]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/s2io.c
Merge branch 'upstream-fixes' into upstream
[net-next-2.6.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/init.h>
59 #include <linux/delay.h>
60 #include <linux/stddef.h>
61 #include <linux/ioctl.h>
62 #include <linux/timex.h>
63 #include <linux/sched.h>
64 #include <linux/ethtool.h>
65 #include <linux/workqueue.h>
66 #include <linux/if_vlan.h>
67 #include <linux/ip.h>
68 #include <linux/tcp.h>
69 #include <net/tcp.h>
70
71 #include <asm/system.h>
72 #include <asm/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/div64.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.14.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 /* Module Loadable parameters. */
375 static unsigned int tx_fifo_num = 1;
376 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
377     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
378 static unsigned int rx_ring_num = 1;
379 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
380     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
381 static unsigned int rts_frm_len[MAX_RX_RINGS] =
382     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
383 static unsigned int rx_ring_mode = 1;
384 static unsigned int use_continuous_tx_intrs = 1;
385 static unsigned int rmac_pause_time = 0x100;
386 static unsigned int mc_pause_threshold_q0q3 = 187;
387 static unsigned int mc_pause_threshold_q4q7 = 187;
388 static unsigned int shared_splits;
389 static unsigned int tmac_util_period = 5;
390 static unsigned int rmac_util_period = 5;
391 static unsigned int bimodal = 0;
392 static unsigned int l3l4hdr_size = 128;
393 #ifndef CONFIG_S2IO_NAPI
394 static unsigned int indicate_max_pkts;
395 #endif
396 /* Frequency of Rx desc syncs expressed as power of 2 */
397 static unsigned int rxsync_frequency = 3;
398 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
399 static unsigned int intr_type = 0;
400 /* Large receive offload feature */
401 static unsigned int lro = 0;
402 /* Max pkts to be aggregated by LRO at one time. If not specified,
403  * aggregation happens until we hit max IP pkt size(64K)
404  */
405 static unsigned int lro_max_pkts = 0xFFFF;
406
407 /*
408  * S2IO device table.
409  * This table lists all the devices that this driver supports.
410  */
411 static struct pci_device_id s2io_tbl[] __devinitdata = {
412         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
413          PCI_ANY_ID, PCI_ANY_ID},
414         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
415          PCI_ANY_ID, PCI_ANY_ID},
416         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
417          PCI_ANY_ID, PCI_ANY_ID},
418         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
419          PCI_ANY_ID, PCI_ANY_ID},
420         {0,}
421 };
422
423 MODULE_DEVICE_TABLE(pci, s2io_tbl);
424
425 static struct pci_driver s2io_driver = {
426       .name = "S2IO",
427       .id_table = s2io_tbl,
428       .probe = s2io_init_nic,
429       .remove = __devexit_p(s2io_rem_nic),
430 };
431
432 /* A simplifier macro used both by init and free shared_mem Fns(). */
433 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
434
435 /**
436  * init_shared_mem - Allocation and Initialization of Memory
437  * @nic: Device private variable.
438  * Description: The function allocates all the memory areas shared
439  * between the NIC and the driver. This includes Tx descriptors,
440  * Rx descriptors and the statistics block.
441  */
442
443 static int init_shared_mem(struct s2io_nic *nic)
444 {
445         u32 size;
446         void *tmp_v_addr, *tmp_v_addr_next;
447         dma_addr_t tmp_p_addr, tmp_p_addr_next;
448         RxD_block_t *pre_rxd_blk = NULL;
449         int i, j, blk_cnt, rx_sz, tx_sz;
450         int lst_size, lst_per_page;
451         struct net_device *dev = nic->dev;
452         unsigned long tmp;
453         buffAdd_t *ba;
454
455         mac_info_t *mac_control;
456         struct config_param *config;
457
458         mac_control = &nic->mac_control;
459         config = &nic->config;
460
461
462         /* Allocation and initialization of TXDLs in FIOFs */
463         size = 0;
464         for (i = 0; i < config->tx_fifo_num; i++) {
465                 size += config->tx_cfg[i].fifo_len;
466         }
467         if (size > MAX_AVAILABLE_TXDS) {
468                 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
469                           __FUNCTION__);
470                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
471                 return FAILURE;
472         }
473
474         lst_size = (sizeof(TxD_t) * config->max_txds);
475         tx_sz = lst_size * size;
476         lst_per_page = PAGE_SIZE / lst_size;
477
478         for (i = 0; i < config->tx_fifo_num; i++) {
479                 int fifo_len = config->tx_cfg[i].fifo_len;
480                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
481                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
482                                                           GFP_KERNEL);
483                 if (!mac_control->fifos[i].list_info) {
484                         DBG_PRINT(ERR_DBG,
485                                   "Malloc failed for list_info\n");
486                         return -ENOMEM;
487                 }
488                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
489         }
490         for (i = 0; i < config->tx_fifo_num; i++) {
491                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
492                                                 lst_per_page);
493                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
494                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
495                     config->tx_cfg[i].fifo_len - 1;
496                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
497                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
498                     config->tx_cfg[i].fifo_len - 1;
499                 mac_control->fifos[i].fifo_no = i;
500                 mac_control->fifos[i].nic = nic;
501                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
502
503                 for (j = 0; j < page_num; j++) {
504                         int k = 0;
505                         dma_addr_t tmp_p;
506                         void *tmp_v;
507                         tmp_v = pci_alloc_consistent(nic->pdev,
508                                                      PAGE_SIZE, &tmp_p);
509                         if (!tmp_v) {
510                                 DBG_PRINT(ERR_DBG,
511                                           "pci_alloc_consistent ");
512                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
513                                 return -ENOMEM;
514                         }
515                         /* If we got a zero DMA address(can happen on
516                          * certain platforms like PPC), reallocate.
517                          * Store virtual address of page we don't want,
518                          * to be freed later.
519                          */
520                         if (!tmp_p) {
521                                 mac_control->zerodma_virt_addr = tmp_v;
522                                 DBG_PRINT(INIT_DBG, 
523                                 "%s: Zero DMA address for TxDL. ", dev->name);
524                                 DBG_PRINT(INIT_DBG, 
525                                 "Virtual address %p\n", tmp_v);
526                                 tmp_v = pci_alloc_consistent(nic->pdev,
527                                                      PAGE_SIZE, &tmp_p);
528                                 if (!tmp_v) {
529                                         DBG_PRINT(ERR_DBG,
530                                           "pci_alloc_consistent ");
531                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
532                                         return -ENOMEM;
533                                 }
534                         }
535                         while (k < lst_per_page) {
536                                 int l = (j * lst_per_page) + k;
537                                 if (l == config->tx_cfg[i].fifo_len)
538                                         break;
539                                 mac_control->fifos[i].list_info[l].list_virt_addr =
540                                     tmp_v + (k * lst_size);
541                                 mac_control->fifos[i].list_info[l].list_phy_addr =
542                                     tmp_p + (k * lst_size);
543                                 k++;
544                         }
545                 }
546         }
547
548         nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
549         if (!nic->ufo_in_band_v)
550                 return -ENOMEM;
551
552         /* Allocation and initialization of RXDs in Rings */
553         size = 0;
554         for (i = 0; i < config->rx_ring_num; i++) {
555                 if (config->rx_cfg[i].num_rxd %
556                     (rxd_count[nic->rxd_mode] + 1)) {
557                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
558                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
559                                   i);
560                         DBG_PRINT(ERR_DBG, "RxDs per Block");
561                         return FAILURE;
562                 }
563                 size += config->rx_cfg[i].num_rxd;
564                 mac_control->rings[i].block_count =
565                         config->rx_cfg[i].num_rxd /
566                         (rxd_count[nic->rxd_mode] + 1 );
567                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
568                         mac_control->rings[i].block_count;
569         }
570         if (nic->rxd_mode == RXD_MODE_1)
571                 size = (size * (sizeof(RxD1_t)));
572         else
573                 size = (size * (sizeof(RxD3_t)));
574         rx_sz = size;
575
576         for (i = 0; i < config->rx_ring_num; i++) {
577                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
578                 mac_control->rings[i].rx_curr_get_info.offset = 0;
579                 mac_control->rings[i].rx_curr_get_info.ring_len =
580                     config->rx_cfg[i].num_rxd - 1;
581                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
582                 mac_control->rings[i].rx_curr_put_info.offset = 0;
583                 mac_control->rings[i].rx_curr_put_info.ring_len =
584                     config->rx_cfg[i].num_rxd - 1;
585                 mac_control->rings[i].nic = nic;
586                 mac_control->rings[i].ring_no = i;
587
588                 blk_cnt = config->rx_cfg[i].num_rxd /
589                                 (rxd_count[nic->rxd_mode] + 1);
590                 /*  Allocating all the Rx blocks */
591                 for (j = 0; j < blk_cnt; j++) {
592                         rx_block_info_t *rx_blocks;
593                         int l;
594
595                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
596                         size = SIZE_OF_BLOCK; //size is always page size
597                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
598                                                           &tmp_p_addr);
599                         if (tmp_v_addr == NULL) {
600                                 /*
601                                  * In case of failure, free_shared_mem()
602                                  * is called, which should free any
603                                  * memory that was alloced till the
604                                  * failure happened.
605                                  */
606                                 rx_blocks->block_virt_addr = tmp_v_addr;
607                                 return -ENOMEM;
608                         }
609                         memset(tmp_v_addr, 0, size);
610                         rx_blocks->block_virt_addr = tmp_v_addr;
611                         rx_blocks->block_dma_addr = tmp_p_addr;
612                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
613                                                   rxd_count[nic->rxd_mode],
614                                                   GFP_KERNEL);
615                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
616                                 rx_blocks->rxds[l].virt_addr =
617                                         rx_blocks->block_virt_addr +
618                                         (rxd_size[nic->rxd_mode] * l);
619                                 rx_blocks->rxds[l].dma_addr =
620                                         rx_blocks->block_dma_addr +
621                                         (rxd_size[nic->rxd_mode] * l);
622                         }
623                 }
624                 /* Interlinking all Rx Blocks */
625                 for (j = 0; j < blk_cnt; j++) {
626                         tmp_v_addr =
627                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
628                         tmp_v_addr_next =
629                                 mac_control->rings[i].rx_blocks[(j + 1) %
630                                               blk_cnt].block_virt_addr;
631                         tmp_p_addr =
632                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
633                         tmp_p_addr_next =
634                                 mac_control->rings[i].rx_blocks[(j + 1) %
635                                               blk_cnt].block_dma_addr;
636
637                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
638                         pre_rxd_blk->reserved_2_pNext_RxD_block =
639                             (unsigned long) tmp_v_addr_next;
640                         pre_rxd_blk->pNext_RxD_Blk_physical =
641                             (u64) tmp_p_addr_next;
642                 }
643         }
644         if (nic->rxd_mode >= RXD_MODE_3A) {
645                 /*
646                  * Allocation of Storages for buffer addresses in 2BUFF mode
647                  * and the buffers as well.
648                  */
649                 for (i = 0; i < config->rx_ring_num; i++) {
650                         blk_cnt = config->rx_cfg[i].num_rxd /
651                            (rxd_count[nic->rxd_mode]+ 1);
652                         mac_control->rings[i].ba =
653                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
654                                      GFP_KERNEL);
655                         if (!mac_control->rings[i].ba)
656                                 return -ENOMEM;
657                         for (j = 0; j < blk_cnt; j++) {
658                                 int k = 0;
659                                 mac_control->rings[i].ba[j] =
660                                         kmalloc((sizeof(buffAdd_t) *
661                                                 (rxd_count[nic->rxd_mode] + 1)),
662                                                 GFP_KERNEL);
663                                 if (!mac_control->rings[i].ba[j])
664                                         return -ENOMEM;
665                                 while (k != rxd_count[nic->rxd_mode]) {
666                                         ba = &mac_control->rings[i].ba[j][k];
667
668                                         ba->ba_0_org = (void *) kmalloc
669                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
670                                         if (!ba->ba_0_org)
671                                                 return -ENOMEM;
672                                         tmp = (unsigned long)ba->ba_0_org;
673                                         tmp += ALIGN_SIZE;
674                                         tmp &= ~((unsigned long) ALIGN_SIZE);
675                                         ba->ba_0 = (void *) tmp;
676
677                                         ba->ba_1_org = (void *) kmalloc
678                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
679                                         if (!ba->ba_1_org)
680                                                 return -ENOMEM;
681                                         tmp = (unsigned long) ba->ba_1_org;
682                                         tmp += ALIGN_SIZE;
683                                         tmp &= ~((unsigned long) ALIGN_SIZE);
684                                         ba->ba_1 = (void *) tmp;
685                                         k++;
686                                 }
687                         }
688                 }
689         }
690
691         /* Allocation and initialization of Statistics block */
692         size = sizeof(StatInfo_t);
693         mac_control->stats_mem = pci_alloc_consistent
694             (nic->pdev, size, &mac_control->stats_mem_phy);
695
696         if (!mac_control->stats_mem) {
697                 /*
698                  * In case of failure, free_shared_mem() is called, which
699                  * should free any memory that was alloced till the
700                  * failure happened.
701                  */
702                 return -ENOMEM;
703         }
704         mac_control->stats_mem_sz = size;
705
706         tmp_v_addr = mac_control->stats_mem;
707         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
708         memset(tmp_v_addr, 0, size);
709         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
710                   (unsigned long long) tmp_p_addr);
711
712         return SUCCESS;
713 }
714
715 /**
716  * free_shared_mem - Free the allocated Memory
717  * @nic:  Device private variable.
718  * Description: This function is to free all memory locations allocated by
719  * the init_shared_mem() function and return it to the kernel.
720  */
721
722 static void free_shared_mem(struct s2io_nic *nic)
723 {
724         int i, j, blk_cnt, size;
725         void *tmp_v_addr;
726         dma_addr_t tmp_p_addr;
727         mac_info_t *mac_control;
728         struct config_param *config;
729         int lst_size, lst_per_page;
730         struct net_device *dev = nic->dev;
731
732         if (!nic)
733                 return;
734
735         mac_control = &nic->mac_control;
736         config = &nic->config;
737
738         lst_size = (sizeof(TxD_t) * config->max_txds);
739         lst_per_page = PAGE_SIZE / lst_size;
740
741         for (i = 0; i < config->tx_fifo_num; i++) {
742                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
743                                                 lst_per_page);
744                 for (j = 0; j < page_num; j++) {
745                         int mem_blks = (j * lst_per_page);
746                         if (!mac_control->fifos[i].list_info)
747                                 return; 
748                         if (!mac_control->fifos[i].list_info[mem_blks].
749                                  list_virt_addr)
750                                 break;
751                         pci_free_consistent(nic->pdev, PAGE_SIZE,
752                                             mac_control->fifos[i].
753                                             list_info[mem_blks].
754                                             list_virt_addr,
755                                             mac_control->fifos[i].
756                                             list_info[mem_blks].
757                                             list_phy_addr);
758                 }
759                 /* If we got a zero DMA address during allocation,
760                  * free the page now
761                  */
762                 if (mac_control->zerodma_virt_addr) {
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->zerodma_virt_addr,
765                                             (dma_addr_t)0);
766                         DBG_PRINT(INIT_DBG, 
767                                 "%s: Freeing TxDL with zero DMA addr. ",
768                                 dev->name);
769                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
770                                 mac_control->zerodma_virt_addr);
771                 }
772                 kfree(mac_control->fifos[i].list_info);
773         }
774
775         size = SIZE_OF_BLOCK;
776         for (i = 0; i < config->rx_ring_num; i++) {
777                 blk_cnt = mac_control->rings[i].block_count;
778                 for (j = 0; j < blk_cnt; j++) {
779                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
780                                 block_virt_addr;
781                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
782                                 block_dma_addr;
783                         if (tmp_v_addr == NULL)
784                                 break;
785                         pci_free_consistent(nic->pdev, size,
786                                             tmp_v_addr, tmp_p_addr);
787                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
788                 }
789         }
790
791         if (nic->rxd_mode >= RXD_MODE_3A) {
792                 /* Freeing buffer storage addresses in 2BUFF mode. */
793                 for (i = 0; i < config->rx_ring_num; i++) {
794                         blk_cnt = config->rx_cfg[i].num_rxd /
795                             (rxd_count[nic->rxd_mode] + 1);
796                         for (j = 0; j < blk_cnt; j++) {
797                                 int k = 0;
798                                 if (!mac_control->rings[i].ba[j])
799                                         continue;
800                                 while (k != rxd_count[nic->rxd_mode]) {
801                                         buffAdd_t *ba =
802                                                 &mac_control->rings[i].ba[j][k];
803                                         kfree(ba->ba_0_org);
804                                         kfree(ba->ba_1_org);
805                                         k++;
806                                 }
807                                 kfree(mac_control->rings[i].ba[j]);
808                         }
809                         kfree(mac_control->rings[i].ba);
810                 }
811         }
812
813         if (mac_control->stats_mem) {
814                 pci_free_consistent(nic->pdev,
815                                     mac_control->stats_mem_sz,
816                                     mac_control->stats_mem,
817                                     mac_control->stats_mem_phy);
818         }
819         if (nic->ufo_in_band_v)
820                 kfree(nic->ufo_in_band_v);
821 }
822
823 /**
824  * s2io_verify_pci_mode -
825  */
826
827 static int s2io_verify_pci_mode(nic_t *nic)
828 {
829         XENA_dev_config_t __iomem *bar0 = nic->bar0;
830         register u64 val64 = 0;
831         int     mode;
832
833         val64 = readq(&bar0->pci_mode);
834         mode = (u8)GET_PCI_MODE(val64);
835
836         if ( val64 & PCI_MODE_UNKNOWN_MODE)
837                 return -1;      /* Unknown PCI mode */
838         return mode;
839 }
840
841 #define NEC_VENID   0x1033
842 #define NEC_DEVID   0x0125
843 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844 {
845         struct pci_dev *tdev = NULL;
846         while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
847                 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
848                         if (tdev->bus == s2io_pdev->bus->parent)
849                                 return 1;
850                 }
851         }
852         return 0;
853 }
854
855 int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
856 /**
857  * s2io_print_pci_mode -
858  */
859 static int s2io_print_pci_mode(nic_t *nic)
860 {
861         XENA_dev_config_t __iomem *bar0 = nic->bar0;
862         register u64 val64 = 0;
863         int     mode;
864         struct config_param *config = &nic->config;
865
866         val64 = readq(&bar0->pci_mode);
867         mode = (u8)GET_PCI_MODE(val64);
868
869         if ( val64 & PCI_MODE_UNKNOWN_MODE)
870                 return -1;      /* Unknown PCI mode */
871
872         config->bus_speed = bus_speed[mode];
873
874         if (s2io_on_nec_bridge(nic->pdev)) {
875                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
876                                                         nic->dev->name);
877                 return mode;
878         }
879
880         if (val64 & PCI_MODE_32_BITS) {
881                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
882         } else {
883                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
884         }
885
886         switch(mode) {
887                 case PCI_MODE_PCI_33:
888                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
889                         break;
890                 case PCI_MODE_PCI_66:
891                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
892                         break;
893                 case PCI_MODE_PCIX_M1_66:
894                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
895                         break;
896                 case PCI_MODE_PCIX_M1_100:
897                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
898                         break;
899                 case PCI_MODE_PCIX_M1_133:
900                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
901                         break;
902                 case PCI_MODE_PCIX_M2_66:
903                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
904                         break;
905                 case PCI_MODE_PCIX_M2_100:
906                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
907                         break;
908                 case PCI_MODE_PCIX_M2_133:
909                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
910                         break;
911                 default:
912                         return -1;      /* Unsupported bus speed */
913         }
914
915         return mode;
916 }
917
918 /**
919  *  init_nic - Initialization of hardware
920  *  @nic: device peivate variable
921  *  Description: The function sequentially configures every block
922  *  of the H/W from their reset values.
923  *  Return Value:  SUCCESS on success and
924  *  '-1' on failure (endian settings incorrect).
925  */
926
927 static int init_nic(struct s2io_nic *nic)
928 {
929         XENA_dev_config_t __iomem *bar0 = nic->bar0;
930         struct net_device *dev = nic->dev;
931         register u64 val64 = 0;
932         void __iomem *add;
933         u32 time;
934         int i, j;
935         mac_info_t *mac_control;
936         struct config_param *config;
937         int dtx_cnt = 0;
938         unsigned long long mem_share;
939         int mem_size;
940
941         mac_control = &nic->mac_control;
942         config = &nic->config;
943
944         /* to set the swapper controle on the card */
945         if(s2io_set_swapper(nic)) {
946                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
947                 return -1;
948         }
949
950         /*
951          * Herc requires EOI to be removed from reset before XGXS, so..
952          */
953         if (nic->device_type & XFRAME_II_DEVICE) {
954                 val64 = 0xA500000000ULL;
955                 writeq(val64, &bar0->sw_reset);
956                 msleep(500);
957                 val64 = readq(&bar0->sw_reset);
958         }
959
960         /* Remove XGXS from reset state */
961         val64 = 0;
962         writeq(val64, &bar0->sw_reset);
963         msleep(500);
964         val64 = readq(&bar0->sw_reset);
965
966         /*  Enable Receiving broadcasts */
967         add = &bar0->mac_cfg;
968         val64 = readq(&bar0->mac_cfg);
969         val64 |= MAC_RMAC_BCAST_ENABLE;
970         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
971         writel((u32) val64, add);
972         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
973         writel((u32) (val64 >> 32), (add + 4));
974
975         /* Read registers in all blocks */
976         val64 = readq(&bar0->mac_int_mask);
977         val64 = readq(&bar0->mc_int_mask);
978         val64 = readq(&bar0->xgxs_int_mask);
979
980         /*  Set MTU */
981         val64 = dev->mtu;
982         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
983
984         if (nic->device_type & XFRAME_II_DEVICE) {
985                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
986                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
987                                           &bar0->dtx_control, UF);
988                         if (dtx_cnt & 0x1)
989                                 msleep(1); /* Necessary!! */
990                         dtx_cnt++;
991                 }
992         } else {
993                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
994                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
995                                           &bar0->dtx_control, UF);
996                         val64 = readq(&bar0->dtx_control);
997                         dtx_cnt++;
998                 }
999         }
1000
1001         /*  Tx DMA Initialization */
1002         val64 = 0;
1003         writeq(val64, &bar0->tx_fifo_partition_0);
1004         writeq(val64, &bar0->tx_fifo_partition_1);
1005         writeq(val64, &bar0->tx_fifo_partition_2);
1006         writeq(val64, &bar0->tx_fifo_partition_3);
1007
1008
1009         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1010                 val64 |=
1011                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1012                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1013                                     ((i * 32) + 5), 3);
1014
1015                 if (i == (config->tx_fifo_num - 1)) {
1016                         if (i % 2 == 0)
1017                                 i++;
1018                 }
1019
1020                 switch (i) {
1021                 case 1:
1022                         writeq(val64, &bar0->tx_fifo_partition_0);
1023                         val64 = 0;
1024                         break;
1025                 case 3:
1026                         writeq(val64, &bar0->tx_fifo_partition_1);
1027                         val64 = 0;
1028                         break;
1029                 case 5:
1030                         writeq(val64, &bar0->tx_fifo_partition_2);
1031                         val64 = 0;
1032                         break;
1033                 case 7:
1034                         writeq(val64, &bar0->tx_fifo_partition_3);
1035                         break;
1036                 }
1037         }
1038
1039         /*
1040          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1041          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1042          */
1043         if ((nic->device_type == XFRAME_I_DEVICE) &&
1044                 (get_xena_rev_id(nic->pdev) < 4))
1045                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1046
1047         val64 = readq(&bar0->tx_fifo_partition_0);
1048         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1049                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1050
1051         /*
1052          * Initialization of Tx_PA_CONFIG register to ignore packet
1053          * integrity checking.
1054          */
1055         val64 = readq(&bar0->tx_pa_cfg);
1056         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1057             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1058         writeq(val64, &bar0->tx_pa_cfg);
1059
1060         /* Rx DMA intialization. */
1061         val64 = 0;
1062         for (i = 0; i < config->rx_ring_num; i++) {
1063                 val64 |=
1064                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1065                          3);
1066         }
1067         writeq(val64, &bar0->rx_queue_priority);
1068
1069         /*
1070          * Allocating equal share of memory to all the
1071          * configured Rings.
1072          */
1073         val64 = 0;
1074         if (nic->device_type & XFRAME_II_DEVICE)
1075                 mem_size = 32;
1076         else
1077                 mem_size = 64;
1078
1079         for (i = 0; i < config->rx_ring_num; i++) {
1080                 switch (i) {
1081                 case 0:
1082                         mem_share = (mem_size / config->rx_ring_num +
1083                                      mem_size % config->rx_ring_num);
1084                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1085                         continue;
1086                 case 1:
1087                         mem_share = (mem_size / config->rx_ring_num);
1088                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1089                         continue;
1090                 case 2:
1091                         mem_share = (mem_size / config->rx_ring_num);
1092                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1093                         continue;
1094                 case 3:
1095                         mem_share = (mem_size / config->rx_ring_num);
1096                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1097                         continue;
1098                 case 4:
1099                         mem_share = (mem_size / config->rx_ring_num);
1100                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1101                         continue;
1102                 case 5:
1103                         mem_share = (mem_size / config->rx_ring_num);
1104                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1105                         continue;
1106                 case 6:
1107                         mem_share = (mem_size / config->rx_ring_num);
1108                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1109                         continue;
1110                 case 7:
1111                         mem_share = (mem_size / config->rx_ring_num);
1112                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1113                         continue;
1114                 }
1115         }
1116         writeq(val64, &bar0->rx_queue_cfg);
1117
1118         /*
1119          * Filling Tx round robin registers
1120          * as per the number of FIFOs
1121          */
1122         switch (config->tx_fifo_num) {
1123         case 1:
1124                 val64 = 0x0000000000000000ULL;
1125                 writeq(val64, &bar0->tx_w_round_robin_0);
1126                 writeq(val64, &bar0->tx_w_round_robin_1);
1127                 writeq(val64, &bar0->tx_w_round_robin_2);
1128                 writeq(val64, &bar0->tx_w_round_robin_3);
1129                 writeq(val64, &bar0->tx_w_round_robin_4);
1130                 break;
1131         case 2:
1132                 val64 = 0x0000010000010000ULL;
1133                 writeq(val64, &bar0->tx_w_round_robin_0);
1134                 val64 = 0x0100000100000100ULL;
1135                 writeq(val64, &bar0->tx_w_round_robin_1);
1136                 val64 = 0x0001000001000001ULL;
1137                 writeq(val64, &bar0->tx_w_round_robin_2);
1138                 val64 = 0x0000010000010000ULL;
1139                 writeq(val64, &bar0->tx_w_round_robin_3);
1140                 val64 = 0x0100000000000000ULL;
1141                 writeq(val64, &bar0->tx_w_round_robin_4);
1142                 break;
1143         case 3:
1144                 val64 = 0x0001000102000001ULL;
1145                 writeq(val64, &bar0->tx_w_round_robin_0);
1146                 val64 = 0x0001020000010001ULL;
1147                 writeq(val64, &bar0->tx_w_round_robin_1);
1148                 val64 = 0x0200000100010200ULL;
1149                 writeq(val64, &bar0->tx_w_round_robin_2);
1150                 val64 = 0x0001000102000001ULL;
1151                 writeq(val64, &bar0->tx_w_round_robin_3);
1152                 val64 = 0x0001020000000000ULL;
1153                 writeq(val64, &bar0->tx_w_round_robin_4);
1154                 break;
1155         case 4:
1156                 val64 = 0x0001020300010200ULL;
1157                 writeq(val64, &bar0->tx_w_round_robin_0);
1158                 val64 = 0x0100000102030001ULL;
1159                 writeq(val64, &bar0->tx_w_round_robin_1);
1160                 val64 = 0x0200010000010203ULL;
1161                 writeq(val64, &bar0->tx_w_round_robin_2);
1162                 val64 = 0x0001020001000001ULL;
1163                 writeq(val64, &bar0->tx_w_round_robin_3);
1164                 val64 = 0x0203000100000000ULL;
1165                 writeq(val64, &bar0->tx_w_round_robin_4);
1166                 break;
1167         case 5:
1168                 val64 = 0x0001000203000102ULL;
1169                 writeq(val64, &bar0->tx_w_round_robin_0);
1170                 val64 = 0x0001020001030004ULL;
1171                 writeq(val64, &bar0->tx_w_round_robin_1);
1172                 val64 = 0x0001000203000102ULL;
1173                 writeq(val64, &bar0->tx_w_round_robin_2);
1174                 val64 = 0x0001020001030004ULL;
1175                 writeq(val64, &bar0->tx_w_round_robin_3);
1176                 val64 = 0x0001000000000000ULL;
1177                 writeq(val64, &bar0->tx_w_round_robin_4);
1178                 break;
1179         case 6:
1180                 val64 = 0x0001020304000102ULL;
1181                 writeq(val64, &bar0->tx_w_round_robin_0);
1182                 val64 = 0x0304050001020001ULL;
1183                 writeq(val64, &bar0->tx_w_round_robin_1);
1184                 val64 = 0x0203000100000102ULL;
1185                 writeq(val64, &bar0->tx_w_round_robin_2);
1186                 val64 = 0x0304000102030405ULL;
1187                 writeq(val64, &bar0->tx_w_round_robin_3);
1188                 val64 = 0x0001000200000000ULL;
1189                 writeq(val64, &bar0->tx_w_round_robin_4);
1190                 break;
1191         case 7:
1192                 val64 = 0x0001020001020300ULL;
1193                 writeq(val64, &bar0->tx_w_round_robin_0);
1194                 val64 = 0x0102030400010203ULL;
1195                 writeq(val64, &bar0->tx_w_round_robin_1);
1196                 val64 = 0x0405060001020001ULL;
1197                 writeq(val64, &bar0->tx_w_round_robin_2);
1198                 val64 = 0x0304050000010200ULL;
1199                 writeq(val64, &bar0->tx_w_round_robin_3);
1200                 val64 = 0x0102030000000000ULL;
1201                 writeq(val64, &bar0->tx_w_round_robin_4);
1202                 break;
1203         case 8:
1204                 val64 = 0x0001020300040105ULL;
1205                 writeq(val64, &bar0->tx_w_round_robin_0);
1206                 val64 = 0x0200030106000204ULL;
1207                 writeq(val64, &bar0->tx_w_round_robin_1);
1208                 val64 = 0x0103000502010007ULL;
1209                 writeq(val64, &bar0->tx_w_round_robin_2);
1210                 val64 = 0x0304010002060500ULL;
1211                 writeq(val64, &bar0->tx_w_round_robin_3);
1212                 val64 = 0x0103020400000000ULL;
1213                 writeq(val64, &bar0->tx_w_round_robin_4);
1214                 break;
1215         }
1216
1217         /* Enable Tx FIFO partition 0. */
1218         val64 = readq(&bar0->tx_fifo_partition_0);
1219         val64 |= (TX_FIFO_PARTITION_EN);
1220         writeq(val64, &bar0->tx_fifo_partition_0);
1221
1222         /* Filling the Rx round robin registers as per the
1223          * number of Rings and steering based on QoS.
