]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/sfc/falcon.c
sfc: Update version, copyright dates, authors
[net-next-2.6.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34  * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38 /* Default flash device: Atmel AT25F1024
39  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45
46 /**************************************************************************
47  *
48  * I2C bus - this is a bit-bashing interface using GPIO pins
49  * Note that it uses the output enables to tristate the outputs
50  * SDA is the data pin and SCL is the clock
51  *
52  **************************************************************************
53  */
54 static void falcon_setsda(void *data, int state)
55 {
56         struct efx_nic *efx = (struct efx_nic *)data;
57         efx_oword_t reg;
58
59         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62 }
63
64 static void falcon_setscl(void *data, int state)
65 {
66         struct efx_nic *efx = (struct efx_nic *)data;
67         efx_oword_t reg;
68
69         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72 }
73
74 static int falcon_getsda(void *data)
75 {
76         struct efx_nic *efx = (struct efx_nic *)data;
77         efx_oword_t reg;
78
79         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81 }
82
83 static int falcon_getscl(void *data)
84 {
85         struct efx_nic *efx = (struct efx_nic *)data;
86         efx_oword_t reg;
87
88         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90 }
91
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93         .setsda         = falcon_setsda,
94         .setscl         = falcon_setscl,
95         .getsda         = falcon_getsda,
96         .getscl         = falcon_getscl,
97         .udelay         = 5,
98         /* Wait up to 50 ms for slave to let us pull SCL high */
99         .timeout        = DIV_ROUND_UP(HZ, 20),
100 };
101
102 static void falcon_push_irq_moderation(struct efx_channel *channel)
103 {
104         efx_dword_t timer_cmd;
105         struct efx_nic *efx = channel->efx;
106
107         /* Set timer register */
108         if (channel->irq_moderation) {
109                 EFX_POPULATE_DWORD_2(timer_cmd,
110                                      FRF_AB_TC_TIMER_MODE,
111                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
112                                      FRF_AB_TC_TIMER_VAL,
113                                      channel->irq_moderation - 1);
114         } else {
115                 EFX_POPULATE_DWORD_2(timer_cmd,
116                                      FRF_AB_TC_TIMER_MODE,
117                                      FFE_BB_TIMER_MODE_DIS,
118                                      FRF_AB_TC_TIMER_VAL, 0);
119         }
120         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
121         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
122                                channel->channel);
123 }
124
125 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
126
127 static void falcon_prepare_flush(struct efx_nic *efx)
128 {
129         falcon_deconfigure_mac_wrapper(efx);
130
131         /* Wait for the tx and rx fifo's to get to the next packet boundary
132          * (~1ms without back-pressure), then to drain the remainder of the
133          * fifo's at data path speeds (negligible), with a healthy margin. */
134         msleep(10);
135 }
136
137 /* Acknowledge a legacy interrupt from Falcon
138  *
139  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
140  *
141  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
142  * BIU. Interrupt acknowledge is read sensitive so must write instead
143  * (then read to ensure the BIU collector is flushed)
144  *
145  * NB most hardware supports MSI interrupts
146  */
147 inline void falcon_irq_ack_a1(struct efx_nic *efx)
148 {
149         efx_dword_t reg;
150
151         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
152         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
153         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
154 }
155
156
157 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
158 {
159         struct efx_nic *efx = dev_id;
160         efx_oword_t *int_ker = efx->irq_status.addr;
161         struct efx_channel *channel;
162         int syserr;
163         int queues;
164
165         /* Check to see if this is our interrupt.  If it isn't, we
166          * exit without having touched the hardware.
167          */
168         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
169                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
170                           raw_smp_processor_id());
171                 return IRQ_NONE;
172         }
173         efx->last_irq_cpu = raw_smp_processor_id();
174         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
175                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
176
177         /* Check to see if we have a serious error condition */
178         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
179         if (unlikely(syserr))
180                 return efx_nic_fatal_interrupt(efx);
181
182         /* Determine interrupting queues, clear interrupt status
183          * register and acknowledge the device interrupt.
184          */
185         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
186         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
187         EFX_ZERO_OWORD(*int_ker);
188         wmb(); /* Ensure the vector is cleared before interrupt ack */
189         falcon_irq_ack_a1(efx);
190
191         /* Schedule processing of any interrupting queues */
192         channel = &efx->channel[0];
193         while (queues) {
194                 if (queues & 0x01)
195                         efx_schedule_channel(channel);
196                 channel++;
197                 queues >>= 1;
198         }
199
200         return IRQ_HANDLED;
201 }
202 /**************************************************************************
203  *
204  * EEPROM/flash
205  *
206  **************************************************************************
207  */
208
209 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
210
211 static int falcon_spi_poll(struct efx_nic *efx)
212 {
213         efx_oword_t reg;
214         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
215         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
216 }
217
218 /* Wait for SPI command completion */
219 static int falcon_spi_wait(struct efx_nic *efx)
220 {
221         /* Most commands will finish quickly, so we start polling at
222          * very short intervals.  Sometimes the command may have to
223          * wait for VPD or expansion ROM access outside of our
224          * control, so we allow up to 100 ms. */
225         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
226         int i;
227
228         for (i = 0; i < 10; i++) {
229                 if (!falcon_spi_poll(efx))
230                         return 0;
231                 udelay(10);
232         }
233
234         for (;;) {
235                 if (!falcon_spi_poll(efx))
236                         return 0;
237                 if (time_after_eq(jiffies, timeout)) {
238                         EFX_ERR(efx, "timed out waiting for SPI\n");
239                         return -ETIMEDOUT;
240                 }
241                 schedule_timeout_uninterruptible(1);
242         }
243 }
244
245 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
246                    unsigned int command, int address,
247                    const void *in, void *out, size_t len)
248 {
249         bool addressed = (address >= 0);
250         bool reading = (out != NULL);
251         efx_oword_t reg;
252         int rc;
253
254         /* Input validation */
255         if (len > FALCON_SPI_MAX_LEN)
256                 return -EINVAL;
257         BUG_ON(!mutex_is_locked(&efx->spi_lock));
258
259         /* Check that previous command is not still running */
260         rc = falcon_spi_poll(efx);
261         if (rc)
262                 return rc;
263
264         /* Program address register, if we have an address */
265         if (addressed) {
266                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
267                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
268         }
269
270         /* Program data register, if we have data */
271         if (in != NULL) {
272                 memcpy(&reg, in, len);
273                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
274         }
275
276         /* Issue read/write command */
277         EFX_POPULATE_OWORD_7(reg,
278                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
