]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/ath/ath9k/hw.c
ath9k_htc: Add support for power save.
[net-next-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ofdm_trig_low = 200;
338         ah->config.ofdm_trig_high = 500;
339         ah->config.cck_trig_high = 200;
340         ah->config.cck_trig_low = 100;
341         ah->config.enable_ani = 1;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349                 ah->config.ht_enable = 1;
350         else
351                 ah->config.ht_enable = 0;
352
353         ah->config.rx_intr_mitigation = true;
354
355         /*
356          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358          * This means we use it for all AR5416 devices, and the few
359          * minor PCI AR9280 devices out there.
360          *
361          * Serialization is required because these devices do not handle
362          * well the case of two concurrent reads/writes due to the latency
363          * involved. During one read/write another read/write can be issued
364          * on another CPU while the previous read/write may still be working
365          * on our hardware, if we hit this case the hardware poops in a loop.
366          * We prevent this by serializing reads and writes.
367          *
368          * This issue is not present on PCI-Express devices or pre-AR5416
369          * devices (legacy, 802.11abg).
370          */
371         if (num_possible_cpus() > 1)
372                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373 }
374 EXPORT_SYMBOL(ath9k_hw_init);
375
376 static void ath9k_hw_init_defaults(struct ath_hw *ah)
377 {
378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380         regulatory->country_code = CTRY_DEFAULT;
381         regulatory->power_limit = MAX_RATE_POWER;
382         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384         ah->hw_version.magic = AR5416_MAGIC;
385         ah->hw_version.subvendorid = 0;
386
387         ah->ah_flags = 0;
388         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390         if (!AR_SREV_9100(ah))
391                 ah->ah_flags = AH_USE_EEPROM;
392
393         ah->atim_window = 0;
394         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395         ah->beacon_interval = 100;
396         ah->enable_32kHz_clock = DONT_USE_32KHZ;
397         ah->slottime = (u32) -1;
398         ah->globaltxtimeout = (u32) -1;
399         ah->power_mode = ATH9K_PM_UNDEFINED;
400 }
401
402 static int ath9k_hw_rf_claim(struct ath_hw *ah)
403 {
404         u32 val;
405
406         REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408         val = ath9k_hw_get_radiorev(ah);
409         switch (val & AR_RADIO_SREV_MAJOR) {
410         case 0:
411                 val = AR_RAD5133_SREV_MAJOR;
412                 break;
413         case AR_RAD5133_SREV_MAJOR:
414         case AR_RAD5122_SREV_MAJOR:
415         case AR_RAD2133_SREV_MAJOR:
416         case AR_RAD2122_SREV_MAJOR:
417                 break;
418         default:
419                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420                           "Radio Chip Rev 0x%02X not supported\n",
421                           val & AR_RADIO_SREV_MAJOR);
422                 return -EOPNOTSUPP;
423         }
424
425         ah->hw_version.analog5GhzRev = val;
426
427         return 0;
428 }
429
430 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431 {
432         struct ath_common *common = ath9k_hw_common(ah);
433         u32 sum;
434         int i;
435         u16 eeval;
436
437         sum = 0;
438         for (i = 0; i < 3; i++) {
439                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440                 sum += eeval;
441                 common->macaddr[2 * i] = eeval >> 8;
442                 common->macaddr[2 * i + 1] = eeval & 0xff;
443         }
444         if (sum == 0 || sum == 0xffff * 3)
445                 return -EADDRNOTAVAIL;
446
447         return 0;
448 }
449
450 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451 {
452         u32 rxgain_type;
453
454         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_13db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_backoff_23db_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465                 else
466                         INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         } else {
470                 INIT_INI_ARRAY(&ah->iniModesRxGain,
471                         ar9280Modes_original_rxgain_9280_2,
472                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473         }
474 }
475
476 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477 {
478         u32 txgain_type;
479
480         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_high_power_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487                 else
488                         INIT_INI_ARRAY(&ah->iniModesTxGain,
489                         ar9280Modes_original_tx_gain_9280_2,
490                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         } else {
492                 INIT_INI_ARRAY(&ah->iniModesTxGain,
493                 ar9280Modes_original_tx_gain_9280_2,
494                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495         }
496 }
497
498 static int ath9k_hw_post_init(struct ath_hw *ah)
499 {
500         int ecode;
501
502         if (!AR_SREV_9271(ah)) {
503                 if (!ath9k_hw_chip_test(ah))
504                         return -ENODEV;
505         }
506
507         ecode = ath9k_hw_rf_claim(ah);
508         if (ecode != 0)
509                 return ecode;
510
511         ecode = ath9k_hw_eeprom_init(ah);
512         if (ecode != 0)
513                 return ecode;
514
515         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
516                   "Eeprom VER: %d, REV: %d\n",
517                   ah->eep_ops->get_eeprom_ver(ah),
518                   ah->eep_ops->get_eeprom_rev(ah));
519
520         if (!AR_SREV_9280_10_OR_LATER(ah)) {
521                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
522                 if (ecode) {
523                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
524                                   "Failed allocating banks for "
525                                   "external radio\n");
526                         return ecode;
527                 }
528         }
529
530         if (!AR_SREV_9100(ah)) {
531                 ath9k_hw_ani_setup(ah);
532                 ath9k_hw_ani_init(ah);
533         }
534
535         return 0;
536 }
537
538 static bool ath9k_hw_devid_supported(u16 devid)
539 {
540         switch (devid) {
541         case AR5416_DEVID_PCI:
542         case AR5416_DEVID_PCIE:
543         case AR5416_AR9100_DEVID:
544         case AR9160_DEVID_PCI:
545         case AR9280_DEVID_PCI:
546         case AR9280_DEVID_PCIE:
547         case AR9285_DEVID_PCIE:
548         case AR5416_DEVID_AR9287_PCI:
549         case AR5416_DEVID_AR9287_PCIE:
550         case AR2427_DEVID_PCIE:
551                 return true;
552         default:
553                 break;
554         }
555         return false;
556 }
557
558 static bool ath9k_hw_macversion_supported(u32 macversion)
559 {
560         switch (macversion) {
561         case AR_SREV_VERSION_5416_PCI:
562         case AR_SREV_VERSION_5416_PCIE:
563         case AR_SREV_VERSION_9160:
564         case AR_SREV_VERSION_9100:
565         case AR_SREV_VERSION_9280:
566         case AR_SREV_VERSION_9285:
567         case AR_SREV_VERSION_9287:
568         case AR_SREV_VERSION_9271:
569                 return true;
570         default:
571                 break;
572         }
573         return false;
574 }
575
576 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
577 {
578         if (AR_SREV_9160_10_OR_LATER(ah)) {
579                 if (AR_SREV_9280_10_OR_LATER(ah)) {
580                         ah->iq_caldata.calData = &iq_cal_single_sample;
581                         ah->adcgain_caldata.calData =
582                                 &adc_gain_cal_single_sample;
583                         ah->adcdc_caldata.calData =
584                                 &adc_dc_cal_single_sample;
585                         ah->adcdc_calinitdata.calData =
586                                 &adc_init_dc_cal;
587                 } else {
588                         ah->iq_caldata.calData = &iq_cal_multi_sample;
589                         ah->adcgain_caldata.calData =
590                                 &adc_gain_cal_multi_sample;
591                         ah->adcdc_caldata.calData =
592                                 &adc_dc_cal_multi_sample;
593                         ah->adcdc_calinitdata.calData =
594                                 &adc_init_dc_cal;
595                 }
596                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
597         }
598 }
599
600 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
601 {
602         if (AR_SREV_9271(ah)) {
603                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
604                                ARRAY_SIZE(ar9271Modes_9271), 6);
605                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
606                                ARRAY_SIZE(ar9271Common_9271), 2);
607                 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
608                                ar9271Common_normal_cck_fir_coeff_9271,
609                                ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
610                 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
611                                ar9271Common_japan_2484_cck_fir_coeff_9271,
612                                ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
613                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
614                                ar9271Modes_9271_1_0_only,
615                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
616                 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
617                                ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
618                 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
619                                ar9271Modes_high_power_tx_gain_9271,
620                                ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
621                 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
622                                ar9271Modes_normal_power_tx_gain_9271,
623                                ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
624                 return;
625         }
626
627         if (AR_SREV_9287_11_OR_LATER(ah)) {
628                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
629                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
630                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
631                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
632                 if (ah->config.pcie_clock_req)
633                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
634                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
635                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
636                 else
637                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
638                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
639                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
640                                         2);
641         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
642                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
643                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
644                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
645                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
646
647                 if (ah->config.pcie_clock_req)
648                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
649                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
650                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
651                 else
652                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
653                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
654                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
655                                   2);
656         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
657
658
659                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
660                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
661                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
662                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
663
664                 if (ah->config.pcie_clock_req) {
665                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
666                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
667                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
668                 } else {
669                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
670                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
671                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
672                                   2);
673                 }
674         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
675                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
676                                ARRAY_SIZE(ar9285Modes_9285), 6);
677                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
678                                ARRAY_SIZE(ar9285Common_9285), 2);
679
680                 if (ah->config.pcie_clock_req) {
681                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
682                         ar9285PciePhy_clkreq_off_L1_9285,
683                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
684                 } else {
685                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
686                         ar9285PciePhy_clkreq_always_on_L1_9285,
687                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
688                 }
689         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
690                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
691                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
692                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
693                                ARRAY_SIZE(ar9280Common_9280_2), 2);
694
695                 if (ah->config.pcie_clock_req) {
696                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
697                                ar9280PciePhy_clkreq_off_L1_9280,
698                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
699                 } else {
700                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
701                                ar9280PciePhy_clkreq_always_on_L1_9280,
702                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
703                 }
704                 INIT_INI_ARRAY(&ah->iniModesAdditional,
705                                ar9280Modes_fast_clock_9280_2,
706                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
707         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
708                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
709                                ARRAY_SIZE(ar9280Modes_9280), 6);
710                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
711                                ARRAY_SIZE(ar9280Common_9280), 2);
712         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
713                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
714                                ARRAY_SIZE(ar5416Modes_9160), 6);
715                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
716                                ARRAY_SIZE(ar5416Common_9160), 2);
717                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
718                                ARRAY_SIZE(ar5416Bank0_9160), 2);
719                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
720                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
721                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
722                                ARRAY_SIZE(ar5416Bank1_9160), 2);
723                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
724                                ARRAY_SIZE(ar5416Bank2_9160), 2);
725                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
726                                ARRAY_SIZE(ar5416Bank3_9160), 3);
727                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
728                                ARRAY_SIZE(ar5416Bank6_9160), 3);
729                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
730                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
731                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
732                                ARRAY_SIZE(ar5416Bank7_9160), 2);
733                 if (AR_SREV_9160_11(ah)) {
734                         INIT_INI_ARRAY(&ah->iniAddac,
735                                        ar5416Addac_91601_1,
736                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
737                 } else {
738                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
739                                        ARRAY_SIZE(ar5416Addac_9160), 2);
740                 }
741         } else if (AR_SREV_9100_OR_LATER(ah)) {
742                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
743                                ARRAY_SIZE(ar5416Modes_9100), 6);
744                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
745                                ARRAY_SIZE(ar5416Common_9100), 2);
746                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
747                                ARRAY_SIZE(ar5416Bank0_9100), 2);
748                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
749                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
750                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
751                                ARRAY_SIZE(ar5416Bank1_9100), 2);
752                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
753                                ARRAY_SIZE(ar5416Bank2_9100), 2);
754                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
755                                ARRAY_SIZE(ar5416Bank3_9100), 3);
756                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
757                                ARRAY_SIZE(ar5416Bank6_9100), 3);
758                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
759                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
760                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
761                                ARRAY_SIZE(ar5416Bank7_9100), 2);
762                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
763                                ARRAY_SIZE(ar5416Addac_9100), 2);
764         } else {
765                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
