some time to complete the operation */
2502         udelay(p->eeprom_delay);
2503
2504         return;
2505 }
2506
2507 /* perform a chip select operation */
2508 static void eeprom_cs(struct ipw_priv *priv)
2509 {
2510         eeprom_write_reg(priv, 0);
2511         eeprom_write_reg(priv, EEPROM_BIT_CS);
2512         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2513         eeprom_write_reg(priv, EEPROM_BIT_CS);
2514 }
2515
2516 /* perform a chip select operation */
2517 static void eeprom_disable_cs(struct ipw_priv *priv)
2518 {
2519         eeprom_write_reg(priv, EEPROM_BIT_CS);
2520         eeprom_write_reg(priv, 0);
2521         eeprom_write_reg(priv, EEPROM_BIT_SK);
2522 }
2523
2524 /* push a single bit down to the eeprom */
2525 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2526 {
2527         int d = (bit ? EEPROM_BIT_DI : 0);
2528         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2529         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2530 }
2531
2532 /* push an opcode followed by an address down to the eeprom */
2533 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2534 {
2535         int i;
2536
2537         eeprom_cs(priv);
2538         eeprom_write_bit(priv, 1);
2539         eeprom_write_bit(priv, op & 2);
2540         eeprom_write_bit(priv, op & 1);
2541         for (i = 7; i >= 0; i--) {
2542                 eeprom_write_bit(priv, addr & (1 << i));
2543         }
2544 }
2545
2546 /* pull 16 bits off the eeprom, one bit at a time */
2547 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2548 {
2549         int i;
2550         u16 r = 0;
2551
2552         /* Send READ Opcode */
2553         eeprom_op(priv, EEPROM_CMD_READ, addr);
2554
2555         /* Send dummy bit */
2556         eeprom_write_reg(priv, EEPROM_BIT_CS);
2557
2558         /* Read the byte off the eeprom one bit at a time */
2559         for (i = 0; i < 16; i++) {
2560                 u32 data = 0;
2561                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2562                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2564                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2565         }
2566
2567         /* Send another dummy bit */
2568         eeprom_write_reg(priv, 0);
2569         eeprom_disable_cs(priv);
2570
2571         return r;
2572 }
2573
2574 /* helper function for pulling the mac address out of the private */
2575 /* data's copy of the eeprom data                                 */
2576 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2577 {
2578         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2579 }
2580
2581 /*
2582  * Either the device driver (i.e. the host) or the firmware can
2583  * load eeprom data into the designated region in SRAM.  If neither
2584  * happens then the FW will shutdown with a fatal error.
2585  *
2586  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2587  * bit needs region of shared SRAM needs to be non-zero.
2588  */
2589 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2590 {
2591         int i;
2592         u16 *eeprom = (u16 *) priv->eeprom;
2593
2594         IPW_DEBUG_TRACE(">>\n");
2595
2596         /* read entire contents of eeprom into private buffer */
2597         for (i = 0; i < 128; i++)
2598                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2599
2600         /*
2601            If the data looks correct, then copy it to our private
2602            copy.  Otherwise let the firmware know to perform the operation
2603            on its own.
2604          */
2605         if (priv->eeprom[EEPROM_VERSION] != 0) {
2606                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2607
2608                 /* write the eeprom data to sram */
2609                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2610                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2611
2612                 /* Do not load eeprom data on fatal error or suspend */
2613                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2614         } else {
2615                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2616
2617                 /* Load eeprom data on fatal error or suspend */
2618                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2619         }
2620
2621         IPW_DEBUG_TRACE("<<\n");
2622 }
2623
2624 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2625 {
2626         count >>= 2;
2627         if (!count)
2628                 return;
2629         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2630         while (count--)
2631                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2632 }
2633
2634 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2635 {
2636         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2637                         CB_NUMBER_OF_ELEMENTS_SMALL *
2638                         sizeof(struct command_block));
2639 }
2640
2641 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2642 {                               /* start dma engine but no transfers yet */
2643
2644         IPW_DEBUG_FW(">> : \n");
2645
2646         /* Start the dma */
2647         ipw_fw_dma_reset_command_blocks(priv);
2648
2649         /* Write CB base address */
2650         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2651
2652         IPW_DEBUG_FW("<< : \n");
2653         return 0;
2654 }
2655
2656 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2657 {
2658         u32 control = 0;
2659
2660         IPW_DEBUG_FW(">> :\n");
2661
2662         /* set the Stop and Abort bit */
2663         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2664         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2665         priv->sram_desc.last_cb_index = 0;
2666
2667         IPW_DEBUG_FW("<< \n");
2668 }
2669
2670 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2671                                           struct command_block *cb)
2672 {
2673         u32 address =
2674             IPW_SHARED_SRAM_DMA_CONTROL +
2675             (sizeof(struct command_block) * index);
2676         IPW_DEBUG_FW(">> :\n");
2677
2678         ipw_write_indirect(priv, address, (u8 *) cb,
2679                            (int)sizeof(struct command_block));
2680
2681         IPW_DEBUG_FW("<< :\n");
2682         return 0;
2683
2684 }
2685
2686 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2687 {
2688         u32 control = 0;
2689         u32 index = 0;
2690
2691         IPW_DEBUG_FW(">> :\n");
2692
2693         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2694                 ipw_fw_dma_write_command_block(priv, index,
2695                                                &priv->sram_desc.cb_list[index]);
2696
2697         /* Enable the DMA in the CSR register */
2698         ipw_clear_bit(priv, IPW_RESET_REG,
2699                       IPW_RESET_REG_MASTER_DISABLED |
2700                       IPW_RESET_REG_STOP_MASTER);
2701
2702         /* Set the Start bit. */
2703         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2704         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2705
2706         IPW_DEBUG_FW("<< :\n");
2707         return 0;
2708 }
2709
2710 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2711 {
2712         u32 address;
2713         u32 register_value = 0;
2714         u32 cb_fields_address = 0;
2715
2716         IPW_DEBUG_FW(">> :\n");
2717         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2718         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2719
2720         /* Read the DMA Controlor register */
2721         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2722         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2723
2724         /* Print the CB values */
2725         cb_fields_address = address;
2726         register_value = ipw_read_reg32(priv, cb_fields_address);
2727         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2728
2729         cb_fields_address += sizeof(u32);
2730         register_value = ipw_read_reg32(priv, cb_fields_address);
2731         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2732
2733         cb_fields_address += sizeof(u32);
2734         register_value = ipw_read_reg32(priv, cb_fields_address);
2735         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2736                           register_value);
2737
2738         cb_fields_address += sizeof(u32);
2739         register_value = ipw_read_reg32(priv, cb_fields_address);
2740         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2741
2742         IPW_DEBUG_FW(">> :\n");
2743 }
2744
2745 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2746 {
2747         u32 current_cb_address = 0;
2748         u32 current_cb_index = 0;
2749
2750         IPW_DEBUG_FW("<< :\n");
2751         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2752
2753         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2754             sizeof(struct command_block);
2755
2756         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2757                           current_cb_index, current_cb_address);
2758
2759         IPW_DEBUG_FW(">> :\n");
2760         return current_cb_index;
2761
2762 }
2763
2764 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2765                                         u32 src_address,
2766                                         u32 dest_address,
2767                                         u32 length,
2768                                         int interrupt_enabled, int is_last)
2769 {
2770
2771         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2772             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2773             CB_DEST_SIZE_LONG;
2774         struct command_block *cb;
2775         u32 last_cb_element = 0;
2776
2777         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2778                           src_address, dest_address, length);
2779
2780         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2781                 return -1;
2782
2783         last_cb_element = priv->sram_desc.last_cb_index;
2784         cb = &priv->sram_desc.cb_list[last_cb_element];
2785         priv->sram_desc.last_cb_index++;
2786
2787         /* Calculate the new CB control word */
2788         if (interrupt_enabled)
2789                 control |= CB_INT_ENABLED;
2790
2791         if (is_last)
2792                 control |= CB_LAST_VALID;
2793
2794         control |= length;
2795
2796         /* Calculate the CB Element's checksum value */
2797         cb->status = control ^ src_address ^ dest_address;
2798
2799         /* Copy the Source and Destination addresses */
2800         cb->dest_addr = dest_address;
2801         cb->source_addr = src_address;
2802
2803         /* Copy the Control Word last */
2804         cb->control = control;
2805
2806         return 0;
2807 }
2808
2809 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2810                                  u32 src_phys, u32 dest_address, u32 length)
2811 {
2812         u32 bytes_left = length;
2813         u32 src_offset = 0;
2814         u32 dest_offset = 0;
2815         int status = 0;
2816         IPW_DEBUG_FW(">> \n");
2817         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2818                           src_phys, dest_address, length);
2819         while (bytes_left > CB_MAX_LENGTH) {
2820                 status = ipw_fw_dma_add_command_block(priv,
2821                                                       src_phys + src_offset,
2822                                                       dest_address +
2823                                                       dest_offset,
2824                                                       CB_MAX_LENGTH, 0, 0);
2825                 if (status) {
2826                         IPW_DEBUG_FW_INFO(": Failed\n");
2827                         return -1;
2828                 } else
2829                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2830
2831                 src_offset += CB_MAX_LENGTH;
2832                 dest_offset += CB_MAX_LENGTH;
2833                 bytes_left -= CB_MAX_LENGTH;
2834         }
2835
2836         /* add the buffer tail */
2837         if (bytes_left > 0) {
2838                 status =
2839                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2840                                                  dest_address + dest_offset,
2841                                                  bytes_left, 0, 0);
2842                 if (status) {
2843                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2844                         return -1;
2845                 } else
2846                         IPW_DEBUG_FW_INFO
2847                             (": Adding new cb - the buffer tail\n");
2848         }
2849
2850         IPW_DEBUG_FW("<< \n");
2851         return 0;
2852 }
2853
2854 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2855 {
2856         u32 current_index = 0, previous_index;
2857         u32 watchdog = 0;
2858
2859         IPW_DEBUG_FW(">> : \n");
2860
2861         current_index = ipw_fw_dma_command_block_index(priv);
2862         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2863                           (int)priv->sram_desc.last_cb_index);
2864
2865         while (current_index < priv->sram_desc.last_cb_index) {
2866                 udelay(50);
2867                 previous_index = current_index;
2868                 current_index = ipw_fw_dma_command_block_index(priv);
2869
2870                 if (previous_index < current_index) {
2871                         watchdog = 0;
2872                         continue;
2873                 }
2874                 if (++watchdog > 400) {
2875                         IPW_DEBUG_FW_INFO("Timeout\n");
2876                         ipw_fw_dma_dump_command_block(priv);
2877                         ipw_fw_dma_abort(priv);
2878                         return -1;
2879                 }
2880         }
2881
2882         ipw_fw_dma_abort(priv);
2883
2884         /*Disable the DMA in the CSR register */
2885         ipw_set_bit(priv, IPW_RESET_REG,
2886                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2887
2888         IPW_DEBUG_FW("<< dmaWaitSync \n");
2889         return 0;
2890 }
2891
2892 static void ipw_remove_current_network(struct ipw_priv *priv)
2893 {
2894         struct list_head *element, *safe;
2895         struct ieee80211_network *network = NULL;
2896         unsigned long flags;
2897
2898         spin_lock_irqsave(&priv->ieee->lock, flags);
2899         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2900                 network = list_entry(element, struct ieee80211_network, list);
2901                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2902                         list_del(element);
2903                         list_add_tail(&network->list,
2904                                       &priv->ieee->network_free_list);
2905                 }
2906         }
2907         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2908 }
2909
2910 /**
2911  * Check that card is still alive.
2912  * Reads debug register from domain0.
2913  * If card is present, pre-defined value should
2914  * be found there.
2915  *
2916  * @param priv
2917  * @return 1 if card is present, 0 otherwise
2918  */
2919 static inline int ipw_alive(struct ipw_priv *priv)
2920 {
2921         return ipw_read32(priv, 0x90) == 0xd55555d5;
2922 }
2923
2924 /* timeout in msec, attempted in 10-msec quanta */
2925 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2926                                int timeout)
2927 {
2928         int i = 0;
2929
2930         do {
2931                 if ((ipw_read32(priv, addr) & mask) == mask)
2932                         return i;
2933                 mdelay(10);
2934                 i += 10;
2935         } while (i < timeout);
2936
2937         return -ETIME;
2938 }
2939
2940 /* These functions load the firmware and micro code for the operation of
2941  * the ipw hardware.  It assumes the buffer has all the bits for the
2942  * image and the caller is handling the memory allocation and clean up.
2943  */
2944
2945 static int ipw_stop_master(struct ipw_priv *priv)
2946 {
2947         int rc;
2948
2949         IPW_DEBUG_TRACE(">> \n");
2950         /* stop master. typical delay - 0 */
2951         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2952
2953         /* timeout is in msec, polled in 10-msec quanta */
2954         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2955                           IPW_RESET_REG_MASTER_DISABLED, 100);
2956         if (rc < 0) {
2957                 IPW_ERROR("wait for stop master failed after 100ms\n");
2958                 return -1;
2959         }
2960
2961         IPW_DEBUG_INFO("stop master %dms\n", rc);
2962
2963         return rc;
2964 }
2965
2966 static void ipw_arc_release(struct ipw_priv *priv)
2967 {
2968         IPW_DEBUG_TRACE(">> \n");
2969         mdelay(5);
2970
2971         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2972
2973         /* no one knows timing, for safety add some delay */
2974         mdelay(5);
2975 }
2976
2977 struct fw_chunk {
2978         u32 address;
2979         u32 length;
2980 };
2981
2982 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2983 {
2984         int rc = 0, i, addr;
2985         u8 cr = 0;
2986         u16 *image;
2987
2988         image = (u16 *) data;
2989
2990         IPW_DEBUG_TRACE(">> \n");
2991
2992         rc = ipw_stop_master(priv);
2993
2994         if (rc < 0)
2995                 return rc;
2996
2997         for (addr = IPW_SHARED_LOWER_BOUND;
2998              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2999                 ipw_write32(priv, addr, 0);
3000         }
3001
3002         /* no ucode (yet) */
3003         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3004         /* destroy DMA queues */
3005         /* reset sequence */
3006
3007         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3008         ipw_arc_release(priv);
3009         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3010         mdelay(1);
3011
3012         /* reset PHY */
3013         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3014         mdelay(1);
3015
3016         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3017         mdelay(1);
3018
3019         /* enable ucode store */
3020         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3021         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3022         mdelay(1);
3023
3024         /* write ucode */
3025         /**
3026          * @bug
3027          * Do NOT set indirect address register once and then
3028          * store data to indirect data register in the loop.
3029          * It seems very reasonable, but in this case DINO do not
3030          * accept ucode. It is essential to set address each time.
3031          */
3032         /* load new ipw uCode */
3033         for (i = 0; i < len / 2; i++)
3034                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3035                                 cpu_to_le16(image[i]));
3036
3037         /* enable DINO */
3038         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3039         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3040
3041         /* this is where the igx / win driver deveates from the VAP driver. */
3042
3043         /* wait for alive response */
3044         for (i = 0; i < 100; i++) {
3045                 /* poll for incoming data */
3046                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3047                 if (cr & DINO_RXFIFO_DATA)
3048                         break;
3049                 mdelay(1);
3050         }
3051
3052         if (cr & DINO_RXFIFO_DATA) {
3053                 /* alive_command_responce size is NOT multiple of 4 */
3054                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3055
3056                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3057                         response_buffer[i] =
3058                             le32_to_cpu(ipw_read_reg32(priv,
3059                                                        IPW_BASEBAND_RX_FIFO_READ));
3060                 memcpy(&priv->dino_alive, response_buffer,
3061                        sizeof(priv->dino_alive));
3062                 if (priv->dino_alive.alive_command == 1
3063                     && priv->dino_alive.ucode_valid == 1) {
3064                         rc = 0;
3065                         IPW_DEBUG_INFO
3066                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3067                              "of %02d/%02d/%02d %02d:%02d\n",
3068                              priv->dino_alive.software_revision,
3069                              priv->dino_alive.software_revision,
3070                              priv->dino_alive.device_identifier,
3071                              priv->dino_alive.device_identifier,
3072                              priv->dino_alive.time_stamp[0],
3073                              priv->dino_alive.time_stamp[1],
3074                              priv->dino_alive.time_stamp[2],
3075                              priv->dino_alive.time_stamp[3],
3076                              priv->dino_alive.time_stamp[4]);
3077                 } else {
3078                         IPW_DEBUG_INFO("Microcode is not alive\n");
3079                         rc = -EINVAL;
3080                 }
3081         } else {
3082                 IPW_DEBUG_INFO("No alive response from DINO\n");
3083                 rc = -ETIME;
3084         }
3085
3086         /* disable DINO, otherwise for some reason
3087            firmware have problem getting alive resp. */
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3089
3090         return rc;
3091 }
3092
3093 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3094 {
3095         int rc = -1;
3096         int offset = 0;
3097         struct fw_chunk *chunk;
3098         dma_addr_t shared_phys;
3099         u8 *shared_virt;
3100
3101         IPW_DEBUG_TRACE("<< : \n");
3102         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3103
3104         if (!shared_virt)
3105                 return -ENOMEM;
3106
3107         memmove(shared_virt, data, len);
3108
3109         /* Start the Dma */
3110         rc = ipw_fw_dma_enable(priv);
3111
3112         if (priv->sram_desc.last_cb_index > 0) {
3113                 /* the DMA is already ready this would be a bug. */
3114                 BUG();
3115                 goto out;
3116         }
3117
3118         do {
3119                 chunk = (struct fw_chunk *)(data + offset);
3120                 offset += sizeof(struct fw_chunk);
3121                 /* build DMA packet and queue up for sending */
3122                 /* dma to chunk->address, the chunk->length bytes from data +
3123                  * offeset*/
3124                 /* Dma loading */
3125                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3126                                            le32_to_cpu(chunk->address),
3127                                            le32_to_cpu(chunk->length));
3128                 if (rc) {
3129                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3130                         goto out;
3131                 }
3132
3133                 offset += le32_to_cpu(chunk->length);
3134         } while (offset < len);
3135
3136         /* Run the DMA and wait for the answer */
3137         rc = ipw_fw_dma_kick(priv);
3138         if (rc) {
3139                 IPW_ERROR("dmaKick Failed\n");
3140                 goto out;
3141         }
3142
3143         rc = ipw_fw_dma_wait(priv);
3144         if (rc) {
3145                 IPW_ERROR("dmaWaitSync Failed\n");
3146                 goto out;
3147         }
3148       out:
3149         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3150         return rc;
3151 }
3152
3153 /* stop nic */
3154 static int ipw_stop_nic(struct ipw_priv *priv)
3155 {
3156         int rc = 0;
3157
3158         /* stop */
3159         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3160
3161         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3162                           IPW_RESET_REG_MASTER_DISABLED, 500);
3163         if (rc < 0) {
3164                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3165                 return rc;
3166         }
3167
3168         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3169
3170         return rc;
3171 }
3172
3173 static void ipw_start_nic(struct ipw_priv *priv)
3174 {
3175         IPW_DEBUG_TRACE(">>\n");
3176
3177         /* prvHwStartNic  release ARC */
3178         ipw_clear_bit(priv, IPW_RESET_REG,
3179                       IPW_RESET_REG_MASTER_DISABLED |
3180                       IPW_RESET_REG_STOP_MASTER |
3181                       CBD_RESET_REG_PRINCETON_RESET);
3182
3183         /* enable power management */
3184         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3185                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3186
3187         IPW_DEBUG_TRACE("<<\n");
3188 }
3189
3190 static int ipw_init_nic(struct ipw_priv *priv)
3191 {
3192         int rc;
3193
3194         IPW_DEBUG_TRACE(">>\n");
3195         /* reset */
3196         /*prvHwInitNic */
3197         /* set "initialization complete" bit to move adapter to D0 state */
3198         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3199
3200         /* low-level PLL activation */
3201         ipw_write32(priv, IPW_READ_INT_REGISTER,
3202                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3203
3204         /* wait for clock stabilization */
3205         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3206                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3207         if (rc < 0)
3208                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3209
3210         /* assert SW reset */
3211         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3212
3213         udelay(10);
3214
3215         /* set "initialization complete" bit to move adapter to D0 state */
3216         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3217
3218         IPW_DEBUG_TRACE(">>\n");
3219         return 0;
3220 }
3221
3222 /* Call this function from process context, it will sleep in request_firmware.
3223  * Probe is an ok place to call this from.
3224  */
3225 static int ipw_reset_nic(struct ipw_priv *priv)
3226 {
3227         int rc = 0;
3228         unsigned long flags;
3229
3230         IPW_DEBUG_TRACE(">>\n");
3231
3232         rc = ipw_init_nic(priv);
3233
3234         spin_lock_irqsave(&priv->lock, flags);
3235         /* Clear the 'host command active' bit... */
3236         priv->status &= ~STATUS_HCMD_ACTIVE;
3237         wake_up_interruptible(&priv->wait_command_queue);
3238         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3239         wake_up_interruptible(&priv->wait_state);
3240         spin_unlock_irqrestore(&priv->lock, flags);
3241
3242         IPW_DEBUG_TRACE("<<\n");
3243         return rc;
3244 }
3245
3246
3247 struct ipw_fw {
3248         __le32 ver;
3249         __le32 boot_size;
3250         __le32 ucode_size;
3251         __le32 fw_size;
3252         u8 data[0];
3253 };
3254
3255 static int ipw_get_fw(struct ipw_priv *priv,
3256                       const struct firmware **raw, const char *name)
3257 {
3258         struct ipw_fw *fw;
3259         int rc;
3260
3261         /* ask firmware_class module to get the boot firmware off disk */
3262         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3263         if (rc < 0) {
3264                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3265                 return rc;
3266         }
3267
3268         if ((*raw)->size < sizeof(*fw)) {
3269                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3270                 return -EINVAL;
3271         }
3272
3273         fw = (void *)(*raw)->data;
3274
3275         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3276             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3277                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3278                           name, (*raw)->size);
3279                 return -EINVAL;
3280         }
3281
3282         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3283                        name,
3284                        le32_to_cpu(fw->ver) >> 16,
3285                        le32_to_cpu(fw->ver) & 0xff,
3286                        (*raw)->size - sizeof(*fw));
3287         return 0;
3288 }
3289
3290 #define IPW_RX_BUF_SIZE (3000)
3291
3292 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3293                                       struct ipw_rx_queue *rxq)
3294 {
3295         unsigned long flags;
3296         int i;
3297
3298         spin_lock_irqsave(&rxq->lock, flags);
3299
3300         INIT_LIST_HEAD(&rxq->rx_free);
3301         INIT_LIST_HEAD(&rxq->rx_used);
3302
3303         /* Fill the rx_used queue with _all_ of the Rx buffers */
3304         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3305                 /* In the reset function, these buffers may have been allocated
3306                  * to an SKB, so we need to unmap and free potential storage */
3307                 if (rxq->pool[i].skb != NULL) {
3308                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3309                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3310                         dev_kfree_skb(rxq->pool[i].skb);
3311                         rxq->pool[i].skb = NULL;
3312                 }
3313                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3314         }
3315
3316         /* Set us so that we have processed and used all buffers, but have
3317          * not restocked the Rx queue with fresh buffers */
3318         rxq->read = rxq->write = 0;
3319         rxq->processed = RX_QUEUE_SIZE - 1;
3320         rxq->free_count = 0;
3321         spin_unlock_irqrestore(&rxq->lock, flags);
3322 }
3323
3324 #ifdef CONFIG_PM
3325 static int fw_loaded = 0;
3326 static const struct firmware *raw = NULL;
3327
3328 static void free_firmware(void)
3329 {
3330         if (fw_loaded) {
3331                 release_firmware(raw);
3332                 raw = NULL;
3333                 fw_loaded = 0;
3334         }
3335 }
3336 #else
3337 #define free_firmware() do {} while (0)
3338 #endif
3339
3340 static int ipw_load(struct ipw_priv *priv)
3341 {
3342 #ifndef CONFIG_PM
3343         const struct firmware *raw = NULL;
3344 #endif
3345         struct ipw_fw *fw;
3346         u8 *boot_img, *ucode_img, *fw_img;
3347         u8 *name = NULL;
3348         int rc = 0, retries = 3;
3349
3350         switch (priv->ieee->iw_mode) {
3351         case IW_MODE_ADHOC:
3352                 name = "ipw2200-ibss.fw";
3353                 break;
3354 #ifdef CONFIG_IPW2200_MONITOR
3355         case IW_MODE_MONITOR:
3356                 name = "ipw2200-sniffer.fw";
3357                 break;
3358 #endif
3359         case IW_MODE_INFRA:
3360                 name = "ipw2200-bss.fw";
3361                 break;
3362         }
3363
3364         if (!name) {
3365                 rc = -EINVAL;
3366                 goto error;
3367         }
3368
3369 #ifdef CONFIG_PM
3370         if (!fw_loaded) {
3371 #endif
3372                 rc = ipw_get_fw(priv, &raw, name);
3373                 if (rc < 0)
3374                         goto error;
3375 #ifdef CONFIG_PM
3376         }
3377 #endif
3378
3379         fw = (void *)raw->data;
3380         boot_img = &fw->data[0];
3381         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3382         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3383                            le32_to_cpu(fw->ucode_size)];
3384
3385         if (rc < 0)
3386                 goto error;
3387
3388         if (!priv->rxq)
3389                 priv->rxq = ipw_rx_queue_alloc(priv);
3390         else
3391                 ipw_rx_queue_reset(priv, priv->rxq);
3392         if (!priv->rxq) {
3393                 IPW_ERROR("Unable to initialize Rx queue\n");
3394                 goto error;
3395         }
3396
3397       retry:
3398         /* Ensure interrupts are disabled */
3399         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3400         priv->status &= ~STATUS_INT_ENABLED;
3401
3402         /* ack pending interrupts */
3403         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3404
3405         ipw_stop_nic(priv);
3406
3407         rc = ipw_reset_nic(priv);
3408         if (rc < 0) {
3409                 IPW_ERROR("Unable to reset NIC\n");
3410                 goto error;
3411         }
3412
3413         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3414                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3415
3416         /* DMA the initial boot firmware into the device */
3417         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3418         if (rc < 0) {
3419                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3420                 goto error;
3421         }
3422
3423         /* kick start the device */
3424         ipw_start_nic(priv);
3425
3426         /* wait for the device to finish its initial startup sequence */
3427         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3428                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3429         if (rc < 0) {
3430                 IPW_ERROR("device failed to boot initial fw image\n");
3431                 goto error;
3432         }
3433         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3434
3435         /* ack fw init done interrupt */
3436         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3437
3438         /* DMA the ucode into the device */
3439         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3440         if (rc < 0) {
3441                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3442                 goto error;
3443         }
3444
3445         /* stop nic */
3446         ipw_stop_nic(priv);
3447
3448         /* DMA bss firmware into the device */
3449         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3450         if (rc < 0) {
3451                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3452                 goto error;
3453         }
3454 #ifdef CONFIG_PM
3455         fw_loaded = 1;
3456 #endif
3457
3458         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3459
3460         rc = ipw_queue_reset(priv);
3461         if (rc < 0) {
3462                 IPW_ERROR("Unable to initialize queues\n");
3463                 goto error;
3464         }
3465
3466         /* Ensure interrupts are disabled */
3467         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3468         /* ack pending interrupts */
3469         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470
3471         /* kick start the device */
3472         ipw_start_nic(priv);
3473
3474         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3475                 if (retries > 0) {
3476                         IPW_WARNING("Parity error.  Retrying init.\n");
3477                         retries--;
3478                         goto retry;
3479                 }
3480
3481                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3482                 rc = -EIO;
3483                 goto error;
3484         }
3485
3486         /* wait for the device */
3487         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3488                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3489         if (rc < 0) {
3490                 IPW_ERROR("device failed to start within 500ms\n");
3491                 goto error;
3492         }
3493         IPW_DEBUG_INFO("device response after %dms\n", rc);
3494
3495         /* ack fw init done interrupt */
3496         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3497
3498         /* read eeprom data and initialize the eeprom region of sram */
3499         priv->eeprom_delay = 1;
3500         ipw_eeprom_init_sram(priv);
3501
3502         /* enable interrupts */
3503         ipw_enable_interrupts(priv);
3504
3505         /* Ensure our queue has valid packets */
3506         ipw_rx_queue_replenish(priv);
3507
3508         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3509
3510         /* ack pending interrupts */
3511         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3512
3513 #ifndef CONFIG_PM
3514         release_firmware(raw);
3515 #endif
3516         return 0;
3517
3518       error:
3519         if (priv->rxq) {
3520                 ipw_rx_queue_free(priv, priv->rxq);
3521                 priv->rxq = NULL;
3522         }
3523         ipw_tx_queue_free(priv);
3524         if (raw)
3525                 release_firmware(raw);
3526 #ifdef CONFIG_PM
3527         fw_loaded = 0;
3528         raw = NULL;
3529 #endif
3530
3531         return rc;
3532 }
3533
3534 /**
3535  * DMA services
3536  *
3537  * Theory of operation
3538  *
3539  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3540  * 2 empty entries always kept in the buffer to protect from overflow.
3541  *
3542  * For Tx queue, there are low mark and high mark limits. If, after queuing
3543  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3544  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3545  * Tx queue resumed.
3546  *
3547  * The IPW operates with six queues, one receive queue in the device's
3548  * sram, one transmit queue for sending commands to the device firmware,
3549  * and four transmit queues for data.
3550  *
3551  * The four transmit queues allow for performing quality of service (qos)
3552  * transmissions as per the 802.11 protocol.  Currently Linux does not
3553  * provide a mechanism to the user for utilizing prioritized queues, so
3554  * we only utilize the first data transmit queue (queue1).
3555  */
3556
3557 /**
3558  * Driver allocates buffers of this size for Rx
3559  */
3560
3561 static inline int ipw_queue_space(const struct clx2_queue *q)
3562 {
3563         int s = q->last_used - q->first_empty;
3564         if (s <= 0)
3565                 s += q->n_bd;
3566         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3567         if (s < 0)
3568                 s = 0;
3569         return s;
3570 }
3571
3572 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3573 {
3574         return (++index == n_bd) ? 0 : index;
3575 }
3576
3577 /**
3578  * Initialize common DMA queue structure
3579  *
3580  * @param q                queue to init
3581  * @param count            Number of BD's to allocate. Should be power of 2
3582  * @param read_register    Address for 'read' register
3583  *                         (not offset within BAR, full address)
3584  * @param write_register   Address for 'write' register
3585  *                         (not offset within BAR, full address)
3586  * @param base_register    Address for 'base' register
3587  *                         (not offset within BAR, full address)
3588  * @param size             Address for 'size' register
3589  *                         (not offset within BAR, full address)
3590  */
3591 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3592                            int count, u32 read, u32 write, u32 base, u32 size)
3593 {
3594         q->n_bd = count;
3595
3596         q->low_mark = q->n_bd / 4;
3597         if (q->low_mark < 4)
3598                 q->low_mark = 4;
3599
3600         q->high_mark = q->n_bd / 8;
3601         if (q->high_mark < 2)
3602                 q->high_mark = 2;
3603
3604         q->first_empty = q->last_used = 0;
3605         q->reg_r = read;
3606         q->reg_w = write;
3607
3608         ipw_write32(priv, base, q->dma_addr);
3609         ipw_write32(priv, size, count);
3610         ipw_write32(priv, read, 0);
3611         ipw_write32(priv, write, 0);
3612
3613         _ipw_read32(priv, 0x90);
3614 }
3615
3616 static int ipw_queue_tx_init(struct ipw_priv *priv,
3617                              struct clx2_tx_queue *q,
3618                              int count, u32 read, u32 write, u32 base, u32 size)
3619 {
3620         struct pci_dev *dev = priv->pci_dev;
3621
3622         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3623         if (!q->txb) {
3624                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3625                 return -ENOMEM;
3626         }
3627
3628         q->bd =
3629             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3630         if (!q->bd) {
3631                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3632                           sizeof(q->bd[0]) * count);
3633                 kfree(q->txb);
3634                 q->txb = NULL;
3635                 return -ENOMEM;
3636         }
3637
3638         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3639         return 0;
3640 }
3641
3642 /**
3643  * Free one TFD, those at index [txq->q.last_used].
3644  * Do NOT advance any indexes
3645  *
3646  * @param dev
3647  * @param txq
3648  */
3649 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3650                                   struct clx2_tx_queue *txq)
3651 {
3652         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3653         struct pci_dev *dev = priv->pci_dev;
3654         int i;
3655
3656         /* classify bd */
3657         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3658                 /* nothing to cleanup after for host commands */
3659                 return;
3660
3661         /* sanity check */
3662         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3663                 IPW_ERROR("Too many chunks: %i\n",
3664                           le32_to_cpu(bd->u.data.num_chunks));
3665                 /** @todo issue fatal error, it is quite serious situation */
3666                 return;
3667         }
3668
3669         /* unmap chunks if any */
3670         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3671                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3672                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3673                                  PCI_DMA_TODEVICE);
3674                 if (txq->txb[txq->q.last_used]) {
3675                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3676                         txq->txb[txq->q.last_used] = NULL;
3677                 }
3678         }
3679 }
3680
3681 /**
3682  * Deallocate DMA queue.
3683  *
3684  * Empty queue by removing and destroying all BD's.
3685  * Free all buffers.