279                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
280                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
281                              FRF_AB_EE_SPI_HCMD_READ, reading,
282                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
283                              FRF_AB_EE_SPI_HCMD_ADBCNT,
284                              (addressed ? spi->addr_len : 0),
285                              FRF_AB_EE_SPI_HCMD_ENC, command);
286         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
287
288         /* Wait for read/write to complete */
289         rc = falcon_spi_wait(efx);
290         if (rc)
291                 return rc;
292
293         /* Read data */
294         if (out != NULL) {
295                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
296                 memcpy(out, &reg, len);
297         }
298
299         return 0;
300 }
301
302 static size_t
303 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
304 {
305         return min(FALCON_SPI_MAX_LEN,
306                    (spi->block_size - (start & (spi->block_size - 1))));
307 }
308
309 static inline u8
310 efx_spi_munge_command(const struct efx_spi_device *spi,
311                       const u8 command, const unsigned int address)
312 {
313         return command | (((address >> 8) & spi->munge_address) << 3);
314 }
315
316 /* Wait up to 10 ms for buffered write completion */
317 int
318 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
319 {
320         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
321         u8 status;
322         int rc;
323
324         for (;;) {
325                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
326                                     &status, sizeof(status));
327                 if (rc)
328                         return rc;
329                 if (!(status & SPI_STATUS_NRDY))
330                         return 0;
331                 if (time_after_eq(jiffies, timeout)) {
332                         EFX_ERR(efx, "SPI write timeout on device %d"
333                                 " last status=0x%02x\n",
334                                 spi->device_id, status);
335                         return -ETIMEDOUT;
336                 }
337                 schedule_timeout_uninterruptible(1);
338         }
339 }
340
341 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
342                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
343 {
344         size_t block_len, pos = 0;
345         unsigned int command;
346         int rc = 0;
347
348         while (pos < len) {
349                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
350
351                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
352                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
353                                     buffer + pos, block_len);
354                 if (rc)
355                         break;
356                 pos += block_len;
357
358                 /* Avoid locking up the system */
359                 cond_resched();
360                 if (signal_pending(current)) {
361                         rc = -EINTR;
362                         break;
363                 }
364         }
365
366         if (retlen)
367                 *retlen = pos;
368         return rc;
369 }
370
371 int
372 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
373                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
374 {
375         u8 verify_buffer[FALCON_SPI_MAX_LEN];
376         size_t block_len, pos = 0;
377         unsigned int command;
378         int rc = 0;
379
380         while (pos < len) {
381                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
382                 if (rc)
383                         break;
384
385                 block_len = min(len - pos,
386                                 falcon_spi_write_limit(spi, start + pos));
387                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
388                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
389                                     buffer + pos, NULL, block_len);
390                 if (rc)
391                         break;
392
393                 rc = falcon_spi_wait_write(efx, spi);
394                 if (rc)
395                         break;
396
397                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
398                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
399                                     NULL, verify_buffer, block_len);
400                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
401                         rc = -EIO;
402                         break;
403                 }
404
405                 pos += block_len;
406
407                 /* Avoid locking up the system */
408                 cond_resched();
409                 if (signal_pending(current)) {
410                         rc = -EINTR;
411                         break;
412                 }
413         }
414
415         if (retlen)
416                 *retlen = pos;
417         return rc;
418 }
419
420 /**************************************************************************
421  *
422  * MAC wrapper
423  *
424  **************************************************************************
425  */
426
427 static void falcon_push_multicast_hash(struct efx_nic *efx)
428 {
429         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
430
431         WARN_ON(!mutex_is_locked(&efx->mac_lock));
432
433         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
434         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
435 }
436
437 static void falcon_reset_macs(struct efx_nic *efx)
438 {
439         struct falcon_nic_data *nic_data = efx->nic_data;
440         efx_oword_t reg, mac_ctrl;
441         int count;
442
443         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
444                 /* It's not safe to use GLB_CTL_REG to reset the
445                  * macs, so instead use the internal MAC resets
446                  */
447                 if (!EFX_IS10G(efx)) {
448                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
449                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
450                         udelay(1000);
451
452                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
453                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
454                         udelay(1000);
455                         return;
456                 } else {
457                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
458                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
459
460                         for (count = 0; count < 10000; count++) {
461                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
462                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
463                                     0)
464                                         return;
465                                 udelay(10);
466                         }
467
468                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
469                 }
470         }
471
472         /* Mac stats will fail whist the TX fifo is draining */
473         WARN_ON(nic_data->stats_disable_count == 0);
474
475         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
476         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
477         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
478
479         efx_reado(efx, &reg, FR_AB_GLB_CTL);
480         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
481         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
482         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
483         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
484
485         count = 0;
486         while (1) {
487                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
488                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
489                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
490                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
491                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
492                                 count);
493                         break;
494                 }
495                 if (count > 20) {
496                         EFX_ERR(efx, "MAC reset failed\n");
497                         break;
498                 }
499                 count++;
500                 udelay(10);
501         }
502
503         /* Ensure the correct MAC is selected before statistics