766                                ARRAY_SIZE(ar5416Modes), 6);
767                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
768                                ARRAY_SIZE(ar5416Common), 2);
769                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
770                                ARRAY_SIZE(ar5416Bank0), 2);
771                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
772                                ARRAY_SIZE(ar5416BB_RfGain), 3);
773                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
774                                ARRAY_SIZE(ar5416Bank1), 2);
775                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
776                                ARRAY_SIZE(ar5416Bank2), 2);
777                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
778                                ARRAY_SIZE(ar5416Bank3), 3);
779                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
780                                ARRAY_SIZE(ar5416Bank6), 3);
781                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
782                                ARRAY_SIZE(ar5416Bank6TPC), 3);
783                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
784                                ARRAY_SIZE(ar5416Bank7), 2);
785                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
786                                ARRAY_SIZE(ar5416Addac), 2);
787         }
788 }
789
790 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
791 {
792         if (AR_SREV_9287_11_OR_LATER(ah))
793                 INIT_INI_ARRAY(&ah->iniModesRxGain,
794                 ar9287Modes_rx_gain_9287_1_1,
795                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
796         else if (AR_SREV_9287_10(ah))
797                 INIT_INI_ARRAY(&ah->iniModesRxGain,
798                 ar9287Modes_rx_gain_9287_1_0,
799                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
800         else if (AR_SREV_9280_20(ah))
801                 ath9k_hw_init_rxgain_ini(ah);
802
803         if (AR_SREV_9287_11_OR_LATER(ah)) {
804                 INIT_INI_ARRAY(&ah->iniModesTxGain,
805                 ar9287Modes_tx_gain_9287_1_1,
806                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
807         } else if (AR_SREV_9287_10(ah)) {
808                 INIT_INI_ARRAY(&ah->iniModesTxGain,
809                 ar9287Modes_tx_gain_9287_1_0,
810                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
811         } else if (AR_SREV_9280_20(ah)) {
812                 ath9k_hw_init_txgain_ini(ah);
813         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
814                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
815
816                 /* txgain table */
817                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
818                         if (AR_SREV_9285E_20(ah)) {
819                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
820                                 ar9285Modes_XE2_0_high_power,
821                                 ARRAY_SIZE(
822                                   ar9285Modes_XE2_0_high_power), 6);
823                         } else {
824                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
825                                 ar9285Modes_high_power_tx_gain_9285_1_2,
826                                 ARRAY_SIZE(
827                                   ar9285Modes_high_power_tx_gain_9285_1_2), 6);
828                         }
829                 } else {
830                         if (AR_SREV_9285E_20(ah)) {
831                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
832                                 ar9285Modes_XE2_0_normal_power,
833                                 ARRAY_SIZE(
834                                   ar9285Modes_XE2_0_normal_power), 6);
835                         } else {
836                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
837                                 ar9285Modes_original_tx_gain_9285_1_2,
838                                 ARRAY_SIZE(
839                                   ar9285Modes_original_tx_gain_9285_1_2), 6);
840                         }
841                 }
842         }
843 }
844
845 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
846 {
847         u32 i, j;
848
849         if (ah->hw_version.devid == AR9280_DEVID_PCI) {
850
851                 /* EEPROM Fixup */
852                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
853                         u32 reg = INI_RA(&ah->iniModes, i, 0);
854
855                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
856                                 u32 val = INI_RA(&ah->iniModes, i, j);
857
858                                 INI_RA(&ah->iniModes, i, j) =
859                                         ath9k_hw_ini_fixup(ah,
860                                                            &ah->eeprom.def,
861                                                            reg, val);
862                         }
863                 }
864         }
865 }
866
867 int ath9k_hw_init(struct ath_hw *ah)
868 {
869         struct ath_common *common = ath9k_hw_common(ah);
870         int r = 0;
871
872         if (common->bus_ops->ath_bus_type != ATH_USB) {
873                 if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
874                         ath_print(common, ATH_DBG_FATAL,
875                                   "Unsupported device ID: 0x%0x\n",
876                                   ah->hw_version.devid);
877                         return -EOPNOTSUPP;
878                 }
879         }
880
881         ath9k_hw_init_defaults(ah);
882         ath9k_hw_init_config(ah);
883
884         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
885                 ath_print(common, ATH_DBG_FATAL,
886                           "Couldn't reset chip\n");
887                 return -EIO;
888         }
889
890         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
891                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
892                 return -EIO;
893         }
894
895         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
896                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
897                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
898                         ah->config.serialize_regmode =
899                                 SER_REG_MODE_ON;
900                 } else {
901                         ah->config.serialize_regmode =
902                                 SER_REG_MODE_OFF;
903                 }
904         }
905
906         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
907                 ah->config.serialize_regmode);
908
909         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
910                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
911         else
912                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
913
914         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
915                 ath_print(common, ATH_DBG_FATAL,
916                           "Mac Chip Rev 0x%02x.%x is not supported by "
917                           "this driver\n", ah->hw_version.macVersion,
918                           ah->hw_version.macRev);
919                 return -EOPNOTSUPP;
920         }
921
922         if (AR_SREV_9100(ah)) {
923                 ah->iq_caldata.calData = &iq_cal_multi_sample;
924                 ah->supp_cals = IQ_MISMATCH_CAL;
925                 ah->is_pciexpress = false;
926         }
927
928         if (AR_SREV_9271(ah))
929                 ah->is_pciexpress = false;
930
931         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
932
933         ath9k_hw_init_cal_settings(ah);
934
935         ah->ani_function = ATH9K_ANI_ALL;
936         if (AR_SREV_9280_10_OR_LATER(ah)) {
937                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
938                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
939                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
940         } else {
941                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
942                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
943         }
944
945         ath9k_hw_init_mode_regs(ah);
946
947         if (ah->is_pciexpress)
948                 ath9k_hw_configpcipowersave(ah, 0, 0);
949         else
950                 ath9k_hw_disablepcie(ah);
951
952         /* Support for Japan ch.14 (2484) spread */
953         if (AR_SREV_9287_11_OR_LATER(ah)) {
954                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
955                        ar9287Common_normal_cck_fir_coeff_92871_1,
956                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
957                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
958                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
959                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
960         }
961
962         r = ath9k_hw_post_init(ah);
963         if (r)
964                 return r;
965
966         ath9k_hw_init_mode_gain_regs(ah);
967         r = ath9k_hw_fill_cap_info(ah);
968         if (r)
969                 return r;
970
971         ath9k_hw_init_eeprom_fix(ah);
972
973         r = ath9k_hw_init_macaddr(ah);
974         if (r) {
975                 ath_print(common, ATH_DBG_FATAL,
976                           "Failed to initialize MAC address\n");
977                 return r;
978         }
979
980         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
981                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
982         else
983                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
984
985         ath9k_init_nfcal_hist_buffer(ah);
986
987         common->state = ATH_HW_INITIALIZED;
988
989         return 0;
990 }
991
992 static void ath9k_hw_init_bb(struct ath_hw *ah,
993                              struct ath9k_channel *chan)
994 {
995         u32 synthDelay;
996
997         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
998         if (IS_CHAN_B(chan))
999                 synthDelay = (4 * synthDelay) / 22;
1000         else
1001                 synthDelay /= 10;
1002
1003         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1004
1005         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1006 }
1007
1008 static void ath9k_hw_init_qos(struct ath_hw *ah)
1009 {
1010         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1011         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1012
1013         REG_WRITE(ah, AR_QOS_NO_ACK,
1014                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1015                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1016                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1017
1018         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1019         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1020         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1021         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1022         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1023 }
1024
1025 static void ath9k_hw_init_pll(struct ath_hw *ah,
1026                               struct ath9k_channel *chan)
1027 {
1028         u32 pll;
1029
1030         if (AR_SREV_9100(ah)) {
1031                 if (chan && IS_CHAN_5GHZ(chan))
1032                         pll = 0x1450;
1033                 else
1034                         pll = 0x1458;
1035         } else {
1036                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1037                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1038
1039                         if (chan && IS_CHAN_HALF_RATE(chan))
1040                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1041                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1042                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1043
1044                         if (chan && IS_CHAN_5GHZ(chan)) {
1045                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1046
1047
1048                                 if (AR_SREV_9280_20(ah)) {
1049                                         if (((chan->channel % 20) == 0)
1050                                             || ((chan->channel % 10) == 0))
1051                                                 pll = 0x2850;
1052                                         else
1053                                                 pll = 0x142c;
1054                                 }
1055                         } else {
1056                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1057                         }
1058
1059                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1060
1061                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1062
1063                         if (chan && IS_CHAN_HALF_RATE(chan))
1064                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1065                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1066                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1067
1068                         if (chan && IS_CHAN_5GHZ(chan))
1069                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1070                         else
1071                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1072                 } else {
1073                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1074
1075                         if (chan && IS_CHAN_HALF_RATE(chan))
1076                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1077                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1078                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1079
1080                         if (chan && IS_CHAN_5GHZ(chan))
1081                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1082                         else
1083                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1084                 }
1085         }
1086         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1087
1088         /* Switch the core clock for ar9271 to 117Mhz */
1089         if (AR_SREV_9271(ah)) {
1090                 udelay(500);
1091                 REG_WRITE(ah, 0x50040, 0x304);
1092         }
1093
1094         udelay(RTC_PLL_SETTLE_DELAY);
1095
1096         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1097 }
1098
1099 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1100 {
1101         int rx_chainmask, tx_chainmask;
1102
1103         rx_chainmask = ah->rxchainmask;
1104         tx_chainmask = ah->txchainmask;
1105
1106         switch (rx_chainmask) {
1107         case 0x5:
1108                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1109                             AR_PHY_SWAP_ALT_CHAIN);
1110         case 0x3:
1111                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1112                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1113                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1114                         break;
1115                 }
1116         case 0x1:
1117         case 0x2:
1118         case 0x7:
1119                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1120                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1121                 break;
1122         default:
1123                 break;
1124         }
1125
1126         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1127         if (tx_chainmask == 0x5) {
1128                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1129                             AR_PHY_SWAP_ALT_CHAIN);
1130         }
1131         if (AR_SREV_9100(ah))
1132                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1133                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1134 }
1135
1136 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1137                                           enum nl80211_iftype opmode)
1138 {
1139         u32 imr_reg = AR_IMR_TXERR |
1140                 AR_IMR_TXURN |
1141                 AR_IMR_RXERR |
1142                 AR_IMR_RXORN |
1143                 AR_IMR_BCNMISC;
1144
1145         if (ah->config.rx_intr_mitigation)
1146                 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1147         else
1148                 imr_reg |= AR_IMR_RXOK;
1149
1150         imr_reg |= AR_IMR_TXOK;
1151
1152         if (opmode == NL80211_IFTYPE_AP)
1153                 imr_reg |= AR_IMR_MIB;
1154
1155         REG_WRITE(ah, AR_IMR, imr_reg);
1156         ah->imrs2_reg |= AR_IMR_S2_GTT;
1157         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1158
1159         if (!AR_SREV_9100(ah)) {
1160                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1161                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1162                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1163         }
1164 }
1165
1166 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1167 {
1168         u32 val = ath9k_hw_mac_to_clks(ah, us);
1169         val = min(val, (u32) 0xFFFF);
1170         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1171 }
1172
1173 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1174 {
1175         u32 val = ath9k_hw_mac_to_clks(ah, us);
1176         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1177         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1178 }
1179
1180 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1181 {
1182         u32 val = ath9k_hw_mac_to_clks(ah, us);
1183         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1184         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1185 }
1186
1187 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1188 {
1189         if (tu > 0xFFFF) {
1190                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1191                           "bad global tx timeout %u\n", tu);
1192                 ah->globaltxtimeout = (u32) -1;
1193                 return false;
1194         } else {
1195                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1196                 ah->globaltxtimeout = tu;
1197                 return true;
1198         }
1199 }
1200
1201 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1202 {
1203         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1204         int acktimeout;
1205         int slottime;
1206         int sifstime;
1207
1208         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209                   ah->misc_mode);
1210
1211         if (ah->misc_mode != 0)
1212                 REG_WRITE(ah, AR_PCU_MISC,
1213                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214
1215         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1216                 sifstime = 16;
1217         else
1218                 sifstime = 10;
1219
1220         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1221         slottime = ah->slottime + 3 * ah->coverage_class;
1222         acktimeout = slottime + sifstime;
1223
1224         /*
1225          * Workaround for early ACK timeouts, add an offset to match the
1226          * initval's 64us ack timeout value.