3686  *
3687  * @param dev
3688  * @param q
3689  */
3690 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3691 {
3692         struct clx2_queue *q = &txq->q;
3693         struct pci_dev *dev = priv->pci_dev;
3694
3695         if (q->n_bd == 0)
3696                 return;
3697
3698         /* first, empty all BD's */
3699         for (; q->first_empty != q->last_used;
3700              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3701                 ipw_queue_tx_free_tfd(priv, txq);
3702         }
3703
3704         /* free buffers belonging to queue itself */
3705         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3706                             q->dma_addr);
3707         kfree(txq->txb);
3708
3709         /* 0 fill whole structure */
3710         memset(txq, 0, sizeof(*txq));
3711 }
3712
3713 /**
3714  * Destroy all DMA queues and structures
3715  *
3716  * @param priv
3717  */
3718 static void ipw_tx_queue_free(struct ipw_priv *priv)
3719 {
3720         /* Tx CMD queue */
3721         ipw_queue_tx_free(priv, &priv->txq_cmd);
3722
3723         /* Tx queues */
3724         ipw_queue_tx_free(priv, &priv->txq[0]);
3725         ipw_queue_tx_free(priv, &priv->txq[1]);
3726         ipw_queue_tx_free(priv, &priv->txq[2]);
3727         ipw_queue_tx_free(priv, &priv->txq[3]);
3728 }
3729
3730 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3731 {
3732         /* First 3 bytes are manufacturer */
3733         bssid[0] = priv->mac_addr[0];
3734         bssid[1] = priv->mac_addr[1];
3735         bssid[2] = priv->mac_addr[2];
3736
3737         /* Last bytes are random */
3738         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3739
3740         bssid[0] &= 0xfe;       /* clear multicast bit */
3741         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3742 }
3743
3744 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3745 {
3746         struct ipw_station_entry entry;
3747         int i;
3748
3749         for (i = 0; i < priv->num_stations; i++) {
3750                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3751                         /* Another node is active in network */
3752                         priv->missed_adhoc_beacons = 0;
3753                         if (!(priv->config & CFG_STATIC_CHANNEL))
3754                                 /* when other nodes drop out, we drop out */
3755                                 priv->config &= ~CFG_ADHOC_PERSIST;
3756
3757                         return i;
3758                 }
3759         }
3760
3761         if (i == MAX_STATIONS)
3762                 return IPW_INVALID_STATION;
3763
3764         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3765
3766         entry.reserved = 0;
3767         entry.support_mode = 0;
3768         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3769         memcpy(priv->stations[i], bssid, ETH_ALEN);
3770         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3771                          &entry, sizeof(entry));
3772         priv->num_stations++;
3773
3774         return i;
3775 }
3776
3777 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3778 {
3779         int i;
3780
3781         for (i = 0; i < priv->num_stations; i++)
3782                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3783                         return i;
3784
3785         return IPW_INVALID_STATION;
3786 }
3787
3788 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3789 {
3790         int err;
3791
3792         if (priv->status & STATUS_ASSOCIATING) {
3793                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3794                 queue_work(priv->workqueue, &priv->disassociate);
3795                 return;
3796         }
3797
3798         if (!(priv->status & STATUS_ASSOCIATED)) {
3799                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3800                 return;
3801         }
3802
3803         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3804                         "on channel %d.\n",
3805                         MAC_ARG(priv->assoc_request.bssid),
3806                         priv->assoc_request.channel);
3807
3808         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3809         priv->status |= STATUS_DISASSOCIATING;
3810
3811         if (quiet)
3812                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3813         else
3814                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3815
3816         err = ipw_send_associate(priv, &priv->assoc_request);
3817         if (err) {
3818                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3819                              "failed.\n");
3820                 return;
3821         }
3822
3823 }
3824
3825 static int ipw_disassociate(void *data)
3826 {
3827         struct ipw_priv *priv = data;
3828         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3829                 return 0;
3830         ipw_send_disassociate(data, 0);
3831         return 1;
3832 }
3833
3834 static void ipw_bg_disassociate(void *data)
3835 {
3836         struct ipw_priv *priv = data;
3837         mutex_lock(&priv->mutex);
3838         ipw_disassociate(data);
3839         mutex_unlock(&priv->mutex);
3840 }
3841
3842 static void ipw_system_config(void *data)
3843 {
3844         struct ipw_priv *priv = data;
3845
3846 #ifdef CONFIG_IPW2200_PROMISCUOUS
3847         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3848                 priv->sys_config.accept_all_data_frames = 1;
3849                 priv->sys_config.accept_non_directed_frames = 1;
3850                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3851                 priv->sys_config.accept_all_mgmt_frames = 1;
3852         }
3853 #endif
3854
3855         ipw_send_system_config(priv);
3856 }
3857
3858 struct ipw_status_code {
3859         u16 status;
3860         const char *reason;
3861 };
3862
3863 static const struct ipw_status_code ipw_status_codes[] = {
3864         {0x00, "Successful"},
3865         {0x01, "Unspecified failure"},
3866         {0x0A, "Cannot support all requested capabilities in the "
3867          "Capability information field"},
3868         {0x0B, "Reassociation denied due to inability to confirm that "
3869          "association exists"},
3870         {0x0C, "Association denied due to reason outside the scope of this "
3871          "standard"},
3872         {0x0D,
3873          "Responding station does not support the specified authentication "
3874          "algorithm"},
3875         {0x0E,
3876          "Received an Authentication frame with authentication sequence "
3877          "transaction sequence number out of expected sequence"},
3878         {0x0F, "Authentication rejected because of challenge failure"},
3879         {0x10, "Authentication rejected due to timeout waiting for next "
3880          "frame in sequence"},
3881         {0x11, "Association denied because AP is unable to handle additional "
3882          "associated stations"},
3883         {0x12,
3884          "Association denied due to requesting station not supporting all "
3885          "of the datarates in the BSSBasicServiceSet Parameter"},
3886         {0x13,
3887          "Association denied due to requesting station not supporting "
3888          "short preamble operation"},
3889         {0x14,
3890          "Association denied due to requesting station not supporting "
3891          "PBCC encoding"},
3892         {0x15,
3893          "Association denied due to requesting station not supporting "
3894          "channel agility"},
3895         {0x19,
3896          "Association denied due to requesting station not supporting "
3897          "short slot operation"},
3898         {0x1A,
3899          "Association denied due to requesting station not supporting "
3900          "DSSS-OFDM operation"},
3901         {0x28, "Invalid Information Element"},
3902         {0x29, "Group Cipher is not valid"},
3903         {0x2A, "Pairwise Cipher is not valid"},
3904         {0x2B, "AKMP is not valid"},
3905         {0x2C, "Unsupported RSN IE version"},
3906         {0x2D, "Invalid RSN IE Capabilities"},
3907         {0x2E, "Cipher suite is rejected per security policy"},
3908 };
3909
3910 static const char *ipw_get_status_code(u16 status)
3911 {
3912         int i;
3913         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3914                 if (ipw_status_codes[i].status == (status & 0xff))
3915                         return ipw_status_codes[i].reason;
3916         return "Unknown status value.";
3917 }
3918
3919 static void inline average_init(struct average *avg)
3920 {
3921         memset(avg, 0, sizeof(*avg));
3922 }
3923
3924 #define DEPTH_RSSI 8
3925 #define DEPTH_NOISE 16
3926 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3927 {
3928         return ((depth-1)*prev_avg +  val)/depth;
3929 }
3930
3931 static void average_add(struct average *avg, s16 val)
3932 {
3933         avg->sum -= avg->entries[avg->pos];
3934         avg->sum += val;
3935         avg->entries[avg->pos++] = val;
3936         if (unlikely(avg->pos == AVG_ENTRIES)) {
3937                 avg->init = 1;
3938                 avg->pos = 0;
3939         }
3940 }
3941
3942 static s16 average_value(struct average *avg)
3943 {
3944         if (!unlikely(avg->init)) {
3945                 if (avg->pos)
3946                         return avg->sum / avg->pos;
3947                 return 0;
3948         }
3949
3950         return avg->sum / AVG_ENTRIES;
3951 }
3952
3953 static void ipw_reset_stats(struct ipw_priv *priv)
3954 {
3955         u32 len = sizeof(u32);
3956
3957         priv->quality = 0;
3958
3959         average_init(&priv->average_missed_beacons);
3960         priv->exp_avg_rssi = -60;
3961         priv->exp_avg_noise = -85 + 0x100;
3962
3963         priv->last_rate = 0;
3964         priv->last_missed_beacons = 0;
3965         priv->last_rx_packets = 0;
3966         priv->last_tx_packets = 0;
3967         priv->last_tx_failures = 0;
3968
3969         /* Firmware managed, reset only when NIC is restarted, so we have to
3970          * normalize on the current value */
3971         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3972                         &priv->last_rx_err, &len);
3973         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3974                         &priv->last_tx_failures, &len);
3975
3976         /* Driver managed, reset with each association */
3977         priv->missed_adhoc_beacons = 0;
3978         priv->missed_beacons = 0;
3979         priv->tx_packets = 0;
3980         priv->rx_packets = 0;
3981
3982 }
3983
3984 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3985 {
3986         u32 i = 0x80000000;
3987         u32 mask = priv->rates_mask;
3988         /* If currently associated in B mode, restrict the maximum
3989          * rate match to B rates */
3990         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3991                 mask &= IEEE80211_CCK_RATES_MASK;
3992
3993         /* TODO: Verify that the rate is supported by the current rates
3994          * list. */
3995
3996         while (i && !(mask & i))
3997                 i >>= 1;
3998         switch (i) {
3999         case IEEE80211_CCK_RATE_1MB_MASK:
4000                 return 1000000;
4001         case IEEE80211_CCK_RATE_2MB_MASK:
4002                 return 2000000;
4003         case IEEE80211_CCK_RATE_5MB_MASK:
4004                 return 5500000;
4005         case IEEE80211_OFDM_RATE_6MB_MASK:
4006                 return 6000000;
4007         case IEEE80211_OFDM_RATE_9MB_MASK:
4008                 return 9000000;
4009         case IEEE80211_CCK_RATE_11MB_MASK:
4010                 return 11000000;
4011         case IEEE80211_OFDM_RATE_12MB_MASK:
4012                 return 12000000;
4013         case IEEE80211_OFDM_RATE_18MB_MASK:
4014                 return 18000000;
4015         case IEEE80211_OFDM_RATE_24MB_MASK:
4016                 return 24000000;
4017         case IEEE80211_OFDM_RATE_36MB_MASK:
4018                 return 36000000;
4019         case IEEE80211_OFDM_RATE_48MB_MASK:
4020                 return 48000000;
4021         case IEEE80211_OFDM_RATE_54MB_MASK:
4022                 return 54000000;
4023         }
4024
4025         if (priv->ieee->mode == IEEE_B)
4026                 return 11000000;
4027         else
4028                 return 54000000;
4029 }
4030
4031 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4032 {
4033         u32 rate, len = sizeof(rate);
4034         int err;
4035
4036         if (!(priv->status & STATUS_ASSOCIATED))
4037                 return 0;
4038
4039         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4040                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4041                                       &len);
4042                 if (err) {
4043                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4044                         return 0;
4045                 }
4046         } else
4047                 return ipw_get_max_rate(priv);
4048
4049         switch (rate) {
4050         case IPW_TX_RATE_1MB:
4051                 return 1000000;
4052         case IPW_TX_RATE_2MB:
4053                 return 2000000;
4054         case IPW_TX_RATE_5MB:
4055                 return 5500000;
4056         case IPW_TX_RATE_6MB:
4057                 return 6000000;
4058         case IPW_TX_RATE_9MB:
4059                 return 9000000;
4060         case IPW_TX_RATE_11MB:
4061                 return 11000000;
4062         case IPW_TX_RATE_12MB:
4063                 return 12000000;
4064         case IPW_TX_RATE_18MB:
4065                 return 18000000;
4066         case IPW_TX_RATE_24MB:
4067                 return 24000000;
4068         case IPW_TX_RATE_36MB:
4069                 return 36000000;
4070         case IPW_TX_RATE_48MB:
4071                 return 48000000;
4072         case IPW_TX_RATE_54MB:
4073                 return 54000000;
4074         }
4075
4076         return 0;
4077 }
4078
4079 #define IPW_STATS_INTERVAL (2 * HZ)
4080 static void ipw_gather_stats(struct ipw_priv *priv)
4081 {
4082         u32 rx_err, rx_err_delta, rx_packets_delta;
4083         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4084         u32 missed_beacons_percent, missed_beacons_delta;
4085         u32 quality = 0;
4086         u32 len = sizeof(u32);
4087         s16 rssi;
4088         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4089             rate_quality;
4090         u32 max_rate;
4091
4092         if (!(priv->status & STATUS_ASSOCIATED)) {
4093                 priv->quality = 0;
4094                 return;
4095         }
4096
4097         /* Update the statistics */
4098         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4099                         &priv->missed_beacons, &len);
4100         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4101         priv->last_missed_beacons = priv->missed_beacons;
4102         if (priv->assoc_request.beacon_interval) {
4103                 missed_beacons_percent = missed_beacons_delta *
4104                     (HZ * priv->assoc_request.beacon_interval) /
4105                     (IPW_STATS_INTERVAL * 10);
4106         } else {
4107                 missed_beacons_percent = 0;
4108         }
4109         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4110
4111         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4112         rx_err_delta = rx_err - priv->last_rx_err;
4113         priv->last_rx_err = rx_err;
4114
4115         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4116         tx_failures_delta = tx_failures - priv->last_tx_failures;
4117         priv->last_tx_failures = tx_failures;
4118
4119         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4120         priv->last_rx_packets = priv->rx_packets;
4121
4122         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4123         priv->last_tx_packets = priv->tx_packets;
4124
4125         /* Calculate quality based on the following:
4126          *
4127          * Missed beacon: 100% = 0, 0% = 70% missed
4128          * Rate: 60% = 1Mbs, 100% = Max
4129          * Rx and Tx errors represent a straight % of total Rx/Tx
4130          * RSSI: 100% = > -50,  0% = < -80
4131          * Rx errors: 100% = 0, 0% = 50% missed
4132          *
4133          * The lowest computed quality is used.
4134          *
4135          */
4136 #define BEACON_THRESHOLD 5
4137         beacon_quality = 100 - missed_beacons_percent;
4138         if (beacon_quality < BEACON_THRESHOLD)
4139                 beacon_quality = 0;
4140         else
4141                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4142                     (100 - BEACON_THRESHOLD);
4143         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4144                         beacon_quality, missed_beacons_percent);
4145
4146         priv->last_rate = ipw_get_current_rate(priv);
4147         max_rate = ipw_get_max_rate(priv);
4148         rate_quality = priv->last_rate * 40 / max_rate + 60;
4149         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4150                         rate_quality, priv->last_rate / 1000000);
4151
4152         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4153                 rx_quality = 100 - (rx_err_delta * 100) /
4154                     (rx_packets_delta + rx_err_delta);
4155         else
4156                 rx_quality = 100;
4157         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4158                         rx_quality, rx_err_delta, rx_packets_delta);
4159
4160         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4161                 tx_quality = 100 - (tx_failures_delta * 100) /
4162                     (tx_packets_delta + tx_failures_delta);
4163         else
4164                 tx_quality = 100;
4165         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4166                         tx_quality, tx_failures_delta, tx_packets_delta);
4167
4168         rssi = priv->exp_avg_rssi;
4169         signal_quality =
4170             (100 *
4171              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4172              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4173              (priv->ieee->perfect_rssi - rssi) *
4174              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4175               62 * (priv->ieee->perfect_rssi - rssi))) /
4176             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4177              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4178         if (signal_quality > 100)
4179                 signal_quality = 100;
4180         else if (signal_quality < 1)
4181                 signal_quality = 0;
4182
4183         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4184                         signal_quality, rssi);
4185
4186         quality = min(beacon_quality,
4187                       min(rate_quality,
4188                           min(tx_quality, min(rx_quality, signal_quality))));
4189         if (quality == beacon_quality)
4190                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4191                                 quality);
4192         if (quality == rate_quality)
4193                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4194                                 quality);
4195         if (quality == tx_quality)
4196                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4197                                 quality);
4198         if (quality == rx_quality)
4199                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4200                                 quality);
4201         if (quality == signal_quality)
4202                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4203                                 quality);
4204
4205         priv->quality = quality;
4206
4207         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4208                            IPW_STATS_INTERVAL);
4209 }
4210
4211 static void ipw_bg_gather_stats(void *data)
4212 {
4213         struct ipw_priv *priv = data;
4214         mutex_lock(&priv->mutex);
4215         ipw_gather_stats(data);
4216         mutex_unlock(&priv->mutex);
4217 }
4218
4219 /* Missed beacon behavior:
4220  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4221  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4222  * Above disassociate threshold, give up and stop scanning.
4223  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4224 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4225                                             int missed_count)
4226 {
4227         priv->notif_missed_beacons = missed_count;
4228
4229         if (missed_count > priv->disassociate_threshold &&
4230             priv->status & STATUS_ASSOCIATED) {
4231                 /* If associated and we've hit the missed
4232                  * beacon threshold, disassociate, turn
4233                  * off roaming, and abort any active scans */
4234                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4235                           IPW_DL_STATE | IPW_DL_ASSOC,
4236                           "Missed beacon: %d - disassociate\n", missed_count);
4237                 priv->status &= ~STATUS_ROAMING;
4238                 if (priv->status & STATUS_SCANNING) {
4239                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4240                                   IPW_DL_STATE,
4241                                   "Aborting scan with missed beacon.\n");
4242                         queue_work(priv->workqueue, &priv->abort_scan);
4243                 }
4244
4245                 queue_work(priv->workqueue, &priv->disassociate);
4246                 return;
4247         }
4248
4249         if (priv->status & STATUS_ROAMING) {
4250                 /* If we are currently roaming, then just
4251                  * print a debug statement... */
4252                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4253                           "Missed beacon: %d - roam in progress\n",
4254                           missed_count);
4255                 return;
4256         }
4257
4258         if (roaming &&
4259             (missed_count > priv->roaming_threshold &&
4260              missed_count <= priv->disassociate_threshold)) {
4261                 /* If we are not already roaming, set the ROAM
4262                  * bit in the status and kick off a scan.
4263                  * This can happen several times before we reach
4264                  * disassociate_threshold. */
4265                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4266                           "Missed beacon: %d - initiate "
4267                           "roaming\n", missed_count);
4268                 if (!(priv->status & STATUS_ROAMING)) {
4269                         priv->status |= STATUS_ROAMING;
4270                         if (!(priv->status & STATUS_SCANNING))
4271                                 queue_work(priv->workqueue,
4272                                            &priv->request_scan);
4273                 }
4274                 return;
4275         }
4276
4277         if (priv->status & STATUS_SCANNING) {
4278                 /* Stop scan to keep fw from getting
4279                  * stuck (only if we aren't roaming --
4280                  * otherwise we'll never scan more than 2 or 3
4281                  * channels..) */
4282                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4283                           "Aborting scan with missed beacon.\n");
4284                 queue_work(priv->workqueue, &priv->abort_scan);
4285         }
4286
4287         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4288 }
4289
4290 /**
4291  * Handle host notification packet.
4292  * Called from interrupt routine
4293  */
4294 static void ipw_rx_notification(struct ipw_priv *priv,
4295                                        struct ipw_rx_notification *notif)
4296 {
4297         notif->size = le16_to_cpu(notif->size);
4298
4299         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4300
4301         switch (notif->subtype) {
4302         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4303                         struct notif_association *assoc = &notif->u.assoc;
4304
4305                         switch (assoc->state) {
4306                         case CMAS_ASSOCIATED:{
4307                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4308                                                   IPW_DL_ASSOC,
4309                                                   "associated: '%s' " MAC_FMT
4310                                                   " \n",
4311                                                   escape_essid(priv->essid,
4312                                                                priv->essid_len),
4313                                                   MAC_ARG(priv->bssid));
4314
4315                                         switch (priv->ieee->iw_mode) {
4316                                         case IW_MODE_INFRA:
4317                                                 memcpy(priv->ieee->bssid,
4318                                                        priv->bssid, ETH_ALEN);
4319                                                 break;
4320
4321                                         case IW_MODE_ADHOC:
4322                                                 memcpy(priv->ieee->bssid,
4323                                                        priv->bssid, ETH_ALEN);
4324
4325                                                 /* clear out the station table */
4326                                                 priv->num_stations = 0;
4327
4328                                                 IPW_DEBUG_ASSOC
4329                                                     ("queueing adhoc check\n");
4330                                                 queue_delayed_work(priv->
4331                                                                    workqueue,
4332                                                                    &priv->
4333                                                                    adhoc_check,
4334                                                                    priv->
4335                                                                    assoc_request.
4336                                                                    beacon_interval);
4337                                                 break;
4338                                         }
4339
4340                                         priv->status &= ~STATUS_ASSOCIATING;
4341                                         priv->status |= STATUS_ASSOCIATED;
4342                                         queue_work(priv->workqueue,
4343                                                    &priv->system_config);
4344
4345 #ifdef CONFIG_IPW2200_QOS
4346 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4347                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4348                                         if ((priv->status & STATUS_AUTH) &&
4349                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4350                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4351                                                 if ((sizeof
4352                                                      (struct
4353                                                       ieee80211_assoc_response)
4354                                                      <= notif->size)
4355                                                     && (notif->size <= 2314)) {
4356                                                         struct
4357                                                         ieee80211_rx_stats
4358                                                             stats = {
4359                                                                 .len =
4360                                                                     notif->
4361                                                                     size - 1,
4362                                                         };
4363
4364                                                         IPW_DEBUG_QOS
4365                                                             ("QoS Associate "
4366                                                              "size %d\n",
4367                                                              notif->size);
4368                                                         ieee80211_rx_mgt(priv->
4369                                                                          ieee,
4370                                                                          (struct
4371                                                                           ieee80211_hdr_4addr
4372                                                                           *)
4373                                                                          &notif->u.raw, &stats);
4374                                                 }
4375                                         }
4376 #endif
4377
4378                                         schedule_work(&priv->link_up);
4379
4380                                         break;
4381                                 }
4382
4383                         case CMAS_AUTHENTICATED:{
4384                                         if (priv->
4385                                             status & (STATUS_ASSOCIATED |
4386                                                       STATUS_AUTH)) {
4387                                                 struct notif_authenticate *auth
4388                                                     = &notif->u.auth;
4389                                                 IPW_DEBUG(IPW_DL_NOTIF |
4390                                                           IPW_DL_STATE |
4391                                                           IPW_DL_ASSOC,
4392                                                           "deauthenticated: '%s' "
4393                                                           MAC_FMT
4394                                                           ": (0x%04X) - %s \n",
4395                                                           escape_essid(priv->
4396                                                                        essid,
4397                                                                        priv->
4398                                                                        essid_len),
4399                                                           MAC_ARG(priv->bssid),
4400                                                           ntohs(auth->status),
4401                                                           ipw_get_status_code
4402                                                           (ntohs
4403                                                            (auth->status)));
4404
4405                                                 priv->status &=
4406                                                     ~(STATUS_ASSOCIATING |
4407                                                       STATUS_AUTH |
4408                                                       STATUS_ASSOCIATED);
4409
4410                                                 schedule_work(&priv->link_down);
4411                                                 break;
4412                                         }
4413
4414                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4415                                                   IPW_DL_ASSOC,
4416                                                   "authenticated: '%s' " MAC_FMT
4417                                                   "\n",
4418                                                   escape_essid(priv->essid,
4419                                                                priv->essid_len),
4420                                                   MAC_ARG(priv->bssid));
4421                                         break;
4422                                 }
4423
4424                         case CMAS_INIT:{
4425                                         if (priv->status & STATUS_AUTH) {
4426                                                 struct
4427                                                     ieee80211_assoc_response
4428                                                 *resp;
4429                                                 resp =
4430                                                     (struct
4431                                                      ieee80211_assoc_response
4432                                                      *)&notif->u.raw;
4433                                                 IPW_DEBUG(IPW_DL_NOTIF |
4434                                                           IPW_DL_STATE |
4435                                                           IPW_DL_ASSOC,
4436                                                           "association failed (0x%04X): %s\n",
4437                                                           ntohs(resp->status),
4438                                                           ipw_get_status_code
4439                                                           (ntohs
4440                                                            (resp->status)));
4441                                         }
4442
4443                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4444                                                   IPW_DL_ASSOC,
4445                                                   "disassociated: '%s' " MAC_FMT
4446                                                   " \n",
4447                                                   escape_essid(priv->essid,
4448                                                                priv->essid_len),
4449                                                   MAC_ARG(priv->bssid));
4450
4451                                         priv->status &=
4452                                             ~(STATUS_DISASSOCIATING |
4453                                               STATUS_ASSOCIATING |
4454                                               STATUS_ASSOCIATED | STATUS_AUTH);
4455                                         if (priv->assoc_network
4456                                             && (priv->assoc_network->
4457                                                 capability &
4458                                                 WLAN_CAPABILITY_IBSS))
4459                                                 ipw_remove_current_network
4460                                                     (priv);
4461
4462                                         schedule_work(&priv->link_down);
4463
4464                                         break;
4465                                 }
4466
4467                         case CMAS_RX_ASSOC_RESP:
4468                                 break;
4469
4470                         default:
4471                                 IPW_ERROR("assoc: unknown (%d)\n",
4472                                           assoc->state);
4473                                 break;
4474                         }
4475
4476                         break;
4477                 }
4478
4479         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4480                         struct notif_authenticate *auth = &notif->u.auth;
4481                         switch (auth->state) {
4482                         case CMAS_AUTHENTICATED:
4483                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4484                                           "authenticated: '%s' " MAC_FMT " \n",
4485                                           escape_essid(priv->essid,
4486                                                        priv->essid_len),
4487                                           MAC_ARG(priv->bssid));
4488                                 priv->status |= STATUS_AUTH;
4489                                 break;
4490
4491                         case CMAS_INIT:
4492                                 if (priv->status & STATUS_AUTH) {
4493                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4494                                                   IPW_DL_ASSOC,
4495                                                   "authentication failed (0x%04X): %s\n",
4496                                                   ntohs(auth->status),
4497                                                   ipw_get_status_code(ntohs
4498                                                                       (auth->
4499                                                                        status)));
4500                                 }
4501                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4502                                           IPW_DL_ASSOC,
4503                                           "deauthenticated: '%s' " MAC_FMT "\n",
4504                                           escape_essid(priv->essid,
4505                                                        priv->essid_len),
4506                                           MAC_ARG(priv->bssid));
4507
4508                                 priv->status &= ~(STATUS_ASSOCIATING |
4509                                                   STATUS_AUTH |
4510                                                   STATUS_ASSOCIATED);
4511
4512                                 schedule_work(&priv->link_down);
4513                                 break;
4514
4515                         case CMAS_TX_AUTH_SEQ_1:
4516                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4518                                 break;
4519                         case CMAS_RX_AUTH_SEQ_2:
4520                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4521                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4522                                 break;
4523                         case CMAS_AUTH_SEQ_1_PASS:
4524                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4525                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4526                                 break;
4527                         case CMAS_AUTH_SEQ_1_FAIL:
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4530                                 break;
4531                         case CMAS_TX_AUTH_SEQ_3:
4532                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4533                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4534                                 break;
4535                         case CMAS_RX_AUTH_SEQ_4:
4536                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4537                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4538                                 break;
4539                         case CMAS_AUTH_SEQ_2_PASS:
4540                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4542                                 break;
4543                         case CMAS_AUTH_SEQ_2_FAIL:
4544                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4546                                 break;
4547                         case CMAS_TX_ASSOC:
4548                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4550                                 break;
4551                         case CMAS_RX_ASSOC_RESP:
4552                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4554
4555                                 break;
4556                         case CMAS_ASSOCIATED:
4557                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4558                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4559                                 break;
4560                         default:
4561                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4562                                                 auth->state);
4563                                 break;
4564                         }
4565                         break;
4566                 }
4567
4568         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4569                         struct notif_channel_result *x =
4570                             &notif->u.channel_result;
4571
4572                         if (notif->size == sizeof(*x)) {
4573                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4574                                                x->channel_num);
4575                         } else {
4576                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4577                                                "(should be %zd)\n",
4578                                                notif->size, sizeof(*x));
4579                         }
4580                         break;
4581                 }
4582
4583         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4584                         struct notif_scan_complete *x = &notif->u.scan_complete;
4585                         if (notif->size == sizeof(*x)) {
4586                                 IPW_DEBUG_SCAN
4587                                     ("Scan completed: type %d, %d channels, "
4588                                      "%d status\n", x->scan_type,
4589                                      x->num_channels, x->status);
4590                         } else {
4591                                 IPW_ERROR("Scan completed of wrong size %d "
4592                                           "(should be %zd)\n",
4593                                           notif->size, sizeof(*x));
4594                         }
4595
4596                         priv->status &=
4597                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4598
4599                         wake_up_interruptible(&priv->wait_state);
4600                         cancel_delayed_work(&priv->scan_check);
4601
4602                         if (priv->status & STATUS_EXIT_PENDING)
4603                                 break;
4604
4605                         priv->ieee->scans++;
4606
4607 #ifdef CONFIG_IPW2200_MONITOR
4608                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4609                                 priv->status |= STATUS_SCAN_FORCED;
4610                                 queue_work(priv->workqueue,
4611                                            &priv->request_scan);
4612                                 break;
4613                         }
4614                         priv->status &= ~STATUS_SCAN_FORCED;
4615 #endif                          /* CONFIG_IPW2200_MONITOR */
4616
4617                         if (!(priv->status & (STATUS_ASSOCIATED |
4618                                               STATUS_ASSOCIATING |
4619                                               STATUS_ROAMING |
4620                                               STATUS_DISASSOCIATING)))
4621                                 queue_work(priv->workqueue, &priv->associate);
4622                         else if (priv->status & STATUS_ROAMING) {
4623                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4624                                         /* If a scan completed and we are in roam mode, then
4625                                          * the scan that completed was the one requested as a
4626                                          * result of entering roam... so, schedule the
4627                                          * roam work */
4628                                         queue_work(priv->workqueue,
4629                                                    &priv->roam);
4630                                 else
4631                                         /* Don't schedule if we aborted the scan */
4632                                         priv->status &= ~STATUS_ROAMING;
4633                         } else if (priv->status & STATUS_SCAN_PENDING)
4634                                 queue_work(priv->workqueue,
4635                                            &priv->request_scan);
4636                         else if (priv->config & CFG_BACKGROUND_SCAN
4637                                  && priv->status & STATUS_ASSOCIATED)
4638                                 queue_delayed_work(priv->workqueue,
4639                                                    &priv->request_scan, HZ);
4640
4641                         /* Send an empty event to user space.
4642                          * We don't send the received data on the event because
4643                          * it would require us to do complex transcoding, and
4644                          * we want to minimise the work done in the irq handler
4645                          * Use a request to extract the data.
4646                          * Also, we generate this even for any scan, regardless
4647                          * on how the scan was initiated. User space can just
4648                          * sync on periodic scan to get fresh data...
4649                          * Jean II */
4650                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4651                                 union iwreq_data wrqu;
4652
4653                                 wrqu.data.length = 0;
4654                                 wrqu.data.flags = 0;
4655                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4656                                                     &wrqu, NULL);
4657                         }
4658                         break;
4659                 }
4660
4661         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4662                         struct notif_frag_length *x = &notif->u.frag_len;
4663
4664                         if (notif->size == sizeof(*x))
4665                                 IPW_ERROR("Frag length: %d\n",
4666                                           le16_to_cpu(x->frag_length));
4667                         else
4668                                 IPW_ERROR("Frag length of wrong size %d "
4669                                           "(should be %zd)\n",
4670                                           notif->size, sizeof(*x));
4671                         break;
4672                 }
4673
4674         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4675                         struct notif_link_deterioration *x =
4676                             &notif->u.link_deterioration;
4677
4678                         if (notif->size == sizeof(*x)) {
4679                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4680                                         "link deterioration: type %d, cnt %d\n",
4681                                         x->silence_notification_type,
4682                                         x->silence_count);
4683                                 memcpy(&priv->last_link_deterioration, x,
4684                                        sizeof(*x));
4685                         } else {
4686                                 IPW_ERROR("Link Deterioration of wrong size %d "
4687                                           "(should be %zd)\n",
4688                                           notif->size, sizeof(*x));
4689                         }
4690                         break;
4691                 }
4692
4693         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4694                         IPW_ERROR("Dino config\n");
4695                         if (priv->hcmd
4696                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4697                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4698
4699                         break;
4700                 }
4701
4702         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4703                         struct notif_beacon_state *x = &notif->u.beacon_state;
4704                         if (notif->size != sizeof(*x)) {
4705                                 IPW_ERROR
4706                                     ("Beacon state of wrong size %d (should "
4707                                      "be %zd)\n", notif->size, sizeof(*x));
4708                                 break;
4709                         }
4710
4711                         if (le32_to_cpu(x->state) ==
4712                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4713                                 ipw_handle_missed_beacon(priv,
4714                                                          le32_to_cpu(x->
4715                                                                      number));
4716
4717                         break;
4718                 }
4719
4720         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4721                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4722                         if (notif->size == sizeof(*x)) {
4723                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4724                                           "0x%02x station %d\n",
4725                                           x->key_state, x->security_type,
4726                                           x->station_index);
4727                                 break;
4728                         }
4729
4730                         IPW_ERROR
4731                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4732                              notif->size, sizeof(*x));
4733                         break;
4734                 }
4735
4736         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4737                         struct notif_calibration *x = &notif->u.calibration;
4738
4739                         if (notif->size == sizeof(*x)) {
4740                                 memcpy(&priv->calib, x, sizeof(*x));
4741                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4742                                 break;
4743                         }
4744
4745                         IPW_ERROR
4746                             ("Calibration of wrong size %d (should be %zd)\n",
4747                              notif->size, sizeof(*x));
4748                         break;
4749                 }
4750
4751         case HOST_NOTIFICATION_NOISE_STATS:{
4752                         if (notif->size == sizeof(u32)) {
4753                                 priv->exp_avg_noise =
4754                                     exponential_average(priv->exp_avg_noise,
4755                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4756                                     DEPTH_NOISE);
4757                                 break;
4758                         }
4759
4760                         IPW_ERROR
4761                             ("Noise stat is wrong size %d (should be %zd)\n",
4762                              notif->size, sizeof(u32));
4763                         break;
4764                 }
4765
4766         default:
4767                 IPW_DEBUG_NOTIF("Unknown notification: "
4768                                 "subtype=%d,flags=0x%2x,size=%d\n",
4769                                 notif->subtype, notif->flags, notif->size);
4770         }
4771 }
4772
4773 /**
4774  * Destroys all DMA structures and initialise them again
4775  *
4776  * @param priv
4777  * @return error code
4778  */
4779 static int ipw_queue_reset(struct ipw_priv *priv)
4780 {
4781         int rc = 0;
4782         /** @todo customize queue sizes */
4783         int nTx = 64, nTxCmd = 8;
4784         ipw_tx_queue_free(priv);
4785         /* Tx CMD queue */
4786         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4787                                IPW_TX_CMD_QUEUE_READ_INDEX,
4788                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4789                                IPW_TX_CMD_QUEUE_BD_BASE,
4790                                IPW_TX_CMD_QUEUE_BD_SIZE);
4791         if (rc) {
4792                 IPW_ERROR("Tx Cmd queue init failed\n");
4793                 goto error;
4794         }
4795         /* Tx queue(s) */
4796         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4797                                IPW_TX_QUEUE_0_READ_INDEX,
4798                                IPW_TX_QUEUE_0_WRITE_INDEX,
4799                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4800         if (rc) {
4801                 IPW_ERROR("Tx 0 queue init failed\n");
4802                 goto error;
4803         }
4804         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4805                                IPW_TX_QUEUE_1_READ_INDEX,
4806                                IPW_TX_QUEUE_1_WRITE_INDEX,
4807                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4808         if (rc) {
4809                 IPW_ERROR("Tx 1 queue init failed\n");
4810                 goto error;
4811         }
4812         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4813                                IPW_TX_QUEUE_2_READ_INDEX,
4814                                IPW_TX_QUEUE_2_WRITE_INDEX,
4815                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4816         if (rc) {
4817                 IPW_ERROR("Tx 2 queue init failed\n");
4818                 goto error;
4819         }
4820         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4821                                IPW_TX_QUEUE_3_READ_INDEX,
4822                                IPW_TX_QUEUE_3_WRITE_INDEX,
4823                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4824         if (rc) {
4825                 IPW_ERROR("Tx 3 queue init failed\n");
4826                 goto error;
4827         }
4828         /* statistics */
4829         priv->rx_bufs_min = 0;
4830         priv->rx_pend_max = 0;
4831         return rc;
4832
4833       error:
4834         ipw_tx_queue_free(priv);
4835         return rc;
4836 }
4837
4838 /**
4839  * Reclaim Tx queue entries no more used by NIC.
4840  *
4841  * When FW adwances 'R' index, all entries between old and
4842  * new 'R' index need to be reclaimed. As result, some free space
4843  * forms. If there is enough free space (> low mark), wake Tx queue.