504          * are re-enabled by the caller */
505         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
506 }
507
508 void falcon_drain_tx_fifo(struct efx_nic *efx)
509 {
510         efx_oword_t reg;
511
512         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
513             (efx->loopback_mode != LOOPBACK_NONE))
514                 return;
515
516         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
517         /* There is no point in draining more than once */
518         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
519                 return;
520
521         falcon_reset_macs(efx);
522 }
523
524 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
525 {
526         efx_oword_t reg;
527
528         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
529                 return;
530
531         /* Isolate the MAC -> RX */
532         efx_reado(efx, &reg, FR_AZ_RX_CFG);
533         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
534         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
535
536         /* Isolate TX -> MAC */
537         falcon_drain_tx_fifo(efx);
538 }
539
540 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
541 {
542         struct efx_link_state *link_state = &efx->link_state;
543         efx_oword_t reg;
544         int link_speed;
545
546         switch (link_state->speed) {
547         case 10000: link_speed = 3; break;
548         case 1000:  link_speed = 2; break;
549         case 100:   link_speed = 1; break;
550         default:    link_speed = 0; break;
551         }
552         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
553          * as advertised.  Disable to ensure packets are not
554          * indefinitely held and TX queue can be flushed at any point
555          * while the link is down. */
556         EFX_POPULATE_OWORD_5(reg,
557                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
558                              FRF_AB_MAC_BCAD_ACPT, 1,
559                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
560                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
561                              FRF_AB_MAC_SPEED, link_speed);
562         /* On B0, MAC backpressure can be disabled and packets get
563          * discarded. */
564         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
565                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
566                                     !link_state->up);
567         }
568
569         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
570
571         /* Restore the multicast hash registers. */
572         falcon_push_multicast_hash(efx);
573
574         efx_reado(efx, &reg, FR_AZ_RX_CFG);
575         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
576          * initialisation but it may read back as 0) */
577         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
578         /* Unisolate the MAC -> RX */
579         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
580                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
581         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
582 }
583
584 static void falcon_stats_request(struct efx_nic *efx)
585 {
586         struct falcon_nic_data *nic_data = efx->nic_data;
587         efx_oword_t reg;
588
589         WARN_ON(nic_data->stats_pending);
590         WARN_ON(nic_data->stats_disable_count);
591
592         if (nic_data->stats_dma_done == NULL)
593                 return; /* no mac selected */
594
595         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
596         nic_data->stats_pending = true;
597         wmb(); /* ensure done flag is clear */
598
599         /* Initiate DMA transfer of stats */
600         EFX_POPULATE_OWORD_2(reg,
601                              FRF_AB_MAC_STAT_DMA_CMD, 1,
602                              FRF_AB_MAC_STAT_DMA_ADR,
603                              efx->stats_buffer.dma_addr);
604         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
605
606         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
607 }
608
609 static void falcon_stats_complete(struct efx_nic *efx)
610 {
611         struct falcon_nic_data *nic_data = efx->nic_data;
612
613         if (!nic_data->stats_pending)
614                 return;
615
616         nic_data->stats_pending = 0;
617         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
618                 rmb(); /* read the done flag before the stats */
619                 efx->mac_op->update_stats(efx);
620         } else {
621                 EFX_ERR(efx, "timed out waiting for statistics\n");
622         }
623 }
624
625 static void falcon_stats_timer_func(unsigned long context)
626 {
627         struct efx_nic *efx = (struct efx_nic *)context;
628         struct falcon_nic_data *nic_data = efx->nic_data;
629
630         spin_lock(&efx->stats_lock);
631
632         falcon_stats_complete(efx);
633         if (nic_data->stats_disable_count == 0)
634                 falcon_stats_request(efx);
635
636         spin_unlock(&efx->stats_lock);
637 }
638
639 static void falcon_switch_mac(struct efx_nic *efx);
640
641 static bool falcon_loopback_link_poll(struct efx_nic *efx)
642 {
643         struct efx_link_state old_state = efx->link_state;
644
645         WARN_ON(!mutex_is_locked(&efx->mac_lock));
646         WARN_ON(!LOOPBACK_INTERNAL(efx));
647
648         efx->link_state.fd = true;
649         efx->link_state.fc = efx->wanted_fc;
650         efx->link_state.up = true;
651
652         if (efx->loopback_mode == LOOPBACK_GMAC)
653                 efx->link_state.speed = 1000;
654         else
655                 efx->link_state.speed = 10000;
656
657         return !efx_link_state_equal(&efx->link_state, &old_state);
658 }
659
660 static int falcon_reconfigure_port(struct efx_nic *efx)
661 {
662         int rc;
663
664         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
665
666         /* Poll the PHY link state *before* reconfiguring it. This means we
667          * will pick up the correct speed (in loopback) to select the correct
668          * MAC.
669          */
670         if (LOOPBACK_INTERNAL(efx))
671                 falcon_loopback_link_poll(efx);
672         else
673                 efx->phy_op->poll(efx);
674
675         falcon_stop_nic_stats(efx);
676         falcon_deconfigure_mac_wrapper(efx);
677
678         falcon_switch_mac(efx);
679
680         efx->phy_op->reconfigure(efx);
681         rc = efx->mac_op->reconfigure(efx);
682         BUG_ON(rc);
683
684         falcon_start_nic_stats(efx);
685
686         /* Synchronise efx->link_state with the kernel */
687         efx_link_status_changed(efx);
688
689         return 0;
690 }
691
692 /**************************************************************************
693  *
694  * PHY access via GMII
695  *
696  **************************************************************************
697  */
698
699 /* Wait for GMII access to complete */
700 static int falcon_gmii_wait(struct efx_nic *efx)
701 {
702         efx_oword_t md_stat;
703         int count;
704
705         /* wait upto 50ms - taken max from datasheet */
706         for (count = 0; count < 5000; count++) {
707                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
708                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
709                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
710                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
711                                 EFX_ERR(efx, "error from GMII access "
712                                         EFX_OWORD_FMT"\n",
713                                         EFX_OWORD_VAL(md_stat));
714                                 return -EIO;
715                         }
716                         return 0;
717                 }
718                 udelay(10);
719         }
720         EFX_ERR(efx, "timed out waiting for GMII\n");
721         return -ETIMEDOUT;
722 }
723
724 /* Write an MDIO register of a PHY connected to Falcon. */
725 static int falcon_mdio_write(struct net_device *net_dev,
726                              int prtad, int devad, u16 addr, u16 value)
727 {
728         struct efx_nic *efx = netdev_priv(net_dev);
729         efx_oword_t reg;
730         int rc;
731
732         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
733                     prtad, devad, addr, value);
734
735         mutex_lock(&efx->mdio_lock);
736
737         /* Check MDIO not currently being accessed */
738         rc = falcon_gmii_wait(efx);
739         if (rc)
740                 goto out;
741
742         /* Write the address/ID register */