1224          */
1225         switch (config->rx_ring_num) {
1226         case 1:
1227                 val64 = 0x8080808080808080ULL;
1228                 writeq(val64, &bar0->rts_qos_steering);
1229                 break;
1230         case 2:
1231                 val64 = 0x0000010000010000ULL;
1232                 writeq(val64, &bar0->rx_w_round_robin_0);
1233                 val64 = 0x0100000100000100ULL;
1234                 writeq(val64, &bar0->rx_w_round_robin_1);
1235                 val64 = 0x0001000001000001ULL;
1236                 writeq(val64, &bar0->rx_w_round_robin_2);
1237                 val64 = 0x0000010000010000ULL;
1238                 writeq(val64, &bar0->rx_w_round_robin_3);
1239                 val64 = 0x0100000000000000ULL;
1240                 writeq(val64, &bar0->rx_w_round_robin_4);
1241
1242                 val64 = 0x8080808040404040ULL;
1243                 writeq(val64, &bar0->rts_qos_steering);
1244                 break;
1245         case 3:
1246                 val64 = 0x0001000102000001ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_0);
1248                 val64 = 0x0001020000010001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_1);
1250                 val64 = 0x0200000100010200ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_2);
1252                 val64 = 0x0001000102000001ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_3);
1254                 val64 = 0x0001020000000000ULL;
1255                 writeq(val64, &bar0->rx_w_round_robin_4);
1256
1257                 val64 = 0x8080804040402020ULL;
1258                 writeq(val64, &bar0->rts_qos_steering);
1259                 break;
1260         case 4:
1261                 val64 = 0x0001020300010200ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_0);
1263                 val64 = 0x0100000102030001ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_1);
1265                 val64 = 0x0200010000010203ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_2);
1267                 val64 = 0x0001020001000001ULL;  
1268                 writeq(val64, &bar0->rx_w_round_robin_3);
1269                 val64 = 0x0203000100000000ULL;
1270                 writeq(val64, &bar0->rx_w_round_robin_4);
1271
1272                 val64 = 0x8080404020201010ULL;
1273                 writeq(val64, &bar0->rts_qos_steering);
1274                 break;
1275         case 5:
1276                 val64 = 0x0001000203000102ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_0);
1278                 val64 = 0x0001020001030004ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_1);
1280                 val64 = 0x0001000203000102ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_2);
1282                 val64 = 0x0001020001030004ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_3);
1284                 val64 = 0x0001000000000000ULL;
1285                 writeq(val64, &bar0->rx_w_round_robin_4);
1286
1287                 val64 = 0x8080404020201008ULL;
1288                 writeq(val64, &bar0->rts_qos_steering);
1289                 break;
1290         case 6:
1291                 val64 = 0x0001020304000102ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_0);
1293                 val64 = 0x0304050001020001ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_1);
1295                 val64 = 0x0203000100000102ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_2);
1297                 val64 = 0x0304000102030405ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_3);
1299                 val64 = 0x0001000200000000ULL;
1300                 writeq(val64, &bar0->rx_w_round_robin_4);
1301
1302                 val64 = 0x8080404020100804ULL;
1303                 writeq(val64, &bar0->rts_qos_steering);
1304                 break;
1305         case 7:
1306                 val64 = 0x0001020001020300ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_0);
1308                 val64 = 0x0102030400010203ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_1);
1310                 val64 = 0x0405060001020001ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_2);
1312                 val64 = 0x0304050000010200ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_3);
1314                 val64 = 0x0102030000000000ULL;
1315                 writeq(val64, &bar0->rx_w_round_robin_4);
1316
1317                 val64 = 0x8080402010080402ULL;
1318                 writeq(val64, &bar0->rts_qos_steering);
1319                 break;
1320         case 8:
1321                 val64 = 0x0001020300040105ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_0);
1323                 val64 = 0x0200030106000204ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_1);
1325                 val64 = 0x0103000502010007ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_2);
1327                 val64 = 0x0304010002060500ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_3);
1329                 val64 = 0x0103020400000000ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_4);
1331
1332                 val64 = 0x8040201008040201ULL;
1333                 writeq(val64, &bar0->rts_qos_steering);
1334                 break;
1335         }
1336
1337         /* UDP Fix */
1338         val64 = 0;
1339         for (i = 0; i < 8; i++)
1340                 writeq(val64, &bar0->rts_frm_len_n[i]);
1341
1342         /* Set the default rts frame length for the rings configured */
1343         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1344         for (i = 0 ; i < config->rx_ring_num ; i++)
1345                 writeq(val64, &bar0->rts_frm_len_n[i]);
1346
1347         /* Set the frame length for the configured rings
1348          * desired by the user
1349          */
1350         for (i = 0; i < config->rx_ring_num; i++) {
1351                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1352                  * specified frame length steering.
1353                  * If the user provides the frame length then program
1354                  * the rts_frm_len register for those values or else
1355                  * leave it as it is.
1356                  */
1357                 if (rts_frm_len[i] != 0) {
1358                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1359                                 &bar0->rts_frm_len_n[i]);
1360                 }
1361         }
1362
1363         /* Program statistics memory */
1364         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1365
1366         if (nic->device_type == XFRAME_II_DEVICE) {
1367                 val64 = STAT_BC(0x320);
1368                 writeq(val64, &bar0->stat_byte_cnt);
1369         }
1370
1371         /*
1372          * Initializing the sampling rate for the device to calculate the
1373          * bandwidth utilization.
1374          */
1375         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1376             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1377         writeq(val64, &bar0->mac_link_util);
1378
1379
1380         /*
1381          * Initializing the Transmit and Receive Traffic Interrupt
1382          * Scheme.
1383          */
1384         /*
1385          * TTI Initialization. Default Tx timer gets us about
1386          * 250 interrupts per sec. Continuous interrupts are enabled
1387          * by default.
1388          */
1389         if (nic->device_type == XFRAME_II_DEVICE) {
1390                 int count = (nic->config.bus_speed * 125)/2;
1391                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1392         } else {
1393
1394                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1395         }
1396         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1397             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1398             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1399                 if (use_continuous_tx_intrs)
1400                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1401         writeq(val64, &bar0->tti_data1_mem);
1402
1403         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1404             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1405             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1406         writeq(val64, &bar0->tti_data2_mem);
1407
1408         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1409         writeq(val64, &bar0->tti_command_mem);
1410
1411         /*
1412          * Once the operation completes, the Strobe bit of the command
1413          * register will be reset. We poll for this particular condition
1414          * We wait for a maximum of 500ms for the operation to complete,
1415          * if it's not complete by then we return error.
1416          */
1417         time = 0;
1418         while (TRUE) {
1419                 val64 = readq(&bar0->tti_command_mem);
1420                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1421                         break;
1422                 }
1423                 if (time > 10) {
1424                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1425                                   dev->name);
1426                         return -1;
1427                 }
1428                 msleep(50);
1429                 time++;
1430         }
1431
1432         if (nic->config.bimodal) {
1433                 int k = 0;
1434                 for (k = 0; k < config->rx_ring_num; k++) {
1435                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1436                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1437                         writeq(val64, &bar0->tti_command_mem);
1438
1439                 /*
1440                  * Once the operation completes, the Strobe bit of the command
1441                  * register will be reset. We poll for this particular condition
1442                  * We wait for a maximum of 500ms for the operation to complete,
1443                  * if it's not complete by then we return error.
1444                 */
1445                         time = 0;
1446                         while (TRUE) {
1447                                 val64 = readq(&bar0->tti_command_mem);
1448                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1449                                         break;
1450                                 }
1451                                 if (time > 10) {
1452                                         DBG_PRINT(ERR_DBG,
1453                                                 "%s: TTI init Failed\n",
1454                                         dev->name);
1455                                         return -1;
1456                                 }
1457                                 time++;
1458                                 msleep(50);
1459                         }
1460                 }
1461         } else {
1462
1463                 /* RTI Initialization */
1464                 if (nic->device_type == XFRAME_II_DEVICE) {
1465                         /*
1466                          * Programmed to generate Apprx 500 Intrs per
1467                          * second
1468                          */
1469                         int count = (nic->config.bus_speed * 125)/4;
1470                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1471                 } else {
1472                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1473                 }
1474                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1475                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1476                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1477
1478                 writeq(val64, &bar0->rti_data1_mem);
1479
1480                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1481                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1482                 if (nic->intr_type == MSI_X)
1483                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1484                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1485                 else
1486                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1487                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1488                 writeq(val64, &bar0->rti_data2_mem);
1489
1490                 for (i = 0; i < config->rx_ring_num; i++) {
1491                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1492                                         | RTI_CMD_MEM_OFFSET(i);
1493                         writeq(val64, &bar0->rti_command_mem);
1494
1495                         /*
1496                          * Once the operation completes, the Strobe bit of the
1497                          * command register will be reset. We poll for this
1498                          * particular condition. We wait for a maximum of 500ms
1499                          * for the operation to complete, if it's not complete
1500                          * by then we return error.
1501                          */
1502                         time = 0;
1503                         while (TRUE) {
1504                                 val64 = readq(&bar0->rti_command_mem);
1505                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1506                                         break;
1507                                 }
1508                                 if (time > 10) {
1509                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1510                                                   dev->name);
1511                                         return -1;
1512                                 }
1513                                 time++;
1514                                 msleep(50);
1515                         }
1516                 }
1517         }
1518
1519         /*
1520          * Initializing proper values as Pause threshold into all
1521          * the 8 Queues on Rx side.
1522          */
1523         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1524         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1525
1526         /* Disable RMAC PAD STRIPPING */
1527         add = &bar0->mac_cfg;
1528         val64 = readq(&bar0->mac_cfg);
1529         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1530         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1531         writel((u32) (val64), add);
1532         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1533         writel((u32) (val64 >> 32), (add + 4));
1534         val64 = readq(&bar0->mac_cfg);
1535
1536         /* Enable FCS stripping by adapter */
1537         add = &bar0->mac_cfg;
1538         val64 = readq(&bar0->mac_cfg);
1539         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1540         if (nic->device_type == XFRAME_II_DEVICE)
1541                 writeq(val64, &bar0->mac_cfg);
1542         else {
1543                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544                 writel((u32) (val64), add);
1545                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546                 writel((u32) (val64 >> 32), (add + 4));
1547         }
1548
1549         /*
1550          * Set the time value to be inserted in the pause frame
1551          * generated by xena.
1552          */
1553         val64 = readq(&bar0->rmac_pause_cfg);
1554         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1555         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1556         writeq(val64, &bar0->rmac_pause_cfg);
1557
1558         /*
1559          * Set the Threshold Limit for Generating the pause frame
1560          * If the amount of data in any Queue exceeds ratio of
1561          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1562          * pause frame is generated
1563          */
1564         val64 = 0;
1565         for (i = 0; i < 4; i++) {
1566                 val64 |=
1567                     (((u64) 0xFF00 | nic->mac_control.
1568                       mc_pause_threshold_q0q3)
1569                      << (i * 2 * 8));
1570         }
1571         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1572
1573         val64 = 0;
1574         for (i = 0; i < 4; i++) {
1575                 val64 |=
1576                     (((u64) 0xFF00 | nic->mac_control.
1577                       mc_pause_threshold_q4q7)
1578                      << (i * 2 * 8));
1579         }
1580         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1581
1582         /*
1583          * TxDMA will stop Read request if the number of read split has
1584          * exceeded the limit pointed by shared_splits
1585          */
1586         val64 = readq(&bar0->pic_control);
1587         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1588         writeq(val64, &bar0->pic_control);
1589
1590         if (nic->config.bus_speed == 266) {
1591                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1592                 writeq(0x0, &bar0->read_retry_delay);
1593                 writeq(0x0, &bar0->write_retry_delay);
1594         }
1595
1596         /*
1597          * Programming the Herc to split every write transaction
1598          * that does not start on an ADB to reduce disconnects.
1599          */
1600         if (nic->device_type == XFRAME_II_DEVICE) {
1601                 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1602                 writeq(val64, &bar0->misc_control);
1603                 val64 = readq(&bar0->pic_control2);
1604                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1605                 writeq(val64, &bar0->pic_control2);
1606         }
1607         if (strstr(nic->product_name, "CX4")) {
1608                 val64 = TMAC_AVG_IPG(0x17);
1609                 writeq(val64, &bar0->tmac_avg_ipg);
1610         }
1611
1612         return SUCCESS;
1613 }
1614 #define LINK_UP_DOWN_INTERRUPT          1
1615 #define MAC_RMAC_ERR_TIMER              2
1616
1617 static int s2io_link_fault_indication(nic_t *nic)
1618 {
1619         if (nic->intr_type != INTA)
1620                 return MAC_RMAC_ERR_TIMER;
1621         if (nic->device_type == XFRAME_II_DEVICE)
1622                 return LINK_UP_DOWN_INTERRUPT;
1623         else
1624                 return MAC_RMAC_ERR_TIMER;
1625 }
1626
1627 /**
1628  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1629  *  @nic: device private variable,
1630  *  @mask: A mask indicating which Intr block must be modified and,
1631  *  @flag: A flag indicating whether to enable or disable the Intrs.
1632  *  Description: This function will either disable or enable the interrupts
1633  *  depending on the flag argument. The mask argument can be used to
1634  *  enable/disable any Intr block.
1635  *  Return Value: NONE.
1636  */
1637
1638 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1639 {
1640         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1641         register u64 val64 = 0, temp64 = 0;
1642
1643         /*  Top level interrupt classification */
1644         /*  PIC Interrupts */
1645         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1646                 /*  Enable PIC Intrs in the general intr mask register */
1647                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1648                 if (flag == ENABLE_INTRS) {
1649                         temp64 = readq(&bar0->general_int_mask);
1650                         temp64 &= ~((u64) val64);
1651                         writeq(temp64, &bar0->general_int_mask);
1652                         /*
1653                          * If Hercules adapter enable GPIO otherwise
1654                          * disabled all PCIX, Flash, MDIO, IIC and GPIO
1655                          * interrupts for now.
1656                          * TODO
1657                          */
1658                         if (s2io_link_fault_indication(nic) ==
1659                                         LINK_UP_DOWN_INTERRUPT ) {
1660                                 temp64 = readq(&bar0->pic_int_mask);
1661                                 temp64 &= ~((u64) PIC_INT_GPIO);
1662                                 writeq(temp64, &bar0->pic_int_mask);
1663                                 temp64 = readq(&bar0->gpio_int_mask);
1664                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1665                                 writeq(temp64, &bar0->gpio_int_mask);
1666                         } else {
1667                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1668                         }
1669                         /*
1670                          * No MSI Support is available presently, so TTI and
1671                          * RTI interrupts are also disabled.
1672                          */
1673                 } else if (flag == DISABLE_INTRS) {
1674                         /*
1675                          * Disable PIC Intrs in the general
1676                          * intr mask register
1677                          */
1678                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1679                         temp64 = readq(&bar0->general_int_mask);
1680                         val64 |= temp64;
1681                         writeq(val64, &bar0->general_int_mask);
1682                 }
1683         }
1684
1685         /*  DMA Interrupts */
1686         /*  Enabling/Disabling Tx DMA interrupts */
1687         if (mask & TX_DMA_INTR) {
1688                 /* Enable TxDMA Intrs in the general intr mask register */
1689                 val64 = TXDMA_INT_M;
1690                 if (flag == ENABLE_INTRS) {
1691                         temp64 = readq(&bar0->general_int_mask);
1692                         temp64 &= ~((u64) val64);
1693                         writeq(temp64, &bar0->general_int_mask);
1694                         /*
1695                          * Keep all interrupts other than PFC interrupt
1696                          * and PCC interrupt disabled in DMA level.
1697                          */
1698                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1699                                                       TXDMA_PCC_INT_M);
1700                         writeq(val64, &bar0->txdma_int_mask);
1701                         /*
1702                          * Enable only the MISC error 1 interrupt in PFC block
1703                          */
1704                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1705                         writeq(val64, &bar0->pfc_err_mask);
1706                         /*
1707                          * Enable only the FB_ECC error interrupt in PCC block
1708                          */
1709                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1710                         writeq(val64, &bar0->pcc_err_mask);
1711                 } else if (flag == DISABLE_INTRS) {
1712                         /*
1713                          * Disable TxDMA Intrs in the general intr mask
1714                          * register
1715                          */
1716                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1717                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1718                         temp64 = readq(&bar0->general_int_mask);
1719                         val64 |= temp64;
1720                         writeq(val64, &bar0->general_int_mask);
1721                 }
1722         }
1723
1724         /*  Enabling/Disabling Rx DMA interrupts */
1725         if (mask & RX_DMA_INTR) {
1726                 /*  Enable RxDMA Intrs in the general intr mask register */
1727                 val64 = RXDMA_INT_M;
1728                 if (flag == ENABLE_INTRS) {
1729                         temp64 = readq(&bar0->general_int_mask);
1730                         temp64 &= ~((u64) val64);
1731                         writeq(temp64, &bar0->general_int_mask);
1732                         /*
1733                          * All RxDMA block interrupts are disabled for now
1734                          * TODO
1735                          */
1736                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1737                 } else if (flag == DISABLE_INTRS) {
1738                         /*
1739                          * Disable RxDMA Intrs in the general intr mask
1740                          * register
1741                          */
1742                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         val64 |= temp64;
1745                         writeq(val64, &bar0->general_int_mask);
1746                 }
1747         }
1748
1749         /*  MAC Interrupts */
1750         /*  Enabling/Disabling MAC interrupts */
1751         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1752                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1753                 if (flag == ENABLE_INTRS) {
1754                         temp64 = readq(&bar0->general_int_mask);
1755                         temp64 &= ~((u64) val64);
1756                         writeq(temp64, &bar0->general_int_mask);
1757                         /*
1758                          * All MAC block error interrupts are disabled for now
1759                          * TODO
1760                          */
1761                 } else if (flag == DISABLE_INTRS) {
1762                         /*
1763                          * Disable MAC Intrs in the general intr mask register
1764                          */
1765                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1766                         writeq(DISABLE_ALL_INTRS,
1767                                &bar0->mac_rmac_err_mask);
1768
1769                         temp64 = readq(&bar0->general_int_mask);
1770                         val64 |= temp64;
1771                         writeq(val64, &bar0->general_int_mask);
1772                 }
1773         }
1774
1775         /*  XGXS Interrupts */
1776         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1777                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1778                 if (flag == ENABLE_INTRS) {
1779                         temp64 = readq(&bar0->general_int_mask);
1780                         temp64 &= ~((u64) val64);
1781                         writeq(temp64, &bar0->general_int_mask);
1782                         /*
1783                          * All XGXS block error interrupts are disabled for now
1784                          * TODO
1785                          */
1786                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1787                 } else if (flag == DISABLE_INTRS) {
1788                         /*
1789                          * Disable MC Intrs in the general intr mask register
1790                          */
1791                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1792                         temp64 = readq(&bar0->general_int_mask);
1793                         val64 |= temp64;
1794                         writeq(val64, &bar0->general_int_mask);
1795                 }
1796         }
1797
1798         /*  Memory Controller(MC) interrupts */
1799         if (mask & MC_INTR) {
1800                 val64 = MC_INT_M;
1801                 if (flag == ENABLE_INTRS) {
1802                         temp64 = readq(&bar0->general_int_mask);
1803                         temp64 &= ~((u64) val64);
1804                         writeq(temp64, &bar0->general_int_mask);
1805                         /*
1806                          * Enable all MC Intrs.
1807                          */
1808                         writeq(0x0, &bar0->mc_int_mask);
1809                         writeq(0x0, &bar0->mc_err_mask);
1810                 } else if (flag == DISABLE_INTRS) {
1811                         /*
1812                          * Disable MC Intrs in the general intr mask register
1813                          */
1814                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1815                         temp64 = readq(&bar0->general_int_mask);
1816                         val64 |= temp64;
1817                         writeq(val64, &bar0->general_int_mask);
1818                 }
1819         }
1820
1821
1822         /*  Tx traffic interrupts */
1823         if (mask & TX_TRAFFIC_INTR) {
1824                 val64 = TXTRAFFIC_INT_M;
1825                 if (flag == ENABLE_INTRS) {
1826                         temp64 = readq(&bar0->general_int_mask);
1827                         temp64 &= ~((u64) val64);
1828                         writeq(temp64, &bar0->general_int_mask);
1829                         /*
1830                          * Enable all the Tx side interrupts
1831                          * writing 0 Enables all 64 TX interrupt levels
1832                          */
1833                         writeq(0x0, &bar0->tx_traffic_mask);
1834                 } else if (flag == DISABLE_INTRS) {
1835                         /*
1836                          * Disable Tx Traffic Intrs in the general intr mask
1837                          * register.
1838                          */
1839                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1840                         temp64 = readq(&bar0->general_int_mask);
1841                         val64 |= temp64;
1842                         writeq(val64, &bar0->general_int_mask);
1843                 }
1844         }
1845
1846         /*  Rx traffic interrupts */
1847         if (mask & RX_TRAFFIC_INTR) {
1848                 val64 = RXTRAFFIC_INT_M;
1849                 if (flag == ENABLE_INTRS) {
1850                         temp64 = readq(&bar0->general_int_mask);
1851                         temp64 &= ~((u64) val64);
1852                         writeq(temp64, &bar0->general_int_mask);
1853                         /* writing 0 Enables all 8 RX interrupt levels */
1854                         writeq(0x0, &bar0->rx_traffic_mask);
1855                 } else if (flag == DISABLE_INTRS) {
1856                         /*
1857                          * Disable Rx Traffic Intrs in the general intr mask
1858                          * register.
1859                          */
1860                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1861                         temp64 = readq(&bar0->general_int_mask);
1862                         val64 |= temp64;
1863                         writeq(val64, &bar0->general_int_mask);
1864                 }
1865         }
1866 }
1867
1868 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1869 {
1870         int ret = 0;
1871
1872         if (flag == FALSE) {
1873                 if ((!herc && (rev_id >= 4)) || herc) {
1874                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1875                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1876                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1877                                 ret = 1;
1878                         }
1879                 }else {
1880                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1881                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1882                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1883                                 ret = 1;
1884                         }
1885                 }
1886         } else {
1887                 if ((!herc && (rev_id >= 4)) || herc) {
1888                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1890                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1891                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1892                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1893                                 ret = 1;
1894                         }
1895                 } else {
1896                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1897                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1898                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1899                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1900                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1901                                 ret = 1;
1902                         }
1903                 }
1904         }
1905
1906         return ret;
1907 }
1908 /**
1909  *  verify_xena_quiescence - Checks whether the H/W is ready
1910  *  @val64 :  Value read from adapter status register.
1911  *  @flag : indicates if the adapter enable bit was ever written once
1912  *  before.
1913  *  Description: Returns whether the H/W is ready to go or not. Depending
1914  *  on whether adapter enable bit was written or not the comparison
1915  *  differs and the calling function passes the input argument flag to
1916  *  indicate this.
1917  *  Return: 1 If xena is quiescence
1918  *          0 If Xena is not quiescence
1919  */
1920
1921 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1922 {
1923         int ret = 0, herc;
1924         u64 tmp64 = ~((u64) val64);
1925         int rev_id = get_xena_rev_id(sp->pdev);
1926
1927         herc = (sp->device_type == XFRAME_II_DEVICE);
1928         if (!
1929             (tmp64 &
1930              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1931               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1932               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1933               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1934               ADAPTER_STATUS_P_PLL_LOCK))) {
1935                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1936         }
1937
1938         return ret;
1939 }
1940
1941 /**
1942  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1943  * @sp: Pointer to device specifc structure
1944  * Description :
1945  * New procedure to clear mac address reading  problems on Alpha platforms
1946  *
1947  */
1948
1949 static void fix_mac_address(nic_t * sp)
1950 {
1951         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1952         u64 val64;
1953         int i = 0;
1954
1955         while (fix_mac[i] != END_SIGN) {
1956                 writeq(fix_mac[i++], &bar0->gpio_control);
1957                 udelay(10);
1958                 val64 = readq(&bar0->gpio_control);
1959         }
1960 }
1961
1962 /**
1963  *  start_nic - Turns the device on
1964  *  @nic : device private variable.
1965  *  Description:
1966  *  This function actually turns the device on. Before this  function is
1967  *  called,all Registers are configured from their reset states
1968  *  and shared memory is allocated but the NIC is still quiescent. On
1969  *  calling this function, the device interrupts are cleared and the NIC is
1970  *  literally switched on by writing into the adapter control register.
1971  *  Return Value:
1972  *  SUCCESS on success and -1 on failure.
1973  */
1974
1975 static int start_nic(struct s2io_nic *nic)
1976 {
1977         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1978         struct net_device *dev = nic->dev;
1979         register u64 val64 = 0;
1980         u16 interruptible;
1981         u16 subid, i;
1982         mac_info_t *mac_control;
1983         struct config_param *config;
1984
1985         mac_control = &nic->mac_control;
1986         config = &nic->config;
1987
1988         /*  PRC Initialization and configuration */
1989         for (i = 0; i < config->rx_ring_num; i++) {
1990                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1991                        &bar0->prc_rxd0_n[i]);
1992
1993                 val64 = readq(&bar0->prc_ctrl_n[i]);
1994                 if (nic->config.bimodal)
1995                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1996                 if (nic->rxd_mode == RXD_MODE_1)
1997                         val64 |= PRC_CTRL_RC_ENABLED;
1998                 else
1999                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2000                 if (nic->device_type == XFRAME_II_DEVICE)
2001                         val64 |= PRC_CTRL_GROUP_READS;
2002                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2003                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2004                 writeq(val64, &bar0->prc_ctrl_n[i]);
2005         }
2006
2007         if (nic->rxd_mode == RXD_MODE_3B) {
2008                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2009                 val64 = readq(&bar0->rx_pa_cfg);
2010                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2011                 writeq(val64, &bar0->rx_pa_cfg);
2012         }
2013
2014         /*
2015          * Enabling MC-RLDRAM. After enabling the device, we timeout
2016          * for around 100ms, which is approximately the time required
2017          * for the device to be ready for operation.
2018          */
2019         val64 = readq(&bar0->mc_rldram_mrs);
2020         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2021         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2022         val64 = readq(&bar0->mc_rldram_mrs);
2023
2024         msleep(100);    /* Delay by around 100 ms. */
2025
2026         /* Enabling ECC Protection. */
2027         val64 = readq(&bar0->adapter_control);
2028         val64 &= ~ADAPTER_ECC_EN;
2029         writeq(val64, &bar0->adapter_control);
2030
2031         /*
2032          * Clearing any possible Link state change interrupts that
2033          * could have popped up just before Enabling the card.
