]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/sfc/tx.c
be0e110a1f73b4584582868e475cf3492cead862
[net-next-2.6.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
32
33 /* We want to be able to nest calls to netif_stop_queue(), since each
34  * channel can have an individual stop on the queue.
35  */
36 void efx_stop_queue(struct efx_nic *efx)
37 {
38         spin_lock_bh(&efx->netif_stop_lock);
39         EFX_TRACE(efx, "stop TX queue\n");
40
41         atomic_inc(&efx->netif_stop_count);
42         netif_stop_queue(efx->net_dev);
43
44         spin_unlock_bh(&efx->netif_stop_lock);
45 }
46
47 /* Wake netif's TX queue
48  * We want to be able to nest calls to netif_stop_queue(), since each
49  * channel can have an individual stop on the queue.
50  */
51 void efx_wake_queue(struct efx_nic *efx)
52 {
53         local_bh_disable();
54         if (atomic_dec_and_lock(&efx->netif_stop_count,
55                                 &efx->netif_stop_lock)) {
56                 EFX_TRACE(efx, "waking TX queue\n");
57                 netif_wake_queue(efx->net_dev);
58                 spin_unlock(&efx->netif_stop_lock);
59         }
60         local_bh_enable();
61 }
62
63 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
64                                struct efx_tx_buffer *buffer)
65 {
66         if (buffer->unmap_len) {
67                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
68                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
69                                          buffer->unmap_len);
70                 if (buffer->unmap_single)
71                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
72                                          PCI_DMA_TODEVICE);
73                 else
74                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
75                                        PCI_DMA_TODEVICE);
76                 buffer->unmap_len = 0;
77                 buffer->unmap_single = false;
78         }
79
80         if (buffer->skb) {
81                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82                 buffer->skb = NULL;
83                 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
84                           "complete\n", tx_queue->queue, read_ptr);
85         }
86 }
87
88 /**
89  * struct efx_tso_header - a DMA mapped buffer for packet headers
90  * @next: Linked list of free ones.
91  *      The list is protected by the TX queue lock.
92  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
93  * @dma_addr: The DMA address of the header below.
94  *
95  * This controls the memory used for a TSO header.  Use TSOH_DATA()
96  * to find the packet header data.  Use TSOH_SIZE() to calculate the
97  * total size required for a given packet header length.  TSO headers
98  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
99  */
100 struct efx_tso_header {
101         union {
102                 struct efx_tso_header *next;
103                 size_t unmap_len;
104         };
105         dma_addr_t dma_addr;
106 };
107
108 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
109                                struct sk_buff *skb);
110 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
111 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
112                                struct efx_tso_header *tsoh);
113
114 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
115                           struct efx_tx_buffer *buffer)
116 {
117         if (buffer->tsoh) {
118                 if (likely(!buffer->tsoh->unmap_len)) {
119                         buffer->tsoh->next = tx_queue->tso_headers_free;
120                         tx_queue->tso_headers_free = buffer->tsoh;
121                 } else {
122                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
123                 }
124                 buffer->tsoh = NULL;
125         }
126 }
127
128
129 static inline unsigned
130 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
131 {
132         /* Depending on the NIC revision, we can use descriptor
133          * lengths up to 8K or 8K-1.  However, since PCI Express
134          * devices must split read requests at 4K boundaries, there is
135          * little benefit from using descriptors that cross those
136          * boundaries and we keep things simple by not doing so.
137          */
138         unsigned len = (~dma_addr & 0xfff) + 1;
139
140         /* Work around hardware bug for unaligned buffers. */
141         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
142                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
143
144         return len;
145 }
146
147 /*
148  * Add a socket buffer to a TX queue
149  *
150  * This maps all fragments of a socket buffer for DMA and adds them to
151  * the TX queue.  The queue's insert pointer will be incremented by
152  * the number of fragments in the socket buffer.
153  *
154  * If any DMA mapping fails, any mapped fragments will be unmapped,
155  * the queue's insert pointer will be restored to its original value.
156  *
157  * This function is split out from efx_hard_start_xmit to allow the
158  * loopback test to direct packets via specific TX queues.
159  *
160  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
161  * You must hold netif_tx_lock() to call this function.