4844  *
4845  * @note Need to protect against garbage in 'R' index
4846  * @param priv
4847  * @param txq
4848  * @param qindex
4849  * @return Number of used entries remains in the queue
4850  */
4851 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4852                                 struct clx2_tx_queue *txq, int qindex)
4853 {
4854         u32 hw_tail;
4855         int used;
4856         struct clx2_queue *q = &txq->q;
4857
4858         hw_tail = ipw_read32(priv, q->reg_r);
4859         if (hw_tail >= q->n_bd) {
4860                 IPW_ERROR
4861                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4862                      hw_tail, q->n_bd);
4863                 goto done;
4864         }
4865         for (; q->last_used != hw_tail;
4866              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4867                 ipw_queue_tx_free_tfd(priv, txq);
4868                 priv->tx_packets++;
4869         }
4870       done:
4871         if ((ipw_queue_space(q) > q->low_mark) &&
4872             (qindex >= 0) &&
4873             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4874                 netif_wake_queue(priv->net_dev);
4875         used = q->first_empty - q->last_used;
4876         if (used < 0)
4877                 used += q->n_bd;
4878
4879         return used;
4880 }
4881
4882 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4883                              int len, int sync)
4884 {
4885         struct clx2_tx_queue *txq = &priv->txq_cmd;
4886         struct clx2_queue *q = &txq->q;
4887         struct tfd_frame *tfd;
4888
4889         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4890                 IPW_ERROR("No space for Tx\n");
4891                 return -EBUSY;
4892         }
4893
4894         tfd = &txq->bd[q->first_empty];
4895         txq->txb[q->first_empty] = NULL;
4896
4897         memset(tfd, 0, sizeof(*tfd));
4898         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4899         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4900         priv->hcmd_seq++;
4901         tfd->u.cmd.index = hcmd;
4902         tfd->u.cmd.length = len;
4903         memcpy(tfd->u.cmd.payload, buf, len);
4904         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4905         ipw_write32(priv, q->reg_w, q->first_empty);
4906         _ipw_read32(priv, 0x90);
4907
4908         return 0;
4909 }
4910
4911 /*
4912  * Rx theory of operation
4913  *
4914  * The host allocates 32 DMA target addresses and passes the host address
4915  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4916  * 0 to 31
4917  *
4918  * Rx Queue Indexes
4919  * The host/firmware share two index registers for managing the Rx buffers.
4920  *
4921  * The READ index maps to the first position that the firmware may be writing
4922  * to -- the driver can read up to (but not including) this position and get
4923  * good data.
4924  * The READ index is managed by the firmware once the card is enabled.
4925  *
4926  * The WRITE index maps to the last position the driver has read from -- the
4927  * position preceding WRITE is the last slot the firmware can place a packet.
4928  *
4929  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4930  * WRITE = READ.
4931  *
4932  * During initialization the host sets up the READ queue position to the first
4933  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4934  *
4935  * When the firmware places a packet in a buffer it will advance the READ index
4936  * and fire the RX interrupt.  The driver can then query the READ index and
4937  * process as many packets as possible, moving the WRITE index forward as it
4938  * resets the Rx queue buffers with new memory.
4939  *
4940  * The management in the driver is as follows:
4941  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4942  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4943  *   to replensish the ipw->rxq->rx_free.
4944  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4945  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4946  *   'processed' and 'read' driver indexes as well)
4947  * + A received packet is processed and handed to the kernel network stack,
4948  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4949  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4950  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4951  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4952  *   were enough free buffers and RX_STALLED is set it is cleared.
4953  *
4954  *
4955  * Driver sequence:
4956  *
4957  * ipw_rx_queue_alloc()       Allocates rx_free
4958  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4959  *                            ipw_rx_queue_restock
4960  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4961  *                            queue, updates firmware pointers, and updates
4962  *                            the WRITE index.  If insufficient rx_free buffers
4963  *                            are available, schedules ipw_rx_queue_replenish
4964  *
4965  * -- enable interrupts --
4966  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4967  *                            READ INDEX, detaching the SKB from the pool.
4968  *                            Moves the packet buffer from queue to rx_used.
4969  *                            Calls ipw_rx_queue_restock to refill any empty
4970  *                            slots.
4971  * ...
4972  *
4973  */
4974
4975 /*
4976  * If there are slots in the RX queue that  need to be restocked,
4977  * and we have free pre-allocated buffers, fill the ranks as much
4978  * as we can pulling from rx_free.
4979  *
4980  * This moves the 'write' index forward to catch up with 'processed', and
4981  * also updates the memory address in the firmware to reference the new
4982  * target buffer.
4983  */
4984 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4985 {
4986         struct ipw_rx_queue *rxq = priv->rxq;
4987         struct list_head *element;
4988         struct ipw_rx_mem_buffer *rxb;
4989         unsigned long flags;
4990         int write;
4991
4992         spin_lock_irqsave(&rxq->lock, flags);
4993         write = rxq->write;
4994         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4995                 element = rxq->rx_free.next;
4996                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4997                 list_del(element);
4998
4999                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5000                             rxb->dma_addr);
5001                 rxq->queue[rxq->write] = rxb;
5002                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5003                 rxq->free_count--;
5004         }
5005         spin_unlock_irqrestore(&rxq->lock, flags);
5006
5007         /* If the pre-allocated buffer pool is dropping low, schedule to
5008          * refill it */
5009         if (rxq->free_count <= RX_LOW_WATERMARK)
5010                 queue_work(priv->workqueue, &priv->rx_replenish);
5011
5012         /* If we've added more space for the firmware to place data, tell it */
5013         if (write != rxq->write)
5014                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5015 }
5016
5017 /*
5018  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5019  * Also restock the Rx queue via ipw_rx_queue_restock.
5020  *
5021  * This is called as a scheduled work item (except for during intialization)
5022  */
5023 static void ipw_rx_queue_replenish(void *data)
5024 {
5025         struct ipw_priv *priv = data;
5026         struct ipw_rx_queue *rxq = priv->rxq;
5027         struct list_head *element;
5028         struct ipw_rx_mem_buffer *rxb;
5029         unsigned long flags;
5030
5031         spin_lock_irqsave(&rxq->lock, flags);
5032         while (!list_empty(&rxq->rx_used)) {
5033                 element = rxq->rx_used.next;
5034                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5035                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5036                 if (!rxb->skb) {
5037                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5038                                priv->net_dev->name);
5039                         /* We don't reschedule replenish work here -- we will
5040                          * call the restock method and if it still needs
5041                          * more buffers it will schedule replenish */
5042                         break;
5043                 }
5044                 list_del(element);
5045
5046                 rxb->dma_addr =
5047                     pci_map_single(priv->pci_dev, rxb->skb->data,
5048                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5049
5050                 list_add_tail(&rxb->list, &rxq->rx_free);
5051                 rxq->free_count++;
5052         }
5053         spin_unlock_irqrestore(&rxq->lock, flags);
5054
5055         ipw_rx_queue_restock(priv);
5056 }
5057
5058 static void ipw_bg_rx_queue_replenish(void *data)
5059 {
5060         struct ipw_priv *priv = data;
5061         mutex_lock(&priv->mutex);
5062         ipw_rx_queue_replenish(data);
5063         mutex_unlock(&priv->mutex);
5064 }
5065
5066 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5067  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5068  * This free routine walks the list of POOL entries and if SKB is set to
5069  * non NULL it is unmapped and freed
5070  */
5071 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5072 {
5073         int i;
5074
5075         if (!rxq)
5076                 return;
5077
5078         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5079                 if (rxq->pool[i].skb != NULL) {
5080                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5081                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5082                         dev_kfree_skb(rxq->pool[i].skb);
5083                 }
5084         }
5085
5086         kfree(rxq);
5087 }
5088
5089 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5090 {
5091         struct ipw_rx_queue *rxq;
5092         int i;
5093
5094         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5095         if (unlikely(!rxq)) {
5096                 IPW_ERROR("memory allocation failed\n");
5097                 return NULL;
5098         }
5099         spin_lock_init(&rxq->lock);
5100         INIT_LIST_HEAD(&rxq->rx_free);
5101         INIT_LIST_HEAD(&rxq->rx_used);
5102
5103         /* Fill the rx_used queue with _all_ of the Rx buffers */
5104         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5105                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5106
5107         /* Set us so that we have processed and used all buffers, but have
5108          * not restocked the Rx queue with fresh buffers */
5109         rxq->read = rxq->write = 0;
5110         rxq->processed = RX_QUEUE_SIZE - 1;
5111         rxq->free_count = 0;
5112
5113         return rxq;
5114 }
5115
5116 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5117 {
5118         rate &= ~IEEE80211_BASIC_RATE_MASK;
5119         if (ieee_mode == IEEE_A) {
5120                 switch (rate) {
5121                 case IEEE80211_OFDM_RATE_6MB:
5122                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5123                             1 : 0;
5124                 case IEEE80211_OFDM_RATE_9MB:
5125                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5126                             1 : 0;
5127                 case IEEE80211_OFDM_RATE_12MB:
5128                         return priv->
5129                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5130                 case IEEE80211_OFDM_RATE_18MB:
5131                         return priv->
5132                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5133                 case IEEE80211_OFDM_RATE_24MB:
5134                         return priv->
5135                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5136                 case IEEE80211_OFDM_RATE_36MB:
5137                         return priv->
5138                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5139                 case IEEE80211_OFDM_RATE_48MB:
5140                         return priv->
5141                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5142                 case IEEE80211_OFDM_RATE_54MB:
5143                         return priv->
5144                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5145                 default:
5146                         return 0;
5147                 }
5148         }
5149
5150         /* B and G mixed */
5151         switch (rate) {
5152         case IEEE80211_CCK_RATE_1MB:
5153                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5154         case IEEE80211_CCK_RATE_2MB:
5155                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5156         case IEEE80211_CCK_RATE_5MB:
5157                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5158         case IEEE80211_CCK_RATE_11MB:
5159                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5160         }
5161
5162         /* If we are limited to B modulations, bail at this point */
5163         if (ieee_mode == IEEE_B)
5164                 return 0;
5165
5166         /* G */
5167         switch (rate) {
5168         case IEEE80211_OFDM_RATE_6MB:
5169                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5170         case IEEE80211_OFDM_RATE_9MB:
5171                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5172         case IEEE80211_OFDM_RATE_12MB:
5173                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5174         case IEEE80211_OFDM_RATE_18MB:
5175                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5176         case IEEE80211_OFDM_RATE_24MB:
5177                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5178         case IEEE80211_OFDM_RATE_36MB:
5179                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5180         case IEEE80211_OFDM_RATE_48MB:
5181                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5182         case IEEE80211_OFDM_RATE_54MB:
5183                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5184         }
5185
5186         return 0;
5187 }
5188
5189 static int ipw_compatible_rates(struct ipw_priv *priv,
5190                                 const struct ieee80211_network *network,
5191                                 struct ipw_supported_rates *rates)
5192 {
5193         int num_rates, i;
5194
5195         memset(rates, 0, sizeof(*rates));
5196         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5197         rates->num_rates = 0;
5198         for (i = 0; i < num_rates; i++) {
5199                 if (!ipw_is_rate_in_mask(priv, network->mode,
5200                                          network->rates[i])) {
5201
5202                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5203                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5204                                                "rate %02X\n",
5205                                                network->rates[i]);
5206                                 rates->supported_rates[rates->num_rates++] =
5207                                     network->rates[i];
5208                                 continue;
5209                         }
5210
5211                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5212                                        network->rates[i], priv->rates_mask);
5213                         continue;
5214                 }
5215
5216                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5217         }
5218
5219         num_rates = min(network->rates_ex_len,
5220                         (u8) (IPW_MAX_RATES - num_rates));
5221         for (i = 0; i < num_rates; i++) {
5222                 if (!ipw_is_rate_in_mask(priv, network->mode,
5223                                          network->rates_ex[i])) {
5224                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5225                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5226                                                "rate %02X\n",
5227                                                network->rates_ex[i]);
5228                                 rates->supported_rates[rates->num_rates++] =
5229                                     network->rates[i];
5230                                 continue;
5231                         }
5232
5233                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5234                                        network->rates_ex[i], priv->rates_mask);
5235                         continue;
5236                 }
5237
5238                 rates->supported_rates[rates->num_rates++] =
5239                     network->rates_ex[i];
5240         }
5241
5242         return 1;
5243 }
5244
5245 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5246                                   const struct ipw_supported_rates *src)
5247 {
5248         u8 i;
5249         for (i = 0; i < src->num_rates; i++)
5250                 dest->supported_rates[i] = src->supported_rates[i];
5251         dest->num_rates = src->num_rates;
5252 }
5253
5254 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5255  * mask should ever be used -- right now all callers to add the scan rates are
5256  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5257 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5258                                    u8 modulation, u32 rate_mask)
5259 {
5260         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5261             IEEE80211_BASIC_RATE_MASK : 0;
5262
5263         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5264                 rates->supported_rates[rates->num_rates++] =
5265                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5266
5267         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5268                 rates->supported_rates[rates->num_rates++] =
5269                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5270
5271         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5272                 rates->supported_rates[rates->num_rates++] = basic_mask |
5273                     IEEE80211_CCK_RATE_5MB;
5274
5275         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5276                 rates->supported_rates[rates->num_rates++] = basic_mask |
5277                     IEEE80211_CCK_RATE_11MB;
5278 }
5279
5280 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5281                                     u8 modulation, u32 rate_mask)
5282 {
5283         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5284             IEEE80211_BASIC_RATE_MASK : 0;
5285
5286         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5287                 rates->supported_rates[rates->num_rates++] = basic_mask |
5288                     IEEE80211_OFDM_RATE_6MB;
5289
5290         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5291                 rates->supported_rates[rates->num_rates++] =
5292                     IEEE80211_OFDM_RATE_9MB;
5293
5294         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5295                 rates->supported_rates[rates->num_rates++] = basic_mask |
5296                     IEEE80211_OFDM_RATE_12MB;
5297
5298         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5299                 rates->supported_rates[rates->num_rates++] =
5300                     IEEE80211_OFDM_RATE_18MB;
5301
5302         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5303                 rates->supported_rates[rates->num_rates++] = basic_mask |
5304                     IEEE80211_OFDM_RATE_24MB;
5305
5306         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5307                 rates->supported_rates[rates->num_rates++] =
5308                     IEEE80211_OFDM_RATE_36MB;
5309
5310         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5311                 rates->supported_rates[rates->num_rates++] =
5312                     IEEE80211_OFDM_RATE_48MB;
5313
5314         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5315                 rates->supported_rates[rates->num_rates++] =
5316                     IEEE80211_OFDM_RATE_54MB;
5317 }
5318
5319 struct ipw_network_match {
5320         struct ieee80211_network *network;
5321         struct ipw_supported_rates rates;
5322 };
5323
5324 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5325                                   struct ipw_network_match *match,
5326                                   struct ieee80211_network *network,
5327                                   int roaming)
5328 {
5329         struct ipw_supported_rates rates;
5330
5331         /* Verify that this network's capability is compatible with the
5332          * current mode (AdHoc or Infrastructure) */
5333         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5334              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5335                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5336                                 "capability mismatch.\n",
5337                                 escape_essid(network->ssid, network->ssid_len),
5338                                 MAC_ARG(network->bssid));
5339                 return 0;
5340         }
5341
5342         /* If we do not have an ESSID for this AP, we can not associate with
5343          * it */
5344         if (network->flags & NETWORK_EMPTY_ESSID) {
5345                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5346                                 "because of hidden ESSID.\n",
5347                                 escape_essid(network->ssid, network->ssid_len),
5348                                 MAC_ARG(network->bssid));
5349                 return 0;
5350         }
5351
5352         if (unlikely(roaming)) {
5353                 /* If we are roaming, then ensure check if this is a valid
5354                  * network to try and roam to */
5355                 if ((network->ssid_len != match->network->ssid_len) ||
5356                     memcmp(network->ssid, match->network->ssid,
5357                            network->ssid_len)) {
5358                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5359                                         "because of non-network ESSID.\n",
5360                                         escape_essid(network->ssid,
5361                                                      network->ssid_len),
5362                                         MAC_ARG(network->bssid));
5363                         return 0;
5364                 }
5365         } else {
5366                 /* If an ESSID has been configured then compare the broadcast
5367                  * ESSID to ours */
5368                 if ((priv->config & CFG_STATIC_ESSID) &&
5369                     ((network->ssid_len != priv->essid_len) ||
5370                      memcmp(network->ssid, priv->essid,
5371                             min(network->ssid_len, priv->essid_len)))) {
5372                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5373
5374                         strncpy(escaped,
5375                                 escape_essid(network->ssid, network->ssid_len),
5376                                 sizeof(escaped));
5377                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5378                                         "because of ESSID mismatch: '%s'.\n",
5379                                         escaped, MAC_ARG(network->bssid),
5380                                         escape_essid(priv->essid,
5381                                                      priv->essid_len));
5382                         return 0;
5383                 }
5384         }
5385
5386         /* If the old network rate is better than this one, don't bother
5387          * testing everything else. */
5388
5389         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5390                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5391                                 "current network.\n",
5392                                 escape_essid(match->network->ssid,
5393                                              match->network->ssid_len));
5394                 return 0;
5395         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5396                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5397                                 "current network.\n",
5398                                 escape_essid(match->network->ssid,
5399                                              match->network->ssid_len));
5400                 return 0;
5401         }
5402
5403         /* Now go through and see if the requested network is valid... */
5404         if (priv->ieee->scan_age != 0 &&
5405             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5406                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5407                                 "because of age: %ums.\n",
5408                                 escape_essid(network->ssid, network->ssid_len),
5409                                 MAC_ARG(network->bssid),
5410                                 jiffies_to_msecs(jiffies -
5411                                                  network->last_scanned));
5412                 return 0;
5413         }
5414
5415         if ((priv->config & CFG_STATIC_CHANNEL) &&
5416             (network->channel != priv->channel)) {
5417                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5418                                 "because of channel mismatch: %d != %d.\n",
5419                                 escape_essid(network->ssid, network->ssid_len),
5420                                 MAC_ARG(network->bssid),
5421                                 network->channel, priv->channel);
5422                 return 0;
5423         }
5424
5425         /* Verify privacy compatability */
5426         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5427             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5428                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5429                                 "because of privacy mismatch: %s != %s.\n",
5430                                 escape_essid(network->ssid, network->ssid_len),
5431                                 MAC_ARG(network->bssid),
5432                                 priv->
5433                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5434                                 network->
5435                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5436                                 "off");
5437                 return 0;
5438         }
5439
5440         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5441                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5442                                 "because of the same BSSID match: " MAC_FMT
5443                                 ".\n", escape_essid(network->ssid,
5444                                                     network->ssid_len),
5445                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5446                 return 0;
5447         }
5448
5449         /* Filter out any incompatible freq / mode combinations */
5450         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5451                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5452                                 "because of invalid frequency/mode "
5453                                 "combination.\n",
5454                                 escape_essid(network->ssid, network->ssid_len),
5455                                 MAC_ARG(network->bssid));
5456                 return 0;
5457         }
5458
5459         /* Ensure that the rates supported by the driver are compatible with
5460          * this AP, including verification of basic rates (mandatory) */
5461         if (!ipw_compatible_rates(priv, network, &rates)) {
5462                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5463                                 "because configured rate mask excludes "
5464                                 "AP mandatory rate.\n",
5465                                 escape_essid(network->ssid, network->ssid_len),
5466                                 MAC_ARG(network->bssid));
5467                 return 0;
5468         }
5469
5470         if (rates.num_rates == 0) {
5471                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5472                                 "because of no compatible rates.\n",
5473                                 escape_essid(network->ssid, network->ssid_len),
5474                                 MAC_ARG(network->bssid));
5475                 return 0;
5476         }
5477
5478         /* TODO: Perform any further minimal comparititive tests.  We do not
5479          * want to put too much policy logic here; intelligent scan selection
5480          * should occur within a generic IEEE 802.11 user space tool.  */
5481
5482         /* Set up 'new' AP to this network */
5483         ipw_copy_rates(&match->rates, &rates);
5484         match->network = network;
5485         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5486                         escape_essid(network->ssid, network->ssid_len),
5487                         MAC_ARG(network->bssid));
5488
5489         return 1;
5490 }
5491
5492 static void ipw_merge_adhoc_network(void *data)
5493 {
5494         struct ipw_priv *priv = data;
5495         struct ieee80211_network *network = NULL;
5496         struct ipw_network_match match = {
5497                 .network = priv->assoc_network
5498         };
5499
5500         if ((priv->status & STATUS_ASSOCIATED) &&
5501             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5502                 /* First pass through ROAM process -- look for a better
5503                  * network */
5504                 unsigned long flags;
5505
5506                 spin_lock_irqsave(&priv->ieee->lock, flags);
5507                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5508                         if (network != priv->assoc_network)
5509                                 ipw_find_adhoc_network(priv, &match, network,
5510                                                        1);
5511                 }
5512                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5513
5514                 if (match.network == priv->assoc_network) {
5515                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5516                                         "merge to.\n");
5517                         return;
5518                 }
5519
5520                 mutex_lock(&priv->mutex);
5521                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5522                         IPW_DEBUG_MERGE("remove network %s\n",
5523                                         escape_essid(priv->essid,
5524                                                      priv->essid_len));
5525                         ipw_remove_current_network(priv);
5526                 }
5527
5528                 ipw_disassociate(priv);
5529                 priv->assoc_network = match.network;
5530                 mutex_unlock(&priv->mutex);
5531                 return;
5532         }
5533 }
5534
5535 static int ipw_best_network(struct ipw_priv *priv,
5536                             struct ipw_network_match *match,
5537                             struct ieee80211_network *network, int roaming)
5538 {
5539         struct ipw_supported_rates rates;
5540
5541         /* Verify that this network's capability is compatible with the
5542          * current mode (AdHoc or Infrastructure) */
5543         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5544              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5545             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5546              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5547                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5548                                 "capability mismatch.\n",
5549                                 escape_essid(network->ssid, network->ssid_len),
5550                                 MAC_ARG(network->bssid));
5551                 return 0;
5552         }
5553
5554         /* If we do not have an ESSID for this AP, we can not associate with
5555          * it */
5556         if (network->flags & NETWORK_EMPTY_ESSID) {
5557                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5558                                 "because of hidden ESSID.\n",
5559                                 escape_essid(network->ssid, network->ssid_len),
5560                                 MAC_ARG(network->bssid));
5561                 return 0;
5562         }
5563
5564         if (unlikely(roaming)) {
5565                 /* If we are roaming, then ensure check if this is a valid
5566                  * network to try and roam to */
5567                 if ((network->ssid_len != match->network->ssid_len) ||
5568                     memcmp(network->ssid, match->network->ssid,
5569                            network->ssid_len)) {
5570                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5571                                         "because of non-network ESSID.\n",
5572                                         escape_essid(network->ssid,
5573                                                      network->ssid_len),
5574                                         MAC_ARG(network->bssid));
5575                         return 0;
5576                 }
5577         } else {
5578                 /* If an ESSID has been configured then compare the broadcast
5579                  * ESSID to ours */
5580                 if ((priv->config & CFG_STATIC_ESSID) &&
5581                     ((network->ssid_len != priv->essid_len) ||
5582                      memcmp(network->ssid, priv->essid,
5583                             min(network->ssid_len, priv->essid_len)))) {
5584                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5585                         strncpy(escaped,
5586                                 escape_essid(network->ssid, network->ssid_len),
5587                                 sizeof(escaped));
5588                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5589                                         "because of ESSID mismatch: '%s'.\n",
5590                                         escaped, MAC_ARG(network->bssid),
5591                                         escape_essid(priv->essid,
5592                                                      priv->essid_len));
5593                         return 0;
5594                 }
5595         }
5596
5597         /* If the old network rate is better than this one, don't bother
5598          * testing everything else. */
5599         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5600                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5601                 strncpy(escaped,
5602                         escape_essid(network->ssid, network->ssid_len),
5603                         sizeof(escaped));
5604                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5605                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5606                                 escaped, MAC_ARG(network->bssid),
5607                                 escape_essid(match->network->ssid,
5608                                              match->network->ssid_len),
5609                                 MAC_ARG(match->network->bssid));
5610                 return 0;
5611         }
5612
5613         /* If this network has already had an association attempt within the
5614          * last 3 seconds, do not try and associate again... */
5615         if (network->last_associate &&
5616             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5617                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5618                                 "because of storming (%ums since last "
5619                                 "assoc attempt).\n",
5620                                 escape_essid(network->ssid, network->ssid_len),
5621                                 MAC_ARG(network->bssid),
5622                                 jiffies_to_msecs(jiffies -
5623                                                  network->last_associate));
5624                 return 0;
5625         }
5626
5627         /* Now go through and see if the requested network is valid... */
5628         if (priv->ieee->scan_age != 0 &&
5629             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5630                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5631                                 "because of age: %ums.\n",
5632                                 escape_essid(network->ssid, network->ssid_len),
5633                                 MAC_ARG(network->bssid),
5634                                 jiffies_to_msecs(jiffies -
5635                                                  network->last_scanned));
5636                 return 0;
5637         }
5638
5639         if ((priv->config & CFG_STATIC_CHANNEL) &&
5640             (network->channel != priv->channel)) {
5641                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5642                                 "because of channel mismatch: %d != %d.\n",
5643                                 escape_essid(network->ssid, network->ssid_len),
5644                                 MAC_ARG(network->bssid),
5645                                 network->channel, priv->channel);
5646                 return 0;
5647         }
5648
5649         /* Verify privacy compatability */
5650         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5651             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5652                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5653                                 "because of privacy mismatch: %s != %s.\n",
5654                                 escape_essid(network->ssid, network->ssid_len),
5655                                 MAC_ARG(network->bssid),
5656                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5657                                 "off",
5658                                 network->capability &
5659                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5660                 return 0;
5661         }
5662
5663         if ((priv->config & CFG_STATIC_BSSID) &&
5664             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5665                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5666                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5667                                 escape_essid(network->ssid, network->ssid_len),
5668                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5669                 return 0;
5670         }
5671
5672         /* Filter out any incompatible freq / mode combinations */
5673         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5674                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5675                                 "because of invalid frequency/mode "
5676                                 "combination.\n",
5677                                 escape_essid(network->ssid, network->ssid_len),
5678                                 MAC_ARG(network->bssid));
5679                 return 0;
5680         }
5681
5682         /* Filter out invalid channel in current GEO */
5683         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5684                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5685                                 "because of invalid channel in current GEO\n",
5686                                 escape_essid(network->ssid, network->ssid_len),
5687                                 MAC_ARG(network->bssid));
5688                 return 0;
5689         }
5690
5691         /* Ensure that the rates supported by the driver are compatible with
5692          * this AP, including verification of basic rates (mandatory) */
5693         if (!ipw_compatible_rates(priv, network, &rates)) {
5694                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5695                                 "because configured rate mask excludes "
5696                                 "AP mandatory rate.\n",
5697                                 escape_essid(network->ssid, network->ssid_len),
5698                                 MAC_ARG(network->bssid));
5699                 return 0;
5700         }
5701
5702         if (rates.num_rates == 0) {
5703                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5704                                 "because of no compatible rates.\n",
5705                                 escape_essid(network->ssid, network->ssid_len),
5706                                 MAC_ARG(network->bssid));
5707                 return 0;
5708         }
5709
5710         /* TODO: Perform any further minimal comparititive tests.  We do not
5711          * want to put too much policy logic here; intelligent scan selection
5712          * should occur within a generic IEEE 802.11 user space tool.  */
5713
5714         /* Set up 'new' AP to this network */
5715         ipw_copy_rates(&match->rates, &rates);
5716         match->network = network;
5717
5718         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5719                         escape_essid(network->ssid, network->ssid_len),
5720                         MAC_ARG(network->bssid));
5721
5722         return 1;
5723 }
5724
5725 static void ipw_adhoc_create(struct ipw_priv *priv,
5726                              struct ieee80211_network *network)
5727 {
5728         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5729         int i;
5730
5731         /*
5732          * For the purposes of scanning, we can set our wireless mode
5733          * to trigger scans across combinations of bands, but when it
5734          * comes to creating a new ad-hoc network, we have tell the FW
5735          * exactly which band to use.
5736          *
5737          * We also have the possibility of an invalid channel for the
5738          * chossen band.  Attempting to create a new ad-hoc network
5739          * with an invalid channel for wireless mode will trigger a
5740          * FW fatal error.
5741          *
5742          */
5743         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5744         case IEEE80211_52GHZ_BAND:
5745                 network->mode = IEEE_A;
5746                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5747                 BUG_ON(i == -1);
5748                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5749                         IPW_WARNING("Overriding invalid channel\n");
5750                         priv->channel = geo->a[0].channel;
5751                 }
5752                 break;
5753
5754         case IEEE80211_24GHZ_BAND:
5755                 if (priv->ieee->mode & IEEE_G)
5756                         network->mode = IEEE_G;
5757                 else
5758                         network->mode = IEEE_B;
5759                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5760                 BUG_ON(i == -1);
5761                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5762                         IPW_WARNING("Overriding invalid channel\n");
5763                         priv->channel = geo->bg[0].channel;
5764                 }
5765                 break;
5766
5767         default:
5768                 IPW_WARNING("Overriding invalid channel\n");
5769                 if (priv->ieee->mode & IEEE_A) {
5770                         network->mode = IEEE_A;
5771                         priv->channel = geo->a[0].channel;
5772                 } else if (priv->ieee->mode & IEEE_G) {
5773                         network->mode = IEEE_G;
5774                         priv->channel = geo->bg[0].channel;
5775                 } else {
5776                         network->mode = IEEE_B;
5777                         priv->channel = geo->bg[0].channel;
5778                 }
5779                 break;
5780         }
5781
5782         network->channel = priv->channel;
5783         priv->config |= CFG_ADHOC_PERSIST;
5784         ipw_create_bssid(priv, network->bssid);
5785         network->ssid_len = priv->essid_len;
5786         memcpy(network->ssid, priv->essid, priv->essid_len);
5787         memset(&network->stats, 0, sizeof(network->stats));
5788         network->capability = WLAN_CAPABILITY_IBSS;
5789         if (!(priv->config & CFG_PREAMBLE_LONG))
5790                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5791         if (priv->capability & CAP_PRIVACY_ON)
5792                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5793         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5794         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5795         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5796         memcpy(network->rates_ex,
5797                &priv->rates.supported_rates[network->rates_len],
5798                network->rates_ex_len);
5799         network->last_scanned = 0;
5800         network->flags = 0;
5801         network->last_associate = 0;
5802         network->time_stamp[0] = 0;
5803         network->time_stamp[1] = 0;
5804         network->beacon_interval = 100; /* Default */
5805         network->listen_interval = 10;  /* Default */
5806         network->atim_window = 0;       /* Default */
5807         network->wpa_ie_len = 0;
5808         network->rsn_ie_len = 0;
5809 }
5810
5811 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5812 {
5813         struct ipw_tgi_tx_key key;
5814
5815         if (!(priv->ieee->sec.flags & (1 << index)))
5816                 return;
5817
5818         key.key_id = index;
5819         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5820         key.security_type = type;
5821         key.station_index = 0;  /* always 0 for BSS */
5822         key.flags = 0;
5823         /* 0 for new key; previous value of counter (after fatal error) */
5824         key.tx_counter[0] = 0;
5825         key.tx_counter[1] = 0;
5826
5827         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5828 }
5829
5830 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5831 {
5832         struct ipw_wep_key key;
5833         int i;
5834
5835         key.cmd_id = DINO_CMD_WEP_KEY;
5836         key.seq_num = 0;
5837
5838         /* Note: AES keys cannot be set for multiple times.
5839          * Only set it at the first time. */
5840         for (i = 0; i < 4; i++) {
5841                 key.key_index = i | type;
5842                 if (!(priv->ieee->sec.flags & (1 << i))) {
5843                         key.key_size = 0;
5844                         continue;
5845                 }
5846
5847                 key.key_size = priv->ieee->sec.key_sizes[i];
5848                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5849
5850                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5851         }
5852 }
5853
5854 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5855 {
5856         if (priv->ieee->host_encrypt)
5857                 return;
5858
5859         switch (level) {
5860         case SEC_LEVEL_3:
5861                 priv->sys_config.disable_unicast_decryption = 0;
5862                 priv->ieee->host_decrypt = 0;
5863                 break;
5864         case SEC_LEVEL_2:
5865                 priv->sys_config.disable_unicast_decryption = 1;
5866                 priv->ieee->host_decrypt = 1;
5867                 break;
5868         case SEC_LEVEL_1:
5869                 priv->sys_config.disable_unicast_decryption = 0;
5870                 priv->ieee->host_decrypt = 0;
5871                 break;
5872         case SEC_LEVEL_0:
5873                 priv->sys_config.disable_unicast_decryption = 1;
5874                 break;
5875         default:
5876                 break;
5877         }
5878 }
5879
5880 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5881 {
5882         if (priv->ieee->host_encrypt)
5883                 return;
5884
5885         switch (level) {
5886         case SEC_LEVEL_3:
5887                 priv->sys_config.disable_multicast_decryption = 0;
5888                 break;
5889         case SEC_LEVEL_2:
5890                 priv->sys_config.disable_multicast_decryption = 1;
5891                 break;
5892         case SEC_LEVEL_1:
5893                 priv->sys_config.disable_multicast_decryption = 0;
5894                 break;
5895         case SEC_LEVEL_0:
5896                 priv->sys_config.disable_multicast_decryption = 1;
5897                 break;
5898         default:
5899                 break;
5900         }
5901 }
5902
5903 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5904 {
5905         switch (priv->ieee->sec.level) {
5906         case SEC_LEVEL_3:
5907                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5908                         ipw_send_tgi_tx_key(priv,
5909                                             DCT_FLAG_EXT_SECURITY_CCM,
5910                                             priv->ieee->sec.active_key);
5911
5912                 if (!priv->ieee->host_mc_decrypt)
5913                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5914                 break;
5915         case SEC_LEVEL_2:
5916                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5917                         ipw_send_tgi_tx_key(priv,
5918                                             DCT_FLAG_EXT_SECURITY_TKIP,
5919                                             priv->ieee->sec.active_key);
5920                 break;
5921         case SEC_LEVEL_1:
5922                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5923                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5924                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5925                 break;
5926         case SEC_LEVEL_0:
5927         default:
5928                 break;
5929         }
5930 }
5931
5932 static void ipw_adhoc_check(void *data)
5933 {
5934         struct ipw_priv *priv = data;
5935
5936         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5937             !(priv->config & CFG_ADHOC_PERSIST)) {
5938                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5939                           IPW_DL_STATE | IPW_DL_ASSOC,
5940                           "Missed beacon: %d - disassociate\n",
5941                           priv->missed_adhoc_beacons);
5942                 ipw_remove_current_network(priv);
5943                 ipw_disassociate(priv);
5944                 return;
5945         }
5946
5947         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5948                            priv->assoc_request.beacon_interval);
5949 }
5950
5951 static void ipw_bg_adhoc_check(void *data)
5952 {
5953         struct ipw_priv *priv = data;
5954         mutex_lock(&priv->mutex);
5955         ipw_adhoc_check(data);
5956         mutex_unlock(&priv->mutex);
5957 }
5958
5959 static void ipw_debug_config(struct ipw_priv *priv)
5960 {
5961         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5962                        "[CFG 0x%08X]\n", priv->config);
5963         if (priv->config & CFG_STATIC_CHANNEL)
5964                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5965         else
5966                 IPW_DEBUG_INFO("Channel unlocked.\n");
5967         if (priv->config & CFG_STATIC_ESSID)
5968                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5969                                escape_essid(priv->essid, priv->essid_len));
5970         else
5971                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5972         if (priv->config & CFG_STATIC_BSSID)
5973                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5974                                MAC_ARG(priv->bssid));
5975         else
5976                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5977         if (priv->capability & CAP_PRIVACY_ON)
5978                 IPW_DEBUG_INFO("PRIVACY on\n");
5979         else
5980                 IPW_DEBUG_INFO("PRIVACY off\n");
5981         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5982 }
5983
5984 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5985 {
5986         /* TODO: Verify that this works... */
5987         struct ipw_fixed_rate fr = {
5988                 .tx_rates = priv->rates_mask
5989         };
5990         u32 reg;
5991         u16 mask = 0;
5992
5993         /* Identify 'current FW band' and match it with the fixed
5994          * Tx rates */
5995
5996         switch (priv->ieee->freq_band) {
5997         case IEEE80211_52GHZ_BAND:      /* A only */
5998                 /* IEEE_A */
5999                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6000                         /* Invalid fixed rate mask */
6001                         IPW_DEBUG_WX
6002                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6003                         fr.tx_rates = 0;
6004                         break;
6005                 }
6006
6007                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6008                 break;
6009
6010         default:                /* 2.4Ghz or Mixed */
6011                 /* IEEE_B */
6012                 if (mode == IEEE_B) {
6013                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6014                                 /* Invalid fixed rate mask */
6015                                 IPW_DEBUG_WX
6016                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6017                                 fr.tx_rates = 0;
6018                         }
6019                         break;
6020                 }
6021
6022                 /* IEEE_G */
6023                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6024                                     IEEE80211_OFDM_RATES_MASK)) {
6025                         /* Invalid fixed rate mask */
6026                         IPW_DEBUG_WX
6027                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6028                         fr.tx_rates = 0;
6029                         break;
6030                 }
6031
6032                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6033                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6034                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6035                 }
6036
6037                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6038                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6039                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6040                 }
6041
6042                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6043                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6044                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6045                 }
6046
6047                 fr.tx_rates |= mask;
6048                 break;
6049         }
6050
6051         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6052         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6053 }
6054
6055 static void ipw_abort_scan(struct ipw_priv *priv)
6056 {
6057         int err;
6058
6059         if (priv->status & STATUS_SCAN_ABORTING) {
6060                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6061                 return;
6062         }
6063         priv->status |= STATUS_SCAN_ABORTING;
6064
6065         err = ipw_send_scan_abort(priv);
6066         if (err)
6067                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6068 }
6069
6070 static void ipw_add_scan_channels(struct ipw_priv *priv,
6071                                   struct ipw_scan_request_ext *scan,
6072                                   int scan_type)
6073 {
6074         int channel_index = 0;
6075         const struct ieee80211_geo *geo;
6076         int i;
6077
6078         geo = ieee80211_get_geo(priv->ieee);
6079
6080         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6081                 int start = channel_index;
6082                 for (i = 0; i < geo->a_channels; i++) {
6083                         if ((priv->status & STATUS_ASSOCIATED) &&
6084                             geo->a[i].channel == priv->channel)
6085                                 continue;
6086                         channel_index++;
6087                         scan->channels_list[channel_index] = geo->a[i].channel;
6088                         ipw_set_scan_type(scan, channel_index,
6089                                           geo->a[i].