743         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
744         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
745
746         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
747                              FRF_AB_MD_DEV_ADR, devad);
748         efx_writeo(efx, &reg, FR_AB_MD_ID);
749
750         /* Write data */
751         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
752         efx_writeo(efx, &reg, FR_AB_MD_TXD);
753
754         EFX_POPULATE_OWORD_2(reg,
755                              FRF_AB_MD_WRC, 1,
756                              FRF_AB_MD_GC, 0);
757         efx_writeo(efx, &reg, FR_AB_MD_CS);
758
759         /* Wait for data to be written */
760         rc = falcon_gmii_wait(efx);
761         if (rc) {
762                 /* Abort the write operation */
763                 EFX_POPULATE_OWORD_2(reg,
764                                      FRF_AB_MD_WRC, 0,
765                                      FRF_AB_MD_GC, 1);
766                 efx_writeo(efx, &reg, FR_AB_MD_CS);
767                 udelay(10);
768         }
769
770 out:
771         mutex_unlock(&efx->mdio_lock);
772         return rc;
773 }
774
775 /* Read an MDIO register of a PHY connected to Falcon. */
776 static int falcon_mdio_read(struct net_device *net_dev,
777                             int prtad, int devad, u16 addr)
778 {
779         struct efx_nic *efx = netdev_priv(net_dev);
780         efx_oword_t reg;
781         int rc;
782
783         mutex_lock(&efx->mdio_lock);
784
785         /* Check MDIO not currently being accessed */
786         rc = falcon_gmii_wait(efx);
787         if (rc)
788                 goto out;
789
790         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
791         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
792
793         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
794                              FRF_AB_MD_DEV_ADR, devad);
795         efx_writeo(efx, &reg, FR_AB_MD_ID);
796
797         /* Request data to be read */
798         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
799         efx_writeo(efx, &reg, FR_AB_MD_CS);
800
801         /* Wait for data to become available */
802         rc = falcon_gmii_wait(efx);
803         if (rc == 0) {
804                 efx_reado(efx, &reg, FR_AB_MD_RXD);
805                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
806                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
807                             prtad, devad, addr, rc);
808         } else {
809                 /* Abort the read operation */
810                 EFX_POPULATE_OWORD_2(reg,
811                                      FRF_AB_MD_RIC, 0,
812                                      FRF_AB_MD_GC, 1);
813                 efx_writeo(efx, &reg, FR_AB_MD_CS);
814
815                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
816                         prtad, devad, addr, rc);
817         }
818
819 out:
820         mutex_unlock(&efx->mdio_lock);
821         return rc;
822 }
823
824 static void falcon_clock_mac(struct efx_nic *efx)
825 {
826         unsigned strap_val;
827         efx_oword_t nic_stat;
828
829         /* Configure the NIC generated MAC clock correctly */
830         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
831         strap_val = EFX_IS10G(efx) ? 5 : 3;
832         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
833                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
834                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
835                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
836         } else {
837                 /* Falcon A1 does not support 1G/10G speed switching
838                  * and must not be used with a PHY that does. */
839                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
840                        strap_val);
841         }
842 }
843
844 static void falcon_switch_mac(struct efx_nic *efx)
845 {
846         struct efx_mac_operations *old_mac_op = efx->mac_op;
847         struct falcon_nic_data *nic_data = efx->nic_data;
848         unsigned int stats_done_offset;
849
850         WARN_ON(!mutex_is_locked(&efx->mac_lock));
851         WARN_ON(nic_data->stats_disable_count == 0);
852
853         efx->mac_op = (EFX_IS10G(efx) ?
854                        &falcon_xmac_operations : &falcon_gmac_operations);
855
856         if (EFX_IS10G(efx))
857                 stats_done_offset = XgDmaDone_offset;
858         else
859                 stats_done_offset = GDmaDone_offset;
860         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
861
862         if (old_mac_op == efx->mac_op)
863                 return;
864
865         falcon_clock_mac(efx);
866
867         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
868         /* Not all macs support a mac-level link state */
869         efx->xmac_poll_required = false;
870         falcon_reset_macs(efx);
871 }
872
873 /* This call is responsible for hooking in the MAC and PHY operations */
874 static int falcon_probe_port(struct efx_nic *efx)
875 {
876         int rc;
877
878         switch (efx->phy_type) {
879         case PHY_TYPE_SFX7101:
880                 efx->phy_op = &falcon_sfx7101_phy_ops;
881                 break;
882         case PHY_TYPE_SFT9001A:
883         case PHY_TYPE_SFT9001B:
884                 efx->phy_op = &falcon_sft9001_phy_ops;
885                 break;
886         case PHY_TYPE_QT2022C2:
887         case PHY_TYPE_QT2025C:
888                 efx->phy_op = &falcon_qt202x_phy_ops;
889                 break;
890         default:
891                 EFX_ERR(efx, "Unknown PHY type %d\n",
892                         efx->phy_type);
893                 return -ENODEV;
894         }
895
896         /* Fill out MDIO structure and loopback modes */
897         efx->mdio.mdio_read = falcon_mdio_read;
898         efx->mdio.mdio_write = falcon_mdio_write;
899         rc = efx->phy_op->probe(efx);
900         if (rc != 0)
901                 return rc;
902
903         /* Initial assumption */
904         efx->link_state.speed = 10000;
905         efx->link_state.fd = true;
906
907         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
908         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
909                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
910         else
911                 efx->wanted_fc = EFX_FC_RX;
912
913         /* Allocate buffer for stats */
914         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
915                                   FALCON_MAC_STATS_SIZE);
916         if (rc)
917                 return rc;
918         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
919                 (u64)efx->stats_buffer.dma_addr,
920                 efx->stats_buffer.addr,
921                 (u64)virt_to_phys(efx->stats_buffer.addr));
922
923         return 0;
924 }
925
926 static void falcon_remove_port(struct efx_nic *efx)
927 {
928         efx_nic_free_buffer(efx, &efx->stats_buffer);
929 }
930
931 /**************************************************************************
932  *
933  * Falcon test code
934  *
935  **************************************************************************/
936
937 static int
938 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
939 {
940         struct falcon_nvconfig *nvconfig;
941         struct efx_spi_device *spi;
942         void *region;
943         int rc, magic_num, struct_ver;
944         __le16 *word, *limit;
945         u32 csum;
946
947         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
948         if (!spi)
949                 return -EINVAL;
950
951         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
952         if (!region)
953                 return -ENOMEM;
954         nvconfig = region + FALCON_NVCONFIG_OFFSET;
955
956         mutex_lock(&efx->spi_lock);
957         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
958         mutex_unlock(&efx->spi_lock);
959         if (rc) {
960                 EFX_ERR(efx, "Failed to read %s\n",
961                         efx->spi_flash ? "flash" : "EEPROM");
962                 rc = -EIO;
963                 goto out;
964         }
965
966         magic_num = le16_to_cpu(nvconfig->board_magic_num);
967         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
968
969         rc = -EINVAL;
970         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
971                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
972                 goto out;
973         }
974         if (struct_ver < 2) {
975                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
976                 goto out;
977         } else if (struct_ver < 4) {