2034          */
2035         val64 = readq(&bar0->mac_rmac_err_reg);
2036         if (val64)
2037                 writeq(val64, &bar0->mac_rmac_err_reg);
2038
2039         /*
2040          * Verify if the device is ready to be enabled, if so enable
2041          * it.
2042          */
2043         val64 = readq(&bar0->adapter_status);
2044         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2045                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2046                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2047                           (unsigned long long) val64);
2048                 return FAILURE;
2049         }
2050
2051         /*  Enable select interrupts */
2052         if (nic->intr_type != INTA)
2053                 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2054         else {
2055                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2056                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2057                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2058                 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2059         }
2060
2061         /*
2062          * With some switches, link might be already up at this point.
2063          * Because of this weird behavior, when we enable laser,
2064          * we may not get link. We need to handle this. We cannot
2065          * figure out which switch is misbehaving. So we are forced to
2066          * make a global change.
2067          */
2068
2069         /* Enabling Laser. */
2070         val64 = readq(&bar0->adapter_control);
2071         val64 |= ADAPTER_EOI_TX_ON;
2072         writeq(val64, &bar0->adapter_control);
2073
2074         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2075                 /*
2076                  * Dont see link state interrupts initally on some switches,
2077                  * so directly scheduling the link state task here.
2078                  */
2079                 schedule_work(&nic->set_link_task);
2080         }
2081         /* SXE-002: Initialize link and activity LED */
2082         subid = nic->pdev->subsystem_device;
2083         if (((subid & 0xFF) >= 0x07) &&
2084             (nic->device_type == XFRAME_I_DEVICE)) {
2085                 val64 = readq(&bar0->gpio_control);
2086                 val64 |= 0x0000800000000000ULL;
2087                 writeq(val64, &bar0->gpio_control);
2088                 val64 = 0x0411040400000000ULL;
2089                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2090         }
2091
2092         return SUCCESS;
2093 }
2094 /**
2095  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2096  */
2097 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2098 {
2099         nic_t *nic = fifo_data->nic;
2100         struct sk_buff *skb;
2101         TxD_t *txds;
2102         u16 j, frg_cnt;
2103
2104         txds = txdlp;
2105         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2106                 pci_unmap_single(nic->pdev, (dma_addr_t)
2107                         txds->Buffer_Pointer, sizeof(u64),
2108                         PCI_DMA_TODEVICE);
2109                 txds++;
2110         }
2111
2112         skb = (struct sk_buff *) ((unsigned long)
2113                         txds->Host_Control);
2114         if (!skb) {
2115                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2116                 return NULL;
2117         }
2118         pci_unmap_single(nic->pdev, (dma_addr_t)
2119                          txds->Buffer_Pointer,
2120                          skb->len - skb->data_len,
2121                          PCI_DMA_TODEVICE);
2122         frg_cnt = skb_shinfo(skb)->nr_frags;
2123         if (frg_cnt) {
2124                 txds++;
2125                 for (j = 0; j < frg_cnt; j++, txds++) {
2126                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2127                         if (!txds->Buffer_Pointer)
2128                                 break;
2129                         pci_unmap_page(nic->pdev, (dma_addr_t) 
2130                                         txds->Buffer_Pointer,
2131                                        frag->size, PCI_DMA_TODEVICE);
2132                 }
2133         }
2134         txdlp->Host_Control = 0;
2135         return(skb);
2136 }
2137
2138 /**
2139  *  free_tx_buffers - Free all queued Tx buffers
2140  *  @nic : device private variable.
2141  *  Description:
2142  *  Free all queued Tx buffers.
2143  *  Return Value: void
2144 */
2145
2146 static void free_tx_buffers(struct s2io_nic *nic)
2147 {
2148         struct net_device *dev = nic->dev;
2149         struct sk_buff *skb;
2150         TxD_t *txdp;
2151         int i, j;
2152         mac_info_t *mac_control;
2153         struct config_param *config;
2154         int cnt = 0;
2155
2156         mac_control = &nic->mac_control;
2157         config = &nic->config;
2158
2159         for (i = 0; i < config->tx_fifo_num; i++) {
2160                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2161                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2162                             list_virt_addr;
2163                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2164                         if (skb) {
2165                                 dev_kfree_skb(skb);
2166                                 cnt++;
2167                         }
2168                 }
2169                 DBG_PRINT(INTR_DBG,
2170                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2171                           dev->name, cnt, i);
2172                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2173                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2174         }
2175 }
2176
2177 /**
2178  *   stop_nic -  To stop the nic
2179  *   @nic ; device private variable.
2180  *   Description:
2181  *   This function does exactly the opposite of what the start_nic()
2182  *   function does. This function is called to stop the device.
2183  *   Return Value:
2184  *   void.
2185  */
2186
2187 static void stop_nic(struct s2io_nic *nic)
2188 {
2189         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2190         register u64 val64 = 0;
2191         u16 interruptible;
2192         mac_info_t *mac_control;
2193         struct config_param *config;
2194
2195         mac_control = &nic->mac_control;
2196         config = &nic->config;
2197
2198         /*  Disable all interrupts */
2199         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2200         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2201         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2202         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2203
2204         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2205         val64 = readq(&bar0->adapter_control);
2206         val64 &= ~(ADAPTER_CNTL_EN);
2207         writeq(val64, &bar0->adapter_control);
2208 }
2209
2210 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2211 {
2212         struct net_device *dev = nic->dev;
2213         struct sk_buff *frag_list;
2214         void *tmp;
2215
2216         /* Buffer-1 receives L3/L4 headers */
2217         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2218                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2219                         PCI_DMA_FROMDEVICE);
2220
2221         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2222         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2223         if (skb_shinfo(skb)->frag_list == NULL) {
2224                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2225                 return -ENOMEM ;
2226         }
2227         frag_list = skb_shinfo(skb)->frag_list;
2228         frag_list->next = NULL;
2229         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2230         frag_list->data = tmp;
2231         frag_list->tail = tmp;
2232
2233         /* Buffer-2 receives L4 data payload */
2234         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2235                                 frag_list->data, dev->mtu,
2236                                 PCI_DMA_FROMDEVICE);
2237         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2238         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2239
2240         return SUCCESS;
2241 }
2242
2243 /**
2244  *  fill_rx_buffers - Allocates the Rx side skbs
2245  *  @nic:  device private variable
2246  *  @ring_no: ring number
2247  *  Description:
2248  *  The function allocates Rx side skbs and puts the physical
2249  *  address of these buffers into the RxD buffer pointers, so that the NIC
2250  *  can DMA the received frame into these locations.
2251  *  The NIC supports 3 receive modes, viz
2252  *  1. single buffer,
2253  *  2. three buffer and
2254  *  3. Five buffer modes.
2255  *  Each mode defines how many fragments the received frame will be split
2256  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2257  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2258  *  is split into 3 fragments. As of now only single buffer mode is
2259  *  supported.
2260  *   Return Value:
2261  *  SUCCESS on success or an appropriate -ve value on failure.
2262  */
2263
2264 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2265 {
2266         struct net_device *dev = nic->dev;
2267         struct sk_buff *skb;
2268         RxD_t *rxdp;
2269         int off, off1, size, block_no, block_no1;
2270         u32 alloc_tab = 0;
2271         u32 alloc_cnt;
2272         mac_info_t *mac_control;
2273         struct config_param *config;
2274         u64 tmp;
2275         buffAdd_t *ba;
2276 #ifndef CONFIG_S2IO_NAPI
2277         unsigned long flags;
2278 #endif
2279         RxD_t *first_rxdp = NULL;
2280
2281         mac_control = &nic->mac_control;
2282         config = &nic->config;
2283         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2284             atomic_read(&nic->rx_bufs_left[ring_no]);
2285
2286         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2287         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2288         while (alloc_tab < alloc_cnt) {
2289                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2290                     block_index;
2291                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2292
2293                 rxdp = mac_control->rings[ring_no].
2294                                 rx_blocks[block_no].rxds[off].virt_addr;
2295
2296                 if ((block_no == block_no1) && (off == off1) &&
2297                                         (rxdp->Host_Control)) {
2298                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2299                                   dev->name);
2300                         DBG_PRINT(INTR_DBG, " info equated\n");
2301                         goto end;
2302                 }
2303                 if (off && (off == rxd_count[nic->rxd_mode])) {
2304                         mac_control->rings[ring_no].rx_curr_put_info.
2305                             block_index++;
2306                         if (mac_control->rings[ring_no].rx_curr_put_info.
2307                             block_index == mac_control->rings[ring_no].
2308                                         block_count)
2309                                 mac_control->rings[ring_no].rx_curr_put_info.
2310                                         block_index = 0;
2311                         block_no = mac_control->rings[ring_no].
2312                                         rx_curr_put_info.block_index;
2313                         if (off == rxd_count[nic->rxd_mode])
2314                                 off = 0;
2315                         mac_control->rings[ring_no].rx_curr_put_info.
2316                                 offset = off;
2317                         rxdp = mac_control->rings[ring_no].
2318                                 rx_blocks[block_no].block_virt_addr;
2319                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2320                                   dev->name, rxdp);
2321                 }
2322 #ifndef CONFIG_S2IO_NAPI
2323                 spin_lock_irqsave(&nic->put_lock, flags);
2324                 mac_control->rings[ring_no].put_pos =
2325                     (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326                 spin_unlock_irqrestore(&nic->put_lock, flags);
2327 #endif
2328                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2329                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2330                                 (rxdp->Control_2 & BIT(0)))) {
2331                         mac_control->rings[ring_no].rx_curr_put_info.
2332                                         offset = off;
2333                         goto end;
2334                 }
2335                 /* calculate size of skb based on ring mode */
2336                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2337                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2338                 if (nic->rxd_mode == RXD_MODE_1)
2339                         size += NET_IP_ALIGN;
2340                 else if (nic->rxd_mode == RXD_MODE_3B)
2341                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2342                 else
2343                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2344
2345                 /* allocate skb */
2346                 skb = dev_alloc_skb(size);
2347                 if(!skb) {
2348                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2349                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2350                         if (first_rxdp) {
2351                                 wmb();
2352                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2353                         }
2354                         return -ENOMEM ;
2355                 }
2356                 if (nic->rxd_mode == RXD_MODE_1) {
2357                         /* 1 buffer mode - normal operation mode */
2358                         memset(rxdp, 0, sizeof(RxD1_t));
2359                         skb_reserve(skb, NET_IP_ALIGN);
2360                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2361                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2362                                 PCI_DMA_FROMDEVICE);
2363                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2364
2365                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2366                         /*
2367                          * 2 or 3 buffer mode -
2368                          * Both 2 buffer mode and 3 buffer mode provides 128
2369                          * byte aligned receive buffers.
2370                          *
2371                          * 3 buffer mode provides header separation where in
2372                          * skb->data will have L3/L4 headers where as
2373                          * skb_shinfo(skb)->frag_list will have the L4 data
2374                          * payload
2375                          */
2376
2377                         memset(rxdp, 0, sizeof(RxD3_t));
2378                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2379                         skb_reserve(skb, BUF0_LEN);
2380                         tmp = (u64)(unsigned long) skb->data;
2381                         tmp += ALIGN_SIZE;
2382                         tmp &= ~ALIGN_SIZE;
2383                         skb->data = (void *) (unsigned long)tmp;
2384                         skb->tail = (void *) (unsigned long)tmp;
2385
2386                         ((RxD3_t*)rxdp)->Buffer0_ptr =
2387                             pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2388                                            PCI_DMA_FROMDEVICE);
2389                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2390                         if (nic->rxd_mode == RXD_MODE_3B) {
2391                                 /* Two buffer mode */
2392
2393                                 /*
2394                                  * Buffer2 will have L3/L4 header plus 
2395                                  * L4 payload
2396                                  */
2397                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2398                                 (nic->pdev, skb->data, dev->mtu + 4,
2399                                                 PCI_DMA_FROMDEVICE);
2400
2401                                 /* Buffer-1 will be dummy buffer not used */
2402                                 ((RxD3_t*)rxdp)->Buffer1_ptr =
2403                                 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2404                                         PCI_DMA_FROMDEVICE);
2405                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2406                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2407                                                                 (dev->mtu + 4);
2408                         } else {
2409                                 /* 3 buffer mode */
2410                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2411                                         dev_kfree_skb_irq(skb);
2412                                         if (first_rxdp) {
2413                                                 wmb();
2414                                                 first_rxdp->Control_1 |=
2415                                                         RXD_OWN_XENA;
2416                                         }
2417                                         return -ENOMEM ;
2418                                 }
2419                         }
2420                         rxdp->Control_2 |= BIT(0);
2421                 }
2422                 rxdp->Host_Control = (unsigned long) (skb);
2423                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2424                         rxdp->Control_1 |= RXD_OWN_XENA;
2425                 off++;
2426                 if (off == (rxd_count[nic->rxd_mode] + 1))
2427                         off = 0;
2428                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2429
2430                 rxdp->Control_2 |= SET_RXD_MARKER;
2431                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2432                         if (first_rxdp) {
2433                                 wmb();
2434                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2435                         }
2436                         first_rxdp = rxdp;
2437                 }
2438                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2439                 alloc_tab++;
2440         }
2441
2442       end:
2443         /* Transfer ownership of first descriptor to adapter just before
2444          * exiting. Before that, use memory barrier so that ownership
2445          * and other fields are seen by adapter correctly.
2446          */
2447         if (first_rxdp) {
2448                 wmb();
2449                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2450         }
2451
2452         return SUCCESS;
2453 }
2454
2455 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2456 {
2457         struct net_device *dev = sp->dev;
2458         int j;
2459         struct sk_buff *skb;
2460         RxD_t *rxdp;
2461         mac_info_t *mac_control;
2462         buffAdd_t *ba;
2463
2464         mac_control = &sp->mac_control;
2465         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2466                 rxdp = mac_control->rings[ring_no].
2467                                 rx_blocks[blk].rxds[j].virt_addr;
2468                 skb = (struct sk_buff *)
2469                         ((unsigned long) rxdp->Host_Control);
2470                 if (!skb) {
2471                         continue;
2472                 }
2473                 if (sp->rxd_mode == RXD_MODE_1) {
2474                         pci_unmap_single(sp->pdev, (dma_addr_t)
2475                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2476                                  dev->mtu +
2477                                  HEADER_ETHERNET_II_802_3_SIZE
2478                                  + HEADER_802_2_SIZE +
2479                                  HEADER_SNAP_SIZE,
2480                                  PCI_DMA_FROMDEVICE);
2481                         memset(rxdp, 0, sizeof(RxD1_t));
2482                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2483                         ba = &mac_control->rings[ring_no].
2484                                 ba[blk][j];
2485                         pci_unmap_single(sp->pdev, (dma_addr_t)
2486                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2487                                  BUF0_LEN,
2488                                  PCI_DMA_FROMDEVICE);
2489                         pci_unmap_single(sp->pdev, (dma_addr_t)
2490                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2491                                  BUF1_LEN,
2492                                  PCI_DMA_FROMDEVICE);
2493                         pci_unmap_single(sp->pdev, (dma_addr_t)
2494                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2495                                  dev->mtu + 4,
2496                                  PCI_DMA_FROMDEVICE);
2497                         memset(rxdp, 0, sizeof(RxD3_t));
2498                 } else {
2499                         pci_unmap_single(sp->pdev, (dma_addr_t)
2500                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2501                                 PCI_DMA_FROMDEVICE);
2502                         pci_unmap_single(sp->pdev, (dma_addr_t)
2503                                 ((RxD3_t*)rxdp)->Buffer1_ptr, 
2504                                 l3l4hdr_size + 4,
2505                                 PCI_DMA_FROMDEVICE);
2506                         pci_unmap_single(sp->pdev, (dma_addr_t)
2507                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2508                                 PCI_DMA_FROMDEVICE);
2509                         memset(rxdp, 0, sizeof(RxD3_t));
2510                 }
2511                 dev_kfree_skb(skb);
2512                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2513         }
2514 }
2515
2516 /**
2517  *  free_rx_buffers - Frees all Rx buffers
2518  *  @sp: device private variable.
2519  *  Description:
2520  *  This function will free all Rx buffers allocated by host.
2521  *  Return Value:
2522  *  NONE.
2523  */
2524
2525 static void free_rx_buffers(struct s2io_nic *sp)
2526 {
2527         struct net_device *dev = sp->dev;
2528         int i, blk = 0, buf_cnt = 0;
2529         mac_info_t *mac_control;
2530         struct config_param *config;
2531
2532         mac_control = &sp->mac_control;
2533         config = &sp->config;
2534
2535         for (i = 0; i < config->rx_ring_num; i++) {
2536                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2537                         free_rxd_blk(sp,i,blk);
2538
2539                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2540                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2541                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2542                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2543                 atomic_set(&sp->rx_bufs_left[i], 0);
2544                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2545                           dev->name, buf_cnt, i);
2546         }
2547 }
2548
2549 /**
2550  * s2io_poll - Rx interrupt handler for NAPI support
2551  * @dev : pointer to the device structure.
2552  * @budget : The number of packets that were budgeted to be processed
2553  * during  one pass through the 'Poll" function.
2554  * Description:
2555  * Comes into picture only if NAPI support has been incorporated. It does
2556  * the same thing that rx_intr_handler does, but not in a interrupt context
2557  * also It will process only a given number of packets.
2558  * Return value:
2559  * 0 on success and 1 if there are No Rx packets to be processed.
2560  */
2561
2562 #if defined(CONFIG_S2IO_NAPI)
2563 static int s2io_poll(struct net_device *dev, int *budget)
2564 {
2565         nic_t *nic = dev->priv;
2566         int pkt_cnt = 0, org_pkts_to_process;
2567         mac_info_t *mac_control;
2568         struct config_param *config;
2569         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2570         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2571         int i;
2572
2573         atomic_inc(&nic->isr_cnt);
2574         mac_control = &nic->mac_control;
2575         config = &nic->config;
2576
2577         nic->pkts_to_process = *budget;
2578         if (nic->pkts_to_process > dev->quota)
2579                 nic->pkts_to_process = dev->quota;
2580         org_pkts_to_process = nic->pkts_to_process;
2581
2582         writeq(val64, &bar0->rx_traffic_int);
2583         val64 = readl(&bar0->rx_traffic_int);
2584
2585         for (i = 0; i < config->rx_ring_num; i++) {
2586                 rx_intr_handler(&mac_control->rings[i]);
2587                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2588                 if (!nic->pkts_to_process) {
2589                         /* Quota for the current iteration has been met */
2590                         goto no_rx;
2591                 }
2592         }
2593         if (!pkt_cnt)
2594                 pkt_cnt = 1;
2595
2596         dev->quota -= pkt_cnt;
2597         *budget -= pkt_cnt;
2598         netif_rx_complete(dev);
2599
2600         for (i = 0; i < config->rx_ring_num; i++) {
2601                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2602                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2603                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2604                         break;
2605                 }
2606         }
2607         /* Re enable the Rx interrupts. */
2608         writeq(0x0, &bar0->rx_traffic_mask);
2609         val64 = readl(&bar0->rx_traffic_mask);
2610         atomic_dec(&nic->isr_cnt);
2611         return 0;
2612
2613 no_rx:
2614         dev->quota -= pkt_cnt;
2615         *budget -= pkt_cnt;
2616
2617         for (i = 0; i < config->rx_ring_num; i++) {
2618                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2619                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2620                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2621                         break;
2622                 }
2623         }
2624         atomic_dec(&nic->isr_cnt);
2625         return 1;
2626 }
2627 #endif
2628
2629 /**
2630  *  rx_intr_handler - Rx interrupt handler
2631  *  @nic: device private variable.
2632  *  Description:
2633  *  If the interrupt is because of a received frame or if the
2634  *  receive ring contains fresh as yet un-processed frames,this function is
2635  *  called. It picks out the RxD at which place the last Rx processing had
2636  *  stopped and sends the skb to the OSM's Rx handler and then increments
2637  *  the offset.
2638  *  Return Value:
2639  *  NONE.
2640  */
2641 static void rx_intr_handler(ring_info_t *ring_data)
2642 {
2643         nic_t *nic = ring_data->nic;
2644         struct net_device *dev = (struct net_device *) nic->dev;
2645         int get_block, put_block, put_offset;
2646         rx_curr_get_info_t get_info, put_info;
2647         RxD_t *rxdp;
2648         struct sk_buff *skb;
2649 #ifndef CONFIG_S2IO_NAPI
2650         int pkt_cnt = 0;
2651 #endif
2652         int i;
2653
2654         spin_lock(&nic->rx_lock);
2655         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2656                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2657                           __FUNCTION__, dev->name);
2658                 spin_unlock(&nic->rx_lock);
2659                 return;
2660         }
2661
2662         get_info = ring_data->rx_curr_get_info;
2663         get_block = get_info.block_index;
2664         put_info = ring_data->rx_curr_put_info;
2665         put_block = put_info.block_index;
2666         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2667 #ifndef CONFIG_S2IO_NAPI
2668         spin_lock(&nic->put_lock);
2669         put_offset = ring_data->put_pos;
2670         spin_unlock(&nic->put_lock);
2671 #else
2672         put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2673                 put_info.offset;
2674 #endif
2675         while (RXD_IS_UP2DT(rxdp)) {
2676                 /* If your are next to put index then it's FIFO full condition */
2677                 if ((get_block == put_block) &&
2678                     (get_info.offset + 1) == put_info.offset) {
2679                         DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2680                         break;
2681                 }
2682                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2683                 if (skb == NULL) {
2684                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2685                                   dev->name);
2686                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2687                         spin_unlock(&nic->rx_lock);
2688                         return;
2689                 }
2690                 if (nic->rxd_mode == RXD_MODE_1) {
2691                         pci_unmap_single(nic->pdev, (dma_addr_t)
2692                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2693                                  dev->mtu +
2694                                  HEADER_ETHERNET_II_802_3_SIZE +
2695                                  HEADER_802_2_SIZE +
2696                                  HEADER_SNAP_SIZE,
2697                                  PCI_DMA_FROMDEVICE);
2698                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2699                         pci_unmap_single(nic->pdev, (dma_addr_t)
2700                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2701                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2702                         pci_unmap_single(nic->pdev, (dma_addr_t)
2703                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2704                                  BUF1_LEN, PCI_DMA_FROMDEVICE);
2705                         pci_unmap_single(nic->pdev, (dma_addr_t)
2706                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2707                                  dev->mtu + 4,
2708                                  PCI_DMA_FROMDEVICE);
2709                 } else {
2710                         pci_unmap_single(nic->pdev, (dma_addr_t)
2711                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2712                                          PCI_DMA_FROMDEVICE);
2713                         pci_unmap_single(nic->pdev, (dma_addr_t)
2714                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2715                                          l3l4hdr_size + 4,
2716                                          PCI_DMA_FROMDEVICE);
2717                         pci_unmap_single(nic->pdev, (dma_addr_t)
2718                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2719                                          dev->mtu, PCI_DMA_FROMDEVICE);
2720                 }
2721                 prefetch(skb->data);
2722                 rx_osm_handler(ring_data, rxdp);
2723                 get_info.offset++;
2724                 ring_data->rx_curr_get_info.offset = get_info.offset;
2725                 rxdp = ring_data->rx_blocks[get_block].
2726                                 rxds[get_info.offset].virt_addr;
2727                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2728                         get_info.offset = 0;
2729                         ring_data->rx_curr_get_info.offset = get_info.offset;
2730                         get_block++;
2731                         if (get_block == ring_data->block_count)
2732                                 get_block = 0;
2733                         ring_data->rx_curr_get_info.block_index = get_block;
2734                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2735                 }
2736
2737 #ifdef CONFIG_S2IO_NAPI
2738                 nic->pkts_to_process -= 1;
2739                 if (!nic->pkts_to_process)
2740                         break;
2741 #else
2742                 pkt_cnt++;
2743                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2744                         break;
2745 #endif
2746         }
2747         if (nic->lro) {
2748                 /* Clear all LRO sessions before exiting */
2749                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2750                         lro_t *lro = &nic->lro0_n[i];
2751                         if (lro->in_use) {
2752                                 update_L3L4_header(nic, lro);
2753                                 queue_rx_frame(lro->parent);
2754                                 clear_lro_session(lro);
2755                         }
2756                 }
2757         }
2758
2759         spin_unlock(&nic->rx_lock);
2760 }
2761
2762 /**
2763  *  tx_intr_handler - Transmit interrupt handler
2764  *  @nic : device private variable
2765  *  Description:
2766  *  If an interrupt was raised to indicate DMA complete of the
2767  *  Tx packet, this function is called. It identifies the last TxD
2768  *  whose buffer was freed and frees all skbs whose data have already
2769  *  DMA'ed into the NICs internal memory.
2770  *  Return Value:
2771  *  NONE
2772  */
2773
2774 static void tx_intr_handler(fifo_info_t *fifo_data)
2775 {
2776         nic_t *nic = fifo_data->nic;
2777         struct net_device *dev = (struct net_device *) nic->dev;
2778         tx_curr_get_info_t get_info, put_info;
2779         struct sk_buff *skb;
2780         TxD_t *txdlp;
2781
2782         get_info = fifo_data->tx_curr_get_info;
2783         put_info = fifo_data->tx_curr_put_info;
2784         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2785             list_virt_addr;
2786         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2787                (get_info.offset != put_info.offset) &&
2788                (txdlp->Host_Control)) {
2789                 /* Check for TxD errors */
2790                 if (txdlp->Control_1 & TXD_T_CODE) {
2791                         unsigned long long err;
2792                         err = txdlp->Control_1 & TXD_T_CODE;
2793                         if (err & 0x1) {
2794                                 nic->mac_control.stats_info->sw_stat.