6090                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6091                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6092                                           scan_type);
6093                 }
6094
6095                 if (start != channel_index) {
6096                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6097                             (channel_index - start);
6098                         channel_index++;
6099                 }
6100         }
6101
6102         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6103                 int start = channel_index;
6104                 if (priv->config & CFG_SPEED_SCAN) {
6105                         int index;
6106                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6107                                 /* nop out the list */
6108                                 [0] = 0
6109                         };
6110
6111                         u8 channel;
6112                         while (channel_index < IPW_SCAN_CHANNELS) {
6113                                 channel =
6114                                     priv->speed_scan[priv->speed_scan_pos];
6115                                 if (channel == 0) {
6116                                         priv->speed_scan_pos = 0;
6117                                         channel = priv->speed_scan[0];
6118                                 }
6119                                 if ((priv->status & STATUS_ASSOCIATED) &&
6120                                     channel == priv->channel) {
6121                                         priv->speed_scan_pos++;
6122                                         continue;
6123                                 }
6124
6125                                 /* If this channel has already been
6126                                  * added in scan, break from loop
6127                                  * and this will be the first channel
6128                                  * in the next scan.
6129                                  */
6130                                 if (channels[channel - 1] != 0)
6131                                         break;
6132
6133                                 channels[channel - 1] = 1;
6134                                 priv->speed_scan_pos++;
6135                                 channel_index++;
6136                                 scan->channels_list[channel_index] = channel;
6137                                 index =
6138                                     ieee80211_channel_to_index(priv->ieee, channel);
6139                                 ipw_set_scan_type(scan, channel_index,
6140                                                   geo->bg[index].
6141                                                   flags &
6142                                                   IEEE80211_CH_PASSIVE_ONLY ?
6143                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6144                                                   : scan_type);
6145                         }
6146                 } else {
6147                         for (i = 0; i < geo->bg_channels; i++) {
6148                                 if ((priv->status & STATUS_ASSOCIATED) &&
6149                                     geo->bg[i].channel == priv->channel)
6150                                         continue;
6151                                 channel_index++;
6152                                 scan->channels_list[channel_index] =
6153                                     geo->bg[i].channel;
6154                                 ipw_set_scan_type(scan, channel_index,
6155                                                   geo->bg[i].
6156                                                   flags &
6157                                                   IEEE80211_CH_PASSIVE_ONLY ?
6158                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6159                                                   : scan_type);
6160                         }
6161                 }
6162
6163                 if (start != channel_index) {
6164                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6165                             (channel_index - start);
6166                 }
6167         }
6168 }
6169
6170 static int ipw_request_scan(struct ipw_priv *priv)
6171 {
6172         struct ipw_scan_request_ext scan;
6173         int err = 0, scan_type;
6174
6175         if (!(priv->status & STATUS_INIT) ||
6176             (priv->status & STATUS_EXIT_PENDING))
6177                 return 0;
6178
6179         mutex_lock(&priv->mutex);
6180
6181         if (priv->status & STATUS_SCANNING) {
6182                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6183                 priv->status |= STATUS_SCAN_PENDING;
6184                 goto done;
6185         }
6186
6187         if (!(priv->status & STATUS_SCAN_FORCED) &&
6188             priv->status & STATUS_SCAN_ABORTING) {
6189                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6190                 priv->status |= STATUS_SCAN_PENDING;
6191                 goto done;
6192         }
6193
6194         if (priv->status & STATUS_RF_KILL_MASK) {
6195                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6196                 priv->status |= STATUS_SCAN_PENDING;
6197                 goto done;
6198         }
6199
6200         memset(&scan, 0, sizeof(scan));
6201
6202         if (priv->config & CFG_SPEED_SCAN)
6203                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6204                     cpu_to_le16(30);
6205         else
6206                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6207                     cpu_to_le16(20);
6208
6209         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6210             cpu_to_le16(20);
6211         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6212
6213         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6214
6215 #ifdef CONFIG_IPW2200_MONITOR
6216         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6217                 u8 channel;
6218                 u8 band = 0;
6219
6220                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6221                 case IEEE80211_52GHZ_BAND:
6222                         band = (u8) (IPW_A_MODE << 6) | 1;
6223                         channel = priv->channel;
6224                         break;
6225
6226                 case IEEE80211_24GHZ_BAND:
6227                         band = (u8) (IPW_B_MODE << 6) | 1;
6228                         channel = priv->channel;
6229                         break;
6230
6231                 default:
6232                         band = (u8) (IPW_B_MODE << 6) | 1;
6233                         channel = 9;
6234                         break;
6235                 }
6236
6237                 scan.channels_list[0] = band;
6238                 scan.channels_list[1] = channel;
6239                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6240
6241                 /* NOTE:  The card will sit on this channel for this time
6242                  * period.  Scan aborts are timing sensitive and frequently
6243                  * result in firmware restarts.  As such, it is best to
6244                  * set a small dwell_time here and just keep re-issuing
6245                  * scans.  Otherwise fast channel hopping will not actually
6246                  * hop channels.
6247                  *
6248                  * TODO: Move SPEED SCAN support to all modes and bands */
6249                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6250                     cpu_to_le16(2000);
6251         } else {
6252 #endif                          /* CONFIG_IPW2200_MONITOR */
6253                 /* If we are roaming, then make this a directed scan for the
6254                  * current network.  Otherwise, ensure that every other scan
6255                  * is a fast channel hop scan */
6256                 if ((priv->status & STATUS_ROAMING)
6257                     || (!(priv->status & STATUS_ASSOCIATED)
6258                         && (priv->config & CFG_STATIC_ESSID)
6259                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6260                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6261                         if (err) {
6262                                 IPW_DEBUG_HC("Attempt to send SSID command "
6263                                              "failed.\n");
6264                                 goto done;
6265                         }
6266
6267                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6268                 } else
6269                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6270
6271                 ipw_add_scan_channels(priv, &scan, scan_type);
6272 #ifdef CONFIG_IPW2200_MONITOR
6273         }
6274 #endif
6275
6276         err = ipw_send_scan_request_ext(priv, &scan);
6277         if (err) {
6278                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6279                 goto done;
6280         }
6281
6282         priv->status |= STATUS_SCANNING;
6283         priv->status &= ~STATUS_SCAN_PENDING;
6284         queue_delayed_work(priv->workqueue, &priv->scan_check,
6285                            IPW_SCAN_CHECK_WATCHDOG);
6286       done:
6287         mutex_unlock(&priv->mutex);
6288         return err;
6289 }
6290
6291 static void ipw_bg_abort_scan(void *data)
6292 {
6293         struct ipw_priv *priv = data;
6294         mutex_lock(&priv->mutex);
6295         ipw_abort_scan(data);
6296         mutex_unlock(&priv->mutex);
6297 }
6298
6299 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6300 {
6301         /* This is called when wpa_supplicant loads and closes the driver
6302          * interface. */
6303         priv->ieee->wpa_enabled = value;
6304         return 0;
6305 }
6306
6307 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6308 {
6309         struct ieee80211_device *ieee = priv->ieee;
6310         struct ieee80211_security sec = {
6311                 .flags = SEC_AUTH_MODE,
6312         };
6313         int ret = 0;
6314
6315         if (value & IW_AUTH_ALG_SHARED_KEY) {
6316                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6317                 ieee->open_wep = 0;
6318         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6319                 sec.auth_mode = WLAN_AUTH_OPEN;
6320                 ieee->open_wep = 1;
6321         } else if (value & IW_AUTH_ALG_LEAP) {
6322                 sec.auth_mode = WLAN_AUTH_LEAP;
6323                 ieee->open_wep = 1;
6324         } else
6325                 return -EINVAL;
6326
6327         if (ieee->set_security)
6328                 ieee->set_security(ieee->dev, &sec);
6329         else
6330                 ret = -EOPNOTSUPP;
6331
6332         return ret;
6333 }
6334
6335 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6336                                 int wpa_ie_len)
6337 {
6338         /* make sure WPA is enabled */
6339         ipw_wpa_enable(priv, 1);
6340 }
6341
6342 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6343                             char *capabilities, int length)
6344 {
6345         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6346
6347         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6348                                 capabilities);
6349 }
6350
6351 /*
6352  * WE-18 support
6353  */
6354
6355 /* SIOCSIWGENIE */
6356 static int ipw_wx_set_genie(struct net_device *dev,
6357                             struct iw_request_info *info,
6358                             union iwreq_data *wrqu, char *extra)
6359 {
6360         struct ipw_priv *priv = ieee80211_priv(dev);
6361         struct ieee80211_device *ieee = priv->ieee;
6362         u8 *buf;
6363         int err = 0;
6364
6365         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6366             (wrqu->data.length && extra == NULL))
6367                 return -EINVAL;
6368
6369         if (wrqu->data.length) {
6370                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6371                 if (buf == NULL) {
6372                         err = -ENOMEM;
6373                         goto out;
6374                 }
6375
6376                 memcpy(buf, extra, wrqu->data.length);
6377                 kfree(ieee->wpa_ie);
6378                 ieee->wpa_ie = buf;
6379                 ieee->wpa_ie_len = wrqu->data.length;
6380         } else {
6381                 kfree(ieee->wpa_ie);
6382                 ieee->wpa_ie = NULL;
6383                 ieee->wpa_ie_len = 0;
6384         }
6385
6386         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6387       out:
6388         return err;
6389 }
6390
6391 /* SIOCGIWGENIE */
6392 static int ipw_wx_get_genie(struct net_device *dev,
6393                             struct iw_request_info *info,
6394                             union iwreq_data *wrqu, char *extra)
6395 {
6396         struct ipw_priv *priv = ieee80211_priv(dev);
6397         struct ieee80211_device *ieee = priv->ieee;
6398         int err = 0;
6399
6400         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6401                 wrqu->data.length = 0;
6402                 goto out;
6403         }
6404
6405         if (wrqu->data.length < ieee->wpa_ie_len) {
6406                 err = -E2BIG;
6407                 goto out;
6408         }
6409
6410         wrqu->data.length = ieee->wpa_ie_len;
6411         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6412
6413       out:
6414         return err;
6415 }
6416
6417 static int wext_cipher2level(int cipher)
6418 {
6419         switch (cipher) {
6420         case IW_AUTH_CIPHER_NONE:
6421                 return SEC_LEVEL_0;
6422         case IW_AUTH_CIPHER_WEP40:
6423         case IW_AUTH_CIPHER_WEP104:
6424                 return SEC_LEVEL_1;
6425         case IW_AUTH_CIPHER_TKIP:
6426                 return SEC_LEVEL_2;
6427         case IW_AUTH_CIPHER_CCMP:
6428                 return SEC_LEVEL_3;
6429         default:
6430                 return -1;
6431         }
6432 }
6433
6434 /* SIOCSIWAUTH */
6435 static int ipw_wx_set_auth(struct net_device *dev,
6436                            struct iw_request_info *info,
6437                            union iwreq_data *wrqu, char *extra)
6438 {
6439         struct ipw_priv *priv = ieee80211_priv(dev);
6440         struct ieee80211_device *ieee = priv->ieee;
6441         struct iw_param *param = &wrqu->param;
6442         struct ieee80211_crypt_data *crypt;
6443         unsigned long flags;
6444         int ret = 0;
6445
6446         switch (param->flags & IW_AUTH_INDEX) {
6447         case IW_AUTH_WPA_VERSION:
6448                 break;
6449         case IW_AUTH_CIPHER_PAIRWISE:
6450                 ipw_set_hw_decrypt_unicast(priv,
6451                                            wext_cipher2level(param->value));
6452                 break;
6453         case IW_AUTH_CIPHER_GROUP:
6454                 ipw_set_hw_decrypt_multicast(priv,
6455                                              wext_cipher2level(param->value));
6456                 break;
6457         case IW_AUTH_KEY_MGMT:
6458                 /*
6459                  * ipw2200 does not use these parameters
6460                  */
6461                 break;
6462
6463         case IW_AUTH_TKIP_COUNTERMEASURES:
6464                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6465                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6466                         break;
6467
6468                 flags = crypt->ops->get_flags(crypt->priv);
6469
6470                 if (param->value)
6471                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6472                 else
6473                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6474
6475                 crypt->ops->set_flags(flags, crypt->priv);
6476
6477                 break;
6478
6479         case IW_AUTH_DROP_UNENCRYPTED:{
6480                         /* HACK:
6481                          *
6482                          * wpa_supplicant calls set_wpa_enabled when the driver
6483                          * is loaded and unloaded, regardless of if WPA is being
6484                          * used.  No other calls are made which can be used to
6485                          * determine if encryption will be used or not prior to
6486                          * association being expected.  If encryption is not being
6487                          * used, drop_unencrypted is set to false, else true -- we
6488                          * can use this to determine if the CAP_PRIVACY_ON bit should
6489                          * be set.
6490                          */
6491                         struct ieee80211_security sec = {
6492                                 .flags = SEC_ENABLED,
6493                                 .enabled = param->value,
6494                         };
6495                         priv->ieee->drop_unencrypted = param->value;
6496                         /* We only change SEC_LEVEL for open mode. Others
6497                          * are set by ipw_wpa_set_encryption.
6498                          */
6499                         if (!param->value) {
6500                                 sec.flags |= SEC_LEVEL;
6501                                 sec.level = SEC_LEVEL_0;
6502                         } else {
6503                                 sec.flags |= SEC_LEVEL;
6504                                 sec.level = SEC_LEVEL_1;
6505                         }
6506                         if (priv->ieee->set_security)
6507                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6508                         break;
6509                 }
6510
6511         case IW_AUTH_80211_AUTH_ALG:
6512                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6513                 break;
6514
6515         case IW_AUTH_WPA_ENABLED:
6516                 ret = ipw_wpa_enable(priv, param->value);
6517                 ipw_disassociate(priv);
6518                 break;
6519
6520         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6521                 ieee->ieee802_1x = param->value;
6522                 break;
6523
6524         case IW_AUTH_PRIVACY_INVOKED:
6525                 ieee->privacy_invoked = param->value;
6526                 break;
6527
6528         default:
6529                 return -EOPNOTSUPP;
6530         }
6531         return ret;
6532 }
6533
6534 /* SIOCGIWAUTH */
6535 static int ipw_wx_get_auth(struct net_device *dev,
6536                            struct iw_request_info *info,
6537                            union iwreq_data *wrqu, char *extra)
6538 {
6539         struct ipw_priv *priv = ieee80211_priv(dev);
6540         struct ieee80211_device *ieee = priv->ieee;
6541         struct ieee80211_crypt_data *crypt;
6542         struct iw_param *param = &wrqu->param;
6543         int ret = 0;
6544
6545         switch (param->flags & IW_AUTH_INDEX) {
6546         case IW_AUTH_WPA_VERSION:
6547         case IW_AUTH_CIPHER_PAIRWISE:
6548         case IW_AUTH_CIPHER_GROUP:
6549         case IW_AUTH_KEY_MGMT:
6550                 /*
6551                  * wpa_supplicant will control these internally
6552                  */
6553                 ret = -EOPNOTSUPP;
6554                 break;
6555
6556         case IW_AUTH_TKIP_COUNTERMEASURES:
6557                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6558                 if (!crypt || !crypt->ops->get_flags)
6559                         break;
6560
6561                 param->value = (crypt->ops->get_flags(crypt->priv) &
6562                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6563
6564                 break;
6565
6566         case IW_AUTH_DROP_UNENCRYPTED:
6567                 param->value = ieee->drop_unencrypted;
6568                 break;
6569
6570         case IW_AUTH_80211_AUTH_ALG:
6571                 param->value = ieee->sec.auth_mode;
6572                 break;
6573
6574         case IW_AUTH_WPA_ENABLED:
6575                 param->value = ieee->wpa_enabled;
6576                 break;
6577
6578         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6579                 param->value = ieee->ieee802_1x;
6580                 break;
6581
6582         case IW_AUTH_ROAMING_CONTROL:
6583         case IW_AUTH_PRIVACY_INVOKED:
6584                 param->value = ieee->privacy_invoked;
6585                 break;
6586
6587         default:
6588                 return -EOPNOTSUPP;
6589         }
6590         return 0;
6591 }
6592
6593 /* SIOCSIWENCODEEXT */
6594 static int ipw_wx_set_encodeext(struct net_device *dev,
6595                                 struct iw_request_info *info,
6596                                 union iwreq_data *wrqu, char *extra)
6597 {
6598         struct ipw_priv *priv = ieee80211_priv(dev);
6599         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6600
6601         if (hwcrypto) {
6602                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6603                         /* IPW HW can't build TKIP MIC,
6604                            host decryption still needed */
6605                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6606                                 priv->ieee->host_mc_decrypt = 1;
6607                         else {
6608                                 priv->ieee->host_encrypt = 0;
6609                                 priv->ieee->host_encrypt_msdu = 1;
6610                                 priv->ieee->host_decrypt = 1;
6611                         }
6612                 } else {
6613                         priv->ieee->host_encrypt = 0;
6614                         priv->ieee->host_encrypt_msdu = 0;
6615                         priv->ieee->host_decrypt = 0;
6616                         priv->ieee->host_mc_decrypt = 0;
6617                 }
6618         }
6619
6620         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6621 }
6622
6623 /* SIOCGIWENCODEEXT */
6624 static int ipw_wx_get_encodeext(struct net_device *dev,
6625                                 struct iw_request_info *info,
6626                                 union iwreq_data *wrqu, char *extra)
6627 {
6628         struct ipw_priv *priv = ieee80211_priv(dev);
6629         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6630 }
6631
6632 /* SIOCSIWMLME */
6633 static int ipw_wx_set_mlme(struct net_device *dev,
6634                            struct iw_request_info *info,
6635                            union iwreq_data *wrqu, char *extra)
6636 {
6637         struct ipw_priv *priv = ieee80211_priv(dev);
6638         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6639         u16 reason;
6640
6641         reason = cpu_to_le16(mlme->reason_code);
6642
6643         switch (mlme->cmd) {
6644         case IW_MLME_DEAUTH:
6645                 /* silently ignore */
6646                 break;
6647
6648         case IW_MLME_DISASSOC:
6649                 ipw_disassociate(priv);
6650                 break;
6651
6652         default:
6653                 return -EOPNOTSUPP;
6654         }
6655         return 0;
6656 }
6657
6658 #ifdef CONFIG_IPW2200_QOS
6659
6660 /* QoS */
6661 /*
6662 * get the modulation type of the current network or
6663 * the card current mode
6664 */
6665 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6666 {
6667         u8 mode = 0;
6668
6669         if (priv->status & STATUS_ASSOCIATED) {
6670                 unsigned long flags;
6671
6672                 spin_lock_irqsave(&priv->ieee->lock, flags);
6673                 mode = priv->assoc_network->mode;
6674                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6675         } else {
6676                 mode = priv->ieee->mode;
6677         }
6678         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6679         return mode;
6680 }
6681
6682 /*
6683 * Handle management frame beacon and probe response
6684 */
6685 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6686                                          int active_network,
6687                                          struct ieee80211_network *network)
6688 {
6689         u32 size = sizeof(struct ieee80211_qos_parameters);
6690
6691         if (network->capability & WLAN_CAPABILITY_IBSS)
6692                 network->qos_data.active = network->qos_data.supported;
6693
6694         if (network->flags & NETWORK_HAS_QOS_MASK) {
6695                 if (active_network &&
6696                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6697                         network->qos_data.active = network->qos_data.supported;
6698
6699                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6700                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6701                     (network->qos_data.old_param_count !=
6702                      network->qos_data.param_count)) {
6703                         network->qos_data.old_param_count =
6704                             network->qos_data.param_count;
6705                         schedule_work(&priv->qos_activate);
6706                         IPW_DEBUG_QOS("QoS parameters change call "
6707                                       "qos_activate\n");
6708                 }
6709         } else {
6710                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6711                         memcpy(&network->qos_data.parameters,
6712                                &def_parameters_CCK, size);
6713                 else
6714                         memcpy(&network->qos_data.parameters,
6715                                &def_parameters_OFDM, size);
6716
6717                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6718                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6719                         schedule_work(&priv->qos_activate);
6720                 }
6721
6722                 network->qos_data.active = 0;
6723                 network->qos_data.supported = 0;
6724         }
6725         if ((priv->status & STATUS_ASSOCIATED) &&
6726             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6727                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6728                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6729                             !(network->flags & NETWORK_EMPTY_ESSID))
6730                                 if ((network->ssid_len ==
6731                                      priv->assoc_network->ssid_len) &&
6732                                     !memcmp(network->ssid,
6733                                             priv->assoc_network->ssid,
6734                                             network->ssid_len)) {
6735                                         queue_work(priv->workqueue,
6736                                                    &priv->merge_networks);
6737                                 }
6738         }
6739
6740         return 0;
6741 }
6742
6743 /*
6744 * This function set up the firmware to support QoS. It sends
6745 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6746 */
6747 static int ipw_qos_activate(struct ipw_priv *priv,
6748                             struct ieee80211_qos_data *qos_network_data)
6749 {
6750         int err;
6751         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6752         struct ieee80211_qos_parameters *active_one = NULL;
6753         u32 size = sizeof(struct ieee80211_qos_parameters);
6754         u32 burst_duration;
6755         int i;
6756         u8 type;
6757
6758         type = ipw_qos_current_mode(priv);
6759
6760         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6761         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6762         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6763         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6764
6765         if (qos_network_data == NULL) {
6766                 if (type == IEEE_B) {
6767                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6768                         active_one = &def_parameters_CCK;
6769                 } else
6770                         active_one = &def_parameters_OFDM;
6771
6772                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6773                 burst_duration = ipw_qos_get_burst_duration(priv);
6774                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6775                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6776                             (u16) burst_duration;
6777         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6778                 if (type == IEEE_B) {
6779                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6780                                       type);
6781                         if (priv->qos_data.qos_enable == 0)
6782                                 active_one = &def_parameters_CCK;
6783                         else
6784                                 active_one = priv->qos_data.def_qos_parm_CCK;
6785                 } else {
6786                         if (priv->qos_data.qos_enable == 0)
6787                                 active_one = &def_parameters_OFDM;
6788                         else
6789                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6790                 }
6791                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6792         } else {
6793                 unsigned long flags;
6794                 int active;
6795
6796                 spin_lock_irqsave(&priv->ieee->lock, flags);
6797                 active_one = &(qos_network_data->parameters);
6798                 qos_network_data->old_param_count =
6799                     qos_network_data->param_count;
6800                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6801                 active = qos_network_data->supported;
6802                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6803
6804                 if (active == 0) {
6805                         burst_duration = ipw_qos_get_burst_duration(priv);
6806                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6807                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6808                                     tx_op_limit[i] = (u16) burst_duration;
6809                 }
6810         }
6811
6812         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6813         err = ipw_send_qos_params_command(priv,
6814                                           (struct ieee80211_qos_parameters *)
6815                                           &(qos_parameters[0]));
6816         if (err)
6817                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6818
6819         return err;
6820 }
6821
6822 /*
6823 * send IPW_CMD_WME_INFO to the firmware
6824 */
6825 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6826 {
6827         int ret = 0;
6828         struct ieee80211_qos_information_element qos_info;
6829
6830         if (priv == NULL)
6831                 return -1;
6832
6833         qos_info.elementID = QOS_ELEMENT_ID;
6834         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6835
6836         qos_info.version = QOS_VERSION_1;
6837         qos_info.ac_info = 0;
6838
6839         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6840         qos_info.qui_type = QOS_OUI_TYPE;
6841         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6842
6843         ret = ipw_send_qos_info_command(priv, &qos_info);
6844         if (ret != 0) {
6845                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6846         }
6847         return ret;
6848 }
6849
6850 /*
6851 * Set the QoS parameter with the association request structure
6852 */
6853 static int ipw_qos_association(struct ipw_priv *priv,
6854                                struct ieee80211_network *network)
6855 {
6856         int err = 0;
6857         struct ieee80211_qos_data *qos_data = NULL;
6858         struct ieee80211_qos_data ibss_data = {
6859                 .supported = 1,
6860                 .active = 1,
6861         };
6862
6863         switch (priv->ieee->iw_mode) {
6864         case IW_MODE_ADHOC:
6865                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6866
6867                 qos_data = &ibss_data;
6868                 break;
6869
6870         case IW_MODE_INFRA:
6871                 qos_data = &network->qos_data;
6872                 break;
6873
6874         default:
6875                 BUG();
6876                 break;
6877         }
6878
6879         err = ipw_qos_activate(priv, qos_data);
6880         if (err) {
6881                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6882                 return err;
6883         }
6884
6885         if (priv->qos_data.qos_enable && qos_data->supported) {
6886                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6887                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6888                 return ipw_qos_set_info_element(priv);
6889         }
6890
6891         return 0;
6892 }
6893
6894 /*
6895 * handling the beaconing responces. if we get different QoS setting
6896 * of the network from the the associated setting adjust the QoS
6897 * setting
6898 */
6899 static int ipw_qos_association_resp(struct ipw_priv *priv,
6900                                     struct ieee80211_network *network)
6901 {
6902         int ret = 0;
6903         unsigned long flags;
6904         u32 size = sizeof(struct ieee80211_qos_parameters);
6905         int set_qos_param = 0;
6906
6907         if ((priv == NULL) || (network == NULL) ||
6908             (priv->assoc_network == NULL))
6909                 return ret;
6910
6911         if (!(priv->status & STATUS_ASSOCIATED))
6912                 return ret;
6913
6914         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6915                 return ret;
6916
6917         spin_lock_irqsave(&priv->ieee->lock, flags);
6918         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6919                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6920                        sizeof(struct ieee80211_qos_data));
6921                 priv->assoc_network->qos_data.active = 1;
6922                 if ((network->qos_data.old_param_count !=
6923                      network->qos_data.param_count)) {
6924                         set_qos_param = 1;
6925                         network->qos_data.old_param_count =
6926                             network->qos_data.param_count;
6927                 }
6928
6929         } else {
6930                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6931                         memcpy(&priv->assoc_network->qos_data.parameters,
6932                                &def_parameters_CCK, size);
6933                 else
6934                         memcpy(&priv->assoc_network->qos_data.parameters,
6935                                &def_parameters_OFDM, size);
6936                 priv->assoc_network->qos_data.active = 0;
6937                 priv->assoc_network->qos_data.supported = 0;
6938                 set_qos_param = 1;
6939         }
6940
6941         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6942
6943         if (set_qos_param == 1)
6944                 schedule_work(&priv->qos_activate);
6945
6946         return ret;
6947 }
6948
6949 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6950 {
6951         u32 ret = 0;
6952
6953         if ((priv == NULL))
6954                 return 0;
6955
6956         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6957                 ret = priv->qos_data.burst_duration_CCK;
6958         else
6959                 ret = priv->qos_data.burst_duration_OFDM;
6960
6961         return ret;
6962 }
6963
6964 /*
6965 * Initialize the setting of QoS global
6966 */
6967 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6968                          int burst_enable, u32 burst_duration_CCK,
6969                          u32 burst_duration_OFDM)
6970 {
6971         priv->qos_data.qos_enable = enable;
6972
6973         if (priv->qos_data.qos_enable) {
6974                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6975                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6976                 IPW_DEBUG_QOS("QoS is enabled\n");
6977         } else {
6978                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6979                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6980                 IPW_DEBUG_QOS("QoS is not enabled\n");
6981         }
6982
6983         priv->qos_data.burst_enable = burst_enable;
6984
6985         if (burst_enable) {
6986                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6987                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6988         } else {
6989                 priv->qos_data.burst_duration_CCK = 0;
6990                 priv->qos_data.burst_duration_OFDM = 0;
6991         }
6992 }
6993
6994 /*
6995 * map the packet priority to the right TX Queue
6996 */
6997 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6998 {
6999         if (priority > 7 || !priv->qos_data.qos_enable)
7000                 priority = 0;
7001
7002         return from_priority_to_tx_queue[priority] - 1;
7003 }
7004
7005 static int ipw_is_qos_active(struct net_device *dev,
7006                              struct sk_buff *skb)
7007 {
7008         struct ipw_priv *priv = ieee80211_priv(dev);
7009         struct ieee80211_qos_data *qos_data = NULL;
7010         int active, supported;
7011         u8 *daddr = skb->data + ETH_ALEN;
7012         int unicast = !is_multicast_ether_addr(daddr);
7013
7014         if (!(priv->status & STATUS_ASSOCIATED))
7015                 return 0;
7016
7017         qos_data = &priv->assoc_network->qos_data;
7018
7019         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7020                 if (unicast == 0)
7021                         qos_data->active = 0;
7022                 else
7023                         qos_data->active = qos_data->supported;
7024         }
7025         active = qos_data->active;
7026         supported = qos_data->supported;
7027         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7028                       "unicast %d\n",
7029                       priv->qos_data.qos_enable, active, supported, unicast);
7030         if (active && priv->qos_data.qos_enable)
7031                 return 1;
7032
7033         return 0;
7034
7035 }
7036 /*
7037 * add QoS parameter to the TX command
7038 */
7039 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7040                                         u16 priority,
7041                                         struct tfd_data *tfd)
7042 {
7043         int tx_queue_id = 0;
7044
7045
7046         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7047         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7048
7049         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7050                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7051                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7052         }
7053         return 0;
7054 }
7055
7056 /*
7057 * background support to run QoS activate functionality
7058 */
7059 static void ipw_bg_qos_activate(void *data)
7060 {
7061         struct ipw_priv *priv = data;
7062
7063         if (priv == NULL)
7064                 return;
7065
7066         mutex_lock(&priv->mutex);
7067
7068         if (priv->status & STATUS_ASSOCIATED)
7069                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7070
7071         mutex_unlock(&priv->mutex);
7072 }
7073
7074 static int ipw_handle_probe_response(struct net_device *dev,
7075                                      struct ieee80211_probe_response *resp,
7076                                      struct ieee80211_network *network)
7077 {
7078         struct ipw_priv *priv = ieee80211_priv(dev);
7079         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7080                               (network == priv->assoc_network));
7081
7082         ipw_qos_handle_probe_response(priv, active_network, network);
7083
7084         return 0;
7085 }
7086
7087 static int ipw_handle_beacon(struct net_device *dev,
7088                              struct ieee80211_beacon *resp,
7089                              struct ieee80211_network *network)
7090 {
7091         struct ipw_priv *priv = ieee80211_priv(dev);
7092         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7093                               (network == priv->assoc_network));
7094
7095         ipw_qos_handle_probe_response(priv, active_network, network);
7096
7097         return 0;
7098 }
7099
7100 static int ipw_handle_assoc_response(struct net_device *dev,
7101                                      struct ieee80211_assoc_response *resp,
7102                                      struct ieee80211_network *network)
7103 {
7104         struct ipw_priv *priv = ieee80211_priv(dev);
7105         ipw_qos_association_resp(priv, network);
7106         return 0;
7107 }
7108
7109 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7110                                        *qos_param)
7111 {
7112         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7113                                 sizeof(*qos_param) * 3, qos_param);
7114 }
7115
7116 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7117                                      *qos_param)
7118 {
7119         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7120                                 qos_param);
7121 }
7122
7123 #endif                          /* CONFIG_IPW2200_QOS */
7124
7125 static int ipw_associate_network(struct ipw_priv *priv,
7126                                  struct ieee80211_network *network,
7127                                  struct ipw_supported_rates *rates, int roaming)
7128 {
7129         int err;
7130
7131         if (priv->config & CFG_FIXED_RATE)
7132                 ipw_set_fixed_rate(priv, network->mode);
7133
7134         if (!(priv->config & CFG_STATIC_ESSID)) {
7135                 priv->essid_len = min(network->ssid_len,
7136                                       (u8) IW_ESSID_MAX_SIZE);
7137                 memcpy(priv->essid, network->ssid, priv->essid_len);
7138         }
7139
7140         network->last_associate = jiffies;
7141
7142         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7143         priv->assoc_request.channel = network->channel;
7144         priv->assoc_request.auth_key = 0;
7145
7146         if ((priv->capability & CAP_PRIVACY_ON) &&
7147             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7148                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7149                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7150
7151                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7152                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7153
7154         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7155                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7156                 priv->assoc_request.auth_type = AUTH_LEAP;
7157         else
7158                 priv->assoc_request.auth_type = AUTH_OPEN;
7159
7160         if (priv->ieee->wpa_ie_len) {
7161                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7162                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7163                                  priv->ieee->wpa_ie_len);
7164         }
7165
7166         /*
7167          * It is valid for our ieee device to support multiple modes, but
7168          * when it comes to associating to a given network we have to choose
7169          * just one mode.