1227          * This was initially only meant to work around an issue with delayed
1228          * BA frames in some implementations, but it has been found to fix ACK
1229          * timeout issues in other cases as well.
1230          */
1231         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1232                 acktimeout += 64 - sifstime - ah->slottime;
1233
1234         ath9k_hw_setslottime(ah, slottime);
1235         ath9k_hw_set_ack_timeout(ah, acktimeout);
1236         ath9k_hw_set_cts_timeout(ah, acktimeout);
1237         if (ah->globaltxtimeout != (u32) -1)
1238                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1239 }
1240 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1241
1242 void ath9k_hw_deinit(struct ath_hw *ah)
1243 {
1244         struct ath_common *common = ath9k_hw_common(ah);
1245
1246         if (common->state < ATH_HW_INITIALIZED)
1247                 goto free_hw;
1248
1249         if (!AR_SREV_9100(ah))
1250                 ath9k_hw_ani_disable(ah);
1251
1252         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1253
1254 free_hw:
1255         if (!AR_SREV_9280_10_OR_LATER(ah))
1256                 ath9k_hw_rf_free_ext_banks(ah);
1257 }
1258 EXPORT_SYMBOL(ath9k_hw_deinit);
1259
1260 /*******/
1261 /* INI */
1262 /*******/
1263
1264 static void ath9k_hw_override_ini(struct ath_hw *ah,
1265                                   struct ath9k_channel *chan)
1266 {
1267         u32 val;
1268
1269         /*
1270          * Set the RX_ABORT and RX_DIS and clear if off only after
1271          * RXE is set for MAC. This prevents frames with corrupted
1272          * descriptor status.
1273          */
1274         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1275
1276         if (AR_SREV_9280_10_OR_LATER(ah)) {
1277                 val = REG_READ(ah, AR_PCU_MISC_MODE2);
1278
1279                 if (!AR_SREV_9271(ah))
1280                         val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1281
1282                 if (AR_SREV_9287_10_OR_LATER(ah))
1283                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1284
1285                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1286         }
1287
1288         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1289             AR_SREV_9280_10_OR_LATER(ah))
1290                 return;
1291         /*
1292          * Disable BB clock gating
1293          * Necessary to avoid issues on AR5416 2.0
1294          */
1295         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1296
1297         /*
1298          * Disable RIFS search on some chips to avoid baseband
1299          * hang issues.
1300          */
1301         if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1302                 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1303                 val &= ~AR_PHY_RIFS_INIT_DELAY;
1304                 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1305         }
1306 }
1307
1308 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1309                               struct ar5416_eeprom_def *pEepData,
1310                               u32 reg, u32 value)
1311 {
1312         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1313         struct ath_common *common = ath9k_hw_common(ah);
1314
1315         switch (ah->hw_version.devid) {
1316         case AR9280_DEVID_PCI:
1317                 if (reg == 0x7894) {
1318                         ath_print(common, ATH_DBG_EEPROM,
1319                                 "ini VAL: %x  EEPROM: %x\n", value,
1320                                 (pBase->version & 0xff));
1321
1322                         if ((pBase->version & 0xff) > 0x0a) {
1323                                 ath_print(common, ATH_DBG_EEPROM,
1324                                           "PWDCLKIND: %d\n",
1325                                           pBase->pwdclkind);
1326                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1327                                 value |= AR_AN_TOP2_PWDCLKIND &
1328                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1329                         } else {
1330                                 ath_print(common, ATH_DBG_EEPROM,
1331                                           "PWDCLKIND Earlier Rev\n");
1332                         }
1333
1334                         ath_print(common, ATH_DBG_EEPROM,
1335                                   "final ini VAL: %x\n", value);
1336                 }
1337                 break;
1338         }
1339
1340         return value;
1341 }
1342
1343 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1344                               struct ar5416_eeprom_def *pEepData,
1345                               u32 reg, u32 value)
1346 {
1347         if (ah->eep_map == EEP_MAP_4KBITS)
1348                 return value;
1349         else
1350                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1351 }
1352
1353 static void ath9k_olc_init(struct ath_hw *ah)
1354 {
1355         u32 i;
1356
1357         if (OLC_FOR_AR9287_10_LATER) {
1358                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1359                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1360                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1361                                 AR9287_AN_TXPC0_TXPCMODE,
1362                                 AR9287_AN_TXPC0_TXPCMODE_S,
1363                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1364                 udelay(100);
1365         } else {
1366                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1367                         ah->originalGain[i] =
1368                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1369                                                 AR_PHY_TX_GAIN);
1370                 ah->PDADCdelta = 0;
1371         }
1372 }
1373
1374 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1375                               struct ath9k_channel *chan)
1376 {
1377         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1378
1379         if (IS_CHAN_B(chan))
1380                 ctl |= CTL_11B;
1381         else if (IS_CHAN_G(chan))
1382                 ctl |= CTL_11G;
1383         else
1384                 ctl |= CTL_11A;
1385
1386         return ctl;
1387 }
1388
1389 static int ath9k_hw_process_ini(struct ath_hw *ah,
1390                                 struct ath9k_channel *chan)
1391 {
1392         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1393         int i, regWrites = 0;
1394         struct ieee80211_channel *channel = chan->chan;
1395         u32 modesIndex, freqIndex;
1396
1397         switch (chan->chanmode) {
1398         case CHANNEL_A:
1399         case CHANNEL_A_HT20:
1400                 modesIndex = 1;
1401                 freqIndex = 1;
1402                 break;
1403         case CHANNEL_A_HT40PLUS:
1404         case CHANNEL_A_HT40MINUS:
1405                 modesIndex = 2;
1406                 freqIndex = 1;
1407                 break;
1408         case CHANNEL_G:
1409         case CHANNEL_G_HT20:
1410         case CHANNEL_B:
1411                 modesIndex = 4;
1412                 freqIndex = 2;
1413                 break;
1414         case CHANNEL_G_HT40PLUS:
1415         case CHANNEL_G_HT40MINUS:
1416                 modesIndex = 3;
1417                 freqIndex = 2;
1418                 break;
1419
1420         default:
1421                 return -EINVAL;
1422         }
1423
1424         /* Set correct baseband to analog shift setting to access analog chips */
1425         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1426
1427         /* Write ADDAC shifts */
1428         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1429         ah->eep_ops->set_addac(ah, chan);
1430
1431         if (AR_SREV_5416_22_OR_LATER(ah)) {
1432                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1433         } else {
1434                 struct ar5416IniArray temp;
1435                 u32 addacSize =
1436                         sizeof(u32) * ah->iniAddac.ia_rows *
1437                         ah->iniAddac.ia_columns;
1438
1439                 /* For AR5416 2.0/2.1 */
1440                 memcpy(ah->addac5416_21,
1441                        ah->iniAddac.ia_array, addacSize);
1442
1443                 /* override CLKDRV value at [row, column] = [31, 1] */
1444                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1445
1446                 temp.ia_array = ah->addac5416_21;
1447                 temp.ia_columns = ah->iniAddac.ia_columns;
1448                 temp.ia_rows = ah->iniAddac.ia_rows;
1449                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1450         }
1451
1452         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1453
1454         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1455                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1456                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1457
1458                 REG_WRITE(ah, reg, val);
1459
1460                 if (reg >= 0x7800 && reg < 0x78a0
1461                     && ah->config.analog_shiftreg) {
1462                         udelay(100);
1463                 }
1464
1465                 DO_DELAY(regWrites);
1466         }
1467
1468         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1469                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1470
1471         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1472             AR_SREV_9287_10_OR_LATER(ah))
1473                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1474
1475         if (AR_SREV_9271_10(ah))
1476                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1477                                 modesIndex, regWrites);
1478
1479         /* Write common array parameters */
1480         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1481                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1482                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1483
1484                 REG_WRITE(ah, reg, val);
1485
1486                 if (reg >= 0x7800 && reg < 0x78a0
1487                     && ah->config.analog_shiftreg) {
1488                         udelay(100);
1489                 }
1490
1491                 DO_DELAY(regWrites);
1492         }
1493
1494         if (AR_SREV_9271(ah)) {
1495                 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1496                         REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1497                                         modesIndex, regWrites);
1498                 else
1499                         REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1500                                         modesIndex, regWrites);
1501         }
1502
1503         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1504
1505         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1506                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1507                                 regWrites);
1508         }
1509
1510         ath9k_hw_override_ini(ah, chan);
1511         ath9k_hw_set_regs(ah, chan);
1512         ath9k_hw_init_chain_masks(ah);
1513
1514         if (OLC_FOR_AR9280_20_LATER)
1515                 ath9k_olc_init(ah);
1516
1517         /* Set TX power */
1518         ah->eep_ops->set_txpower(ah, chan,
1519                                  ath9k_regd_get_ctl(regulatory, chan),
1520                                  channel->max_antenna_gain * 2,
1521                                  channel->max_power * 2,
1522                                  min((u32) MAX_RATE_POWER,
1523                                  (u32) regulatory->power_limit));
1524
1525         /* Write analog registers */
1526         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1527                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1528                           "ar5416SetRfRegs failed\n");
1529                 return -EIO;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /****************************************/
1536 /* Reset and Channel Switching Routines */
1537 /****************************************/
1538
1539 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1540 {
1541         u32 rfMode = 0;
1542
1543         if (chan == NULL)
1544                 return;
1545
1546         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1547                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1548
1549         if (!AR_SREV_9280_10_OR_LATER(ah))
1550                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1551                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1552
1553         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1554                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1555
1556         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1557 }
1558
1559 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1560 {
1561         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1562 }
1563
1564 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1565 {
1566         u32 regval;
1567
1568         /*
1569          * set AHB_MODE not to do cacheline prefetches
1570         */
1571         regval = REG_READ(ah, AR_AHB_MODE);
1572         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1573
1574         /*
1575          * let mac dma reads be in 128 byte chunks
1576          */
1577         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1578         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1579
1580         /*
1581          * Restore TX Trigger Level to its pre-reset value.
1582          * The initial value depends on whether aggregation is enabled, and is
1583          * adjusted whenever underruns are detected.
1584          */
1585         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1586
1587         /*
1588          * let mac dma writes be in 128 byte chunks
1589          */
1590         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1591         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1592
1593         /*
1594          * Setup receive FIFO threshold to hold off TX activities
1595          */
1596         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1597
1598         /*
1599          * reduce the number of usable entries in PCU TXBUF to avoid
1600          * wrap around issues.
1601          */
1602         if (AR_SREV_9285(ah)) {
1603                 /* For AR9285 the number of Fifos are reduced to half.