2795                                                 parity_err_cnt++;
2796                         }
2797                         if ((err >> 48) == 0xA) {
2798                                 DBG_PRINT(TX_DBG, "TxD returned due \
2799 to loss of link\n");
2800                         }
2801                         else {
2802                                 DBG_PRINT(ERR_DBG, "***TxD error \
2803 %llx\n", err);
2804                         }
2805                 }
2806
2807                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2808                 if (skb == NULL) {
2809                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2810                         __FUNCTION__);
2811                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2812                         return;
2813                 }
2814
2815                 /* Updating the statistics block */
2816                 nic->stats.tx_bytes += skb->len;
2817                 dev_kfree_skb_irq(skb);
2818
2819                 get_info.offset++;
2820                 if (get_info.offset == get_info.fifo_len + 1)
2821                         get_info.offset = 0;
2822                 txdlp = (TxD_t *) fifo_data->list_info
2823                     [get_info.offset].list_virt_addr;
2824                 fifo_data->tx_curr_get_info.offset =
2825                     get_info.offset;
2826         }
2827
2828         spin_lock(&nic->tx_lock);
2829         if (netif_queue_stopped(dev))
2830                 netif_wake_queue(dev);
2831         spin_unlock(&nic->tx_lock);
2832 }
2833
2834 /**
2835  *  s2io_mdio_write - Function to write in to MDIO registers
2836  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2837  *  @addr     : address value
2838  *  @value    : data value
2839  *  @dev      : pointer to net_device structure
2840  *  Description:
2841  *  This function is used to write values to the MDIO registers
2842  *  NONE
2843  */
2844 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2845 {
2846         u64 val64 = 0x0;
2847         nic_t *sp = dev->priv;
2848         XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2849
2850         //address transaction
2851         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2852                         | MDIO_MMD_DEV_ADDR(mmd_type)
2853                         | MDIO_MMS_PRT_ADDR(0x0);
2854         writeq(val64, &bar0->mdio_control);
2855         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2856         writeq(val64, &bar0->mdio_control);
2857         udelay(100);
2858
2859         //Data transaction
2860         val64 = 0x0;
2861         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2862                         | MDIO_MMD_DEV_ADDR(mmd_type)
2863                         | MDIO_MMS_PRT_ADDR(0x0)
2864                         | MDIO_MDIO_DATA(value)
2865                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2866         writeq(val64, &bar0->mdio_control);
2867         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2868         writeq(val64, &bar0->mdio_control);
2869         udelay(100);
2870
2871         val64 = 0x0;
2872         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2873         | MDIO_MMD_DEV_ADDR(mmd_type)
2874         | MDIO_MMS_PRT_ADDR(0x0)
2875         | MDIO_OP(MDIO_OP_READ_TRANS);
2876         writeq(val64, &bar0->mdio_control);
2877         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2878         writeq(val64, &bar0->mdio_control);
2879         udelay(100);
2880
2881 }
2882
2883 /**
2884  *  s2io_mdio_read - Function to write in to MDIO registers
2885  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2886  *  @addr     : address value
2887  *  @dev      : pointer to net_device structure
2888  *  Description:
2889  *  This function is used to read values to the MDIO registers
2890  *  NONE
2891  */
2892 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2893 {
2894         u64 val64 = 0x0;
2895         u64 rval64 = 0x0;
2896         nic_t *sp = dev->priv;
2897         XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2898
2899         /* address transaction */
2900         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2901                         | MDIO_MMD_DEV_ADDR(mmd_type)
2902                         | MDIO_MMS_PRT_ADDR(0x0);
2903         writeq(val64, &bar0->mdio_control);
2904         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2905         writeq(val64, &bar0->mdio_control);
2906         udelay(100);
2907
2908         /* Data transaction */
2909         val64 = 0x0;
2910         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2911                         | MDIO_MMD_DEV_ADDR(mmd_type)
2912                         | MDIO_MMS_PRT_ADDR(0x0)
2913                         | MDIO_OP(MDIO_OP_READ_TRANS);
2914         writeq(val64, &bar0->mdio_control);
2915         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2916         writeq(val64, &bar0->mdio_control);
2917         udelay(100);
2918
2919         /* Read the value from regs */
2920         rval64 = readq(&bar0->mdio_control);
2921         rval64 = rval64 & 0xFFFF0000;
2922         rval64 = rval64 >> 16;
2923         return rval64;
2924 }
2925 /**
2926  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2927  *  @counter      : couter value to be updated
2928  *  @flag         : flag to indicate the status
2929  *  @type         : counter type
2930  *  Description:
2931  *  This function is to check the status of the xpak counters value
2932  *  NONE
2933  */
2934
2935 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2936 {
2937         u64 mask = 0x3;
2938         u64 val64;
2939         int i;
2940         for(i = 0; i <index; i++)
2941                 mask = mask << 0x2;
2942
2943         if(flag > 0)
2944         {
2945                 *counter = *counter + 1;
2946                 val64 = *regs_stat & mask;
2947                 val64 = val64 >> (index * 0x2);
2948                 val64 = val64 + 1;
2949                 if(val64 == 3)
2950                 {
2951                         switch(type)
2952                         {
2953                         case 1:
2954                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2955                                           "service. Excessive temperatures may "
2956                                           "result in premature transceiver "
2957                                           "failure \n");
2958                         break;
2959                         case 2:
2960                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2961                                           "service Excessive bias currents may "
2962                                           "indicate imminent laser diode "
2963                                           "failure \n");
2964                         break;
2965                         case 3:
2966                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2967                                           "service Excessive laser output "
2968                                           "power may saturate far-end "
2969                                           "receiver\n");
2970                         break;
2971                         default:
2972                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2973                                           "type \n");
2974                         }
2975                         val64 = 0x0;
2976                 }
2977                 val64 = val64 << (index * 0x2);
2978                 *regs_stat = (*regs_stat & (~mask)) | (val64);
2979
2980         } else {
2981                 *regs_stat = *regs_stat & (~mask);
2982         }
2983 }
2984
2985 /**
2986  *  s2io_updt_xpak_counter - Function to update the xpak counters
2987  *  @dev         : pointer to net_device struct
2988  *  Description:
2989  *  This function is to upate the status of the xpak counters value
2990  *  NONE
2991  */
2992 static void s2io_updt_xpak_counter(struct net_device *dev)
2993 {
2994         u16 flag  = 0x0;
2995         u16 type  = 0x0;
2996         u16 val16 = 0x0;
2997         u64 val64 = 0x0;
2998         u64 addr  = 0x0;
2999
3000         nic_t *sp = dev->priv;
3001         StatInfo_t *stat_info = sp->mac_control.stats_info;
3002
3003         /* Check the communication with the MDIO slave */
3004         addr = 0x0000;
3005         val64 = 0x0;
3006         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3007         if((val64 == 0xFFFF) || (val64 == 0x0000))
3008         {
3009                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3010                           "Returned %llx\n", (unsigned long long)val64);
3011                 return;
3012         }
3013
3014         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3015         if(val64 != 0x2040)
3016         {
3017                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3018                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3019                           (unsigned long long)val64);
3020                 return;
3021         }
3022
3023         /* Loading the DOM register to MDIO register */
3024         addr = 0xA100;
3025         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3026         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3027
3028         /* Reading the Alarm flags */
3029         addr = 0xA070;
3030         val64 = 0x0;
3031         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3032
3033         flag = CHECKBIT(val64, 0x7);
3034         type = 1;
3035         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3036                                 &stat_info->xpak_stat.xpak_regs_stat,
3037                                 0x0, flag, type);
3038
3039         if(CHECKBIT(val64, 0x6))
3040                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3041
3042         flag = CHECKBIT(val64, 0x3);
3043         type = 2;
3044         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3045                                 &stat_info->xpak_stat.xpak_regs_stat,
3046                                 0x2, flag, type);
3047
3048         if(CHECKBIT(val64, 0x2))
3049                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3050
3051         flag = CHECKBIT(val64, 0x1);
3052         type = 3;
3053         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3054                                 &stat_info->xpak_stat.xpak_regs_stat,
3055                                 0x4, flag, type);
3056
3057         if(CHECKBIT(val64, 0x0))
3058                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3059
3060         /* Reading the Warning flags */
3061         addr = 0xA074;
3062         val64 = 0x0;
3063         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3064
3065         if(CHECKBIT(val64, 0x7))
3066                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3067
3068         if(CHECKBIT(val64, 0x6))
3069                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3070
3071         if(CHECKBIT(val64, 0x3))
3072                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3073
3074         if(CHECKBIT(val64, 0x2))
3075                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3076
3077         if(CHECKBIT(val64, 0x1))
3078                 stat_info->xpak_stat.warn_laser_output_power_high++;
3079
3080         if(CHECKBIT(val64, 0x0))
3081                 stat_info->xpak_stat.warn_laser_output_power_low++;
3082 }
3083
3084 /**
3085  *  alarm_intr_handler - Alarm Interrrupt handler
3086  *  @nic: device private variable
3087  *  Description: If the interrupt was neither because of Rx packet or Tx
3088  *  complete, this function is called. If the interrupt was to indicate
3089  *  a loss of link, the OSM link status handler is invoked for any other
3090  *  alarm interrupt the block that raised the interrupt is displayed
3091  *  and a H/W reset is issued.
3092  *  Return Value:
3093  *  NONE
3094 */
3095
3096 static void alarm_intr_handler(struct s2io_nic *nic)
3097 {
3098         struct net_device *dev = (struct net_device *) nic->dev;
3099         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3100         register u64 val64 = 0, err_reg = 0;
3101         u64 cnt;
3102         int i;
3103         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3104         /* Handling the XPAK counters update */
3105         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3106                 /* waiting for an hour */
3107                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3108         } else {
3109                 s2io_updt_xpak_counter(dev);
3110                 /* reset the count to zero */
3111                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3112         }
3113
3114         /* Handling link status change error Intr */
3115         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3116                 err_reg = readq(&bar0->mac_rmac_err_reg);
3117                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3118                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3119                         schedule_work(&nic->set_link_task);
3120                 }
3121         }
3122
3123         /* Handling Ecc errors */
3124         val64 = readq(&bar0->mc_err_reg);
3125         writeq(val64, &bar0->mc_err_reg);
3126         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3127                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3128                         nic->mac_control.stats_info->sw_stat.
3129                                 double_ecc_errs++;
3130                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3131                                   dev->name);
3132                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3133                         if (nic->device_type != XFRAME_II_DEVICE) {
3134                                 /* Reset XframeI only if critical error */
3135                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3136                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3137                                         netif_stop_queue(dev);
3138                                         schedule_work(&nic->rst_timer_task);
3139                                         nic->mac_control.stats_info->sw_stat.
3140                                                         soft_reset_cnt++;
3141                                 }
3142                         }
3143                 } else {
3144                         nic->mac_control.stats_info->sw_stat.
3145                                 single_ecc_errs++;
3146                 }
3147         }
3148
3149         /* In case of a serious error, the device will be Reset. */
3150         val64 = readq(&bar0->serr_source);
3151         if (val64 & SERR_SOURCE_ANY) {
3152                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3153                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3154                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n", 
3155                           (unsigned long long)val64);
3156                 netif_stop_queue(dev);
3157                 schedule_work(&nic->rst_timer_task);
3158                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3159         }
3160
3161         /*
3162          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3163          * Error occurs, the adapter will be recycled by disabling the
3164          * adapter enable bit and enabling it again after the device
3165          * becomes Quiescent.
3166          */
3167         val64 = readq(&bar0->pcc_err_reg);
3168         writeq(val64, &bar0->pcc_err_reg);
3169         if (val64 & PCC_FB_ECC_DB_ERR) {
3170                 u64 ac = readq(&bar0->adapter_control);
3171                 ac &= ~(ADAPTER_CNTL_EN);
3172                 writeq(ac, &bar0->adapter_control);
3173                 ac = readq(&bar0->adapter_control);
3174                 schedule_work(&nic->set_link_task);
3175         }
3176         /* Check for data parity error */
3177         val64 = readq(&bar0->pic_int_status);
3178         if (val64 & PIC_INT_GPIO) {
3179                 val64 = readq(&bar0->gpio_int_reg);
3180                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3181                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3182                         schedule_work(&nic->rst_timer_task);
3183                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3184                 }
3185         }
3186
3187         /* Check for ring full counter */
3188         if (nic->device_type & XFRAME_II_DEVICE) {
3189                 val64 = readq(&bar0->ring_bump_counter1);
3190                 for (i=0; i<4; i++) {
3191                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3192                         cnt >>= 64 - ((i+1)*16);
3193                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3194                                 += cnt;
3195                 }
3196
3197                 val64 = readq(&bar0->ring_bump_counter2);
3198                 for (i=0; i<4; i++) {
3199                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3200                         cnt >>= 64 - ((i+1)*16);
3201                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3202                                 += cnt;
3203                 }
3204         }
3205
3206         /* Other type of interrupts are not being handled now,  TODO */
3207 }
3208
3209 /**
3210  *  wait_for_cmd_complete - waits for a command to complete.
3211  *  @sp : private member of the device structure, which is a pointer to the
3212  *  s2io_nic structure.
3213  *  Description: Function that waits for a command to Write into RMAC
3214  *  ADDR DATA registers to be completed and returns either success or
3215  *  error depending on whether the command was complete or not.
3216  *  Return value:
3217  *   SUCCESS on success and FAILURE on failure.
3218  */
3219
3220 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3221 {
3222         int ret = FAILURE, cnt = 0;
3223         u64 val64;
3224
3225         while (TRUE) {
3226                 val64 = readq(addr);
3227                 if (!(val64 & busy_bit)) {
3228                         ret = SUCCESS;
3229                         break;
3230                 }
3231
3232                 if(in_interrupt())
3233                         mdelay(50);
3234                 else
3235                         msleep(50);
3236
3237                 if (cnt++ > 10)
3238                         break;
3239         }
3240         return ret;
3241 }
3242
3243 /**
3244  *  s2io_reset - Resets the card.
3245  *  @sp : private member of the device structure.
3246  *  Description: Function to Reset the card. This function then also
3247  *  restores the previously saved PCI configuration space registers as
3248  *  the card reset also resets the configuration space.
3249  *  Return value:
3250  *  void.
3251  */
3252
3253 static void s2io_reset(nic_t * sp)
3254 {
3255         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3256         u64 val64;
3257         u16 subid, pci_cmd;
3258
3259         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3260         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3261
3262         val64 = SW_RESET_ALL;
3263         writeq(val64, &bar0->sw_reset);
3264
3265         /*
3266          * At this stage, if the PCI write is indeed completed, the
3267          * card is reset and so is the PCI Config space of the device.
3268          * So a read cannot be issued at this stage on any of the
3269          * registers to ensure the write into "sw_reset" register
3270          * has gone through.
3271          * Question: Is there any system call that will explicitly force
3272          * all the write commands still pending on the bus to be pushed
3273          * through?
3274          * As of now I'am just giving a 250ms delay and hoping that the
3275          * PCI write to sw_reset register is done by this time.
3276          */
3277         msleep(250);
3278         if (strstr(sp->product_name, "CX4")) {
3279                 msleep(750);
3280         }
3281
3282         /* Restore the PCI state saved during initialization. */
3283         pci_restore_state(sp->pdev);
3284         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3285                                      pci_cmd);
3286         s2io_init_pci(sp);
3287
3288         msleep(250);
3289
3290         /* Set swapper to enable I/O register access */
3291         s2io_set_swapper(sp);
3292
3293         /* Restore the MSIX table entries from local variables */
3294         restore_xmsi_data(sp);
3295
3296         /* Clear certain PCI/PCI-X fields after reset */
3297         if (sp->device_type == XFRAME_II_DEVICE) {
3298                 /* Clear parity err detect bit */
3299                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3300
3301                 /* Clearing PCIX Ecc status register */
3302                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3303
3304                 /* Clearing PCI_STATUS error reflected here */
3305                 writeq(BIT(62), &bar0->txpic_int_reg);
3306         }
3307
3308         /* Reset device statistics maintained by OS */
3309         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3310
3311         /* SXE-002: Configure link and activity LED to turn it off */
3312         subid = sp->pdev->subsystem_device;
3313         if (((subid & 0xFF) >= 0x07) &&
3314             (sp->device_type == XFRAME_I_DEVICE)) {
3315                 val64 = readq(&bar0->gpio_control);
3316                 val64 |= 0x0000800000000000ULL;
3317                 writeq(val64, &bar0->gpio_control);
3318                 val64 = 0x0411040400000000ULL;
3319                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3320         }
3321
3322         /*
3323          * Clear spurious ECC interrupts that would have occured on
3324          * XFRAME II cards after reset.
3325          */
3326         if (sp->device_type == XFRAME_II_DEVICE) {
3327                 val64 = readq(&bar0->pcc_err_reg);
3328                 writeq(val64, &bar0->pcc_err_reg);
3329         }
3330
3331         sp->device_enabled_once = FALSE;
3332 }
3333
3334 /**
3335  *  s2io_set_swapper - to set the swapper controle on the card
3336  *  @sp : private member of the device structure,
3337  *  pointer to the s2io_nic structure.
3338  *  Description: Function to set the swapper control on the card
3339  *  correctly depending on the 'endianness' of the system.
3340  *  Return value:
3341  *  SUCCESS on success and FAILURE on failure.
3342  */
3343
3344 static int s2io_set_swapper(nic_t * sp)
3345 {
3346         struct net_device *dev = sp->dev;
3347         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3348         u64 val64, valt, valr;
3349
3350         /*
3351          * Set proper endian settings and verify the same by reading
3352          * the PIF Feed-back register.
3353          */
3354
3355         val64 = readq(&bar0->pif_rd_swapper_fb);
3356         if (val64 != 0x0123456789ABCDEFULL) {
3357                 int i = 0;
3358                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3359                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3360                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3361                                 0};                     /* FE=0, SE=0 */
3362
3363                 while(i<4) {
3364                         writeq(value[i], &bar0->swapper_ctrl);
3365                         val64 = readq(&bar0->pif_rd_swapper_fb);
3366                         if (val64 == 0x0123456789ABCDEFULL)
3367                                 break;
3368                         i++;
3369                 }
3370                 if (i == 4) {
3371                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3372                                 dev->name);
3373                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3374                                 (unsigned long long) val64);
3375                         return FAILURE;
3376                 }
3377                 valr = value[i];
3378         } else {
3379                 valr = readq(&bar0->swapper_ctrl);
3380         }
3381
3382         valt = 0x0123456789ABCDEFULL;
3383         writeq(valt, &bar0->xmsi_address);
3384         val64 = readq(&bar0->xmsi_address);
3385
3386         if(val64 != valt) {
3387                 int i = 0;
3388                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3389                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3390                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3391                                 0};                     /* FE=0, SE=0 */
3392
3393                 while(i<4) {
3394                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3395                         writeq(valt, &bar0->xmsi_address);
3396                         val64 = readq(&bar0->xmsi_address);
3397                         if(val64 == valt)
3398                                 break;
3399                         i++;
3400                 }
3401                 if(i == 4) {
3402                         unsigned long long x = val64;
3403                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3404                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3405                         return FAILURE;
3406                 }
3407         }
3408         val64 = readq(&bar0->swapper_ctrl);
3409         val64 &= 0xFFFF000000000000ULL;
3410
3411 #ifdef  __BIG_ENDIAN
3412         /*
3413          * The device by default set to a big endian format, so a
3414          * big endian driver need not set anything.
3415          */
3416         val64 |= (SWAPPER_CTRL_TXP_FE |
3417                  SWAPPER_CTRL_TXP_SE |
3418                  SWAPPER_CTRL_TXD_R_FE |
3419                  SWAPPER_CTRL_TXD_W_FE |
3420                  SWAPPER_CTRL_TXF_R_FE |
3421                  SWAPPER_CTRL_RXD_R_FE |
3422                  SWAPPER_CTRL_RXD_W_FE |
3423                  SWAPPER_CTRL_RXF_W_FE |
3424                  SWAPPER_CTRL_XMSI_FE |
3425                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3426         if (sp->intr_type == INTA)
3427                 val64 |= SWAPPER_CTRL_XMSI_SE;
3428         writeq(val64, &bar0->swapper_ctrl);
3429 #else
3430         /*
3431          * Initially we enable all bits to make it accessible by the
3432          * driver, then we selectively enable only those bits that
3433          * we want to set.
3434          */
3435         val64 |= (SWAPPER_CTRL_TXP_FE |
3436                  SWAPPER_CTRL_TXP_SE |
3437                  SWAPPER_CTRL_TXD_R_FE |
3438                  SWAPPER_CTRL_TXD_R_SE |
3439                  SWAPPER_CTRL_TXD_W_FE |
3440                  SWAPPER_CTRL_TXD_W_SE |
3441                  SWAPPER_CTRL_TXF_R_FE |
3442                  SWAPPER_CTRL_RXD_R_FE |
3443                  SWAPPER_CTRL_RXD_R_SE |
3444                  SWAPPER_CTRL_RXD_W_FE |
3445                  SWAPPER_CTRL_RXD_W_SE |
3446                  SWAPPER_CTRL_RXF_W_FE |
3447                  SWAPPER_CTRL_XMSI_FE |
3448                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3449         if (sp->intr_type == INTA)
3450                 val64 |= SWAPPER_CTRL_XMSI_SE;
3451         writeq(val64, &bar0->swapper_ctrl);
3452 #endif
3453         val64 = readq(&bar0->swapper_ctrl);
3454
3455         /*
3456          * Verifying if endian settings are accurate by reading a
3457          * feedback register.
3458          */
3459         val64 = readq(&bar0->pif_rd_swapper_fb);
3460         if (val64 != 0x0123456789ABCDEFULL) {
3461                 /* Endian settings are incorrect, calls for another dekko. */
3462                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3463                           dev->name);
3464                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3465                           (unsigned long long) val64);
3466                 return FAILURE;
3467         }
3468
3469         return SUCCESS;
3470 }
3471
3472 static int wait_for_msix_trans(nic_t *nic, int i)
3473 {
3474         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3475         u64 val64;
3476         int ret = 0, cnt = 0;
3477
3478         do {
3479                 val64 = readq(&bar0->xmsi_access);
3480                 if (!(val64 & BIT(15)))
3481                         break;
3482                 mdelay(1);
3483                 cnt++;
3484         } while(cnt < 5);
3485         if (cnt == 5) {
3486                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3487                 ret = 1;
3488         }
3489
3490         return ret;
3491 }
3492
3493 static void restore_xmsi_data(nic_t *nic)
3494 {
3495         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3496         u64 val64;
3497         int i;
3498
3499         for (i=0; i< nic->avail_msix_vectors; i++) {
3500                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3501                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3502                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3503                 writeq(val64, &bar0->xmsi_access);
3504                 if (wait_for_msix_trans(nic, i)) {
3505                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3506                         continue;
3507                 }
3508         }
3509 }
3510
3511 static void store_xmsi_data(nic_t *nic)
3512 {
3513         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3514         u64 val64, addr, data;
3515         int i;
3516
3517         /* Store and display */
3518         for (i=0; i< nic->avail_msix_vectors; i++) {
3519                 val64 = (BIT(15) | vBIT(i, 26, 6));
3520                 writeq(val64, &bar0->xmsi_access);
3521                 if (wait_for_msix_trans(nic, i)) {
3522                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3523                         continue;
3524                 }
3525                 addr = readq(&bar0->xmsi_address);
3526                 data = readq(&bar0->xmsi_data);
3527                 if (addr && data) {
3528                         nic->msix_info[i].addr = addr;
3529                         nic->msix_info[i].data = data;
3530                 }
3531         }
3532 }
3533
3534 int s2io_enable_msi(nic_t *nic)
3535 {
3536         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3537         u16 msi_ctrl, msg_val;
3538         struct config_param *config = &nic->config;
3539         struct net_device *dev = nic->dev;
3540         u64 val64, tx_mat, rx_mat;
3541         int i, err;
3542
3543         val64 = readq(&bar0->pic_control);
3544         val64 &= ~BIT(1);
3545         writeq(val64, &bar0->pic_control);
3546
3547         err = pci_enable_msi(nic->pdev);
3548         if (err) {
3549                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3550                           nic->dev->name);
3551                 return err;
3552         }
3553
3554         /*
3555          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3556          * for interrupt handling.
3557          */
3558         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3559         msg_val ^= 0x1;
3560         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3561         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3562
3563         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3564         msi_ctrl |= 0x10;
3565         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3566
3567         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3568         tx_mat = readq(&bar0->tx_mat0_n[0]);
3569         for (i=0; i<config->tx_fifo_num; i++) {
3570                 tx_mat |= TX_MAT_SET(i, 1);
3571         }
3572         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3573
3574         rx_mat = readq(&bar0->rx_mat);
3575         for (i=0; i<config->rx_ring_num; i++) {
3576                 rx_mat |= RX_MAT_SET(i, 1);
3577         }
3578         writeq(rx_mat, &bar0->rx_mat);
3579
3580         dev->irq = nic->pdev->irq;
3581         return 0;
3582 }
3583
3584 static int s2io_enable_msi_x(nic_t *nic)
3585 {
3586         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3587         u64 tx_mat, rx_mat;
3588         u16 msi_control; /* Temp variable */
3589         int ret, i, j, msix_indx = 1;
3590
3591         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3592                                GFP_KERNEL);
3593         if (nic->entries == NULL) {
3594                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3595                 return -ENOMEM;
3596         }
3597         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3598
3599         nic->s2io_entries =
3600                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3601                                    GFP_KERNEL);
3602         if (nic->s2io_entries == NULL) {
3603                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3604                 kfree(nic->entries);
3605                 return -ENOMEM;
3606         }
3607         memset(nic->s2io_entries, 0,
3608                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3609
3610         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3611                 nic->entries[i].entry = i;
3612                 nic->s2io_entries[i].entry = i;
3613                 nic->s2io_entries[i].arg = NULL;
3614                 nic->s2io_entries[i].in_use = 0;
3615         }
3616
3617         tx_mat = readq(&bar0->tx_mat0_n[0]);
3618         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3619                 tx_mat |= TX_MAT_SET(i, msix_indx);
3620                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3621                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3622                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3623         }
3624         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3625
3626         if (!nic->config.bimodal) {
3627                 rx_mat = readq(&bar0->rx_mat);
3628                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3629                         rx_mat |= RX_MAT_SET(j, msix_indx);
3630                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3631                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3632                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3633                 }
3634                 writeq(rx_mat, &bar0->rx_mat);
3635         } else {
3636                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3637                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3638                         tx_mat |= TX_MAT_SET(i, msix_indx);
3639                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3640                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3641                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3642                 }
3643                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3644         }
3645
3646         nic->avail_msix_vectors = 0;
3647         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3648         /* We fail init if error or we get less vectors than min required */
3649         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3650                 nic->avail_msix_vectors = ret;
3651                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3652         }
3653         if (ret) {
3654                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3655                 kfree(nic->entries);
3656                 kfree(nic->s2io_entries);
3657                 nic->entries = NULL;
3658                 nic->s2io_entries = NULL;
3659                 nic->avail_msix_vectors = 0;
3660                 return -ENOMEM;
3661         }
3662         if (!nic->avail_msix_vectors)
3663                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3664
3665         /*
3666          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3667          * in the herc NIC. (Temp change, needs to be removed later)
3668          */
3669         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3670         msi_control |= 0x1; /* Enable MSI */
3671         pci_write_config_word(nic->pdev, 0x42, msi_control);
3672
3673         return 0;
3674 }
3675
3676 /* ********************************************************* *
3677  * Functions defined below concern the OS part of the driver *
3678  * ********************************************************* */
3679
3680 /**
3681  *  s2io_open - open entry point of the driver
3682  *  @dev : pointer to the device structure.
3683  *  Description:
3684  *  This function is the open entry point of the driver. It mainly calls a
3685  *  function to allocate Rx buffers and inserts them into the buffer
3686  *  descriptors and then enables the Rx part of the NIC.
3687  *  Return value:
3688  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3689  *   file on failure.
3690  */
3691
3692 static int s2io_open(struct net_device *dev)
3693 {
3694         nic_t *sp = dev->priv;
3695         int err = 0;
3696
3697         /*
3698          * Make sure you have link off by default every time
3699          * Nic is initialized
3700          */
3701         netif_carrier_off(dev);
3702         sp->last_link_state = 0;
3703
3704         /* Initialize H/W and enable interrupts */
3705         err = s2io_card_up(sp);
3706         if (err) {
3707                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3708                           dev->name);
3709                 if (err == -ENODEV)
3710                         goto hw_init_failed;
3711                 else
3712                         goto hw_enable_failed;
3713         }
3714
3715         /* Store the values of the MSIX table in the nic_t structure */
3716         store_xmsi_data(sp);
3717
3718         /* After proper initialization of H/W, register ISR */
3719         if (sp->intr_type == MSI) {
3720                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle, 
3721                         SA_SHIRQ, sp->name, dev);
3722                 if (err) {
3723                         DBG_PRINT(ERR_DBG, "%s: MSI registration \
3724 failed\n", dev->name);
3725                         goto isr_registration_failed;
3726                 }
3727         }
3728         if (sp->intr_type == MSI_X) {
3729                 int i;
3730
3731                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3732                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3733                                 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3734                                         dev->name, i);
3735                                 err = request_irq(sp->entries[i].vector,
3736                                           s2io_msix_fifo_handle, 0, sp->desc1,
3737                                           sp->s2io_entries[i].arg);
3738                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1, 
3739                                     (unsigned long long)sp->msix_info[i].addr);
3740                         } else {
3741                                 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3742                                         dev->name, i);
3743                                 err = request_irq(sp->entries[i].vector,
3744                                           s2io_msix_ring_handle, 0, sp->desc2,
3745                                           sp->s2io_entries[i].arg);
3746                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2, 
3747                                      (unsigned long long)sp->msix_info[i].addr);
3748                         }
3749                         if (err) {
3750                                 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3751 failed\n", dev->name, i);
3752                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3753                                 goto isr_registration_failed;
3754                         }
3755                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3756                 }
3757         }
3758         if (sp->intr_type == INTA) {
3759                 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3760                                 sp->name, dev);
3761                 if (err) {
3762                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3763                                   dev->name);
3764                         goto isr_registration_failed;
3765                 }
3766         }
3767
3768         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3769                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3770                 err = -ENODEV;
3771                 goto setting_mac_address_failed;
3772         }
3773
3774         netif_start_queue(dev);
3775         return 0;
3776
3777 setting_mac_address_failed:
3778         if (sp->intr_type != MSI_X)
3779                 free_irq(sp->pdev->irq, dev);
3780 isr_registration_failed:
3781         del_timer_sync(&sp->alarm_timer);
3782         if (sp->intr_type == MSI_X) {
3783                 int i;
3784                 u16 msi_control; /* Temp variable */
3785
3786                 for (i=1; (sp->s2io_entries[i].in_use == 
3787                                 MSIX_REGISTERED_SUCCESS); i++) {
3788                         int vector = sp->entries[i].vector;
3789                         void *arg = sp->s2io_entries[i].arg;
3790
3791                         free_irq(vector, arg);
3792                 }
3793                 pci_disable_msix(sp->pdev);
3794
3795                 /* Temp */
3796                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3797                 msi_control &= 0xFFFE; /* Disable MSI */
3798                 pci_write_config_word(sp->pdev, 0x42, msi_control);
3799         }
3800         else if (sp->intr_type == MSI)
3801                 pci_disable_msi(sp->pdev);
3802 hw_enable_failed:
3803         s2io_reset(sp);
3804 hw_init_failed:
3805         if (sp->intr_type == MSI_X) {
3806                 if (sp->entries)
3807                         kfree(sp->entries);
3808                 if (sp->s2io_entries)
3809                         kfree(sp->s2io_entries);
3810         }
3811         return err;
3812 }
3813
3814 /**
3815  *  s2io_close -close entry point of the driver
3816  *  @dev : device pointer.