162  */
163 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
164 {
165         struct efx_nic *efx = tx_queue->efx;
166         struct pci_dev *pci_dev = efx->pci_dev;
167         struct efx_tx_buffer *buffer;
168         skb_frag_t *fragment;
169         struct page *page;
170         int page_offset;
171         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
172         dma_addr_t dma_addr, unmap_addr = 0;
173         unsigned int dma_len;
174         bool unmap_single;
175         int q_space, i = 0;
176         netdev_tx_t rc = NETDEV_TX_OK;
177
178         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
179
180         if (skb_shinfo(skb)->gso_size)
181                 return efx_enqueue_skb_tso(tx_queue, skb);
182
183         /* Get size of the initial fragment */
184         len = skb_headlen(skb);
185
186         /* Pad if necessary */
187         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
188                 EFX_BUG_ON_PARANOID(skb->data_len);
189                 len = 32 + 1;
190                 if (skb_pad(skb, len - skb->len))
191                         return NETDEV_TX_OK;
192         }
193
194         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
195         q_space = EFX_TXQ_MASK - 1 - fill_level;
196
197         /* Map for DMA.  Use pci_map_single rather than pci_map_page
198          * since this is more efficient on machines with sparse
199          * memory.
200          */
201         unmap_single = true;
202         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
203
204         /* Process all fragments */
205         while (1) {
206                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
207                         goto pci_err;
208
209                 /* Store fields for marking in the per-fragment final
210                  * descriptor */
211                 unmap_len = len;
212                 unmap_addr = dma_addr;
213
214                 /* Add to TX queue, splitting across DMA boundaries */
215                 do {
216                         if (unlikely(q_space-- <= 0)) {
217                                 /* It might be that completions have
218                                  * happened since the xmit path last
219                                  * checked.  Update the xmit path's
220                                  * copy of read_count.
221                                  */
222                                 ++tx_queue->stopped;
223                                 /* This memory barrier protects the
224                                  * change of stopped from the access
225                                  * of read_count. */
226                                 smp_mb();
227                                 tx_queue->old_read_count =
228                                         *(volatile unsigned *)
229                                         &tx_queue->read_count;
230                                 fill_level = (tx_queue->insert_count
231                                               - tx_queue->old_read_count);
232                                 q_space = EFX_TXQ_MASK - 1 - fill_level;
233                                 if (unlikely(q_space-- <= 0))
234                                         goto stop;
235                                 smp_mb();
236                                 --tx_queue->stopped;
237                         }
238
239                         insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
240                         buffer = &tx_queue->buffer[insert_ptr];
241                         efx_tsoh_free(tx_queue, buffer);
242                         EFX_BUG_ON_PARANOID(buffer->tsoh);
243                         EFX_BUG_ON_PARANOID(buffer->skb);
244                         EFX_BUG_ON_PARANOID(buffer->len);
245                         EFX_BUG_ON_PARANOID(!buffer->continuation);
246                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
247
248                         dma_len = efx_max_tx_len(efx, dma_addr);
249                         if (likely(dma_len >= len))
250                                 dma_len = len;
251
252                         /* Fill out per descriptor fields */
253                         buffer->len = dma_len;
254                         buffer->dma_addr = dma_addr;
255                         len -= dma_len;
256                         dma_addr += dma_len;
257                         ++tx_queue->insert_count;
258                 } while (len);
259
260                 /* Transfer ownership of the unmapping to the final buffer */
261                 buffer->unmap_single = unmap_single;
262                 buffer->unmap_len = unmap_len;
263                 unmap_len = 0;
264
265                 /* Get address and size of next fragment */
266                 if (i >= skb_shinfo(skb)->nr_frags)
267                         break;
268                 fragment = &skb_shinfo(skb)->frags[i];
269                 len = fragment->size;
270                 page = fragment->page;
271                 page_offset = fragment->page_offset;
272                 i++;
273                 /* Map for DMA */
274                 unmap_single = false;
275                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
276                                         PCI_DMA_TODEVICE);
277         }
278
279         /* Transfer ownership of the skb to the final buffer */
280         buffer->skb = skb;
281         buffer->continuation = false;
282
283         /* Pass off to hardware */
284         efx_nic_push_buffers(tx_queue);
285
286         return NETDEV_TX_OK;
287
288  pci_err:
289         EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
290                    "fragments for DMA\n", tx_queue->queue, skb->len,
291                    skb_shinfo(skb)->nr_frags + 1);
292
293         /* Mark the packet as transmitted, and free the SKB ourselves */
294         dev_kfree_skb_any(skb);
295         goto unwind;
296
297  stop:
298         rc = NETDEV_TX_BUSY;
299
300         if (tx_queue->stopped == 1)
301                 efx_stop_queue(efx);
302
303  unwind:
304         /* Work backwards until we hit the original insert pointer value */
305         while (tx_queue->insert_count != tx_queue->write_count) {
306                 --tx_queue->insert_count;
307                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
308                 buffer = &tx_queue->buffer[insert_ptr];
309                 efx_dequeue_buffer(tx_queue, buffer);
310                 buffer->len = 0;
311         }
312
313         /* Free the fragment we were mid-way through pushing */
314         if (unmap_len) {
315                 if (unmap_single)
316                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
317                                          PCI_DMA_TODEVICE);
318                 else
319                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
320                                        PCI_DMA_TODEVICE);
321         }
322
323         return rc;
324 }
325
326 /* Remove packets from the TX queue
327  *
328  * This removes packets from the TX queue, up to and including the
329  * specified index.
