]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/ath/ath5k/eeprom.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30
31 /*
32  * Read from eeprom
33  */
34 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
35 {
36         u32 status, timeout;
37
38         ATH5K_TRACE(ah->ah_sc);
39         /*
40          * Initialize EEPROM access
41          */
42         if (ah->ah_version == AR5K_AR5210) {
43                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
44                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
45         } else {
46                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
47                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
48                                 AR5K_EEPROM_CMD_READ);
49         }
50
51         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
52                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
53                 if (status & AR5K_EEPROM_STAT_RDDONE) {
54                         if (status & AR5K_EEPROM_STAT_RDERR)
55                                 return -EIO;
56                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
57                                         0xffff);
58                         return 0;
59                 }
60                 udelay(15);
61         }
62
63         return -ETIMEDOUT;
64 }
65
66 /*
67  * Translate binary channel representation in EEPROM to frequency
68  */
69 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
70                                  unsigned int mode)
71 {
72         u16 val;
73
74         if (bin == AR5K_EEPROM_CHANNEL_DIS)
75                 return bin;
76
77         if (mode == AR5K_EEPROM_MODE_11A) {
78                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
79                         val = (5 * bin) + 4800;
80                 else
81                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
82                                 (bin * 10) + 5100;
83         } else {
84                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
85                         val = bin + 2300;
86                 else
87                         val = bin + 2400;
88         }
89
90         return val;
91 }
92
93 /*
94  * Initialize eeprom & capabilities structs
95  */
96 static int
97 ath5k_eeprom_init_header(struct ath5k_hw *ah)
98 {
99         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
100         int ret;
101         u16 val;
102         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
103
104         /*
105          * Read values from EEPROM and store them in the capability structure
106          */
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
110         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
111         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
112
113         /* Return if we have an old EEPROM */
114         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
115                 return 0;
116
117         /*
118          * Validate the checksum of the EEPROM date. There are some
119          * devices with invalid EEPROMs.
120          */
121         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
122         if (val) {
123                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
124                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
125                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
126                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
127
128                 /*
129                  * Fail safe check to prevent stupid loops due
130                  * to busted EEPROMs. XXX: This value is likely too
131                  * big still, waiting on a better value.
132                  */
133                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
134                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
135                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
136                                   eep_max, eep_max,
137                                   3 * AR5K_EEPROM_INFO_MAX,
138                                   3 * AR5K_EEPROM_INFO_MAX);
139                         return -EIO;
140                 }
141         }
142
143         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
144                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
145                 cksum ^= val;
146         }
147         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
148                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
149                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
150                           cksum, eep_max,
151                           eep_max == AR5K_EEPROM_INFO_MAX ?
152                                 "default size" : "custom size");
153                 return -EIO;
154         }
155
156         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
157             ee_ant_gain);
158
159         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
160                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
161                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
162
163                 /* XXX: Don't know which versions include these two */
164                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
165
166                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
167                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
168
169                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
170                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
171                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
172                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
173                 }
174         }
175
176         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
177                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
178                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
179                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
180
181                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
182                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
183                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
184         }
185
186         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
187
188         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
189                 ee->ee_is_hb63 = true;
190         else
191                 ee->ee_is_hb63 = false;
192
193         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
194         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
195         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
196
197         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
198          * and enable serdes programming if needed.
199          *
200          * XXX: Serdes values seem to be fixed so
201          * no need to read them here, we write them
202          * during ath5k_hw_attach */
203         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
204         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
205                                                         true : false;
206
207         return 0;
208 }
209
210
211 /*
212  * Read antenna infos from eeprom
213  */
214 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
215                 unsigned int mode)
216 {
217         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
218         u32 o = *offset;
219         u16 val;
220         int ret, i = 0;
221
222         AR5K_EEPROM_READ(o++, val);
223         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
224         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
225         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
226
227         AR5K_EEPROM_READ(o++, val);
228         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
229         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
230         ee->ee_ant_control[mode][i++]   = val & 0x3f;
231
232         AR5K_EEPROM_READ(o++, val);
233         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
234         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
235         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
236
237         AR5K_EEPROM_READ(o++, val);
238         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
239         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
240         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
241         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
242
243         AR5K_EEPROM_READ(o++, val);
244         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
245         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
246         ee->ee_ant_control[mode][i++]   = val & 0x3f;
247
248         /* Get antenna switch tables */
249         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
250             (ee->ee_ant_control[mode][0] << 4);
251         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
252              ee->ee_ant_control[mode][1]        |
253             (ee->ee_ant_control[mode][2] << 6)  |
254             (ee->ee_ant_control[mode][3] << 12) |
255             (ee->ee_ant_control[mode][4] << 18) |