3817  *  Description:
3818  *  This is the stop entry point of the driver. It needs to undo exactly
3819  *  whatever was done by the open entry point,thus it's usually referred to
3820  *  as the close function.Among other things this function mainly stops the
3821  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3822  *  Return value:
3823  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3824  *  file on failure.
3825  */
3826
3827 static int s2io_close(struct net_device *dev)
3828 {
3829         nic_t *sp = dev->priv;
3830
3831         flush_scheduled_work();
3832         netif_stop_queue(dev);
3833         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3834         s2io_card_down(sp, 1);
3835
3836         sp->device_close_flag = TRUE;   /* Device is shut down. */
3837         return 0;
3838 }
3839
3840 /**
3841  *  s2io_xmit - Tx entry point of te driver
3842  *  @skb : the socket buffer containing the Tx data.
3843  *  @dev : device pointer.
3844  *  Description :
3845  *  This function is the Tx entry point of the driver. S2IO NIC supports
3846  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3847  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3848  *  not be upadted.
3849  *  Return value:
3850  *  0 on success & 1 on failure.
3851  */
3852
3853 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3854 {
3855         nic_t *sp = dev->priv;
3856         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3857         register u64 val64;
3858         TxD_t *txdp;
3859         TxFIFO_element_t __iomem *tx_fifo;
3860         unsigned long flags;
3861 #ifdef NETIF_F_TSO
3862         int mss;
3863 #endif
3864         u16 vlan_tag = 0;
3865         int vlan_priority = 0;
3866         mac_info_t *mac_control;
3867         struct config_param *config;
3868
3869         mac_control = &sp->mac_control;
3870         config = &sp->config;
3871
3872         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3873         spin_lock_irqsave(&sp->tx_lock, flags);
3874         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3875                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3876                           dev->name);
3877                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3878                 dev_kfree_skb(skb);
3879                 return 0;
3880         }
3881
3882         queue = 0;
3883
3884         /* Get Fifo number to Transmit based on vlan priority */
3885         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3886                 vlan_tag = vlan_tx_tag_get(skb);
3887                 vlan_priority = vlan_tag >> 13;
3888                 queue = config->fifo_mapping[vlan_priority];
3889         }
3890
3891         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3892         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3893         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3894                 list_virt_addr;
3895
3896         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3897         /* Avoid "put" pointer going beyond "get" pointer */
3898         if (txdp->Host_Control ||
3899                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3900                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3901                 netif_stop_queue(dev);
3902                 dev_kfree_skb(skb);
3903                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3904                 return 0;
3905         }
3906
3907         /* A buffer with no data will be dropped */
3908         if (!skb->len) {
3909                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3910                 dev_kfree_skb(skb);
3911                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3912                 return 0;
3913         }
3914
3915         txdp->Control_1 = 0;
3916         txdp->Control_2 = 0;
3917 #ifdef NETIF_F_TSO
3918         mss = skb_shinfo(skb)->tso_size;
3919         if (mss) {
3920                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3921                 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3922         }
3923 #endif
3924         if (skb->ip_summed == CHECKSUM_HW) {
3925                 txdp->Control_2 |=
3926                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3927                      TXD_TX_CKO_UDP_EN);
3928         }
3929         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3930         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3931         txdp->Control_2 |= config->tx_intr_type;
3932
3933         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3934                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3935                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3936         }
3937
3938         frg_len = skb->len - skb->data_len;
3939         if (skb_shinfo(skb)->ufo_size) {
3940                 int ufo_size;
3941
3942                 ufo_size = skb_shinfo(skb)->ufo_size;
3943                 ufo_size &= ~7;
3944                 txdp->Control_1 |= TXD_UFO_EN;
3945                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3946                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3947 #ifdef __BIG_ENDIAN
3948                 sp->ufo_in_band_v[put_off] =
3949                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3950 #else
3951                 sp->ufo_in_band_v[put_off] =
3952                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3953 #endif
3954                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3955                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3956                                         sp->ufo_in_band_v,
3957                                         sizeof(u64), PCI_DMA_TODEVICE);
3958                 txdp++;
3959                 txdp->Control_1 = 0;
3960                 txdp->Control_2 = 0;
3961         }
3962
3963         txdp->Buffer_Pointer = pci_map_single
3964             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3965         txdp->Host_Control = (unsigned long) skb;
3966         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3967
3968         if (skb_shinfo(skb)->ufo_size)
3969                 txdp->Control_1 |= TXD_UFO_EN;
3970
3971         frg_cnt = skb_shinfo(skb)->nr_frags;
3972         /* For fragmented SKB. */
3973         for (i = 0; i < frg_cnt; i++) {
3974                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3975                 /* A '0' length fragment will be ignored */
3976                 if (!frag->size)
3977                         continue;
3978                 txdp++;
3979                 txdp->Buffer_Pointer = (u64) pci_map_page
3980                     (sp->pdev, frag->page, frag->page_offset,
3981                      frag->size, PCI_DMA_TODEVICE);
3982                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3983                 if (skb_shinfo(skb)->ufo_size)
3984                         txdp->Control_1 |= TXD_UFO_EN;
3985         }
3986         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3987
3988         if (skb_shinfo(skb)->ufo_size)
3989                 frg_cnt++; /* as Txd0 was used for inband header */
3990
3991         tx_fifo = mac_control->tx_FIFO_start[queue];
3992         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3993         writeq(val64, &tx_fifo->TxDL_Pointer);
3994
3995         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3996                  TX_FIFO_LAST_LIST);
3997
3998 #ifdef NETIF_F_TSO
3999         if (mss)
4000                 val64 |= TX_FIFO_SPECIAL_FUNC;
4001 #endif
4002         if (skb_shinfo(skb)->ufo_size)
4003                 val64 |= TX_FIFO_SPECIAL_FUNC;
4004         writeq(val64, &tx_fifo->List_Control);
4005
4006         mmiowb();
4007
4008         put_off++;
4009         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4010                 put_off = 0;
4011         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4012
4013         /* Avoid "put" pointer going beyond "get" pointer */
4014         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4015                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4016                 DBG_PRINT(TX_DBG,
4017                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4018                           put_off, get_off);
4019                 netif_stop_queue(dev);
4020         }
4021
4022         dev->trans_start = jiffies;
4023         spin_unlock_irqrestore(&sp->tx_lock, flags);
4024
4025         return 0;
4026 }
4027
4028 static void
4029 s2io_alarm_handle(unsigned long data)
4030 {
4031         nic_t *sp = (nic_t *)data;
4032
4033         alarm_intr_handler(sp);
4034         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4035 }
4036
4037 static irqreturn_t
4038 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4039 {
4040         struct net_device *dev = (struct net_device *) dev_id;
4041         nic_t *sp = dev->priv;
4042         int i;
4043         int ret;
4044         mac_info_t *mac_control;
4045         struct config_param *config;
4046
4047         atomic_inc(&sp->isr_cnt);
4048         mac_control = &sp->mac_control;
4049         config = &sp->config;
4050         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4051
4052         /* If Intr is because of Rx Traffic */
4053         for (i = 0; i < config->rx_ring_num; i++)
4054                 rx_intr_handler(&mac_control->rings[i]);
4055
4056         /* If Intr is because of Tx Traffic */
4057         for (i = 0; i < config->tx_fifo_num; i++)
4058                 tx_intr_handler(&mac_control->fifos[i]);
4059
4060         /*
4061          * If the Rx buffer count is below the panic threshold then
4062          * reallocate the buffers from the interrupt handler itself,
4063          * else schedule a tasklet to reallocate the buffers.
4064          */
4065         for (i = 0; i < config->rx_ring_num; i++) {
4066                 if (!sp->lro) {
4067                         int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4068                         int level = rx_buffer_level(sp, rxb_size, i);
4069
4070                         if ((level == PANIC) && (!TASKLET_IN_USE)) {
4071                                 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", 
4072                                                         dev->name);
4073                                 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4074                                 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4075                                         DBG_PRINT(ERR_DBG, "%s:Out of memory",
4076                                                   dev->name);
4077                                         DBG_PRINT(ERR_DBG, " in ISR!!\n");
4078                                         clear_bit(0, (&sp->tasklet_status));
4079                                         atomic_dec(&sp->isr_cnt);
4080                                         return IRQ_HANDLED;
4081                                 }
4082                                 clear_bit(0, (&sp->tasklet_status));
4083                         } else if (level == LOW) {
4084                                 tasklet_schedule(&sp->task);
4085                         }
4086                 }
4087                 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4088                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4089                                                         dev->name);
4090                                 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4091                                 break;
4092                 }
4093         }
4094
4095         atomic_dec(&sp->isr_cnt);
4096         return IRQ_HANDLED;
4097 }
4098
4099 static irqreturn_t
4100 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4101 {
4102         ring_info_t *ring = (ring_info_t *)dev_id;
4103         nic_t *sp = ring->nic;
4104         struct net_device *dev = (struct net_device *) dev_id;
4105         int rxb_size, level, rng_n;
4106
4107         atomic_inc(&sp->isr_cnt);
4108         rx_intr_handler(ring);
4109
4110         rng_n = ring->ring_no;
4111         if (!sp->lro) {
4112                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4113                 level = rx_buffer_level(sp, rxb_size, rng_n);
4114
4115                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4116                         int ret;
4117                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4118                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4119                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4120                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4121                                           __FUNCTION__);
4122                                 clear_bit(0, (&sp->tasklet_status));
4123                                 return IRQ_HANDLED;
4124                         }
4125                         clear_bit(0, (&sp->tasklet_status));
4126                 } else if (level == LOW) {
4127                         tasklet_schedule(&sp->task);
4128                 }
4129         }
4130         else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4131                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4132                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4133         }
4134
4135         atomic_dec(&sp->isr_cnt);
4136
4137         return IRQ_HANDLED;
4138 }
4139
4140 static irqreturn_t
4141 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4142 {
4143         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4144         nic_t *sp = fifo->nic;
4145
4146         atomic_inc(&sp->isr_cnt);
4147         tx_intr_handler(fifo);
4148         atomic_dec(&sp->isr_cnt);
4149         return IRQ_HANDLED;
4150 }
4151 static void s2io_txpic_intr_handle(nic_t *sp)
4152 {
4153         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4154         u64 val64;
4155
4156         val64 = readq(&bar0->pic_int_status);
4157         if (val64 & PIC_INT_GPIO) {
4158                 val64 = readq(&bar0->gpio_int_reg);
4159                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4160                     (val64 & GPIO_INT_REG_LINK_UP)) {
4161                         /*
4162                          * This is unstable state so clear both up/down
4163                          * interrupt and adapter to re-evaluate the link state.
4164                          */
4165                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4166                         val64 |= GPIO_INT_REG_LINK_UP;
4167                         writeq(val64, &bar0->gpio_int_reg);
4168                         val64 = readq(&bar0->gpio_int_mask);
4169                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4170                                    GPIO_INT_MASK_LINK_DOWN);
4171                         writeq(val64, &bar0->gpio_int_mask);
4172                 }
4173                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4174                         val64 = readq(&bar0->adapter_status);
4175                         if (verify_xena_quiescence(sp, val64,
4176                                                    sp->device_enabled_once)) {
4177                                 /* Enable Adapter */
4178                                 val64 = readq(&bar0->adapter_control);
4179                                 val64 |= ADAPTER_CNTL_EN;
4180                                 writeq(val64, &bar0->adapter_control);
4181                                 val64 |= ADAPTER_LED_ON;
4182                                 writeq(val64, &bar0->adapter_control);
4183                                 if (!sp->device_enabled_once)
4184                                         sp->device_enabled_once = 1;
4185
4186                                 s2io_link(sp, LINK_UP);
4187                                 /*
4188                                  * unmask link down interrupt and mask link-up
4189                                  * intr
4190                                  */
4191                                 val64 = readq(&bar0->gpio_int_mask);
4192                                 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4193                                 val64 |= GPIO_INT_MASK_LINK_UP;
4194                                 writeq(val64, &bar0->gpio_int_mask);
4195
4196                         }
4197                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4198                         val64 = readq(&bar0->adapter_status);
4199                         if (verify_xena_quiescence(sp, val64,
4200                                                    sp->device_enabled_once)) {
4201                                 s2io_link(sp, LINK_DOWN);
4202                                 /* Link is down so unmaks link up interrupt */
4203                                 val64 = readq(&bar0->gpio_int_mask);
4204                                 val64 &= ~GPIO_INT_MASK_LINK_UP;
4205                                 val64 |= GPIO_INT_MASK_LINK_DOWN;
4206                                 writeq(val64, &bar0->gpio_int_mask);
4207                         }
4208                 }
4209         }
4210         val64 = readq(&bar0->gpio_int_mask);
4211 }
4212
4213 /**
4214  *  s2io_isr - ISR handler of the device .
4215  *  @irq: the irq of the device.
4216  *  @dev_id: a void pointer to the dev structure of the NIC.
4217  *  @pt_regs: pointer to the registers pushed on the stack.
4218  *  Description:  This function is the ISR handler of the device. It
4219  *  identifies the reason for the interrupt and calls the relevant
4220  *  service routines. As a contongency measure, this ISR allocates the
4221  *  recv buffers, if their numbers are below the panic value which is
4222  *  presently set to 25% of the original number of rcv buffers allocated.
4223  *  Return value:
4224  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4225  *   IRQ_NONE: will be returned if interrupt is not from our device
4226  */
4227 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4228 {
4229         struct net_device *dev = (struct net_device *) dev_id;
4230         nic_t *sp = dev->priv;
4231         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4232         int i;
4233         u64 reason = 0, val64, org_mask;
4234         mac_info_t *mac_control;
4235         struct config_param *config;
4236
4237         atomic_inc(&sp->isr_cnt);
4238         mac_control = &sp->mac_control;
4239         config = &sp->config;
4240
4241         /*
4242          * Identify the cause for interrupt and call the appropriate
4243          * interrupt handler. Causes for the interrupt could be;
4244          * 1. Rx of packet.
4245          * 2. Tx complete.
4246          * 3. Link down.
4247          * 4. Error in any functional blocks of the NIC.
4248          */
4249         reason = readq(&bar0->general_int_status);
4250
4251         if (!reason) {
4252                 /* The interrupt was not raised by Xena. */
4253                 atomic_dec(&sp->isr_cnt);
4254                 return IRQ_NONE;
4255         }
4256
4257         val64 = 0xFFFFFFFFFFFFFFFFULL;
4258         /* Store current mask before masking all interrupts */
4259         org_mask = readq(&bar0->general_int_mask);
4260         writeq(val64, &bar0->general_int_mask);
4261
4262 #ifdef CONFIG_S2IO_NAPI
4263         if (reason & GEN_INTR_RXTRAFFIC) {
4264                 if (netif_rx_schedule_prep(dev)) {
4265                         writeq(val64, &bar0->rx_traffic_mask);
4266                         __netif_rx_schedule(dev);
4267                 }
4268         }
4269 #else
4270         /*
4271          * Rx handler is called by default, without checking for the
4272          * cause of interrupt.
4273          * rx_traffic_int reg is an R1 register, writing all 1's
4274          * will ensure that the actual interrupt causing bit get's
4275          * cleared and hence a read can be avoided.
4276          */
4277         writeq(val64, &bar0->rx_traffic_int);
4278         for (i = 0; i < config->rx_ring_num; i++) {
4279                 rx_intr_handler(&mac_control->rings[i]);
4280         }
4281 #endif
4282
4283         /*
4284          * tx_traffic_int reg is an R1 register, writing all 1's
4285          * will ensure that the actual interrupt causing bit get's
4286          * cleared and hence a read can be avoided.
4287          */
4288         writeq(val64, &bar0->tx_traffic_int);
4289
4290         for (i = 0; i < config->tx_fifo_num; i++)
4291                 tx_intr_handler(&mac_control->fifos[i]);
4292
4293         if (reason & GEN_INTR_TXPIC)
4294                 s2io_txpic_intr_handle(sp);
4295         /*
4296          * If the Rx buffer count is below the panic threshold then
4297          * reallocate the buffers from the interrupt handler itself,
4298          * else schedule a tasklet to reallocate the buffers.
4299          */
4300 #ifndef CONFIG_S2IO_NAPI
4301         for (i = 0; i < config->rx_ring_num; i++) {
4302                 if (!sp->lro) {
4303                         int ret;
4304                         int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4305                         int level = rx_buffer_level(sp, rxb_size, i);
4306
4307                         if ((level == PANIC) && (!TASKLET_IN_USE)) {
4308                                 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", 
4309                                                         dev->name);
4310                                 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4311                                 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4312                                         DBG_PRINT(ERR_DBG, "%s:Out of memory",
4313                                                   dev->name);
4314                                         DBG_PRINT(ERR_DBG, " in ISR!!\n");
4315                                         clear_bit(0, (&sp->tasklet_status));
4316                                         atomic_dec(&sp->isr_cnt);
4317                                         writeq(org_mask, &bar0->general_int_mask);
4318                                         return IRQ_HANDLED;
4319                                 }
4320                                 clear_bit(0, (&sp->tasklet_status));
4321                         } else if (level == LOW) {
4322                                 tasklet_schedule(&sp->task);
4323                         }
4324                 }
4325                 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4326                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4327                                                         dev->name);
4328                                 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4329                                 break;
4330                 }
4331         }
4332 #endif
4333         writeq(org_mask, &bar0->general_int_mask);
4334         atomic_dec(&sp->isr_cnt);
4335         return IRQ_HANDLED;
4336 }
4337
4338 /**
4339  * s2io_updt_stats -
4340  */
4341 static void s2io_updt_stats(nic_t *sp)
4342 {
4343         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4344         u64 val64;
4345         int cnt = 0;
4346
4347         if (atomic_read(&sp->card_state) == CARD_UP) {
4348                 /* Apprx 30us on a 133 MHz bus */
4349                 val64 = SET_UPDT_CLICKS(10) |
4350                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4351                 writeq(val64, &bar0->stat_cfg);
4352                 do {
4353                         udelay(100);
4354                         val64 = readq(&bar0->stat_cfg);
4355                         if (!(val64 & BIT(0)))
4356                                 break;
4357                         cnt++;
4358                         if (cnt == 5)
4359                                 break; /* Updt failed */
4360                 } while(1);
4361         }
4362 }
4363
4364 /**
4365  *  s2io_get_stats - Updates the device statistics structure.
4366  *  @dev : pointer to the device structure.
4367  *  Description:
4368  *  This function updates the device statistics structure in the s2io_nic
4369  *  structure and returns a pointer to the same.
4370  *  Return value:
4371  *  pointer to the updated net_device_stats structure.
4372  */
4373
4374 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4375 {
4376         nic_t *sp = dev->priv;
4377         mac_info_t *mac_control;
4378         struct config_param *config;
4379
4380
4381         mac_control = &sp->mac_control;
4382         config = &sp->config;
4383
4384         /* Configure Stats for immediate updt */
4385         s2io_updt_stats(sp);
4386
4387         sp->stats.tx_packets =
4388                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4389         sp->stats.tx_errors =
4390                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4391         sp->stats.rx_errors =
4392                 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4393         sp->stats.multicast =
4394                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4395         sp->stats.rx_length_errors =
4396                 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4397
4398         return (&sp->stats);
4399 }
4400
4401 /**
4402  *  s2io_set_multicast - entry point for multicast address enable/disable.
4403  *  @dev : pointer to the device structure
4404  *  Description:
4405  *  This function is a driver entry point which gets called by the kernel
4406  *  whenever multicast addresses must be enabled/disabled. This also gets
4407  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4408  *  determine, if multicast address must be enabled or if promiscuous mode
4409  *  is to be disabled etc.
4410  *  Return value:
4411  *  void.
4412  */
4413
4414 static void s2io_set_multicast(struct net_device *dev)
4415 {
4416         int i, j, prev_cnt;
4417         struct dev_mc_list *mclist;
4418         nic_t *sp = dev->priv;
4419         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4420         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4421             0xfeffffffffffULL;
4422         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4423         void __iomem *add;
4424
4425         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4426                 /*  Enable all Multicast addresses */
4427                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4428                        &bar0->rmac_addr_data0_mem);
4429                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4430                        &bar0->rmac_addr_data1_mem);
4431                 val64 = RMAC_ADDR_CMD_MEM_WE |
4432                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4433                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4434                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4435                 /* Wait till command completes */
4436                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4437                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4438
4439                 sp->m_cast_flg = 1;
4440                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4441         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4442                 /*  Disable all Multicast addresses */
4443                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4444                        &bar0->rmac_addr_data0_mem);
4445                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4446                        &bar0->rmac_addr_data1_mem);
4447                 val64 = RMAC_ADDR_CMD_MEM_WE |
4448                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4449                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4450                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4451                 /* Wait till command completes */
4452                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4453                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4454
4455                 sp->m_cast_flg = 0;
4456                 sp->all_multi_pos = 0;
4457         }
4458
4459         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4460                 /*  Put the NIC into promiscuous mode */
4461                 add = &bar0->mac_cfg;
4462                 val64 = readq(&bar0->mac_cfg);
4463                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4464
4465                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4466                 writel((u32) val64, add);
4467                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4468                 writel((u32) (val64 >> 32), (add + 4));
4469
4470                 val64 = readq(&bar0->mac_cfg);
4471                 sp->promisc_flg = 1;
4472                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4473                           dev->name);
4474         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4475                 /*  Remove the NIC from promiscuous mode */
4476                 add = &bar0->mac_cfg;
4477                 val64 = readq(&bar0->mac_cfg);
4478                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4479
4480                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4481                 writel((u32) val64, add);
4482                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4483                 writel((u32) (val64 >> 32), (add + 4));
4484
4485                 val64 = readq(&bar0->mac_cfg);
4486                 sp->promisc_flg = 0;
4487                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4488                           dev->name);
4489         }
4490
4491         /*  Update individual M_CAST address list */
4492         if ((!sp->m_cast_flg) && dev->mc_count) {
4493                 if (dev->mc_count >
4494                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4495                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4496                                   dev->name);
4497                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4498                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4499                         return;
4500                 }
4501
4502                 prev_cnt = sp->mc_addr_count;
4503                 sp->mc_addr_count = dev->mc_count;
4504
4505                 /* Clear out the previous list of Mc in the H/W. */
4506                 for (i = 0; i < prev_cnt; i++) {
4507                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4508                                &bar0->rmac_addr_data0_mem);
4509                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4510                                 &bar0->rmac_addr_data1_mem);
4511                         val64 = RMAC_ADDR_CMD_MEM_WE |
4512                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4513                             RMAC_ADDR_CMD_MEM_OFFSET
4514                             (MAC_MC_ADDR_START_OFFSET + i);
4515                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4516
4517                         /* Wait for command completes */
4518                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4519                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4520                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4521                                           dev->name);
4522                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4523                                 return;
4524                         }
4525                 }
4526
4527                 /* Create the new Rx filter list and update the same in H/W. */
4528                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4529                      i++, mclist = mclist->next) {
4530                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4531                                ETH_ALEN);
4532                         mac_addr = 0;
4533                         for (j = 0; j < ETH_ALEN; j++) {
4534                                 mac_addr |= mclist->dmi_addr[j];
4535                                 mac_addr <<= 8;
4536                         }
4537                         mac_addr >>= 8;
4538                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4539                                &bar0->rmac_addr_data0_mem);
4540                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4541                                 &bar0->rmac_addr_data1_mem);
4542                         val64 = RMAC_ADDR_CMD_MEM_WE |
4543                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4544                             RMAC_ADDR_CMD_MEM_OFFSET
4545                             (i + MAC_MC_ADDR_START_OFFSET);
4546                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4547
4548                         /* Wait for command completes */
4549                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4550                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4551                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4552                                           dev->name);
4553                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4554                                 return;
4555                         }
4556                 }
4557         }
4558 }
4559
4560 /**
4561  *  s2io_set_mac_addr - Programs the Xframe mac address
4562  *  @dev : pointer to the device structure.
4563  *  @addr: a uchar pointer to the new mac address which is to be set.
4564  *  Description : This procedure will program the Xframe to receive
4565  *  frames with new Mac Address
4566  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4567  *  as defined in errno.h file on failure.
4568  */
4569
4570 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4571 {
4572         nic_t *sp = dev->priv;
4573         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4574         register u64 val64, mac_addr = 0;
4575         int i;
4576
4577         /*
4578          * Set the new MAC address as the new unicast filter and reflect this
4579          * change on the device address registered with the OS. It will be
4580          * at offset 0.
4581          */
4582         for (i = 0; i < ETH_ALEN; i++) {
4583                 mac_addr <<= 8;
4584                 mac_addr |= addr[i];
4585         }
4586
4587         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4588                &bar0->rmac_addr_data0_mem);
4589
4590         val64 =
4591             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4592             RMAC_ADDR_CMD_MEM_OFFSET(0);
4593         writeq(val64, &bar0->rmac_addr_cmd_mem);
4594         /* Wait till command completes */
4595         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4596                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4597                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4598                 return FAILURE;
4599         }
4600
4601         return SUCCESS;
4602 }
4603
4604 /**
4605  * s2io_ethtool_sset - Sets different link parameters.
4606  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4607  * @info: pointer to the structure with parameters given by ethtool to set
4608  * link information.
4609  * Description:
4610  * The function sets different link parameters provided by the user onto
4611  * the NIC.
4612  * Return value:
4613  * 0 on success.
4614 */
4615
4616 static int s2io_ethtool_sset(struct net_device *dev,
4617                              struct ethtool_cmd *info)
4618 {
4619         nic_t *sp = dev->priv;
4620         if ((info->autoneg == AUTONEG_ENABLE) ||
4621             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4622                 return -EINVAL;
4623         else {
4624                 s2io_close(sp->dev);
4625                 s2io_open(sp->dev);
4626         }
4627
4628         return 0;
4629 }
4630
4631 /**
4632  * s2io_ethtol_gset - Return link specific information.
4633  * @sp : private member of the device structure, pointer to the
4634  *      s2io_nic structure.
4635  * @info : pointer to the structure with parameters given by ethtool
4636  * to return link information.
4637  * Description:
4638  * Returns link specific information like speed, duplex etc.. to ethtool.
4639  * Return value :
4640  * return 0 on success.
4641  */
4642
4643 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4644 {
4645         nic_t *sp = dev->priv;
4646         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4647         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4648         info->port = PORT_FIBRE;
4649         /* info->transceiver?? TODO */
4650
4651         if (netif_carrier_ok(sp->dev)) {
4652                 info->speed = 10000;
4653                 info->duplex = DUPLEX_FULL;
4654         } else {
4655                 info->speed = -1;
4656                 info->duplex = -1;
4657         }
4658
4659         info->autoneg = AUTONEG_DISABLE;
4660         return 0;
4661 }
4662
4663 /**
4664  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4665  * @sp : private member of the device structure, which is a pointer to the
4666  * s2io_nic structure.
4667  * @info : pointer to the structure with parameters given by ethtool to
4668  * return driver information.
4669  * Description:
4670  * Returns driver specefic information like name, version etc.. to ethtool.
4671  * Return value:
4672  *  void
4673  */
4674
4675 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4676                                   struct ethtool_drvinfo *info)
4677 {
4678         nic_t *sp = dev->priv;
4679
4680         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4681         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4682         strncpy(info->fw_version, "", sizeof(info->fw_version));
4683         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4684         info->regdump_len = XENA_REG_SPACE;
4685         info->eedump_len = XENA_EEPROM_SPACE;
4686         info->testinfo_len = S2IO_TEST_LEN;
4687         info->n_stats = S2IO_STAT_LEN;
4688 }
4689
4690 /**
4691  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4692  *  @sp: private member of the device structure, which is a pointer to the
4693  *  s2io_nic structure.
4694  *  @regs : pointer to the structure with parameters given by ethtool for
4695  *  dumping the registers.
4696  *  @reg_space: The input argumnet into which all the registers are dumped.
4697  *  Description:
4698  *  Dumps the entire register space of xFrame NIC into the user given
4699  *  buffer area.
4700  * Return value :
4701  * void .
4702 */
4703
4704 static void s2io_ethtool_gregs(struct net_device *dev,
4705                                struct ethtool_regs *regs, void *space)
4706 {
4707         int i;
4708         u64 reg;
4709         u8 *reg_space = (u8 *) space;
4710         nic_t *sp = dev->priv;
4711
4712         regs->len = XENA_REG_SPACE;
4713         regs->version = sp->pdev->subsystem_device;
4714
4715         for (i = 0; i < regs->len; i += 8) {
4716                 reg = readq(sp->bar0 + i);
4717                 memcpy((reg_space + i), &reg, 8);
4718         }
4719 }
4720
4721 /**
4722  *  s2io_phy_id  - timer function that alternates adapter LED.
4723  *  @data : address of the private member of the device structure, which
4724  *  is a pointer to the s2io_nic structure, provided as an u32.
4725  * Description: This is actually the timer function that alternates the
4726  * adapter LED bit of the adapter control bit to set/reset every time on
4727  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4728  *  once every second.