330  */
331 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
332                                 unsigned int index)
333 {
334         struct efx_nic *efx = tx_queue->efx;
335         unsigned int stop_index, read_ptr;
336
337         stop_index = (index + 1) & EFX_TXQ_MASK;
338         read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
339
340         while (read_ptr != stop_index) {
341                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
342                 if (unlikely(buffer->len == 0)) {
343                         EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
344                                 "completion id %x\n", tx_queue->queue,
345                                 read_ptr);
346                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
347                         return;
348                 }
349
350                 efx_dequeue_buffer(tx_queue, buffer);
351                 buffer->continuation = true;
352                 buffer->len = 0;
353
354                 ++tx_queue->read_count;
355                 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
356         }
357 }
358
359 /* Initiate a packet transmission.  We use one channel per CPU
360  * (sharing when we have more CPUs than channels).  On Falcon, the TX
361  * completion events will be directed back to the CPU that transmitted
362  * the packet, which should be cache-efficient.
363  *
364  * Context: non-blocking.
365  * Note that returning anything other than NETDEV_TX_OK will cause the
366  * OS to free the skb.
367  */
368 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
369                                       struct net_device *net_dev)
370 {
371         struct efx_nic *efx = netdev_priv(net_dev);
372         struct efx_tx_queue *tx_queue;
373
374         if (unlikely(efx->port_inhibited))
375                 return NETDEV_TX_BUSY;
376
377         if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
378                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
379         else
380                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
381
382         return efx_enqueue_skb(tx_queue, skb);
383 }
384
385 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
386 {
387         unsigned fill_level;
388         struct efx_nic *efx = tx_queue->efx;
389
390         EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
391
392         efx_dequeue_buffers(tx_queue, index);
393
394         /* See if we need to restart the netif queue.  This barrier
395          * separates the update of read_count from the test of
396          * stopped. */
397         smp_mb();
398         if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
399                 fill_level = tx_queue->insert_count - tx_queue->read_count;
400                 if (fill_level < EFX_TXQ_THRESHOLD) {
401                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
402
403                         /* Do this under netif_tx_lock(), to avoid racing
404                          * with efx_xmit(). */
405                         netif_tx_lock(efx->net_dev);
406                         if (tx_queue->stopped) {
407                                 tx_queue->stopped = 0;
408                                 efx_wake_queue(efx);
409                         }
410                         netif_tx_unlock(efx->net_dev);
411                 }
412         }
413 }
414
415 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
416 {
417         struct efx_nic *efx = tx_queue->efx;
418         unsigned int txq_size;
419         int i, rc;
420
421         EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
422
423         /* Allocate software ring */
424         txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
425         tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
426         if (!tx_queue->buffer)
427                 return -ENOMEM;
428         for (i = 0; i <= EFX_TXQ_MASK; ++i)
429                 tx_queue->buffer[i].continuation = true;
430
431         /* Allocate hardware ring */
432         rc = efx_nic_probe_tx(tx_queue);
433         if (rc)
434                 goto fail;
435
436         return 0;
437
438  fail:
439         kfree(tx_queue->buffer);
440         tx_queue->buffer = NULL;
441         return rc;
442 }
443
444 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
445 {
446         EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