978                 word = &nvconfig->board_magic_num;
979                 limit = (__le16 *) (nvconfig + 1);
980         } else {
981                 word = region;
982                 limit = region + FALCON_NVCONFIG_END;
983         }
984         for (csum = 0; word < limit; ++word)
985                 csum += le16_to_cpu(*word);
986
987         if (~csum & 0xffff) {
988                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
989                 goto out;
990         }
991
992         rc = 0;
993         if (nvconfig_out)
994                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
995
996  out:
997         kfree(region);
998         return rc;
999 }
1000
1001 static int falcon_test_nvram(struct efx_nic *efx)
1002 {
1003         return falcon_read_nvram(efx, NULL);
1004 }
1005
1006 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1007         { FR_AZ_ADR_REGION,
1008           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
1009         { FR_AZ_RX_CFG,
1010           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1011         { FR_AZ_TX_CFG,
1012           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1013         { FR_AZ_TX_RESERVED,
1014           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1015         { FR_AB_MAC_CTRL,
1016           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1017         { FR_AZ_SRM_TX_DC_CFG,
1018           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1019         { FR_AZ_RX_DC_CFG,
1020           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1021         { FR_AZ_RX_DC_PF_WM,
1022           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1023         { FR_BZ_DP_CTRL,
1024           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1025         { FR_AB_GM_CFG2,
1026           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1027         { FR_AB_GMF_CFG0,
1028           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1029         { FR_AB_XM_GLB_CFG,
1030           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1031         { FR_AB_XM_TX_CFG,
1032           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1033         { FR_AB_XM_RX_CFG,
1034           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1035         { FR_AB_XM_RX_PARAM,
1036           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1037         { FR_AB_XM_FC,
1038           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1039         { FR_AB_XM_ADR_LO,
1040           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1041         { FR_AB_XX_SD_CTL,
1042           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1043 };
1044
1045 static int falcon_b0_test_registers(struct efx_nic *efx)
1046 {
1047         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1048                                       ARRAY_SIZE(falcon_b0_register_tests));
1049 }
1050
1051 /**************************************************************************
1052  *
1053  * Device reset
1054  *
1055  **************************************************************************
1056  */
1057
1058 /* Resets NIC to known state.  This routine must be called in process
1059  * context and is allowed to sleep. */
1060 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1061 {
1062         struct falcon_nic_data *nic_data = efx->nic_data;
1063         efx_oword_t glb_ctl_reg_ker;
1064         int rc;
1065
1066         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
1067
1068         /* Initiate device reset */
1069         if (method == RESET_TYPE_WORLD) {
1070                 rc = pci_save_state(efx->pci_dev);
1071                 if (rc) {
1072                         EFX_ERR(efx, "failed to backup PCI state of primary "
1073                                 "function prior to hardware reset\n");
1074                         goto fail1;
1075                 }
1076                 if (efx_nic_is_dual_func(efx)) {
1077                         rc = pci_save_state(nic_data->pci_dev2);
1078                         if (rc) {
1079                                 EFX_ERR(efx, "failed to backup PCI state of "
1080                                         "secondary function prior to "
1081                                         "hardware reset\n");
1082                                 goto fail2;
1083                         }
1084                 }
1085
1086                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1087                                      FRF_AB_EXT_PHY_RST_DUR,
1088                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1089                                      FRF_AB_SWRST, 1);
1090         } else {
1091                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1092                                      /* exclude PHY from "invisible" reset */
1093                                      FRF_AB_EXT_PHY_RST_CTL,
1094                                      method == RESET_TYPE_INVISIBLE,
1095                                      /* exclude EEPROM/flash and PCIe */
1096                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1097                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1098                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1099                                      FRF_AB_EE_RST_CTL, 1,
1100                                      FRF_AB_EXT_PHY_RST_DUR,
1101                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1102                                      FRF_AB_SWRST, 1);
1103         }
1104         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1105
1106         EFX_LOG(efx, "waiting for hardware reset\n");
1107         schedule_timeout_uninterruptible(HZ / 20);
1108
1109         /* Restore PCI configuration if needed */
1110         if (method == RESET_TYPE_WORLD) {
1111                 if (efx_nic_is_dual_func(efx)) {
1112                         rc = pci_restore_state(nic_data->pci_dev2);
1113                         if (rc) {
1114                                 EFX_ERR(efx, "failed to restore PCI config for "
1115                                         "the secondary function\n");
1116                                 goto fail3;
1117                         }
1118                 }
1119                 rc = pci_restore_state(efx->pci_dev);
1120                 if (rc) {
1121                         EFX_ERR(efx, "failed to restore PCI config for the "
1122                                 "primary function\n");
1123                         goto fail4;
1124                 }
1125                 EFX_LOG(efx, "successfully restored PCI config\n");
1126         }
1127
1128         /* Assert that reset complete */
1129         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1130         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1131                 rc = -ETIMEDOUT;
1132                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
1133                 goto fail5;
1134         }
1135         EFX_LOG(efx, "hardware reset complete\n");
1136
1137         return 0;
1138
1139         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1140 fail2:
1141 fail3:
1142         pci_restore_state(efx->pci_dev);
1143 fail1:
1144 fail4:
1145 fail5:
1146         return rc;
1147 }
1148
1149 static void falcon_monitor(struct efx_nic *efx)
1150 {
1151         bool link_changed;
1152         int rc;
1153
1154         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1155
1156         rc = falcon_board(efx)->type->monitor(efx);
1157         if (rc) {
1158                 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1159                         (rc == -ERANGE) ? "reported fault" : "failed");
1160                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1161                 rc = __efx_reconfigure_port(efx);
1162                 WARN_ON(rc);
1163         }
1164
1165         if (LOOPBACK_INTERNAL(efx))
1166                 link_changed = falcon_loopback_link_poll(efx);
1167         else
1168                 link_changed = efx->phy_op->poll(efx);
1169
1170         if (link_changed) {
1171                 falcon_stop_nic_stats(efx);
1172                 falcon_deconfigure_mac_wrapper(efx);
1173
1174                 falcon_switch_mac(efx);
1175                 rc = efx->mac_op->reconfigure(efx);
1176                 BUG_ON(rc);
1177
1178                 falcon_start_nic_stats(efx);
1179
1180                 efx_link_status_changed(efx);
1181         }
1182
1183         if (EFX_IS10G(efx))
1184                 falcon_poll_xmac(efx);
1185 }
1186
1187 /* Zeroes out the SRAM contents.  This routine must be called in
1188  * process context and is allowed to sleep.