7170          */
7171         if (network->mode & priv->ieee->mode & IEEE_A)
7172                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7173         else if (network->mode & priv->ieee->mode & IEEE_G)
7174                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7175         else if (network->mode & priv->ieee->mode & IEEE_B)
7176                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7177
7178         priv->assoc_request.capability = network->capability;
7179         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7180             && !(priv->config & CFG_PREAMBLE_LONG)) {
7181                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7182         } else {
7183                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7184
7185                 /* Clear the short preamble if we won't be supporting it */
7186                 priv->assoc_request.capability &=
7187                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7188         }
7189
7190         /* Clear capability bits that aren't used in Ad Hoc */
7191         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7192                 priv->assoc_request.capability &=
7193                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7194
7195         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7196                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7197                         roaming ? "Rea" : "A",
7198                         escape_essid(priv->essid, priv->essid_len),
7199                         network->channel,
7200                         ipw_modes[priv->assoc_request.ieee_mode],
7201                         rates->num_rates,
7202                         (priv->assoc_request.preamble_length ==
7203                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7204                         network->capability &
7205                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7206                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7207                         priv->capability & CAP_PRIVACY_ON ?
7208                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7209                          "(open)") : "",
7210                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7211                         priv->capability & CAP_PRIVACY_ON ?
7212                         '1' + priv->ieee->sec.active_key : '.',
7213                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7214
7215         priv->assoc_request.beacon_interval = network->beacon_interval;
7216         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7217             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7218                 priv->assoc_request.assoc_type = HC_IBSS_START;
7219                 priv->assoc_request.assoc_tsf_msw = 0;
7220                 priv->assoc_request.assoc_tsf_lsw = 0;
7221         } else {
7222                 if (unlikely(roaming))
7223                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7224                 else
7225                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7226                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7227                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7228         }
7229
7230         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7231
7232         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7233                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7234                 priv->assoc_request.atim_window = network->atim_window;
7235         } else {
7236                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7237                 priv->assoc_request.atim_window = 0;
7238         }
7239
7240         priv->assoc_request.listen_interval = network->listen_interval;
7241
7242         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7243         if (err) {
7244                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7245                 return err;
7246         }
7247
7248         rates->ieee_mode = priv->assoc_request.ieee_mode;
7249         rates->purpose = IPW_RATE_CONNECT;
7250         ipw_send_supported_rates(priv, rates);
7251
7252         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7253                 priv->sys_config.dot11g_auto_detection = 1;
7254         else
7255                 priv->sys_config.dot11g_auto_detection = 0;
7256
7257         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7258                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7259         else
7260                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7261
7262         err = ipw_send_system_config(priv);
7263         if (err) {
7264                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7265                 return err;
7266         }
7267
7268         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7269         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7270         if (err) {
7271                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7272                 return err;
7273         }
7274
7275         /*
7276          * If preemption is enabled, it is possible for the association
7277          * to complete before we return from ipw_send_associate.  Therefore
7278          * we have to be sure and update our priviate data first.
7279          */
7280         priv->channel = network->channel;
7281         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7282         priv->status |= STATUS_ASSOCIATING;
7283         priv->status &= ~STATUS_SECURITY_UPDATED;
7284
7285         priv->assoc_network = network;
7286
7287 #ifdef CONFIG_IPW2200_QOS
7288         ipw_qos_association(priv, network);
7289 #endif
7290
7291         err = ipw_send_associate(priv, &priv->assoc_request);
7292         if (err) {
7293                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7294                 return err;
7295         }
7296
7297         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7298                   escape_essid(priv->essid, priv->essid_len),
7299                   MAC_ARG(priv->bssid));
7300
7301         return 0;
7302 }
7303
7304 static void ipw_roam(void *data)
7305 {
7306         struct ipw_priv *priv = data;
7307         struct ieee80211_network *network = NULL;
7308         struct ipw_network_match match = {
7309                 .network = priv->assoc_network
7310         };
7311
7312         /* The roaming process is as follows:
7313          *
7314          * 1.  Missed beacon threshold triggers the roaming process by
7315          *     setting the status ROAM bit and requesting a scan.
7316          * 2.  When the scan completes, it schedules the ROAM work
7317          * 3.  The ROAM work looks at all of the known networks for one that
7318          *     is a better network than the currently associated.  If none
7319          *     found, the ROAM process is over (ROAM bit cleared)
7320          * 4.  If a better network is found, a disassociation request is
7321          *     sent.
7322          * 5.  When the disassociation completes, the roam work is again
7323          *     scheduled.  The second time through, the driver is no longer
7324          *     associated, and the newly selected network is sent an
7325          *     association request.
7326          * 6.  At this point ,the roaming process is complete and the ROAM
7327          *     status bit is cleared.
7328          */
7329
7330         /* If we are no longer associated, and the roaming bit is no longer
7331          * set, then we are not actively roaming, so just return */
7332         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7333                 return;
7334
7335         if (priv->status & STATUS_ASSOCIATED) {
7336                 /* First pass through ROAM process -- look for a better
7337                  * network */
7338                 unsigned long flags;
7339                 u8 rssi = priv->assoc_network->stats.rssi;
7340                 priv->assoc_network->stats.rssi = -128;
7341                 spin_lock_irqsave(&priv->ieee->lock, flags);
7342                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7343                         if (network != priv->assoc_network)
7344                                 ipw_best_network(priv, &match, network, 1);
7345                 }
7346                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7347                 priv->assoc_network->stats.rssi = rssi;
7348
7349                 if (match.network == priv->assoc_network) {
7350                         IPW_DEBUG_ASSOC("No better APs in this network to "
7351                                         "roam to.\n");
7352                         priv->status &= ~STATUS_ROAMING;
7353                         ipw_debug_config(priv);
7354                         return;
7355                 }
7356
7357                 ipw_send_disassociate(priv, 1);
7358                 priv->assoc_network = match.network;
7359
7360                 return;
7361         }
7362
7363         /* Second pass through ROAM process -- request association */
7364         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7365         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7366         priv->status &= ~STATUS_ROAMING;
7367 }
7368
7369 static void ipw_bg_roam(void *data)
7370 {
7371         struct ipw_priv *priv = data;
7372         mutex_lock(&priv->mutex);
7373         ipw_roam(data);
7374         mutex_unlock(&priv->mutex);
7375 }
7376
7377 static int ipw_associate(void *data)
7378 {
7379         struct ipw_priv *priv = data;
7380
7381         struct ieee80211_network *network = NULL;
7382         struct ipw_network_match match = {
7383                 .network = NULL
7384         };
7385         struct ipw_supported_rates *rates;
7386         struct list_head *element;
7387         unsigned long flags;
7388
7389         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7390                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7391                 return 0;
7392         }
7393
7394         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7395                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7396                                 "progress)\n");
7397                 return 0;
7398         }
7399
7400         if (priv->status & STATUS_DISASSOCIATING) {
7401                 IPW_DEBUG_ASSOC("Not attempting association (in "
7402                                 "disassociating)\n ");
7403                 queue_work(priv->workqueue, &priv->associate);
7404                 return 0;
7405         }
7406
7407         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7408                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7409                                 "initialized)\n");
7410                 return 0;
7411         }
7412
7413         if (!(priv->config & CFG_ASSOCIATE) &&
7414             !(priv->config & (CFG_STATIC_ESSID |
7415                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7416                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7417                 return 0;
7418         }
7419
7420         /* Protect our use of the network_list */
7421         spin_lock_irqsave(&priv->ieee->lock, flags);
7422         list_for_each_entry(network, &priv->ieee->network_list, list)
7423             ipw_best_network(priv, &match, network, 0);
7424
7425         network = match.network;
7426         rates = &match.rates;
7427
7428         if (network == NULL &&
7429             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7430             priv->config & CFG_ADHOC_CREATE &&
7431             priv->config & CFG_STATIC_ESSID &&
7432             priv->config & CFG_STATIC_CHANNEL &&
7433             !list_empty(&priv->ieee->network_free_list)) {
7434                 element = priv->ieee->network_free_list.next;
7435                 network = list_entry(element, struct ieee80211_network, list);
7436                 ipw_adhoc_create(priv, network);
7437                 rates = &priv->rates;
7438                 list_del(element);
7439                 list_add_tail(&network->list, &priv->ieee->network_list);
7440         }
7441         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7442
7443         /* If we reached the end of the list, then we don't have any valid
7444          * matching APs */
7445         if (!network) {
7446                 ipw_debug_config(priv);
7447
7448                 if (!(priv->status & STATUS_SCANNING)) {
7449                         if (!(priv->config & CFG_SPEED_SCAN))
7450                                 queue_delayed_work(priv->workqueue,
7451                                                    &priv->request_scan,
7452                                                    SCAN_INTERVAL);
7453                         else
7454                                 queue_work(priv->workqueue,
7455                                            &priv->request_scan);
7456                 }
7457
7458                 return 0;
7459         }
7460
7461         ipw_associate_network(priv, network, rates, 0);
7462
7463         return 1;
7464 }
7465
7466 static void ipw_bg_associate(void *data)
7467 {
7468         struct ipw_priv *priv = data;
7469         mutex_lock(&priv->mutex);
7470         ipw_associate(data);
7471         mutex_unlock(&priv->mutex);
7472 }
7473
7474 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7475                                       struct sk_buff *skb)
7476 {
7477         struct ieee80211_hdr *hdr;
7478         u16 fc;
7479
7480         hdr = (struct ieee80211_hdr *)skb->data;
7481         fc = le16_to_cpu(hdr->frame_ctl);
7482         if (!(fc & IEEE80211_FCTL_PROTECTED))
7483                 return;
7484
7485         fc &= ~IEEE80211_FCTL_PROTECTED;
7486         hdr->frame_ctl = cpu_to_le16(fc);
7487         switch (priv->ieee->sec.level) {
7488         case SEC_LEVEL_3:
7489                 /* Remove CCMP HDR */
7490                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7491                         skb->data + IEEE80211_3ADDR_LEN + 8,
7492                         skb->len - IEEE80211_3ADDR_LEN - 8);
7493                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7494                 break;
7495         case SEC_LEVEL_2:
7496                 break;
7497         case SEC_LEVEL_1:
7498                 /* Remove IV */
7499                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7500                         skb->data + IEEE80211_3ADDR_LEN + 4,
7501                         skb->len - IEEE80211_3ADDR_LEN - 4);
7502                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7503                 break;
7504         case SEC_LEVEL_0:
7505                 break;
7506         default:
7507                 printk(KERN_ERR "Unknow security level %d\n",
7508                        priv->ieee->sec.level);
7509                 break;
7510         }
7511 }
7512
7513 static void ipw_handle_data_packet(struct ipw_priv *priv,
7514                                    struct ipw_rx_mem_buffer *rxb,
7515                                    struct ieee80211_rx_stats *stats)
7516 {
7517         struct ieee80211_hdr_4addr *hdr;
7518         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7519
7520         /* We received data from the HW, so stop the watchdog */
7521         priv->net_dev->trans_start = jiffies;
7522
7523         /* We only process data packets if the
7524          * interface is open */
7525         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7526                      skb_tailroom(rxb->skb))) {
7527                 priv->ieee->stats.rx_errors++;
7528                 priv->wstats.discard.misc++;
7529                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7530                 return;
7531         } else if (unlikely(!netif_running(priv->net_dev))) {
7532                 priv->ieee->stats.rx_dropped++;
7533                 priv->wstats.discard.misc++;
7534                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7535                 return;
7536         }
7537
7538         /* Advance skb->data to the start of the actual payload */
7539         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7540
7541         /* Set the size of the skb to the size of the frame */
7542         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7543
7544         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7545
7546         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7547         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7548         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7549             (is_multicast_ether_addr(hdr->addr1) ?
7550              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7551                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7552
7553         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7554                 priv->ieee->stats.rx_errors++;
7555         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7556                 rxb->skb = NULL;
7557                 __ipw_led_activity_on(priv);
7558         }
7559 }
7560
7561 #ifdef CONFIG_IPW2200_RADIOTAP
7562 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7563                                            struct ipw_rx_mem_buffer *rxb,
7564                                            struct ieee80211_rx_stats *stats)
7565 {
7566         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7567         struct ipw_rx_frame *frame = &pkt->u.frame;
7568
7569         /* initial pull of some data */
7570         u16 received_channel = frame->received_channel;
7571         u8 antennaAndPhy = frame->antennaAndPhy;
7572         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7573         u16 pktrate = frame->rate;
7574
7575         /* Magic struct that slots into the radiotap header -- no reason
7576          * to build this manually element by element, we can write it much
7577          * more efficiently than we can parse it. ORDER MATTERS HERE */
7578         struct ipw_rt_hdr *ipw_rt;
7579
7580         short len = le16_to_cpu(pkt->u.frame.length);
7581
7582         /* We received data from the HW, so stop the watchdog */
7583         priv->net_dev->trans_start = jiffies;
7584
7585         /* We only process data packets if the
7586          * interface is open */
7587         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7588                      skb_tailroom(rxb->skb))) {
7589                 priv->ieee->stats.rx_errors++;
7590                 priv->wstats.discard.misc++;
7591                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7592                 return;
7593         } else if (unlikely(!netif_running(priv->net_dev))) {
7594                 priv->ieee->stats.rx_dropped++;
7595                 priv->wstats.discard.misc++;
7596                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7597                 return;
7598         }
7599
7600         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7601          * that now */
7602         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7603                 /* FIXME: Should alloc bigger skb instead */
7604                 priv->ieee->stats.rx_dropped++;
7605                 priv->wstats.discard.misc++;
7606                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7607                 return;
7608         }
7609
7610         /* copy the frame itself */
7611         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7612                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7613
7614         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7615          * part of our real header, saves a little time.
7616          *
7617          * No longer necessary since we fill in all our data.  Purge before merging
7618          * patch officially.
7619          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7620          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7621          */
7622
7623         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7624
7625         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7626         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7627         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7628
7629         /* Big bitfield of all the fields we provide in radiotap */
7630         ipw_rt->rt_hdr.it_present =
7631             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7632              (1 << IEEE80211_RADIOTAP_TSFT) |
7633              (1 << IEEE80211_RADIOTAP_RATE) |
7634              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7635              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7636              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7637              (1 << IEEE80211_RADIOTAP_ANTENNA));
7638
7639         /* Zero the flags, we'll add to them as we go */
7640         ipw_rt->rt_flags = 0;
7641
7642         /* Convert signal to DBM */
7643         ipw_rt->rt_dbmsignal = antsignal;
7644
7645         /* Convert the channel data and set the flags */
7646         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7647         if (received_channel > 14) {    /* 802.11a */
7648                 ipw_rt->rt_chbitmask =
7649                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7650         } else if (antennaAndPhy & 32) {        /* 802.11b */
7651                 ipw_rt->rt_chbitmask =
7652                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7653         } else {                /* 802.11g */
7654                 ipw_rt->rt_chbitmask =
7655                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7656         }
7657
7658         /* set the rate in multiples of 500k/s */
7659         switch (pktrate) {
7660         case IPW_TX_RATE_1MB:
7661                 ipw_rt->rt_rate = 2;
7662                 break;
7663         case IPW_TX_RATE_2MB:
7664                 ipw_rt->rt_rate = 4;
7665                 break;
7666         case IPW_TX_RATE_5MB:
7667                 ipw_rt->rt_rate = 10;
7668                 break;
7669         case IPW_TX_RATE_6MB:
7670                 ipw_rt->rt_rate = 12;
7671                 break;
7672         case IPW_TX_RATE_9MB:
7673                 ipw_rt->rt_rate = 18;
7674                 break;
7675         case IPW_TX_RATE_11MB:
7676                 ipw_rt->rt_rate = 22;
7677                 break;
7678         case IPW_TX_RATE_12MB:
7679                 ipw_rt->rt_rate = 24;
7680                 break;
7681         case IPW_TX_RATE_18MB:
7682                 ipw_rt->rt_rate = 36;
7683                 break;
7684         case IPW_TX_RATE_24MB:
7685                 ipw_rt->rt_rate = 48;
7686                 break;
7687         case IPW_TX_RATE_36MB:
7688                 ipw_rt->rt_rate = 72;
7689                 break;
7690         case IPW_TX_RATE_48MB:
7691                 ipw_rt->rt_rate = 96;
7692                 break;
7693         case IPW_TX_RATE_54MB:
7694                 ipw_rt->rt_rate = 108;
7695                 break;
7696         default:
7697                 ipw_rt->rt_rate = 0;
7698                 break;
7699         }
7700
7701         /* antenna number */
7702         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7703
7704         /* set the preamble flag if we have it */
7705         if ((antennaAndPhy & 64))
7706                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7707
7708         /* Set the size of the skb to the size of the frame */
7709         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7710
7711         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7712
7713         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7714                 priv->ieee->stats.rx_errors++;
7715         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7716                 rxb->skb = NULL;
7717                 /* no LED during capture */
7718         }
7719 }
7720 #endif
7721
7722 #ifdef CONFIG_IPW2200_PROMISCUOUS
7723 #define ieee80211_is_probe_response(fc) \
7724    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7725     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7726
7727 #define ieee80211_is_management(fc) \
7728    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7729
7730 #define ieee80211_is_control(fc) \
7731    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7732
7733 #define ieee80211_is_data(fc) \
7734    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7735
7736 #define ieee80211_is_assoc_request(fc) \
7737    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7738
7739 #define ieee80211_is_reassoc_request(fc) \
7740    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7741
7742 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7743                                       struct ipw_rx_mem_buffer *rxb,
7744                                       struct ieee80211_rx_stats *stats)
7745 {
7746         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7747         struct ipw_rx_frame *frame = &pkt->u.frame;
7748         struct ipw_rt_hdr *ipw_rt;
7749
7750         /* First cache any information we need before we overwrite
7751          * the information provided in the skb from the hardware */
7752         struct ieee80211_hdr *hdr;
7753         u16 channel = frame->received_channel;
7754         u8 phy_flags = frame->antennaAndPhy;
7755         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7756         s8 noise = frame->noise;
7757         u8 rate = frame->rate;
7758         short len = le16_to_cpu(pkt->u.frame.length);
7759         u64 tsf = 0;
7760         struct sk_buff *skb;
7761         int hdr_only = 0;
7762         u16 filter = priv->prom_priv->filter;
7763
7764         /* If the filter is set to not include Rx frames then return */
7765         if (filter & IPW_PROM_NO_RX)
7766                 return;
7767
7768         /* We received data from the HW, so stop the watchdog */
7769         priv->prom_net_dev->trans_start = jiffies;
7770
7771         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7772                 priv->prom_priv->ieee->stats.rx_errors++;
7773                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7774                 return;
7775         }
7776
7777         /* We only process data packets if the interface is open */
7778         if (unlikely(!netif_running(priv->prom_net_dev))) {
7779                 priv->prom_priv->ieee->stats.rx_dropped++;
7780                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7781                 return;
7782         }
7783
7784         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7785          * that now */
7786         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7787                 /* FIXME: Should alloc bigger skb instead */
7788                 priv->prom_priv->ieee->stats.rx_dropped++;
7789                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7790                 return;
7791         }
7792
7793         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7794         if (ieee80211_is_management(hdr->frame_ctl)) {
7795                 if (filter & IPW_PROM_NO_MGMT)
7796                         return;
7797                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7798                         hdr_only = 1;
7799         } else if (ieee80211_is_control(hdr->frame_ctl)) {
7800                 if (filter & IPW_PROM_NO_CTL)
7801                         return;
7802                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7803                         hdr_only = 1;
7804         } else if (ieee80211_is_data(hdr->frame_ctl)) {
7805                 if (filter & IPW_PROM_NO_DATA)
7806                         return;
7807                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7808                         hdr_only = 1;
7809         }
7810
7811         /* Copy the SKB since this is for the promiscuous side */
7812         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7813         if (skb == NULL) {
7814                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7815                 return;
7816         }
7817
7818         /* copy the frame data to write after where the radiotap header goes */
7819         ipw_rt = (void *)skb->data;
7820
7821         if (hdr_only)
7822                 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7823
7824         memcpy(ipw_rt->payload, hdr, len);
7825
7826         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7827          * NOT part of our real header, saves a little time.
7828          *
7829          * No longer necessary since we fill in all our data.  Purge before
7830          * merging patch officially.
7831          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7832          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7833          */
7834
7835         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7836         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7837         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7838
7839         /* Set the size of the skb to the size of the frame */
7840         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7841
7842         /* Big bitfield of all the fields we provide in radiotap */
7843         ipw_rt->rt_hdr.it_present =
7844             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7845              (1 << IEEE80211_RADIOTAP_TSFT) |
7846              (1 << IEEE80211_RADIOTAP_RATE) |
7847              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7848              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7849              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7850              (1 << IEEE80211_RADIOTAP_ANTENNA));
7851
7852         /* Zero the flags, we'll add to them as we go */
7853         ipw_rt->rt_flags = 0;
7854
7855         ipw_rt->rt_tsf = tsf;
7856
7857         /* Convert to DBM */
7858         ipw_rt->rt_dbmsignal = signal;
7859         ipw_rt->rt_dbmnoise = noise;
7860
7861         /* Convert the channel data and set the flags */
7862         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7863         if (channel > 14) {     /* 802.11a */
7864                 ipw_rt->rt_chbitmask =
7865                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7866         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7867                 ipw_rt->rt_chbitmask =
7868                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7869         } else {                /* 802.11g */
7870                 ipw_rt->rt_chbitmask =
7871                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7872         }
7873
7874         /* set the rate in multiples of 500k/s */
7875         switch (rate) {
7876         case IPW_TX_RATE_1MB:
7877                 ipw_rt->rt_rate = 2;
7878                 break;
7879         case IPW_TX_RATE_2MB:
7880                 ipw_rt->rt_rate = 4;
7881                 break;
7882         case IPW_TX_RATE_5MB:
7883                 ipw_rt->rt_rate = 10;
7884                 break;
7885         case IPW_TX_RATE_6MB:
7886                 ipw_rt->rt_rate = 12;
7887                 break;
7888         case IPW_TX_RATE_9MB:
7889                 ipw_rt->rt_rate = 18;
7890                 break;
7891         case IPW_TX_RATE_11MB:
7892                 ipw_rt->rt_rate = 22;
7893                 break;
7894         case IPW_TX_RATE_12MB:
7895                 ipw_rt->rt_rate = 24;
7896                 break;
7897         case IPW_TX_RATE_18MB:
7898                 ipw_rt->rt_rate = 36;
7899                 break;
7900         case IPW_TX_RATE_24MB:
7901                 ipw_rt->rt_rate = 48;
7902                 break;
7903         case IPW_TX_RATE_36MB:
7904                 ipw_rt->rt_rate = 72;
7905                 break;
7906         case IPW_TX_RATE_48MB:
7907                 ipw_rt->rt_rate = 96;
7908                 break;
7909         case IPW_TX_RATE_54MB:
7910                 ipw_rt->rt_rate = 108;
7911                 break;
7912         default:
7913                 ipw_rt->rt_rate = 0;
7914                 break;
7915         }
7916
7917         /* antenna number */
7918         ipw_rt->rt_antenna = (phy_flags & 3);
7919
7920         /* set the preamble flag if we have it */
7921         if (phy_flags & (1 << 6))
7922                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7923
7924         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7925
7926         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7927                 priv->prom_priv->ieee->stats.rx_errors++;
7928                 dev_kfree_skb_any(skb);
7929         }
7930 }
7931 #endif
7932
7933 static int is_network_packet(struct ipw_priv *priv,
7934                                     struct ieee80211_hdr_4addr *header)
7935 {
7936         /* Filter incoming packets to determine if they are targetted toward
7937          * this network, discarding packets coming from ourselves */
7938         switch (priv->ieee->iw_mode) {
7939         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7940                 /* packets from our adapter are dropped (echo) */
7941                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7942                         return 0;
7943
7944                 /* {broad,multi}cast packets to our BSSID go through */
7945                 if (is_multicast_ether_addr(header->addr1))
7946                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7947
7948                 /* packets to our adapter go through */
7949                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7950                                ETH_ALEN);
7951
7952         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7953                 /* packets from our adapter are dropped (echo) */
7954                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7955                         return 0;
7956
7957                 /* {broad,multi}cast packets to our BSS go through */
7958                 if (is_multicast_ether_addr(header->addr1))
7959                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7960
7961                 /* packets to our adapter go through */
7962                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7963                                ETH_ALEN);
7964         }
7965
7966         return 1;
7967 }
7968
7969 #define IPW_PACKET_RETRY_TIME HZ
7970
7971 static  int is_duplicate_packet(struct ipw_priv *priv,
7972                                       struct ieee80211_hdr_4addr *header)
7973 {
7974         u16 sc = le16_to_cpu(header->seq_ctl);
7975         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7976         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7977         u16 *last_seq, *last_frag;
7978         unsigned long *last_time;
7979
7980         switch (priv->ieee->iw_mode) {
7981         case IW_MODE_ADHOC:
7982                 {
7983                         struct list_head *p;
7984                         struct ipw_ibss_seq *entry = NULL;
7985                         u8 *mac = header->addr2;
7986                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7987
7988                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7989                                 entry =
7990                                     list_entry(p, struct ipw_ibss_seq, list);
7991                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7992                                         break;
7993                         }
7994                         if (p == &priv->ibss_mac_hash[index]) {
7995                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7996                                 if (!entry) {
7997                                         IPW_ERROR
7998                                             ("Cannot malloc new mac entry\n");
7999                                         return 0;
8000                                 }
8001                                 memcpy(entry->mac, mac, ETH_ALEN);
8002                                 entry->seq_num = seq;
8003                                 entry->frag_num = frag;
8004                                 entry->packet_time = jiffies;
8005                                 list_add(&entry->list,
8006                                          &priv->ibss_mac_hash[index]);
8007                                 return 0;
8008                         }
8009                         last_seq = &entry->seq_num;
8010                         last_frag = &entry->frag_num;
8011                         last_time = &entry->packet_time;
8012                         break;
8013                 }
8014         case IW_MODE_INFRA:
8015                 last_seq = &priv->last_seq_num;
8016                 last_frag = &priv->last_frag_num;
8017                 last_time = &priv->last_packet_time;
8018                 break;
8019         default:
8020                 return 0;
8021         }
8022         if ((*last_seq == seq) &&
8023             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8024                 if (*last_frag == frag)
8025                         goto drop;
8026                 if (*last_frag + 1 != frag)
8027                         /* out-of-order fragment */
8028                         goto drop;
8029         } else
8030                 *last_seq = seq;
8031
8032         *last_frag = frag;
8033         *last_time = jiffies;
8034         return 0;
8035
8036       drop:
8037         /* Comment this line now since we observed the card receives
8038          * duplicate packets but the FCTL_RETRY bit is not set in the
8039          * IBSS mode with fragmentation enabled.
8040          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8041         return 1;
8042 }
8043
8044 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8045                                    struct ipw_rx_mem_buffer *rxb,
8046                                    struct ieee80211_rx_stats *stats)
8047 {
8048         struct sk_buff *skb = rxb->skb;
8049         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8050         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8051             (skb->data + IPW_RX_FRAME_SIZE);
8052
8053         ieee80211_rx_mgt(priv->ieee, header, stats);
8054
8055         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8056             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8057               IEEE80211_STYPE_PROBE_RESP) ||
8058              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8059               IEEE80211_STYPE_BEACON))) {
8060                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8061                         ipw_add_station(priv, header->addr2);
8062         }
8063
8064         if (priv->config & CFG_NET_STATS) {
8065                 IPW_DEBUG_HC("sending stat packet\n");
8066
8067                 /* Set the size of the skb to the size of the full
8068                  * ipw header and 802.11 frame */
8069                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8070                         IPW_RX_FRAME_SIZE);
8071
8072                 /* Advance past the ipw packet header to the 802.11 frame */
8073                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8074
8075                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8076                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8077
8078                 skb->dev = priv->ieee->dev;
8079
8080                 /* Point raw at the ieee80211_stats */
8081                 skb->mac.raw = skb->data;
8082
8083                 skb->pkt_type = PACKET_OTHERHOST;
8084                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8085                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8086                 netif_rx(skb);
8087                 rxb->skb = NULL;
8088         }
8089 }
8090
8091 /*
8092  * Main entry function for recieving a packet with 80211 headers.  This
8093  * should be called when ever the FW has notified us that there is a new
8094  * skb in the recieve queue.
8095  */
8096 static void ipw_rx(struct ipw_priv *priv)
8097 {
8098         struct ipw_rx_mem_buffer *rxb;
8099         struct ipw_rx_packet *pkt;
8100         struct ieee80211_hdr_4addr *header;
8101         u32 r, w, i;
8102         u8 network_packet;
8103
8104         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8105         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8106         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8107
8108         while (i != r) {
8109                 rxb = priv->rxq->queue[i];
8110                 if (unlikely(rxb == NULL)) {
8111                         printk(KERN_CRIT "Queue not allocated!\n");
8112                         break;
8113                 }
8114                 priv->rxq->queue[i] = NULL;
8115
8116                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8117                                             IPW_RX_BUF_SIZE,
8118                                             PCI_DMA_FROMDEVICE);
8119
8120                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8121                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8122                              pkt->header.message_type,
8123                              pkt->header.rx_seq_num, pkt->header.control_bits);
8124
8125                 switch (pkt->header.message_type) {
8126                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8127                                 struct ieee80211_rx_stats stats = {
8128                                         .rssi =
8129                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8130                                             IPW_RSSI_TO_DBM,
8131                                         .signal =
8132                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8133                                             IPW_RSSI_TO_DBM + 0x100,
8134                                         .noise =
8135                                             le16_to_cpu(pkt->u.frame.noise),
8136                                         .rate = pkt->u.frame.rate,
8137                                         .mac_time = jiffies,
8138                                         .received_channel =
8139                                             pkt->u.frame.received_channel,
8140                                         .freq =
8141                                             (pkt->u.frame.
8142                                              control & (1 << 0)) ?
8143                                             IEEE80211_24GHZ_BAND :
8144                                             IEEE80211_52GHZ_BAND,
8145                                         .len = le16_to_cpu(pkt->u.frame.length),
8146                                 };
8147
8148                                 if (stats.rssi != 0)
8149                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8150                                 if (stats.signal != 0)
8151                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8152                                 if (stats.noise != 0)
8153                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8154                                 if (stats.rate != 0)
8155                                         stats.mask |= IEEE80211_STATMASK_RATE;
8156
8157                                 priv->rx_packets++;
8158
8159 #ifdef CONFIG_IPW2200_PROMISCUOUS
8160         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8161                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8162 #endif
8163
8164 #ifdef CONFIG_IPW2200_MONITOR
8165                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8166 #ifdef CONFIG_IPW2200_RADIOTAP
8167
8168                 ipw_handle_data_packet_monitor(priv,
8169                                                rxb,
8170                                                &stats);
8171 #else
8172                 ipw_handle_data_packet(priv, rxb,
8173                                        &stats);
8174 #endif
8175                                         break;
8176                                 }
8177 #endif
8178
8179                                 header =
8180                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8181                                                                    data +
8182                                                                    IPW_RX_FRAME_SIZE);
8183                                 /* TODO: Check Ad-Hoc dest/source and make sure
8184                                  * that we are actually parsing these packets
8185                                  * correctly -- we should probably use the
8186                                  * frame control of the packet and disregard
8187                                  * the current iw_mode */
8188
8189                                 network_packet =
8190                                     is_network_packet(priv, header);
8191                                 if (network_packet && priv->assoc_network) {
8192                                         priv->assoc_network->stats.rssi =
8193                                             stats.rssi;
8194                                         priv->exp_avg_rssi =
8195                                             exponential_average(priv->exp_avg_rssi,
8196                                             stats.rssi, DEPTH_RSSI);
8197                                 }
8198
8199                                 IPW_DEBUG_RX("Frame: len=%u\n",
8200                                              le16_to_cpu(pkt->u.frame.length));
8201
8202                                 if (le16_to_cpu(pkt->u.frame.length) <
8203                                     ieee80211_get_hdrlen(le16_to_cpu(
8204                                                     header->frame_ctl))) {
8205                                         IPW_DEBUG_DROP
8206                                             ("Received packet is too small. "
8207                                              "Dropping.\n");
8208                                         priv->ieee->stats.rx_errors++;
8209                                         priv->wstats.discard.misc++;
8210                                         break;
8211                                 }
8212
8213                                 switch (WLAN_FC_GET_TYPE
8214                                         (le16_to_cpu(header->frame_ctl))) {
8215
8216                                 case IEEE80211_FTYPE_MGMT:
8217                                         ipw_handle_mgmt_packet(priv, rxb,
8218                                                                &stats);
8219                                         break;
8220
8221                                 case IEEE80211_FTYPE_CTL:
8222                                         break;
8223
8224                                 case IEEE80211_FTYPE_DATA:
8225                                         if (unlikely(!network_packet ||
8226                                                      is_duplicate_packet(priv,
8227                                                                          header)))
8228                                         {
8229                                                 IPW_DEBUG_DROP("Dropping: "
8230                                                                MAC_FMT ", "
8231                                                                MAC_FMT ", "
8232                                                                MAC_FMT "\n",
8233                                                                MAC_ARG(header->
8234                                                                        addr1),
8235                                                                MAC_ARG(header->
8236                                                                        addr2),
8237                                                                MAC_ARG(header->
8238                                                                        addr3));
8239                                                 break;
8240                                         }
8241
8242                                         ipw_handle_data_packet(priv, rxb,
8243                                                                &stats);
8244
8245                                         break;
8246                                 }
8247                                 break;
8248                         }
8249
8250                 case RX_HOST_NOTIFICATION_TYPE:{
8251                                 IPW_DEBUG_RX
8252                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8253                                      pkt->u.notification.subtype,
8254                                      pkt->u.notification.flags,
8255                                      pkt->u.notification.size);
8256                                 ipw_rx_notification(priv, &pkt->u.notification);
8257                                 break;
8258                         }
8259
8260                 default:
8261                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8262                                      pkt->header.message_type);
8263                         break;
8264                 }
8265
8266                 /* For now we just don't re-use anything.  We can tweak this
8267                  * later to try and re-use notification packets and SKBs that
8268                  * fail to Rx correctly */
8269                 if (rxb->skb != NULL) {
8270                         dev_kfree_skb_any(rxb->skb);
8271                         rxb->skb = NULL;
8272                 }
8273
8274                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8275                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8276                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8277
8278                 i = (i + 1) % RX_QUEUE_SIZE;
8279         }
8280
8281         /* Backtrack one entry */
8282         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8283
8284         ipw_rx_queue_restock(priv);
8285 }
8286
8287 #define DEFAULT_RTS_THRESHOLD     2304U
8288 #define MIN_RTS_THRESHOLD         1U
8289 #define MAX_RTS_THRESHOLD         2304U
8290 #define DEFAULT_BEACON_INTERVAL   100U
8291 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8292 #define DEFAULT_LONG_RETRY_LIMIT  4U
8293
8294 /**
8295  * ipw_sw_reset
8296  * @option: options to control different reset behaviour
8297  *          0 = reset everything except the 'disable' module_param
8298  *          1 = reset everything and print out driver info (for probe only)
8299  *          2 = reset everything
8300  */
8301 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8302 {
8303         int band, modulation;
8304         int old_mode = priv->ieee->iw_mode;
8305
8306         /* Initialize module parameter values here */
8307         priv->config = 0;
8308
8309         /* We default to disabling the LED code as right now it causes
8310          * too many systems to lock up... */
8311         if (!led)
8312                 priv->config |= CFG_NO_LED;
8313
8314         if (associate)
8315                 priv->config |= CFG_ASSOCIATE;
8316         else
8317                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8318
8319         if (auto_create)
8320                 priv->config |= CFG_ADHOC_CREATE;
8321         else
8322                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8323
8324         priv->config &= ~CFG_STATIC_ESSID;
8325         priv->essid_len = 0;
8326         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8327
8328         if (disable && option) {
8329                 priv->status |= STATUS_RF_KILL_SW;
8330                 IPW_DEBUG_INFO("Radio disabled.\n");
8331         }
8332
8333         if (channel != 0) {
8334                 priv->config |= CFG_STATIC_CHANNEL;
8335                 priv->channel = channel;
8336                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8337                 /* TODO: Validate that provided channel is in range */
8338         }
8339 #ifdef CONFIG_IPW2200_QOS
8340         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8341                      burst_duration_CCK, burst_duration_OFDM);
8342 #endif                          /* CONFIG_IPW2200_QOS */
8343
8344         switch (mode) {
8345         case 1:
8346                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8347                 priv->net_dev->type = ARPHRD_ETHER;
8348
8349                 break;
8350 #ifdef CONFIG_IPW2200_MONITOR
8351         case 2:
8352                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8353 #ifdef CONFIG_IPW2200_RADIOTAP
8354                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8355 #else
8356                 priv->net_dev->type = ARPHRD_IEEE80211;
8357 #endif
8358                 break;
8359 #endif
8360         default:
8361         case 0:
8362                 priv->net_dev->type = ARPHRD_ETHER;
8363                 priv->ieee->iw_mode = IW_MODE_INFRA;
8364                 break;
8365         }
8366
8367         if (hwcrypto) {
8368                 priv->ieee->host_encrypt = 0;
8369                 priv->ieee->host_encrypt_msdu = 0;
8370                 priv->ieee->host_decrypt = 0;
8371                 priv->ieee->host_mc_decrypt = 0;
8372         }
8373         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8374
8375         /* IPW2200/2915 is abled to do hardware fragmentation. */
8376         priv->ieee->host_open_frag = 0;
8377
8378         if ((priv->pci_dev->device == 0x4223) ||
8379             (priv->pci_dev->device == 0x4224)) {
8380                 if (option == 1)
8381                         printk(KERN_INFO DRV_NAME
8382                                ": Detected Intel PRO/Wireless 2915ABG Network "
8383                                "Connection\n");
8384                 priv->ieee->abg_true = 1;
8385                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8386                 modulation = IEEE80211_OFDM_MODULATION |
8387                     IEEE80211_CCK_MODULATION;
8388                 priv->adapter = IPW_2915ABG;
8389                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8390         } else {
8391                 if (option == 1)
8392                         printk(KERN_INFO DRV_NAME
8393                                ": Detected Intel PRO/Wireless 2200BG Network "
8394                                "Connection\n");
8395
8396                 priv->ieee->abg_true = 0;
8397                 band = IEEE80211_24GHZ_BAND;
8398                 modulation = IEEE80211_OFDM_MODULATION |
8399                     IEEE80211_CCK_MODULATION;
8400                 priv->adapter = IPW_2200BG;
8401                 priv->ieee->mode = IEEE_G | IEEE_B;
8402         }
8403
8404         priv->ieee->freq_band = band;
8405         priv->ieee->modulation = modulation;
8406
8407         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8408
8409         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8410         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8411
8412         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8413         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8414         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8415
8416         /* If power management is turned on, default to AC mode */
8417         priv->power_mode = IPW_POWER_AC;
8418         priv->tx_power = IPW_TX_POWER_DEFAULT;
8419
8420         return old_mode == priv->ieee->iw_mode;
8421 }
8422
8423 /*
8424  * This file defines the Wireless Extension handlers.  It does not
8425  * define any methods of hardware manipulation and relies on the
8426  * functions defined in ipw_main to provide the HW interaction.