447
448         tx_queue->insert_count = 0;
449         tx_queue->write_count = 0;
450         tx_queue->read_count = 0;
451         tx_queue->old_read_count = 0;
452         BUG_ON(tx_queue->stopped);
453
454         /* Set up TX descriptor ring */
455         efx_nic_init_tx(tx_queue);
456 }
457
458 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
459 {
460         struct efx_tx_buffer *buffer;
461
462         if (!tx_queue->buffer)
463                 return;
464
465         /* Free any buffers left in the ring */
466         while (tx_queue->read_count != tx_queue->write_count) {
467                 buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
468                 efx_dequeue_buffer(tx_queue, buffer);
469                 buffer->continuation = true;
470                 buffer->len = 0;
471
472                 ++tx_queue->read_count;
473         }
474 }
475
476 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
477 {
478         EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
479
480         /* Flush TX queue, remove descriptor ring */
481         efx_nic_fini_tx(tx_queue);
482
483         efx_release_tx_buffers(tx_queue);
484
485         /* Free up TSO header cache */
486         efx_fini_tso(tx_queue);
487
488         /* Release queue's stop on port, if any */
489         if (tx_queue->stopped) {
490                 tx_queue->stopped = 0;
491                 efx_wake_queue(tx_queue->efx);
492         }
493 }
494
495 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
496 {
497         EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
498         efx_nic_remove_tx(tx_queue);
499
500         kfree(tx_queue->buffer);
501         tx_queue->buffer = NULL;
502 }
503
504
505 /* Efx TCP segmentation acceleration.
506  *
507  * Why?  Because by doing it here in the driver we can go significantly
508  * faster than the GSO.
509  *
510  * Requires TX checksum offload support.
511  */
512
513 /* Number of bytes inserted at the start of a TSO header buffer,
514  * similar to NET_IP_ALIGN.
515  */
516 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
517 #define TSOH_OFFSET     0
518 #else
519 #define TSOH_OFFSET     NET_IP_ALIGN
520 #endif
521
522 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
523
524 /* Total size of struct efx_tso_header, buffer and padding */
525 #define TSOH_SIZE(hdr_len)                                      \
526         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
527
528 /* Size of blocks on free list.  Larger blocks must be allocated from
529  * the heap.
530  */
531 #define TSOH_STD_SIZE           128
532
533 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
534 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
535 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
536 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
537 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
538
539 /**
540  * struct tso_state - TSO state for an SKB
541  * @out_len: Remaining length in current segment
542  * @seqnum: Current sequence number
543  * @ipv4_id: Current IPv4 ID, host endian
544  * @packet_space: Remaining space in current packet
545  * @dma_addr: DMA address of current position
546  * @in_len: Remaining length in current SKB fragment
547  * @unmap_len: Length of SKB fragment
548  * @unmap_addr: DMA address of SKB fragment
549  * @unmap_single: DMA single vs page mapping flag
550  * @protocol: Network protocol (after any VLAN header)
551  * @header_len: Number of bytes of header
552  * @full_packet_size: Number of bytes to put in each outgoing segment
553  *
554  * The state used during segmentation.  It is put into this data structure
555  * just to make it easy to pass into inline functions.
556  */
557 struct tso_state {
558         /* Output position */
559         unsigned out_len;
560         unsigned seqnum;
561         unsigned ipv4_id;
562         unsigned packet_space;
563
564         /* Input position */
565         dma_addr_t dma_addr;
566         unsigned in_len;
567         unsigned unmap_len;
568         dma_addr_t unmap_addr;
569         bool unmap_single;
570
571         __be16 protocol;
572         unsigned header_len;
573         int full_packet_size;
574 };
575
576
577 /*
578  * Verify that our various assumptions about sk_buffs and the conditions
579  * under which TSO will be attempted hold true.  Return the protocol number.