1189  */
1190 static int falcon_reset_sram(struct efx_nic *efx)
1191 {
1192         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1193         int count;
1194
1195         /* Set the SRAM wake/sleep GPIO appropriately. */
1196         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1197         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1198         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1199         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1200
1201         /* Initiate SRAM reset */
1202         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1203                              FRF_AZ_SRM_INIT_EN, 1,
1204                              FRF_AZ_SRM_NB_SZ, 0);
1205         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1206
1207         /* Wait for SRAM reset to complete */
1208         count = 0;
1209         do {
1210                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
1211
1212                 /* SRAM reset is slow; expect around 16ms */
1213                 schedule_timeout_uninterruptible(HZ / 50);
1214
1215                 /* Check for reset complete */
1216                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1217                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1218                         EFX_LOG(efx, "SRAM reset complete\n");
1219
1220                         return 0;
1221                 }
1222         } while (++count < 20); /* wait upto 0.4 sec */
1223
1224         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
1225         return -ETIMEDOUT;
1226 }
1227
1228 static int falcon_spi_device_init(struct efx_nic *efx,
1229                                   struct efx_spi_device **spi_device_ret,
1230                                   unsigned int device_id, u32 device_type)
1231 {
1232         struct efx_spi_device *spi_device;
1233
1234         if (device_type != 0) {
1235                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1236                 if (!spi_device)
1237                         return -ENOMEM;
1238                 spi_device->device_id = device_id;
1239                 spi_device->size =
1240                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1241                 spi_device->addr_len =
1242                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1243                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1244                                              spi_device->addr_len == 1);
1245                 spi_device->erase_command =
1246                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1247                 spi_device->erase_size =
1248                         1 << SPI_DEV_TYPE_FIELD(device_type,
1249                                                 SPI_DEV_TYPE_ERASE_SIZE);
1250                 spi_device->block_size =
1251                         1 << SPI_DEV_TYPE_FIELD(device_type,
1252                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1253         } else {
1254                 spi_device = NULL;
1255         }
1256
1257         kfree(*spi_device_ret);
1258         *spi_device_ret = spi_device;
1259         return 0;
1260 }
1261
1262 static void falcon_remove_spi_devices(struct efx_nic *efx)
1263 {
1264         kfree(efx->spi_eeprom);
1265         efx->spi_eeprom = NULL;
1266         kfree(efx->spi_flash);
1267         efx->spi_flash = NULL;
1268 }
1269
1270 /* Extract non-volatile configuration */
1271 static int falcon_probe_nvconfig(struct efx_nic *efx)
1272 {
1273         struct falcon_nvconfig *nvconfig;
1274         int board_rev;
1275         int rc;
1276
1277         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1278         if (!nvconfig)
1279                 return -ENOMEM;
1280
1281         rc = falcon_read_nvram(efx, nvconfig);
1282         if (rc == -EINVAL) {
1283                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
1284                 efx->phy_type = PHY_TYPE_NONE;
1285                 efx->mdio.prtad = MDIO_PRTAD_NONE;
1286                 board_rev = 0;
1287                 rc = 0;
1288         } else if (rc) {
1289                 goto fail1;
1290         } else {
1291                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1292                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1293
1294                 efx->phy_type = v2->port0_phy_type;
1295                 efx->mdio.prtad = v2->port0_phy_addr;
1296                 board_rev = le16_to_cpu(v2->board_revision);
1297
1298                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1299                         rc = falcon_spi_device_init(
1300                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1301                                 le32_to_cpu(v3->spi_device_type
1302                                             [FFE_AB_SPI_DEVICE_FLASH]));
1303                         if (rc)
1304                                 goto fail2;
1305                         rc = falcon_spi_device_init(
1306                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1307                                 le32_to_cpu(v3->spi_device_type
1308                                             [FFE_AB_SPI_DEVICE_EEPROM]));
1309                         if (rc)
1310                                 goto fail2;
1311                 }
1312         }
1313
1314         /* Read the MAC addresses */
1315         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1316
1317         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
1318
1319         falcon_probe_board(efx, board_rev);
1320
1321         kfree(nvconfig);
1322         return 0;
1323
1324  fail2:
1325         falcon_remove_spi_devices(efx);
1326  fail1:
1327         kfree(nvconfig);
1328         return rc;
1329 }
1330
1331 /* Probe all SPI devices on the NIC */
1332 static void falcon_probe_spi_devices(struct efx_nic *efx)
1333 {
1334         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1335         int boot_dev;
1336
1337         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1338         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1339         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1340
1341         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1342                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1343                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1344                 EFX_LOG(efx, "Booted from %s\n",
1345                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
1346         } else {
1347                 /* Disable VPD and set clock dividers to safe
1348                  * values for initial programming. */
1349                 boot_dev = -1;
1350                 EFX_LOG(efx, "Booted from internal ASIC settings;"
1351                         " setting SPI config\n");
1352                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1353                                      /* 125 MHz / 7 ~= 20 MHz */
1354                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1355                                      /* 125 MHz / 63 ~= 2 MHz */
1356                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1357                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1358         }
1359
1360         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1361                 falcon_spi_device_init(efx, &efx->spi_flash,
1362                                        FFE_AB_SPI_DEVICE_FLASH,
1363                                        default_flash_type);
1364         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1365                 falcon_spi_device_init(efx, &efx->spi_eeprom,
1366                                        FFE_AB_SPI_DEVICE_EEPROM,
1367                                        large_eeprom_type);
1368 }
1369
1370 static int falcon_probe_nic(struct efx_nic *efx)
1371 {
1372         struct falcon_nic_data *nic_data;
1373         struct falcon_board *board;
1374         int rc;
1375
1376         /* Allocate storage for hardware specific data */
1377         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1378         if (!nic_data)
1379                 return -ENOMEM;
1380         efx->nic_data = nic_data;
1381
1382         rc = -ENODEV;
1383
1384         if (efx_nic_fpga_ver(efx) != 0) {
1385                 EFX_ERR(efx, "Falcon FPGA not supported\n");
1386                 goto fail1;
1387         }
1388
1389         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1390                 efx_oword_t nic_stat;
1391                 struct pci_dev *dev;
1392                 u8 pci_rev = efx->pci_dev->revision;
1393
1394                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1395                         EFX_ERR(efx, "Falcon rev A0 not supported\n");
1396                         goto fail1;
1397                 }
1398                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1399                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1400                         EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