8427  *
8428  * The exception to this is the use of the ipw_get_ordinal()
8429  * function used to poll the hardware vs. making unecessary calls.
8430  *
8431  */
8432
8433 static int ipw_wx_get_name(struct net_device *dev,
8434                            struct iw_request_info *info,
8435                            union iwreq_data *wrqu, char *extra)
8436 {
8437         struct ipw_priv *priv = ieee80211_priv(dev);
8438         mutex_lock(&priv->mutex);
8439         if (priv->status & STATUS_RF_KILL_MASK)
8440                 strcpy(wrqu->name, "radio off");
8441         else if (!(priv->status & STATUS_ASSOCIATED))
8442                 strcpy(wrqu->name, "unassociated");
8443         else
8444                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8445                          ipw_modes[priv->assoc_request.ieee_mode]);
8446         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8447         mutex_unlock(&priv->mutex);
8448         return 0;
8449 }
8450
8451 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8452 {
8453         if (channel == 0) {
8454                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8455                 priv->config &= ~CFG_STATIC_CHANNEL;
8456                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8457                                 "parameters.\n");
8458                 ipw_associate(priv);
8459                 return 0;
8460         }
8461
8462         priv->config |= CFG_STATIC_CHANNEL;
8463
8464         if (priv->channel == channel) {
8465                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8466                                channel);
8467                 return 0;
8468         }
8469
8470         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8471         priv->channel = channel;
8472
8473 #ifdef CONFIG_IPW2200_MONITOR
8474         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8475                 int i;
8476                 if (priv->status & STATUS_SCANNING) {
8477                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8478                                        "channel change.\n");
8479                         ipw_abort_scan(priv);
8480                 }
8481
8482                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8483                         udelay(10);
8484
8485                 if (priv->status & STATUS_SCANNING)
8486                         IPW_DEBUG_SCAN("Still scanning...\n");
8487                 else
8488                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8489                                        1000 - i);
8490
8491                 return 0;
8492         }
8493 #endif                          /* CONFIG_IPW2200_MONITOR */
8494
8495         /* Network configuration changed -- force [re]association */
8496         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8497         if (!ipw_disassociate(priv))
8498                 ipw_associate(priv);
8499
8500         return 0;
8501 }
8502
8503 static int ipw_wx_set_freq(struct net_device *dev,
8504                            struct iw_request_info *info,
8505                            union iwreq_data *wrqu, char *extra)
8506 {
8507         struct ipw_priv *priv = ieee80211_priv(dev);
8508         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8509         struct iw_freq *fwrq = &wrqu->freq;
8510         int ret = 0, i;
8511         u8 channel, flags;
8512         int band;
8513
8514         if (fwrq->m == 0) {
8515                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8516                 mutex_lock(&priv->mutex);
8517                 ret = ipw_set_channel(priv, 0);
8518                 mutex_unlock(&priv->mutex);
8519                 return ret;
8520         }
8521         /* if setting by freq convert to channel */
8522         if (fwrq->e == 1) {
8523                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8524                 if (channel == 0)
8525                         return -EINVAL;
8526         } else
8527                 channel = fwrq->m;
8528
8529         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8530                 return -EINVAL;
8531
8532         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8533                 i = ieee80211_channel_to_index(priv->ieee, channel);
8534                 if (i == -1)
8535                         return -EINVAL;
8536
8537                 flags = (band == IEEE80211_24GHZ_BAND) ?
8538                     geo->bg[i].flags : geo->a[i].flags;
8539                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8540                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8541                         return -EINVAL;
8542                 }
8543         }
8544
8545         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8546         mutex_lock(&priv->mutex);
8547         ret = ipw_set_channel(priv, channel);
8548         mutex_unlock(&priv->mutex);
8549         return ret;
8550 }
8551
8552 static int ipw_wx_get_freq(struct net_device *dev,
8553                            struct iw_request_info *info,
8554                            union iwreq_data *wrqu, char *extra)
8555 {
8556         struct ipw_priv *priv = ieee80211_priv(dev);
8557
8558         wrqu->freq.e = 0;
8559
8560         /* If we are associated, trying to associate, or have a statically
8561          * configured CHANNEL then return that; otherwise return ANY */
8562         mutex_lock(&priv->mutex);
8563         if (priv->config & CFG_STATIC_CHANNEL ||
8564             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8565                 int i;
8566
8567                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8568                 BUG_ON(i == -1);
8569                 wrqu->freq.e = 1;
8570
8571                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8572                 case IEEE80211_52GHZ_BAND:
8573                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8574                         break;
8575
8576                 case IEEE80211_24GHZ_BAND:
8577                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8578                         break;
8579
8580                 default:
8581                         BUG();
8582                 }
8583         } else
8584                 wrqu->freq.m = 0;
8585
8586         mutex_unlock(&priv->mutex);
8587         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8588         return 0;
8589 }
8590
8591 static int ipw_wx_set_mode(struct net_device *dev,
8592                            struct iw_request_info *info,
8593                            union iwreq_data *wrqu, char *extra)
8594 {
8595         struct ipw_priv *priv = ieee80211_priv(dev);
8596         int err = 0;
8597
8598         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8599
8600         switch (wrqu->mode) {
8601 #ifdef CONFIG_IPW2200_MONITOR
8602         case IW_MODE_MONITOR:
8603 #endif
8604         case IW_MODE_ADHOC:
8605         case IW_MODE_INFRA:
8606                 break;
8607         case IW_MODE_AUTO:
8608                 wrqu->mode = IW_MODE_INFRA;
8609                 break;
8610         default:
8611                 return -EINVAL;
8612         }
8613         if (wrqu->mode == priv->ieee->iw_mode)
8614                 return 0;
8615
8616         mutex_lock(&priv->mutex);
8617
8618         ipw_sw_reset(priv, 0);
8619
8620 #ifdef CONFIG_IPW2200_MONITOR
8621         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8622                 priv->net_dev->type = ARPHRD_ETHER;
8623
8624         if (wrqu->mode == IW_MODE_MONITOR)
8625 #ifdef CONFIG_IPW2200_RADIOTAP
8626                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8627 #else
8628                 priv->net_dev->type = ARPHRD_IEEE80211;
8629 #endif
8630 #endif                          /* CONFIG_IPW2200_MONITOR */
8631
8632         /* Free the existing firmware and reset the fw_loaded
8633          * flag so ipw_load() will bring in the new firmawre */
8634         free_firmware();
8635
8636         priv->ieee->iw_mode = wrqu->mode;
8637
8638         queue_work(priv->workqueue, &priv->adapter_restart);
8639         mutex_unlock(&priv->mutex);
8640         return err;
8641 }
8642
8643 static int ipw_wx_get_mode(struct net_device *dev,
8644                            struct iw_request_info *info,
8645                            union iwreq_data *wrqu, char *extra)
8646 {
8647         struct ipw_priv *priv = ieee80211_priv(dev);
8648         mutex_lock(&priv->mutex);
8649         wrqu->mode = priv->ieee->iw_mode;
8650         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8651         mutex_unlock(&priv->mutex);
8652         return 0;
8653 }
8654
8655 /* Values are in microsecond */
8656 static const s32 timeout_duration[] = {
8657         350000,
8658         250000,
8659         75000,
8660         37000,
8661         25000,
8662 };
8663
8664 static const s32 period_duration[] = {
8665         400000,
8666         700000,
8667         1000000,
8668         1000000,
8669         1000000
8670 };
8671
8672 static int ipw_wx_get_range(struct net_device *dev,
8673                             struct iw_request_info *info,
8674                             union iwreq_data *wrqu, char *extra)
8675 {
8676         struct ipw_priv *priv = ieee80211_priv(dev);
8677         struct iw_range *range = (struct iw_range *)extra;
8678         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8679         int i = 0, j;
8680
8681         wrqu->data.length = sizeof(*range);
8682         memset(range, 0, sizeof(*range));
8683
8684         /* 54Mbs == ~27 Mb/s real (802.11g) */
8685         range->throughput = 27 * 1000 * 1000;
8686
8687         range->max_qual.qual = 100;
8688         /* TODO: Find real max RSSI and stick here */
8689         range->max_qual.level = 0;
8690         range->max_qual.noise = 0;
8691         range->max_qual.updated = 7;    /* Updated all three */
8692
8693         range->avg_qual.qual = 70;
8694         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8695         range->avg_qual.level = 0;      /* FIXME to real average level */
8696         range->avg_qual.noise = 0;
8697         range->avg_qual.updated = 7;    /* Updated all three */
8698         mutex_lock(&priv->mutex);
8699         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8700
8701         for (i = 0; i < range->num_bitrates; i++)
8702                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8703                     500000;
8704
8705         range->max_rts = DEFAULT_RTS_THRESHOLD;
8706         range->min_frag = MIN_FRAG_THRESHOLD;
8707         range->max_frag = MAX_FRAG_THRESHOLD;
8708
8709         range->encoding_size[0] = 5;
8710         range->encoding_size[1] = 13;
8711         range->num_encoding_sizes = 2;
8712         range->max_encoding_tokens = WEP_KEYS;
8713
8714         /* Set the Wireless Extension versions */
8715         range->we_version_compiled = WIRELESS_EXT;
8716         range->we_version_source = 18;
8717
8718         i = 0;
8719         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8720                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8721                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8722                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8723                                 continue;
8724
8725                         range->freq[i].i = geo->bg[j].channel;
8726                         range->freq[i].m = geo->bg[j].freq * 100000;
8727                         range->freq[i].e = 1;
8728                         i++;
8729                 }
8730         }
8731
8732         if (priv->ieee->mode & IEEE_A) {
8733                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8734                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8735                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8736                                 continue;
8737
8738                         range->freq[i].i = geo->a[j].channel;
8739                         range->freq[i].m = geo->a[j].freq * 100000;
8740                         range->freq[i].e = 1;
8741                         i++;
8742                 }
8743         }
8744
8745         range->num_channels = i;
8746         range->num_frequency = i;
8747
8748         mutex_unlock(&priv->mutex);
8749
8750         /* Event capability (kernel + driver) */
8751         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8752                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8753                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8754                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8755         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8756
8757         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8758                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8759
8760         IPW_DEBUG_WX("GET Range\n");
8761         return 0;
8762 }
8763
8764 static int ipw_wx_set_wap(struct net_device *dev,
8765                           struct iw_request_info *info,
8766                           union iwreq_data *wrqu, char *extra)
8767 {
8768         struct ipw_priv *priv = ieee80211_priv(dev);
8769
8770         static const unsigned char any[] = {
8771                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8772         };
8773         static const unsigned char off[] = {
8774                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8775         };
8776
8777         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8778                 return -EINVAL;
8779         mutex_lock(&priv->mutex);
8780         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8781             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8782                 /* we disable mandatory BSSID association */
8783                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8784                 priv->config &= ~CFG_STATIC_BSSID;
8785                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8786                                 "parameters.\n");
8787                 ipw_associate(priv);
8788                 mutex_unlock(&priv->mutex);
8789                 return 0;
8790         }
8791
8792         priv->config |= CFG_STATIC_BSSID;
8793         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8794                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8795                 mutex_unlock(&priv->mutex);
8796                 return 0;
8797         }
8798
8799         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8800                      MAC_ARG(wrqu->ap_addr.sa_data));
8801
8802         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8803
8804         /* Network configuration changed -- force [re]association */
8805         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8806         if (!ipw_disassociate(priv))
8807                 ipw_associate(priv);
8808
8809         mutex_unlock(&priv->mutex);
8810         return 0;
8811 }
8812
8813 static int ipw_wx_get_wap(struct net_device *dev,
8814                           struct iw_request_info *info,
8815                           union iwreq_data *wrqu, char *extra)
8816 {
8817         struct ipw_priv *priv = ieee80211_priv(dev);
8818         /* If we are associated, trying to associate, or have a statically
8819          * configured BSSID then return that; otherwise return ANY */
8820         mutex_lock(&priv->mutex);
8821         if (priv->config & CFG_STATIC_BSSID ||
8822             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8823                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8824                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8825         } else
8826                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8827
8828         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8829                      MAC_ARG(wrqu->ap_addr.sa_data));
8830         mutex_unlock(&priv->mutex);
8831         return 0;
8832 }
8833
8834 static int ipw_wx_set_essid(struct net_device *dev,
8835                             struct iw_request_info *info,
8836                             union iwreq_data *wrqu, char *extra)
8837 {
8838         struct ipw_priv *priv = ieee80211_priv(dev);
8839         int length;
8840
8841         mutex_lock(&priv->mutex);
8842
8843         if (!wrqu->essid.flags)
8844         {
8845                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8846                 ipw_disassociate(priv);
8847                 priv->config &= ~CFG_STATIC_ESSID;
8848                 ipw_associate(priv);
8849                 mutex_unlock(&priv->mutex);
8850                 return 0;
8851         }
8852
8853         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8854         if (!extra[length - 1])
8855                 length--;
8856
8857         priv->config |= CFG_STATIC_ESSID;
8858
8859         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8860             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8861                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8862                 mutex_unlock(&priv->mutex);
8863                 return 0;
8864         }
8865
8866         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8867                      length);
8868
8869         priv->essid_len = length;
8870         memcpy(priv->essid, extra, priv->essid_len);
8871
8872         /* Network configuration changed -- force [re]association */
8873         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8874         if (!ipw_disassociate(priv))
8875                 ipw_associate(priv);
8876
8877         mutex_unlock(&priv->mutex);
8878         return 0;
8879 }
8880
8881 static int ipw_wx_get_essid(struct net_device *dev,
8882                             struct iw_request_info *info,
8883                             union iwreq_data *wrqu, char *extra)
8884 {
8885         struct ipw_priv *priv = ieee80211_priv(dev);
8886
8887         /* If we are associated, trying to associate, or have a statically
8888          * configured ESSID then return that; otherwise return ANY */
8889         mutex_lock(&priv->mutex);
8890         if (priv->config & CFG_STATIC_ESSID ||
8891             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8892                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8893                              escape_essid(priv->essid, priv->essid_len));
8894                 memcpy(extra, priv->essid, priv->essid_len);
8895                 wrqu->essid.length = priv->essid_len;
8896                 wrqu->essid.flags = 1;  /* active */
8897         } else {
8898                 IPW_DEBUG_WX("Getting essid: ANY\n");
8899                 wrqu->essid.length = 0;
8900                 wrqu->essid.flags = 0;  /* active */
8901         }
8902         mutex_unlock(&priv->mutex);
8903         return 0;
8904 }
8905
8906 static int ipw_wx_set_nick(struct net_device *dev,
8907                            struct iw_request_info *info,
8908                            union iwreq_data *wrqu, char *extra)
8909 {
8910         struct ipw_priv *priv = ieee80211_priv(dev);
8911
8912         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8913         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8914                 return -E2BIG;
8915         mutex_lock(&priv->mutex);
8916         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8917         memset(priv->nick, 0, sizeof(priv->nick));
8918         memcpy(priv->nick, extra, wrqu->data.length);
8919         IPW_DEBUG_TRACE("<<\n");
8920         mutex_unlock(&priv->mutex);
8921         return 0;
8922
8923 }
8924
8925 static int ipw_wx_get_nick(struct net_device *dev,
8926                            struct iw_request_info *info,
8927                            union iwreq_data *wrqu, char *extra)
8928 {
8929         struct ipw_priv *priv = ieee80211_priv(dev);
8930         IPW_DEBUG_WX("Getting nick\n");
8931         mutex_lock(&priv->mutex);
8932         wrqu->data.length = strlen(priv->nick) + 1;
8933         memcpy(extra, priv->nick, wrqu->data.length);
8934         wrqu->data.flags = 1;   /* active */
8935         mutex_unlock(&priv->mutex);
8936         return 0;
8937 }
8938
8939 static int ipw_wx_set_sens(struct net_device *dev,
8940                             struct iw_request_info *info,
8941                             union iwreq_data *wrqu, char *extra)
8942 {
8943         struct ipw_priv *priv = ieee80211_priv(dev);
8944         int err = 0;
8945
8946         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8947         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8948         mutex_lock(&priv->mutex);
8949
8950         if (wrqu->sens.fixed == 0)
8951         {
8952                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8953                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8954                 goto out;
8955         }
8956         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8957             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8958                 err = -EINVAL;
8959                 goto out;
8960         }
8961
8962         priv->roaming_threshold = wrqu->sens.value;
8963         priv->disassociate_threshold = 3*wrqu->sens.value;
8964       out:
8965         mutex_unlock(&priv->mutex);
8966         return err;
8967 }
8968
8969 static int ipw_wx_get_sens(struct net_device *dev,
8970                             struct iw_request_info *info,
8971                             union iwreq_data *wrqu, char *extra)
8972 {
8973         struct ipw_priv *priv = ieee80211_priv(dev);
8974         mutex_lock(&priv->mutex);
8975         wrqu->sens.fixed = 1;
8976         wrqu->sens.value = priv->roaming_threshold;
8977         mutex_unlock(&priv->mutex);
8978
8979         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8980                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8981
8982         return 0;
8983 }
8984
8985 static int ipw_wx_set_rate(struct net_device *dev,
8986                            struct iw_request_info *info,
8987                            union iwreq_data *wrqu, char *extra)
8988 {
8989         /* TODO: We should use semaphores or locks for access to priv */
8990         struct ipw_priv *priv = ieee80211_priv(dev);
8991         u32 target_rate = wrqu->bitrate.value;
8992         u32 fixed, mask;
8993
8994         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8995         /* value = X, fixed = 1 means only rate X */
8996         /* value = X, fixed = 0 means all rates lower equal X */
8997
8998         if (target_rate == -1) {
8999                 fixed = 0;
9000                 mask = IEEE80211_DEFAULT_RATES_MASK;
9001                 /* Now we should reassociate */
9002                 goto apply;
9003         }
9004
9005         mask = 0;
9006         fixed = wrqu->bitrate.fixed;
9007
9008         if (target_rate == 1000000 || !fixed)
9009                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9010         if (target_rate == 1000000)
9011                 goto apply;
9012
9013         if (target_rate == 2000000 || !fixed)
9014                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9015         if (target_rate == 2000000)
9016                 goto apply;
9017
9018         if (target_rate == 5500000 || !fixed)
9019                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9020         if (target_rate == 5500000)
9021                 goto apply;
9022
9023         if (target_rate == 6000000 || !fixed)
9024                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9025         if (target_rate == 6000000)
9026                 goto apply;
9027
9028         if (target_rate == 9000000 || !fixed)
9029                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9030         if (target_rate == 9000000)
9031                 goto apply;
9032
9033         if (target_rate == 11000000 || !fixed)
9034                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9035         if (target_rate == 11000000)
9036                 goto apply;
9037
9038         if (target_rate == 12000000 || !fixed)
9039                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9040         if (target_rate == 12000000)
9041                 goto apply;
9042
9043         if (target_rate == 18000000 || !fixed)
9044                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9045         if (target_rate == 18000000)
9046                 goto apply;
9047
9048         if (target_rate == 24000000 || !fixed)
9049                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9050         if (target_rate == 24000000)
9051                 goto apply;
9052
9053         if (target_rate == 36000000 || !fixed)
9054                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9055         if (target_rate == 36000000)
9056                 goto apply;
9057
9058         if (target_rate == 48000000 || !fixed)
9059                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9060         if (target_rate == 48000000)
9061                 goto apply;
9062
9063         if (target_rate == 54000000 || !fixed)
9064                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9065         if (target_rate == 54000000)
9066                 goto apply;
9067
9068         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9069         return -EINVAL;
9070
9071       apply:
9072         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9073                      mask, fixed ? "fixed" : "sub-rates");
9074         mutex_lock(&priv->mutex);
9075         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9076                 priv->config &= ~CFG_FIXED_RATE;
9077                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9078         } else
9079                 priv->config |= CFG_FIXED_RATE;
9080
9081         if (priv->rates_mask == mask) {
9082                 IPW_DEBUG_WX("Mask set to current mask.\n");
9083                 mutex_unlock(&priv->mutex);
9084                 return 0;
9085         }
9086
9087         priv->rates_mask = mask;
9088
9089         /* Network configuration changed -- force [re]association */
9090         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9091         if (!ipw_disassociate(priv))
9092                 ipw_associate(priv);
9093
9094         mutex_unlock(&priv->mutex);
9095         return 0;
9096 }
9097
9098 static int ipw_wx_get_rate(struct net_device *dev,
9099                            struct iw_request_info *info,
9100                            union iwreq_data *wrqu, char *extra)
9101 {
9102         struct ipw_priv *priv = ieee80211_priv(dev);
9103         mutex_lock(&priv->mutex);
9104         wrqu->bitrate.value = priv->last_rate;
9105         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9106         mutex_unlock(&priv->mutex);
9107         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9108         return 0;
9109 }
9110
9111 static int ipw_wx_set_rts(struct net_device *dev,
9112                           struct iw_request_info *info,
9113                           union iwreq_data *wrqu, char *extra)
9114 {
9115         struct ipw_priv *priv = ieee80211_priv(dev);
9116         mutex_lock(&priv->mutex);
9117         if (wrqu->rts.disabled)
9118                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9119         else {
9120                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9121                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9122                         mutex_unlock(&priv->mutex);
9123                         return -EINVAL;
9124                 }
9125                 priv->rts_threshold = wrqu->rts.value;
9126         }
9127
9128         ipw_send_rts_threshold(priv, priv->rts_threshold);
9129         mutex_unlock(&priv->mutex);
9130         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9131         return 0;
9132 }
9133
9134 static int ipw_wx_get_rts(struct net_device *dev,
9135                           struct iw_request_info *info,
9136                           union iwreq_data *wrqu, char *extra)
9137 {
9138         struct ipw_priv *priv = ieee80211_priv(dev);
9139         mutex_lock(&priv->mutex);
9140         wrqu->rts.value = priv->rts_threshold;
9141         wrqu->rts.fixed = 0;    /* no auto select */
9142         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9143         mutex_unlock(&priv->mutex);
9144         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9145         return 0;
9146 }
9147
9148 static int ipw_wx_set_txpow(struct net_device *dev,
9149                             struct iw_request_info *info,
9150                             union iwreq_data *wrqu, char *extra)
9151 {
9152         struct ipw_priv *priv = ieee80211_priv(dev);
9153         int err = 0;
9154
9155         mutex_lock(&priv->mutex);
9156         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9157                 err = -EINPROGRESS;
9158                 goto out;
9159         }
9160
9161         if (!wrqu->power.fixed)
9162                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9163
9164         if (wrqu->power.flags != IW_TXPOW_DBM) {
9165                 err = -EINVAL;
9166                 goto out;
9167         }
9168
9169         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9170             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9171                 err = -EINVAL;
9172                 goto out;
9173         }
9174
9175         priv->tx_power = wrqu->power.value;
9176         err = ipw_set_tx_power(priv);
9177       out:
9178         mutex_unlock(&priv->mutex);
9179         return err;
9180 }
9181
9182 static int ipw_wx_get_txpow(struct net_device *dev,
9183                             struct iw_request_info *info,
9184                             union iwreq_data *wrqu, char *extra)
9185 {
9186         struct ipw_priv *priv = ieee80211_priv(dev);
9187         mutex_lock(&priv->mutex);
9188         wrqu->power.value = priv->tx_power;
9189         wrqu->power.fixed = 1;
9190         wrqu->power.flags = IW_TXPOW_DBM;
9191         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9192         mutex_unlock(&priv->mutex);
9193
9194         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9195                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9196
9197         return 0;
9198 }
9199
9200 static int ipw_wx_set_frag(struct net_device *dev,
9201                            struct iw_request_info *info,
9202                            union iwreq_data *wrqu, char *extra)
9203 {
9204         struct ipw_priv *priv = ieee80211_priv(dev);
9205         mutex_lock(&priv->mutex);
9206         if (wrqu->frag.disabled)
9207                 priv->ieee->fts = DEFAULT_FTS;
9208         else {
9209                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9210                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9211                         mutex_unlock(&priv->mutex);
9212                         return -EINVAL;
9213                 }
9214
9215                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9216         }
9217
9218         ipw_send_frag_threshold(priv, wrqu->frag.value);
9219         mutex_unlock(&priv->mutex);
9220         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9221         return 0;
9222 }
9223
9224 static int ipw_wx_get_frag(struct net_device *dev,
9225                            struct iw_request_info *info,
9226                            union iwreq_data *wrqu, char *extra)
9227 {
9228         struct ipw_priv *priv = ieee80211_priv(dev);
9229         mutex_lock(&priv->mutex);
9230         wrqu->frag.value = priv->ieee->fts;
9231         wrqu->frag.fixed = 0;   /* no auto select */
9232         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9233         mutex_unlock(&priv->mutex);
9234         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9235
9236         return 0;
9237 }
9238
9239 static int ipw_wx_set_retry(struct net_device *dev,
9240                             struct iw_request_info *info,
9241                             union iwreq_data *wrqu, char *extra)
9242 {
9243         struct ipw_priv *priv = ieee80211_priv(dev);
9244
9245         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9246                 return -EINVAL;
9247
9248         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9249                 return 0;
9250
9251         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9252                 return -EINVAL;
9253
9254         mutex_lock(&priv->mutex);
9255         if (wrqu->retry.flags & IW_RETRY_MIN)
9256                 priv->short_retry_limit = (u8) wrqu->retry.value;
9257         else if (wrqu->retry.flags & IW_RETRY_MAX)
9258                 priv->long_retry_limit = (u8) wrqu->retry.value;
9259         else {
9260                 priv->short_retry_limit = (u8) wrqu->retry.value;
9261                 priv->long_retry_limit = (u8) wrqu->retry.value;
9262         }
9263
9264         ipw_send_retry_limit(priv, priv->short_retry_limit,
9265                              priv->long_retry_limit);
9266         mutex_unlock(&priv->mutex);
9267         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9268                      priv->short_retry_limit, priv->long_retry_limit);
9269         return 0;
9270 }
9271
9272 static int ipw_wx_get_retry(struct net_device *dev,
9273                             struct iw_request_info *info,
9274                             union iwreq_data *wrqu, char *extra)
9275 {
9276         struct ipw_priv *priv = ieee80211_priv(dev);
9277
9278         mutex_lock(&priv->mutex);
9279         wrqu->retry.disabled = 0;
9280
9281         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9282                 mutex_unlock(&priv->mutex);
9283                 return -EINVAL;
9284         }
9285
9286         if (wrqu->retry.flags & IW_RETRY_MAX) {
9287                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9288                 wrqu->retry.value = priv->long_retry_limit;
9289         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9290                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9291                 wrqu->retry.value = priv->short_retry_limit;
9292         } else {
9293                 wrqu->retry.flags = IW_RETRY_LIMIT;
9294                 wrqu->retry.value = priv->short_retry_limit;
9295         }
9296         mutex_unlock(&priv->mutex);
9297
9298         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9299
9300         return 0;
9301 }
9302
9303 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9304                                    int essid_len)
9305 {
9306         struct ipw_scan_request_ext scan;
9307         int err = 0, scan_type;
9308
9309         if (!(priv->status & STATUS_INIT) ||
9310             (priv->status & STATUS_EXIT_PENDING))
9311                 return 0;
9312
9313         mutex_lock(&priv->mutex);
9314
9315         if (priv->status & STATUS_RF_KILL_MASK) {
9316                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9317                 priv->status |= STATUS_SCAN_PENDING;
9318                 goto done;
9319         }
9320
9321         IPW_DEBUG_HC("starting request direct scan!\n");
9322
9323         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9324                 /* We should not sleep here; otherwise we will block most
9325                  * of the system (for instance, we hold rtnl_lock when we
9326                  * get here).