256             (ee->ee_ant_control[mode][5] << 24);
257         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
258              ee->ee_ant_control[mode][6]        |
259             (ee->ee_ant_control[mode][7] << 6)  |
260             (ee->ee_ant_control[mode][8] << 12) |
261             (ee->ee_ant_control[mode][9] << 18) |
262             (ee->ee_ant_control[mode][10] << 24);
263
264         /* return new offset */
265         *offset = o;
266
267         return 0;
268 }
269
270 /*
271  * Read supported modes and some mode-specific calibration data
272  * from eeprom
273  */
274 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
275                 unsigned int mode)
276 {
277         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
278         u32 o = *offset;
279         u16 val;
280         int ret;
281
282         ee->ee_n_piers[mode] = 0;
283         AR5K_EEPROM_READ(o++, val);
284         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
285         switch(mode) {
286         case AR5K_EEPROM_MODE_11A:
287                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
288                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
289                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
290
291                 AR5K_EEPROM_READ(o++, val);
292                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
293                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
294                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
295                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
296                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
297                 ee->ee_db[mode][0]      = val & 0x7;
298                 break;
299         case AR5K_EEPROM_MODE_11G:
300         case AR5K_EEPROM_MODE_11B:
301                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
302                 ee->ee_db[mode][1]      = val & 0x7;
303                 break;
304         }
305
306         AR5K_EEPROM_READ(o++, val);
307         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
308         ee->ee_thr_62[mode]             = val & 0xff;
309
310         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
311                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
312
313         AR5K_EEPROM_READ(o++, val);
314         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
315         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
316
317         AR5K_EEPROM_READ(o++, val);
318         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
319
320         if ((val & 0xff) & 0x80)
321                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
322         else
323                 ee->ee_noise_floor_thr[mode] = val & 0xff;
324
325         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
326                 ee->ee_noise_floor_thr[mode] =
327                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
328
329         AR5K_EEPROM_READ(o++, val);
330         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
331         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
332         ee->ee_xpd[mode]                = val & 0x1;
333
334         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
335                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
336
337         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
338                 AR5K_EEPROM_READ(o++, val);
339                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
340
341                 if (mode == AR5K_EEPROM_MODE_11A)
342                         ee->ee_xr_power[mode] = val & 0x3f;
343                 else {
344                         ee->ee_ob[mode][0] = val & 0x7;
345                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
346                 }
347         }
348
349         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
350                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
351                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
352         } else {
353                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
354
355                 AR5K_EEPROM_READ(o++, val);
356                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
357
358                 if (mode == AR5K_EEPROM_MODE_11G) {
359                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
360                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
361                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
362                 }
363         }
364
365         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
366                         mode == AR5K_EEPROM_MODE_11A) {
367                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
368                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
369         }
370
371         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
372                 goto done;
373
374         /* Note: >= v5 have bg freq piers on another location
375          * so these freq piers are ignored for >= v5 (should be 0xff
376          * anyway) */
377         switch(mode) {
378         case AR5K_EEPROM_MODE_11A:
379                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
380                         break;
381
382                 AR5K_EEPROM_READ(o++, val);
383                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
384                 break;
385         case AR5K_EEPROM_MODE_11B:
386                 AR5K_EEPROM_READ(o++, val);
387
388                 ee->ee_pwr_cal_b[0].freq =
389                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
390                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
391                         ee->ee_n_piers[mode]++;
392
393                 ee->ee_pwr_cal_b[1].freq =
394                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
395                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
396                         ee->ee_n_piers[mode]++;
397
398                 AR5K_EEPROM_READ(o++, val);
399                 ee->ee_pwr_cal_b[2].freq =
400                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
401                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
402                         ee->ee_n_piers[mode]++;
403
404                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
405                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
406                 break;
407         case AR5K_EEPROM_MODE_11G:
408                 AR5K_EEPROM_READ(o++, val);
409
410                 ee->ee_pwr_cal_g[0].freq =
411                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
412                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
413                         ee->ee_n_piers[mode]++;
414
415                 ee->ee_pwr_cal_g[1].freq =
416                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
417                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
418                         ee->ee_n_piers[mode]++;
419
420                 AR5K_EEPROM_READ(o++, val);
421                 ee->ee_turbo_max_power[mode] = val & 0x7f;
422                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
423
424                 AR5K_EEPROM_READ(o++, val);
425                 ee->ee_pwr_cal_g[2].freq =
426                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
427                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
428                         ee->ee_n_piers[mode]++;
429
430                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
431                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
432
433                 AR5K_EEPROM_READ(o++, val);
434                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
435                 ee->ee_q_cal[mode] = val & 0x1f;
436
437                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
438                         AR5K_EEPROM_READ(o++, val);
439                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
440                 }
441                 break;
442         }
443
444         /*
445          * Read turbo mode information on newer EEPROM versions
446          */
447         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
448                 goto done;
449
450         switch (mode){
451         case AR5K_EEPROM_MODE_11A:
452                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
453
454                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
455                 AR5K_EEPROM_READ(o++, val);
456                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
457                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
458
459                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
460                 AR5K_EEPROM_READ(o++, val);
461                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
462                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
463
464                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
465                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
466                 break;
467         case AR5K_EEPROM_MODE_11G:
468                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
469
470                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
471                 AR5K_EEPROM_READ(o++, val);
472                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
473                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
474
475                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
476                 AR5K_EEPROM_READ(o++, val);
477                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
478                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
479                 break;
480         }
481
482 done:
483         /* return new offset */
484         *offset = o;
485
486         return 0;
487 }
488
489 /* Read mode-specific data (except power calibration data) */
490 static int
491 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
492 {
493         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
494         u32 mode_offset[3];
495         unsigned int mode;
496         u32 offset;
497         int ret;
498
499         /*
500          * Get values for all modes
501          */
502         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
503         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
504         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
505
506         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
507                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
508
509         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
510                 offset = mode_offset[mode];
511
512                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
513                 if (ret)
514                         return ret;
515
516                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
517                 if (ret)
518                         return ret;
519         }
520
521         /* override for older eeprom versions for better performance */
522         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
523                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
524                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
525                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
526         }
527
528         return 0;
529 }
530
531 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
532  * frequency mask) */
533 static inline int
534 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
535                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
536 {
537         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
538         int o = *offset;
539         int i = 0;
540         u8 freq1, freq2;
541         int ret;
542         u16 val;
543
544         ee->ee_n_piers[mode] = 0;
545         while(i < max) {
546                 AR5K_EEPROM_READ(o++, val);
547
548                 freq1 = val & 0xff;
549                 if (!freq1)
550                         break;
551
552                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
553                                 freq1, mode);
554                 ee->ee_n_piers[mode]++;
555
556                 freq2 = (val >> 8) & 0xff;
557                 if (!freq2)
558                         break;
559
560                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
561                                 freq2, mode);
562                 ee->ee_n_piers[mode]++;
563         }
564
565         /* return new offset */
566         *offset = o;
567
568         return 0;
569 }
570
571 /* Read frequency piers for 802.11a */
572 static int
573 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
574 {
575         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
576         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
577         int i, ret;
578         u16 val;
579         u8 mask;
580
581         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
582                 ath5k_eeprom_read_freq_list(ah, &offset,
583                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
584                         AR5K_EEPROM_MODE_11A);
585         } else {
586                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
587
588                 AR5K_EEPROM_READ(offset++, val);
589                 pcal[0].freq  = (val >> 9) & mask;
590                 pcal[1].freq  = (val >> 2) & mask;
591                 pcal[2].freq  = (val << 5) & mask;
592
593                 AR5K_EEPROM_READ(offset++, val);
594                 pcal[2].freq |= (val >> 11) & 0x1f;
595                 pcal[3].freq  = (val >> 4) & mask;
596                 pcal[4].freq  = (val << 3) & mask;
597
598                 AR5K_EEPROM_READ(offset++, val);
599                 pcal[4].freq |= (val >> 13) & 0x7;
600                 pcal[5].freq  = (val >> 6) & mask;
601                 pcal[6].freq  = (val << 1) & mask;
602
603                 AR5K_EEPROM_READ(offset++, val);
604                 pcal[6].freq |= (val >> 15) & 0x1;
605                 pcal[7].freq  = (val >> 8) & mask;
606                 pcal[8].freq  = (val >> 1) & mask;
607                 pcal[9].freq  = (val << 6) & mask;
608
609                 AR5K_EEPROM_READ(offset++, val);
610                 pcal[9].freq |= (val >> 10) & 0x3f;
611
612                 /* Fixed number of piers */
613                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
614
615                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
616                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
617                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
618                 }
619         }
620
621         return 0;
622 }
623
624 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
625 static inline int
626 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
627 {
628         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
629         struct ath5k_chan_pcal_info *pcal;
630
631         switch(mode) {
632         case AR5K_EEPROM_MODE_11B:
633                 pcal = ee->ee_pwr_cal_b;
634                 break;
635         case AR5K_EEPROM_MODE_11G:
636                 pcal = ee->ee_pwr_cal_g;
637                 break;
638         default:
639                 return -EINVAL;
640         }
641
642         ath5k_eeprom_read_freq_list(ah, &offset,
643                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
644                 mode);
645
646         return 0;
647 }
648
649 /*
650  * Read power calibration for RF5111 chips
651  *
652  * For RF5111 we have an XPD -eXternal Power Detector- curve
653  * for each calibrated channel. Each curve has 0,5dB Power steps
654  * on x axis and PCDAC steps (offsets) on y axis and looks like an
655  * exponential function. To recreate the curve we read 11 points
656  * here and interpolate later.
657  */
658
659 /* Used to match PCDAC steps with power values on RF5111 chips
660  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
661  * steps that match with the power values we read from eeprom. On
662  * older eeprom versions (< 3.2) these steps are equaly spaced at
663  * 10% of the pcdac curve -until the curve reaches it's maximum-
664  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
665  * these 11 steps are spaced in a different way. This function returns
666  * the pcdac steps based on eeprom version and curve min/max so that we
667  * can have pcdac/pwr points.
668  */
669 static inline void
670 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
671 {
672         static const u16 intercepts3[] =
673                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
674         static const u16 intercepts3_2[] =
675                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
676         const u16 *ip;
677         int i;
678
679         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
680                 ip = intercepts3_2;
681         else
682                 ip = intercepts3;
683
684         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
685                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
686 }
687
688 /* Convert RF5111 specific data to generic raw data
689  * used by interpolation code */
690 static int
691 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
692                                 struct ath5k_chan_pcal_info *chinfo)
693 {
694         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
695         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
696         struct ath5k_pdgain_info *pd;
697         u8 pier, point, idx;
698         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
699
700         /* Fill raw data for each calibration pier */
701         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
702
703                 pcinfo = &chinfo[pier].rf5111_info;
704
705                 /* Allocate pd_curves for this cal pier */
706                 chinfo[pier].pd_curves =
707                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
708                                 sizeof(struct ath5k_pdgain_info),
709                                 GFP_KERNEL);
710
711                 if (!chinfo[pier].pd_curves)
712                         return -ENOMEM;
713
714                 /* Only one curve for RF5111
715                  * find out which one and place
716                  * in in pd_curves.