1401                         goto fail1;
1402                 }
1403                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1404                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
1405                         goto fail1;
1406                 }
1407
1408                 dev = pci_dev_get(efx->pci_dev);
1409                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1410                                              dev))) {
1411                         if (dev->bus == efx->pci_dev->bus &&
1412                             dev->devfn == efx->pci_dev->devfn + 1) {
1413                                 nic_data->pci_dev2 = dev;
1414                                 break;
1415                         }
1416                 }
1417                 if (!nic_data->pci_dev2) {
1418                         EFX_ERR(efx, "failed to find secondary function\n");
1419                         rc = -ENODEV;
1420                         goto fail2;
1421                 }
1422         }
1423
1424         /* Now we can reset the NIC */
1425         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1426         if (rc) {
1427                 EFX_ERR(efx, "failed to reset NIC\n");
1428                 goto fail3;
1429         }
1430
1431         /* Allocate memory for INT_KER */
1432         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1433         if (rc)
1434                 goto fail4;
1435         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1436
1437         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
1438                 (u64)efx->irq_status.dma_addr,
1439                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
1440
1441         falcon_probe_spi_devices(efx);
1442
1443         /* Read in the non-volatile configuration */
1444         rc = falcon_probe_nvconfig(efx);
1445         if (rc)
1446                 goto fail5;
1447
1448         /* Initialise I2C adapter */
1449         board = falcon_board(efx);
1450         board->i2c_adap.owner = THIS_MODULE;
1451         board->i2c_data = falcon_i2c_bit_operations;
1452         board->i2c_data.data = efx;
1453         board->i2c_adap.algo_data = &board->i2c_data;
1454         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1455         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1456                 sizeof(board->i2c_adap.name));
1457         rc = i2c_bit_add_bus(&board->i2c_adap);
1458         if (rc)
1459                 goto fail5;
1460
1461         rc = falcon_board(efx)->type->init(efx);
1462         if (rc) {
1463                 EFX_ERR(efx, "failed to initialise board\n");
1464                 goto fail6;
1465         }
1466
1467         nic_data->stats_disable_count = 1;
1468         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1469                     (unsigned long)efx);
1470
1471         return 0;
1472
1473  fail6:
1474         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1475         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1476  fail5:
1477         falcon_remove_spi_devices(efx);
1478         efx_nic_free_buffer(efx, &efx->irq_status);
1479  fail4:
1480  fail3:
1481         if (nic_data->pci_dev2) {
1482                 pci_dev_put(nic_data->pci_dev2);
1483                 nic_data->pci_dev2 = NULL;
1484         }
1485  fail2:
1486  fail1:
1487         kfree(efx->nic_data);
1488         return rc;
1489 }
1490
1491 static void falcon_init_rx_cfg(struct efx_nic *efx)
1492 {
1493         /* Prior to Siena the RX DMA engine will split each frame at
1494          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1495          * be so large that that never happens. */
1496         const unsigned huge_buf_size = (3 * 4096) >> 5;
1497         /* RX control FIFO thresholds (32 entries) */
1498         const unsigned ctrl_xon_thr = 20;
1499         const unsigned ctrl_xoff_thr = 25;
1500         /* RX data FIFO thresholds (256-byte units; size varies) */
1501         int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1502         int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1503         efx_oword_t reg;
1504
1505         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1506         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1507                 /* Data FIFO size is 5.5K */
1508                 if (data_xon_thr < 0)
1509                         data_xon_thr = 512 >> 8;
1510                 if (data_xoff_thr < 0)
1511                         data_xoff_thr = 2048 >> 8;
1512                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1513                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1514                                     huge_buf_size);
1515                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1516                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1517                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1518                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1519         } else {
1520                 /* Data FIFO size is 80K; register fields moved */
1521                 if (data_xon_thr < 0)
1522                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1523                 if (data_xoff_thr < 0)
1524                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1525                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1526                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1527                                     huge_buf_size);
1528                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1529                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1530                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1531                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1532                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1533         }
1534         /* Always enable XOFF signal from RX FIFO.  We enable
1535          * or disable transmission of pause frames at the MAC. */
1536         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1537         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1538 }
1539
1540 /* This call performs hardware-specific global initialisation, such as
1541  * defining the descriptor cache sizes and number of RSS channels.
1542  * It does not set up any buffers, descriptor rings or event queues.
1543  */
1544 static int falcon_init_nic(struct efx_nic *efx)
1545 {
1546         efx_oword_t temp;
1547         int rc;
1548
1549         /* Use on-chip SRAM */
1550         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1551         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1552         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1553
1554         /* Set the source of the GMAC clock */
1555         if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1556                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1557                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1558                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1559         }
1560
1561         /* Select the correct MAC */
1562         falcon_clock_mac(efx);
1563
1564         rc = falcon_reset_sram(efx);
1565         if (rc)
1566                 return rc;
1567
1568         /* Clear the parity enables on the TX data fifos as
1569          * they produce false parity errors because of timing issues
1570          */
1571         if (EFX_WORKAROUND_5129(efx)) {
1572                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1573                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1574                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1575         }
1576
1577         if (EFX_WORKAROUND_7244(efx)) {
1578                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1579                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1580                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1581                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1582                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1583                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1584         }
1585
1586         /* XXX This is documented only for Falcon A0/A1 */
1587         /* Setup RX.  Wait for descriptor is broken and must
1588          * be disabled.  RXDP recovery shouldn't be needed, but is.
1589          */
1590         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1591         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1592         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1593         if (EFX_WORKAROUND_5583(efx))
1594                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1595         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1596
1597         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1598          * descriptors (which is bad).