580  */
581 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
582 {
583         __be16 protocol = skb->protocol;
584
585         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
586                             protocol);
587         if (protocol == htons(ETH_P_8021Q)) {
588                 /* Find the encapsulated protocol; reset network header
589                  * and transport header based on that. */
590                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
591                 protocol = veh->h_vlan_encapsulated_proto;
592                 skb_set_network_header(skb, sizeof(*veh));
593                 if (protocol == htons(ETH_P_IP))
594                         skb_set_transport_header(skb, sizeof(*veh) +
595                                                  4 * ip_hdr(skb)->ihl);
596                 else if (protocol == htons(ETH_P_IPV6))
597                         skb_set_transport_header(skb, sizeof(*veh) +
598                                                  sizeof(struct ipv6hdr));
599         }
600
601         if (protocol == htons(ETH_P_IP)) {
602                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
603         } else {
604                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
605                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
606         }
607         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
608                              + (tcp_hdr(skb)->doff << 2u)) >
609                             skb_headlen(skb));
610
611         return protocol;
612 }
613
614
615 /*
616  * Allocate a page worth of efx_tso_header structures, and string them
617  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
618  */
619 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
620 {
621
622         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
623         struct efx_tso_header *tsoh;
624         dma_addr_t dma_addr;
625         u8 *base_kva, *kva;
626
627         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
628         if (base_kva == NULL) {
629                 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
630                         " headers\n");
631                 return -ENOMEM;
632         }
633
634         /* pci_alloc_consistent() allocates pages. */
635         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
636
637         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
638                 tsoh = (struct efx_tso_header *)kva;
639                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
640                 tsoh->next = tx_queue->tso_headers_free;
641                 tx_queue->tso_headers_free = tsoh;
642         }
643
644         return 0;
645 }
646
647
648 /* Free up a TSO header, and all others in the same page. */
649 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
650                                 struct efx_tso_header *tsoh,
651                                 struct pci_dev *pci_dev)
652 {
653         struct efx_tso_header **p;
654         unsigned long base_kva;
655         dma_addr_t base_dma;
656
657         base_kva = (unsigned long)tsoh & PAGE_MASK;
658         base_dma = tsoh->dma_addr & PAGE_MASK;
659
660         p = &tx_queue->tso_headers_free;
661         while (*p != NULL) {
662                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
663                         *p = (*p)->next;
664                 else
665                         p = &(*p)->next;
666         }
667
668         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
669 }
670
671 static struct efx_tso_header *
672 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
673 {
674         struct efx_tso_header *tsoh;
675
676         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
677         if (unlikely(!tsoh))
678                 return NULL;
679
680         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
681                                         TSOH_BUFFER(tsoh), header_len,
682                                         PCI_DMA_TODEVICE);
683         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
684                                            tsoh->dma_addr))) {
685                 kfree(tsoh);
686                 return NULL;
687         }
688
689         tsoh->unmap_len = header_len;
690         return tsoh;
691 }
692
693 static void
694 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
695 {
696         pci_unmap_single(tx_queue->efx->pci_dev,
697                          tsoh->dma_addr, tsoh->unmap_len,
698                          PCI_DMA_TODEVICE);
699         kfree(tsoh);
700 }
701
702 /**
703  * efx_tx_queue_insert - push descriptors onto the TX queue
704  * @tx_queue:           Efx TX queue
705  * @dma_addr:           DMA address of fragment
706  * @len:                Length of fragment
707  * @final_buffer:       The final buffer inserted into the queue
708  *
709  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
710  * @tx_queue full.
711  */
712 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
713                                dma_addr_t dma_addr, unsigned len,
714                                struct efx_tx_buffer **final_buffer)
715 {
716         struct efx_tx_buffer *buffer;
717         struct efx_nic *efx = tx_queue->efx;
718         unsigned dma_len, fill_level, insert_ptr;
719         int q_space;
720
721         EFX_BUG_ON_PARANOID(len <= 0);
722
723         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
724         /* -1 as there is no way to represent all descriptors used */
725         q_space = EFX_TXQ_MASK - 1 - fill_level;
726
727         while (1) {
728                 if (unlikely(q_space-- <= 0)) {
729                         /* It might be that completions have happened
730                          * since the xmit path last checked.  Update
731                          * the xmit path's copy of read_count.