717                  * Note: ee_x_gain is reversed here */
718                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
719
720                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
721                                 pdgain_idx[0] = idx;
722                                 break;
723                         }
724                 }
725
726                 ee->ee_pd_gains[mode] = 1;
727
728                 pd = &chinfo[pier].pd_curves[idx];
729
730                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
731
732                 /* Allocate pd points for this curve */
733                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
734                                         sizeof(u8), GFP_KERNEL);
735                 if (!pd->pd_step)
736                         return -ENOMEM;
737
738                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
739                                         sizeof(s16), GFP_KERNEL);
740                 if (!pd->pd_pwr)
741                         return -ENOMEM;
742
743                 /* Fill raw dataset
744                  * (convert power to 0.25dB units
745                  * for RF5112 combatibility) */
746                 for (point = 0; point < pd->pd_points; point++) {
747
748                         /* Absolute values */
749                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
750
751                         /* Already sorted */
752                         pd->pd_step[point] = pcinfo->pcdac[point];
753                 }
754
755                 /* Set min/max pwr */
756                 chinfo[pier].min_pwr = pd->pd_pwr[0];
757                 chinfo[pier].max_pwr = pd->pd_pwr[10];
758
759         }
760
761         return 0;
762 }
763
764 /* Parse EEPROM data */
765 static int
766 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
767 {
768         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
769         struct ath5k_chan_pcal_info *pcal;
770         int offset, ret;
771         int i;
772         u16 val;
773
774         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
775         switch(mode) {
776         case AR5K_EEPROM_MODE_11A:
777                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
778                         return 0;
779
780                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
781                         offset + AR5K_EEPROM_GROUP1_OFFSET);
782                 if (ret < 0)
783                         return ret;
784
785                 offset += AR5K_EEPROM_GROUP2_OFFSET;
786                 pcal = ee->ee_pwr_cal_a;
787                 break;
788         case AR5K_EEPROM_MODE_11B:
789                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
790                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
791                         return 0;
792
793                 pcal = ee->ee_pwr_cal_b;
794                 offset += AR5K_EEPROM_GROUP3_OFFSET;
795
796                 /* fixed piers */
797                 pcal[0].freq = 2412;
798                 pcal[1].freq = 2447;
799                 pcal[2].freq = 2484;
800                 ee->ee_n_piers[mode] = 3;
801                 break;
802         case AR5K_EEPROM_MODE_11G:
803                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
804                         return 0;
805
806                 pcal = ee->ee_pwr_cal_g;
807                 offset += AR5K_EEPROM_GROUP4_OFFSET;
808
809                 /* fixed piers */
810                 pcal[0].freq = 2312;
811                 pcal[1].freq = 2412;
812                 pcal[2].freq = 2484;
813                 ee->ee_n_piers[mode] = 3;
814                 break;
815         default:
816                 return -EINVAL;
817         }
818
819         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
820                 struct ath5k_chan_pcal_info_rf5111 *cdata =
821                         &pcal[i].rf5111_info;
822
823                 AR5K_EEPROM_READ(offset++, val);
824                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
825                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
826                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
827
828                 AR5K_EEPROM_READ(offset++, val);
829                 cdata->pwr[0] |= ((val >> 14) & 0x3);
830                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
831                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
832                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
833
834                 AR5K_EEPROM_READ(offset++, val);
835                 cdata->pwr[3] |= ((val >> 12) & 0xf);
836                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
837                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
838
839                 AR5K_EEPROM_READ(offset++, val);
840                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
841                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
842                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
843
844                 AR5K_EEPROM_READ(offset++, val);
845                 cdata->pwr[8] |= ((val >> 14) & 0x3);
846                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
847                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
848
849                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
850                         cdata->pcdac_max, cdata->pcdac);
851         }
852
853         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
854 }
855
856
857 /*
858  * Read power calibration for RF5112 chips
859  *
860  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
861  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
862  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
863  * power steps on x axis and PCDAC steps on y axis and looks like a
864  * linear function. To recreate the curve and pass the power values
865  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
866  * and 3 points for xpd 3 (higher gain -> lower power) here and
867  * interpolate later.
868  *
869  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
870  */
871
872 /* Convert RF5112 specific data to generic raw data
873  * used by interpolation code */
874 static int
875 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
876                                 struct ath5k_chan_pcal_info *chinfo)
877 {
878         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
879         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
880         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
881         unsigned int pier, pdg, point;
882
883         /* Fill raw data for each calibration pier */
884         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
885
886                 pcinfo = &chinfo[pier].rf5112_info;
887
888                 /* Allocate pd_curves for this cal pier */
889                 chinfo[pier].pd_curves =
890                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
891                                         sizeof(struct ath5k_pdgain_info),
892                                         GFP_KERNEL);
893
894                 if (!chinfo[pier].pd_curves)
895                         return -ENOMEM;
896
897                 /* Fill pd_curves */
898                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
899
900                         u8 idx = pdgain_idx[pdg];
901                         struct ath5k_pdgain_info *pd =
902                                         &chinfo[pier].pd_curves[idx];
903
904                         /* Lowest gain curve (max power) */
905                         if (pdg == 0) {
906                                 /* One more point for better accuracy */
907                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
908
909                                 /* Allocate pd points for this curve */
910                                 pd->pd_step = kcalloc(pd->pd_points,
911                                                 sizeof(u8), GFP_KERNEL);
912
913                                 if (!pd->pd_step)
914                                         return -ENOMEM;
915
916                                 pd->pd_pwr = kcalloc(pd->pd_points,
917                                                 sizeof(s16), GFP_KERNEL);
918
919                                 if (!pd->pd_pwr)
920                                         return -ENOMEM;
921
922
923                                 /* Fill raw dataset
924                                  * (all power levels are in 0.25dB units) */
925                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
926                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
927
928                                 for (point = 1; point < pd->pd_points;
929                                 point++) {
930                                         /* Absolute values */
931                                         pd->pd_pwr[point] =
932                                                 pcinfo->pwr_x0[point];
933
934                                         /* Deltas */
935                                         pd->pd_step[point] =
936                                                 pd->pd_step[point - 1] +
937                                                 pcinfo->pcdac_x0[point];
938                                 }
939
940                                 /* Set min power for this frequency */
941                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
942
943                         /* Highest gain curve (min power) */
944                         } else if (pdg == 1) {
945
946                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
947
948                                 /* Allocate pd points for this curve */
949                                 pd->pd_step = kcalloc(pd->pd_points,
950                                                 sizeof(u8), GFP_KERNEL);
951
952                                 if (!pd->pd_step)
953                                         return -ENOMEM;
954
955                                 pd->pd_pwr = kcalloc(pd->pd_points,
956                                                 sizeof(s16), GFP_KERNEL);
957
958                                 if (!pd->pd_pwr)
959                                         return -ENOMEM;
960
961                                 /* Fill raw dataset
962                                  * (all power levels are in 0.25dB units) */
963                                 for (point = 0; point < pd->pd_points;
964                                 point++) {
965                                         /* Absolute values */
966                                         pd->pd_pwr[point] =
967                                                 pcinfo->pwr_x3[point];
968
969                                         /* Fixed points */
970                                         pd->pd_step[point] =
971                                                 pcinfo->pcdac_x3[point];
972                                 }
973
974                                 /* Since we have a higher gain curve
975                                  * override min power */
976                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
977                         }
978                 }
979         }
980
981         return 0;
982 }
983
984 /* Parse EEPROM data */
985 static int
986 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
987 {
988         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
989         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
990         struct ath5k_chan_pcal_info *gen_chan_info;
991         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
992         u32 offset;
993         u8 i, c;
994         u16 val;
995         int ret;
996         u8 pd_gains = 0;
997
998         /* Count how many curves we have and
999          * identify them (which one of the 4
1000          * available curves we have on each count).