1604                  * So set the usable tx buf size also to half to
1605                  * avoid data/delimiter underruns
1606                  */
1607                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1608                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1609         } else if (!AR_SREV_9271(ah)) {
1610                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1611                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1612         }
1613 }
1614
1615 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1616 {
1617         u32 val;
1618
1619         val = REG_READ(ah, AR_STA_ID1);
1620         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1621         switch (opmode) {
1622         case NL80211_IFTYPE_AP:
1623                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1624                           | AR_STA_ID1_KSRCH_MODE);
1625                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1626                 break;
1627         case NL80211_IFTYPE_ADHOC:
1628         case NL80211_IFTYPE_MESH_POINT:
1629                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1630                           | AR_STA_ID1_KSRCH_MODE);
1631                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1632                 break;
1633         case NL80211_IFTYPE_STATION:
1634         case NL80211_IFTYPE_MONITOR:
1635                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1636                 break;
1637         }
1638 }
1639
1640 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1641                                                  u32 coef_scaled,
1642                                                  u32 *coef_mantissa,
1643                                                  u32 *coef_exponent)
1644 {
1645         u32 coef_exp, coef_man;
1646
1647         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1648                 if ((coef_scaled >> coef_exp) & 0x1)
1649                         break;
1650
1651         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1652
1653         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1654
1655         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1656         *coef_exponent = coef_exp - 16;
1657 }
1658
1659 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1660                                      struct ath9k_channel *chan)
1661 {
1662         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1663         u32 clockMhzScaled = 0x64000000;
1664         struct chan_centers centers;
1665
1666         if (IS_CHAN_HALF_RATE(chan))
1667                 clockMhzScaled = clockMhzScaled >> 1;
1668         else if (IS_CHAN_QUARTER_RATE(chan))
1669                 clockMhzScaled = clockMhzScaled >> 2;
1670
1671         ath9k_hw_get_channel_centers(ah, chan, &centers);
1672         coef_scaled = clockMhzScaled / centers.synth_center;
1673
1674         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1675                                       &ds_coef_exp);
1676
1677         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1678                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1679         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1680                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1681
1682         coef_scaled = (9 * coef_scaled) / 10;
1683
1684         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1685                                       &ds_coef_exp);
1686
1687         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1688                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1689         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1690                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1691 }
1692
1693 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1694 {
1695         u32 rst_flags;
1696         u32 tmpReg;
1697
1698         if (AR_SREV_9100(ah)) {
1699                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1700                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1701                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1702                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1703                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1704         }
1705
1706         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1707                   AR_RTC_FORCE_WAKE_ON_INT);
1708
1709         if (AR_SREV_9100(ah)) {
1710                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1711                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1712         } else {
1713                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1714                 if (tmpReg &
1715                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1716                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1717                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1718                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1719                 } else {
1720                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1721                 }
1722
1723                 rst_flags = AR_RTC_RC_MAC_WARM;
1724                 if (type == ATH9K_RESET_COLD)
1725                         rst_flags |= AR_RTC_RC_MAC_COLD;
1726         }
1727
1728         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1729         udelay(50);
1730
1731         REG_WRITE(ah, AR_RTC_RC, 0);
1732         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1733                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1734                           "RTC stuck in MAC reset\n");
1735                 return false;
1736         }
1737
1738         if (!AR_SREV_9100(ah))
1739                 REG_WRITE(ah, AR_RC, 0);
1740
1741         if (AR_SREV_9100(ah))
1742                 udelay(50);
1743
1744         return true;
1745 }
1746
1747 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1748 {
1749         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1750                   AR_RTC_FORCE_WAKE_ON_INT);
1751
1752         if (!AR_SREV_9100(ah))
1753                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1754
1755         REG_WRITE(ah, AR_RTC_RESET, 0);
1756         udelay(2);
1757
1758         if (!AR_SREV_9100(ah))
1759                 REG_WRITE(ah, AR_RC, 0);
1760
1761         REG_WRITE(ah, AR_RTC_RESET, 1);
1762
1763         if (!ath9k_hw_wait(ah,
1764                            AR_RTC_STATUS,
1765                            AR_RTC_STATUS_M,
1766                            AR_RTC_STATUS_ON,
1767                            AH_WAIT_TIMEOUT)) {
1768                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1769                           "RTC not waking up\n");
1770                 return false;
1771         }
1772
1773         ath9k_hw_read_revisions(ah);
1774
1775         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1776 }
1777
1778 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1779 {
1780         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1781                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1782
1783         switch (type) {
1784         case ATH9K_RESET_POWER_ON:
1785                 return ath9k_hw_set_reset_power_on(ah);
1786         case ATH9K_RESET_WARM:
1787         case ATH9K_RESET_COLD:
1788                 return ath9k_hw_set_reset(ah, type);
1789         default:
1790                 return false;
1791         }
1792 }
1793
1794 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1795 {
1796         u32 phymode;
1797         u32 enableDacFifo = 0;
1798
1799         if (AR_SREV_9285_10_OR_LATER(ah))
1800                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1801                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1802
1803         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1804                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1805
1806         if (IS_CHAN_HT40(chan)) {
1807                 phymode |= AR_PHY_FC_DYN2040_EN;
1808
1809                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1810                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1811                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1812
1813         }
1814         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1815
1816         ath9k_hw_set11nmac2040(ah);
1817
1818         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1819         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1820 }
1821
1822 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1823                                 struct ath9k_channel *chan)
1824 {
1825         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1826                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1827                         return false;
1828         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1829                 return false;
1830
1831         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1832                 return false;
1833
1834         ah->chip_fullsleep = false;
1835         ath9k_hw_init_pll(ah, chan);
1836         ath9k_hw_set_rfmode(ah, chan);
1837
1838         return true;
1839 }
1840
1841 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1842                                     struct ath9k_channel *chan)
1843 {
1844         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1845         struct ath_common *common = ath9k_hw_common(ah);
1846         struct ieee80211_channel *channel = chan->chan;
1847         u32 synthDelay, qnum;
1848         int r;
1849
1850         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1851                 if (ath9k_hw_numtxpending(ah, qnum)) {
1852                         ath_print(common, ATH_DBG_QUEUE,
1853                                   "Transmit frames pending on "
1854                                   "queue %d\n", qnum);
1855                         return false;
1856                 }
1857         }
1858
1859         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1860         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1861                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1862                 ath_print(common, ATH_DBG_FATAL,
1863                           "Could not kill baseband RX\n");
1864                 return false;
1865         }
1866
1867         ath9k_hw_set_regs(ah, chan);
1868
1869         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1870         if (r) {
1871                 ath_print(common, ATH_DBG_FATAL,
1872                           "Failed to set channel\n");
1873                 return false;
1874         }
1875
1876         ah->eep_ops->set_txpower(ah, chan,
1877                              ath9k_regd_get_ctl(regulatory, chan),
1878                              channel->max_antenna_gain * 2,
1879                              channel->max_power * 2,
1880                              min((u32) MAX_RATE_POWER,
1881                              (u32) regulatory->power_limit));
1882
1883         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1884         if (IS_CHAN_B(chan))
1885                 synthDelay = (4 * synthDelay) / 22;
1886         else
1887                 synthDelay /= 10;
1888
1889         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1890
1891         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1892
1893         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1894                 ath9k_hw_set_delta_slope(ah, chan);
1895
1896         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1897
1898         if (!chan->oneTimeCalsDone)
1899                 chan->oneTimeCalsDone = true;
1900
1901         return true;
1902 }
1903
1904 static void ath9k_enable_rfkill(struct ath_hw *ah)
1905 {
1906         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1907                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1908
1909         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1910                     AR_GPIO_INPUT_MUX2_RFSILENT);
1911
1912         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1913         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1914 }
1915
1916 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1917                     bool bChannelChange)
1918 {
1919         struct ath_common *common = ath9k_hw_common(ah);
1920         u32 saveLedState;
1921         struct ath9k_channel *curchan = ah->curchan;
1922         u32 saveDefAntenna;
1923         u32 macStaId1;
1924         u64 tsf = 0;
1925         int i, rx_chainmask, r;
1926
1927         ah->txchainmask = common->tx_chainmask;
1928         ah->rxchainmask = common->rx_chainmask;
1929
1930         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1931                 return -EIO;
1932
1933         if (curchan && !ah->chip_fullsleep)
1934                 ath9k_hw_getnf(ah, curchan);
1935
1936         if (bChannelChange &&
1937             (ah->chip_fullsleep != true) &&
1938             (ah->curchan != NULL) &&
1939             (chan->channel != ah->curchan->channel) &&
1940             ((chan->channelFlags & CHANNEL_ALL) ==
1941              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1942              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1943              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1944
1945                 if (ath9k_hw_channel_change(ah, chan)) {
1946                         ath9k_hw_loadnf(ah, ah->curchan);
1947                         ath9k_hw_start_nfcal(ah);
1948                         return 0;
1949                 }
1950         }
1951
1952         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1953         if (saveDefAntenna == 0)
1954                 saveDefAntenna = 1;
1955
1956         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1957
1958         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1959         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1960                 tsf = ath9k_hw_gettsf64(ah);
1961
1962         saveLedState = REG_READ(ah, AR_CFG_LED) &
1963                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1964                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1965
1966         ath9k_hw_mark_phy_inactive(ah);
1967
1968         /* Only required on the first reset */
1969         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1970                 REG_WRITE(ah,
1971                           AR9271_RESET_POWER_DOWN_CONTROL,
1972                           AR9271_RADIO_RF_RST);
1973                 udelay(50);
1974         }
1975
1976         if (!ath9k_hw_chip_reset(ah, chan)) {
1977                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1978                 return -EINVAL;
1979         }
1980
1981         /* Only required on the first reset */
1982         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1983                 ah->htc_reset_init = false;
1984                 REG_WRITE(ah,
1985                           AR9271_RESET_POWER_DOWN_CONTROL,
1986                           AR9271_GATE_MAC_CTL);
1987                 udelay(50);
1988         }
1989
1990         /* Restore TSF */
1991         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1992                 ath9k_hw_settsf64(ah, tsf);
1993
1994         if (AR_SREV_9280_10_OR_LATER(ah))
1995                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1996
1997         if (AR_SREV_9287_12_OR_LATER(ah)) {
1998                 /* Enable ASYNC FIFO */
1999                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2000                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2001                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2002                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2003                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2004                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2005                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2006         }
2007         r = ath9k_hw_process_ini(ah, chan);
2008         if (r)
2009                 return r;
2010
2011         /* Setup MFP options for CCMP */
2012         if (AR_SREV_9280_20_OR_LATER(ah)) {
2013                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2014                  * frames when constructing CCMP AAD. */
2015                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2016                               0xc7ff);
2017                 ah->sw_mgmt_crypto = false;
2018         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2019                 /* Disable hardware crypto for management frames */
2020                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2021                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2022                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2023                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2024                 ah->sw_mgmt_crypto = true;
2025         } else
2026                 ah->sw_mgmt_crypto = true;
2027
2028         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2029                 ath9k_hw_set_delta_slope(ah, chan);
2030
2031         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2032         ah->eep_ops->set_board_values(ah, chan);
2033
2034         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2035         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2036                   | macStaId1
2037                   | AR_STA_ID1_RTS_USE_DEF
2038                   | (ah->config.