4729 */
4730 static void s2io_phy_id(unsigned long data)
4731 {
4732         nic_t *sp = (nic_t *) data;
4733         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4734         u64 val64 = 0;
4735         u16 subid;
4736
4737         subid = sp->pdev->subsystem_device;
4738         if ((sp->device_type == XFRAME_II_DEVICE) ||
4739                    ((subid & 0xFF) >= 0x07)) {
4740                 val64 = readq(&bar0->gpio_control);
4741                 val64 ^= GPIO_CTRL_GPIO_0;
4742                 writeq(val64, &bar0->gpio_control);
4743         } else {
4744                 val64 = readq(&bar0->adapter_control);
4745                 val64 ^= ADAPTER_LED_ON;
4746                 writeq(val64, &bar0->adapter_control);
4747         }
4748
4749         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4750 }
4751
4752 /**
4753  * s2io_ethtool_idnic - To physically identify the nic on the system.
4754  * @sp : private member of the device structure, which is a pointer to the
4755  * s2io_nic structure.
4756  * @id : pointer to the structure with identification parameters given by
4757  * ethtool.
4758  * Description: Used to physically identify the NIC on the system.
4759  * The Link LED will blink for a time specified by the user for
4760  * identification.
4761  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4762  * identification is possible only if it's link is up.
4763  * Return value:
4764  * int , returns 0 on success
4765  */
4766
4767 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4768 {
4769         u64 val64 = 0, last_gpio_ctrl_val;
4770         nic_t *sp = dev->priv;
4771         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4772         u16 subid;
4773
4774         subid = sp->pdev->subsystem_device;
4775         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4776         if ((sp->device_type == XFRAME_I_DEVICE) &&
4777                 ((subid & 0xFF) < 0x07)) {
4778                 val64 = readq(&bar0->adapter_control);
4779                 if (!(val64 & ADAPTER_CNTL_EN)) {
4780                         printk(KERN_ERR
4781                                "Adapter Link down, cannot blink LED\n");
4782                         return -EFAULT;
4783                 }
4784         }
4785         if (sp->id_timer.function == NULL) {
4786                 init_timer(&sp->id_timer);
4787                 sp->id_timer.function = s2io_phy_id;
4788                 sp->id_timer.data = (unsigned long) sp;
4789         }
4790         mod_timer(&sp->id_timer, jiffies);
4791         if (data)
4792                 msleep_interruptible(data * HZ);
4793         else
4794                 msleep_interruptible(MAX_FLICKER_TIME);
4795         del_timer_sync(&sp->id_timer);
4796
4797         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4798                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4799                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4800         }
4801
4802         return 0;
4803 }
4804
4805 /**
4806  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4807  * @sp : private member of the device structure, which is a pointer to the
4808  *      s2io_nic structure.
4809  * @ep : pointer to the structure with pause parameters given by ethtool.
4810  * Description:
4811  * Returns the Pause frame generation and reception capability of the NIC.
4812  * Return value:
4813  *  void
4814  */
4815 static void s2io_ethtool_getpause_data(struct net_device *dev,
4816                                        struct ethtool_pauseparam *ep)
4817 {
4818         u64 val64;
4819         nic_t *sp = dev->priv;
4820         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4821
4822         val64 = readq(&bar0->rmac_pause_cfg);
4823         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4824                 ep->tx_pause = TRUE;
4825         if (val64 & RMAC_PAUSE_RX_ENABLE)
4826                 ep->rx_pause = TRUE;
4827         ep->autoneg = FALSE;
4828 }
4829
4830 /**
4831  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4832  * @sp : private member of the device structure, which is a pointer to the
4833  *      s2io_nic structure.
4834  * @ep : pointer to the structure with pause parameters given by ethtool.
4835  * Description:
4836  * It can be used to set or reset Pause frame generation or reception
4837  * support of the NIC.
4838  * Return value:
4839  * int, returns 0 on Success
4840  */
4841
4842 static int s2io_ethtool_setpause_data(struct net_device *dev,
4843                                struct ethtool_pauseparam *ep)
4844 {
4845         u64 val64;
4846         nic_t *sp = dev->priv;
4847         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4848
4849         val64 = readq(&bar0->rmac_pause_cfg);
4850         if (ep->tx_pause)
4851                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4852         else
4853                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4854         if (ep->rx_pause)
4855                 val64 |= RMAC_PAUSE_RX_ENABLE;
4856         else
4857                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4858         writeq(val64, &bar0->rmac_pause_cfg);
4859         return 0;
4860 }
4861
4862 /**
4863  * read_eeprom - reads 4 bytes of data from user given offset.
4864  * @sp : private member of the device structure, which is a pointer to the
4865  *      s2io_nic structure.
4866  * @off : offset at which the data must be written
4867  * @data : Its an output parameter where the data read at the given
4868  *      offset is stored.
4869  * Description:
4870  * Will read 4 bytes of data from the user given offset and return the
4871  * read data.
4872  * NOTE: Will allow to read only part of the EEPROM visible through the
4873  *   I2C bus.
4874  * Return value:
4875  *  -1 on failure and 0 on success.
4876  */
4877
4878 #define S2IO_DEV_ID             5
4879 static int read_eeprom(nic_t * sp, int off, u64 * data)
4880 {
4881         int ret = -1;
4882         u32 exit_cnt = 0;
4883         u64 val64;
4884         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4885
4886         if (sp->device_type == XFRAME_I_DEVICE) {
4887                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4888                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4889                     I2C_CONTROL_CNTL_START;
4890                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4891
4892                 while (exit_cnt < 5) {
4893                         val64 = readq(&bar0->i2c_control);
4894                         if (I2C_CONTROL_CNTL_END(val64)) {
4895                                 *data = I2C_CONTROL_GET_DATA(val64);
4896                                 ret = 0;
4897                                 break;
4898                         }
4899                         msleep(50);
4900                         exit_cnt++;
4901                 }
4902         }
4903
4904         if (sp->device_type == XFRAME_II_DEVICE) {
4905                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4906                         SPI_CONTROL_BYTECNT(0x3) | 
4907                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4908                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4909                 val64 |= SPI_CONTROL_REQ;
4910                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4911                 while (exit_cnt < 5) {
4912                         val64 = readq(&bar0->spi_control);
4913                         if (val64 & SPI_CONTROL_NACK) {
4914                                 ret = 1;
4915                                 break;
4916                         } else if (val64 & SPI_CONTROL_DONE) {
4917                                 *data = readq(&bar0->spi_data);
4918                                 *data &= 0xffffff;
4919                                 ret = 0;
4920                                 break;
4921                         }
4922                         msleep(50);
4923                         exit_cnt++;
4924                 }
4925         }
4926         return ret;
4927 }
4928
4929 /**
4930  *  write_eeprom - actually writes the relevant part of the data value.
4931  *  @sp : private member of the device structure, which is a pointer to the
4932  *       s2io_nic structure.
4933  *  @off : offset at which the data must be written
4934  *  @data : The data that is to be written
4935  *  @cnt : Number of bytes of the data that are actually to be written into
4936  *  the Eeprom. (max of 3)
4937  * Description:
4938  *  Actually writes the relevant part of the data value into the Eeprom
4939  *  through the I2C bus.
4940  * Return value:
4941  *  0 on success, -1 on failure.
4942  */
4943
4944 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4945 {
4946         int exit_cnt = 0, ret = -1;
4947         u64 val64;
4948         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4949
4950         if (sp->device_type == XFRAME_I_DEVICE) {
4951                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4952                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4953                     I2C_CONTROL_CNTL_START;
4954                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4955
4956                 while (exit_cnt < 5) {
4957                         val64 = readq(&bar0->i2c_control);
4958                         if (I2C_CONTROL_CNTL_END(val64)) {
4959                                 if (!(val64 & I2C_CONTROL_NACK))
4960                                         ret = 0;
4961                                 break;
4962                         }
4963                         msleep(50);
4964                         exit_cnt++;
4965                 }
4966         }
4967
4968         if (sp->device_type == XFRAME_II_DEVICE) {
4969                 int write_cnt = (cnt == 8) ? 0 : cnt;
4970                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4971
4972                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4973                         SPI_CONTROL_BYTECNT(write_cnt) | 
4974                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4975                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4976                 val64 |= SPI_CONTROL_REQ;
4977                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4978                 while (exit_cnt < 5) {
4979                         val64 = readq(&bar0->spi_control);
4980                         if (val64 & SPI_CONTROL_NACK) {
4981                                 ret = 1;
4982                                 break;
4983                         } else if (val64 & SPI_CONTROL_DONE) {
4984                                 ret = 0;
4985                                 break;
4986                         }
4987                         msleep(50);
4988                         exit_cnt++;
4989                 }
4990         }
4991         return ret;
4992 }
4993 static void s2io_vpd_read(nic_t *nic)
4994 {
4995         u8 vpd_data[256],data;
4996         int i=0, cnt, fail = 0;
4997         int vpd_addr = 0x80;
4998
4999         if (nic->device_type == XFRAME_II_DEVICE) {
5000                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5001                 vpd_addr = 0x80;
5002         }
5003         else {
5004                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5005                 vpd_addr = 0x50;
5006         }
5007
5008         for (i = 0; i < 256; i +=4 ) {
5009                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5010                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5011                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5012                 for (cnt = 0; cnt <5; cnt++) {
5013                         msleep(2);
5014                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5015                         if (data == 0x80)
5016                                 break;
5017                 }
5018                 if (cnt >= 5) {
5019                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5020                         fail = 1;
5021                         break;
5022                 }
5023                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5024                                       (u32 *)&vpd_data[i]);
5025         }
5026         if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5027                 memset(nic->product_name, 0, vpd_data[1]);
5028                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5029         }
5030 }
5031
5032 /**
5033  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5034  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5035  *  @eeprom : pointer to the user level structure provided by ethtool,
5036  *  containing all relevant information.
5037  *  @data_buf : user defined value to be written into Eeprom.
5038  *  Description: Reads the values stored in the Eeprom at given offset
5039  *  for a given length. Stores these values int the input argument data
5040  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5041  *  Return value:
5042  *  int  0 on success
5043  */
5044
5045 static int s2io_ethtool_geeprom(struct net_device *dev,
5046                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5047 {
5048         u32 i, valid;
5049         u64 data;
5050         nic_t *sp = dev->priv;
5051
5052         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5053
5054         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5055                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5056
5057         for (i = 0; i < eeprom->len; i += 4) {
5058                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5059                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5060                         return -EFAULT;
5061                 }
5062                 valid = INV(data);
5063                 memcpy((data_buf + i), &valid, 4);
5064         }
5065         return 0;
5066 }
5067
5068 /**
5069  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5070  *  @sp : private member of the device structure, which is a pointer to the
5071  *  s2io_nic structure.
5072  *  @eeprom : pointer to the user level structure provided by ethtool,
5073  *  containing all relevant information.
5074  *  @data_buf ; user defined value to be written into Eeprom.
5075  *  Description:
5076  *  Tries to write the user provided value in the Eeprom, at the offset
5077  *  given by the user.
5078  *  Return value:
5079  *  0 on success, -EFAULT on failure.
5080  */
5081
5082 static int s2io_ethtool_seeprom(struct net_device *dev,
5083                                 struct ethtool_eeprom *eeprom,
5084                                 u8 * data_buf)
5085 {
5086         int len = eeprom->len, cnt = 0;
5087         u64 valid = 0, data;
5088         nic_t *sp = dev->priv;
5089
5090         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5091                 DBG_PRINT(ERR_DBG,
5092                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5093                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5094                           eeprom->magic);
5095                 return -EFAULT;
5096         }
5097
5098         while (len) {
5099                 data = (u32) data_buf[cnt] & 0x000000FF;
5100                 if (data) {
5101                         valid = (u32) (data << 24);
5102                 } else
5103                         valid = data;
5104
5105                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5106                         DBG_PRINT(ERR_DBG,
5107                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5108                         DBG_PRINT(ERR_DBG,
5109                                   "write into the specified offset\n");
5110                         return -EFAULT;
5111                 }
5112                 cnt++;
5113                 len--;
5114         }
5115
5116         return 0;
5117 }
5118
5119 /**
5120  * s2io_register_test - reads and writes into all clock domains.
5121  * @sp : private member of the device structure, which is a pointer to the
5122  * s2io_nic structure.
5123  * @data : variable that returns the result of each of the test conducted b
5124  * by the driver.
5125  * Description:
5126  * Read and write into all clock domains. The NIC has 3 clock domains,
5127  * see that registers in all the three regions are accessible.
5128  * Return value:
5129  * 0 on success.
5130  */
5131
5132 static int s2io_register_test(nic_t * sp, uint64_t * data)
5133 {
5134         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5135         u64 val64 = 0, exp_val;
5136         int fail = 0;
5137
5138         val64 = readq(&bar0->pif_rd_swapper_fb);
5139         if (val64 != 0x123456789abcdefULL) {
5140                 fail = 1;
5141                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5142         }
5143
5144         val64 = readq(&bar0->rmac_pause_cfg);
5145         if (val64 != 0xc000ffff00000000ULL) {
5146                 fail = 1;
5147                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5148         }
5149
5150         val64 = readq(&bar0->rx_queue_cfg);
5151         if (sp->device_type == XFRAME_II_DEVICE)
5152                 exp_val = 0x0404040404040404ULL;
5153         else
5154                 exp_val = 0x0808080808080808ULL;
5155         if (val64 != exp_val) {
5156                 fail = 1;
5157                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5158         }
5159
5160         val64 = readq(&bar0->xgxs_efifo_cfg);
5161         if (val64 != 0x000000001923141EULL) {
5162                 fail = 1;
5163                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5164         }
5165
5166         val64 = 0x5A5A5A5A5A5A5A5AULL;
5167         writeq(val64, &bar0->xmsi_data);
5168         val64 = readq(&bar0->xmsi_data);
5169         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5170                 fail = 1;
5171                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5172         }
5173
5174         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5175         writeq(val64, &bar0->xmsi_data);
5176         val64 = readq(&bar0->xmsi_data);
5177         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5178                 fail = 1;
5179                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5180         }
5181
5182         *data = fail;
5183         return fail;
5184 }
5185
5186 /**
5187  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5188  * @sp : private member of the device structure, which is a pointer to the
5189  * s2io_nic structure.
5190  * @data:variable that returns the result of each of the test conducted by
5191  * the driver.
5192  * Description:
5193  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5194  * register.
5195  * Return value:
5196  * 0 on success.
5197  */
5198
5199 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5200 {
5201         int fail = 0;
5202         u64 ret_data, org_4F0, org_7F0;
5203         u8 saved_4F0 = 0, saved_7F0 = 0;
5204         struct net_device *dev = sp->dev;
5205
5206         /* Test Write Error at offset 0 */
5207         /* Note that SPI interface allows write access to all areas
5208          * of EEPROM. Hence doing all negative testing only for Xframe I.
5209          */
5210         if (sp->device_type == XFRAME_I_DEVICE)
5211                 if (!write_eeprom(sp, 0, 0, 3))
5212                         fail = 1;
5213
5214         /* Save current values at offsets 0x4F0 and 0x7F0 */
5215         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5216                 saved_4F0 = 1;
5217         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5218                 saved_7F0 = 1;
5219
5220         /* Test Write at offset 4f0 */
5221         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5222                 fail = 1;
5223         if (read_eeprom(sp, 0x4F0, &ret_data))
5224                 fail = 1;
5225
5226         if (ret_data != 0x012345) {
5227                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5228                         "Data written %llx Data read %llx\n",
5229                         dev->name, (unsigned long long)0x12345,
5230                         (unsigned long long)ret_data);
5231                 fail = 1;
5232         }
5233
5234         /* Reset the EEPROM data go FFFF */
5235         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5236
5237         /* Test Write Request Error at offset 0x7c */
5238         if (sp->device_type == XFRAME_I_DEVICE)
5239                 if (!write_eeprom(sp, 0x07C, 0, 3))
5240                         fail = 1;
5241
5242         /* Test Write Request at offset 0x7f0 */
5243         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5244                 fail = 1;
5245         if (read_eeprom(sp, 0x7F0, &ret_data))
5246                 fail = 1;
5247
5248         if (ret_data != 0x012345) {
5249                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5250                         "Data written %llx Data read %llx\n",
5251                         dev->name, (unsigned long long)0x12345,
5252                         (unsigned long long)ret_data);
5253                 fail = 1;
5254         }
5255
5256         /* Reset the EEPROM data go FFFF */
5257         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5258
5259         if (sp->device_type == XFRAME_I_DEVICE) {
5260                 /* Test Write Error at offset 0x80 */
5261                 if (!write_eeprom(sp, 0x080, 0, 3))
5262                         fail = 1;
5263
5264                 /* Test Write Error at offset 0xfc */
5265                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5266                         fail = 1;
5267
5268                 /* Test Write Error at offset 0x100 */
5269                 if (!write_eeprom(sp, 0x100, 0, 3))
5270                         fail = 1;
5271
5272                 /* Test Write Error at offset 4ec */
5273                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5274                         fail = 1;
5275         }
5276
5277         /* Restore values at offsets 0x4F0 and 0x7F0 */
5278         if (saved_4F0)
5279                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5280         if (saved_7F0)
5281                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5282
5283         *data = fail;
5284         return fail;
5285 }
5286
5287 /**
5288  * s2io_bist_test - invokes the MemBist test of the card .
5289  * @sp : private member of the device structure, which is a pointer to the
5290  * s2io_nic structure.
5291  * @data:variable that returns the result of each of the test conducted by
5292  * the driver.
5293  * Description:
5294  * This invokes the MemBist test of the card. We give around
5295  * 2 secs time for the Test to complete. If it's still not complete
5296  * within this peiod, we consider that the test failed.
5297  * Return value:
5298  * 0 on success and -1 on failure.
5299  */
5300
5301 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5302 {
5303         u8 bist = 0;
5304         int cnt = 0, ret = -1;
5305
5306         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5307         bist |= PCI_BIST_START;
5308         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5309
5310         while (cnt < 20) {
5311                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5312                 if (!(bist & PCI_BIST_START)) {
5313                         *data = (bist & PCI_BIST_CODE_MASK);
5314                         ret = 0;
5315                         break;
5316                 }
5317                 msleep(100);
5318                 cnt++;
5319         }
5320
5321         return ret;
5322 }
5323
5324 /**
5325  * s2io-link_test - verifies the link state of the nic
5326  * @sp ; private member of the device structure, which is a pointer to the
5327  * s2io_nic structure.
5328  * @data: variable that returns the result of each of the test conducted by
5329  * the driver.
5330  * Description:
5331  * The function verifies the link state of the NIC and updates the input
5332  * argument 'data' appropriately.
5333  * Return value:
5334  * 0 on success.
5335  */
5336
5337 static int s2io_link_test(nic_t * sp, uint64_t * data)
5338 {
5339         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5340         u64 val64;
5341
5342         val64 = readq(&bar0->adapter_status);
5343         if(!(LINK_IS_UP(val64)))
5344                 *data = 1;
5345         else
5346                 *data = 0;
5347
5348         return 0;
5349 }
5350
5351 /**
5352  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5353  * @sp - private member of the device structure, which is a pointer to the
5354  * s2io_nic structure.
5355  * @data - variable that returns the result of each of the test
5356  * conducted by the driver.
5357  * Description:
5358  *  This is one of the offline test that tests the read and write
5359  *  access to the RldRam chip on the NIC.
5360  * Return value:
5361  *  0 on success.
5362  */
5363
5364 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5365 {
5366         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5367         u64 val64;
5368         int cnt, iteration = 0, test_fail = 0;
5369
5370         val64 = readq(&bar0->adapter_control);
5371         val64 &= ~ADAPTER_ECC_EN;
5372         writeq(val64, &bar0->adapter_control);
5373
5374         val64 = readq(&bar0->mc_rldram_test_ctrl);
5375         val64 |= MC_RLDRAM_TEST_MODE;
5376         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5377
5378         val64 = readq(&bar0->mc_rldram_mrs);
5379         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5380         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5381
5382         val64 |= MC_RLDRAM_MRS_ENABLE;
5383         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5384
5385         while (iteration < 2) {
5386                 val64 = 0x55555555aaaa0000ULL;
5387                 if (iteration == 1) {
5388                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5389                 }
5390                 writeq(val64, &bar0->mc_rldram_test_d0);
5391
5392                 val64 = 0xaaaa5a5555550000ULL;
5393                 if (iteration == 1) {
5394                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5395                 }
5396                 writeq(val64, &bar0->mc_rldram_test_d1);
5397
5398                 val64 = 0x55aaaaaaaa5a0000ULL;
5399                 if (iteration == 1) {
5400                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5401                 }
5402                 writeq(val64, &bar0->mc_rldram_test_d2);
5403
5404                 val64 = (u64) (0x0000003ffffe0100ULL);
5405                 writeq(val64, &bar0->mc_rldram_test_add);
5406
5407                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5408                         MC_RLDRAM_TEST_GO;
5409                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5410
5411                 for (cnt = 0; cnt < 5; cnt++) {
5412                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5413                         if (val64 & MC_RLDRAM_TEST_DONE)
5414                                 break;
5415                         msleep(200);
5416                 }
5417
5418                 if (cnt == 5)
5419                         break;
5420
5421                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5422                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5423
5424                 for (cnt = 0; cnt < 5; cnt++) {
5425                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5426                         if (val64 & MC_RLDRAM_TEST_DONE)
5427                                 break;
5428                         msleep(500);
5429                 }
5430
5431                 if (cnt == 5)
5432                         break;
5433
5434                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5435                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5436                         test_fail = 1;
5437
5438                 iteration++;
5439         }
5440
5441         *data = test_fail;
5442
5443         /* Bring the adapter out of test mode */
5444         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5445
5446         return test_fail;
5447 }
5448
5449 /**
5450  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5451  *  @sp : private member of the device structure, which is a pointer to the
5452  *  s2io_nic structure.
5453  *  @ethtest : pointer to a ethtool command specific structure that will be
5454  *  returned to the user.
5455  *  @data : variable that returns the result of each of the test
5456  * conducted by the driver.
5457  * Description:
5458  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5459  *  the health of the card.
5460  * Return value:
5461  *  void
5462  */
5463
5464 static void s2io_ethtool_test(struct net_device *dev,
5465                               struct ethtool_test *ethtest,
5466                               uint64_t * data)
5467 {
5468         nic_t *sp = dev->priv;
5469         int orig_state = netif_running(sp->dev);
5470
5471         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5472                 /* Offline Tests. */
5473                 if (orig_state)
5474                         s2io_close(sp->dev);
5475
5476                 if (s2io_register_test(sp, &data[0]))
5477                         ethtest->flags |= ETH_TEST_FL_FAILED;
5478
5479                 s2io_reset(sp);
5480
5481                 if (s2io_rldram_test(sp, &data[3]))
5482                         ethtest->flags |= ETH_TEST_FL_FAILED;
5483
5484                 s2io_reset(sp);
5485
5486                 if (s2io_eeprom_test(sp, &data[1]))
5487                         ethtest->flags |= ETH_TEST_FL_FAILED;
5488
5489                 if (s2io_bist_test(sp, &data[4]))
5490                         ethtest->flags |= ETH_TEST_FL_FAILED;
5491
5492                 if (orig_state)
5493                         s2io_open(sp->dev);
5494
5495                 data[2] = 0;
5496         } else {
5497                 /* Online Tests. */
5498                 if (!orig_state) {
5499                         DBG_PRINT(ERR_DBG,
5500                                   "%s: is not up, cannot run test\n",
5501                                   dev->name);
5502                         data[0] = -1;
5503                         data[1] = -1;
5504                         data[2] = -1;
5505                         data[3] = -1;
5506                         data[4] = -1;
5507                 }
5508
5509                 if (s2io_link_test(sp, &data[2]))
5510                         ethtest->flags |= ETH_TEST_FL_FAILED;
5511
5512                 data[0] = 0;
5513                 data[1] = 0;
5514                 data[3] = 0;
5515                 data[4] = 0;
5516         }
5517 }
5518
5519 static void s2io_get_ethtool_stats(struct net_device *dev,
5520                                    struct ethtool_stats *estats,
5521                                    u64 * tmp_stats)
5522 {
5523         int i = 0;
5524         nic_t *sp = dev->priv;
5525         StatInfo_t *stat_info = sp->mac_control.stats_info;
5526
5527         s2io_updt_stats(sp);
5528         tmp_stats[i++] =
5529                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5530                 le32_to_cpu(stat_info->tmac_frms);
5531         tmp_stats[i++] =
5532                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5533                 le32_to_cpu(stat_info->tmac_data_octets);
5534         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5535         tmp_stats[i++] =
5536                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5537                 le32_to_cpu(stat_info->tmac_mcst_frms);
5538         tmp_stats[i++] =
5539                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5540                 le32_to_cpu(stat_info->tmac_bcst_frms);
5541         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5542         tmp_stats[i++] =
5543                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5544                 le32_to_cpu(stat_info->tmac_ttl_octets);
5545         tmp_stats[i++] =
5546                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5547                 le32_to_cpu(stat_info->tmac_ucst_frms);
5548         tmp_stats[i++] =
5549                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5550                 le32_to_cpu(stat_info->tmac_nucst_frms);
5551         tmp_stats[i++] =
5552                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5553                 le32_to_cpu(stat_info->tmac_any_err_frms);
5554         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5555         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5556         tmp_stats[i++] =
5557                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5558                 le32_to_cpu(stat_info->tmac_vld_ip);
5559         tmp_stats[i++] =
5560                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5561                 le32_to_cpu(stat_info->tmac_drop_ip);
5562         tmp_stats[i++] =
5563                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5564                 le32_to_cpu(stat_info->tmac_icmp);
5565         tmp_stats[i++] =
5566                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5567                 le32_to_cpu(stat_info->tmac_rst_tcp);
5568         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5569         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5570                 le32_to_cpu(stat_info->tmac_udp);
5571         tmp_stats[i++] =
5572                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5573                 le32_to_cpu(stat_info->rmac_vld_frms);
5574         tmp_stats[i++] =
5575                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5576                 le32_to_cpu(stat_info->rmac_data_octets);
5577         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5578         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5579         tmp_stats[i++] =
5580                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5581                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5582         tmp_stats[i++] =
5583                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5584                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5585         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5586         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5587         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5588         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5589         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5590         tmp_stats[i++] =
5591                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5592                 le32_to_cpu(stat_info->rmac_ttl_octets);
5593         tmp_stats[i++] =
5594                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5595                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5596         tmp_stats[i++] =
5597                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5598                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5599         tmp_stats[i++] =
5600                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5601                 le32_to_cpu(stat_info->rmac_discarded_frms);
5602         tmp_stats[i++] =
5603                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5604                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5605         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5606         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5607         tmp_stats[i++] =
5608                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5609                 le32_to_cpu(stat_info->rmac_usized_frms);
5610         tmp_stats[i++] =
5611                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5612                 le32_to_cpu(stat_info->rmac_osized_frms);
5613         tmp_stats[i++] =
5614                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5615                 le32_to_cpu(stat_info->rmac_frag_frms);
5616         tmp_stats[i++] =
5617                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5618                 le32_to_cpu(stat_info->rmac_jabber_frms);
5619         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5620         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5621         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5622         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5623         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5624         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5625         tmp_stats[i++] =
5626                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5627                 le32_to_cpu(stat_info->rmac_ip);
5628         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5629         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5630         tmp_stats[i++] =
5631                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5632                 le32_to_cpu(stat_info->rmac_drop_ip);
5633         tmp_stats[i++] =
5634                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5635                 le32_to_cpu(stat_info->rmac_icmp);
5636         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5637         tmp_stats[i++] =
5638                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5639                 le32_to_cpu(stat_info->rmac_udp);
5640         tmp_stats[i++] =
5641                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5642                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5643         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5644         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5645         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5646         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5647         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5648         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5649         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5650         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5651         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5652         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5653         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5654         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5655         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5656         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5657         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5658         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5659         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5660         tmp_stats[i++] =
5661                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5662                 le32_to_cpu(stat_info->rmac_pause_cnt);
5663         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5664         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5665         tmp_stats[i++] =
5666                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5667                 le32_to_cpu(stat_info->rmac_accepted_ip);
5668         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5669         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5670         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5671         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5672         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5673         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5674         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5675         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5676         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5677         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5678         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5679         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5680         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5681         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5682         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5683         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5684         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5685         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5686         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5687         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5688         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5689         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5690         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5691         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5692         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5693         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5694         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5695         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5696         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5697         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5698         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5699         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5700         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5701         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5702         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5703         tmp_stats[i++] = 0;
5704         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5705         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5706         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5707         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5708         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5709         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5710         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5711         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5712         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5713         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5714         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5715         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5716         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5717         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5718         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5719         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5720         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5721         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5722         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5723         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5724         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5725         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5726         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5727         if (stat_info->sw_stat.num_aggregations) {
5728                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5729                 int count = 0;
5730                 /* 
5731                  * Since 64-bit divide does not work on all platforms,
5732                  * do repeated subtraction.