1599          */
1600         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1601         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1602         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1603
1604         falcon_init_rx_cfg(efx);
1605
1606         /* Set destination of both TX and RX Flush events */
1607         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1608                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1609                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1610         }
1611
1612         efx_nic_init_common(efx);
1613
1614         return 0;
1615 }
1616
1617 static void falcon_remove_nic(struct efx_nic *efx)
1618 {
1619         struct falcon_nic_data *nic_data = efx->nic_data;
1620         struct falcon_board *board = falcon_board(efx);
1621         int rc;
1622
1623         board->type->fini(efx);
1624
1625         /* Remove I2C adapter and clear it in preparation for a retry */
1626         rc = i2c_del_adapter(&board->i2c_adap);
1627         BUG_ON(rc);
1628         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1629
1630         falcon_remove_spi_devices(efx);
1631         efx_nic_free_buffer(efx, &efx->irq_status);
1632
1633         falcon_reset_hw(efx, RESET_TYPE_ALL);
1634
1635         /* Release the second function after the reset */
1636         if (nic_data->pci_dev2) {
1637                 pci_dev_put(nic_data->pci_dev2);
1638                 nic_data->pci_dev2 = NULL;
1639         }
1640
1641         /* Tear down the private nic state */
1642         kfree(efx->nic_data);
1643         efx->nic_data = NULL;
1644 }
1645
1646 static void falcon_update_nic_stats(struct efx_nic *efx)
1647 {
1648         struct falcon_nic_data *nic_data = efx->nic_data;
1649         efx_oword_t cnt;
1650
1651         if (nic_data->stats_disable_count)
1652                 return;
1653
1654         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1655         efx->n_rx_nodesc_drop_cnt +=
1656                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1657
1658         if (nic_data->stats_pending &&
1659             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1660                 nic_data->stats_pending = false;
1661                 rmb(); /* read the done flag before the stats */
1662                 efx->mac_op->update_stats(efx);
1663         }
1664 }
1665
1666 void falcon_start_nic_stats(struct efx_nic *efx)
1667 {
1668         struct falcon_nic_data *nic_data = efx->nic_data;
1669
1670         spin_lock_bh(&efx->stats_lock);
1671         if (--nic_data->stats_disable_count == 0)
1672                 falcon_stats_request(efx);
1673         spin_unlock_bh(&efx->stats_lock);
1674 }
1675
1676 void falcon_stop_nic_stats(struct efx_nic *efx)
1677 {
1678         struct falcon_nic_data *nic_data = efx->nic_data;
1679         int i;
1680
1681         might_sleep();
1682
1683         spin_lock_bh(&efx->stats_lock);
1684         ++nic_data->stats_disable_count;
1685         spin_unlock_bh(&efx->stats_lock);
1686
1687         del_timer_sync(&nic_data->stats_timer);
1688
1689         /* Wait enough time for the most recent transfer to
1690          * complete. */
1691         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1692                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1693                         break;
1694                 msleep(1);
1695         }
1696
1697         spin_lock_bh(&efx->stats_lock);
1698         falcon_stats_complete(efx);
1699         spin_unlock_bh(&efx->stats_lock);
1700 }
1701
1702 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1703 {
1704         falcon_board(efx)->type->set_id_led(efx, mode);
1705 }
1706
1707 /**************************************************************************
1708  *
1709  * Wake on LAN
1710  *
1711  **************************************************************************
1712  */
1713
1714 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1715 {
1716         wol->supported = 0;
1717         wol->wolopts = 0;
1718         memset(&wol->sopass, 0, sizeof(wol->sopass));
1719 }
1720
1721 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1722 {
1723         if (type != 0)
1724                 return -EINVAL;
1725         return 0;
1726 }
1727
1728 /**************************************************************************
1729  *
1730  * Revision-dependent attributes used by efx.c
1731  *
1732  **************************************************************************
1733  */
1734
1735 struct efx_nic_type falcon_a1_nic_type = {
1736         .probe = falcon_probe_nic,
1737         .remove = falcon_remove_nic,
1738         .init = falcon_init_nic,
1739         .fini = efx_port_dummy_op_void,
1740         .monitor = falcon_monitor,
1741         .reset = falcon_reset_hw,
1742         .probe_port = falcon_probe_port,
1743         .remove_port = falcon_remove_port,
1744         .prepare_flush = falcon_prepare_flush,
1745         .update_stats = falcon_update_nic_stats,
1746         .start_stats = falcon_start_nic_stats,
1747         .stop_stats = falcon_stop_nic_stats,
1748         .set_id_led = falcon_set_id_led,
1749         .push_irq_moderation = falcon_push_irq_moderation,
1750         .push_multicast_hash = falcon_push_multicast_hash,
1751         .reconfigure_port = falcon_reconfigure_port,
1752         .get_wol = falcon_get_wol,
1753         .set_wol = falcon_set_wol,
1754         .resume_wol = efx_port_dummy_op_void,
1755         .test_nvram = falcon_test_nvram,
1756         .default_mac_ops = &falcon_xmac_operations,
1757
1758         .revision = EFX_REV_FALCON_A1,
1759         .mem_map_size = 0x20000,
1760         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1761         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1762         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1763         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1764         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1765         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1766         .rx_buffer_padding = 0x24,
1767         .max_interrupt_mode = EFX_INT_MODE_MSI,
1768         .phys_addr_channels = 4,
1769         .tx_dc_base = 0x130000,
1770         .rx_dc_base = 0x100000,
1771         .offload_features = NETIF_F_IP_CSUM,
1772         .reset_world_flags = ETH_RESET_IRQ,
1773 };
1774
1775 struct efx_nic_type falcon_b0_nic_type = {
1776         .probe = falcon_probe_nic,
1777         .remove = falcon_remove_nic,
1778         .init = falcon_init_nic,
1779         .fini = efx_port_dummy_op_void,
1780         .monitor = falcon_monitor,
1781         .reset = falcon_reset_hw,
1782         .probe_port = falcon_probe_port,
1783         .remove_port = falcon_remove_port,
1784         .prepare_flush = falcon_prepare_flush,
1785         .update_stats = falcon_update_nic_stats,
1786         .start_stats = falcon_start_nic_stats,
1787         .stop_stats = falcon_stop_nic_stats,
1788         .set_id_led = falcon_set_id_led,
1789         .push_irq_moderation = falcon_push_irq_moderation,
1790         .push_multicast_hash = falcon_push_multicast_hash,
1791         .reconfigure_port = falcon_reconfigure_port,
1792         .get_wol = falcon_get_wol,
1793         .set_wol = falcon_set_wol,
1794         .resume_wol = efx_port_dummy_op_void,
1795         .test_registers = falcon_b0_test_registers,
1796         .test_nvram = falcon_test_nvram,
1797         .default_mac_ops = &falcon_xmac_operations,
1798
1799         .revision = EFX_REV_FALCON_B0,
1800         /* Map everything up to and including the RSS indirection
1801          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1802          * requires that they not be mapped.  */
1803         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1804                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1805                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1806         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1807         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1808         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1809         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1810         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1811         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1812         .rx_buffer_padding = 0,
1813         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1814         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1815                                    * interrupt handler only supports 32
1816                                    * channels */
1817         .tx_dc_base = 0x130000,
1818         .rx_dc_base = 0x100000,
1819         .offload_features = NETIF_F_IP_CSUM,
1820         .reset_world_flags = ETH_RESET_IRQ,
1821 };
1822