2039                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2040                   | ah->sta_id1_defaults);
2041         ath9k_hw_set_operating_mode(ah, ah->opmode);
2042
2043         ath_hw_setbssidmask(common);
2044
2045         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2046
2047         ath9k_hw_write_associd(ah);
2048
2049         REG_WRITE(ah, AR_ISR, ~0);
2050
2051         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2052
2053         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2054         if (r)
2055                 return r;
2056
2057         for (i = 0; i < AR_NUM_DCU; i++)
2058                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2059
2060         ah->intr_txqs = 0;
2061         for (i = 0; i < ah->caps.total_queues; i++)
2062                 ath9k_hw_resettxqueue(ah, i);
2063
2064         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2065         ath9k_hw_init_qos(ah);
2066
2067         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2068                 ath9k_enable_rfkill(ah);
2069
2070         ath9k_hw_init_global_settings(ah);
2071
2072         if (AR_SREV_9287_12_OR_LATER(ah)) {
2073                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2074                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2075                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2076                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2077                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2078                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2079
2080                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2081                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2082
2083                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2084                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2085                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2086                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2087         }
2088         if (AR_SREV_9287_12_OR_LATER(ah)) {
2089                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2090                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2091         }
2092
2093         REG_WRITE(ah, AR_STA_ID1,
2094                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2095
2096         ath9k_hw_set_dma(ah);
2097
2098         REG_WRITE(ah, AR_OBS, 8);
2099
2100         if (ah->config.rx_intr_mitigation) {
2101                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2102                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2103         }
2104
2105         ath9k_hw_init_bb(ah, chan);
2106
2107         if (!ath9k_hw_init_cal(ah, chan))
2108                 return -EIO;
2109
2110         rx_chainmask = ah->rxchainmask;
2111         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2112                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2113                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2114         }
2115
2116         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2117
2118         /*
2119          * For big endian systems turn on swapping for descriptors
2120          */
2121         if (AR_SREV_9100(ah)) {
2122                 u32 mask;
2123                 mask = REG_READ(ah, AR_CFG);
2124                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2125                         ath_print(common, ATH_DBG_RESET,
2126                                 "CFG Byte Swap Set 0x%x\n", mask);
2127                 } else {
2128                         mask =
2129                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2130                         REG_WRITE(ah, AR_CFG, mask);
2131                         ath_print(common, ATH_DBG_RESET,
2132                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2133                 }
2134         } else {
2135                 /* Configure AR9271 target WLAN */
2136                 if (AR_SREV_9271(ah))
2137                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2138 #ifdef __BIG_ENDIAN
2139                 else
2140                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2141 #endif
2142         }
2143
2144         if (ah->btcoex_hw.enabled)
2145                 ath9k_hw_btcoex_enable(ah);
2146
2147         return 0;
2148 }
2149 EXPORT_SYMBOL(ath9k_hw_reset);
2150
2151 /************************/
2152 /* Key Cache Management */
2153 /************************/
2154
2155 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2156 {
2157         u32 keyType;
2158
2159         if (entry >= ah->caps.keycache_size) {
2160                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2161                           "keychache entry %u out of range\n", entry);
2162                 return false;
2163         }
2164
2165         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2166
2167         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2168         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2169         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2170         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2171         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2172         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2173         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2174         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2175
2176         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2177                 u16 micentry = entry + 64;
2178
2179                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2180                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2181                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2182                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2183
2184         }
2185
2186         return true;
2187 }
2188 EXPORT_SYMBOL(ath9k_hw_keyreset);
2189
2190 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2191 {
2192         u32 macHi, macLo;
2193
2194         if (entry >= ah->caps.keycache_size) {
2195                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2196                           "keychache entry %u out of range\n", entry);
2197                 return false;
2198         }
2199
2200         if (mac != NULL) {
2201                 macHi = (mac[5] << 8) | mac[4];
2202                 macLo = (mac[3] << 24) |
2203                         (mac[2] << 16) |
2204                         (mac[1] << 8) |
2205                         mac[0];
2206                 macLo >>= 1;
2207                 macLo |= (macHi & 1) << 31;
2208                 macHi >>= 1;
2209         } else {
2210                 macLo = macHi = 0;
2211         }
2212         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2213         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2214
2215         return true;
2216 }
2217 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2218
2219 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2220                                  const struct ath9k_keyval *k,
2221                                  const u8 *mac)
2222 {
2223         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2224         struct ath_common *common = ath9k_hw_common(ah);
2225         u32 key0, key1, key2, key3, key4;
2226         u32 keyType;
2227
2228         if (entry >= pCap->keycache_size) {
2229                 ath_print(common, ATH_DBG_FATAL,
2230                           "keycache entry %u out of range\n", entry);
2231                 return false;
2232         }
2233
2234         switch (k->kv_type) {
2235         case ATH9K_CIPHER_AES_OCB:
2236                 keyType = AR_KEYTABLE_TYPE_AES;
2237                 break;
2238         case ATH9K_CIPHER_AES_CCM:
2239                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2240                         ath_print(common, ATH_DBG_ANY,
2241                                   "AES-CCM not supported by mac rev 0x%x\n",
2242                                   ah->hw_version.macRev);
2243                         return false;
2244                 }
2245                 keyType = AR_KEYTABLE_TYPE_CCM;
2246                 break;
2247         case ATH9K_CIPHER_TKIP:
2248                 keyType = AR_KEYTABLE_TYPE_TKIP;
2249                 if (ATH9K_IS_MIC_ENABLED(ah)
2250                     && entry + 64 >= pCap->keycache_size) {
2251                         ath_print(common, ATH_DBG_ANY,
2252                                   "entry %u inappropriate for TKIP\n", entry);
2253                         return false;
2254                 }
2255                 break;
2256         case ATH9K_CIPHER_WEP:
2257                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2258                         ath_print(common, ATH_DBG_ANY,
2259                                   "WEP key length %u too small\n", k->kv_len);
2260                         return false;
2261                 }
2262                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2263                         keyType = AR_KEYTABLE_TYPE_40;
2264                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2265                         keyType = AR_KEYTABLE_TYPE_104;
2266                 else
2267                         keyType = AR_KEYTABLE_TYPE_128;
2268                 break;
2269         case ATH9K_CIPHER_CLR:
2270                 keyType = AR_KEYTABLE_TYPE_CLR;
2271                 break;
2272         default:
2273                 ath_print(common, ATH_DBG_FATAL,
2274                           "cipher %u not supported\n", k->kv_type);
2275                 return false;
2276         }
2277
2278         key0 = get_unaligned_le32(k->kv_val + 0);
2279         key1 = get_unaligned_le16(k->kv_val + 4);
2280         key2 = get_unaligned_le32(k->kv_val + 6);
2281         key3 = get_unaligned_le16(k->kv_val + 10);
2282         key4 = get_unaligned_le32(k->kv_val + 12);
2283         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2284                 key4 &= 0xff;
2285
2286         /*
2287          * Note: Key cache registers access special memory area that requires
2288          * two 32-bit writes to actually update the values in the internal
2289          * memory. Consequently, the exact order and pairs used here must be
2290          * maintained.
2291          */
2292
2293         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2294                 u16 micentry = entry + 64;
2295
2296                 /*
2297                  * Write inverted key[47:0] first to avoid Michael MIC errors
2298                  * on frames that could be sent or received at the same time.
2299                  * The correct key will be written in the end once everything
2300                  * else is ready.
2301                  */
2302                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2303                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2304
2305                 /* Write key[95:48] */
2306                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2307                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2308
2309                 /* Write key[127:96] and key type */
2310                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2311                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2312
2313                 /* Write MAC address for the entry */
2314                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2315
2316                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2317                         /*
2318                          * TKIP uses two key cache entries:
2319                          * Michael MIC TX/RX keys in the same key cache entry
2320                          * (idx = main index + 64):
2321                          * key0 [31:0] = RX key [31:0]
2322                          * key1 [15:0] = TX key [31:16]
2323                          * key1 [31:16] = reserved
2324                          * key2 [31:0] = RX key [63:32]
2325                          * key3 [15:0] = TX key [15:0]
2326                          * key3 [31:16] = reserved
2327                          * key4 [31:0] = TX key [63:32]
2328                          */
2329                         u32 mic0, mic1, mic2, mic3, mic4;
2330
2331                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2332                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2333                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2334                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2335                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2336
2337                         /* Write RX[31:0] and TX[31:16] */
2338                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2339                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2340
2341                         /* Write RX[63:32] and TX[15:0] */
2342                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2343                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2344
2345                         /* Write TX[63:32] and keyType(reserved) */
2346                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2347                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2348                                   AR_KEYTABLE_TYPE_CLR);
2349
2350                 } else {
2351                         /*
2352                          * TKIP uses four key cache entries (two for group
2353                          * keys):
2354                          * Michael MIC TX/RX keys are in different key cache
2355                          * entries (idx = main index + 64 for TX and
2356                          * main index + 32 + 96 for RX):
2357                          * key0 [31:0] = TX/RX MIC key [31:0]
2358                          * key1 [31:0] = reserved
2359                          * key2 [31:0] = TX/RX MIC key [63:32]
2360                          * key3 [31:0] = reserved
2361                          * key4 [31:0] = reserved
2362                          *
2363                          * Upper layer code will call this function separately
2364                          * for TX and RX keys when these registers offsets are
2365                          * used.
2366                          */
2367                         u32 mic0, mic2;
2368
2369                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2370                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2371
2372                         /* Write MIC key[31:0] */
2373                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2374                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2375
2376                         /* Write MIC key[63:32] */
2377                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2378                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2379
2380                         /* Write TX[63:32] and keyType(reserved) */
2381                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2382                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2383                                   AR_KEYTABLE_TYPE_CLR);
2384                 }
2385
2386                 /* MAC address registers are reserved for the MIC entry */
2387                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2388                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2389
2390                 /*
2391                  * Write the correct (un-inverted) key[47:0] last to enable
2392                  * TKIP now that all other registers are set with correct
2393                  * values.
2394                  */
2395                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2396                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2397         } else {
2398                 /* Write key[47:0] */
2399                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2400                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2401
2402                 /* Write key[95:48] */
2403                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2404                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2405
2406                 /* Write key[127:96] and key type */
2407                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2408                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2409
2410                 /* Write MAC address for the entry */
2411                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2412         }
2413
2414         return true;
2415 }
2416 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2417
2418 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2419 {
2420         if (entry < ah->caps.keycache_size) {
2421                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2422                 if (val & AR_KEYTABLE_VALID)
2423                         return true;
2424         }
2425         return false;
2426 }
2427 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2428
2429 /******************************/
2430 /* Power Management (Chipset) */
2431 /******************************/
2432
2433 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2434 {
2435         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2436         if (setChip) {
2437                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2438                             AR_RTC_FORCE_WAKE_EN);
2439                 if (!AR_SREV_9100(ah))
2440                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2441
2442                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2443                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2444                                     AR_RTC_RESET_EN);
2445         }
2446 }
2447
2448 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2449 {
2450         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2451         if (setChip) {
2452                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2453
2454                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2455                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2456                                   AR_RTC_FORCE_WAKE_ON_INT);
2457                 } else {
2458                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2459                                     AR_RTC_FORCE_WAKE_EN);
2460                 }
2461         }
2462 }
2463
2464 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2465 {
2466         u32 val;
2467         int i;
2468
2469         if (setChip) {
2470                 if ((REG_READ(ah, AR_RTC_STATUS) &
2471                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2472                         if (ath9k_hw_set_reset_reg(ah,
2473                                            ATH9K_RESET_POWER_ON) != true) {
2474                                 return false;
2475                         }
2476                         ath9k_hw_init_pll(ah, NULL);
2477                 }
2478                 if (AR_SREV_9100(ah))
2479                         REG_SET_BIT(ah, AR_RTC_RESET,
2480                                     AR_RTC_RESET_EN);
2481
2482                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2483                             AR_RTC_FORCE_WAKE_EN);
2484                 udelay(50);
2485
2486                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2487                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2488                         if (val == AR_RTC_STATUS_ON)
2489                                 break;
2490                         udelay(50);
2491                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2492                                     AR_RTC_FORCE_WAKE_EN);
2493                 }
2494                 if (i == 0) {
2495                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2496                                   "Failed to wakeup in %uus\n",
2497                                   POWER_UP_TIME / 20);
2498                         return false;
2499                 }
2500         }
2501
2502         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2503
2504         return true;
2505 }
2506
2507 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2508 {
2509         struct ath_common *common = ath9k_hw_common(ah);
2510         int status = true, setChip = true;
2511         static const char *modes[] = {
2512                 "AWAKE",
2513                 "FULL-SLEEP",
2514                 "NETWORK SLEEP",
2515                 "UNDEFINED"
2516         };
2517
2518         if (ah->power_mode == mode)
2519                 return status;
2520
2521         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2522                   modes[ah->power_mode], modes[mode]);
2523
2524         switch (mode) {
2525         case ATH9K_PM_AWAKE:
2526                 status = ath9k_hw_set_power_awake(ah, setChip);
2527                 break;
2528         case ATH9K_PM_FULL_SLEEP:
2529                 ath9k_set_power_sleep(ah, setChip);
2530                 ah->chip_fullsleep = true;
2531                 break;
2532         case ATH9K_PM_NETWORK_SLEEP:
2533                 ath9k_set_power_network_sleep(ah, setChip);
2534                 break;
2535         default:
2536                 ath_print(common, ATH_DBG_FATAL,
2537                           "Unknown power mode %u\n", mode);
2538                 return false;
2539         }
2540         ah->power_mode = mode;
2541
2542         return status;
2543 }
2544 EXPORT_SYMBOL(ath9k_hw_setpower);
2545
2546 /*
2547  * Helper for ASPM support.
2548  *
2549  * Disable PLL when in L0s as well as receiver clock when in L1.
2550  * This power saving option must be enabled through the SerDes.
2551  *
2552  * Programming the SerDes must go through the same 288 bit serial shift
2553  * register as the other analog registers.  Hence the 9 writes.