9327                  */
9328                 err = -EAGAIN;
9329                 goto done;
9330         }
9331         memset(&scan, 0, sizeof(scan));
9332
9333         if (priv->config & CFG_SPEED_SCAN)
9334                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9335                     cpu_to_le16(30);
9336         else
9337                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9338                     cpu_to_le16(20);
9339
9340         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9341             cpu_to_le16(20);
9342         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9343         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9344
9345         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9346
9347         err = ipw_send_ssid(priv, essid, essid_len);
9348         if (err) {
9349                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9350                 goto done;
9351         }
9352         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9353
9354         ipw_add_scan_channels(priv, &scan, scan_type);
9355
9356         err = ipw_send_scan_request_ext(priv, &scan);
9357         if (err) {
9358                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9359                 goto done;
9360         }
9361
9362         priv->status |= STATUS_SCANNING;
9363
9364       done:
9365         mutex_unlock(&priv->mutex);
9366         return err;
9367 }
9368
9369 static int ipw_wx_set_scan(struct net_device *dev,
9370                            struct iw_request_info *info,
9371                            union iwreq_data *wrqu, char *extra)
9372 {
9373         struct ipw_priv *priv = ieee80211_priv(dev);
9374         struct iw_scan_req *req = NULL;
9375         if (wrqu->data.length
9376             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9377                 req = (struct iw_scan_req *)extra;
9378                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9379                         ipw_request_direct_scan(priv, req->essid,
9380                                                 req->essid_len);
9381                         return 0;
9382                 }
9383         }
9384
9385         IPW_DEBUG_WX("Start scan\n");
9386
9387         queue_work(priv->workqueue, &priv->request_scan);
9388
9389         return 0;
9390 }
9391
9392 static int ipw_wx_get_scan(struct net_device *dev,
9393                            struct iw_request_info *info,
9394                            union iwreq_data *wrqu, char *extra)
9395 {
9396         struct ipw_priv *priv = ieee80211_priv(dev);
9397         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9398 }
9399
9400 static int ipw_wx_set_encode(struct net_device *dev,
9401                              struct iw_request_info *info,
9402                              union iwreq_data *wrqu, char *key)
9403 {
9404         struct ipw_priv *priv = ieee80211_priv(dev);
9405         int ret;
9406         u32 cap = priv->capability;
9407
9408         mutex_lock(&priv->mutex);
9409         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9410
9411         /* In IBSS mode, we need to notify the firmware to update
9412          * the beacon info after we changed the capability. */
9413         if (cap != priv->capability &&
9414             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9415             priv->status & STATUS_ASSOCIATED)
9416                 ipw_disassociate(priv);
9417
9418         mutex_unlock(&priv->mutex);
9419         return ret;
9420 }
9421
9422 static int ipw_wx_get_encode(struct net_device *dev,
9423                              struct iw_request_info *info,
9424                              union iwreq_data *wrqu, char *key)
9425 {
9426         struct ipw_priv *priv = ieee80211_priv(dev);
9427         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9428 }
9429
9430 static int ipw_wx_set_power(struct net_device *dev,
9431                             struct iw_request_info *info,
9432                             union iwreq_data *wrqu, char *extra)
9433 {
9434         struct ipw_priv *priv = ieee80211_priv(dev);
9435         int err;
9436         mutex_lock(&priv->mutex);
9437         if (wrqu->power.disabled) {
9438                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9439                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9440                 if (err) {
9441                         IPW_DEBUG_WX("failed setting power mode.\n");
9442                         mutex_unlock(&priv->mutex);
9443                         return err;
9444                 }
9445                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9446                 mutex_unlock(&priv->mutex);
9447                 return 0;
9448         }
9449
9450         switch (wrqu->power.flags & IW_POWER_MODE) {
9451         case IW_POWER_ON:       /* If not specified */
9452         case IW_POWER_MODE:     /* If set all mask */
9453         case IW_POWER_ALL_R:    /* If explicitely state all */
9454                 break;
9455         default:                /* Otherwise we don't support it */
9456                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9457                              wrqu->power.flags);
9458                 mutex_unlock(&priv->mutex);
9459                 return -EOPNOTSUPP;
9460         }
9461
9462         /* If the user hasn't specified a power management mode yet, default
9463          * to BATTERY */
9464         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9465                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9466         else
9467                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9468         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9469         if (err) {
9470                 IPW_DEBUG_WX("failed setting power mode.\n");
9471                 mutex_unlock(&priv->mutex);
9472                 return err;
9473         }
9474
9475         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9476         mutex_unlock(&priv->mutex);
9477         return 0;
9478 }
9479
9480 static int ipw_wx_get_power(struct net_device *dev,
9481                             struct iw_request_info *info,
9482                             union iwreq_data *wrqu, char *extra)
9483 {
9484         struct ipw_priv *priv = ieee80211_priv(dev);
9485         mutex_lock(&priv->mutex);
9486         if (!(priv->power_mode & IPW_POWER_ENABLED))
9487                 wrqu->power.disabled = 1;
9488         else
9489                 wrqu->power.disabled = 0;
9490
9491         mutex_unlock(&priv->mutex);
9492         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9493
9494         return 0;
9495 }
9496
9497 static int ipw_wx_set_powermode(struct net_device *dev,
9498                                 struct iw_request_info *info,
9499                                 union iwreq_data *wrqu, char *extra)
9500 {
9501         struct ipw_priv *priv = ieee80211_priv(dev);
9502         int mode = *(int *)extra;
9503         int err;
9504         mutex_lock(&priv->mutex);
9505         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9506                 mode = IPW_POWER_AC;
9507                 priv->power_mode = mode;
9508         } else {
9509                 priv->power_mode = IPW_POWER_ENABLED | mode;
9510         }
9511
9512         if (priv->power_mode != mode) {
9513                 err = ipw_send_power_mode(priv, mode);
9514
9515                 if (err) {
9516                         IPW_DEBUG_WX("failed setting power mode.\n");
9517                         mutex_unlock(&priv->mutex);
9518                         return err;
9519                 }
9520         }
9521         mutex_unlock(&priv->mutex);
9522         return 0;
9523 }
9524
9525 #define MAX_WX_STRING 80
9526 static int ipw_wx_get_powermode(struct net_device *dev,
9527                                 struct iw_request_info *info,
9528                                 union iwreq_data *wrqu, char *extra)
9529 {
9530         struct ipw_priv *priv = ieee80211_priv(dev);
9531         int level = IPW_POWER_LEVEL(priv->power_mode);
9532         char *p = extra;
9533
9534         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9535
9536         switch (level) {
9537         case IPW_POWER_AC:
9538                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9539                 break;
9540         case IPW_POWER_BATTERY:
9541                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9542                 break;
9543         default:
9544                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9545                               "(Timeout %dms, Period %dms)",
9546                               timeout_duration[level - 1] / 1000,
9547                               period_duration[level - 1] / 1000);
9548         }
9549
9550         if (!(priv->power_mode & IPW_POWER_ENABLED))
9551                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9552
9553         wrqu->data.length = p - extra + 1;
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9559                                     struct iw_request_info *info,
9560                                     union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         int mode = *(int *)extra;
9564         u8 band = 0, modulation = 0;
9565
9566         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9567                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9568                 return -EINVAL;
9569         }
9570         mutex_lock(&priv->mutex);
9571         if (priv->adapter == IPW_2915ABG) {
9572                 priv->ieee->abg_true = 1;
9573                 if (mode & IEEE_A) {
9574                         band |= IEEE80211_52GHZ_BAND;
9575                         modulation |= IEEE80211_OFDM_MODULATION;
9576                 } else
9577                         priv->ieee->abg_true = 0;
9578         } else {
9579                 if (mode & IEEE_A) {
9580                         IPW_WARNING("Attempt to set 2200BG into "
9581                                     "802.11a mode\n");
9582                         mutex_unlock(&priv->mutex);
9583                         return -EINVAL;
9584                 }
9585
9586                 priv->ieee->abg_true = 0;
9587         }
9588
9589         if (mode & IEEE_B) {
9590                 band |= IEEE80211_24GHZ_BAND;
9591                 modulation |= IEEE80211_CCK_MODULATION;
9592         } else
9593                 priv->ieee->abg_true = 0;
9594
9595         if (mode & IEEE_G) {
9596                 band |= IEEE80211_24GHZ_BAND;
9597                 modulation |= IEEE80211_OFDM_MODULATION;
9598         } else
9599                 priv->ieee->abg_true = 0;
9600
9601         priv->ieee->mode = mode;
9602         priv->ieee->freq_band = band;
9603         priv->ieee->modulation = modulation;
9604         init_supported_rates(priv, &priv->rates);
9605
9606         /* Network configuration changed -- force [re]association */
9607         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9608         if (!ipw_disassociate(priv)) {
9609                 ipw_send_supported_rates(priv, &priv->rates);
9610                 ipw_associate(priv);
9611         }
9612
9613         /* Update the band LEDs */
9614         ipw_led_band_on(priv);
9615
9616         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9617                      mode & IEEE_A ? 'a' : '.',
9618                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9619         mutex_unlock(&priv->mutex);
9620         return 0;
9621 }
9622
9623 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9624                                     struct iw_request_info *info,
9625                                     union iwreq_data *wrqu, char *extra)
9626 {
9627         struct ipw_priv *priv = ieee80211_priv(dev);
9628         mutex_lock(&priv->mutex);
9629         switch (priv->ieee->mode) {
9630         case IEEE_A:
9631                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9632                 break;
9633         case IEEE_B:
9634                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9635                 break;
9636         case IEEE_A | IEEE_B:
9637                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9638                 break;
9639         case IEEE_G:
9640                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9641                 break;
9642         case IEEE_A | IEEE_G:
9643                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9644                 break;
9645         case IEEE_B | IEEE_G:
9646                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9647                 break;
9648         case IEEE_A | IEEE_B | IEEE_G:
9649                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9650                 break;
9651         default:
9652                 strncpy(extra, "unknown", MAX_WX_STRING);
9653                 break;
9654         }
9655
9656         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9657
9658         wrqu->data.length = strlen(extra) + 1;
9659         mutex_unlock(&priv->mutex);
9660
9661         return 0;
9662 }
9663
9664 static int ipw_wx_set_preamble(struct net_device *dev,
9665                                struct iw_request_info *info,
9666                                union iwreq_data *wrqu, char *extra)
9667 {
9668         struct ipw_priv *priv = ieee80211_priv(dev);
9669         int mode = *(int *)extra;
9670         mutex_lock(&priv->mutex);
9671         /* Switching from SHORT -> LONG requires a disassociation */
9672         if (mode == 1) {
9673                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9674                         priv->config |= CFG_PREAMBLE_LONG;
9675
9676                         /* Network configuration changed -- force [re]association */
9677                         IPW_DEBUG_ASSOC
9678                             ("[re]association triggered due to preamble change.\n");
9679                         if (!ipw_disassociate(priv))
9680                                 ipw_associate(priv);
9681                 }
9682                 goto done;
9683         }
9684
9685         if (mode == 0) {
9686                 priv->config &= ~CFG_PREAMBLE_LONG;
9687                 goto done;
9688         }
9689         mutex_unlock(&priv->mutex);
9690         return -EINVAL;
9691
9692       done:
9693         mutex_unlock(&priv->mutex);
9694         return 0;
9695 }
9696
9697 static int ipw_wx_get_preamble(struct net_device *dev,
9698                                struct iw_request_info *info,
9699                                union iwreq_data *wrqu, char *extra)
9700 {
9701         struct ipw_priv *priv = ieee80211_priv(dev);
9702         mutex_lock(&priv->mutex);
9703         if (priv->config & CFG_PREAMBLE_LONG)
9704                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9705         else
9706                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9707         mutex_unlock(&priv->mutex);
9708         return 0;
9709 }
9710
9711 #ifdef CONFIG_IPW2200_MONITOR
9712 static int ipw_wx_set_monitor(struct net_device *dev,
9713                               struct iw_request_info *info,
9714                               union iwreq_data *wrqu, char *extra)
9715 {
9716         struct ipw_priv *priv = ieee80211_priv(dev);
9717         int *parms = (int *)extra;
9718         int enable = (parms[0] > 0);
9719         mutex_lock(&priv->mutex);
9720         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9721         if (enable) {
9722                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9723 #ifdef CONFIG_IPW2200_RADIOTAP
9724                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9725 #else
9726                         priv->net_dev->type = ARPHRD_IEEE80211;
9727 #endif
9728                         queue_work(priv->workqueue, &priv->adapter_restart);
9729                 }
9730
9731                 ipw_set_channel(priv, parms[1]);
9732         } else {
9733                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9734                         mutex_unlock(&priv->mutex);
9735                         return 0;
9736                 }
9737                 priv->net_dev->type = ARPHRD_ETHER;
9738                 queue_work(priv->workqueue, &priv->adapter_restart);
9739         }
9740         mutex_unlock(&priv->mutex);
9741         return 0;
9742 }
9743
9744 #endif                          /* CONFIG_IPW2200_MONITOR */
9745
9746 static int ipw_wx_reset(struct net_device *dev,
9747                         struct iw_request_info *info,
9748                         union iwreq_data *wrqu, char *extra)
9749 {
9750         struct ipw_priv *priv = ieee80211_priv(dev);
9751         IPW_DEBUG_WX("RESET\n");
9752         queue_work(priv->workqueue, &priv->adapter_restart);
9753         return 0;
9754 }
9755
9756 static int ipw_wx_sw_reset(struct net_device *dev,
9757                            struct iw_request_info *info,
9758                            union iwreq_data *wrqu, char *extra)
9759 {
9760         struct ipw_priv *priv = ieee80211_priv(dev);
9761         union iwreq_data wrqu_sec = {
9762                 .encoding = {
9763                              .flags = IW_ENCODE_DISABLED,
9764                              },
9765         };
9766         int ret;
9767
9768         IPW_DEBUG_WX("SW_RESET\n");
9769
9770         mutex_lock(&priv->mutex);
9771
9772         ret = ipw_sw_reset(priv, 2);
9773         if (!ret) {
9774                 free_firmware();
9775                 ipw_adapter_restart(priv);
9776         }
9777
9778         /* The SW reset bit might have been toggled on by the 'disable'
9779          * module parameter, so take appropriate action */
9780         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9781
9782         mutex_unlock(&priv->mutex);
9783         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9784         mutex_lock(&priv->mutex);
9785
9786         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9787                 /* Configuration likely changed -- force [re]association */
9788                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9789                                 "reset.\n");
9790                 if (!ipw_disassociate(priv))
9791                         ipw_associate(priv);
9792         }
9793
9794         mutex_unlock(&priv->mutex);
9795
9796         return 0;
9797 }
9798
9799 /* Rebase the WE IOCTLs to zero for the handler array */
9800 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9801 static iw_handler ipw_wx_handlers[] = {
9802         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9803         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9804         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9805         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9806         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9807         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9808         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9809         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9810         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9811         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9812         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9813         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9814         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9815         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9816         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9817         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9818         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9819         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9820         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9821         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9822         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9823         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9824         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9825         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9826         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9827         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9828         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9829         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9830         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9831         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9832         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9833         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9834         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9835         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9836         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9837         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9838         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9839         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9840         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9841         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9842         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9843 };
9844
9845 enum {
9846         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9847         IPW_PRIV_GET_POWER,
9848         IPW_PRIV_SET_MODE,
9849         IPW_PRIV_GET_MODE,
9850         IPW_PRIV_SET_PREAMBLE,
9851         IPW_PRIV_GET_PREAMBLE,
9852         IPW_PRIV_RESET,
9853         IPW_PRIV_SW_RESET,
9854 #ifdef CONFIG_IPW2200_MONITOR
9855         IPW_PRIV_SET_MONITOR,
9856 #endif
9857 };
9858
9859 static struct iw_priv_args ipw_priv_args[] = {
9860         {
9861          .cmd = IPW_PRIV_SET_POWER,
9862          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9863          .name = "set_power"},
9864         {
9865          .cmd = IPW_PRIV_GET_POWER,
9866          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9867          .name = "get_power"},
9868         {
9869          .cmd = IPW_PRIV_SET_MODE,
9870          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9871          .name = "set_mode"},
9872         {
9873          .cmd = IPW_PRIV_GET_MODE,
9874          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9875          .name = "get_mode"},
9876         {
9877          .cmd = IPW_PRIV_SET_PREAMBLE,
9878          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9879          .name = "set_preamble"},
9880         {
9881          .cmd = IPW_PRIV_GET_PREAMBLE,
9882          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9883          .name = "get_preamble"},
9884         {
9885          IPW_PRIV_RESET,
9886          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9887         {
9888          IPW_PRIV_SW_RESET,
9889          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9890 #ifdef CONFIG_IPW2200_MONITOR
9891         {
9892          IPW_PRIV_SET_MONITOR,
9893          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9894 #endif                          /* CONFIG_IPW2200_MONITOR */
9895 };
9896
9897 static iw_handler ipw_priv_handler[] = {
9898         ipw_wx_set_powermode,
9899         ipw_wx_get_powermode,
9900         ipw_wx_set_wireless_mode,
9901         ipw_wx_get_wireless_mode,
9902         ipw_wx_set_preamble,
9903         ipw_wx_get_preamble,
9904         ipw_wx_reset,
9905         ipw_wx_sw_reset,
9906 #ifdef CONFIG_IPW2200_MONITOR
9907         ipw_wx_set_monitor,
9908 #endif
9909 };
9910
9911 static struct iw_handler_def ipw_wx_handler_def = {
9912         .standard = ipw_wx_handlers,
9913         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9914         .num_private = ARRAY_SIZE(ipw_priv_handler),
9915         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9916         .private = ipw_priv_handler,
9917         .private_args = ipw_priv_args,
9918         .get_wireless_stats = ipw_get_wireless_stats,
9919 };
9920
9921 /*
9922  * Get wireless statistics.
9923  * Called by /proc/net/wireless
9924  * Also called by SIOCGIWSTATS
9925  */
9926 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9927 {
9928         struct ipw_priv *priv = ieee80211_priv(dev);
9929         struct iw_statistics *wstats;
9930
9931         wstats = &priv->wstats;
9932
9933         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9934          * netdev->get_wireless_stats seems to be called before fw is
9935          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9936          * and associated; if not associcated, the values are all meaningless
9937          * anyway, so set them all to NULL and INVALID */
9938         if (!(priv->status & STATUS_ASSOCIATED)) {
9939                 wstats->miss.beacon = 0;
9940                 wstats->discard.retries = 0;
9941                 wstats->qual.qual = 0;
9942                 wstats->qual.level = 0;
9943                 wstats->qual.noise = 0;
9944                 wstats->qual.updated = 7;
9945                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9946                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9947                 return wstats;
9948         }
9949
9950         wstats->qual.qual = priv->quality;
9951         wstats->qual.level = priv->exp_avg_rssi;
9952         wstats->qual.noise = priv->exp_avg_noise;
9953         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9954             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9955
9956         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9957         wstats->discard.retries = priv->last_tx_failures;
9958         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9959
9960 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9961         goto fail_get_ordinal;
9962         wstats->discard.retries += tx_retry; */
9963
9964         return wstats;
9965 }
9966
9967 /* net device stuff */
9968
9969 static  void init_sys_config(struct ipw_sys_config *sys_config)
9970 {
9971         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9972         sys_config->bt_coexistence = 0;
9973         sys_config->answer_broadcast_ssid_probe = 0;
9974         sys_config->accept_all_data_frames = 0;
9975         sys_config->accept_non_directed_frames = 1;
9976         sys_config->exclude_unicast_unencrypted = 0;
9977         sys_config->disable_unicast_decryption = 1;
9978         sys_config->exclude_multicast_unencrypted = 0;
9979         sys_config->disable_multicast_decryption = 1;
9980         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9981                 antenna = CFG_SYS_ANTENNA_BOTH;
9982         sys_config->antenna_diversity = antenna;
9983         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9984         sys_config->dot11g_auto_detection = 0;
9985         sys_config->enable_cts_to_self = 0;
9986         sys_config->bt_coexist_collision_thr = 0;
9987         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
9988         sys_config->silence_threshold = 0x1e;
9989 }
9990
9991 static int ipw_net_open(struct net_device *dev)
9992 {
9993         struct ipw_priv *priv = ieee80211_priv(dev);
9994         IPW_DEBUG_INFO("dev->open\n");
9995         /* we should be verifying the device is ready to be opened */
9996         mutex_lock(&priv->mutex);
9997         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9998             (priv->status & STATUS_ASSOCIATED))
9999                 netif_start_queue(dev);
10000         mutex_unlock(&priv->mutex);
10001         return 0;
10002 }
10003
10004 static int ipw_net_stop(struct net_device *dev)
10005 {
10006         IPW_DEBUG_INFO("dev->close\n");
10007         netif_stop_queue(dev);
10008         return 0;
10009 }
10010
10011 /*
10012 todo:
10013
10014 modify to send one tfd per fragment instead of using chunking.  otherwise
10015 we need to heavily modify the ieee80211_skb_to_txb.
10016 */
10017
10018 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10019                              int pri)
10020 {
10021         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10022             txb->fragments[0]->data;
10023         int i = 0;
10024         struct tfd_frame *tfd;
10025 #ifdef CONFIG_IPW2200_QOS
10026         int tx_id = ipw_get_tx_queue_number(priv, pri);
10027         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10028 #else
10029         struct clx2_tx_queue *txq = &priv->txq[0];
10030 #endif
10031         struct clx2_queue *q = &txq->q;
10032         u8 id, hdr_len, unicast;
10033         u16 remaining_bytes;
10034         int fc;
10035
10036         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10037         switch (priv->ieee->iw_mode) {
10038         case IW_MODE_ADHOC:
10039                 unicast = !is_multicast_ether_addr(hdr->addr1);
10040                 id = ipw_find_station(priv, hdr->addr1);
10041                 if (id == IPW_INVALID_STATION) {
10042                         id = ipw_add_station(priv, hdr->addr1);
10043                         if (id == IPW_INVALID_STATION) {
10044                                 IPW_WARNING("Attempt to send data to "
10045                                             "invalid cell: " MAC_FMT "\n",
10046                                             MAC_ARG(hdr->addr1));
10047                                 goto drop;
10048                         }
10049                 }
10050                 break;
10051
10052         case IW_MODE_INFRA:
10053         default:
10054                 unicast = !is_multicast_ether_addr(hdr->addr3);
10055                 id = 0;
10056                 break;
10057         }
10058
10059         tfd = &txq->bd[q->first_empty];
10060         txq->txb[q->first_empty] = txb;
10061         memset(tfd, 0, sizeof(*tfd));
10062         tfd->u.data.station_number = id;
10063
10064         tfd->control_flags.message_type = TX_FRAME_TYPE;
10065         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10066
10067         tfd->u.data.cmd_id = DINO_CMD_TX;
10068         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10069         remaining_bytes = txb->payload_size;
10070
10071         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10072                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10073         else
10074                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10075
10076         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10077                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10078
10079         fc = le16_to_cpu(hdr->frame_ctl);
10080         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10081
10082         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10083
10084         if (likely(unicast))
10085                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10086
10087         if (txb->encrypted && !priv->ieee->host_encrypt) {
10088                 switch (priv->ieee->sec.level) {
10089                 case SEC_LEVEL_3:
10090                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10091                             IEEE80211_FCTL_PROTECTED;
10092                         /* XXX: ACK flag must be set for CCMP even if it
10093                          * is a multicast/broadcast packet, because CCMP
10094                          * group communication encrypted by GTK is
10095                          * actually done by the AP. */
10096                         if (!unicast)
10097                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10098
10099                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10100                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10101                         tfd->u.data.key_index = 0;
10102                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10103                         break;
10104                 case SEC_LEVEL_2:
10105                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10106                             IEEE80211_FCTL_PROTECTED;
10107                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10108                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10109                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10110                         break;
10111                 case SEC_LEVEL_1:
10112                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10113                             IEEE80211_FCTL_PROTECTED;
10114                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10115                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10116                             40)
10117                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10118                         else
10119                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10120                         break;
10121                 case SEC_LEVEL_0:
10122                         break;
10123                 default:
10124                         printk(KERN_ERR "Unknow security level %d\n",
10125                                priv->ieee->sec.level);
10126                         break;
10127                 }
10128         } else
10129                 /* No hardware encryption */
10130                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10131
10132 #ifdef CONFIG_IPW2200_QOS
10133         if (fc & IEEE80211_STYPE_QOS_DATA)
10134                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10135 #endif                          /* CONFIG_IPW2200_QOS */
10136
10137         /* payload */
10138         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10139                                                  txb->nr_frags));
10140         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10141                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10142         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10143                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10144                                i, le32_to_cpu(tfd->u.data.num_chunks),
10145                                txb->fragments[i]->len - hdr_len);
10146                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10147                              i, tfd->u.data.num_chunks,
10148                              txb->fragments[i]->len - hdr_len);
10149                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10150                            txb->fragments[i]->len - hdr_len);
10151
10152                 tfd->u.data.chunk_ptr[i] =
10153                     cpu_to_le32(pci_map_single
10154                                 (priv->pci_dev,
10155                                  txb->fragments[i]->data + hdr_len,
10156                                  txb->fragments[i]->len - hdr_len,
10157                                  PCI_DMA_TODEVICE));
10158                 tfd->u.data.chunk_len[i] =
10159                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10160         }
10161
10162         if (i != txb->nr_frags) {
10163                 struct sk_buff *skb;
10164                 u16 remaining_bytes = 0;
10165                 int j;
10166
10167                 for (j = i; j < txb->nr_frags; j++)
10168                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10169
10170                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10171                        remaining_bytes);
10172                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10173                 if (skb != NULL) {
10174                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10175                         for (j = i; j < txb->nr_frags; j++) {
10176                                 int size = txb->fragments[j]->len - hdr_len;
10177
10178                                 printk(KERN_INFO "Adding frag %d %d...\n",
10179                                        j, size);
10180                                 memcpy(skb_put(skb, size),
10181                                        txb->fragments[j]->data + hdr_len, size);
10182                         }
10183                         dev_kfree_skb_any(txb->fragments[i]);
10184                         txb->fragments[i] = skb;
10185                         tfd->u.data.chunk_ptr[i] =
10186                             cpu_to_le32(pci_map_single
10187                                         (priv->pci_dev, skb->data,
10188                                          tfd->u.data.chunk_len[i],
10189                                          PCI_DMA_TODEVICE));
10190
10191                         tfd->u.data.num_chunks =
10192                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10193                                         1);
10194                 }
10195         }
10196
10197         /* kick DMA */
10198         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10199         ipw_write32(priv, q->reg_w, q->first_empty);
10200
10201         if (ipw_queue_space(q) < q->high_mark)
10202                 netif_stop_queue(priv->net_dev);
10203
10204         return NETDEV_TX_OK;
10205
10206       drop:
10207         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10208         ieee80211_txb_free(txb);
10209         return NETDEV_TX_OK;
10210 }
10211
10212 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10213 {
10214         struct ipw_priv *priv = ieee80211_priv(dev);
10215 #ifdef CONFIG_IPW2200_QOS
10216         int tx_id = ipw_get_tx_queue_number(priv, pri);
10217         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10218 #else
10219         struct clx2_tx_queue *txq = &priv->txq[0];
10220 #endif                          /* CONFIG_IPW2200_QOS */
10221
10222         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10223                 return 1;
10224
10225         return 0;
10226 }
10227
10228 #ifdef CONFIG_IPW2200_PROMISCUOUS
10229 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10230                                       struct ieee80211_txb *txb)
10231 {
10232         struct ieee80211_rx_stats dummystats;
10233         struct ieee80211_hdr *hdr;
10234         u8 n;
10235         u16 filter = priv->prom_priv->filter;
10236         int hdr_only = 0;
10237
10238         if (filter & IPW_PROM_NO_TX)
10239                 return;
10240
10241         memset(&dummystats, 0, sizeof(dummystats));
10242
10243         /* Filtering of fragment chains is done agains the first fragment */
10244         hdr = (void *)txb->fragments[0]->data;
10245         if (ieee80211_is_management(hdr->frame_ctl)) {
10246                 if (filter & IPW_PROM_NO_MGMT)
10247                         return;
10248                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10249                         hdr_only = 1;
10250         } else if (ieee80211_is_control(hdr->frame_ctl)) {
10251                 if (filter & IPW_PROM_NO_CTL)
10252                         return;
10253                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10254                         hdr_only = 1;
10255         } else if (ieee80211_is_data(hdr->frame_ctl)) {
10256                 if (filter & IPW_PROM_NO_DATA)
10257                         return;
10258                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10259                         hdr_only = 1;
10260         }
10261
10262         for(n=0; n<txb->nr_frags; ++n) {
10263                 struct sk_buff *src = txb->fragments[n];
10264                 struct sk_buff *dst;
10265                 struct ieee80211_radiotap_header *rt_hdr;
10266                 int len;
10267
10268                 if (hdr_only) {
10269                         hdr = (void *)src->data;
10270                         len = ieee80211_get_hdrlen(hdr->frame_ctl);
10271                 } else
10272                         len = src->len;
10273
10274                 dst = alloc_skb(
10275                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10276                 if (!dst) continue;
10277
10278                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10279
10280                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10281                 rt_hdr->it_pad = 0;
10282                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10283                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10284
10285                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10286                         ieee80211chan2mhz(priv->channel));
10287                 if (priv->channel > 14)         /* 802.11a */
10288                         *(u16*)skb_put(dst, sizeof(u16)) =
10289                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10290                                              IEEE80211_CHAN_5GHZ);
10291                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10292                         *(u16*)skb_put(dst, sizeof(u16)) =
10293                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10294                                              IEEE80211_CHAN_2GHZ);
10295                 else            /* 802.11g */
10296                         *(u16*)skb_put(dst, sizeof(u16)) =
10297                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10298                                  IEEE80211_CHAN_2GHZ);
10299
10300                 rt_hdr->it_len = dst->len;
10301
10302                 memcpy(skb_put(dst, len), src->data, len);
10303
10304                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10305                         dev_kfree_skb_any(dst);
10306         }
10307 }
10308 #endif
10309
10310 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10311                                    struct net_device *dev, int pri)
10312 {
10313         struct ipw_priv *priv = ieee80211_priv(dev);
10314         unsigned long flags;
10315         int ret;
10316
10317         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10318         spin_lock_irqsave(&priv->lock, flags);
10319
10320         if (!(priv->status & STATUS_ASSOCIATED)) {
10321                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10322                 priv->ieee->stats.tx_carrier_errors++;
10323                 netif_stop_queue(dev);
10324                 goto fail_unlock;
10325         }
10326
10327 #ifdef CONFIG_IPW2200_PROMISCUOUS
10328         if (rtap_iface && netif_running(priv->prom_net_dev))
10329                 ipw_handle_promiscuous_tx(priv, txb);
10330 #endif
10331
10332         ret = ipw_tx_skb(priv, txb, pri);
10333         if (ret == NETDEV_TX_OK)
10334                 __ipw_led_activity_on(priv);
10335         spin_unlock_irqrestore(&priv->lock, flags);
10336
10337         return ret;
10338
10339       fail_unlock:
10340         spin_unlock_irqrestore(&priv->lock, flags);
10341         return 1;
10342 }
10343
10344 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10345 {
10346         struct ipw_priv *priv = ieee80211_priv(dev);
10347
10348         priv->ieee->stats.tx_packets = priv->tx_packets;
10349         priv->ieee->stats.rx_packets = priv->rx_packets;
10350         return &priv->ieee->stats;
10351 }
10352
10353 static void ipw_net_set_multicast_list(struct net_device *dev)
10354 {
10355
10356 }
10357
10358 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10359 {
10360         struct ipw_priv *priv = ieee80211_priv(dev);
10361         struct sockaddr *addr = p;
10362         if (!is_valid_ether_addr(addr->sa_data))
10363                 return -EADDRNOTAVAIL;
10364         mutex_lock(&priv->mutex);
10365         priv->config |= CFG_CUSTOM_MAC;
10366         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10367         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10368                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10369         queue_work(priv->workqueue, &priv->adapter_restart);
10370         mutex_unlock(&priv->mutex);
10371         return 0;
10372 }
10373
10374 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10375                                     struct ethtool_drvinfo *info)
10376 {
10377         struct ipw_priv *p = ieee80211_priv(dev);
10378         char vers[64];
10379         char date[32];
10380         u32 len;
10381
10382         strcpy(info->driver, DRV_NAME);
10383         strcpy(info->version, DRV_VERSION);
10384
10385         len = sizeof(vers);
10386         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10387         len = sizeof(date);
10388         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10389
10390         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10391                  vers, date);
10392         strcpy(info->bus_info, pci_name(p->pci_dev));
10393         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10394 }
10395
10396 static u32 ipw_ethtool_get_link(struct net_device *dev)
10397 {
10398         struct ipw_priv *priv = ieee80211_priv(dev);
10399         return (priv->status & STATUS_ASSOCIATED) != 0;
10400 }
10401
10402 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10403 {
10404         return IPW_EEPROM_IMAGE_SIZE;
10405 }
10406
10407 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10408                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10409 {
10410         struct ipw_priv *p = ieee80211_priv(dev);
10411
10412         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10413                 return -EINVAL;
10414         mutex_lock(&p->mutex);
10415         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10416         mutex_unlock(&p->mutex);
10417         return 0;
10418 }
10419
10420 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10421                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10422 {
10423         struct ipw_priv *p = ieee80211_priv(dev);
10424         int i;
10425
10426         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10427                 return -EINVAL;
10428         mutex_lock(&p->mutex);
10429         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10430         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10431                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10432         mutex_unlock(&p->mutex);
10433         return 0;
10434 }
10435
10436 static struct ethtool_ops ipw_ethtool_ops = {
10437         .get_link = ipw_ethtool_get_link,
10438         .get_drvinfo = ipw_ethtool_get_drvinfo,
10439         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10440         .get_eeprom = ipw_ethtool_get_eeprom,
10441         .set_eeprom = ipw_ethtool_set_eeprom,
10442 };
10443
10444 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10445 {
10446         struct ipw_priv *priv = data;
10447         u32 inta, inta_mask;
10448
10449         if (!priv)
10450                 return IRQ_NONE;
10451
10452         spin_lock(&priv->irq_lock);
10453
10454         if (!(priv->status & STATUS_INT_ENABLED)) {
10455                 /* Shared IRQ */
10456                 goto none;
10457         }
10458
10459         inta = ipw_read32(priv, IPW_INTA_RW);
10460         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10461
10462         if (inta == 0xFFFFFFFF) {
10463                 /* Hardware disappeared */
10464                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10465                 goto none;
10466         }
10467
10468         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10469                 /* Shared interrupt */
10470                 goto none;
10471         }
10472
10473         /* tell the device to stop sending interrupts */
10474         __ipw_disable_interrupts(priv);
10475
10476         /* ack current interrupts */
10477         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10478         ipw_write32(priv, IPW_INTA_RW, inta);
10479
10480         /* Cache INTA value for our tasklet */
10481         priv->isr_inta = inta;
10482
10483         tasklet_schedule(&priv->irq_tasklet);
10484
10485         spin_unlock(&priv->irq_lock);
10486
10487         return IRQ_HANDLED;
10488       none:
10489         spin_unlock(&priv->irq_lock);
10490         return IRQ_NONE;
10491 }
10492
10493 static void ipw_rf_kill(void *adapter)
10494 {
10495         struct ipw_priv *priv = adapter;
10496         unsigned long flags;
10497
10498         spin_lock_irqsave(&priv->lock, flags);
10499
10500         if (rf_kill_active(priv)) {
10501                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10502                 if (priv->workqueue)
10503                         queue_delayed_work(priv->workqueue,
10504                                            &priv->rf_kill, 2 * HZ);
10505                 goto exit_unlock;
10506         }
10507
10508         /* RF Kill is now disabled, so bring the device back up */
10509
10510         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10511                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10512                                   "device\n");
10513
10514                 /* we can not do an adapter restart while inside an irq lock */
10515                 queue_work(priv->workqueue, &priv->adapter_restart);
10516         } else
10517                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10518                                   "enabled\n");
10519
10520       exit_unlock:
10521         spin_unlock_irqrestore(&priv->lock, flags);
10522 }
10523
10524 static void ipw_bg_rf_kill(void *data)
10525 {
10526         struct ipw_priv *priv = data;
10527         mutex_lock(&priv->mutex);
10528         ipw_rf_kill(data);
10529         mutex_unlock(&priv->mutex);
10530 }
10531
10532 static void ipw_link_up(struct ipw_priv *priv)
10533 {
10534         priv->last_seq_num = -1;
10535         priv->last_frag_num = -1;
10536         priv->last_packet_time = 0;
10537
10538         netif_carrier_on(priv->net_dev);
10539         if (netif_queue_stopped(priv->net_dev)) {
10540                 IPW_DEBUG_NOTIF("waking queue\n");
10541                 netif_wake_queue(priv->net_dev);
10542         } else {
10543                 IPW_DEBUG_NOTIF("starting queue\n");
10544                 netif_start_queue(priv->net_dev);
10545         }
10546
10547         cancel_delayed_work(&priv->request_scan);
10548         ipw_reset_stats(priv);
10549         /* Ensure the rate is updated immediately */
10550         priv->last_rate = ipw_get_current_rate(priv);
10551         ipw_gather_stats(priv);
10552         ipw_led_link_up(priv);
10553         notify_wx_assoc_event(priv);
10554
10555         if (priv->config & CFG_BACKGROUND_SCAN)
10556                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10557 }
10558
10559 static void ipw_bg_link_up(void *data)
10560 {
10561         struct ipw_priv *priv = data;
10562         mutex_lock(&priv->mutex);
10563         ipw_link_up(data);
10564         mutex_unlock(&priv->mutex);
10565 }
10566
10567 static void ipw_link_down(struct ipw_priv *priv)
10568 {
10569         ipw_led_link_down(priv);
10570         netif_carrier_off(priv->net_dev);
10571         netif_stop_queue(priv->net_dev);
10572         notify_wx_assoc_event(priv);
10573
10574         /* Cancel any queued work ... */
10575         cancel_delayed_work(&priv->request_scan);
10576         cancel_delayed_work(&priv->adhoc_check);
10577         cancel_delayed_work(&priv->gather_stats);
10578
10579         ipw_reset_stats(priv);
10580
10581         if (!(priv->status & STATUS_EXIT_PENDING)) {
10582                 /* Queue up another scan... */
10583                 queue_work(priv->workqueue, &priv->request_scan);
10584         }
10585 }
10586
10587 static void ipw_bg_link_down(void *data)
10588 {
10589         struct ipw_priv *priv = data;
10590         mutex_lock(&priv->mutex);
10591         ipw_link_down(data);
10592         mutex_unlock(&priv->mutex);
10593 }
10594
10595 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10596 {
10597         int ret = 0;
10598
10599         priv->workqueue = create_workqueue(DRV_NAME);
10600         init_waitqueue_head(&priv->wait_command_queue);
10601         init_waitqueue_head(&priv->wait_state);
10602
10603         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10604         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10605         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10606         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10607         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10608         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10609         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10610         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10611         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10612         INIT_WORK(&priv->request_scan,
10613                   (void (*)(void *))ipw_request_scan, priv);
10614         INIT_WORK(&priv->gather_stats,
10615                   (void (*)(void *))ipw_bg_gather_stats, priv);
10616         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10617         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10618         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10619         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10620         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10621         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10622                   priv);
10623         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10624                   priv);
10625         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10626                   priv);
10627         INIT_WORK(&priv->merge_networks,
10628                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10629
10630 #ifdef CONFIG_IPW2200_QOS
10631         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10632                   priv);
10633 #endif                          /* CONFIG_IPW2200_QOS */
10634
10635         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10636                      ipw_irq_tasklet, (unsigned long)priv);
10637
10638         return ret;
10639 }
10640
10641 static void shim__set_security(struct net_device *dev,
10642                                struct ieee80211_security *sec)
10643 {
10644         struct ipw_priv *priv = ieee80211_priv(dev);
10645         int i;
10646         for (i = 0; i < 4; i++) {
10647                 if (sec->flags & (1 << i)) {
10648                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10649                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10650                         if (sec->key_sizes[i] == 0)
10651                                 priv->ieee->sec.flags &= ~(1 << i);
10652                         else {
10653                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10654                                        sec->key_sizes[i]);
10655                                 priv->ieee->sec.flags |= (1 << i);
10656                         }
10657                         priv->status |= STATUS_SECURITY_UPDATED;
10658                 } else if (sec->level != SEC_LEVEL_1)
10659                         priv->ieee->sec.flags &= ~(1 << i);
10660         }
10661
10662         if (sec->flags & SEC_ACTIVE_KEY) {
10663                 if (sec->active_key <= 3) {
10664                         priv->ieee->sec.active_key = sec->active_key;
10665                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10666                 } else
10667                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10668                 priv->status |= STATUS_SECURITY_UPDATED;
10669         } else
10670                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10671
10672         if ((sec->flags & SEC_AUTH_MODE) &&
10673             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10674                 priv->ieee->sec.auth_mode = sec->auth_mode;
10675                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10676                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10677                         priv->capability |= CAP_SHARED_KEY;
10678                 else
10679                         priv->capability &= ~CAP_SHARED_KEY;
10680                 priv->status |= STATUS_SECURITY_UPDATED;
10681         }
10682
10683         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10684                 priv->ieee->sec.flags |= SEC_ENABLED;
10685                 priv->ieee->sec.enabled = sec->enabled;
10686                 priv->status |= STATUS_SECURITY_UPDATED;
10687                 if (sec->enabled)
10688                         priv->capability |= CAP_PRIVACY_ON;
10689                 else
10690                         priv->capability &= ~CAP_PRIVACY_ON;
10691         }
10692
10693         if (sec->flags & SEC_ENCRYPT)
10694                 priv->ieee->sec.encrypt = sec->encrypt;
10695
10696         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10697                 priv->ieee->sec.level = sec->level;
10698                 priv->ieee->sec.flags |= SEC_LEVEL;
10699                 priv->status |= STATUS_SECURITY_UPDATED;
10700         }
10701
10702         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10703                 ipw_set_hwcrypto_keys(priv);
10704
10705         /* To match current functionality of ipw2100 (which works well w/
10706          * various supplicants, we don't force a disassociate if the
10707          * privacy capability changes ... */
10708 #if 0
10709         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10710             (((priv->assoc_request.capability &
10711                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10712              (!(priv->assoc_request.capability &
10713                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10714                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10715                                 "change.\n");
10716                 ipw_disassociate(priv);
10717         }
10718 #endif
10719 }
10720
10721 static int init_supported_rates(struct ipw_priv *priv,
10722                                 struct ipw_supported_rates *rates)
10723 {
10724         /* TODO: Mask out rates based on priv->rates_mask */
10725
10726         memset(rates, 0, sizeof(*rates));
10727         /* configure supported rates */
10728         switch (priv->ieee->freq_band) {
10729         case IEEE80211_52GHZ_BAND:
10730                 rates->ieee_mode = IPW_A_MODE;
10731                 rates->purpose = IPW_RATE_CAPABILITIES;
10732                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10733                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10734                 break;
10735
10736         default:                /* Mixed or 2.4Ghz */
10737                 rates->ieee_mode = IPW_G_MODE;
10738                 rates->purpose = IPW_RATE_CAPABILITIES;
10739                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10740                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10741                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10742                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10743                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10744                 }
10745                 break;
10746         }
10747
10748         return 0;
10749 }
10750
10751 static int ipw_config(struct ipw_priv *priv)
10752 {
10753         /* This is only called from ipw_up, which resets/reloads the firmware
10754            so, we don't need to first disable the card before we configure
10755            it */
10756         if (ipw_set_tx_power(priv))
10757                 goto error;
10758
10759         /* initialize adapter address */
10760         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10761                 goto error;
10762
10763         /* set basic system config settings */
10764         init_sys_config(&priv->sys_config);
10765
10766         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10767          * Does not support BT priority yet (don't abort or defer our Tx) */
10768         if (bt_coexist) {
10769                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10770
10771                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10772                         priv->sys_config.bt_coexistence
10773                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10774                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10775                         priv->sys_config.bt_coexistence
10776                             |= CFG_BT_COEXISTENCE_OOB;
10777         }
10778
10779 #ifdef CONFIG_IPW2200_PROMISCUOUS
10780         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10781                 priv->sys_config.accept_all_data_frames = 1;
10782                 priv->sys_config.accept_non_directed_frames = 1;
10783                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10784                 priv->sys_config.accept_all_mgmt_frames = 1;
10785         }
10786 #endif
10787
10788         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10789                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10790         else
10791                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10792
10793         if (ipw_send_system_config(priv))
10794                 goto error;
10795
10796         init_supported_rates(priv, &priv->rates);
10797         if (ipw_send_supported_rates(priv, &priv->rates))
10798                 goto error;
10799
10800         /* Set request-to-send threshold */
10801         if (priv->rts_threshold) {
10802                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10803                         goto error;
10804         }
10805 #ifdef CONFIG_IPW2200_QOS
10806         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10807         ipw_qos_activate(priv, NULL);
10808 #endif                          /* CONFIG_IPW2200_QOS */
10809
10810         if (ipw_set_random_seed(priv))
10811                 goto error;
10812
10813         /* final state transition to the RUN state */
10814         if (ipw_send_host_complete(priv))
10815                 goto error;
10816
10817         priv->status |= STATUS_INIT;
10818
10819         ipw_led_init(priv);
10820         ipw_led_radio_on(priv);
10821         priv->notif_missed_beacons = 0;
10822
10823         /* Set hardware WEP key if it is configured. */
10824         if ((priv->capability & CAP_PRIVACY_ON) &&
10825             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10826             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10827                 ipw_set_hwcrypto_keys(priv);
10828
10829         return 0;
10830
10831       error:
10832         return -EIO;
10833 }
10834
10835 /*
10836  * NOTE:
10837  *
10838  * These tables have been tested in conjunction with the
10839  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10840  *
10841  * Altering this values, using it on other hardware, or in geographies
10842  * not intended for resale of the above mentioned Intel adapters has
10843  * not been tested.