1001          * Curves are stored from lower (x0) to
1002          * higher (x3) gain */
1003         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1004                 /* ee_x_gain[mode] is x gain mask */
1005                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1006                         pdgain_idx[pd_gains++] = i;
1007         }
1008         ee->ee_pd_gains[mode] = pd_gains;
1009
1010         if (pd_gains == 0 || pd_gains > 2)
1011                 return -EINVAL;
1012
1013         switch (mode) {
1014         case AR5K_EEPROM_MODE_11A:
1015                 /*
1016                  * Read 5GHz EEPROM channels
1017                  */
1018                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1019                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1020
1021                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1022                 gen_chan_info = ee->ee_pwr_cal_a;
1023                 break;
1024         case AR5K_EEPROM_MODE_11B:
1025                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1026                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1027                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1028
1029                 /* NB: frequency piers parsed during mode init */
1030                 gen_chan_info = ee->ee_pwr_cal_b;
1031                 break;
1032         case AR5K_EEPROM_MODE_11G:
1033                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1034                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1035                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1036                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1037                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1038
1039                 /* NB: frequency piers parsed during mode init */
1040                 gen_chan_info = ee->ee_pwr_cal_g;
1041                 break;
1042         default:
1043                 return -EINVAL;
1044         }
1045
1046         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1047                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1048
1049                 /* Power values in quarter dB
1050                  * for the lower xpd gain curve
1051                  * (0 dBm -> higher output power) */
1052                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1053                         AR5K_EEPROM_READ(offset++, val);
1054                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1055                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1056                 }
1057
1058                 /* PCDAC steps
1059                  * corresponding to the above power
1060                  * measurements */
1061                 AR5K_EEPROM_READ(offset++, val);
1062                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1063                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1064                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1065
1066                 /* Power values in quarter dB
1067                  * for the higher xpd gain curve
1068                  * (18 dBm -> lower output power) */
1069                 AR5K_EEPROM_READ(offset++, val);
1070                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1071                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1072
1073                 AR5K_EEPROM_READ(offset++, val);
1074                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1075
1076                 /* PCDAC steps
1077                  * corresponding to the above power
1078                  * measurements (fixed) */
1079                 chan_pcal_info->pcdac_x3[0] = 20;
1080                 chan_pcal_info->pcdac_x3[1] = 35;
1081                 chan_pcal_info->pcdac_x3[2] = 63;
1082
1083                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1084                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1085
1086                         /* Last xpd0 power level is also channel maximum */
1087                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1088                 } else {
1089                         chan_pcal_info->pcdac_x0[0] = 1;
1090                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1091                 }
1092
1093         }
1094
1095         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1096 }
1097
1098
1099 /*
1100  * Read power calibration for RF2413 chips
1101  *
1102  * For RF2413 we have a Power to PDDAC table (Power Detector)
1103  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1104  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1105  * axis and looks like an exponential function like the RF5111 curve.
1106  *
1107  * To recreate the curves we read here the points and interpolate
1108  * later. Note that in most cases only 2 (higher and lower) curves are
1109  * used (like RF5112) but vendors have the oportunity to include all
1110  * 4 curves on eeprom. The final curve (higher power) has an extra
1111  * point for better accuracy like RF5112.
1112  */
1113
1114 /* For RF2413 power calibration data doesn't start on a fixed location and
1115  * if a mode is not supported, it's section is missing -not zeroed-.
1116  * So we need to calculate the starting offset for each section by using
1117  * these two functions */
1118
1119 /* Return the size of each section based on the mode and the number of pd
1120  * gains available (maximum 4). */
1121 static inline unsigned int
1122 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1123 {
1124         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1125         unsigned int sz;
1126
1127         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1128         sz *= ee->ee_n_piers[mode];
1129
1130         return sz;
1131 }
1132
1133 /* Return the starting offset for a section based on the modes supported
1134  * and each section's size. */
1135 static unsigned int
1136 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1137 {
1138         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1139
1140         switch(mode) {
1141         case AR5K_EEPROM_MODE_11G:
1142                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1143                         offset += ath5k_pdgains_size_2413(ee,
1144                                         AR5K_EEPROM_MODE_11B) +
1145                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1146                 /* fall through */
1147         case AR5K_EEPROM_MODE_11B:
1148                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1149                         offset += ath5k_pdgains_size_2413(ee,
1150                                         AR5K_EEPROM_MODE_11A) +
1151                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1152                 /* fall through */
1153         case AR5K_EEPROM_MODE_11A:
1154                 break;
1155         default:
1156                 break;
1157         }
1158
1159         return offset;
1160 }
1161
1162 /* Convert RF2413 specific data to generic raw data
1163  * used by interpolation code */
1164 static int
1165 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1166                                 struct ath5k_chan_pcal_info *chinfo)
1167 {
1168         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1169         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1170         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1171         unsigned int pier, pdg, point;
1172
1173         /* Fill raw data for each calibration pier */
1174         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1175
1176                 pcinfo = &chinfo[pier].rf2413_info;
1177
1178                 /* Allocate pd_curves for this cal pier */
1179                 chinfo[pier].pd_curves =
1180                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1181                                         sizeof(struct ath5k_pdgain_info),
1182                                         GFP_KERNEL);
1183