2554  */
2555 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2556 {
2557         u8 i;
2558         u32 val;
2559
2560         if (ah->is_pciexpress != true)
2561                 return;
2562
2563         /* Do not touch SerDes registers */
2564         if (ah->config.pcie_powersave_enable == 2)
2565                 return;
2566
2567         /* Nothing to do on restore for 11N */
2568         if (!restore) {
2569                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2570                         /*
2571                          * AR9280 2.0 or later chips use SerDes values from the
2572                          * initvals.h initialized depending on chipset during
2573                          * ath9k_hw_init()
2574                          */
2575                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2576                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2577                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2578                         }
2579                 } else if (AR_SREV_9280(ah) &&
2580                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2581                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2582                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2583
2584                         /* RX shut off when elecidle is asserted */
2585                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2586                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2587                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2588
2589                         /* Shut off CLKREQ active in L1 */
2590                         if (ah->config.pcie_clock_req)
2591                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2592                         else
2593                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2594
2595                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2596                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2597                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2598
2599                         /* Load the new settings */
2600                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2601
2602                 } else {
2603                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2604                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2605
2606                         /* RX shut off when elecidle is asserted */
2607                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2608                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2609                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2610
2611                         /*
2612                          * Ignore ah->ah_config.pcie_clock_req setting for
2613                          * pre-AR9280 11n
2614                          */
2615                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2616
2617                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2618                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2619                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2620
2621                         /* Load the new settings */
2622                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2623                 }
2624
2625                 udelay(1000);
2626
2627                 /* set bit 19 to allow forcing of pcie core into L1 state */
2628                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2629
2630                 /* Several PCIe massages to ensure proper behaviour */
2631                 if (ah->config.pcie_waen) {
2632                         val = ah->config.pcie_waen;
2633                         if (!power_off)
2634                                 val &= (~AR_WA_D3_L1_DISABLE);
2635                 } else {
2636                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2637                             AR_SREV_9287(ah)) {
2638                                 val = AR9285_WA_DEFAULT;
2639                                 if (!power_off)
2640                                         val &= (~AR_WA_D3_L1_DISABLE);
2641                         } else if (AR_SREV_9280(ah)) {
2642                                 /*
2643                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2644                                  * set otherwise card may disappear.
2645                                  */
2646                                 val = AR9280_WA_DEFAULT;
2647                                 if (!power_off)
2648                                         val &= (~AR_WA_D3_L1_DISABLE);
2649                         } else
2650                                 val = AR_WA_DEFAULT;
2651                 }
2652
2653                 REG_WRITE(ah, AR_WA, val);
2654         }
2655
2656         if (power_off) {
2657                 /*
2658                  * Set PCIe workaround bits
2659                  * bit 14 in WA register (disable L1) should only
2660                  * be set when device enters D3 and be cleared
2661                  * when device comes back to D0.
2662                  */
2663                 if (ah->config.pcie_waen) {
2664                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2665                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2666                 } else {
2667                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2668                               AR_SREV_9287(ah)) &&
2669                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2670                             (AR_SREV_9280(ah) &&
2671                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2672                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2673                         }
2674                 }
2675         }
2676 }
2677 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2678
2679 /**********************/
2680 /* Interrupt Handling */
2681 /**********************/
2682
2683 bool ath9k_hw_intrpend(struct ath_hw *ah)
2684 {
2685         u32 host_isr;
2686
2687         if (AR_SREV_9100(ah))
2688                 return true;
2689
2690         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2691         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2692                 return true;
2693
2694         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2695         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2696             && (host_isr != AR_INTR_SPURIOUS))
2697                 return true;
2698
2699         return false;
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_intrpend);
2702
2703 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2704 {
2705         u32 isr = 0;
2706         u32 mask2 = 0;
2707         struct ath9k_hw_capabilities *pCap = &ah->caps;
2708         u32 sync_cause = 0;
2709         bool fatal_int = false;
2710         struct ath_common *common = ath9k_hw_common(ah);
2711
2712         if (!AR_SREV_9100(ah)) {
2713                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2714                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2715                             == AR_RTC_STATUS_ON) {
2716                                 isr = REG_READ(ah, AR_ISR);
2717                         }
2718                 }
2719
2720                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2721                         AR_INTR_SYNC_DEFAULT;
2722
2723                 *masked = 0;
2724
2725                 if (!isr && !sync_cause)
2726                         return false;
2727         } else {
2728                 *masked = 0;
2729                 isr = REG_READ(ah, AR_ISR);
2730         }
2731
2732         if (isr) {
2733                 if (isr & AR_ISR_BCNMISC) {
2734                         u32 isr2;
2735                         isr2 = REG_READ(ah, AR_ISR_S2);
2736                         if (isr2 & AR_ISR_S2_TIM)
2737                                 mask2 |= ATH9K_INT_TIM;
2738                         if (isr2 & AR_ISR_S2_DTIM)
2739                                 mask2 |= ATH9K_INT_DTIM;
2740                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2741                                 mask2 |= ATH9K_INT_DTIMSYNC;
2742                         if (isr2 & (AR_ISR_S2_CABEND))
2743                                 mask2 |= ATH9K_INT_CABEND;
2744                         if (isr2 & AR_ISR_S2_GTT)
2745                                 mask2 |= ATH9K_INT_GTT;
2746                         if (isr2 & AR_ISR_S2_CST)
2747                                 mask2 |= ATH9K_INT_CST;
2748                         if (isr2 & AR_ISR_S2_TSFOOR)
2749                                 mask2 |= ATH9K_INT_TSFOOR;
2750                 }
2751
2752                 isr = REG_READ(ah, AR_ISR_RAC);
2753                 if (isr == 0xffffffff) {
2754                         *masked = 0;
2755                         return false;
2756                 }
2757
2758                 *masked = isr & ATH9K_INT_COMMON;
2759
2760                 if (ah->config.rx_intr_mitigation) {
2761                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2762                                 *masked |= ATH9K_INT_RX;
2763                 }
2764
2765                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2766                         *masked |= ATH9K_INT_RX;
2767                 if (isr &
2768                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2769                      AR_ISR_TXEOL)) {
2770                         u32 s0_s, s1_s;
2771
2772                         *masked |= ATH9K_INT_TX;
2773
2774                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2775                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2776                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2777
2778                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2779                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2780                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2781                 }
2782
2783                 if (isr & AR_ISR_RXORN) {
2784                         ath_print(common, ATH_DBG_INTERRUPT,
2785                                   "receive FIFO overrun interrupt\n");
2786                 }
2787
2788                 if (!AR_SREV_9100(ah)) {
2789                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2790                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2791                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2792                                         *masked |= ATH9K_INT_TIM_TIMER;
2793                         }
2794                 }
2795
2796                 *masked |= mask2;
2797         }
2798
2799         if (AR_SREV_9100(ah))
2800                 return true;
2801
2802         if (isr & AR_ISR_GENTMR) {
2803                 u32 s5_s;
2804
2805                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2806                 if (isr & AR_ISR_GENTMR) {
2807                         ah->intr_gen_timer_trigger =
2808                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2809
2810                         ah->intr_gen_timer_thresh =
2811                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2812
2813                         if (ah->intr_gen_timer_trigger)
2814                                 *masked |= ATH9K_INT_GENTIMER;
2815
2816                 }
2817         }
2818
2819         if (sync_cause) {
2820                 fatal_int =
2821                         (sync_cause &
2822                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2823                         ? true : false;
2824
2825                 if (fatal_int) {
2826                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2827                                 ath_print(common, ATH_DBG_ANY,
2828                                           "received PCI FATAL interrupt\n");
2829                         }
2830                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2831                                 ath_print(common, ATH_DBG_ANY,
2832                                           "received PCI PERR interrupt\n");
2833                         }
2834                         *masked |= ATH9K_INT_FATAL;
2835                 }
2836                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2837                         ath_print(common, ATH_DBG_INTERRUPT,
2838                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2839                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2840                         REG_WRITE(ah, AR_RC, 0);
2841                         *masked |= ATH9K_INT_FATAL;
2842                 }
2843                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2844                         ath_print(common, ATH_DBG_INTERRUPT,
2845                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2846                 }
2847
2848                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2849                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2850         }
2851
2852         return true;
2853 }
2854 EXPORT_SYMBOL(ath9k_hw_getisr);
2855
2856 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2857 {
2858         enum ath9k_int omask = ah->imask;
2859         u32 mask, mask2;
2860         struct ath9k_hw_capabilities *pCap = &ah->caps;
2861         struct ath_common *common = ath9k_hw_common(ah);
2862
2863         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2864
2865         if (omask & ATH9K_INT_GLOBAL) {
2866                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2867                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2868                 (void) REG_READ(ah, AR_IER);
2869                 if (!AR_SREV_9100(ah)) {
2870                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2871                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2872
2873                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2874                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2875                 }
2876         }
2877
2878         mask = ints & ATH9K_INT_COMMON;
2879         mask2 = 0;
2880
2881         if (ints & ATH9K_INT_TX) {
2882                 if (ah->txok_interrupt_mask)
2883                         mask |= AR_IMR_TXOK;
2884                 if (ah->txdesc_interrupt_mask)
2885                         mask |= AR_IMR_TXDESC;
2886                 if (ah->txerr_interrupt_mask)
2887                         mask |= AR_IMR_TXERR;
2888                 if (ah->txeol_interrupt_mask)
2889                         mask |= AR_IMR_TXEOL;
2890         }
2891         if (ints & ATH9K_INT_RX) {
2892                 mask |= AR_IMR_RXERR;
2893                 if (ah->config.rx_intr_mitigation)
2894                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2895                 else
2896                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2897                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2898                         mask |= AR_IMR_GENTMR;
2899         }
2900
2901         if (ints & (ATH9K_INT_BMISC)) {
2902                 mask |= AR_IMR_BCNMISC;
2903                 if (ints & ATH9K_INT_TIM)
2904                         mask2 |= AR_IMR_S2_TIM;
2905                 if (ints & ATH9K_INT_DTIM)
2906                         mask2 |= AR_IMR_S2_DTIM;
2907                 if (ints & ATH9K_INT_DTIMSYNC)
2908                         mask2 |= AR_IMR_S2_DTIMSYNC;
2909                 if (ints & ATH9K_INT_CABEND)
2910                         mask2 |= AR_IMR_S2_CABEND;
2911                 if (ints & ATH9K_INT_TSFOOR)
2912                         mask2 |= AR_IMR_S2_TSFOOR;
2913         }
2914
2915         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2916                 mask |= AR_IMR_BCNMISC;
2917                 if (ints & ATH9K_INT_GTT)
2918                         mask2 |= AR_IMR_S2_GTT;
2919                 if (ints & ATH9K_INT_CST)
2920                         mask2 |= AR_IMR_S2_CST;
2921         }
2922
2923         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2924         REG_WRITE(ah, AR_IMR, mask);
2925         ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2926                            AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2927                            AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2928         ah->imrs2_reg |= mask2;
2929         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2930
2931         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2932                 if (ints & ATH9K_INT_TIM_TIMER)
2933                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2934                 else
2935                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2936         }
2937
2938         if (ints & ATH9K_INT_GLOBAL) {
2939                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2940                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2941                 if (!AR_SREV_9100(ah)) {
2942                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2943                                   AR_INTR_MAC_IRQ);
2944                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2945
2946
2947                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2948                                   AR_INTR_SYNC_DEFAULT);
2949                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2950                                   AR_INTR_SYNC_DEFAULT);
2951                 }
2952                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2953                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2954         }
2955
2956         return omask;
2957 }
2958 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2959
2960 /*******************/
2961 /* Beacon Handling */
2962 /*******************/
2963
2964 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2965 {
2966         int flags = 0;
2967
2968         ah->beacon_interval = beacon_period;
2969
2970         switch (ah->opmode) {
2971         case NL80211_IFTYPE_STATION:
2972         case NL80211_IFTYPE_MONITOR:
2973                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2974                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2975                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2976                 flags |= AR_TBTT_TIMER_EN;
2977                 break;
2978         case NL80211_IFTYPE_ADHOC:
2979         case NL80211_IFTYPE_MESH_POINT:
2980                 REG_SET_BIT(ah, AR_TXCFG,
2981                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2982                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2983                           TU_TO_USEC(next_beacon +
2984                                      (ah->atim_window ? ah->
2985                                       atim_window : 1)));
2986                 flags |= AR_NDP_TIMER_EN;
2987         case NL80211_IFTYPE_AP:
2988                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2989                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2990                           TU_TO_USEC(next_beacon -
2991                                      ah->config.
2992                                      dma_beacon_response_time));
2993                 REG_WRITE(ah, AR_NEXT_SWBA,
2994                           TU_TO_USEC(next_beacon -
2995                                      ah->config.