5733                  */
5734                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5735                         tmp -= stat_info->sw_stat.num_aggregations;
5736                         count++;
5737                 }
5738                 tmp_stats[i++] = count;
5739         }
5740         else
5741                 tmp_stats[i++] = 0;
5742 }
5743
5744 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5745 {
5746         return (XENA_REG_SPACE);
5747 }
5748
5749
5750 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5751 {
5752         nic_t *sp = dev->priv;
5753
5754         return (sp->rx_csum);
5755 }
5756
5757 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5758 {
5759         nic_t *sp = dev->priv;
5760
5761         if (data)
5762                 sp->rx_csum = 1;
5763         else
5764                 sp->rx_csum = 0;
5765
5766         return 0;
5767 }
5768
5769 static int s2io_get_eeprom_len(struct net_device *dev)
5770 {
5771         return (XENA_EEPROM_SPACE);
5772 }
5773
5774 static int s2io_ethtool_self_test_count(struct net_device *dev)
5775 {
5776         return (S2IO_TEST_LEN);
5777 }
5778
5779 static void s2io_ethtool_get_strings(struct net_device *dev,
5780                                      u32 stringset, u8 * data)
5781 {
5782         switch (stringset) {
5783         case ETH_SS_TEST:
5784                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5785                 break;
5786         case ETH_SS_STATS:
5787                 memcpy(data, &ethtool_stats_keys,
5788                        sizeof(ethtool_stats_keys));
5789         }
5790 }
5791 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5792 {
5793         return (S2IO_STAT_LEN);
5794 }
5795
5796 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5797 {
5798         if (data)
5799                 dev->features |= NETIF_F_IP_CSUM;
5800         else
5801                 dev->features &= ~NETIF_F_IP_CSUM;
5802
5803         return 0;
5804 }
5805
5806
5807 static struct ethtool_ops netdev_ethtool_ops = {
5808         .get_settings = s2io_ethtool_gset,
5809         .set_settings = s2io_ethtool_sset,
5810         .get_drvinfo = s2io_ethtool_gdrvinfo,
5811         .get_regs_len = s2io_ethtool_get_regs_len,
5812         .get_regs = s2io_ethtool_gregs,
5813         .get_link = ethtool_op_get_link,
5814         .get_eeprom_len = s2io_get_eeprom_len,
5815         .get_eeprom = s2io_ethtool_geeprom,
5816         .set_eeprom = s2io_ethtool_seeprom,
5817         .get_pauseparam = s2io_ethtool_getpause_data,
5818         .set_pauseparam = s2io_ethtool_setpause_data,
5819         .get_rx_csum = s2io_ethtool_get_rx_csum,
5820         .set_rx_csum = s2io_ethtool_set_rx_csum,
5821         .get_tx_csum = ethtool_op_get_tx_csum,
5822         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5823         .get_sg = ethtool_op_get_sg,
5824         .set_sg = ethtool_op_set_sg,
5825 #ifdef NETIF_F_TSO
5826         .get_tso = ethtool_op_get_tso,
5827         .set_tso = ethtool_op_set_tso,
5828 #endif
5829         .get_ufo = ethtool_op_get_ufo,
5830         .set_ufo = ethtool_op_set_ufo,
5831         .self_test_count = s2io_ethtool_self_test_count,
5832         .self_test = s2io_ethtool_test,
5833         .get_strings = s2io_ethtool_get_strings,
5834         .phys_id = s2io_ethtool_idnic,
5835         .get_stats_count = s2io_ethtool_get_stats_count,
5836         .get_ethtool_stats = s2io_get_ethtool_stats
5837 };
5838
5839 /**
5840  *  s2io_ioctl - Entry point for the Ioctl
5841  *  @dev :  Device pointer.
5842  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5843  *  a proprietary structure used to pass information to the driver.
5844  *  @cmd :  This is used to distinguish between the different commands that
5845  *  can be passed to the IOCTL functions.
5846  *  Description:
5847  *  Currently there are no special functionality supported in IOCTL, hence
5848  *  function always return EOPNOTSUPPORTED
5849  */
5850
5851 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5852 {
5853         return -EOPNOTSUPP;
5854 }
5855
5856 /**
5857  *  s2io_change_mtu - entry point to change MTU size for the device.
5858  *   @dev : device pointer.
5859  *   @new_mtu : the new MTU size for the device.
5860  *   Description: A driver entry point to change MTU size for the device.
5861  *   Before changing the MTU the device must be stopped.
5862  *  Return value:
5863  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5864  *   file on failure.
5865  */
5866
5867 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5868 {
5869         nic_t *sp = dev->priv;
5870
5871         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5872                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5873                           dev->name);
5874                 return -EPERM;
5875         }
5876
5877         dev->mtu = new_mtu;
5878         if (netif_running(dev)) {
5879                 s2io_card_down(sp, 0);
5880                 netif_stop_queue(dev);
5881                 if (s2io_card_up(sp)) {
5882                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5883                                   __FUNCTION__);
5884                 }
5885                 if (netif_queue_stopped(dev))
5886                         netif_wake_queue(dev);
5887         } else { /* Device is down */
5888                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5889                 u64 val64 = new_mtu;
5890
5891                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5892         }
5893
5894         return 0;
5895 }
5896
5897 /**
5898  *  s2io_tasklet - Bottom half of the ISR.
5899  *  @dev_adr : address of the device structure in dma_addr_t format.
5900  *  Description:
5901  *  This is the tasklet or the bottom half of the ISR. This is
5902  *  an extension of the ISR which is scheduled by the scheduler to be run
5903  *  when the load on the CPU is low. All low priority tasks of the ISR can
5904  *  be pushed into the tasklet. For now the tasklet is used only to
5905  *  replenish the Rx buffers in the Rx buffer descriptors.
5906  *  Return value:
5907  *  void.
5908  */
5909
5910 static void s2io_tasklet(unsigned long dev_addr)
5911 {
5912         struct net_device *dev = (struct net_device *) dev_addr;
5913         nic_t *sp = dev->priv;
5914         int i, ret;
5915         mac_info_t *mac_control;
5916         struct config_param *config;
5917
5918         mac_control = &sp->mac_control;
5919         config = &sp->config;
5920
5921         if (!TASKLET_IN_USE) {
5922                 for (i = 0; i < config->rx_ring_num; i++) {
5923                         ret = fill_rx_buffers(sp, i);
5924                         if (ret == -ENOMEM) {
5925                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5926                                           dev->name);
5927                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5928                                 break;
5929                         } else if (ret == -EFILL) {
5930                                 DBG_PRINT(ERR_DBG,
5931                                           "%s: Rx Ring %d is full\n",
5932                                           dev->name, i);
5933                                 break;
5934                         }
5935                 }
5936                 clear_bit(0, (&sp->tasklet_status));
5937         }
5938 }
5939
5940 /**
5941  * s2io_set_link - Set the LInk status
5942  * @data: long pointer to device private structue
5943  * Description: Sets the link status for the adapter
5944  */
5945
5946 static void s2io_set_link(unsigned long data)
5947 {
5948         nic_t *nic = (nic_t *) data;
5949         struct net_device *dev = nic->dev;
5950         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5951         register u64 val64;
5952         u16 subid;
5953
5954         if (test_and_set_bit(0, &(nic->link_state))) {
5955                 /* The card is being reset, no point doing anything */
5956                 return;
5957         }
5958
5959         subid = nic->pdev->subsystem_device;
5960         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5961                 /*
5962                  * Allow a small delay for the NICs self initiated
5963                  * cleanup to complete.
5964                  */
5965                 msleep(100);
5966         }
5967
5968         val64 = readq(&bar0->adapter_status);
5969         if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5970                 if (LINK_IS_UP(val64)) {
5971                         val64 = readq(&bar0->adapter_control);
5972                         val64 |= ADAPTER_CNTL_EN;
5973                         writeq(val64, &bar0->adapter_control);
5974                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5975                                                              subid)) {
5976                                 val64 = readq(&bar0->gpio_control);
5977                                 val64 |= GPIO_CTRL_GPIO_0;
5978                                 writeq(val64, &bar0->gpio_control);
5979                                 val64 = readq(&bar0->gpio_control);
5980                         } else {
5981                                 val64 |= ADAPTER_LED_ON;
5982                                 writeq(val64, &bar0->adapter_control);
5983                         }
5984                         if (s2io_link_fault_indication(nic) ==
5985                                                 MAC_RMAC_ERR_TIMER) {
5986                                 val64 = readq(&bar0->adapter_status);
5987                                 if (!LINK_IS_UP(val64)) {
5988                                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5989                                         DBG_PRINT(ERR_DBG, " Link down");
5990                                         DBG_PRINT(ERR_DBG, "after ");
5991                                         DBG_PRINT(ERR_DBG, "enabling ");
5992                                         DBG_PRINT(ERR_DBG, "device \n");
5993                                 }
5994                         }
5995                         if (nic->device_enabled_once == FALSE) {
5996                                 nic->device_enabled_once = TRUE;
5997                         }
5998                         s2io_link(nic, LINK_UP);
5999                 } else {
6000                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6001                                                               subid)) {
6002                                 val64 = readq(&bar0->gpio_control);
6003                                 val64 &= ~GPIO_CTRL_GPIO_0;
6004                                 writeq(val64, &bar0->gpio_control);
6005                                 val64 = readq(&bar0->gpio_control);
6006                         }
6007                         s2io_link(nic, LINK_DOWN);
6008                 }
6009         } else {                /* NIC is not Quiescent. */
6010                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6011                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6012                 netif_stop_queue(dev);
6013         }
6014         clear_bit(0, &(nic->link_state));
6015 }
6016
6017 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6018                            struct sk_buff **skb, u64 *temp0, u64 *temp1,
6019                            u64 *temp2, int size)
6020 {
6021         struct net_device *dev = sp->dev;
6022         struct sk_buff *frag_list;
6023
6024         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6025                 /* allocate skb */
6026                 if (*skb) {
6027                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6028                         /*
6029                          * As Rx frame are not going to be processed,
6030                          * using same mapped address for the Rxd
6031                          * buffer pointer
6032                          */
6033                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6034                 } else {
6035                         *skb = dev_alloc_skb(size);
6036                         if (!(*skb)) {
6037                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6038                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6039                                 return -ENOMEM ;
6040                         }
6041                         /* storing the mapped addr in a temp variable
6042                          * such it will be used for next rxd whose
6043                          * Host Control is NULL
6044                          */
6045                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6046                                 pci_map_single( sp->pdev, (*skb)->data,
6047                                         size - NET_IP_ALIGN,
6048                                         PCI_DMA_FROMDEVICE);
6049                         rxdp->Host_Control = (unsigned long) (*skb);
6050                 }
6051         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6052                 /* Two buffer Mode */
6053                 if (*skb) {
6054                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6055                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6056                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6057                 } else {
6058                         *skb = dev_alloc_skb(size);
6059                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6060                                 pci_map_single(sp->pdev, (*skb)->data,
6061                                                dev->mtu + 4,
6062                                                PCI_DMA_FROMDEVICE);
6063                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6064                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6065                                                 PCI_DMA_FROMDEVICE);
6066                         rxdp->Host_Control = (unsigned long) (*skb);
6067
6068                         /* Buffer-1 will be dummy buffer not used */
6069                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6070                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6071                                                PCI_DMA_FROMDEVICE);
6072                 }
6073         } else if ((rxdp->Host_Control == 0)) {
6074                 /* Three buffer mode */
6075                 if (*skb) {
6076                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6077                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6078                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6079                 } else {
6080                         *skb = dev_alloc_skb(size);
6081
6082                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6083                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6084                                                PCI_DMA_FROMDEVICE);
6085                         /* Buffer-1 receives L3/L4 headers */
6086                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6087                                 pci_map_single( sp->pdev, (*skb)->data,
6088                                                 l3l4hdr_size + 4,
6089                                                 PCI_DMA_FROMDEVICE);
6090                         /*
6091                          * skb_shinfo(skb)->frag_list will have L4
6092                          * data payload
6093                          */
6094                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6095                                                                    ALIGN_SIZE);
6096                         if (skb_shinfo(*skb)->frag_list == NULL) {
6097                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6098                                           failed\n ", dev->name);
6099                                 return -ENOMEM ;
6100                         }
6101                         frag_list = skb_shinfo(*skb)->frag_list;
6102                         frag_list->next = NULL;
6103                         /*
6104                          * Buffer-2 receives L4 data payload
6105                          */
6106                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6107                                 pci_map_single( sp->pdev, frag_list->data,
6108                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6109                 }
6110         }
6111         return 0;
6112 }
6113 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6114 {
6115         struct net_device *dev = sp->dev;
6116         if (sp->rxd_mode == RXD_MODE_1) {
6117                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6118         } else if (sp->rxd_mode == RXD_MODE_3B) {
6119                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6120                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6121                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6122         } else {
6123                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6124                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6125                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6126         }
6127 }
6128
6129 static  int rxd_owner_bit_reset(nic_t *sp)
6130 {
6131         int i, j, k, blk_cnt = 0, size;
6132         mac_info_t * mac_control = &sp->mac_control;
6133         struct config_param *config = &sp->config;
6134         struct net_device *dev = sp->dev;
6135         RxD_t *rxdp = NULL;
6136         struct sk_buff *skb = NULL;
6137         buffAdd_t *ba = NULL;
6138         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6139
6140         /* Calculate the size based on ring mode */
6141         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6142                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6143         if (sp->rxd_mode == RXD_MODE_1)
6144                 size += NET_IP_ALIGN;
6145         else if (sp->rxd_mode == RXD_MODE_3B)
6146                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6147         else
6148                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6149
6150         for (i = 0; i < config->rx_ring_num; i++) {
6151                 blk_cnt = config->rx_cfg[i].num_rxd /
6152                         (rxd_count[sp->rxd_mode] +1);
6153
6154                 for (j = 0; j < blk_cnt; j++) {
6155                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6156                                 rxdp = mac_control->rings[i].
6157                                         rx_blocks[j].rxds[k].virt_addr;
6158                                 if(sp->rxd_mode >= RXD_MODE_3A)
6159                                         ba = &mac_control->rings[i].ba[j][k];
6160                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6161                                                        &skb,(u64 *)&temp0_64,
6162                                                        (u64 *)&temp1_64,
6163                                                        (u64 *)&temp2_64, size);
6164
6165                                 set_rxd_buffer_size(sp, rxdp, size);
6166                                 wmb();
6167                                 /* flip the Ownership bit to Hardware */
6168                                 rxdp->Control_1 |= RXD_OWN_XENA;
6169                         }
6170                 }
6171         }
6172         return 0;
6173
6174 }
6175
6176 static void s2io_card_down(nic_t * sp, int flag)
6177 {
6178         int cnt = 0;
6179         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6180         unsigned long flags;
6181         register u64 val64 = 0;
6182         struct net_device *dev = sp->dev;
6183
6184         del_timer_sync(&sp->alarm_timer);
6185         /* If s2io_set_link task is executing, wait till it completes. */
6186         while (test_and_set_bit(0, &(sp->link_state))) {
6187                 msleep(50);
6188         }
6189         atomic_set(&sp->card_state, CARD_DOWN);
6190
6191         /* disable Tx and Rx traffic on the NIC */
6192         stop_nic(sp);
6193         if (flag) {
6194                 if (sp->intr_type == MSI_X) {
6195                         int i;
6196                         u16 msi_control;
6197
6198                         for (i=1; (sp->s2io_entries[i].in_use ==
6199                                 MSIX_REGISTERED_SUCCESS); i++) {
6200                                 int vector = sp->entries[i].vector;
6201                                 void *arg = sp->s2io_entries[i].arg;
6202
6203                                 free_irq(vector, arg);
6204                         }
6205                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
6206                         msi_control &= 0xFFFE; /* Disable MSI */
6207                         pci_write_config_word(sp->pdev, 0x42, msi_control);
6208                         pci_disable_msix(sp->pdev);
6209                 } else {
6210                         free_irq(sp->pdev->irq, dev);
6211                         if (sp->intr_type == MSI)
6212                                 pci_disable_msi(sp->pdev);
6213                 }
6214         }
6215         /* Waiting till all Interrupt handlers are complete */
6216         cnt = 0;
6217         do {
6218                 msleep(10);
6219                 if (!atomic_read(&sp->isr_cnt))
6220                         break;
6221                 cnt++;
6222         } while(cnt < 5);
6223
6224         /* Kill tasklet. */
6225         tasklet_kill(&sp->task);
6226
6227         /* Check if the device is Quiescent and then Reset the NIC */
6228         do {
6229                 /* As per the HW requirement we need to replenish the
6230                  * receive buffer to avoid the ring bump. Since there is
6231                  * no intention of processing the Rx frame at this pointwe are
6232                  * just settting the ownership bit of rxd in Each Rx
6233                  * ring to HW and set the appropriate buffer size
6234                  * based on the ring mode
6235                  */
6236                 rxd_owner_bit_reset(sp);
6237
6238                 val64 = readq(&bar0->adapter_status);
6239                 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6240                         break;
6241                 }
6242
6243                 msleep(50);
6244                 cnt++;
6245                 if (cnt == 10) {
6246                         DBG_PRINT(ERR_DBG,
6247                                   "s2io_close:Device not Quiescent ");
6248                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6249                                   (unsigned long long) val64);
6250                         break;
6251                 }
6252         } while (1);
6253         s2io_reset(sp);
6254
6255         spin_lock_irqsave(&sp->tx_lock, flags);
6256         /* Free all Tx buffers */
6257         free_tx_buffers(sp);
6258         spin_unlock_irqrestore(&sp->tx_lock, flags);
6259
6260         /* Free all Rx buffers */
6261         spin_lock_irqsave(&sp->rx_lock, flags);
6262         free_rx_buffers(sp);
6263         spin_unlock_irqrestore(&sp->rx_lock, flags);
6264
6265         clear_bit(0, &(sp->link_state));
6266 }
6267
6268 static int s2io_card_up(nic_t * sp)
6269 {
6270         int i, ret = 0;
6271         mac_info_t *mac_control;
6272         struct config_param *config;
6273         struct net_device *dev = (struct net_device *) sp->dev;
6274
6275         /* Initialize the H/W I/O registers */
6276         if (init_nic(sp) != 0) {
6277                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6278                           dev->name);
6279                 return -ENODEV;
6280         }
6281
6282         if (sp->intr_type == MSI)
6283                 ret = s2io_enable_msi(sp);
6284         else if (sp->intr_type == MSI_X)
6285                 ret = s2io_enable_msi_x(sp);
6286         if (ret) {
6287                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6288                 sp->intr_type = INTA;
6289         }
6290
6291         /*
6292          * Initializing the Rx buffers. For now we are considering only 1
6293          * Rx ring and initializing buffers into 30 Rx blocks
6294          */
6295         mac_control = &sp->mac_control;
6296         config = &sp->config;
6297
6298         for (i = 0; i < config->rx_ring_num; i++) {
6299                 if ((ret = fill_rx_buffers(sp, i))) {
6300                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6301                                   dev->name);
6302                         s2io_reset(sp);
6303                         free_rx_buffers(sp);
6304                         return -ENOMEM;
6305                 }
6306                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6307                           atomic_read(&sp->rx_bufs_left[i]));
6308         }
6309
6310         /* Setting its receive mode */
6311         s2io_set_multicast(dev);
6312
6313         if (sp->lro) {
6314                 /* Initialize max aggregatable pkts based on MTU */
6315                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6316                 /* Check if we can use(if specified) user provided value */
6317                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6318                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6319         }
6320
6321         /* Enable tasklet for the device */
6322         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6323
6324         /* Enable Rx Traffic and interrupts on the NIC */
6325         if (start_nic(sp)) {
6326                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6327                 tasklet_kill(&sp->task);
6328                 s2io_reset(sp);
6329                 free_irq(dev->irq, dev);
6330                 free_rx_buffers(sp);
6331                 return -ENODEV;
6332         }
6333
6334         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6335
6336         atomic_set(&sp->card_state, CARD_UP);
6337         return 0;
6338 }
6339
6340 /**
6341  * s2io_restart_nic - Resets the NIC.
6342  * @data : long pointer to the device private structure
6343  * Description:
6344  * This function is scheduled to be run by the s2io_tx_watchdog
6345  * function after 0.5 secs to reset the NIC. The idea is to reduce
6346  * the run time of the watch dog routine which is run holding a
6347  * spin lock.
6348  */
6349
6350 static void s2io_restart_nic(unsigned long data)
6351 {
6352         struct net_device *dev = (struct net_device *) data;
6353         nic_t *sp = dev->priv;
6354
6355         s2io_card_down(sp, 0);
6356         if (s2io_card_up(sp)) {
6357                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6358                           dev->name);
6359         }
6360         netif_wake_queue(dev);
6361         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6362                   dev->name);
6363
6364 }
6365
6366 /**
6367  *  s2io_tx_watchdog - Watchdog for transmit side.
6368  *  @dev : Pointer to net device structure
6369  *  Description:
6370  *  This function is triggered if the Tx Queue is stopped
6371  *  for a pre-defined amount of time when the Interface is still up.
6372  *  If the Interface is jammed in such a situation, the hardware is
6373  *  reset (by s2io_close) and restarted again (by s2io_open) to
6374  *  overcome any problem that might have been caused in the hardware.
6375  *  Return value:
6376  *  void
6377  */
6378
6379 static void s2io_tx_watchdog(struct net_device *dev)
6380 {
6381         nic_t *sp = dev->priv;
6382
6383         if (netif_carrier_ok(dev)) {
6384                 schedule_work(&sp->rst_timer_task);
6385                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6386         }
6387 }
6388
6389 /**
6390  *   rx_osm_handler - To perform some OS related operations on SKB.
6391  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6392  *   @skb : the socket buffer pointer.
6393  *   @len : length of the packet
6394  *   @cksum : FCS checksum of the frame.
6395  *   @ring_no : the ring from which this RxD was extracted.
6396  *   Description:
6397  *   This function is called by the Tx interrupt serivce routine to perform
6398  *   some OS related operations on the SKB before passing it to the upper
6399  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6400  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6401  *   to the upper layer. If the checksum is wrong, it increments the Rx
6402  *   packet error count, frees the SKB and returns error.
6403  *   Return value:
6404  *   SUCCESS on success and -1 on failure.
6405  */
6406 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6407 {
6408         nic_t *sp = ring_data->nic;
6409         struct net_device *dev = (struct net_device *) sp->dev;
6410         struct sk_buff *skb = (struct sk_buff *)
6411                 ((unsigned long) rxdp->Host_Control);
6412         int ring_no = ring_data->ring_no;
6413         u16 l3_csum, l4_csum;
6414         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6415         lro_t *lro;
6416
6417         skb->dev = dev;
6418
6419         if (err) {
6420                 /* Check for parity error */
6421                 if (err & 0x1) {
6422                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6423                 }
6424
6425                 /*
6426                 * Drop the packet if bad transfer code. Exception being
6427                 * 0x5, which could be due to unsupported IPv6 extension header.
6428                 * In this case, we let stack handle the packet.
6429                 * Note that in this case, since checksum will be incorrect,
6430                 * stack will validate the same.
6431                 */
6432                 if (err && ((err >> 48) != 0x5)) {
6433                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6434                                 dev->name, err);
6435                         sp->stats.rx_crc_errors++;
6436                         dev_kfree_skb(skb);
6437                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6438                         rxdp->Host_Control = 0;
6439                         return 0;
6440                 }
6441         }
6442
6443         /* Updating statistics */
6444         rxdp->Host_Control = 0;
6445         sp->rx_pkt_count++;
6446         sp->stats.rx_packets++;
6447         if (sp->rxd_mode == RXD_MODE_1) {
6448                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6449
6450                 sp->stats.rx_bytes += len;
6451                 skb_put(skb, len);
6452
6453         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6454                 int get_block = ring_data->rx_curr_get_info.block_index;
6455                 int get_off = ring_data->rx_curr_get_info.offset;
6456                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6457                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6458                 unsigned char *buff = skb_push(skb, buf0_len);
6459
6460                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6461                 sp->stats.rx_bytes += buf0_len + buf2_len;
6462                 memcpy(buff, ba->ba_0, buf0_len);
6463
6464                 if (sp->rxd_mode == RXD_MODE_3A) {
6465                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6466
6467                         skb_put(skb, buf1_len);
6468                         skb->len += buf2_len;
6469                         skb->data_len += buf2_len;
6470                         skb->truesize += buf2_len;
6471                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6472                         sp->stats.rx_bytes += buf1_len;
6473
6474                 } else
6475                         skb_put(skb, buf2_len);
6476         }
6477
6478         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6479             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6480             (sp->rx_csum)) {
6481                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6482                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6483                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6484                         /*
6485                          * NIC verifies if the Checksum of the received
6486                          * frame is Ok or not and accordingly returns
6487                          * a flag in the RxD.
6488                          */
6489                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6490                         if (sp->lro) {
6491                                 u32 tcp_len;
6492                                 u8 *tcp;
6493                                 int ret = 0;
6494
6495                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6496                                                 &tcp_len, &lro, rxdp, sp);
6497                                 switch (ret) {
6498                                         case 3: /* Begin anew */
6499                                                 lro->parent = skb;
6500                                                 goto aggregate;
6501                                         case 1: /* Aggregate */
6502                                         {
6503                                                 lro_append_pkt(sp, lro,
6504                                                         skb, tcp_len);
6505                                                 goto aggregate;
6506                                         }
6507                                         case 4: /* Flush session */
6508                                         {
6509                                                 lro_append_pkt(sp, lro,
6510                                                         skb, tcp_len);
6511                                                 queue_rx_frame(lro->parent);
6512                                                 clear_lro_session(lro);
6513                                                 sp->mac_control.stats_info->
6514                                                     sw_stat.flush_max_pkts++;
6515                                                 goto aggregate;
6516                                         }
6517                                         case 2: /* Flush both */
6518                                                 lro->parent->data_len =
6519                                                         lro->frags_len;
6520                                                 sp->mac_control.stats_info->
6521                                                      sw_stat.sending_both++;
6522                                                 queue_rx_frame(lro->parent);
6523                                                 clear_lro_session(lro);
6524                                                 goto send_up;
6525                                         case 0: /* sessions exceeded */
6526                                         case -1: /* non-TCP or not
6527                                                   * L2 aggregatable
6528                                                   */
6529                                         case 5: /*
6530                                                  * First pkt in session not
6531                                                  * L3/L4 aggregatable
6532                                                  */
6533                                                 break;
6534                                         default:
6535                                                 DBG_PRINT(ERR_DBG,
6536                                                         "%s: Samadhana!!\n",
6537                                                          __FUNCTION__);
6538                                                 BUG();
6539                                 }
6540                         }
6541                 } else {
6542                         /*
6543                          * Packet with erroneous checksum, let the
6544                          * upper layers deal with it.
6545                          */
6546                         skb->ip_summed = CHECKSUM_NONE;
6547                 }
6548         } else {
6549                 skb->ip_summed = CHECKSUM_NONE;
6550         }
6551
6552         if (!sp->lro) {
6553                 skb->protocol = eth_type_trans(skb, dev);
6554 #ifdef CONFIG_S2IO_NAPI
6555                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6556                         /* Queueing the vlan frame to the upper layer */
6557                         vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6558                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6559                 } else {
6560                         netif_receive_skb(skb);
6561                 }
6562 #else
6563                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6564                         /* Queueing the vlan frame to the upper layer */
6565                         vlan_hwaccel_rx(skb, sp->vlgrp,
6566                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6567                 } else {
6568                         netif_rx(skb);
6569                 }
6570 #endif
6571         } else {
6572 send_up:
6573                 queue_rx_frame(skb);
6574         }               
6575         dev->last_rx = jiffies;
6576 aggregate:
6577         atomic_dec(&sp->rx_bufs_left[ring_no]);
6578         return SUCCESS;
6579 }
6580
6581 /**
6582  *  s2io_link - stops/starts the Tx queue.
6583  *  @sp : private member of the device structure, which is a pointer to the
6584  *  s2io_nic structure.
6585  *  @link : inidicates whether link is UP/DOWN.
6586  *  Description:
6587  *  This function stops/starts the Tx queue depending on whether the link
6588  *  status of the NIC is is down or up. This is called by the Alarm
6589  *  interrupt handler whenever a link change interrupt comes up.
6590  *  Return value:
6591  *  void.
6592  */
6593
6594 static void s2io_link(nic_t * sp, int link)
6595 {
6596         struct net_device *dev = (struct net_device *) sp->dev;
6597
6598         if (link != sp->last_link_state) {
6599                 if (link == LINK_DOWN) {
6600                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6601                         netif_carrier_off(dev);
6602                 } else {
6603                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6604                         netif_carrier_on(dev);
6605                 }
6606         }
6607         sp->last_link_state = link;
6608 }
6609
6610 /**
6611  *  get_xena_rev_id - to identify revision ID of xena.