1184                 if (!chinfo[pier].pd_curves)
1185                         return -ENOMEM;
1186
1187                 /* Fill pd_curves */
1188                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1189
1190                         u8 idx = pdgain_idx[pdg];
1191                         struct ath5k_pdgain_info *pd =
1192                                         &chinfo[pier].pd_curves[idx];
1193
1194                         /* One more point for the highest power
1195                          * curve (lowest gain) */
1196                         if (pdg == ee->ee_pd_gains[mode] - 1)
1197                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1198                         else
1199                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1200
1201                         /* Allocate pd points for this curve */
1202                         pd->pd_step = kcalloc(pd->pd_points,
1203                                         sizeof(u8), GFP_KERNEL);
1204
1205                         if (!pd->pd_step)
1206                                 return -ENOMEM;
1207
1208                         pd->pd_pwr = kcalloc(pd->pd_points,
1209                                         sizeof(s16), GFP_KERNEL);
1210
1211                         if (!pd->pd_pwr)
1212                                 return -ENOMEM;
1213
1214                         /* Fill raw dataset
1215                          * convert all pwr levels to
1216                          * quarter dB for RF5112 combatibility */
1217                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1218                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1219
1220                         for (point = 1; point < pd->pd_points; point++) {
1221
1222                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1223                                         2 * pcinfo->pwr[pdg][point - 1];
1224
1225                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1226                                                 pcinfo->pddac[pdg][point - 1];
1227
1228                         }
1229
1230                         /* Highest gain curve -> min power */
1231                         if (pdg == 0)
1232                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1233
1234                         /* Lowest gain curve -> max power */
1235                         if (pdg == ee->ee_pd_gains[mode] - 1)
1236                                 chinfo[pier].max_pwr =
1237                                         pd->pd_pwr[pd->pd_points - 1];
1238                 }
1239         }
1240
1241         return 0;
1242 }
1243
1244 /* Parse EEPROM data */
1245 static int
1246 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1247 {
1248         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1249         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1250         struct ath5k_chan_pcal_info *chinfo;
1251         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1252         u32 offset;
1253         int idx, i, ret;
1254         u16 val;
1255         u8 pd_gains = 0;
1256
1257         /* Count how many curves we have and
1258          * identify them (which one of the 4
1259          * available curves we have on each count).
1260          * Curves are stored from higher to
1261          * lower gain so we go backwards */
1262         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1263                 /* ee_x_gain[mode] is x gain mask */
1264                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1265                         pdgain_idx[pd_gains++] = idx;
1266
1267         }
1268         ee->ee_pd_gains[mode] = pd_gains;
1269
1270         if (pd_gains == 0)
1271                 return -EINVAL;
1272
1273         offset = ath5k_cal_data_offset_2413(ee, mode);
1274         switch (mode) {
1275         case AR5K_EEPROM_MODE_11A:
1276                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1277                         return 0;
1278
1279                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1280                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1281                 chinfo = ee->ee_pwr_cal_a;
1282                 break;
1283         case AR5K_EEPROM_MODE_11B:
1284                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1285                         return 0;
1286
1287                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1288                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1289                 chinfo = ee->ee_pwr_cal_b;
1290                 break;
1291         case AR5K_EEPROM_MODE_11G:
1292                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1293                         return 0;
1294
1295                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1296                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1297                 chinfo = ee->ee_pwr_cal_g;
1298                 break;
1299         default:
1300                 return -EINVAL;
1301         }
1302
1303         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1304                 pcinfo = &chinfo[i].rf2413_info;
1305
1306                 /*
1307                  * Read pwr_i, pddac_i and the first
1308                  * 2 pd points (pwr, pddac)
1309                  */
1310                 AR5K_EEPROM_READ(offset++, val);
1311                 pcinfo->pwr_i[0] = val & 0x1f;
1312                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1313                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1314
1315                 AR5K_EEPROM_READ(offset++, val);
1316                 pcinfo->pddac[0][0] = val & 0x3f;
1317                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1318                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1319
1320                 AR5K_EEPROM_READ(offset++, val);
1321                 pcinfo->pwr[0][2] = val & 0xf;
1322                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1323
1324                 pcinfo->pwr[0][3] = 0;
1325                 pcinfo->pddac[0][3] = 0;
1326
1327                 if (pd_gains > 1) {
1328                         /*
1329                          * Pd gain 0 is not the last pd gain
1330                          * so it only has 2 pd points.
1331                          * Continue wih pd gain 1.
1332                          */
1333                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1334
1335                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1336                         AR5K_EEPROM_READ(offset++, val);
1337                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1338
1339                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1340                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1341
1342                         AR5K_EEPROM_READ(offset++, val);
1343                         pcinfo->pwr[1][1] = val & 0xf;
1344                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1345                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1346
1347                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1348                         AR5K_EEPROM_READ(offset++, val);
1349                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1350
1351                         pcinfo->pwr[1][3] = 0;
1352                         pcinfo->pddac[1][3] = 0;
1353                 } else if (pd_gains == 1) {
1354                         /*
1355                          * Pd gain 0 is the last one so
1356                          * read the extra point.
1357                          */
1358                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1359
1360                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1361                         AR5K_EEPROM_READ(offset++, val);
1362                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1363                 }
1364
1365                 /*
1366                  * Proceed with the other pd_gains
1367                  * as above.