2996                                      sw_beacon_response_time));
2997                 flags |=
2998                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2999                 break;
3000         default:
3001                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3002                           "%s: unsupported opmode: %d\n",
3003                           __func__, ah->opmode);
3004                 return;
3005                 break;
3006         }
3007
3008         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3009         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3010         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3011         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3012
3013         beacon_period &= ~ATH9K_BEACON_ENA;
3014         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3015                 ath9k_hw_reset_tsf(ah);
3016         }
3017
3018         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3019 }
3020 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3021
3022 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3023                                     const struct ath9k_beacon_state *bs)
3024 {
3025         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3026         struct ath9k_hw_capabilities *pCap = &ah->caps;
3027         struct ath_common *common = ath9k_hw_common(ah);
3028
3029         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3030
3031         REG_WRITE(ah, AR_BEACON_PERIOD,
3032                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3033         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3034                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3035
3036         REG_RMW_FIELD(ah, AR_RSSI_THR,
3037                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3038
3039         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3040
3041         if (bs->bs_sleepduration > beaconintval)
3042                 beaconintval = bs->bs_sleepduration;
3043
3044         dtimperiod = bs->bs_dtimperiod;
3045         if (bs->bs_sleepduration > dtimperiod)
3046                 dtimperiod = bs->bs_sleepduration;
3047
3048         if (beaconintval == dtimperiod)
3049                 nextTbtt = bs->bs_nextdtim;
3050         else
3051                 nextTbtt = bs->bs_nexttbtt;
3052
3053         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3054         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3055         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3056         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3057
3058         REG_WRITE(ah, AR_NEXT_DTIM,
3059                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3060         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3061
3062         REG_WRITE(ah, AR_SLEEP1,
3063                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3064                   | AR_SLEEP1_ASSUME_DTIM);
3065
3066         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3067                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3068         else
3069                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3070
3071         REG_WRITE(ah, AR_SLEEP2,
3072                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3073
3074         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3075         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3076
3077         REG_SET_BIT(ah, AR_TIMER_MODE,
3078                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3079                     AR_DTIM_TIMER_EN);
3080
3081         /* TSF Out of Range Threshold */
3082         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3083 }
3084 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3085
3086 /*******************/
3087 /* HW Capabilities */
3088 /*******************/
3089
3090 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3091 {
3092         struct ath9k_hw_capabilities *pCap = &ah->caps;
3093         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3094         struct ath_common *common = ath9k_hw_common(ah);
3095         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3096
3097         u16 capField = 0, eeval;
3098
3099         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3100         regulatory->current_rd = eeval;
3101
3102         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3103         if (AR_SREV_9285_10_OR_LATER(ah))
3104                 eeval |= AR9285_RDEXT_DEFAULT;
3105         regulatory->current_rd_ext = eeval;
3106
3107         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3108
3109         if (ah->opmode != NL80211_IFTYPE_AP &&
3110             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3111                 if (regulatory->current_rd == 0x64 ||
3112                     regulatory->current_rd == 0x65)
3113                         regulatory->current_rd += 5;
3114                 else if (regulatory->current_rd == 0x41)
3115                         regulatory->current_rd = 0x43;
3116                 ath_print(common, ATH_DBG_REGULATORY,
3117                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3118         }
3119
3120         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3121         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3122                 ath_print(common, ATH_DBG_FATAL,
3123                           "no band has been marked as supported in EEPROM.\n");
3124                 return -EINVAL;
3125         }
3126
3127         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3128
3129         if (eeval & AR5416_OPFLAGS_11A) {
3130                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3131                 if (ah->config.ht_enable) {
3132                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3133                                 set_bit(ATH9K_MODE_11NA_HT20,
3134                                         pCap->wireless_modes);
3135                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3136                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3137                                         pCap->wireless_modes);
3138                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3139                                         pCap->wireless_modes);
3140                         }
3141                 }
3142         }
3143
3144         if (eeval & AR5416_OPFLAGS_11G) {
3145                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3146                 if (ah->config.ht_enable) {
3147                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3148                                 set_bit(ATH9K_MODE_11NG_HT20,
3149                                         pCap->wireless_modes);
3150                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3151                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3152                                         pCap->wireless_modes);
3153                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3154                                         pCap->wireless_modes);
3155                         }
3156                 }
3157         }
3158
3159         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3160         /*
3161          * For AR9271 we will temporarilly uses the rx chainmax as read from
3162          * the EEPROM.
3163          */
3164         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3165             !(eeval & AR5416_OPFLAGS_11A) &&
3166             !(AR_SREV_9271(ah)))
3167                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3168                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3169         else
3170                 /* Use rx_chainmask from EEPROM. */
3171                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3172
3173         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3174                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3175
3176         pCap->low_2ghz_chan = 2312;
3177         pCap->high_2ghz_chan = 2732;
3178
3179         pCap->low_5ghz_chan = 4920;
3180         pCap->high_5ghz_chan = 6100;
3181
3182         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3183         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3184         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3185
3186         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3187         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3188         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3189
3190         if (ah->config.ht_enable)
3191                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3192         else
3193                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3194
3195         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3196         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3197         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3198         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3199
3200         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3201                 pCap->total_queues =
3202                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3203         else
3204                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3205
3206         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3207                 pCap->keycache_size =
3208                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3209         else
3210                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3211
3212         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3213
3214         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3215                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3216         else
3217                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3218
3219         if (AR_SREV_9271(ah))
3220                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
3221         else if (AR_SREV_9285_10_OR_LATER(ah))
3222                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3223         else if (AR_SREV_9280_10_OR_LATER(ah))
3224                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3225         else
3226                 pCap->num_gpio_pins = AR_NUM_GPIO;
3227
3228         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3229                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3230                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3231         } else {
3232                 pCap->rts_aggr_limit = (8 * 1024);
3233         }
3234
3235         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3236
3237 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3238         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3239         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3240                 ah->rfkill_gpio =
3241                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3242                 ah->rfkill_polarity =
3243                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3244
3245                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3246         }
3247 #endif
3248         if (AR_SREV_9271(ah))
3249                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3250         else
3251                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3252
3253         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3254                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3255         else
3256                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3257
3258         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3259                 pCap->reg_cap =
3260                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3261                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3262                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3263                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3264         } else {
3265                 pCap->reg_cap =
3266                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3267                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3268         }
3269
3270         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3271         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3272             AR_SREV_5416(ah))
3273                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3274
3275         pCap->num_antcfg_5ghz =
3276                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3277         pCap->num_antcfg_2ghz =
3278                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3279
3280         if (AR_SREV_9280_10_OR_LATER(ah) &&
3281             ath9k_hw_btcoex_supported(ah)) {
3282                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3283                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3284
3285                 if (AR_SREV_9285(ah)) {
3286                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3287                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3288                 } else {
3289                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3290                 }
3291         } else {
3292                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3293         }
3294
3295         return 0;
3296 }
3297
3298 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3299                             u32 capability, u32 *result)
3300 {
3301         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3302         switch (type) {
3303         case ATH9K_CAP_CIPHER:
3304                 switch (capability) {
3305                 case ATH9K_CIPHER_AES_CCM:
3306                 case ATH9K_CIPHER_AES_OCB:
3307                 case ATH9K_CIPHER_TKIP:
3308                 case ATH9K_CIPHER_WEP:
3309                 case ATH9K_CIPHER_MIC:
3310                 case ATH9K_CIPHER_CLR:
3311                         return true;
3312                 default:
3313                         return false;
3314                 }
3315         case ATH9K_CAP_TKIP_MIC:
3316                 switch (capability) {
3317                 case 0:
3318                         return true;
3319                 case 1:
3320                         return (ah->sta_id1_defaults &
3321                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3322                         false;
3323                 }
3324         case ATH9K_CAP_TKIP_SPLIT:
3325                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3326                         false : true;
3327         case ATH9K_CAP_DIVERSITY:
3328                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3329                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3330                         true : false;
3331         case ATH9K_CAP_MCAST_KEYSRCH:
3332                 switch (capability) {
3333                 case 0:
3334                         return true;
3335                 case 1:
3336                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3337                                 return false;
3338                         } else {
3339                                 return (ah->sta_id1_defaults &
3340                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3341                                         false;
3342                         }
3343                 }
3344                 return false;
3345         case ATH9K_CAP_TXPOW:
3346                 switch (capability) {
3347                 case 0:
3348                         return 0;
3349                 case 1:
3350                         *result = regulatory->power_limit;
3351                         return 0;
3352                 case 2:
3353                         *result = regulatory->max_power_level;
3354                         return 0;
3355                 case 3:
3356                         *result = regulatory->tp_scale;
3357                         return 0;
3358                 }
3359                 return false;
3360         case ATH9K_CAP_DS:
3361                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3362                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3363                         ? false : true;
3364         default:
3365                 return false;
3366         }
3367 }
3368 EXPORT_SYMBOL(ath9k_hw_getcapability);
3369
3370 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3371                             u32 capability, u32 setting, int *status)
3372 {
3373         u32 v;
3374
3375         switch (type) {
3376         case ATH9K_CAP_TKIP_MIC:
3377                 if (setting)
3378                         ah->sta_id1_defaults |=
3379                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3380                 else
3381                         ah->sta_id1_defaults &=
3382                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3383                 return true;
3384         case ATH9K_CAP_DIVERSITY:
3385                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3386                 if (setting)
3387                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3388                 else
3389                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3390                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3391                 return true;
3392         case ATH9K_CAP_MCAST_KEYSRCH:
3393                 if (setting)
3394                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3395                 else
3396                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3397                 return true;
3398         default:
3399                 return false;
3400         }
3401 }
3402 EXPORT_SYMBOL(ath9k_hw_setcapability);
3403
3404 /****************************/
3405 /* GPIO / RFKILL / Antennae */
3406 /****************************/
3407
3408 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3409                                          u32 gpio, u32 type)
3410 {
3411         int addr;
3412         u32 gpio_shift, tmp;
3413
3414         if (gpio > 11)
3415                 addr = AR_GPIO_OUTPUT_MUX3;
3416         else if (gpio > 5)
3417                 addr = AR_GPIO_OUTPUT_MUX2;
3418         else
3419                 addr = AR_GPIO_OUTPUT_MUX1;
3420
3421         gpio_shift = (gpio % 6) * 5;
3422
3423         if (AR_SREV_9280_20_OR_LATER(ah)
3424             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3425                 REG_RMW(ah, addr, (type << gpio_shift),
3426                         (0x1f << gpio_shift));
3427         } else {
3428                 tmp = REG_READ(ah, addr);
3429                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3430                 tmp &= ~(0x1f << gpio_shift);
3431                 tmp |= (type << gpio_shift);
3432                 REG_WRITE(ah, addr, tmp);
3433         }
3434 }
3435
3436 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3437 {
3438         u32 gpio_shift;
3439
3440         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3441
3442         gpio_shift = gpio << 1;
3443
3444         REG_RMW(ah,
3445                 AR_GPIO_OE_OUT,
3446                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3447                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3448 }
3449 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3450
3451 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3452 {
3453 #define MS_REG_READ(x, y) \
3454         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3455
3456         if (gpio >= ah->caps.num_gpio_pins)
3457                 return 0xffffffff;
3458
3459         if (AR_SREV_9271(ah))
3460                 return MS_REG_READ(AR9271, gpio) != 0;
3461         else if (AR_SREV_9287_10_OR_LATER(ah))
3462                 return MS_REG_READ(AR9287, gpio) != 0;
3463         else if (AR_SREV_9285_10_OR_LATER(ah))
3464                 return MS_REG_READ(AR9285, gpio) != 0;
3465         else if (AR_SREV_9280_10_OR_LATER(ah))
3466                 return MS_REG_READ(AR928X, gpio) != 0;
3467         else
3468                 return MS_REG_READ(AR, gpio) != 0;
3469 }
3470 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3471
3472 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3473                          u32 ah_signal_type)
3474 {
3475         u32 gpio_shift;
3476
3477         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3478
3479         gpio_shift = 2 * gpio;
3480
3481         REG_RMW(ah,
3482                 AR_GPIO_OE_OUT,
3483                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3484                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3485 }
3486 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3487
3488 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3489 {
3490         if (AR_SREV_9271(ah))
3491                 val = ~val;
3492
3493         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3494                 AR_GPIO_BIT(gpio));
3495 }
3496 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3497
3498 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3499 {
3500         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3501 }
3502 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3503
3504 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3505 {
3506         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3507 }
3508 EXPORT_SYMBOL(ath9k_hw_setantenna);
3509
3510 /*********************/
3511 /* General Operation */
3512 /*********************/
3513
3514 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3515 {
3516         u32 bits = REG_READ(ah, AR_RX_FILTER);
3517         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3518
3519         if (phybits & AR_PHY_ERR_RADAR)
3520                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3521         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3522                 bits |= ATH9K_RX_FILTER_PHYERR;
3523
3524         return bits;
3525 }
3526 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3527
3528 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3529 {
3530         u32 phybits;
3531
3532         REG_WRITE(ah, AR_RX_FILTER, bits);
3533
3534         phybits = 0;
3535         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3536                 phybits |= AR_PHY_ERR_RADAR;
3537         if (bits & ATH9K_RX_FILTER_PHYERR)
3538                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3539         REG_WRITE(ah, AR_PHY_ERR, phybits);
3540
3541         if (phybits)
3542                 REG_WRITE(ah, AR_RXCFG,
3543                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3544         else
3545                 REG_WRITE(ah, AR_RXCFG,
3546                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3547 }
3548 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3549
3550 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3551 {
3552         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3553                 return false;
3554
3555         ath9k_hw_init_pll(ah, NULL);
3556         return true;
3557 }
3558 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3559
3560 bool ath9k_hw_disable(struct ath_hw *ah)
3561 {
3562         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3563                 return false;
3564
3565         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3566                 return false;
3567
3568         ath9k_hw_init_pll(ah, NULL);
3569         return true;
3570 }
3571 EXPORT_SYMBOL(ath9k_hw_disable);
3572
3573 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3574 {
3575         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3576         struct ath9k_channel *chan = ah->curchan;
3577         struct ieee80211_channel *channel = chan->chan;
3578
3579         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3580
3581         ah->eep_ops->set_txpower(ah, chan,
3582                                  ath9k_regd_get_ctl(regulatory, chan),
3583                                  channel->max_antenna_gain * 2,
3584                                  channel->max_power * 2,
3585                                  min((u32) MAX_RATE_POWER,
3586                                  (u32) regulatory->power_limit));
3587 }
3588 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3589
3590 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3591 {
3592         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3593 }
3594 EXPORT_SYMBOL(ath9k_hw_setmac);
3595
3596 void ath9k_hw_setopmode(struct ath_hw *ah)
3597 {
3598         ath9k_hw_set_operating_mode(ah, ah->opmode);
3599 }
3600 EXPORT_SYMBOL(ath9k_hw_setopmode);
3601
3602 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3603 {
3604         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3605         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3606 }
3607 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3608
3609 void ath9k_hw_write_associd(struct ath_hw *ah)
3610 {
3611         struct ath_common *common = ath9k_hw_common(ah);
3612
3613         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3614         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3615                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3616 }
3617 EXPORT_SYMBOL(ath9k_hw_write_associd);
3618
3619 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3620 {
3621         u64 tsf;
3622
3623         tsf = REG_READ(ah, AR_TSF_U32);
3624         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3625
3626         return tsf;
3627 }
3628 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3629
3630 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3631 {
3632         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3633         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3634 }
3635 EXPORT_SYMBOL(ath9k_hw_settsf64);
3636
3637 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3638 {
3639         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3640                            AH_TSF_WRITE_TIMEOUT))
3641                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3642                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3643
3644         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3645 }
3646 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3647
3648 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3649 {
3650         if (setting)
3651                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3652         else
3653                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3654 }
3655 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3656
3657 /*
3658  *  Extend 15-bit time stamp from rx descriptor to
3659  *  a full 64-bit TSF using the current h/w TSF.