732                          */
733                         ++tx_queue->stopped;
734                         /* This memory barrier protects the change of
735                          * stopped from the access of read_count. */
736                         smp_mb();
737                         tx_queue->old_read_count =
738                                 *(volatile unsigned *)&tx_queue->read_count;
739                         fill_level = (tx_queue->insert_count
740                                       - tx_queue->old_read_count);
741                         q_space = EFX_TXQ_MASK - 1 - fill_level;
742                         if (unlikely(q_space-- <= 0)) {
743                                 *final_buffer = NULL;
744                                 return 1;
745                         }
746                         smp_mb();
747                         --tx_queue->stopped;
748                 }
749
750                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
751                 buffer = &tx_queue->buffer[insert_ptr];
752                 ++tx_queue->insert_count;
753
754                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
755                                     tx_queue->read_count >
756                                     EFX_TXQ_MASK);
757
758                 efx_tsoh_free(tx_queue, buffer);
759                 EFX_BUG_ON_PARANOID(buffer->len);
760                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
761                 EFX_BUG_ON_PARANOID(buffer->skb);
762                 EFX_BUG_ON_PARANOID(!buffer->continuation);
763                 EFX_BUG_ON_PARANOID(buffer->tsoh);
764
765                 buffer->dma_addr = dma_addr;
766
767                 dma_len = efx_max_tx_len(efx, dma_addr);
768
769                 /* If there is enough space to send then do so */
770                 if (dma_len >= len)
771                         break;
772
773                 buffer->len = dma_len; /* Don't set the other members */
774                 dma_addr += dma_len;
775                 len -= dma_len;
776         }
777
778         EFX_BUG_ON_PARANOID(!len);
779         buffer->len = len;
780         *final_buffer = buffer;
781         return 0;
782 }
783
784
785 /*
786  * Put a TSO header into the TX queue.
787  *
788  * This is special-cased because we know that it is small enough to fit in
789  * a single fragment, and we know it doesn't cross a page boundary.  It
790  * also allows us to not worry about end-of-packet etc.
791  */
792 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
793                                struct efx_tso_header *tsoh, unsigned len)
794 {
795         struct efx_tx_buffer *buffer;
796
797         buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
798         efx_tsoh_free(tx_queue, buffer);
799         EFX_BUG_ON_PARANOID(buffer->len);
800         EFX_BUG_ON_PARANOID(buffer->unmap_len);
801         EFX_BUG_ON_PARANOID(buffer->skb);
802         EFX_BUG_ON_PARANOID(!buffer->continuation);
803         EFX_BUG_ON_PARANOID(buffer->tsoh);
804         buffer->len = len;
805         buffer->dma_addr = tsoh->dma_addr;
806         buffer->tsoh = tsoh;
807
808         ++tx_queue->insert_count;
809 }
810
811
812 /* Remove descriptors put into a tx_queue. */
813 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
814 {
815         struct efx_tx_buffer *buffer;
816         dma_addr_t unmap_addr;
817
818         /* Work backwards until we hit the original insert pointer value */
819         while (tx_queue->insert_count != tx_queue->write_count) {
820                 --tx_queue->insert_count;
821                 buffer = &tx_queue->buffer[tx_queue->insert_count &
822                                            EFX_TXQ_MASK];
823                 efx_tsoh_free(tx_queue, buffer);
824                 EFX_BUG_ON_PARANOID(buffer->skb);
825                 if (buffer->unmap_len) {
826                         unmap_addr = (buffer->dma_addr + buffer->len -
827                                       buffer->unmap_len);
828                         if (buffer->unmap_single)
829                                 pci_unmap_single(tx_queue->efx->pci_dev,
830                                                  unmap_addr, buffer->unmap_len,
831                                                  PCI_DMA_TODEVICE);
832                         else
833                                 pci_unmap_page(tx_queue->efx->pci_dev,
834                                                unmap_addr, buffer->unmap_len,
835                                                PCI_DMA_TODEVICE);
836                         buffer->unmap_len = 0;
837                 }
838                 buffer->len = 0;
839                 buffer->continuation = true;
840         }
841 }
842
843
844 /* Parse the SKB header and initialise state. */
845 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
846 {
847         /* All ethernet/IP/TCP headers combined size is TCP header size
848          * plus offset of TCP header relative to start of packet.