10844  *
10845  * Remember to update the table in README.ipw2200 when changing this
10846  * table.
10847  *
10848  */
10849 static const struct ieee80211_geo ipw_geos[] = {
10850         {                       /* Restricted */
10851          "---",
10852          .bg_channels = 11,
10853          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10854                 {2427, 4}, {2432, 5}, {2437, 6},
10855                 {2442, 7}, {2447, 8}, {2452, 9},
10856                 {2457, 10}, {2462, 11}},
10857          },
10858
10859         {                       /* Custom US/Canada */
10860          "ZZF",
10861          .bg_channels = 11,
10862          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10863                 {2427, 4}, {2432, 5}, {2437, 6},
10864                 {2442, 7}, {2447, 8}, {2452, 9},
10865                 {2457, 10}, {2462, 11}},
10866          .a_channels = 8,
10867          .a = {{5180, 36},
10868                {5200, 40},
10869                {5220, 44},
10870                {5240, 48},
10871                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10872                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10873                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10874                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10875          },
10876
10877         {                       /* Rest of World */
10878          "ZZD",
10879          .bg_channels = 13,
10880          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10881                 {2427, 4}, {2432, 5}, {2437, 6},
10882                 {2442, 7}, {2447, 8}, {2452, 9},
10883                 {2457, 10}, {2462, 11}, {2467, 12},
10884                 {2472, 13}},
10885          },
10886
10887         {                       /* Custom USA & Europe & High */
10888          "ZZA",
10889          .bg_channels = 11,
10890          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10891                 {2427, 4}, {2432, 5}, {2437, 6},
10892                 {2442, 7}, {2447, 8}, {2452, 9},
10893                 {2457, 10}, {2462, 11}},
10894          .a_channels = 13,
10895          .a = {{5180, 36},
10896                {5200, 40},
10897                {5220, 44},
10898                {5240, 48},
10899                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10900                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10901                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10902                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10903                {5745, 149},
10904                {5765, 153},
10905                {5785, 157},
10906                {5805, 161},
10907                {5825, 165}},
10908          },
10909
10910         {                       /* Custom NA & Europe */
10911          "ZZB",
10912          .bg_channels = 11,
10913          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10914                 {2427, 4}, {2432, 5}, {2437, 6},
10915                 {2442, 7}, {2447, 8}, {2452, 9},
10916                 {2457, 10}, {2462, 11}},
10917          .a_channels = 13,
10918          .a = {{5180, 36},
10919                {5200, 40},
10920                {5220, 44},
10921                {5240, 48},
10922                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10923                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10924                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10925                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10926                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10927                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10928                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10929                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10930                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10931          },
10932
10933         {                       /* Custom Japan */
10934          "ZZC",
10935          .bg_channels = 11,
10936          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937                 {2427, 4}, {2432, 5}, {2437, 6},
10938                 {2442, 7}, {2447, 8}, {2452, 9},
10939                 {2457, 10}, {2462, 11}},
10940          .a_channels = 4,
10941          .a = {{5170, 34}, {5190, 38},
10942                {5210, 42}, {5230, 46}},
10943          },
10944
10945         {                       /* Custom */
10946          "ZZM",
10947          .bg_channels = 11,
10948          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10949                 {2427, 4}, {2432, 5}, {2437, 6},
10950                 {2442, 7}, {2447, 8}, {2452, 9},
10951                 {2457, 10}, {2462, 11}},
10952          },
10953
10954         {                       /* Europe */
10955          "ZZE",
10956          .bg_channels = 13,
10957          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10958                 {2427, 4}, {2432, 5}, {2437, 6},
10959                 {2442, 7}, {2447, 8}, {2452, 9},
10960                 {2457, 10}, {2462, 11}, {2467, 12},
10961                 {2472, 13}},
10962          .a_channels = 19,
10963          .a = {{5180, 36},
10964                {5200, 40},
10965                {5220, 44},
10966                {5240, 48},
10967                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10968                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10969                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10970                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10971                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10972                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10973                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10974                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10975                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10976                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10977                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10978                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10979                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10980                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10981                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10982          },
10983
10984         {                       /* Custom Japan */
10985          "ZZJ",
10986          .bg_channels = 14,
10987          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988                 {2427, 4}, {2432, 5}, {2437, 6},
10989                 {2442, 7}, {2447, 8}, {2452, 9},
10990                 {2457, 10}, {2462, 11}, {2467, 12},
10991                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10992          .a_channels = 4,
10993          .a = {{5170, 34}, {5190, 38},
10994                {5210, 42}, {5230, 46}},
10995          },
10996
10997         {                       /* Rest of World */
10998          "ZZR",
10999          .bg_channels = 14,
11000          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001                 {2427, 4}, {2432, 5}, {2437, 6},
11002                 {2442, 7}, {2447, 8}, {2452, 9},
11003                 {2457, 10}, {2462, 11}, {2467, 12},
11004                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11005                              IEEE80211_CH_PASSIVE_ONLY}},
11006          },
11007
11008         {                       /* High Band */
11009          "ZZH",
11010          .bg_channels = 13,
11011          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012                 {2427, 4}, {2432, 5}, {2437, 6},
11013                 {2442, 7}, {2447, 8}, {2452, 9},
11014                 {2457, 10}, {2462, 11},
11015                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11016                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11017          .a_channels = 4,
11018          .a = {{5745, 149}, {5765, 153},
11019                {5785, 157}, {5805, 161}},
11020          },
11021
11022         {                       /* Custom Europe */
11023          "ZZG",
11024          .bg_channels = 13,
11025          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026                 {2427, 4}, {2432, 5}, {2437, 6},
11027                 {2442, 7}, {2447, 8}, {2452, 9},
11028                 {2457, 10}, {2462, 11},
11029                 {2467, 12}, {2472, 13}},
11030          .a_channels = 4,
11031          .a = {{5180, 36}, {5200, 40},
11032                {5220, 44}, {5240, 48}},
11033          },
11034
11035         {                       /* Europe */
11036          "ZZK",
11037          .bg_channels = 13,
11038          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039                 {2427, 4}, {2432, 5}, {2437, 6},
11040                 {2442, 7}, {2447, 8}, {2452, 9},
11041                 {2457, 10}, {2462, 11},
11042                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11043                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11044          .a_channels = 24,
11045          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11046                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11047                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11048                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11049                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11050                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11051                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11052                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11053                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11054                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11055                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11056                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11057                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11058                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11059                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11060                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11061                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11062                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11063                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11064                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11065                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11066                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11067                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11068                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11069          },
11070
11071         {                       /* Europe */
11072          "ZZL",
11073          .bg_channels = 11,
11074          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                 {2427, 4}, {2432, 5}, {2437, 6},
11076                 {2442, 7}, {2447, 8}, {2452, 9},
11077                 {2457, 10}, {2462, 11}},
11078          .a_channels = 13,
11079          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11080                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11081                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11082                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11083                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11084                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11085                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11086                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11087                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11088                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11089                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11090                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11091                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11092          }
11093 };
11094
11095 #define MAX_HW_RESTARTS 5
11096 static int ipw_up(struct ipw_priv *priv)
11097 {
11098         int rc, i, j;
11099
11100         if (priv->status & STATUS_EXIT_PENDING)
11101                 return -EIO;
11102
11103         if (cmdlog && !priv->cmdlog) {
11104                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11105                                        GFP_KERNEL);
11106                 if (priv->cmdlog == NULL) {
11107                         IPW_ERROR("Error allocating %d command log entries.\n",
11108                                   cmdlog);
11109                         return -ENOMEM;
11110                 } else {
11111                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11112                         priv->cmdlog_len = cmdlog;
11113                 }
11114         }
11115
11116         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11117                 /* Load the microcode, firmware, and eeprom.
11118                  * Also start the clocks. */
11119                 rc = ipw_load(priv);
11120                 if (rc) {
11121                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11122                         return rc;
11123                 }
11124
11125                 ipw_init_ordinals(priv);
11126                 if (!(priv->config & CFG_CUSTOM_MAC))
11127                         eeprom_parse_mac(priv, priv->mac_addr);
11128                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11129
11130                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11131                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11132                                     ipw_geos[j].name, 3))
11133                                 break;
11134                 }
11135                 if (j == ARRAY_SIZE(ipw_geos)) {
11136                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11137                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11138                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11139                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11140                         j = 0;
11141                 }
11142                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11143                         IPW_WARNING("Could not set geography.");
11144                         return 0;
11145                 }
11146
11147                 if (priv->status & STATUS_RF_KILL_SW) {
11148                         IPW_WARNING("Radio disabled by module parameter.\n");
11149                         return 0;
11150                 } else if (rf_kill_active(priv)) {
11151                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11152                                     "Kill switch must be turned off for "
11153                                     "wireless networking to work.\n");
11154                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11155                                            2 * HZ);
11156                         return 0;
11157                 }
11158
11159                 rc = ipw_config(priv);
11160                 if (!rc) {
11161                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11162
11163                         /* If configure to try and auto-associate, kick
11164                          * off a scan. */
11165                         queue_work(priv->workqueue, &priv->request_scan);
11166
11167                         return 0;
11168                 }
11169
11170                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11171                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11172                                i, MAX_HW_RESTARTS);
11173
11174                 /* We had an error bringing up the hardware, so take it
11175                  * all the way back down so we can try again */
11176                 ipw_down(priv);
11177         }
11178
11179         /* tried to restart and config the device for as long as our
11180          * patience could withstand */
11181         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11182
11183         return -EIO;
11184 }
11185
11186 static void ipw_bg_up(void *data)
11187 {
11188         struct ipw_priv *priv = data;
11189         mutex_lock(&priv->mutex);
11190         ipw_up(data);
11191         mutex_unlock(&priv->mutex);
11192 }
11193
11194 static void ipw_deinit(struct ipw_priv *priv)
11195 {
11196         int i;
11197
11198         if (priv->status & STATUS_SCANNING) {
11199                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11200                 ipw_abort_scan(priv);
11201         }
11202
11203         if (priv->status & STATUS_ASSOCIATED) {
11204                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11205                 ipw_disassociate(priv);
11206         }
11207
11208         ipw_led_shutdown(priv);
11209
11210         /* Wait up to 1s for status to change to not scanning and not
11211          * associated (disassociation can take a while for a ful 802.11
11212          * exchange */
11213         for (i = 1000; i && (priv->status &
11214                              (STATUS_DISASSOCIATING |
11215                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11216                 udelay(10);
11217
11218         if (priv->status & (STATUS_DISASSOCIATING |
11219                             STATUS_ASSOCIATED | STATUS_SCANNING))
11220                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11221         else
11222                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11223
11224         /* Attempt to disable the card */
11225         ipw_send_card_disable(priv, 0);
11226
11227         priv->status &= ~STATUS_INIT;
11228 }
11229
11230 static void ipw_down(struct ipw_priv *priv)
11231 {
11232         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11233
11234         priv->status |= STATUS_EXIT_PENDING;
11235
11236         if (ipw_is_init(priv))
11237                 ipw_deinit(priv);
11238
11239         /* Wipe out the EXIT_PENDING status bit if we are not actually
11240          * exiting the module */
11241         if (!exit_pending)
11242                 priv->status &= ~STATUS_EXIT_PENDING;
11243
11244         /* tell the device to stop sending interrupts */
11245         ipw_disable_interrupts(priv);
11246
11247         /* Clear all bits but the RF Kill */
11248         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11249         netif_carrier_off(priv->net_dev);
11250         netif_stop_queue(priv->net_dev);
11251
11252         ipw_stop_nic(priv);
11253
11254         ipw_led_radio_off(priv);
11255 }
11256
11257 static void ipw_bg_down(void *data)
11258 {
11259         struct ipw_priv *priv = data;
11260         mutex_lock(&priv->mutex);
11261         ipw_down(data);
11262         mutex_unlock(&priv->mutex);
11263 }
11264
11265 /* Called by register_netdev() */
11266 static int ipw_net_init(struct net_device *dev)
11267 {
11268         struct ipw_priv *priv = ieee80211_priv(dev);
11269         mutex_lock(&priv->mutex);
11270
11271         if (ipw_up(priv)) {
11272                 mutex_unlock(&priv->mutex);
11273                 return -EIO;
11274         }
11275
11276         mutex_unlock(&priv->mutex);
11277         return 0;
11278 }
11279
11280 /* PCI driver stuff */
11281 static struct pci_device_id card_ids[] = {
11282         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11283         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11284         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11285         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11286         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11287         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11288         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11289         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11290         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11291         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11292         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11293         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11294         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11295         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11296         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11297         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11298         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11299         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11300         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11301         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11302         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11303         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11304
11305         /* required last entry */
11306         {0,}
11307 };
11308
11309 MODULE_DEVICE_TABLE(pci, card_ids);
11310
11311 static struct attribute *ipw_sysfs_entries[] = {
11312         &dev_attr_rf_kill.attr,
11313         &dev_attr_direct_dword.attr,
11314         &dev_attr_indirect_byte.attr,
11315         &dev_attr_indirect_dword.attr,
11316         &dev_attr_mem_gpio_reg.attr,
11317         &dev_attr_command_event_reg.attr,
11318         &dev_attr_nic_type.attr,
11319         &dev_attr_status.attr,
11320         &dev_attr_cfg.attr,
11321         &dev_attr_error.attr,
11322         &dev_attr_event_log.attr,
11323         &dev_attr_cmd_log.attr,
11324         &dev_attr_eeprom_delay.attr,
11325         &dev_attr_ucode_version.attr,
11326         &dev_attr_rtc.attr,
11327         &dev_attr_scan_age.attr,
11328         &dev_attr_led.attr,
11329         &dev_attr_speed_scan.attr,
11330         &dev_attr_net_stats.attr,
11331 #ifdef CONFIG_IPW2200_PROMISCUOUS
11332         &dev_attr_rtap_iface.attr,
11333         &dev_attr_rtap_filter.attr,
11334 #endif
11335         NULL
11336 };
11337
11338 static struct attribute_group ipw_attribute_group = {
11339         .name = NULL,           /* put in device directory */
11340         .attrs = ipw_sysfs_entries,
11341 };
11342
11343 #ifdef CONFIG_IPW2200_PROMISCUOUS
11344 static int ipw_prom_open(struct net_device *dev)
11345 {
11346         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11347         struct ipw_priv *priv = prom_priv->priv;
11348
11349         IPW_DEBUG_INFO("prom dev->open\n");
11350         netif_carrier_off(dev);
11351         netif_stop_queue(dev);
11352
11353         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11354                 priv->sys_config.accept_all_data_frames = 1;
11355                 priv->sys_config.accept_non_directed_frames = 1;
11356                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11357                 priv->sys_config.accept_all_mgmt_frames = 1;
11358
11359                 ipw_send_system_config(priv);
11360         }
11361
11362         return 0;
11363 }
11364
11365 static int ipw_prom_stop(struct net_device *dev)
11366 {
11367         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11368         struct ipw_priv *priv = prom_priv->priv;
11369
11370         IPW_DEBUG_INFO("prom dev->stop\n");
11371
11372         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11373                 priv->sys_config.accept_all_data_frames = 0;
11374                 priv->sys_config.accept_non_directed_frames = 0;
11375                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11376                 priv->sys_config.accept_all_mgmt_frames = 0;
11377
11378                 ipw_send_system_config(priv);
11379         }
11380
11381         return 0;
11382 }
11383
11384 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11385 {
11386         IPW_DEBUG_INFO("prom dev->xmit\n");
11387         netif_stop_queue(dev);
11388         return -EOPNOTSUPP;
11389 }
11390
11391 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11392 {
11393         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11394         return &prom_priv->ieee->stats;
11395 }
11396
11397 static int ipw_prom_alloc(struct ipw_priv *priv)
11398 {
11399         int rc = 0;
11400
11401         if (priv->prom_net_dev)
11402                 return -EPERM;
11403
11404         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11405         if (priv->prom_net_dev == NULL)
11406                 return -ENOMEM;
11407
11408         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11409         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11410         priv->prom_priv->priv = priv;
11411
11412         strcpy(priv->prom_net_dev->name, "rtap%d");
11413
11414         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11415         priv->prom_net_dev->open = ipw_prom_open;
11416         priv->prom_net_dev->stop = ipw_prom_stop;
11417         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11418         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11419
11420         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11421
11422         rc = register_netdev(priv->prom_net_dev);
11423         if (rc) {
11424                 free_ieee80211(priv->prom_net_dev);
11425                 priv->prom_net_dev = NULL;
11426                 return rc;
11427         }
11428
11429         return 0;
11430 }
11431
11432 static void ipw_prom_free(struct ipw_priv *priv)
11433 {
11434         if (!priv->prom_net_dev)
11435                 return;
11436
11437         unregister_netdev(priv->prom_net_dev);
11438         free_ieee80211(priv->prom_net_dev);
11439
11440         priv->prom_net_dev = NULL;
11441 }
11442
11443 #endif
11444
11445
11446 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11447 {
11448         int err = 0;
11449         struct net_device *net_dev;
11450         void __iomem *base;
11451         u32 length, val;
11452         struct ipw_priv *priv;
11453         int i;
11454
11455         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11456         if (net_dev == NULL) {
11457                 err = -ENOMEM;
11458                 goto out;
11459         }
11460
11461         priv = ieee80211_priv(net_dev);
11462         priv->ieee = netdev_priv(net_dev);
11463
11464         priv->net_dev = net_dev;
11465         priv->pci_dev = pdev;
11466         ipw_debug_level = debug;
11467         spin_lock_init(&priv->irq_lock);
11468         spin_lock_init(&priv->lock);
11469         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11470                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11471
11472         mutex_init(&priv->mutex);
11473         if (pci_enable_device(pdev)) {
11474                 err = -ENODEV;
11475                 goto out_free_ieee80211;
11476         }
11477
11478         pci_set_master(pdev);
11479
11480         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11481         if (!err)
11482                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11483         if (err) {
11484                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11485                 goto out_pci_disable_device;
11486         }
11487
11488         pci_set_drvdata(pdev, priv);
11489
11490         err = pci_request_regions(pdev, DRV_NAME);
11491         if (err)
11492                 goto out_pci_disable_device;
11493
11494         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11495          * PCI Tx retries from interfering with C3 CPU state */
11496         pci_read_config_dword(pdev, 0x40, &val);
11497         if ((val & 0x0000ff00) != 0)
11498                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11499
11500         length = pci_resource_len(pdev, 0);
11501         priv->hw_len = length;
11502
11503         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11504         if (!base) {
11505                 err = -ENODEV;
11506                 goto out_pci_release_regions;
11507         }
11508
11509         priv->hw_base = base;
11510         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11511         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11512
11513         err = ipw_setup_deferred_work(priv);
11514         if (err) {
11515                 IPW_ERROR("Unable to setup deferred work\n");
11516                 goto out_iounmap;
11517         }
11518
11519         ipw_sw_reset(priv, 1);
11520
11521         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11522         if (err) {
11523                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11524                 goto out_destroy_workqueue;
11525         }
11526
11527         SET_MODULE_OWNER(net_dev);
11528         SET_NETDEV_DEV(net_dev, &pdev->dev);
11529
11530         mutex_lock(&priv->mutex);
11531
11532         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11533         priv->ieee->set_security = shim__set_security;
11534         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11535
11536 #ifdef CONFIG_IPW2200_QOS
11537         priv->ieee->is_qos_active = ipw_is_qos_active;
11538         priv->ieee->handle_probe_response = ipw_handle_beacon;
11539         priv->ieee->handle_beacon = ipw_handle_probe_response;
11540         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11541 #endif                          /* CONFIG_IPW2200_QOS */
11542
11543         priv->ieee->perfect_rssi = -20;
11544         priv->ieee->worst_rssi = -85;
11545
11546         net_dev->open = ipw_net_open;
11547         net_dev->stop = ipw_net_stop;
11548         net_dev->init = ipw_net_init;
11549         net_dev->get_stats = ipw_net_get_stats;
11550         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11551         net_dev->set_mac_address = ipw_net_set_mac_address;
11552         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11553         net_dev->wireless_data = &priv->wireless_data;
11554         net_dev->wireless_handlers = &ipw_wx_handler_def;
11555         net_dev->ethtool_ops = &ipw_ethtool_ops;
11556         net_dev->irq = pdev->irq;
11557         net_dev->base_addr = (unsigned long)priv->hw_base;
11558         net_dev->mem_start = pci_resource_start(pdev, 0);
11559         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11560
11561         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11562         if (err) {
11563                 IPW_ERROR("failed to create sysfs device attributes\n");
11564                 mutex_unlock(&priv->mutex);
11565                 goto out_release_irq;
11566         }
11567
11568         mutex_unlock(&priv->mutex);
11569         err = register_netdev(net_dev);
11570         if (err) {
11571                 IPW_ERROR("failed to register network device\n");
11572                 goto out_remove_sysfs;
11573         }
11574
11575 #ifdef CONFIG_IPW2200_PROMISCUOUS
11576         if (rtap_iface) {
11577                 err = ipw_prom_alloc(priv);
11578                 if (err) {
11579                         IPW_ERROR("Failed to register promiscuous network "
11580                                   "device (error %d).\n", err);
11581                         unregister_netdev(priv->net_dev);
11582                         goto out_remove_sysfs;
11583                 }
11584         }
11585 #endif
11586
11587         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11588                "channels, %d 802.11a channels)\n",
11589                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11590                priv->ieee->geo.a_channels);
11591
11592         return 0;
11593
11594       out_remove_sysfs:
11595         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11596       out_release_irq:
11597         free_irq(pdev->irq, priv);
11598       out_destroy_workqueue:
11599         destroy_workqueue(priv->workqueue);
11600         priv->workqueue = NULL;
11601       out_iounmap:
11602         iounmap(priv->hw_base);
11603       out_pci_release_regions:
11604         pci_release_regions(pdev);
11605       out_pci_disable_device:
11606         pci_disable_device(pdev);
11607         pci_set_drvdata(pdev, NULL);
11608       out_free_ieee80211:
11609         free_ieee80211(priv->net_dev);
11610       out:
11611         return err;
11612 }
11613
11614 static void ipw_pci_remove(struct pci_dev *pdev)
11615 {
11616         struct ipw_priv *priv = pci_get_drvdata(pdev);
11617         struct list_head *p, *q;
11618         int i;
11619
11620         if (!priv)
11621                 return;
11622
11623         mutex_lock(&priv->mutex);
11624
11625         priv->status |= STATUS_EXIT_PENDING;
11626         ipw_down(priv);
11627         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11628
11629         mutex_unlock(&priv->mutex);
11630
11631         unregister_netdev(priv->net_dev);
11632
11633         if (priv->rxq) {
11634                 ipw_rx_queue_free(priv, priv->rxq);
11635                 priv->rxq = NULL;
11636         }
11637         ipw_tx_queue_free(priv);
11638
11639         if (priv->cmdlog) {
11640                 kfree(priv->cmdlog);
11641                 priv->cmdlog = NULL;
11642         }
11643         /* ipw_down will ensure that there is no more pending work
11644          * in the workqueue's, so we can safely remove them now. */
11645         cancel_delayed_work(&priv->adhoc_check);
11646         cancel_delayed_work(&priv->gather_stats);
11647         cancel_delayed_work(&priv->request_scan);
11648         cancel_delayed_work(&priv->rf_kill);
11649         cancel_delayed_work(&priv->scan_check);
11650         destroy_workqueue(priv->workqueue);
11651         priv->workqueue = NULL;
11652
11653         /* Free MAC hash list for ADHOC */
11654         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11655                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11656                         list_del(p);
11657                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11658                 }
11659         }
11660
11661         kfree(priv->error);
11662         priv->error = NULL;
11663
11664 #ifdef CONFIG_IPW2200_PROMISCUOUS
11665         ipw_prom_free(priv);
11666 #endif
11667
11668         free_irq(pdev->irq, priv);
11669         iounmap(priv->hw_base);
11670         pci_release_regions(pdev);
11671         pci_disable_device(pdev);
11672         pci_set_drvdata(pdev, NULL);
11673         free_ieee80211(priv->net_dev);
11674         free_firmware();
11675 }
11676
11677 #ifdef CONFIG_PM
11678 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11679 {
11680         struct ipw_priv *priv = pci_get_drvdata(pdev);
11681         struct net_device *dev = priv->net_dev;
11682
11683         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11684
11685         /* Take down the device; powers it off, etc. */
11686         ipw_down(priv);
11687
11688         /* Remove the PRESENT state of the device */
11689         netif_device_detach(dev);
11690
11691         pci_save_state(pdev);
11692         pci_disable_device(pdev);
11693         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11694
11695         return 0;
11696 }
11697
11698 static int ipw_pci_resume(struct pci_dev *pdev)
11699 {
11700         struct ipw_priv *priv = pci_get_drvdata(pdev);
11701         struct net_device *dev = priv->net_dev;
11702         u32 val;
11703
11704         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11705
11706         pci_set_power_state(pdev, PCI_D0);
11707         pci_enable_device(pdev);
11708         pci_restore_state(pdev);
11709
11710         /*
11711          * Suspend/Resume resets the PCI configuration space, so we have to
11712          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11713          * from interfering with C3 CPU state. pci_restore_state won't help
11714          * here since it only restores the first 64 bytes pci config header.
11715          */
11716         pci_read_config_dword(pdev, 0x40, &val);
11717         if ((val & 0x0000ff00) != 0)
11718                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11719
11720         /* Set the device back into the PRESENT state; this will also wake
11721          * the queue of needed */
11722         netif_device_attach(dev);
11723
11724         /* Bring the device back up */
11725         queue_work(priv->workqueue, &priv->up);
11726
11727         return 0;
11728 }
11729 #endif
11730
11731 /* driver initialization stuff */
11732 static struct pci_driver ipw_driver = {
11733         .name = DRV_NAME,
11734         .id_table = card_ids,
11735         .probe = ipw_pci_probe,
11736         .remove = __devexit_p(ipw_pci_remove),
11737 #ifdef CONFIG_PM
11738         .suspend = ipw_pci_suspend,
11739         .resume = ipw_pci_resume,
11740 #endif
11741 };
11742
11743 static int __init ipw_init(void)
11744 {
11745         int ret;
11746
11747         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11748         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11749
11750         ret = pci_module_init(&ipw_driver);
11751         if (ret) {
11752                 IPW_ERROR("Unable to initialize PCI module\n");
11753                 return ret;
11754         }
11755
11756         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11757         if (ret) {
11758                 IPW_ERROR("Unable to create driver sysfs file\n");
11759                 pci_unregister_driver(&ipw_driver);
11760                 return ret;
11761         }
11762
11763         return ret;
11764 }
11765
11766 static void __exit ipw_exit(void)
11767 {
11768         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11769         pci_unregister_driver(&ipw_driver);
11770 }
11771
11772 module_param(disable, int, 0444);
11773 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11774
11775 module_param(associate, int, 0444);
11776 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11777
11778 module_param(auto_create, int, 0444);
11779 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11780
11781 module_param(led, int, 0444);
11782 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11783
11784 #ifdef CONFIG_IPW2200_DEBUG
11785 module_param(debug, int, 0444);
11786 MODULE_PARM_DESC(debug, "debug output mask");
11787 #endif
11788
11789 module_param(channel, int, 0444);
11790 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11791
11792 #ifdef CONFIG_IPW2200_PROMISCUOUS
11793 module_param(rtap_iface, int, 0444);
11794 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11795 #endif
11796
11797 #ifdef CONFIG_IPW2200_QOS
11798 module_param(qos_enable, int, 0444);
11799 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11800
11801 module_param(qos_burst_enable, int, 0444);
11802 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11803
11804 module_param(qos_no_ack_mask, int, 0444);
11805 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11806
11807 module_param(burst_duration_CCK, int, 0444);
11808 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11809
11810 module_param(burst_duration_OFDM, int, 0444);
11811 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11812 #endif                          /* CONFIG_IPW2200_QOS */
11813
11814 #ifdef CONFIG_IPW2200_MONITOR
11815 module_param(mode, int, 0444);
11816 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11817 #else
11818 module_param(mode, int, 0444);
11819 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11820 #endif
11821
11822 module_param(bt_coexist, int, 0444);
11823 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11824
11825 module_param(hwcrypto, int, 0444);
11826 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11827
11828 module_param(cmdlog, int, 0444);
11829 MODULE_PARM_DESC(cmdlog,
11830                  "allocate a ring buffer for logging firmware commands");
11831
11832 module_param(roaming, int, 0444);
11833 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11834
11835 module_param(antenna, int, 0444);
11836 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11837
11838 module_exit(ipw_exit);
11839 module_init(ipw_init);