3660 */
3661 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3662 {
3663         u64 tsf;
3664
3665         tsf = ath9k_hw_gettsf64(ah);
3666         if ((tsf & 0x7fff) < rstamp)
3667                 tsf -= 0x8000;
3668         return (tsf & ~0x7fff) | rstamp;
3669 }
3670 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3671
3672 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3673 {
3674         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3675         u32 macmode;
3676
3677         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3678                 macmode = AR_2040_JOINED_RX_CLEAR;
3679         else
3680                 macmode = 0;
3681
3682         REG_WRITE(ah, AR_2040_MODE, macmode);
3683 }
3684
3685 /* HW Generic timers configuration */
3686
3687 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3688 {
3689         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3691         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3692         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3693         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3694         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3695         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3696         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3697         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3698         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3699                                 AR_NDP2_TIMER_MODE, 0x0002},
3700         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3701                                 AR_NDP2_TIMER_MODE, 0x0004},
3702         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3703                                 AR_NDP2_TIMER_MODE, 0x0008},
3704         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3705                                 AR_NDP2_TIMER_MODE, 0x0010},
3706         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3707                                 AR_NDP2_TIMER_MODE, 0x0020},
3708         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3709                                 AR_NDP2_TIMER_MODE, 0x0040},
3710         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3711                                 AR_NDP2_TIMER_MODE, 0x0080}
3712 };
3713
3714 /* HW generic timer primitives */
3715
3716 /* compute and clear index of rightmost 1 */
3717 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3718 {
3719         u32 b;
3720
3721         b = *mask;
3722         b &= (0-b);
3723         *mask &= ~b;
3724         b *= debruijn32;
3725         b >>= 27;
3726
3727         return timer_table->gen_timer_index[b];
3728 }
3729
3730 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3731 {
3732         return REG_READ(ah, AR_TSF_L32);
3733 }
3734 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3735
3736 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3737                                           void (*trigger)(void *),
3738                                           void (*overflow)(void *),
3739                                           void *arg,
3740                                           u8 timer_index)
3741 {
3742         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3743         struct ath_gen_timer *timer;
3744
3745         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3746
3747         if (timer == NULL) {
3748                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3749                           "Failed to allocate memory"
3750                           "for hw timer[%d]\n", timer_index);
3751                 return NULL;
3752         }
3753
3754         /* allocate a hardware generic timer slot */
3755         timer_table->timers[timer_index] = timer;
3756         timer->index = timer_index;
3757         timer->trigger = trigger;
3758         timer->overflow = overflow;
3759         timer->arg = arg;
3760
3761         return timer;
3762 }
3763 EXPORT_SYMBOL(ath_gen_timer_alloc);
3764
3765 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3766                               struct ath_gen_timer *timer,
3767                               u32 timer_next,
3768                               u32 timer_period)
3769 {
3770         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3771         u32 tsf;
3772
3773         BUG_ON(!timer_period);
3774
3775         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3776
3777         tsf = ath9k_hw_gettsf32(ah);
3778
3779         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3780                   "curent tsf %x period %x"
3781                   "timer_next %x\n", tsf, timer_period, timer_next);
3782
3783         /*
3784          * Pull timer_next forward if the current TSF already passed it
3785          * because of software latency
3786          */
3787         if (timer_next < tsf)
3788                 timer_next = tsf + timer_period;
3789
3790         /*
3791          * Program generic timer registers
3792          */
3793         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3794                  timer_next);
3795         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3796                   timer_period);
3797         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3798                     gen_tmr_configuration[timer->index].mode_mask);
3799
3800         /* Enable both trigger and thresh interrupt masks */
3801         REG_SET_BIT(ah, AR_IMR_S5,
3802                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3803                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3804 }
3805 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3806
3807 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3808 {
3809         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3810
3811         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3812                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3813                 return;
3814         }
3815
3816         /* Clear generic timer enable bits. */
3817         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3818                         gen_tmr_configuration[timer->index].mode_mask);
3819
3820         /* Disable both trigger and thresh interrupt masks */
3821         REG_CLR_BIT(ah, AR_IMR_S5,
3822                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3823                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3824
3825         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3826 }
3827 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3828
3829 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3830 {
3831         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3832
3833         /* free the hardware generic timer slot */
3834         timer_table->timers[timer->index] = NULL;
3835         kfree(timer);
3836 }
3837 EXPORT_SYMBOL(ath_gen_timer_free);
3838
3839 /*
3840  * Generic Timer Interrupts handling
3841  */
3842 void ath_gen_timer_isr(struct ath_hw *ah)
3843 {
3844         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3845         struct ath_gen_timer *timer;
3846         struct ath_common *common = ath9k_hw_common(ah);
3847         u32 trigger_mask, thresh_mask, index;
3848
3849         /* get hardware generic timer interrupt status */
3850         trigger_mask = ah->intr_gen_timer_trigger;
3851         thresh_mask = ah->intr_gen_timer_thresh;
3852         trigger_mask &= timer_table->timer_mask.val;
3853         thresh_mask &= timer_table->timer_mask.val;
3854
3855         trigger_mask &= ~thresh_mask;
3856
3857         while (thresh_mask) {
3858                 index = rightmost_index(timer_table, &thresh_mask);
3859                 timer = timer_table->timers[index];
3860                 BUG_ON(!timer);
3861                 ath_print(common, ATH_DBG_HWTIMER,
3862                           "TSF overflow for Gen timer %d\n", index);
3863                 timer->overflow(timer->arg);
3864         }
3865
3866         while (trigger_mask) {
3867                 index = rightmost_index(timer_table, &trigger_mask);
3868                 timer = timer_table->timers[index];
3869                 BUG_ON(!timer);
3870                 ath_print(common, ATH_DBG_HWTIMER,
3871                           "Gen timer[%d] trigger\n", index);
3872                 timer->trigger(timer->arg);
3873         }
3874 }
3875 EXPORT_SYMBOL(ath_gen_timer_isr);
3876
3877 /********/
3878 /* HTC  */
3879 /********/
3880
3881 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3882 {
3883         ah->htc_reset_init = true;
3884 }
3885 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3886
3887 static struct {
3888         u32 version;
3889         const char * name;
3890 } ath_mac_bb_names[] = {
3891         /* Devices with external radios */
3892         { AR_SREV_VERSION_5416_PCI,     "5416" },
3893         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3894         { AR_SREV_VERSION_9100,         "9100" },
3895         { AR_SREV_VERSION_9160,         "9160" },
3896         /* Single-chip solutions */
3897         { AR_SREV_VERSION_9280,         "9280" },
3898         { AR_SREV_VERSION_9285,         "9285" },
3899         { AR_SREV_VERSION_9287,         "9287" },
3900         { AR_SREV_VERSION_9271,         "9271" },
3901 };
3902
3903 /* For devices with external radios */
3904 static struct {
3905         u16 version;
3906         const char * name;
3907 } ath_rf_names[] = {
3908         { 0,                            "5133" },
3909         { AR_RAD5133_SREV_MAJOR,        "5133" },
3910         { AR_RAD5122_SREV_MAJOR,        "5122" },
3911         { AR_RAD2133_SREV_MAJOR,        "2133" },
3912         { AR_RAD2122_SREV_MAJOR,        "2122" }
3913 };
3914
3915 /*
3916  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3917  */
3918 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3919 {
3920         int i;
3921
3922         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3923                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3924                         return ath_mac_bb_names[i].name;
3925                 }
3926         }
3927
3928         return "????";
3929 }
3930
3931 /*
3932  * Return the RF name. "????" is returned if the RF is unknown.
3933  * Used for devices with external radios.
3934  */
3935 static const char *ath9k_hw_rf_name(u16 rf_version)
3936 {
3937         int i;
3938
3939         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3940                 if (ath_rf_names[i].version == rf_version) {
3941                         return ath_rf_names[i].name;
3942                 }
3943         }
3944
3945         return "????";
3946 }
3947
3948 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3949 {
3950         int used;
3951
3952         /* chipsets >= AR9280 are single-chip */
3953         if (AR_SREV_9280_10_OR_LATER(ah)) {
3954                 used = snprintf(hw_name, len,
3955                                "Atheros AR%s Rev:%x",
3956                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3957                                ah->hw_version.macRev);
3958         }
3959         else {
3960                 used = snprintf(hw_name, len,
3961                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3962                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3963                                ah->hw_version.macRev,
3964                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3965                                                 AR_RADIO_SREV_MAJOR)),
3966                                ah->hw_version.phyRev);
3967         }
3968
3969         hw_name[used] = '\0';
3970 }
3971 EXPORT_SYMBOL(ath9k_hw_name);