849          */
850         st->header_len = ((tcp_hdr(skb)->doff << 2u)
851                           + PTR_DIFF(tcp_hdr(skb), skb->data));
852         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
853
854         if (st->protocol == htons(ETH_P_IP))
855                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
856         else
857                 st->ipv4_id = 0;
858         st->seqnum = ntohl(tcp_hdr(skb)->seq);
859
860         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
861         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
862         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
863
864         st->packet_space = st->full_packet_size;
865         st->out_len = skb->len - st->header_len;
866         st->unmap_len = 0;
867         st->unmap_single = false;
868 }
869
870 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
871                             skb_frag_t *frag)
872 {
873         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
874                                       frag->page_offset, frag->size,
875                                       PCI_DMA_TODEVICE);
876         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
877                 st->unmap_single = false;
878                 st->unmap_len = frag->size;
879                 st->in_len = frag->size;
880                 st->dma_addr = st->unmap_addr;
881                 return 0;
882         }
883         return -ENOMEM;
884 }
885
886 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
887                                  const struct sk_buff *skb)
888 {
889         int hl = st->header_len;
890         int len = skb_headlen(skb) - hl;
891
892         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
893                                         len, PCI_DMA_TODEVICE);
894         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
895                 st->unmap_single = true;
896                 st->unmap_len = len;
897                 st->in_len = len;
898                 st->dma_addr = st->unmap_addr;
899                 return 0;
900         }
901         return -ENOMEM;
902 }
903
904
905 /**
906  * tso_fill_packet_with_fragment - form descriptors for the current fragment
907  * @tx_queue:           Efx TX queue
908  * @skb:                Socket buffer
909  * @st:                 TSO state
910  *
911  * Form descriptors for the current fragment, until we reach the end
912  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
913  * space in @tx_queue.
914  */
915 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
916                                          const struct sk_buff *skb,
917                                          struct tso_state *st)
918 {
919         struct efx_tx_buffer *buffer;
920         int n, end_of_packet, rc;
921
922         if (st->in_len == 0)
923                 return 0;
924         if (st->packet_space == 0)
925                 return 0;
926
927         EFX_BUG_ON_PARANOID(st->in_len <= 0);
928         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
929
930         n = min(st->in_len, st->packet_space);
931
932         st->packet_space -= n;
933         st->out_len -= n;
934         st->in_len -= n;
935
936         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
937         if (likely(rc == 0)) {
938                 if (st->out_len == 0)
939                         /* Transfer ownership of the skb */
940                         buffer->skb = skb;
941
942                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
943                 buffer->continuation = !end_of_packet;
944
945                 if (st->in_len == 0) {
946                         /* Transfer ownership of the pci mapping */
947                         buffer->unmap_len = st->unmap_len;
948                         buffer->unmap_single = st->unmap_single;
949                         st->unmap_len = 0;
950                 }
951         }
952
953         st->dma_addr += n;
954         return rc;
955 }
956
957
958 /**
959  * tso_start_new_packet - generate a new header and prepare for the new packet
960  * @tx_queue:           Efx TX queue
961  * @skb:                Socket buffer
962  * @st:                 TSO state
963  *
964  * Generate a new header and prepare for the new packet.  Return 0 on
965  * success, or -1 if failed to alloc header.
966  */
967 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
968                                 const struct sk_buff *skb,
969                                 struct tso_state *st)
970 {
971         struct efx_tso_header *tsoh;
972         struct tcphdr *tsoh_th;
973         unsigned ip_length;
974         u8 *header;
975
976         /* Allocate a DMA-mapped header buffer. */
977         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
978                 if (tx_queue->tso_headers_free == NULL) {
979                         if (efx_tsoh_block_alloc(tx_queue))
980                                 return -1;
981                 }
982                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
983                 tsoh = tx_queue->tso_headers_free;
984                 tx_queue->tso_headers_free = tsoh->next;
985                 tsoh->unmap_len = 0;
986         } else {
987                 tx_queue->tso_long_headers++;
988                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
989                 if (unlikely(!tsoh))
990                         return -1;
991         }
992
993         header = TSOH_BUFFER(tsoh);
994         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
995
996         /* Copy and update the headers. */
997         memcpy(header, skb->data, st->header_len);
998
999         tsoh_th->seq = htonl(st->seqnum);
1000         st->seqnum += skb_shinfo(skb)->gso_size;
1001         if (st->out_len > skb_shinfo(skb)->gso_size) {
1002                 /* This packet will not finish the TSO burst. */
1003                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1004                 tsoh_th->fin = 0;
1005                 tsoh_th->psh = 0;
1006         } else {
1007                 /* This packet will be the last in the TSO burst. */
1008                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1009                 tsoh_th->fin = tcp_hdr(skb)->fin;
1010                 tsoh_th->psh = tcp_hdr(skb)->psh;
1011         }
1012
1013         if (st->protocol == htons(ETH_P_IP)) {
1014                 struct iphdr *tsoh_iph =
1015                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1016
1017                 tsoh_iph->tot_len = htons(ip_length);
1018
1019                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1020                 tsoh_iph->id = htons(st->ipv4_id);
1021                 st->ipv4_id++;
1022         } else {
1023                 struct ipv6hdr *tsoh_iph =
1024                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1025
1026                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1027         }
1028
1029         st->packet_space = skb_shinfo(skb)->gso_size;
1030         ++tx_queue->tso_packets;
1031
1032         /* Form a descriptor for this header. */
1033         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1034
1035         return 0;
1036 }
1037
1038
1039 /**
1040  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1041  * @tx_queue:           Efx TX queue
1042  * @skb:                Socket buffer
1043  *
1044  * Context: You must hold netif_tx_lock() to call this function.