1368                  */
1369                 if (pd_gains > 2) {
1370                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1371                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1372
1373                         AR5K_EEPROM_READ(offset++, val);
1374                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1375                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1376                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1377
1378                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1379                         AR5K_EEPROM_READ(offset++, val);
1380                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1381
1382                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1383                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1384
1385                         pcinfo->pwr[2][3] = 0;
1386                         pcinfo->pddac[2][3] = 0;
1387                 } else if (pd_gains == 2) {
1388                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1389                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1390                 }
1391
1392                 if (pd_gains > 3) {
1393                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1394                         AR5K_EEPROM_READ(offset++, val);
1395                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1396
1397                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1398                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1399                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1400
1401                         AR5K_EEPROM_READ(offset++, val);
1402                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1403                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1404                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1405
1406                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1407                         AR5K_EEPROM_READ(offset++, val);
1408                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1409
1410                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1411                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1412
1413                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1414                         AR5K_EEPROM_READ(offset++, val);
1415                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1416                 } else if (pd_gains == 3) {
1417                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1418                         AR5K_EEPROM_READ(offset++, val);
1419                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1420
1421                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1422                 }
1423         }
1424
1425         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1426 }
1427
1428
1429 /*
1430  * Read per rate target power (this is the maximum tx power
1431  * supported by the card). This info is used when setting
1432  * tx power, no matter the channel.
1433  *
1434  * This also works for v5 EEPROMs.
1435  */
1436 static int
1437 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1438 {
1439         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1440         struct ath5k_rate_pcal_info *rate_pcal_info;
1441         u8 *rate_target_pwr_num;
1442         u32 offset;
1443         u16 val;
1444         int ret, i;
1445
1446         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1447         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1448         switch (mode) {
1449         case AR5K_EEPROM_MODE_11A:
1450                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1451                 rate_pcal_info = ee->ee_rate_tpwr_a;
1452                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1453                 break;
1454         case AR5K_EEPROM_MODE_11B:
1455                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1456                 rate_pcal_info = ee->ee_rate_tpwr_b;
1457                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1458                 break;
1459         case AR5K_EEPROM_MODE_11G:
1460                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1461                 rate_pcal_info = ee->ee_rate_tpwr_g;
1462                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1463                 break;
1464         default:
1465                 return -EINVAL;
1466         }
1467
1468         /* Different freq mask for older eeproms (<= v3.2) */
1469         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1470                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1471                         AR5K_EEPROM_READ(offset++, val);
1472                         rate_pcal_info[i].freq =
1473                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1474
1475                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1476                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1477
1478                         AR5K_EEPROM_READ(offset++, val);
1479
1480                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1481                             val == 0) {
1482                                 (*rate_target_pwr_num) = i;
1483                                 break;
1484                         }
1485
1486                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1487                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1488                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1489                 }
1490         } else {
1491                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1492                         AR5K_EEPROM_READ(offset++, val);
1493                         rate_pcal_info[i].freq =
1494                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1495
1496                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1497                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1498
1499                         AR5K_EEPROM_READ(offset++, val);
1500
1501                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1502                             val == 0) {
1503                                 (*rate_target_pwr_num) = i;
1504                                 break;
1505                         }
1506
1507                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1508                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1509                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1510                 }
1511         }
1512
1513         return 0;
1514 }
1515
1516 /*
1517  * Read per channel calibration info from EEPROM
1518  *
1519  * This info is used to calibrate the baseband power table. Imagine
1520  * that for each channel there is a power curve that's hw specific
1521  * (depends on amplifier etc) and we try to "correct" this curve using
1522  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1523  * it can use accurate power values when setting tx power (takes amplifier's
1524  * performance on each channel into account).
1525  *
1526  * EEPROM provides us with the offsets for some pre-calibrated channels
1527  * and we have to interpolate to create the full table for these channels and
1528  * also the table for any channel.
1529  */
1530 static int
1531 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1532 {
1533         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1534         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1535         int mode;
1536         int err;
1537
1538         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1539                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1540                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1541         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1542                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1543                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1544         else
1545                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1546
1547
1548         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1549         mode++) {
1550                 err = read_pcal(ah, mode);
1551                 if (err)
1552                         return err;
1553
1554                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1555                 if (err < 0)
1556                         return err;
1557         }
1558
1559         return 0;
1560 }
1561
1562 static int
1563 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1564 {
1565         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1566         struct ath5k_chan_pcal_info *chinfo;
1567         u8 pier, pdg;
1568
1569         switch (mode) {
1570         case AR5K_EEPROM_MODE_11A:
1571                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1572                         return 0;
1573                 chinfo = ee->ee_pwr_cal_a;
1574                 break;
1575         case AR5K_EEPROM_MODE_11B:
1576                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1577                         return 0;
1578                 chinfo = ee->ee_pwr_cal_b;
1579                 break;
1580         case AR5K_EEPROM_MODE_11G:
1581                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1582                         return 0;
1583                 chinfo = ee->ee_pwr_cal_g;
1584                 break;
1585         default:
1586                 return -EINVAL;
1587         }
1588
1589         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1590                 if (!chinfo[pier].pd_curves)
1591                         continue;
1592
1593                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1594                         struct ath5k_pdgain_info *pd =
1595                                         &chinfo[pier].pd_curves[pdg];
1596
1597                         if (pd != NULL) {
1598                                 kfree(pd->pd_step);
1599                                 kfree(pd->pd_pwr);
1600                         }
1601                 }
1602
1603                 kfree(chinfo[pier].pd_curves);
1604         }
1605
1606         return 0;
1607 }
1608
1609 void
1610 ath5k_eeprom_detach(struct ath5k_hw *ah)
1611 {
1612         u8 mode;
1613
1614         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1615                 ath5k_eeprom_free_pcal_info(ah, mode);
1616 }
1617
1618 /* Read conformance test limits used for regulatory control */
1619 static int
1620 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1621 {
1622         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1623         struct ath5k_edge_power *rep;
1624         unsigned int fmask, pmask;
1625         unsigned int ctl_mode;
1626         int ret, i, j;
1627         u32 offset;
1628         u16 val;
1629
1630         pmask = AR5K_EEPROM_POWER_M;
1631         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1632         offset = AR5K_EEPROM_CTL(ee->ee_version);
1633         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1634         for (i = 0; i < ee->ee_ctls; i += 2) {
1635                 AR5K_EEPROM_READ(offset++, val);
1636                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1637                 ee->ee_ctl[i + 1] = val & 0xff;
1638         }
1639
1640         offset = AR5K_EEPROM_GROUP8_OFFSET;
1641         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1642                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1643                         AR5K_EEPROM_GROUP5_OFFSET;
1644         else
1645                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1646
1647         rep = ee->ee_ctl_pwr;
1648         for(i = 0; i < ee->ee_ctls; i++) {
1649                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1650                 case AR5K_CTL_11A:
1651                 case AR5K_CTL_TURBO:
1652                         ctl_mode = AR5K_EEPROM_MODE_11A;
1653                         break;
1654                 default:
1655                         ctl_mode = AR5K_EEPROM_MODE_11G;
1656                         break;
1657                 }
1658                 if (ee->ee_ctl[i] == 0) {
1659                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1660                                 offset += 8;
1661                         else
1662                                 offset += 7;
1663                         rep += AR5K_EEPROM_N_EDGES;
1664                         continue;
1665                 }
1666                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1667                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1668                                 AR5K_EEPROM_READ(offset++, val);
1669                                 rep[j].freq = (val >> 8) & fmask;
1670                                 rep[j + 1].freq = val & fmask;
1671                         }
1672                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1673                                 AR5K_EEPROM_READ(offset++, val);
1674                                 rep[j].edge = (val >> 8) & pmask;
1675                                 rep[j].flag = (val >> 14) & 1;
1676                                 rep[j + 1].edge = val & pmask;
1677                                 rep[j + 1].flag = (val >> 6) & 1;
1678                         }
1679                 } else {
1680                         AR5K_EEPROM_READ(offset++, val);
1681                         rep[0].freq = (val >> 9) & fmask;
1682                         rep[1].freq = (val >> 2) & fmask;
1683                         rep[2].freq = (val << 5) & fmask;
1684
1685                         AR5K_EEPROM_READ(offset++, val);
1686                         rep[2].freq |= (val >> 11) & 0x1f;
1687                         rep[3].freq = (val >> 4) & fmask;
1688                         rep[4].freq = (val << 3) & fmask;
1689
1690                         AR5K_EEPROM_READ(offset++, val);
1691                         rep[4].freq |= (val >> 13) & 0x7;
1692                         rep[5].freq = (val >> 6) & fmask;
1693                         rep[6].freq = (val << 1) & fmask;
1694
1695                         AR5K_EEPROM_READ(offset++, val);
1696                         rep[6].freq |= (val >> 15) & 0x1;
1697                         rep[7].freq = (val >> 8) & fmask;
1698
1699                         rep[0].edge = (val >> 2) & pmask;
1700                         rep[1].edge = (val << 4) & pmask;
1701
1702                         AR5K_EEPROM_READ(offset++, val);
1703                         rep[1].edge |= (val >> 12) & 0xf;
1704                         rep[2].edge = (val >> 6) & pmask;
1705                         rep[3].edge = val & pmask;
1706
1707                         AR5K_EEPROM_READ(offset++, val);
1708                         rep[4].edge = (val >> 10) & pmask;
1709                         rep[5].edge = (val >> 4) & pmask;
1710                         rep[6].edge = (val << 2) & pmask;
1711
1712                         AR5K_EEPROM_READ(offset++, val);
1713                         rep[6].edge |= (val >> 14) & 0x3;
1714                         rep[7].edge = (val >> 8) & pmask;
1715                 }
1716                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1717                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1718                                 rep[j].freq, ctl_mode);
1719                 }
1720                 rep += AR5K_EEPROM_N_EDGES;
1721         }
1722
1723         return 0;
1724 }
1725
1726 static int
1727 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1728 {
1729         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1730         u32 offset;
1731         u16 val;
1732         int ret = 0, i;
1733
1734         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1735                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1736
1737         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1738                 /* No spur info for 5GHz */
1739                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1740                 /* 2 channels for 2GHz (2464/2420) */
1741                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1742                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1743                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1744         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1745                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1746                         AR5K_EEPROM_READ(offset, val);
1747                         ee->ee_spur_chans[i][0] = val;
1748                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1749                                                                         val);
1750                         ee->ee_spur_chans[i][1] = val;
1751                         offset++;
1752                 }
1753         }
1754
1755         return ret;
1756 }
1757
1758 /*
1759  * Initialize eeprom data structure
1760  */
1761 int
1762 ath5k_eeprom_init(struct ath5k_hw *ah)
1763 {
1764         int err;
1765
1766         err = ath5k_eeprom_init_header(ah);
1767         if (err < 0)
1768                 return err;
1769
1770         err = ath5k_eeprom_init_modes(ah);
1771         if (err < 0)
1772                 return err;
1773
1774         err = ath5k_eeprom_read_pcal_info(ah);
1775         if (err < 0)
1776                 return err;
1777
1778         err = ath5k_eeprom_read_ctl_info(ah);
1779         if (err < 0)
1780                 return err;
1781
1782         err = ath5k_eeprom_read_spur_chans(ah);
1783         if (err < 0)
1784                 return err;
1785
1786         return 0;
1787 }
1788
1789 /*
1790  * Read the MAC address from eeprom
1791  */
1792 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1793 {
1794         u8 mac_d[ETH_ALEN] = {};
1795         u32 total, offset;
1796         u16 data;
1797         int octet, ret;
1798
1799         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1800         if (ret)
1801                 return ret;
1802
1803         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1804                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1805                 if (ret)
1806                         return ret;
1807
1808                 total += data;
1809                 mac_d[octet + 1] = data & 0xff;
1810                 mac_d[octet] = data >> 8;
1811                 octet += 2;
1812         }
1813
1814         if (!total || total == 3 * 0xffff)
1815                 return -EINVAL;
1816
1817         memcpy(mac, mac_d, ETH_ALEN);
1818
1819         return 0;
1820 }