6612  *  @pdev : PCI Dev structure
6613  *  Description:
6614  *  Function to identify the Revision ID of xena.
6615  *  Return value:
6616  *  returns the revision ID of the device.
6617  */
6618
6619 static int get_xena_rev_id(struct pci_dev *pdev)
6620 {
6621         u8 id = 0;
6622         int ret;
6623         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6624         return id;
6625 }
6626
6627 /**
6628  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6629  *  @sp : private member of the device structure, which is a pointer to the
6630  *  s2io_nic structure.
6631  *  Description:
6632  *  This function initializes a few of the PCI and PCI-X configuration registers
6633  *  with recommended values.
6634  *  Return value:
6635  *  void
6636  */
6637
6638 static void s2io_init_pci(nic_t * sp)
6639 {
6640         u16 pci_cmd = 0, pcix_cmd = 0;
6641
6642         /* Enable Data Parity Error Recovery in PCI-X command register. */
6643         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6644                              &(pcix_cmd));
6645         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6646                               (pcix_cmd | 1));
6647         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6648                              &(pcix_cmd));
6649
6650         /* Set the PErr Response bit in PCI command register. */
6651         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6652         pci_write_config_word(sp->pdev, PCI_COMMAND,
6653                               (pci_cmd | PCI_COMMAND_PARITY));
6654         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6655 }
6656
6657 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6658 MODULE_LICENSE("GPL");
6659 MODULE_VERSION(DRV_VERSION);
6660
6661 module_param(tx_fifo_num, int, 0);
6662 module_param(rx_ring_num, int, 0);
6663 module_param(rx_ring_mode, int, 0);
6664 module_param_array(tx_fifo_len, uint, NULL, 0);
6665 module_param_array(rx_ring_sz, uint, NULL, 0);
6666 module_param_array(rts_frm_len, uint, NULL, 0);
6667 module_param(use_continuous_tx_intrs, int, 1);
6668 module_param(rmac_pause_time, int, 0);
6669 module_param(mc_pause_threshold_q0q3, int, 0);
6670 module_param(mc_pause_threshold_q4q7, int, 0);
6671 module_param(shared_splits, int, 0);
6672 module_param(tmac_util_period, int, 0);
6673 module_param(rmac_util_period, int, 0);
6674 module_param(bimodal, bool, 0);
6675 module_param(l3l4hdr_size, int , 0);
6676 #ifndef CONFIG_S2IO_NAPI
6677 module_param(indicate_max_pkts, int, 0);
6678 #endif
6679 module_param(rxsync_frequency, int, 0);
6680 module_param(intr_type, int, 0);
6681 module_param(lro, int, 0);
6682 module_param(lro_max_pkts, int, 0);
6683
6684 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6685 {
6686         if ( tx_fifo_num > 8) {
6687                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6688                          "supported\n");
6689                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6690                 tx_fifo_num = 8;
6691         }
6692         if ( rx_ring_num > 8) {
6693                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6694                          "supported\n");
6695                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6696                 rx_ring_num = 8;
6697         }
6698 #ifdef CONFIG_S2IO_NAPI
6699         if (*dev_intr_type != INTA) {
6700                 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6701                           "MSI/MSI-X is enabled. Defaulting to INTA\n");
6702                 *dev_intr_type = INTA;
6703         }
6704 #endif
6705 #ifndef CONFIG_PCI_MSI
6706         if (*dev_intr_type != INTA) {
6707                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6708                           "MSI/MSI-X. Defaulting to INTA\n");
6709                 *dev_intr_type = INTA;
6710         }
6711 #else
6712         if (*dev_intr_type > MSI_X) {
6713                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6714                           "Defaulting to INTA\n");
6715                 *dev_intr_type = INTA;
6716         }
6717 #endif
6718         if ((*dev_intr_type == MSI_X) &&
6719                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6720                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6721                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. " 
6722                                         "Defaulting to INTA\n");
6723                 *dev_intr_type = INTA;
6724         }
6725         if (rx_ring_mode > 3) {
6726                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6727                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6728                 rx_ring_mode = 3;
6729         }
6730         return SUCCESS;
6731 }
6732
6733 /**
6734  *  s2io_init_nic - Initialization of the adapter .
6735  *  @pdev : structure containing the PCI related information of the device.
6736  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6737  *  Description:
6738  *  The function initializes an adapter identified by the pci_dec structure.
6739  *  All OS related initialization including memory and device structure and
6740  *  initlaization of the device private variable is done. Also the swapper
6741  *  control register is initialized to enable read and write into the I/O
6742  *  registers of the device.
6743  *  Return value:
6744  *  returns 0 on success and negative on failure.
6745  */
6746
6747 static int __devinit
6748 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6749 {
6750         nic_t *sp;
6751         struct net_device *dev;
6752         int i, j, ret;
6753         int dma_flag = FALSE;
6754         u32 mac_up, mac_down;
6755         u64 val64 = 0, tmp64 = 0;
6756         XENA_dev_config_t __iomem *bar0 = NULL;
6757         u16 subid;
6758         mac_info_t *mac_control;
6759         struct config_param *config;
6760         int mode;
6761         u8 dev_intr_type = intr_type;
6762
6763         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6764                 return ret;
6765
6766         if ((ret = pci_enable_device(pdev))) {
6767                 DBG_PRINT(ERR_DBG,
6768                           "s2io_init_nic: pci_enable_device failed\n");
6769                 return ret;
6770         }
6771
6772         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6773                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6774                 dma_flag = TRUE;
6775                 if (pci_set_consistent_dma_mask
6776                     (pdev, DMA_64BIT_MASK)) {
6777                         DBG_PRINT(ERR_DBG,
6778                                   "Unable to obtain 64bit DMA for \
6779                                         consistent allocations\n");
6780                         pci_disable_device(pdev);
6781                         return -ENOMEM;
6782                 }
6783         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6784                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6785         } else {
6786                 pci_disable_device(pdev);
6787                 return -ENOMEM;
6788         }
6789         if (dev_intr_type != MSI_X) {
6790                 if (pci_request_regions(pdev, s2io_driver_name)) {
6791                         DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6792                             pci_disable_device(pdev);
6793                         return -ENODEV;
6794                 }
6795         }
6796         else {
6797                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6798                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6799                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6800                         pci_disable_device(pdev);
6801                         return -ENODEV;
6802                 }
6803                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6804                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6805                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6806                         release_mem_region(pci_resource_start(pdev, 0),
6807                                    pci_resource_len(pdev, 0));
6808                         pci_disable_device(pdev);
6809                         return -ENODEV;
6810                 }
6811         }
6812
6813         dev = alloc_etherdev(sizeof(nic_t));
6814         if (dev == NULL) {
6815                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6816                 pci_disable_device(pdev);
6817                 pci_release_regions(pdev);
6818                 return -ENODEV;
6819         }
6820
6821         pci_set_master(pdev);
6822         pci_set_drvdata(pdev, dev);
6823         SET_MODULE_OWNER(dev);
6824         SET_NETDEV_DEV(dev, &pdev->dev);
6825
6826         /*  Private member variable initialized to s2io NIC structure */
6827         sp = dev->priv;
6828         memset(sp, 0, sizeof(nic_t));
6829         sp->dev = dev;
6830         sp->pdev = pdev;
6831         sp->high_dma_flag = dma_flag;
6832         sp->device_enabled_once = FALSE;
6833         if (rx_ring_mode == 1)
6834                 sp->rxd_mode = RXD_MODE_1;
6835         if (rx_ring_mode == 2)
6836                 sp->rxd_mode = RXD_MODE_3B;
6837         if (rx_ring_mode == 3)
6838                 sp->rxd_mode = RXD_MODE_3A;
6839
6840         sp->intr_type = dev_intr_type;
6841
6842         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6843                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6844                 sp->device_type = XFRAME_II_DEVICE;
6845         else
6846                 sp->device_type = XFRAME_I_DEVICE;
6847
6848         sp->lro = lro;
6849                 
6850         /* Initialize some PCI/PCI-X fields of the NIC. */
6851         s2io_init_pci(sp);
6852
6853         /*
6854          * Setting the device configuration parameters.
6855          * Most of these parameters can be specified by the user during
6856          * module insertion as they are module loadable parameters. If
6857          * these parameters are not not specified during load time, they
6858          * are initialized with default values.
6859          */
6860         mac_control = &sp->mac_control;
6861         config = &sp->config;
6862
6863         /* Tx side parameters. */
6864         config->tx_fifo_num = tx_fifo_num;
6865         for (i = 0; i < MAX_TX_FIFOS; i++) {
6866                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6867                 config->tx_cfg[i].fifo_priority = i;
6868         }
6869
6870         /* mapping the QoS priority to the configured fifos */
6871         for (i = 0; i < MAX_TX_FIFOS; i++)
6872                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6873
6874         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6875         for (i = 0; i < config->tx_fifo_num; i++) {
6876                 config->tx_cfg[i].f_no_snoop =
6877                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6878                 if (config->tx_cfg[i].fifo_len < 65) {
6879                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6880                         break;
6881                 }
6882         }
6883         /* + 2 because one Txd for skb->data and one Txd for UFO */
6884         config->max_txds = MAX_SKB_FRAGS + 2;
6885
6886         /* Rx side parameters. */
6887         config->rx_ring_num = rx_ring_num;
6888         for (i = 0; i < MAX_RX_RINGS; i++) {
6889                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6890                     (rxd_count[sp->rxd_mode] + 1);
6891                 config->rx_cfg[i].ring_priority = i;
6892         }
6893
6894         for (i = 0; i < rx_ring_num; i++) {
6895                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6896                 config->rx_cfg[i].f_no_snoop =
6897                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6898         }
6899
6900         /*  Setting Mac Control parameters */
6901         mac_control->rmac_pause_time = rmac_pause_time;
6902         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6903         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6904
6905
6906         /* Initialize Ring buffer parameters. */
6907         for (i = 0; i < config->rx_ring_num; i++)
6908                 atomic_set(&sp->rx_bufs_left[i], 0);
6909
6910         /* Initialize the number of ISRs currently running */
6911         atomic_set(&sp->isr_cnt, 0);
6912
6913         /*  initialize the shared memory used by the NIC and the host */
6914         if (init_shared_mem(sp)) {
6915                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6916                           __FUNCTION__);
6917                 ret = -ENOMEM;
6918                 goto mem_alloc_failed;
6919         }
6920
6921         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6922                                      pci_resource_len(pdev, 0));
6923         if (!sp->bar0) {
6924                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6925                           dev->name);
6926                 ret = -ENOMEM;
6927                 goto bar0_remap_failed;
6928         }
6929
6930         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6931                                      pci_resource_len(pdev, 2));
6932         if (!sp->bar1) {
6933                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6934                           dev->name);
6935                 ret = -ENOMEM;
6936                 goto bar1_remap_failed;
6937         }
6938
6939         dev->irq = pdev->irq;
6940         dev->base_addr = (unsigned long) sp->bar0;
6941
6942         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6943         for (j = 0; j < MAX_TX_FIFOS; j++) {
6944                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6945                     (sp->bar1 + (j * 0x00020000));
6946         }
6947
6948         /*  Driver entry points */
6949         dev->open = &s2io_open;
6950         dev->stop = &s2io_close;
6951         dev->hard_start_xmit = &s2io_xmit;
6952         dev->get_stats = &s2io_get_stats;
6953         dev->set_multicast_list = &s2io_set_multicast;
6954         dev->do_ioctl = &s2io_ioctl;
6955         dev->change_mtu = &s2io_change_mtu;
6956         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6957         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6958         dev->vlan_rx_register = s2io_vlan_rx_register;
6959         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6960
6961         /*
6962          * will use eth_mac_addr() for  dev->set_mac_address
6963          * mac address will be set every time dev->open() is called
6964          */
6965 #if defined(CONFIG_S2IO_NAPI)
6966         dev->poll = s2io_poll;
6967         dev->weight = 32;
6968 #endif
6969
6970         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6971         if (sp->high_dma_flag == TRUE)
6972                 dev->features |= NETIF_F_HIGHDMA;
6973 #ifdef NETIF_F_TSO
6974         dev->features |= NETIF_F_TSO;
6975 #endif
6976         if (sp->device_type & XFRAME_II_DEVICE) {
6977                 dev->features |= NETIF_F_UFO;
6978                 dev->features |= NETIF_F_HW_CSUM;
6979         }
6980
6981         dev->tx_timeout = &s2io_tx_watchdog;
6982         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6983         INIT_WORK(&sp->rst_timer_task,
6984                   (void (*)(void *)) s2io_restart_nic, dev);
6985         INIT_WORK(&sp->set_link_task,
6986                   (void (*)(void *)) s2io_set_link, sp);
6987
6988         pci_save_state(sp->pdev);
6989
6990         /* Setting swapper control on the NIC, for proper reset operation */
6991         if (s2io_set_swapper(sp)) {
6992                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6993                           dev->name);
6994                 ret = -EAGAIN;
6995                 goto set_swap_failed;
6996         }
6997
6998         /* Verify if the Herc works on the slot its placed into */
6999         if (sp->device_type & XFRAME_II_DEVICE) {
7000                 mode = s2io_verify_pci_mode(sp);
7001                 if (mode < 0) {
7002                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7003                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7004                         ret = -EBADSLT;
7005                         goto set_swap_failed;
7006                 }
7007         }
7008
7009         /* Not needed for Herc */
7010         if (sp->device_type & XFRAME_I_DEVICE) {
7011                 /*
7012                  * Fix for all "FFs" MAC address problems observed on
7013                  * Alpha platforms
7014                  */
7015                 fix_mac_address(sp);
7016                 s2io_reset(sp);
7017         }
7018
7019         /*
7020          * MAC address initialization.
7021          * For now only one mac address will be read and used.
7022          */
7023         bar0 = sp->bar0;
7024         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7025             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7026         writeq(val64, &bar0->rmac_addr_cmd_mem);
7027         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7028                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7029         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7030         mac_down = (u32) tmp64;
7031         mac_up = (u32) (tmp64 >> 32);
7032
7033         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7034
7035         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7036         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7037         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7038         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7039         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7040         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7041
7042         /*  Set the factory defined MAC address initially   */
7043         dev->addr_len = ETH_ALEN;
7044         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7045
7046         /*
7047          * Initialize the tasklet status and link state flags
7048          * and the card state parameter
7049          */
7050         atomic_set(&(sp->card_state), 0);
7051         sp->tasklet_status = 0;
7052         sp->link_state = 0;
7053
7054         /* Initialize spinlocks */
7055         spin_lock_init(&sp->tx_lock);
7056 #ifndef CONFIG_S2IO_NAPI
7057         spin_lock_init(&sp->put_lock);
7058 #endif
7059         spin_lock_init(&sp->rx_lock);
7060
7061         /*
7062          * SXE-002: Configure link and activity LED to init state
7063          * on driver load.
7064          */
7065         subid = sp->pdev->subsystem_device;
7066         if ((subid & 0xFF) >= 0x07) {
7067                 val64 = readq(&bar0->gpio_control);
7068                 val64 |= 0x0000800000000000ULL;
7069                 writeq(val64, &bar0->gpio_control);
7070                 val64 = 0x0411040400000000ULL;
7071                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7072                 val64 = readq(&bar0->gpio_control);
7073         }
7074
7075         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7076
7077         if (register_netdev(dev)) {
7078                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7079                 ret = -ENODEV;
7080                 goto register_failed;
7081         }
7082         s2io_vpd_read(sp);
7083         DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7084         DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
7085                                 get_xena_rev_id(sp->pdev),
7086                                 s2io_driver_version);
7087         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7088         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7089                           "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7090                           sp->def_mac_addr[0].mac_addr[0],
7091                           sp->def_mac_addr[0].mac_addr[1],
7092                           sp->def_mac_addr[0].mac_addr[2],
7093                           sp->def_mac_addr[0].mac_addr[3],
7094                           sp->def_mac_addr[0].mac_addr[4],
7095                           sp->def_mac_addr[0].mac_addr[5]);
7096         if (sp->device_type & XFRAME_II_DEVICE) {
7097                 mode = s2io_print_pci_mode(sp);
7098                 if (mode < 0) {
7099                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7100                         ret = -EBADSLT;
7101                         unregister_netdev(dev);
7102                         goto set_swap_failed;
7103                 }
7104         }
7105         switch(sp->rxd_mode) {
7106                 case RXD_MODE_1:
7107                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7108                                                 dev->name);
7109                     break;
7110                 case RXD_MODE_3B:
7111                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7112                                                 dev->name);
7113                     break;
7114                 case RXD_MODE_3A:
7115                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7116                                                 dev->name);
7117                     break;
7118         }
7119 #ifdef CONFIG_S2IO_NAPI
7120         DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7121 #endif
7122         switch(sp->intr_type) {
7123                 case INTA:
7124                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7125                     break;
7126                 case MSI:
7127                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7128                     break;
7129                 case MSI_X:
7130                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7131                     break;
7132         }
7133         if (sp->lro)
7134                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7135                           dev->name);
7136
7137         /* Initialize device name */
7138         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7139
7140         /* Initialize bimodal Interrupts */
7141         sp->config.bimodal = bimodal;
7142         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7143                 sp->config.bimodal = 0;
7144                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7145                         dev->name);
7146         }
7147
7148         /*
7149          * Make Link state as off at this point, when the Link change
7150          * interrupt comes the state will be automatically changed to
7151          * the right state.
7152          */
7153         netif_carrier_off(dev);
7154
7155         return 0;
7156
7157       register_failed:
7158       set_swap_failed:
7159         iounmap(sp->bar1);
7160       bar1_remap_failed:
7161         iounmap(sp->bar0);
7162       bar0_remap_failed:
7163       mem_alloc_failed:
7164         free_shared_mem(sp);
7165         pci_disable_device(pdev);
7166         if (dev_intr_type != MSI_X)
7167                 pci_release_regions(pdev);
7168         else {
7169                 release_mem_region(pci_resource_start(pdev, 0),
7170                         pci_resource_len(pdev, 0));
7171                 release_mem_region(pci_resource_start(pdev, 2),
7172                         pci_resource_len(pdev, 2));
7173         }
7174         pci_set_drvdata(pdev, NULL);
7175         free_netdev(dev);
7176
7177         return ret;
7178 }
7179
7180 /**
7181  * s2io_rem_nic - Free the PCI device
7182  * @pdev: structure containing the PCI related information of the device.
7183  * Description: This function is called by the Pci subsystem to release a
7184  * PCI device and free up all resource held up by the device. This could
7185  * be in response to a Hot plug event or when the driver is to be removed
7186  * from memory.
7187  */
7188
7189 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7190 {
7191         struct net_device *dev =
7192             (struct net_device *) pci_get_drvdata(pdev);
7193         nic_t *sp;
7194
7195         if (dev == NULL) {
7196                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7197                 return;
7198         }
7199
7200         sp = dev->priv;
7201         unregister_netdev(dev);
7202
7203         free_shared_mem(sp);
7204         iounmap(sp->bar0);
7205         iounmap(sp->bar1);
7206         pci_disable_device(pdev);
7207         if (sp->intr_type != MSI_X)
7208                 pci_release_regions(pdev);
7209         else {
7210                 release_mem_region(pci_resource_start(pdev, 0),
7211                         pci_resource_len(pdev, 0));
7212                 release_mem_region(pci_resource_start(pdev, 2),
7213                         pci_resource_len(pdev, 2));
7214         }
7215         pci_set_drvdata(pdev, NULL);
7216         free_netdev(dev);
7217 }
7218
7219 /**
7220  * s2io_starter - Entry point for the driver
7221  * Description: This function is the entry point for the driver. It verifies
7222  * the module loadable parameters and initializes PCI configuration space.
7223  */
7224
7225 int __init s2io_starter(void)
7226 {
7227         return pci_module_init(&s2io_driver);
7228 }
7229
7230 /**
7231  * s2io_closer - Cleanup routine for the driver
7232  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7233  */
7234
7235 static void s2io_closer(void)
7236 {
7237         pci_unregister_driver(&s2io_driver);
7238         DBG_PRINT(INIT_DBG, "cleanup done\n");
7239 }
7240
7241 module_init(s2io_starter);
7242 module_exit(s2io_closer);
7243
7244 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 
7245                 struct tcphdr **tcp, RxD_t *rxdp)
7246 {
7247         int ip_off;
7248         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7249
7250         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7251                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7252                           __FUNCTION__);
7253                 return -1;
7254         }
7255
7256         /* TODO:
7257          * By default the VLAN field in the MAC is stripped by the card, if this
7258          * feature is turned off in rx_pa_cfg register, then the ip_off field
7259          * has to be shifted by a further 2 bytes
7260          */
7261         switch (l2_type) {
7262                 case 0: /* DIX type */
7263                 case 4: /* DIX type with VLAN */
7264                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7265                         break;
7266                 /* LLC, SNAP etc are considered non-mergeable */
7267                 default:
7268                         return -1;
7269         }
7270
7271         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7272         ip_len = (u8)((*ip)->ihl);
7273         ip_len <<= 2;
7274         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7275
7276         return 0;
7277 }
7278
7279 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7280                                   struct tcphdr *tcp)
7281 {
7282         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7283         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7284            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7285                 return -1;
7286         return 0;
7287 }
7288
7289 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7290 {
7291         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7292 }
7293
7294 static void initiate_new_session(lro_t *lro, u8 *l2h,
7295                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7296 {
7297         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7298         lro->l2h = l2h;
7299         lro->iph = ip;
7300         lro->tcph = tcp;
7301         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7302         lro->tcp_ack = ntohl(tcp->ack_seq);
7303         lro->sg_num = 1;
7304         lro->total_len = ntohs(ip->tot_len);
7305         lro->frags_len = 0;
7306         /* 
7307          * check if we saw TCP timestamp. Other consistency checks have
7308          * already been done.
7309          */
7310         if (tcp->doff == 8) {
7311                 u32 *ptr;
7312                 ptr = (u32 *)(tcp+1);
7313                 lro->saw_ts = 1;
7314                 lro->cur_tsval = *(ptr+1);
7315                 lro->cur_tsecr = *(ptr+2);
7316         }
7317         lro->in_use = 1;
7318 }
7319
7320 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7321 {
7322         struct iphdr *ip = lro->iph;
7323         struct tcphdr *tcp = lro->tcph;
7324         u16 nchk;
7325         StatInfo_t *statinfo = sp->mac_control.stats_info;
7326         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7327
7328         /* Update L3 header */
7329         ip->tot_len = htons(lro->total_len);
7330         ip->check = 0;
7331         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7332         ip->check = nchk;
7333
7334         /* Update L4 header */
7335         tcp->ack_seq = lro->tcp_ack;
7336         tcp->window = lro->window;
7337
7338         /* Update tsecr field if this session has timestamps enabled */
7339         if (lro->saw_ts) {
7340                 u32 *ptr = (u32 *)(tcp + 1);
7341                 *(ptr+2) = lro->cur_tsecr;
7342         }
7343
7344         /* Update counters required for calculation of
7345          * average no. of packets aggregated.
7346          */
7347         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7348         statinfo->sw_stat.num_aggregations++;
7349 }
7350
7351 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7352                 struct tcphdr *tcp, u32 l4_pyld)
7353 {
7354         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7355         lro->total_len += l4_pyld;
7356         lro->frags_len += l4_pyld;
7357         lro->tcp_next_seq += l4_pyld;
7358         lro->sg_num++;
7359
7360         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7361         lro->tcp_ack = tcp->ack_seq;
7362         lro->window = tcp->window;
7363         
7364         if (lro->saw_ts) {
7365                 u32 *ptr;
7366                 /* Update tsecr and tsval from this packet */
7367                 ptr = (u32 *) (tcp + 1);
7368                 lro->cur_tsval = *(ptr + 1); 
7369                 lro->cur_tsecr = *(ptr + 2);
7370         }
7371 }
7372
7373 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7374                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7375 {
7376         u8 *ptr;
7377
7378         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7379
7380         if (!tcp_pyld_len) {
7381                 /* Runt frame or a pure ack */
7382                 return -1;
7383         }
7384
7385         if (ip->ihl != 5) /* IP has options */
7386                 return -1;
7387
7388         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7389                                                                 !tcp->ack) {
7390                 /*
7391                  * Currently recognize only the ack control word and
7392                  * any other control field being set would result in
7393                  * flushing the LRO session
7394                  */
7395                 return -1;
7396         }
7397
7398         /* 
7399          * Allow only one TCP timestamp option. Don't aggregate if
7400          * any other options are detected.
7401          */
7402         if (tcp->doff != 5 && tcp->doff != 8)
7403                 return -1;
7404
7405         if (tcp->doff == 8) {
7406                 ptr = (u8 *)(tcp + 1);  
7407                 while (*ptr == TCPOPT_NOP)
7408                         ptr++;
7409                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7410                         return -1;
7411
7412                 /* Ensure timestamp value increases monotonically */
7413                 if (l_lro)
7414                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7415                                 return -1;
7416
7417                 /* timestamp echo reply should be non-zero */
7418                 if (*((u32 *)(ptr+6)) == 0) 
7419                         return -1;
7420         }
7421
7422         return 0;
7423 }
7424
7425 static int
7426 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7427                       RxD_t *rxdp, nic_t *sp)
7428 {
7429         struct iphdr *ip;
7430         struct tcphdr *tcph;
7431         int ret = 0, i;
7432
7433         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7434                                          rxdp))) {
7435                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7436                           ip->saddr, ip->daddr);
7437         } else {
7438                 return ret;
7439         }
7440
7441         tcph = (struct tcphdr *)*tcp;
7442         *tcp_len = get_l4_pyld_length(ip, tcph);
7443         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7444                 lro_t *l_lro = &sp->lro0_n[i];
7445                 if (l_lro->in_use) {
7446                         if (check_for_socket_match(l_lro, ip, tcph))
7447                                 continue;
7448                         /* Sock pair matched */
7449                         *lro = l_lro;
7450
7451                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7452                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7453                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7454                                           (*lro)->tcp_next_seq,
7455                                           ntohl(tcph->seq));
7456
7457                                 sp->mac_control.stats_info->
7458                                    sw_stat.outof_sequence_pkts++;
7459                                 ret = 2;
7460                                 break;
7461                         }
7462
7463                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7464                                 ret = 1; /* Aggregate */
7465                         else
7466                                 ret = 2; /* Flush both */
7467                         break;
7468                 }
7469         }
7470
7471         if (ret == 0) {
7472                 /* Before searching for available LRO objects,
7473                  * check if the pkt is L3/L4 aggregatable. If not
7474                  * don't create new LRO session. Just send this
7475                  * packet up.
7476                  */
7477                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7478                         return 5;
7479                 }
7480
7481                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7482                         lro_t *l_lro = &sp->lro0_n[i];
7483                         if (!(l_lro->in_use)) {
7484                                 *lro = l_lro;
7485                                 ret = 3; /* Begin anew */
7486                                 break;
7487                         }
7488                 }
7489         }
7490
7491         if (ret == 0) { /* sessions exceeded */
7492                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7493                           __FUNCTION__);
7494                 *lro = NULL;
7495                 return ret;
7496         }
7497
7498         switch (ret) {
7499                 case 3:
7500                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7501                         break;
7502                 case 2:
7503                         update_L3L4_header(sp, *lro);
7504                         break;
7505                 case 1:
7506                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7507                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7508                                 update_L3L4_header(sp, *lro);
7509                                 ret = 4; /* Flush the LRO */
7510                         }
7511                         break;
7512                 default:
7513                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7514                                 __FUNCTION__);
7515                         break;
7516         }
7517
7518         return ret;
7519 }
7520
7521 static void clear_lro_session(lro_t *lro)
7522 {
7523         static u16 lro_struct_size = sizeof(lro_t);
7524
7525         memset(lro, 0, lro_struct_size);
7526 }
7527
7528 static void queue_rx_frame(struct sk_buff *skb)
7529 {
7530         struct net_device *dev = skb->dev;
7531
7532         skb->protocol = eth_type_trans(skb, dev);
7533 #ifdef CONFIG_S2IO_NAPI
7534         netif_receive_skb(skb);
7535 #else
7536         netif_rx(skb);
7537 #endif
7538 }
7539
7540 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7541                            u32 tcp_len)
7542 {
7543         struct sk_buff *tmp, *first = lro->parent;
7544
7545         first->len += tcp_len;
7546         first->data_len = lro->frags_len;
7547         skb_pull(skb, (skb->len - tcp_len));
7548         if ((tmp = skb_shinfo(first)->frag_list)) {
7549                 while (tmp->next)
7550                         tmp = tmp->next;
7551                 tmp->next = skb;
7552         }
7553         else
7554                 skb_shinfo(first)->frag_list = skb;
7555         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7556         return;
7557 }