1045  *
1046  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1047  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1048  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1049  */
1050 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1051                                struct sk_buff *skb)
1052 {
1053         struct efx_nic *efx = tx_queue->efx;
1054         int frag_i, rc, rc2 = NETDEV_TX_OK;
1055         struct tso_state state;
1056
1057         /* Find the packet protocol and sanity-check it */
1058         state.protocol = efx_tso_check_protocol(skb);
1059
1060         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1061
1062         tso_start(&state, skb);
1063
1064         /* Assume that skb header area contains exactly the headers, and
1065          * all payload is in the frag list.
1066          */
1067         if (skb_headlen(skb) == state.header_len) {
1068                 /* Grab the first payload fragment. */
1069                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1070                 frag_i = 0;
1071                 rc = tso_get_fragment(&state, efx,
1072                                       skb_shinfo(skb)->frags + frag_i);
1073                 if (rc)
1074                         goto mem_err;
1075         } else {
1076                 rc = tso_get_head_fragment(&state, efx, skb);
1077                 if (rc)
1078                         goto mem_err;
1079                 frag_i = -1;
1080         }
1081
1082         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1083                 goto mem_err;
1084
1085         while (1) {
1086                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1087                 if (unlikely(rc))
1088                         goto stop;
1089
1090                 /* Move onto the next fragment? */
1091                 if (state.in_len == 0) {
1092                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1093                                 /* End of payload reached. */
1094                                 break;
1095                         rc = tso_get_fragment(&state, efx,
1096                                               skb_shinfo(skb)->frags + frag_i);
1097                         if (rc)
1098                                 goto mem_err;
1099                 }
1100
1101                 /* Start at new packet? */
1102                 if (state.packet_space == 0 &&
1103                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1104                         goto mem_err;
1105         }
1106
1107         /* Pass off to hardware */
1108         efx_nic_push_buffers(tx_queue);
1109
1110         tx_queue->tso_bursts++;
1111         return NETDEV_TX_OK;
1112
1113  mem_err:
1114         EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
1115         dev_kfree_skb_any(skb);
1116         goto unwind;
1117
1118  stop:
1119         rc2 = NETDEV_TX_BUSY;
1120
1121         /* Stop the queue if it wasn't stopped before. */
1122         if (tx_queue->stopped == 1)
1123                 efx_stop_queue(efx);
1124
1125  unwind:
1126         /* Free the DMA mapping we were in the process of writing out */
1127         if (state.unmap_len) {
1128                 if (state.unmap_single)
1129                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1130                                          state.unmap_len, PCI_DMA_TODEVICE);
1131                 else
1132                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1133                                        state.unmap_len, PCI_DMA_TODEVICE);
1134         }
1135
1136         efx_enqueue_unwind(tx_queue);
1137         return rc2;
1138 }
1139
1140
1141 /*
1142  * Free up all TSO datastructures associated with tx_queue. This
1143  * routine should be called only once the tx_queue is both empty and
1144  * will no longer be used.
1145  */
1146 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1147 {
1148         unsigned i;
1149
1150         if (tx_queue->buffer) {
1151                 for (i = 0; i <= EFX_TXQ_MASK; ++i)
1152                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1153         }
1154
1155         while (tx_queue->tso_headers_free != NULL)
1156                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1157                                     tx_queue->efx->pci_dev);
1158 }